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ABSTRACT 

The presented work is an investigation of the laser surface modification of H13 

tool steel using pulse laser processing mode. Initial screening experimental designs 

conducted lead to more optimised detailed designs. A carbon dioxide (CO2) laser 

system with 10.6 μm wavelength was used. In the experimental designs 

investigated three different sizes of laser spot used were 0.4, 0.2 and 0.09 mm 

diameter. The other controlled parameters were laser peak power, pulse repetition 

frequency and pulse overlap. The laser processing was constantly assisted by in 

line argon gas at 0.1 MPa pressure. H13 samples were roughened and chemically 

etched prior processing to improve the surface absorbance at the CO2 laser 

wavelength. Laser processed samples were prepared for metallographic study and 

were characterised for physical and mechanical properties. The metallographic 

study and chemical composition analysis were conducted using scanning electron 

microscope integrated with energy dispersive x-ray spectroscopy. The crystallinity 

and phase detection of the modified surface were conducted using an XRD system 

with Cu Kα radiation and wavelength of 1.54 Å. The surface profile was measured 

using stylus profilometry measuring systems. The hardness properties of the 

modified surface were measured by micro-Vickers diamond indentation. A 

modified surface grain with an ultrafine size of less than 500 nm was observed to 

be achievable. A modified surface depth which ranged between 35 and 150 µm was 

developed on the laser processed H13 samples. A reduction of crystallinity was 

noticeable for the modified H13 surface which was related to the more random 

distribution of crystallites after laser processing. A minimum modified H13 

average surface roughness, Ra, of 1.9 µm was achieved. Another important finding 

was that at different settings of laser parameters, the modified H13 surface 

exhibited a range of hardness between 728 and 905 HV0.1. A relationship between 

thermal simulations findings (heating and cooling rates) and hardness results was 

established for further understanding of the effects of the laser parameters. These 

findings are significant to the establishment of surface hardening techniques for 

wear resistance and thermal barrier coating applications.  
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NOMENCLATURE AND ABBREVIATION 

 

PP peak power 

Pave average power 

DC duty cycle 

PRF pulse repetition frequency 

T pulse period 

τ pulse width 

S traverse speed 

ω circumferential speed 

V linear translation speed 

d laser spot diameter 

Xp length of traverse per pass 

n number of laser spots 

TR residence time 

EP laser pulse energy 

I laser irradiance 

F laser fluence 

η overlap 

z distance from focal position 

wR beam radius at a distance z from the waist 

wOR non-gaussian beam radius at the waist 

λ laser wavelength 

M2 beam quality 

N refractive index 

k surface absorptance coefficient 

A surface absorptance factor 

HT      total energy 
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CHAPTER 1 

Introduction 

1.0 Chapter 1 Heading 1 

1.1 Introduction 

For many years, research work has been conducted to enhance the surface properties of 

materials to better endure high temperature, wear and friction through coating or surface 

modification. Although various advanced materials with significant properties have been 

developed, nevertheless when it concerns a particular surface engineering application, a 

materials’ physical properties are among other factors that need to be considered, which 

include practicality, cost and time consumption. For instance, die casting is increasingly 

operated to produce cast metal parts due to the high surface quality of product, low 

manufacturing cost, and large quantity production capability. In spite of these advantages, 

a major problem lies in the costly dies preparation which includes tool design, material 

selection, its heat treatment, and development of casting process parameters, with the aim 

of maintaining the surface properties and prolonging the life cycle [1, 2]. Even high 

temperature, using H13 tool steel in die applications necessitates die replacement after 

thousands of cycles of aluminium castings or even fewer cycles for brass castings. 

Various researches indicate that surface treatment and coating are the most effective 

methods to protect die surfaces from thermal fatigue and extend die life by reducing the 

damage at contact surfaces [3]. Due to the high temperature and cyclic running, failures of 

die-casting dies used in the metal casting industry occur excessively.  These severe 

conditions will eventually lead to surface damage and die failures due to some 

combination of thermal fatigue, heat checking, erosion, stress corrosion, and soldering [3, 

4]. Due to the rapid advancement in the field of surface engineering, conventional 

techniques for surface treatment like carburizing and flame hardening have been replaced 

by techniques using advanced heat sources such as plasma, laser, ion, and electron. 

Currently, high power lasers have become increasingly accepted as tools for many 

applications from cutting to welding to surface modification methods. Laser processing 

has also been proven to be capable of producing adherent, hard, wear, corrosion, fatigue 

and fracture resistant coatings on a diverse range of materials [5]. In other words, the 

crystal structure of metals’ surfaces can actually be modified into very fine non-

equilibrium microstructures as a result of rapid solidification via laser surface 

modification [6]. 
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1.2 Prior Knowledge of Problem 

Laser surface modification has been studied as a way of die surface hardening, in order to 

overcome the premature failure of the die during casting by developing a layer of high 

hardness on the substrate surface. Coating techniques are currently implemented to 

improve die life though it is difficult to meet the many coating requirements of excellent 

bonding, adequate thickness, absence of flaws, suitable mechanical properties, thermal 

shock resistance and high temperature stability [3]. Previous works of laser surface 

modification were conducted using continuous laser operation mode [3, 6]. However, 

many reviews indicate the problem of using the continuous laser mode compared to the 

pulsed laser operation mode. Though both continuous and pulsed wave lasers may be 

employed for surface modification, defects such as porosity, bubbles or depressions, occur 

easily with a continuous wave laser [7, 8]. Meanwhile, in contrast to the continuous wave 

operation, pulsed beam offers several challenges owing to the higher number of operating 

variables and the complexity of optimizing the process parameters [9].  

The cyclic temperature changes due to the use of pulsed laser sources was established in 

several fields such as welding, laser sintering and laser surface treatment [10], but very 

few papers have dealt with the influence of pulse frequency on the final material 

mechanical properties and microstructure; and these have not been found to be consistent 

[7]. Therefore the great potential of cyclic temperatures in laser hardening has not yet 

been realised [10]. To overcome this, experimental investigation and thermal 

mathematical modelling would be necessary to determine the temperature distribution in 

achieving the optimum properties of laser glazed die surfaces [11-14]. 

1.3 Research Objectives 

The main objectives of the thesis were to modify H13 tool steel surface using CO2 laser for 

semi-solid processing die applications in order to produce a modified surface layer with 

enhanced hardness properties and minimum surface roughness. To meet the main 

objectives, the thesis addresses six separate goals: 

i. To investigate the effects of laser processing parameters and surface absorptance 

on the modified surface. 

ii. To design the experiments with three processing factors and to optimise the 

processing parameters. 

iii. To produce a maximum modified layer depth with a reduction of grain size. 
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iv. To identify the crystallinity of the modified surface. 

v. To simulate the temperature distribution in laser surface modification process. 

1.4 Thesis Outline 

Chapter 1 Introduction 

In this chapter, a brief research background was presented including the introduction of 

surface modification, followed by prior knowledge of problem and objectives. 

Chapter 2 Literature Review and Theoretical Background 

This chapter presents previous works on laser surface modification of tool steel and alloys. 

The literature review includes laser surface modification, controlled parameters and their 

formulas in laser processing, parameters effects on surface properties, materials surface 

absorptance, overlapping pulse effect on modified surface, mechanical and physical 

properties of rapidly quenched alloy, thermal modelling of laser surface modification, and 

die failures in semi-solid processing.  

Chapter 3 Methodology 

The research methodology is presented in Chapter 3 and comprises: materials and sample 

preparation, laser surface modification process, five design of experiments, 

characterisation techniques and thermal modelling. The thermal modelling simulation 

parameter settings used in a developed thermal model in LabVIEW software are also 

given.  

Chapter 4 Results 

This chapter presents the characterisation results of the as-received H13 tool steel and 

laser modified samples. The modified samples results were presented according to the 

sequence of design of experiments conducted and presented in Chapter 3. At the end of 

each design of experiment results section, a brief summary of results achievement is 

presented. The results of EDXS, XRD analysis and thermal modelling conclude the chapter.  

Chapter 5 Discussion 

Results of DOE1, DOE2, DOE3 and DOE4 were discussed in chapter 5 according to the 

characterisation method. The DOE5 results were discussed in a statistical manner with 
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design optimisation. The EDXS, XRD analysis and thermal modelling findings were 

discussed for selected laser modified samples and compared with the as-received H13 tool 

steel. 

Chapter 6 Conclusion 

The thesis was completed with research findings conclusion and recommendations for 

future work. Overall significance of the findings of metallographic study, hardness 

properties, phase analysis, surface roughness, and design optimisation, for wear resistance 

and semi-solid processing applications are highlighted. 
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CHAPTER 2 

Literature Review 

2.0 Cubaan heading 2 

2.1 Laser Surface Modification Techniques 

The laser has been developed for many different scientific applications including materials 

processing, spectroscopy, photochemistry, microscopy, lunar laser ranging and nuclear 

fusion. These applications are a result of the coherency and mono-chromaticity of the 

electromagnetic radiation beam that can propagate in a straight line with negligible 

divergence and which can be generated in a wide range of wavelengths, energies and 

beam-modes [15, 16]. Application of laser technology in metal surface modification takes 

advantage of heat energy from the laser beam to alter the materials’ surface properties. 

Laser processing has more advantages over the conventional methods which include local 

heating of the surface without changing the substrate material properties, precision and 

high speed of operation, and low cost [11].  

There are several methods of laser surface modification, namely laser alloying, 

transformation hardening, surface amorphisation, shock hardening, cladding and glazing. 

These methods are different in terms of the composition changes on the material’s surface 

and energy absorption rate as shown in Figure 2.1. In comparing to other conventional 

methods for selective surface hardening, the benefits of laser surface processing technique 

include fine-grained and homogeneous microstructures, low thermal damage to the 

underlying substrate, reduced grain growth and distortion, non-equilibrium and 

amorphous structures, and extension of the solid solubility of alloying elements [3, 6, 17]. 

These benefits in turn can be used to enhance the tribological and other mechanical 

properties, including hardness, strength, toughness, fatigue and corrosion resistance while 

the bulk properties remain unaltered. 



 

Figure 2.1: Schematic process map of laser material processing 

Though several types of laser have been used in surface processing to date, 
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efficiency, ease of operation, use of no

compares the most popular industrial high power lasers in terms of power, beam quality, 
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system is often of greatest practical 

modification of high cost dies surface. While fiber lasers are presented 
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drilling, surface melting, welding, material removal, annealing and cladding applications.
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: Schematic process map of laser material processing 

Though several types of laser have been used in surface processing to date, 

have advantages over excimer lasers such as large beam size, high

efficiency, ease of operation, use of non-toxic gases and lower cost 

compares the most popular industrial high power lasers in terms of power, beam quality, 

ngth, footprint and ownership costs. Among these, the ownership cost of the laser 

often of greatest practical significance when considering for

modification of high cost dies surface. While fiber lasers are presented 

reviews, the use of CO2 lasers especially in continuous mode is widespread for cutting, 

drilling, surface melting, welding, material removal, annealing and cladding applications.

Figure 2.2: Comparison of industrial high power lasers 

 

: Schematic process map of laser material processing [16]. 

Though several types of laser have been used in surface processing to date, infrared lasers 
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toxic gases and lower cost [18, 19]. Figure 2.2 

compares the most popular industrial high power lasers in terms of power, beam quality, 

ngth, footprint and ownership costs. Among these, the ownership cost of the laser 

ce when considering for the surface 

modification of high cost dies surface. While fiber lasers are presented as the best in many 

lasers especially in continuous mode is widespread for cutting, 

drilling, surface melting, welding, material removal, annealing and cladding applications. 

 

wer lasers [20]. 
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2.1.1 Laser Shock Hardening, Transformation Hardening, Alloying and 

Cladding  

For laser shock hardening processes which need vaporisation to occur, the Nd:YAG laser 

has commonly been used to process 6061-T6 aluminium alloy and brass for wear, friction 

and hardness improvement [21, 22]. In transformation hardening, surface heating of 

materials like carbon steel, martensitic high nitrogen stainless steels, chromium-

molybdenum alloy steel and cold forging tools use of CO2 or diode laser systems are 

widespread to increase the wear and hardness properties [10, 23-25]. Transformation 

hardening was achieved by heating a metal above a critical temperature with unfocused 

beam and then rapidly quenching it rather than allowing equilibrium phases to form by 

slow cooling [26]. The power density in the hardening process was 100 W/cm2 which 

generates low thermal distortion such that refinishing of the part can be eliminated [27]. 

The alloying and cladding processes involve introducing additional elements to the laser 

melted surface. The elements can be in the form of gases, powder, wire or sheet. In 

alloying, the composition of the surface changes while in cladding, only bonding with 

minimal mixing of the additional elements and melted surface is involved. However, a 

similar power density level of about 104 W/cm2 is used for both processes. Without 

additional elements, surface melting such as during glazing can be preferred to 

homogenize and harden the material’s surface.  

2.1.2 Laser Glazing 

Glazing is a process to produce a thin amorphous or nano-crystalline layer on top of the 

substrate material in which the surface material of a solid is melted using a focused laser 

beam, and then rapidly cooled [3, 28, 29]. The laser energy absorbed into the surface melts 

the material to a depth determined by the quantity of transferred energy and the material 

thermal properties [30]. Glazing is conducted at a high power density and with short laser-

material interaction time which could create a nano-crystalline or amorphous structure 

with excellent mechanical properties compared to conventional crystalline alloys [31]. 

Due to the enhanced properties, laser glazed surfaces can meet the demands of many wear 

resistant and high temperature applications such as die casting dies, thermal barrier 

coatings, rail road rails and other bearings components [3, 6, 32, 33]. 

Laser glazing has the potential to seal the heat checks formed on the die surfaces and 

allow relaxation of surface stresses [3]. In thermal barrier coatings, sprayed composite 

coatings are very porous and a treatment with a high power CO2 laser has been applied to 

improve their wear properties [33]. The composite coating density and metallurgical 
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bonding between the substrate and the coatings have also been improved [34]. Glazing of 

railroad rails has resulted in a 40% decreased of friction coefficient when measured at 

prototypic rail service loads [6]. The cross section of laser glazed railroad rail surface 

consisted of glazed, transition and base metal regions. The transition zone showed an 

intimate bonding between the glazed zone and the base metal which provided for a micro-

hardness gradient between the glazed zone and base metal [6]. In addition to the 

applications above, laser modified bearings have exhibited martensitic microstructure 

with high hardness and wear resistance and a residual compressive stress has been noted 

at the surface of austempered SAE 52100 steel with a bainitic microstructure [32]. This 

treatment developed a superior bearing assembly with a tougher core and a harder 

surface with higher fatigue and wear resistance. Several type of lasers have been 

employed (Nd:YAG, CO2, excimer, and fiber lasers) for the surface melting (glazing, 

alloying and cladding) of high speed steel, martensitic high-nitrogen steel, aluminium 

alloys, austenitic stainless steel, aluminium aerospace alloys, Ni-base on Al–Mg–Si alloy 

and H13 tool steel [35-41]. 

2.2 Effects of Laser Parameters 

The formation of a modified layer is determined by the laser processing parameters 

settings. Some laser parameters are, laser beam wavelength, temporal pulse power (pulse 

length, peak power and pulse shape), repetition rate, beam energy distribution, and beam 

geometry including focal spot size and depth of focus [42]. Control of parameter settings 

also yields different effects on the modified surface properties. Though several types of 

laser have been used in laser surface processing, the laser power and scan speed or 

material-laser interaction time were observed to have a strong influence on the resulted 

temperature profile, modified layer depth, and mechanical, corrosion and tribological 

properties of the processed surface [10, 43]. Reducing the laser power affects the melt 

depth, changing the beam size affects the melt pool dimensions, and changing the scanning 

speed affects the coverage rate [25]. The effect of laser power and energy density on the 

cooling rate and surface temperature during laser processing of EN18 steel is shown in 

Figure 2.3. The surface temperature and cooling rate linearly increase with increasing 

laser power or energy density. Increasing the laser power increases the surface 

temperature which influences the molten surface solidification rate. While high cooling 

rate is necessary to refine the grain structures, a high power density (irradiance) and 

short interaction time (exposure time) combination is generally preferred to allow for a 

faster cooling rate to be achieved.  
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Figure 2.4 shows irradiance versus exposure time plot used in laser glazing work from 

previous researchers. Though surface processing at high power density can cause melting 

and oxidation, inert gas flow such as with like argon, is used to protect the surface during 

the entire process [28]. 

 

Figure 2.3: Calculated surface temperature and cooling rate as a function of laser power 

and energy density [44]. 

 

Figure 2.4: Variations of parameters used in laser surface treatments showing a normal log 

plot of irradiance versus exposure time [3, 6, 16, 28, 45-50]. 
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Figure 2.5: Beam diameter (spot size) of a Gaussian beam 

When processing with a Gaussian laser beam, the focal position determines the spot size. 

Most works on laser surface modification have used defocused laser beams 
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Figure 2.6: Geometry and intensity of the Gaussian laser beam [54]. 
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Figure 2.7: Mean layer depths produced at different wave pulse frequencies and by a 

On the other hand defects such as cracks, porosity, bubbles or depressions, occur easily 

with continuous wave laser processing 

mode are characterised by reduced laser absorption compared to the surface processed 

with pulse mode [57]

scanning rate of 4 mm/s, the given pulse conditions produced a 

on the cast iron compared to 

the continuous laser processing due to varying 

52%. In the continuous mode, to increase the absorption rate will necessitate increase of 

laser power or irradiance. 

changing the duty cycle as the resulting

into a material’s surface. 

from the surface processed by pulse mode

12 

: Mean layer depths produced at different wave pulse frequencies and by a 

continuous wave [7]. 

On the other hand defects such as cracks, porosity, bubbles or depressions, occur easily 

with continuous wave laser processing [7, 8]. Surfaces processed by continuous laser 

mode are characterised by reduced laser absorption compared to the surface processed 

[57]. In Figure 2.8, at an average power of 400W f

scanning rate of 4 mm/s, the given pulse conditions produced a more 

compared to the continuous laser. An inconsistent melted area formed in 

continuous laser processing due to varying laser absorption rates between 28% and 

continuous mode, to increase the absorption rate will necessitate increase of 

laser power or irradiance. In the pulse mode, a higher absorption rate 

changing the duty cycle as the resulting peak power will produce

material’s surface. A larger width dimension of processed region was also measured 

from the surface processed by pulse mode. 

 

: Mean layer depths produced at different wave pulse frequencies and by a 

On the other hand defects such as cracks, porosity, bubbles or depressions, occur easily 

ssed by continuous laser 

mode are characterised by reduced laser absorption compared to the surface processed 

from Nd:YAG laser and 

more uniform melted area 

continuous laser. An inconsistent melted area formed in 

ption rates between 28% and 

continuous mode, to increase the absorption rate will necessitate increase of 

higher absorption rate can be achieved by 

will produce a deeper penetration 

region was also measured 



 

Figure 2.8: The effect of varying laser absorption rate 
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surface finish is cruc

pressure die can vary between 0.2 and 5.0 µm 

roughness measurements 

continuous wave laser, the sample surface roughness is constant with a measurement of at 

least 10 µm higher than the sample processed by pulsed laser. While at certain pulse 

frequency settings in pulse laser processing, the surface roughness was reduced whi

suggests the benefit of pulse laser in surface modification. Despite having excellent 

hardness surface properties

surface roughness is still a challenge.

Figure 2.9: Surface roughness measurements for mild steel samples processed using 

2.2.2 Overlapped Pulse Geometry

In pulse processing mode the pulse repetition frequency of the laser controls the 

overlapping between laser spots, while the extent of overlapping is influenced by the scan 

rate and pulse width 

method to enlarge the processed area of the laser glazing treatment, but the sample 

surface roughness has also been seen to increase with increased crack density, as a 

consequence of increased

frequency and decreasing scan rate increase the overlapping area 

speed, the overlap increases with increasing frequency, see Appendix A
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Pulsed laser mode has been shown to have an influence on final material properties where 

samples processed by pulse laser exhibited lower surface roughness than samples 

processed using continuous wave mode [7]. In wear-resistant applications, a sound 

surface finish is crucial. For example, the allowable average surface roughness of high 

pressure die can vary between 0.2 and 5.0 µm [58]. Figure 2.9

roughness measurements of samples processed using continuous and pulse laser. Using 

continuous wave laser, the sample surface roughness is constant with a measurement of at 

least 10 µm higher than the sample processed by pulsed laser. While at certain pulse 

in pulse laser processing, the surface roughness was reduced whi

suggests the benefit of pulse laser in surface modification. Despite having excellent 

hardness surface properties from high energy beam surface processing, controlling the 

is still a challenge. 

: Surface roughness measurements for mild steel samples processed using 

in continuous and pulse laser wave [7]. 

Overlapped Pulse Geometry 

n pulse processing mode the pulse repetition frequency of the laser controls the 

overlapping between laser spots, while the extent of overlapping is influenced by the scan 

rate and pulse width [9, 59]. The overlapping technique with multipass is an effective 

method to enlarge the processed area of the laser glazing treatment, but the sample 

surface roughness has also been seen to increase with increased crack density, as a 

consequence of increased beam scanning speed and overlap [28, 53]

frequency and decreasing scan rate increase the overlapping area 

peed, the overlap increases with increasing frequency, see Appendix A

terial properties where 

samples processed by pulse laser exhibited lower surface roughness than samples 

resistant applications, a sound 

ial. For example, the allowable average surface roughness of high 

 contrasts the surface 

of samples processed using continuous and pulse laser. Using a 

continuous wave laser, the sample surface roughness is constant with a measurement of at 

least 10 µm higher than the sample processed by pulsed laser. While at certain pulse 

in pulse laser processing, the surface roughness was reduced which 

suggests the benefit of pulse laser in surface modification. Despite having excellent 

from high energy beam surface processing, controlling the 

 

: Surface roughness measurements for mild steel samples processed using a CO2 

n pulse processing mode the pulse repetition frequency of the laser controls the 

overlapping between laser spots, while the extent of overlapping is influenced by the scan 

. The overlapping technique with multipass is an effective 

method to enlarge the processed area of the laser glazing treatment, but the sample 

surface roughness has also been seen to increase with increased crack density, as a 

[28, 53]. Increasing pulsing 

frequency and decreasing scan rate increase the overlapping area [9]. At a constant scan 

peed, the overlap increases with increasing frequency, see Appendix A1. 
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Morphological defects on the laser glazed surface can be avoided by studying the laser 

process parameters. The rate at which the laser pulses are delivered to the sample greatly 

affects the morphology of the ablated zone [60]. The pulse energy is inversely 

proportional to PRF. Low PRFs tend to produce high pulse energies and hence can result 

in higher surface stresses due to thermal cycling and thermal shocks. The result is that the 

material cracks and flakes on a microscopic scale. Therefore, by adjusting the number of 

laser pulses, the amount of thermal energy deposited per unit area or volume can be 

controlled with great precision. Consequently, the properties such as hardness and surface 

roughness can be improved for any given material/laser system combination.  

2.2.3 Materials Surface Absorptance at Laser Wavelength 

Metals’ properties like surface reflectivity, thermal diffusivity, melting point, and phase 

behaviour are significant to determine the effects of the laser in the surface modification 

process [29]. A major disadvantage of the CO2 laser is the very high light reflectivity at 10.6 

µm which makes the absorption of the laser energy difficult for metals including steels [19, 

61]. However, high energy CO2 laser systems are easy to fabricate, maintain and are 

relatively common so are widely used for most processing despite their low efficiency. 

Surface absorptance, the fraction of the incident laser light which is absorbed, varies with 

laser properties, temperature, material type and the material’s surface finish. Material 

surfaces can readily absorb shorter wavelength lasers like Nd:YAG (1064 nm) and ruby 

(694.3 nm) compared to longer wavelength laser systems.  

Figure 2.10 shows the absorption factor of metals at different laser wavelengths. Most 

metal surfaces including steel can absorb less than 15% of the energy when processed 

with the CO2 laser wavelength. In laser glazing, sufficient material absorbance at a 

particular laser wavelength is important in order to melt the surface efficiently. Although 

the surface absorption can increase as much as 40% during processing at high 

temperature, most steels have high surface reflectivity when processed with CO2 laser 

wavelength at room temperature [62]. It was found that the reflectivity of AISI 4340 steel 

for CO2 lasers decreased from 93.1% to 88.3% as the surface temperature was increased 

from 20 to 500°C with an argon atmosphere in place [63]. In contrast to the CO2 laser, die 

steels have a 0.35 absorption factor when processed with an Nd:YAG laser [61]. Besides 

laser wavelength, for H13 tool steel surface absorptance varies with the input laser power 

as given in Table 2.1. Laser surface treatments performed in an oxidizing atmosphere like 

in air experience increased surface oxidation during processing and enhanced 

absorptance. 



 

Figure 2.

Table 2.1: Estimated surface absorptance for AISI H13 tool steel at two beam widths

Beam width, w (mm)

Laser power (W) 
Absorptance (%) 

Useful techniques like absorptive coating, chemical etching and surface roughening 

improve steel surface absorption at infrared laser wavelengths 

the photon absorption into different types of surfaces. For engineering surfaces in 

2.11 (a), such a surface has a characteristic roughness and is generally covered by an oxide 

layer that helps photon absorption into 

surface can result in multiple reflections, which also involve multiple absorptions. Surface 

roughnesses that present more opportunity for incident angle less than or equal to 

Brewster angle allow for very high local absorptance levels while 

layer may be absorbing or responsible for multiple reflections 
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Figure 2.10: Absorption of a number of metals as a 

function of laser radiation wavelength [64]. 

: Estimated surface absorptance for AISI H13 tool steel at two beam widths

different laser power input [65]. 

Beam width, w (mm) 4 

 1300 1200 1000 720 
 65.4 60.8 58.0 45.1 

seful techniques like absorptive coating, chemical etching and surface roughening 

face absorption at infrared laser wavelengths [44]

the photon absorption into different types of surfaces. For engineering surfaces in 

(a), such a surface has a characteristic roughness and is generally covered by an oxide 

layer that helps photon absorption into the surface. In Figure 2.

surface can result in multiple reflections, which also involve multiple absorptions. Surface 

roughnesses that present more opportunity for incident angle less than or equal to 

Brewster angle allow for very high local absorptance levels while Figure 2.

layer may be absorbing or responsible for multiple reflections [66].  

 

number of metals as a  

 

: Estimated surface absorptance for AISI H13 tool steel at two beam widths and 

2 

660 600 
43.7 40.0 

seful techniques like absorptive coating, chemical etching and surface roughening 

[44]. Figure 2.11 indicates 

the photon absorption into different types of surfaces. For engineering surfaces in Figure 

(a), such a surface has a characteristic roughness and is generally covered by an oxide 

Figure 2.11 (b), roughness on 

surface can result in multiple reflections, which also involve multiple absorptions. Surface 

roughnesses that present more opportunity for incident angle less than or equal to 

Figure 2.11 (c), the oxide 
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Figure 2.11: Some of the mechanisms which increase the absorptivity of real engineering 

surfaces: (a) typical cross section of an engineering surface; (b) high (Brewster) angle 

absorptance and multiple reflections due to surface roughness and (c) multiple reflections 

within an oxide layer [66]. 

Samples coated with absorptive layers on their surface have not been made into an 

amorphous state through laser processing because some carbon grain impurities were 

mixed in the molten cell when the surface was melted locally [46]. However, preparing 

samples through grinding, cleaning with alcohol and etching with nital was also seen to be 

effective to reduce the laser beam reflectivity [67]. Compared to smoother surfaces, a sand 

blasted sample surface at certain roughness levels can reduce the reflectivity of the laser 

beam for different materials [39, 44]. Without an absorptive coating, an increase in 

average surface roughness to approximately 3.0 μm for H13 tool steel has been seen to 

increase surface absorptivity with CO2 laser wavelength by as much as 60% [68].  

Figure 2.12 shows absorptance as a function of surface roughness for stainless steel 

samples. The surface absorptance was increased from 40% to approximately 60% with 

increased surface roughness. This trend was similar for both infrared and green 

wavelengths. Improving surface absorptance allows efficient CO2 laser processing and 

more accurate estimation of total energy required in the process.  



 

Figure 2.12: Surface absorptance of Cr

2.3 Laser Modified Surface Properties

2.3.1 Modified Surface Depth

The laser processing parameters have been previously varied to obtain treated layers of 

different depths [67]. In pulsed laser treated surfaces, the properties are controlled by 

several independent laser parameters; peak power, pulse energy, pulse width, frequency 

and scan rate [9, 59]. The laser peak power is more important than the average power, 

where changing the peak power with pulse width and frequency at constant average 

power the surface properties

cooling periods, while in the continuous laser mode a continuous heating is provided to 

the material surface and cooling only happens when the laser radiation is switched off 

[14]. Pulse energy or 

determine the temperature profile and also both width and depth of hardening as shown 

in Figure 2.13 and Figure 2.

determines the average and peak power settings in laser processing of titanium alloy and 

H13 steel. In other words, as the pulse energy increases both the average and peak power 

increases, increasing the treated zone dimensions

A linear relationship between laser treated zone depth and three 

width) processing parameters 

Nd:YAG laser system,

achieved at higher frequency, lower scan rates and lower pulse widths. Similar 

were found in st14 steel

depth decreased with increasing pulse width, see Appendix A
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: Surface absorptance of Cr-base steel for infrared and green wavelengths at 

different surface roughness [66]. 

Laser Modified Surface Properties 

Modified Surface Depth 

The laser processing parameters have been previously varied to obtain treated layers of 

. In pulsed laser treated surfaces, the properties are controlled by 

several independent laser parameters; peak power, pulse energy, pulse width, frequency 

. The laser peak power is more important than the average power, 

where changing the peak power with pulse width and frequency at constant average 

power the surface properties will vary [59]. The pulsed laser ‘off

cooling periods, while in the continuous laser mode a continuous heating is provided to 

the material surface and cooling only happens when the laser radiation is switched off 

. Pulse energy or pulse energy density (fluence) and interaction time at the surface 

determine the temperature profile and also both width and depth of hardening as shown 

Figure 2.14. From these findings, it can be seen that the pulse energy 

determines the average and peak power settings in laser processing of titanium alloy and 

H13 steel. In other words, as the pulse energy increases both the average and peak power 

es, increasing the treated zone dimensions, see Appendix A2. 

A linear relationship between laser treated zone depth and three (PRF, scan rate and pulse 

processing parameters was established in Ti-6AL-4V samples, processed using 

AG laser system, see Appendix A3(a) [9]. The maximum treated zone depth was 

achieved at higher frequency, lower scan rates and lower pulse widths. Similar 

steel treated using Nd:YAG laser system where the 

depth decreased with increasing pulse width, see Appendix A3(b)

 

base steel for infrared and green wavelengths at 

The laser processing parameters have been previously varied to obtain treated layers of 

. In pulsed laser treated surfaces, the properties are controlled by 

several independent laser parameters; peak power, pulse energy, pulse width, frequency 

. The laser peak power is more important than the average power, 

where changing the peak power with pulse width and frequency at constant average 

. The pulsed laser ‘off’ state provides the 

cooling periods, while in the continuous laser mode a continuous heating is provided to 

the material surface and cooling only happens when the laser radiation is switched off 

pulse energy density (fluence) and interaction time at the surface 

determine the temperature profile and also both width and depth of hardening as shown 

. From these findings, it can be seen that the pulse energy 

determines the average and peak power settings in laser processing of titanium alloy and 

H13 steel. In other words, as the pulse energy increases both the average and peak power 

.  

(PRF, scan rate and pulse 

4V samples, processed using 

. The maximum treated zone depth was 

achieved at higher frequency, lower scan rates and lower pulse widths. Similar findings 

treated using Nd:YAG laser system where the heat penetration 

(b) [69]. When the pulse 



 

width equals to pulse period the laser operates as continuous wave and a constant 

modified layer depth is

heat conduction limits the processed surface depth to a few micrometers per pulse and 

makes the short pulse lasers applicable for marking and 

longer pulse lengths (i.e. in the range of 50

cutting, surface treatment and welding 

may also lead to unwanted vaporisation 

Figure 2.13: Variations of treated zone width and depth with pulse energy in Ti6Al4V

laser treatment (at τ=5 ms, PRF=30 Hz and S=5 mm/s) using Nd:YAG laser 

Figure 2.14: Depth of the melted and hardened layers of the laser

CO2 laser system and cross
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width equals to pulse period the laser operates as continuous wave and a constant 

modified layer depth is formed [70]. Generally, in the short pulsing range (1

heat conduction limits the processed surface depth to a few micrometers per pulse and 

makes the short pulse lasers applicable for marking and surface layer removal, while 

longer pulse lengths (i.e. in the range of 50-5000 microseconds) are applied for industrial 

cutting, surface treatment and welding [42]. Though shorter pulses are more efficient they 

lso lead to unwanted vaporisation [49]. 

: Variations of treated zone width and depth with pulse energy in Ti6Al4V

laser treatment (at τ=5 ms, PRF=30 Hz and S=5 mm/s) using Nd:YAG laser 

: Depth of the melted and hardened layers of the laser-treated H13 steel using 

em and cross-sectional views of affected microstructures 

width equals to pulse period the laser operates as continuous wave and a constant 

. Generally, in the short pulsing range (1-50 µs) the 

heat conduction limits the processed surface depth to a few micrometers per pulse and 

surface layer removal, while 

5000 microseconds) are applied for industrial 

. Though shorter pulses are more efficient they 

 
: Variations of treated zone width and depth with pulse energy in Ti6Al4V alloy 

laser treatment (at τ=5 ms, PRF=30 Hz and S=5 mm/s) using Nd:YAG laser [9]. 

 
treated H13 steel using 

sectional views of affected microstructures [71]. 



 

The effect of scan rate on the modified layer depth is shown in 

section of laser glaze

processing speeds. In

speed decreases the melted zone depth 

laser interaction and increased heat input and energy penetration into the materials 

surface. The increase of heat input is due to the increased amount of laser beam energy 

absorption on the surface of the specim

Figure 2.15: Changes of melted zone depth of laser glazed H13 steel at scan rates of (a) 

73.2, (b) 146.4, (c) 219.6, (d) 292.8 and (e) 366.0 mm/s 

2.3.2 Hardness Properties

The laser beam has been utilised for surface treatment to enhance the mechanical 

properties, by surface modification of AISI H13, 

By laser processing, a 

and rapidly quenched. The treated layer 

of finer grains, secondary carbide and hard non

intimately bonded to the substrate and the modified region itself 

The laser modified surface consists of three zones namely the melted zone, heat affected 

zone (HAZ) and base metal or substrate which are shown in 

zone, the hardness properties increased due to brittle martensite structure formation 

during rapid cooling and can be more than 200% ha

hardness of laser glazed H13 steel surface decrease

measurement was taken 
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The effect of scan rate on the modified layer depth is shown in Figure

section of laser glazed H13 steel surface shows glazed surface depths at five d

processing speeds. In laser surface modification processes, increasing the processing 

the melted zone depth [40, 47]. Lower scan speed allows longer material

laser interaction and increased heat input and energy penetration into the materials 

surface. The increase of heat input is due to the increased amount of laser beam energy 

absorption on the surface of the specimen [53] 

: Changes of melted zone depth of laser glazed H13 steel at scan rates of (a) 

73.2, (b) 146.4, (c) 219.6, (d) 292.8 and (e) 366.0 mm/s 

Hardness Properties 

The laser beam has been utilised for surface treatment to enhance the mechanical 

by surface modification of AISI H13, structural steels, and alloy steels

a steel surface can be rapidly melted (above austenite temperature) 

and rapidly quenched. The treated layer could exhibit high hardness due to 

of finer grains, secondary carbide and hard non-equilibrium microstructures that are 

intimately bonded to the substrate and the modified region itself [6, 72]

The laser modified surface consists of three zones namely the melted zone, heat affected 

HAZ) and base metal or substrate which are shown in Figure 2.

zone, the hardness properties increased due to brittle martensite structure formation 

during rapid cooling and can be more than 200% harder than the substrate 

hardness of laser glazed H13 steel surface decreased the deeper into the surface the 

s taken [3]. A decrease of hardness properties also occurred when the 

Figure 2.15. The cross 

d H13 steel surface shows glazed surface depths at five different 

, increasing the processing 

. Lower scan speed allows longer material-

laser interaction and increased heat input and energy penetration into the materials 

surface. The increase of heat input is due to the increased amount of laser beam energy 

 

: Changes of melted zone depth of laser glazed H13 steel at scan rates of (a) 

73.2, (b) 146.4, (c) 219.6, (d) 292.8 and (e) 366.0 mm/s [40]. 

The laser beam has been utilised for surface treatment to enhance the mechanical 

and alloy steels [55, 56]. 

rapidly melted (above austenite temperature) 

exhibit high hardness due to the formation 

um microstructures that are 

[6, 72].  

The laser modified surface consists of three zones namely the melted zone, heat affected 

Figure 2.16. In the melted 

zone, the hardness properties increased due to brittle martensite structure formation 

rder than the substrate [3, 56, 73]. The 

the deeper into the surface the 

. A decrease of hardness properties also occurred when the 



 

laser modified surface was heat treated at 500°C and 600°C as a result of tempered 

martensite processing

Figure 2.16: Cross-section microgr

diameter specimen. The H11 tool steel specimen was rotated at constant speed of 5 mm/s 

while being processed with an Nd:YAG laser at 0.5 kW laser power

Laser parameters like power density, pulse repetition frequency and scan rate affect the 

hardness properties. In 

cast iron samples increased with incre

formation of solid solutions between iron and nickel caused an increase in nickel average 

hardness as the solid solutions produced were harder and stronger than the pure metals 

[19]. For metal samples processed at different pulse repetition frequency, the hardness 

properties increased with increasing pulse frequency. At higher pulse frequency, the pulse 

energy was lower and caused a faster cooling rate. The overall fi
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laser modified surface was heat treated at 500°C and 600°C as a result of tempered 

martensite processing. 

section micrograph and hardness distribution of laser

diameter specimen. The H11 tool steel specimen was rotated at constant speed of 5 mm/s 

while being processed with an Nd:YAG laser at 0.5 kW laser power

r parameters like power density, pulse repetition frequency and scan rate affect the 

hardness properties. In Figure 2.17, the average hardness of laser processed nickel

samples increased with increasing power density. At high power density, 

formation of solid solutions between iron and nickel caused an increase in nickel average 

hardness as the solid solutions produced were harder and stronger than the pure metals 

. For metal samples processed at different pulse repetition frequency, the hardness 

properties increased with increasing pulse frequency. At higher pulse frequency, the pulse 

energy was lower and caused a faster cooling rate. The overall findings also indicated that 

laser modified surface was heat treated at 500°C and 600°C as a result of tempered 

 

distribution of laser-processed 6 mm 

diameter specimen. The H11 tool steel specimen was rotated at constant speed of 5 mm/s 

while being processed with an Nd:YAG laser at 0.5 kW laser power [73].  

r parameters like power density, pulse repetition frequency and scan rate affect the 

, the average hardness of laser processed nickel-coated 

asing power density. At high power density, 

formation of solid solutions between iron and nickel caused an increase in nickel average 

hardness as the solid solutions produced were harder and stronger than the pure metals 

. For metal samples processed at different pulse repetition frequency, the hardness 

properties increased with increasing pulse frequency. At higher pulse frequency, the pulse 

ndings also indicated that 



 

the continuous laser produced a modified surface with lower hardness as shown in 

2.18.  

The effect of scan rate on the hardness distribution of laser modified H13 steel is shown in

Figure 2.19. In the melted zone, the hardness was increased at least two times that of the 

base metal which occurred at each scan rate. High scan rates of 219.6 mm/s and more 

exhibited higher hardness measurements due to the fast

Faster interaction times yield higher surface cooling rates. 

Figure 2.17: Effect of laser power density on the average hardness of nickel

Figure 2.18: Hardness values of stainless steel samples processed at different pulse 

22 

the continuous laser produced a modified surface with lower hardness as shown in 

The effect of scan rate on the hardness distribution of laser modified H13 steel is shown in

. In the melted zone, the hardness was increased at least two times that of the 

base metal which occurred at each scan rate. High scan rates of 219.6 mm/s and more 

exhibited higher hardness measurements due to the fast material-

Faster interaction times yield higher surface cooling rates.  

: Effect of laser power density on the average hardness of nickel

iron [19]. 

: Hardness values of stainless steel samples processed at different pulse 

frequencies [7]. 

the continuous laser produced a modified surface with lower hardness as shown in Figure 

The effect of scan rate on the hardness distribution of laser modified H13 steel is shown in 

. In the melted zone, the hardness was increased at least two times that of the 

base metal which occurred at each scan rate. High scan rates of 219.6 mm/s and more 

-laser interaction time. 

 

: Effect of laser power density on the average hardness of nickel-coated cast 

 

: Hardness values of stainless steel samples processed at different pulse 



 

Figure 2.19: Hardness distribu

2.3.3 Surface Roughness

The effect of surface roughness on analytical precision was found to be dependent on laser 

beam energy [74]. The beam energy can be controlled by varying laser irradiance, number 

of pulses or pulse repetition frequency, and pulse duration. The experimental results in 

Figure 2.20, Figure 2.

irradiance, number of pulses, pulse width and pulse period. In 

relationship was achieved between surface roughness the increment of laser irradiances. 

A significant rate of increase of surface roughness was measured at low irradiance range 

of 80 and 200 MW/cm

produced high pulse energy which ablated the material’s surface especially when 

processed at a slow scan rate. 

roughness is consequently increased 

surface roughness for thermal barrier coatings, successful results of the laser glazing 

process have been noted in one work as an improvement from 9 µm to 4 µm R
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: Hardness distribution of H13 tool steel at different scan rates 

Surface Roughness 

The effect of surface roughness on analytical precision was found to be dependent on laser 

. The beam energy can be controlled by varying laser irradiance, number 

of pulses or pulse repetition frequency, and pulse duration. The experimental results in 

2.21 and Figure 2.22 indicate surface roughness as a function of laser 

irradiance, number of pulses, pulse width and pulse period. In Figure 2.

elationship was achieved between surface roughness the increment of laser irradiances. 

A significant rate of increase of surface roughness was measured at low irradiance range 

of 80 and 200 MW/cm2 and high irradiances of more than 500 MW/cm

produced high pulse energy which ablated the material’s surface especially when 

slow scan rate. By increasing beam scanning speed and overlap, the surface 

roughness is consequently increased [3, 50]. Referring to the advantage in reducing the 

surface roughness for thermal barrier coatings, successful results of the laser glazing 

process have been noted in one work as an improvement from 9 µm to 4 µm R

 

tion of H13 tool steel at different scan rates [40]. 

The effect of surface roughness on analytical precision was found to be dependent on laser 

. The beam energy can be controlled by varying laser irradiance, number 

of pulses or pulse repetition frequency, and pulse duration. The experimental results in 

indicate surface roughness as a function of laser 

Figure 2.20, a nonlinear 

elationship was achieved between surface roughness the increment of laser irradiances. 

A significant rate of increase of surface roughness was measured at low irradiance range 

and high irradiances of more than 500 MW/cm2. High irradiance 

produced high pulse energy which ablated the material’s surface especially when 

y increasing beam scanning speed and overlap, the surface 

Referring to the advantage in reducing the 

surface roughness for thermal barrier coatings, successful results of the laser glazing 

process have been noted in one work as an improvement from 9 µm to 4 µm Ra [75].  
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Figure 2.20: Dependence of surface roughness on laser irradiance in laser ablation of 

cobalt-cemented tungsten carbide using excimer laser at 20 ns pulse width 

and 450 mJ pulse energy [76]. 

 

Figure 2.21: Surface roughness of laser-treated nickel-coated cast iron at varying number 

of pulses using excimer laser at irradiance range between 

120 and 325 MW/cm2 and PRF of 30 Hz [19]. 
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Figure 2.22: Changes in surface roughness with pulse width at 20 and 80 ms pulse period 

in laser processed 316L stainless steel using CO

Figure 2.21 shows increasing surface roughness with increasing number of pulses for 

nickel-coated cast iron surface processing. Increasing the number of pulses per step 

increased the interaction 

surfaces. When more laser energy was absorbed the surface temperature increased and 

formed more irregular surface geometries.

Surface roughness dependence on pulse width and

processing of 316L steel by Pinkerton and Li

roughness was higher than measured from the 80 ms pulse period processing. The pulse

width ratio indicates the duty cycle setting during processing, where at 0.5 pulse width 

ratio the material-laser interaction time was 50% of the fixed pulse period. At higher 

ratios, the surface roughness increased as the sample surface was more irradiat

longer interaction times. The surface roughness achieved for samples processed at 100% 

duty cycle for both pulse periods was the maximum value recorded of 0.07 µm. A low 

surface roughness range was achieved in the study due to 

and low beam intensity of 198 W/mm

2.3.4 Thermal Fatigue

Engineering parts like brake drums, gas turbines, moulds and dies experience alternate 

heating and cooling to their working surface at elevated temperatures and mechanical 

loads [4, 13, 77-79]. Thermal stresses developed from cycling temperature causes thermal 

fatigue failure on part surface
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: Changes in surface roughness with pulse width at 20 and 80 ms pulse period 

in laser processed 316L stainless steel using CO2 laser 

shows increasing surface roughness with increasing number of pulses for 

coated cast iron surface processing. Increasing the number of pulses per step 

the interaction time which leads to higher laser energy absorption by

surfaces. When more laser energy was absorbed the surface temperature increased and 

formed more irregular surface geometries. 

Surface roughness dependence on pulse width and pulse period was reviewed with laser 

steel by Pinkerton and Li [70]. At 20 ms pulse period, the surface 

roughness was higher than measured from the 80 ms pulse period processing. The pulse

width ratio indicates the duty cycle setting during processing, where at 0.5 pulse width 

laser interaction time was 50% of the fixed pulse period. At higher 

ratios, the surface roughness increased as the sample surface was more irradiat

longer interaction times. The surface roughness achieved for samples processed at 100% 

duty cycle for both pulse periods was the maximum value recorded of 0.07 µm. A low 

surface roughness range was achieved in the study due to a large beam spot size

and low beam intensity of 198 W/mm2 used. 

Thermal Fatigue 

Engineering parts like brake drums, gas turbines, moulds and dies experience alternate 

heating and cooling to their working surface at elevated temperatures and mechanical 

. Thermal stresses developed from cycling temperature causes thermal 

fatigue failure on part surfaces. Friction on brake drums in a braking system can generate 

 

: Changes in surface roughness with pulse width at 20 and 80 ms pulse period 

laser [70]. 

shows increasing surface roughness with increasing number of pulses for 

coated cast iron surface processing. Increasing the number of pulses per step 

to higher laser energy absorption by the nickel 

surfaces. When more laser energy was absorbed the surface temperature increased and 

pulse period was reviewed with laser 

. At 20 ms pulse period, the surface 

roughness was higher than measured from the 80 ms pulse period processing. The pulse 

width ratio indicates the duty cycle setting during processing, where at 0.5 pulse width 

laser interaction time was 50% of the fixed pulse period. At higher 

ratios, the surface roughness increased as the sample surface was more irradiated for 

longer interaction times. The surface roughness achieved for samples processed at 100% 

duty cycle for both pulse periods was the maximum value recorded of 0.07 µm. A low 

large beam spot size of 1.7 mm 

Engineering parts like brake drums, gas turbines, moulds and dies experience alternate 

heating and cooling to their working surface at elevated temperatures and mechanical 

. Thermal stresses developed from cycling temperature causes thermal 

braking system can generate 



 

temperature up to 900°C which initiate and propagate cracks 

forming, a lot of work has been undertaken to improve die life by surface treatment and 

coatings with thermal barrier effects. The thermal fatigue failure in semi solid metal 

forming is due to die cyclic exposure to molten metal at high temperature for thousands of 

cycles. Increasing surface hardness can enhance the thermal fatigue properties of 

engineering parts exposed in high temperature applications 

laser surface treatment using an

speed was shown to be effective to protect surface

failure [77].  

In thermal fatigue testing, the sample surface expands during heating and shrinks during 

cooling [80]. Thermal stresses from temperat

inner surface initiates cracks which are further aided by material strength reduction 

which occurs at higher temperatures 

heating and cooling have been implemented in thermal fatigue testing including use of 

pulsed laser to heat up the surface, magnetic induction heating and silicon oil cooling, 

vacuum chamber heating, and Joule effect 

78, 79]. However, to simulate the thermal fatigue failure in the semi solid metal forming 

process environment, a thermal fa

used. Specimens are subjected to cyclic heating in bath of molten aluminium alloy (e.g. 

690°C) and cooling in bath of water

continuously internally cooled with cold water 

effect on the exterior and internal surfaces produce high temperature gradients in the 

specimens, and controlled thermal fatigue 
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temperature up to 900°C which initiate and propagate cracks [77]

forming, a lot of work has been undertaken to improve die life by surface treatment and 

ngs with thermal barrier effects. The thermal fatigue failure in semi solid metal 

forming is due to die cyclic exposure to molten metal at high temperature for thousands of 

cycles. Increasing surface hardness can enhance the thermal fatigue properties of 

ngineering parts exposed in high temperature applications [77]. From previous work, 

aser surface treatment using an Nd:YAG laser at 100 W power and 0.88 mm/s traverse 

speed was shown to be effective to protect surfaces from premature thermal fatigue 

In thermal fatigue testing, the sample surface expands during heating and shrinks during 

. Thermal stresses from temperature gradients between the sample outer and 

inner surface initiates cracks which are further aided by material strength reduction 

which occurs at higher temperatures [1, 80, 81]. Several methods of high temperature 

heating and cooling have been implemented in thermal fatigue testing including use of 

pulsed laser to heat up the surface, magnetic induction heating and silicon oil cooling, 

vacuum chamber heating, and Joule effect resistive heating with water cooling 

. However, to simulate the thermal fatigue failure in the semi solid metal forming 

process environment, a thermal fatigue test apparatus as shown in 

used. Specimens are subjected to cyclic heating in bath of molten aluminium alloy (e.g. 

690°C) and cooling in bath of water-based lubricant where the specime

continuously internally cooled with cold water [82-84]. The cyclic heating and cooling 

effect on the exterior and internal surfaces produce high temperature gradients in the 

specimens, and controlled thermal fatigue [82]. 

Figure 2.23: Schematic of thermal fatigue test apparatus 
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forming is due to die cyclic exposure to molten metal at high temperature for thousands of 

cycles. Increasing surface hardness can enhance the thermal fatigue properties of 

. From previous work, 

Nd:YAG laser at 100 W power and 0.88 mm/s traverse 

s from premature thermal fatigue 

In thermal fatigue testing, the sample surface expands during heating and shrinks during 

ure gradients between the sample outer and 

inner surface initiates cracks which are further aided by material strength reduction 

. Several methods of high temperature 

heating and cooling have been implemented in thermal fatigue testing including use of 

pulsed laser to heat up the surface, magnetic induction heating and silicon oil cooling, 

resistive heating with water cooling sprays [4, 

. However, to simulate the thermal fatigue failure in the semi solid metal forming 

tigue test apparatus as shown in Figure 2.23 is often 

used. Specimens are subjected to cyclic heating in bath of molten aluminium alloy (e.g. at 

based lubricant where the specimens are also 

. The cyclic heating and cooling 

effect on the exterior and internal surfaces produce high temperature gradients in the 

 

: Schematic of thermal fatigue test apparatus [82]. 



 

Figure 2.24 shows the thermal fatigue performan

iron samples from 200 to 1300 cycles as measured from crack propagation rate tests. In 

Figure 2.24 untreated sample with smooth surface produced the highest crack length 

compared with the other four laser treated samples. Cracks on the untreated sample 

surface initiate as early 

400 cycles. The treated samples surface was harder than the untreated sample and the 

sample base due to the refined grains and the arising of eutectic carbides caused by

induced high cooling rate 

untreated sample. The treated sample no. 4 wi

crack length range compared to other treated samples with lower surface hardness which 

suggests the importance of surface hardness in increasing thermal fatigue resistant. More 

findings related to comparison of crac

treated cast iron samples are shown in 

at 2,500 cycles and resulted in a similar tre

al. [77, 80]. 

Figure 2.24: L-N curve of 
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shows the thermal fatigue performance of untreated and laser treated cast 

iron samples from 200 to 1300 cycles as measured from crack propagation rate tests. In 

untreated sample with smooth surface produced the highest crack length 

red with the other four laser treated samples. Cracks on the untreated sample 

early as 200 cycles, while the laser treated samples started to crack at 

400 cycles. The treated samples surface was harder than the untreated sample and the 

sample base due to the refined grains and the arising of eutectic carbides caused by

high cooling rate [77]. Consequently, cracks also were observed more in the 

untreated sample. The treated sample no. 4 with maximum hardness exhibited the lowest 

crack length range compared to other treated samples with lower surface hardness which 

suggests the importance of surface hardness in increasing thermal fatigue resistant. More 

findings related to comparison of crack measurement length in untreated and laser 

treated cast iron samples are shown in Figure 2.25. Thermal fatigue tests were conducted 

500 cycles and resulted in a similar trend found in the work of Zhou et al.

N curve of untreated and laser treated grey cast iron

laser treatments [77]. 
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2.4 Rapidly Quenched Alloy

In rapid-solidification p

nano-crystalline material can be produced with 

extended solid solubility and metastable phase structure 

material from which nano

solid or nano-materials can be made from other surface modification 

starting material is usually crystalline 

to produce rapid quenched alloys include thermal spray processing, drop casting, vacuum 

die casting, twin roll casting and laser surface processing 

cooling rate, the alloys are in droplets, ribbons, rods or wedge form with varying 

dimensions typically from 20 to 30 µm thickness and 40 to 80 mm long 

of thickness on amorphous phase formation in rapidly quenched iron based alloy is shown 

by a broad diffraction halo from 

sample was more rapidly solidified and crystallisation was fully avoided
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Figure 2.25: Length of fatigue cracks in untreated (smooth) and

laser treated (No.1 to 4) gray cast iron samples at 2,500 cycles 

Rapidly Quenched Alloy 

solidification processing of metallic alloys, a thin surface layer of amorphous or 

crystalline material can be produced with increased chemical homogeneity, 

extended solid solubility and metastable phase structure [86]. Based 

material from which nano-materials are made, they can be crystallized from amorphous 

materials can be made from other surface modification 

starting material is usually crystalline [87]. Different types of processing and mechanisms 

to produce rapid quenched alloys include thermal spray processing, drop casting, vacuum 

die casting, twin roll casting and laser surface processing [5, 88, 89]

cooling rate, the alloys are in droplets, ribbons, rods or wedge form with varying 

dimensions typically from 20 to 30 µm thickness and 40 to 80 mm long 

of thickness on amorphous phase formation in rapidly quenched iron based alloy is shown 

broad diffraction halo from an XRD scan, see Figure 2.26. At 2 mm thi

sample was more rapidly solidified and crystallisation was fully avoided

 

untreated (smooth) and 

500 cycles [85]. 

thin surface layer of amorphous or 

increased chemical homogeneity, 

Based on the starting 

materials are made, they can be crystallized from amorphous 

materials can be made from other surface modification methods where the 

. Different types of processing and mechanisms 

to produce rapid quenched alloys include thermal spray processing, drop casting, vacuum 

[5, 88, 89]. At high heating and 

cooling rate, the alloys are in droplets, ribbons, rods or wedge form with varying 

dimensions typically from 20 to 30 µm thickness and 40 to 80 mm long [5, 88]. The effect 

of thickness on amorphous phase formation in rapidly quenched iron based alloy is shown 

. At 2 mm thickness, the 

sample was more rapidly solidified and crystallisation was fully avoided. 



 

Figure 2.26: XRD of powder Fe48Cr15Mo14Y2C15B6 samples took from two samples of 2 

mm (bottom scan) and 4 mm (top scan) cross

To avoid or hinder crystallisation in rapidly quenched alloys, the alloying elements atomic 

radii are varied, while fourth or fifth elements can be added to the b

[90]. Among the many amorphous alloys developed, iron

difficult to make amorphous 

necessary, and alloys are limited t

[91]. However, by increasing the glass forming ability of Fe

of element like Nb, a higher content of Fe can be alloyed. In Fe

a large amount tends to decrease the glass forming ability since the liquidus temperature 

significantly increases with 

quenched cast Fe-based alloys composition with five or more elements are, 

Fe48Cr15Mo14Y2C15B6, [(Fe

(x=0.0,2.3,12.3); and Fe

In surface modification of steels where crystalline surfaces are processed, usually more 

than ten elements are present in the alloy which 

Materials with typically fine grained structure tend to produce amorphous structure more 

easily in the laser surface modification process. As grain size influences various properties, 

the mechanical and physical properties of rapidly quenched Fe

conventionally cooled alloys. The properties reviewed here were for both bulk Fe

alloys and for thin layer Fe

composition, phase crystallinity and lattice distortion, hardne

properties. 
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: XRD of powder Fe48Cr15Mo14Y2C15B6 samples took from two samples of 2 

mm (bottom scan) and 4 mm (top scan) cross-sectional thicknesses. The peaks are 

consistent with M23C6 phase [88]. 

To avoid or hinder crystallisation in rapidly quenched alloys, the alloying elements atomic 

radii are varied, while fourth or fifth elements can be added to the b

. Among the many amorphous alloys developed, iron-based alloys are the most 

amorphous where high cooling rates of 105 to 10

necessary, and alloys are limited to a maximum of 50% Fe content composed in the alloy 

. However, by increasing the glass forming ability of Fe-based alloys through addition 

higher content of Fe can be alloyed. In Fe-based alloys, Cr addition in 

a large amount tends to decrease the glass forming ability since the liquidus temperature 

significantly increases with an increase of Cr content [92]. Some examples of rapidly 

based alloys composition with five or more elements are, 

, [(Fe0.5Co0.5)0.75B0.20Si0.05]96Nb4, Fe69.9-xC7.1Si3.3B

=0.0,2.3,12.3); and Fe50.7Y1.5Cr14.5Mo13C14.8B5.5 [88, 89, 91, 92].  

In surface modification of steels where crystalline surfaces are processed, usually more 

than ten elements are present in the alloy which aid prevention of 

Materials with typically fine grained structure tend to produce amorphous structure more 

laser surface modification process. As grain size influences various properties, 

the mechanical and physical properties of rapidly quenched Fe-based all

conventionally cooled alloys. The properties reviewed here were for both bulk Fe

alloys and for thin layer Fe-based substrates. The properties investigated include grain 

composition, phase crystallinity and lattice distortion, hardness and thermal fatigue 
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knesses. The peaks are 

To avoid or hinder crystallisation in rapidly quenched alloys, the alloying elements atomic 

radii are varied, while fourth or fifth elements can be added to the basic ternary alloys 

based alloys are the most 

to 106K/s are typically 

o a maximum of 50% Fe content composed in the alloy 

based alloys through addition 

ased alloys, Cr addition in 

a large amount tends to decrease the glass forming ability since the liquidus temperature 

. Some examples of rapidly 

based alloys composition with five or more elements are, 

B5.5P8.7CrxMo2.5Al2.0Co1.0 

In surface modification of steels where crystalline surfaces are processed, usually more 

aid prevention of crystallisation. 

Materials with typically fine grained structure tend to produce amorphous structure more 

laser surface modification process. As grain size influences various properties, 

based alloy differed from 

conventionally cooled alloys. The properties reviewed here were for both bulk Fe-based 

based substrates. The properties investigated include grain 

ss and thermal fatigue 



 

2.4.1 Phase Crystallinity and Transformation

The crystallinity of a metal surface changes when treated with high energy beam 

processing such as laser, ion and electron

fine XRD peaks with high intensity indicate high crystall

laser processed, the crystalline phase 

decrease and other phase compositions 

peaks in the substrate material indicate

fraction of carbide, while after the sample was laser treated, the presence of 

retained austenite were reflected 

of carbide reflected at a depth of 45 

Rapid solidification from laser processing usually results in supercooled or undercooled 

melt and phase transformation in metal alloys 

and laser treated stainless steel diffraction patterns. The stainless steel samples 

experienced a decrease of α

transformation after laser treatment at a power density of 1.02x10

transformation to austenite phase occurred when processed at 1.45x10

density [94]. A similar effect occurred in 

fast quenching of the laser melted sample yield

[99]. 

Figure 2.27: XRD peak profiles of the laser treated SAE 52100 steel. The substrate profile 

presents the same XRD profile as the untreated surface 
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Phase Crystallinity and Transformation 

The crystallinity of a metal surface changes when treated with high energy beam 

processing such as laser, ion and electron [40, 59, 70, 93-97]. In conventional alloys, sharp 

peaks with high intensity indicate high crystallinity. When the a

laser processed, the crystalline phase is disrupted and the diffracted pe

and other phase compositions are formed as shown in Figure 2.

e material indicated mainly ferrite peaks along with a small volume 

while after the sample was laser treated, the presence of 

were reflected at the melted surface, with martensite

at a depth of 45 µm below the surface [32].  

Rapid solidification from laser processing usually results in supercooled or undercooled 

phase transformation in metal alloys [96, 98, 99]. Figure 2.

and laser treated stainless steel diffraction patterns. The stainless steel samples 

experienced a decrease of α-Fe peak intensity and typical martensite

transformation after laser treatment at a power density of 1.02x10

transformation to austenite phase occurred when processed at 1.45x10

. A similar effect occurred in a laser melted high chrome steel surface where 

fast quenching of the laser melted sample yielded austenite phase, see Appendix A

: XRD peak profiles of the laser treated SAE 52100 steel. The substrate profile 

presents the same XRD profile as the untreated surface 

The crystallinity of a metal surface changes when treated with high energy beam 

. In conventional alloys, sharp 

inity. When the alloy surface is 

s disrupted and the diffracted peak intensities 

Figure 2.27. The diffracted 

ferrite peaks along with a small volume 

while after the sample was laser treated, the presence of carbide and 

martensite and small amount 

Rapid solidification from laser processing usually results in supercooled or undercooled 

Figure 2.28 shows untreated 

and laser treated stainless steel diffraction patterns. The stainless steel samples 

k intensity and typical martensite-austenite phase 

transformation after laser treatment at a power density of 1.02x109 W/m2 whereas, full 

transformation to austenite phase occurred when processed at 1.45x109 W/m2 power 

laser melted high chrome steel surface where 

austenite phase, see Appendix A4(a) 

 
: XRD peak profiles of the laser treated SAE 52100 steel. The substrate profile 

presents the same XRD profile as the untreated surface [32]. 



 

Figure 2.28: XRD pattern of (a) untreate

samples at (b) 1.02x10

Another effect of laser surface modification is the crystalline to amorphous phase

transformation. In rapid quenched Fe

formation competes with nucleation and growth of an M

during continuous cooling 

Figure 2.29 (a) and (b) respectively show the amorphous and crystalline pattern of cast 

Fe50.7Y1.5Cr14.5Mo13C14.8

with M23C6 and M6C phases. 

broad maxima curve at lower angles of the scan, see 

Figure 2.29 (a). Peak broadening ha

and stress on the materials surface in stainless stee

samples contained a fully amorphous layer, a considerable volume fraction of amorphous 

phase was detected from the broad maximum. The presence of the amorphous pre

2θ of about 8° in Mg

chemical short-range order

The effect of quenching temperature and cooling rate is shown in

Figure 2.30 where a (100) single crystal wa

samples, the crystalline peak at 31° Braggs angle observed in slow

suppressed at higher cooling rates 

temperature and solidification rate affect the peak intensity. As cooling rate 

the peaks became sharper and more intense 
31 

: XRD pattern of (a) untreated stainless steel, and treated stainless steel 

samples at (b) 1.02x109 W/m2 and (c) 1.45x109 W/m2 power density 

Another effect of laser surface modification is the crystalline to amorphous phase

. In rapid quenched Fe48Cr15Mo14Y2C15B6 alloy, the amorphous phase 

formation competes with nucleation and growth of an M23(B,C)6 

during continuous cooling 

(a) and (b) respectively show the amorphous and crystalline pattern of cast 

14.8B5.5 alloy. The Bragg peaks in the crystalline sample are consistent 

C phases. The presence of amorphous phase is know

broad maxima curve at lower angles of the scan, see 

(a). Peak broadening has also been attributed to the existence of fine grain size 

and stress on the materials surface in stainless steel samples [94]

samples contained a fully amorphous layer, a considerable volume fraction of amorphous 

phase was detected from the broad maximum. The presence of the amorphous pre

2θ of about 8° in Mg65Cu25Mn10 alloy showed that the amorphous 

range order, Appendix A4(b) [98]. 

The effect of quenching temperature and cooling rate is shown in

where a (100) single crystal was cooled at different rates. In quenched 

samples, the crystalline peak at 31° Braggs angle observed in slow

suppressed at higher cooling rates [100]. This indicates how variations of quenching 

temperature and solidification rate affect the peak intensity. As cooling rate 

the peaks became sharper and more intense [101]. 

 

d stainless steel, and treated stainless steel 

power density [94]. 

Another effect of laser surface modification is the crystalline to amorphous phase 

alloy, the amorphous phase 

 type crystalline phase 

during continuous cooling [88].  

(a) and (b) respectively show the amorphous and crystalline pattern of cast 

alloy. The Bragg peaks in the crystalline sample are consistent 

resence of amorphous phase is known through the 

broad maxima curve at lower angles of the scan, see  

to the existence of fine grain size 

[94]. Though none of the 

samples contained a fully amorphous layer, a considerable volume fraction of amorphous 

phase was detected from the broad maximum. The presence of the amorphous pre-peak at 

that the amorphous phase has a high 

The effect of quenching temperature and cooling rate is shown in  

s cooled at different rates. In quenched 

samples, the crystalline peak at 31° Braggs angle observed in slowly cooled samples was 

variations of quenching 

temperature and solidification rate affect the peak intensity. As cooling rate was decreased 



 

Figure 2.29: X-ray diffraction patterns o

Figure 2.30: X-ray diffraction scans of a (100) oriented Fe
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ray diffraction patterns of (a) amorphous and (b) crystalline sheet of twin 

roll cast Fe50.7Y1.5Cr14.5Mo13C14.8B5.5 alloy [89]. 

ray diffraction scans of a (100) oriented Fe-Ga single crystal for t

cooled and quenched conditions [100]. 

 
f (a) amorphous and (b) crystalline sheet of twin 

.  

 
Ga single crystal for the slow-
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Metastable Phase Formation 

Amorphous, quasicrystals and martensite are all metastable phases found in metal alloys 

as a result of solubility extension of the solute atoms at high cooling rate [94, 102]. 

Amorphous alloys are characterised by critical cooling rates, usually higher than 105 K/s 

and often have thickness below 60 μm [103]. The amorphous phase has a non-crystalline 

structure with unique properties that combine high strength, stiffness and hardness.  

The quasicrystalline state is a metastable state between the amorphous and the crystalline 

phases with high mechanical properties like hardness and stiffness [102, 104]. In contrast 

to the amorphous state, the quasicrystalline phase has long range rotational order but a 

lack of long range translational order and is not truly periodic [102]. In rapidly solidified 

cast Al92Fe3Cr2Mn3 alloy, the presence of nearly quasi-crystalline phase was observed at a 

cooling rate of approximately 102 to 103 K/s [101]. At higher cooling rates of 104 to 105 

K/s, the quasi-crystalline phase was developed.  

Martensite structure develops from a diffusionless motion of atoms across an interface 

which can cause a shape change in the solidified part [105]. In the Fe-based alloy systems, 

the phase transformation occurs from FCC to a different structure of martensitic or quasi-

martensite. For the Fe-C, Fe-Ni-C, Fe-Cr-C and Fe-Mn-C systems, the structural change 

involves transition from FCC to BCT. The Fe-Ni system martensitic transformation 

involves FCC to BCC while in Fe-Mn and Fe-Cr-Ni system, the structure change is from FCC 

to HCP. The martensitic transformation is dependent on the stress, strain, time and 

temperature which results in athermal and isothermal martensite structure. The athermal 

martensite is an orthorhombic stress induced phase which is found in steel and Ti-based 

alloys [106, 107]. Isothermal martensite transformation occurs at low temperature and is 

stress-assisted [108]. Transformation in Fe-Cr alloy begins in grain boundary areas of 

significant Cr-depletion, where the chemical driving force is highest [107]. Figure 2.31 

shows the athermal martensite observed on grain boundaries of Ti-based alloy. The laser 

processed Fe-based alloys which undergo rapid austenitizing followed by quenching may 

develop a unique microstructure consisting of ultrafine-grained martensite and a little 

retained austenite [99]. Steep temperature gradient and high cooling rate produce 

ultrafine grained martensite with a high density of dislocations [99]. Retained austenite 

can significantly decrease the mechanical properties of steels and the service life of steel 

components [109]. The amount of martensite and retained austenite in steels has 

previously been examined using XRD techniques [110]. 
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Figure 2.31: Athermal martensite on grain boundaries of Ti alloy [106]. 

Grain Refinement 

In thermo-mechanical processing (strain induced), undercooled austenite transforms to 

ultrafine ferrite ranging from 1 to 3 µm or less with enhanced strength and ductility [111]. 

The initial austenite grain size has significant effect on the ferrite characteristics where 

ferrite grain size distribution is more uniform for the fine prior austenite grain size than 

for the coarse austenite [111]. In low-carbon steels, the classification of the 

microstructures is described by the ferritic shapes, such as polygonal ferrite, massive 

ferrite and bainitic [112]. Austenite decomposition products depend on the amount of 

carbon redistribution, interface coherence, and undercooling, where morphologies such as 

allotriomorphic ferrite (grain boundary ferrite), Widmanstätten ferrite, massive ferrite, 

bainite, or martensite can develop from the parent austenite [113]. Figure 2.32 shows the 

morphology of ferrite colonies developed at different undercoolings. 

At small undercooling, pro-eutectoid ferrite forms as grain boundary allotriomorphs, 

which generally nucleate at austenite grain boundaries. Allotriomorphic ferrite does not 

have regular boundaries with the parent austenite grains, but rather is usually equiaxed or 

lenticular (lentil-like) in shape since it tends to grow preferentially along the grain 

boundary on which it was nucleated [114]. At larger undercoolings a greater tendency was 

observed for ferrite to grow into the parent grains as plates. Primary and secondary 

Widmanstätten ferrites in plate forms grow both from clean austenite grain boundaries 

and from protuberances on pre-existing colonies of grain boundary ferrite [114].  

 

200 µm 
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Massive ferrites occur at large undercoolings and grow very rapidly through the 

movement of high energy boundaries. The transformation exhibits nucleation and growth 

characteristics and produces large patches of grains with irregular boundaries surrounded 

by areas with a mixture of planar and curved boundaries. Since massive transformations 

occur so rapidly, they are not found in medium or high carbon steels, in which there is 

insufficient time for enough carbon to diffuse out of the austenite to prevent the formation 

of martensite [112, 114]. 

 

Figure 2.32: Morphology of ferrite: (a) grain boundary allotriomorph, (b) Widmanstätten 

plates. (i) primary. (ii) secondary; (c) Widmanstätten sawteeth. (i) primary. (ii) secondary; 

(d) idiomorphs; (e) intragranular Widmanstätten plate; (f) massive ferrite [114]. 

Nano-scale structures have been observed in crystalline and quasicrystalline materials. 

Martensitic transformations in steels are known to produce nano-scale structures and 

very high strengths. The ultrafine-grained materials yield excellent mechanical properties 

compared with conventional fine-grained materials as well as coarse-grained materials 

[115, 116]. The refinement of grains can occur either by formation of strain-induced 

martensites from austenite or martensitic transformation from ε (HCP) to α (BCC) which 

makes the grain sizes of α smaller than ε [117]. The nano-scale structures in Fe-based 

alloys including grains, subgrains and particles can be developed through severe plastic 

deformation and transformation processes [118]. Severe plastic deformation involves 

material deformation at ferrite temperatures like ball milling and large strain deformation 

processes. The transformation processes in Fe-based alloys that can produce nano-scale 

structures require heating to γ phase followed by rapid cooling [118]. Nano-crystal M23C6 

particles in laser modified high chrome steels are only observed from TEM and undetected 

(i)                   (ii) 

(b) (a) 

(c) (d) 
(i)                   (ii) 

(f) (e) 
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in XRD patterns due to its low volume [99]. Pulsed laser treatment of stainless steel at 

1.02x109 W/m2 irradiance can rid the steel of the α-Fe phase and produce 4 to 10 nm sized 

nano-structures and amorphous phase [94]. When processed at a higher irradiance of 

1.45x109 W/m2, the amorphous phase re-crystallised and formed 50 to 100 nm grains 

[94].  

In nano-crystalline materials, excess volume of grain boundaries associated with 

vacancies, and dislocations can lead to lattice strain which modifies the physical 

properties [119]. Grain refinement is measureable as observed through SEM and XRD 

analysis [89, 120]. From the Williamson-Hall method, line broadening of a Bragg reflection 

(h k l) indicates lattice strain or small crystallite size. The crystallite size can be 

determined using the Scherrer equation: 

 � =  0.9  �� 	
�� Equation 2.1 
where D is the crystallite size, λ is the wavelength, β is the broadening (radians), and θ is 

the diffraction angle.  

Many types of nano-quasicrystalline alloys have been developed with a microstructure 

with nanometer sized icosahedral particles [121]. Some examples of nano quasi-

crystalline materials developed recently are Al-Cu-Fe-Bi, Al-Si, and Fe48Cr15Mo14C15B6Tm2 

[122, 123]. Nano quasi-crystalline alloys exhibit higher mechanical strength in contrast to 

nanocrystalline and conventional alloys at high temperature [121]. Due to the need for a 

high cooling rate of at least 106 K/s, the nano-structured quasi-crystals are produced on 

different substrates via laser processing [122].  

2.4.2 Hardness 

Mechanical properties like hardness and yield stress of metals and alloys are affected by 

their grain size. Decreasing the grain size leads to an increase the mechanical strength 

[124]. In Fe-based alloys, the nano-scale structures can produce very strong materials 

with strengths exceeding 3 GPa [118]. The grain size effect relationship of a polycrystalline 

metal is given by the Hall-Petch equation. Equation 2.2 is based on the fundamental 

concept that grain boundaries act as barriers to dislocation motion. The grain size 

dependence of hardness in mild steel samples is shown in Figure 2.33. The grain size 

changing from 30 µm to 200 nm corresponds to an increase in micro-hardness, which is 

consistent with the Hall–Petch relationship. Hall–Petch behaviour can be observed for 
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low-carbon steels with grain size changing from micron to submicron, despite production 

method and is valid for grain size change over two magnitude orders [125]. 

�0 =  �� + ���−1/2 Equation 2.2 

where σ0 and σi are the yield stress of single crystal and polycrystalline metals 

respectively, kY is the experimental constant, and D is the mean grain size. Another 

equation (Equation 2.3) for metallic crystalline solid deformation due to dislocation 

motion is given by the relationship of hardness, H, and yield strength, σY, or known as 

Tabor’s equation.  

� =  ��� Equation 2.3 
where K is a constraint factor which depends on indenter shape and mechanical 

properties of the indented metal or alloy [126].  

 

Figure 2.33: Grain size dependence of Vickers hardness [125]. 

In Figure 2.34, the hardness of heat affected zone shows dependency on the heat input in 

the processing of low-carbon steels. With different initial grain sizes, the samples yield a 

similar decreasing hardness trend with increasing heat input. Coarse grain size in 

specimen 1 and 2 experienced a large decrease of hardness in the heat affected zone (HAZ) 

when the heat input was increased from 0.5 to 1.0 kJ/mm, compared to finer grain size in 

specimen 3. Change in strength as a function of grain size is much larger for Fe compared 

to other structural metals and a reduction in ferrite grain size to the order of 1 µm will 

significantly strengthen Fe [111]. Hardness decrease was also seen to be due to the 



 

formation ferrite and pearlite structure in the HAZ while 

structure contributes to high hardness.

Figure 2.34: Relationship between hardness of HAZ and heat input 

2.5 Thermal Modelling of Laser Surface Modification 

The physical phenomena corresponding to low and intermediate laser power is simple 

and predictable in the

high power, it is more complicated as the surface temperature becomes overheated and 

vaporization can occur. Thermal model simulations have been implemented to investigate 

the relative importance of various laser parameters, the laser heating of surfaces and the 

thermal stress development at different processing parameters 

of the studies were largely focused on ceramic

surface modifications 

minimizes the experimental cost and gives insight into the physical processes pertinent to 

laser surface heating [11, 14]

using either analytical or numerical methods. Analytical methods provide an effective 

study of heat source effect whereas numerical solutions focus on the effect of material 

properties [131]. The advantages of an analytical approac

temperature of a particular point can be determined without calculating the complete 

temperature field, the boundary conditions can be fast and easy to implement, as well as 

useful for studying different heat source geometries 

properties, it is possible to solve analytically the three

moving heat source. Both Fourier and kinetic theories were shown in one case to predict 

similar surface temperature profiles for the same pulse intensities 
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formation ferrite and pearlite structure in the HAZ while the presence of martensite 

structure contributes to high hardness. 

: Relationship between hardness of HAZ and heat input 

Thermal Modelling of Laser Surface Modification 

The physical phenomena corresponding to low and intermediate laser power is simple 

and predictable in the laser surface modification processing. However, when processing at 

high power, it is more complicated as the surface temperature becomes overheated and 

vaporization can occur. Thermal model simulations have been implemented to investigate 

ortance of various laser parameters, the laser heating of surfaces and the 

thermal stress development at different processing parameters [128

were largely focused on ceramic coatings and only a few on H13 steel laser 

surface modifications [129, 130, 132]. The modelling of the laser heating process 

minimizes the experimental cost and gives insight into the physical processes pertinent to 

[11, 14]. Modelling of heat conduction in laser heating can be solved 

lytical or numerical methods. Analytical methods provide an effective 

study of heat source effect whereas numerical solutions focus on the effect of material 

. The advantages of an analytical approach is well known where the 

temperature of a particular point can be determined without calculating the complete 

temperature field, the boundary conditions can be fast and easy to implement, as well as 

useful for studying different heat source geometries [131]. At constant material 

properties, it is possible to solve analytically the three-dimensional heat conduction with a

moving heat source. Both Fourier and kinetic theories were shown in one case to predict 

surface temperature profiles for the same pulse intensities 

presence of martensite 

 

: Relationship between hardness of HAZ and heat input [127]. 

Thermal Modelling of Laser Surface Modification  

The physical phenomena corresponding to low and intermediate laser power is simple 

laser surface modification processing. However, when processing at 

high power, it is more complicated as the surface temperature becomes overheated and 

vaporization can occur. Thermal model simulations have been implemented to investigate 

ortance of various laser parameters, the laser heating of surfaces and the 

[128-131]. However, most 

coatings and only a few on H13 steel laser 

. The modelling of the laser heating process 

minimizes the experimental cost and gives insight into the physical processes pertinent to 

. Modelling of heat conduction in laser heating can be solved 

lytical or numerical methods. Analytical methods provide an effective 

study of heat source effect whereas numerical solutions focus on the effect of material 

h is well known where the 

temperature of a particular point can be determined without calculating the complete 

temperature field, the boundary conditions can be fast and easy to implement, as well as 

. At constant material 

dimensional heat conduction with a 

moving heat source. Both Fourier and kinetic theories were shown in one case to predict 

[133]. The well-known 
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heat conduction differential equation governing the laser heating is given in Equation 2.4. 

When the medium is moving with a constant velocity, U, parallel to the x-axis, Equation 2.5 

applies. 

ρ C! "#"$ =  % &"'#"(' + "'#"*' +  "'#"+' , Equation 2.4 

 
 

"#"$ +  - "#"( =  % &"'#"(' + "'#"*' +  "'#"+', Equation 2.5 

In formulating the heat conduction process with a time-dependant heat source like a 

pulsed laser beam, some useful assumptions are made including [60, 132, 134]: 

a. the melt pool diameter is equal to the laser beam diameter,  

b. the initial temperature is equal to the ambient temperature T(x,y,z,0)=To, 

c. the medium is a slab of two parallel planes and heat enters from one plane at z=0,  

d. the size of the laser spot is small (fraction of a millimetre), and absorption depth is too 

small (micrometre depth) compared to the work piece thickness. Therefore, the depth 

of melt pool, z, is solved using one dimensional heat conduction, and there is no heat 

losses by any mean from the medium at its two planes; ∂T/∂z = 0.  

e. thermal properties of the work piece are assumed to be independent of temperature, 

f. the latent heat of fusion is small compared to the total energy required for processing; 

QF << QL, and  

g. the work piece is a semi-infinite material where the temperature variations in the 

region of interest do not affect the temperatures in regions considered to be far away 

from it, such as the bottom plane. 

The absorption factor in the thermal modelling of the laser surface modification process 

measures incident laser energy absorbed by the surface and transferred to the underlying 

metal. Absorptance factor depends on surface type, laser power, scan speed and material 

chemistry. The absorption factor is often assumed constant in order to determine the 

thermal profile, and thus investigate the phase transformations occurring during surface 

hardening [44, 133].  

2.5.1 Heating and Cooling Rate in Pulsed Laser Surface Modification  

Heating and cooling rates in laser surface melting are both significant to determine the 

mechanical properties of the modified surface. Each laser processing applies different 



 

rates. Despite the fact that laser processing offers rapid heating and cooling, a few 

milliseconds faster or slower can result in very different grain sizes, microstructures and 

phases. Molten surfaces experience undercooling where the cooling occurs below the 

transformation temperature and without phase transformation. A heating and cooling rate 

model for different laser beam profiles is shown in 

produce different rates, the time period for each beam to reach the maximum and 

minimum temperature 

between 2.5 and 2.7 seconds for cooling. The heating rate was the 

circular or rectangular beam shapes were used 

At the same pulse energy, the surface experiences a higher temperature when processed 

with a short pulse in contrast to longer pulses due

pulse [136]. In Figure 2.

duration is shown. Short pulses result in high fluence which affects 

rate. Figure 2.37 indicates the results from solidification theory where cooling rate 

reduced as the fluence was increased. At lower fluence, the cooling rate 

caused more undercooling 

where smaller sized grains were form

Figure 2.35: Model of heating and cooling rate versus time 
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rates. Despite the fact that laser processing offers rapid heating and cooling, a few 

milliseconds faster or slower can result in very different grain sizes, microstructures and 

rfaces experience undercooling where the cooling occurs below the 

transformation temperature and without phase transformation. A heating and cooling rate 

model for different laser beam profiles is shown in Figure 2.35. Though different beams 

produce different rates, the time period for each beam to reach the maximum and 

minimum temperature was approximately between 1.7 and 1.9 seconds for heating and 

between 2.5 and 2.7 seconds for cooling. The heating rate was the 

circular or rectangular beam shapes were used [135]. 

At the same pulse energy, the surface experiences a higher temperature when processed 

with a short pulse in contrast to longer pulses due to high power intensity of the short 

Figure 2.36 the surface temperature decrease with increasing pulse 

duration is shown. Short pulses result in high fluence which affects the heating and cooling 

indicates the results from solidification theory where cooling rate 

reduced as the fluence was increased. At lower fluence, the cooling rate 

rcooling [137]. The grain size was dependant 

where smaller sized grains were formed at high undercooling.  

: Model of heating and cooling rate versus time on surface for different beam 

shapes [135]. 

rates. Despite the fact that laser processing offers rapid heating and cooling, a few 

milliseconds faster or slower can result in very different grain sizes, microstructures and 

rfaces experience undercooling where the cooling occurs below the 

transformation temperature and without phase transformation. A heating and cooling rate 

. Though different beams 

produce different rates, the time period for each beam to reach the maximum and 

s approximately between 1.7 and 1.9 seconds for heating and 

between 2.5 and 2.7 seconds for cooling. The heating rate was the highest when the 

At the same pulse energy, the surface experiences a higher temperature when processed 

to high power intensity of the short 

the surface temperature decrease with increasing pulse 

the heating and cooling 

indicates the results from solidification theory where cooling rate 

reduced as the fluence was increased. At lower fluence, the cooling rate was higher and 

s dependant on the undercooling 

 
on surface for different beam 



 

Figure 2.36: Variations of temperature in surface of work piece relative to the pulse

Figure 2.37: Variation of grain radius and laser fluence as a function of undercooling

2.5.2 Thermal Profile 

The laser processing thermal history influences the melt p

and microstructure [60, 138]

processed surface like strength, elongation, fatigue behaviour and hardness 

useful in monitoring how the temperatures change over a period of time which exceeds 

the pulse duration, and enables study of the heating and cooling rates 

processing parameters effects the surface temperature distribution as shown by 

2.38. The thermal profile was predicted for four samples with two processing powers and 
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: Variations of temperature in surface of work piece relative to the pulse

duration [69]. 

: Variation of grain radius and laser fluence as a function of undercooling

Thermal Profile  

The laser processing thermal history influences the melt pool behaviour, thermal stresses 

[60, 138]. Thermal history determines the final properties of the 

processed surface like strength, elongation, fatigue behaviour and hardness 

useful in monitoring how the temperatures change over a period of time which exceeds 

the pulse duration, and enables study of the heating and cooling rates 

processing parameters effects the surface temperature distribution as shown by 

. The thermal profile was predicted for four samples with two processing powers and 

 

: Variations of temperature in surface of work piece relative to the pulse 

 

: Variation of grain radius and laser fluence as a function of undercooling [137]. 

ool behaviour, thermal stresses 

. Thermal history determines the final properties of the 

processed surface like strength, elongation, fatigue behaviour and hardness [131]. It is 

useful in monitoring how the temperatures change over a period of time which exceeds 

the pulse duration, and enables study of the heating and cooling rates [60]. Changing the 

processing parameters effects the surface temperature distribution as shown by Figure 

. The thermal profile was predicted for four samples with two processing powers and 



 

scan speeds for a total time of 100 mse

speed of 2.5 m/min, the maximum surface temperature was at 2000°C while at higher 

speed of 3.5 m/min, the temperature was approximately 1800°C. At lower power of 1.5 

kW, a similar trend was plotted where lowe

sample was processed at the higher speed of 3.5 m/min. However, the maximum 

temperature was reached faster when processed at higher speed. It was noted that cooling 

rates are different for all four samples and can be

microstructure. 

Figure 2.38: Thermal profile (temperature against time) predicted on top surface by

numerical solution during laser surface processing 

Thermal history can also be plotted for different sample location coordinates where 

sample temperature changes with respect to distance from spot central position. In 

2.39, the thermal histories of four points

measured for a total time of 2 sec. The initial x

source. Time changes for the coordinate to reach the maximum temperature indicates that 

substantial time duration is

source [60]. The temperature distribution also affects the cooling rate which results in 

microstructure variation along the modified surface region. 
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scan speeds for a total time of 100 msec. At the higher power of 2.0 kW and lower scan 

speed of 2.5 m/min, the maximum surface temperature was at 2000°C while at higher 

speed of 3.5 m/min, the temperature was approximately 1800°C. At lower power of 1.5 

kW, a similar trend was plotted where lower surface temperature was achieved when 

sample was processed at the higher speed of 3.5 m/min. However, the maximum 

temperature was reached faster when processed at higher speed. It was noted that cooling 

rates are different for all four samples and can be used to predict the resulting 

: Thermal profile (temperature against time) predicted on top surface by

numerical solution during laser surface processing 

ermal history can also be plotted for different sample location coordinates where 

sample temperature changes with respect to distance from spot central position. In 

, the thermal histories of four points along the molten pool depth Y direction were 

measured for a total time of 2 sec. The initial x-coordinate was set to cross the laser point 

source. Time changes for the coordinate to reach the maximum temperature indicates that 

substantial time duration is required for the heat to diffuse for points far from the heat 

. The temperature distribution also affects the cooling rate which results in 

microstructure variation along the modified surface region.  

c. At the higher power of 2.0 kW and lower scan 

speed of 2.5 m/min, the maximum surface temperature was at 2000°C while at higher 

speed of 3.5 m/min, the temperature was approximately 1800°C. At lower power of 1.5 

r surface temperature was achieved when 

sample was processed at the higher speed of 3.5 m/min. However, the maximum 

temperature was reached faster when processed at higher speed. It was noted that cooling 

used to predict the resulting 

 

: Thermal profile (temperature against time) predicted on top surface by 

numerical solution during laser surface processing [93]. 

ermal history can also be plotted for different sample location coordinates where 

sample temperature changes with respect to distance from spot central position. In Figure 

along the molten pool depth Y direction were 

coordinate was set to cross the laser point 

source. Time changes for the coordinate to reach the maximum temperature indicates that 

points far from the heat 

. The temperature distribution also affects the cooling rate which results in 
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Figure 2.39: Thermal histories of four points on the surface  

of laser processed glass sheet [60]. 

2.6 Dies Failure in Semi Solid Metal Processing 

In semi-solid metal processing, the forming temperatures are considerably lower than in 

liquid metal die-casting. Though die material like AISI H13 steel is able to withstand high 

working temperatures, above 600°C the die easily wears such that the die life at high 

temperature is not sufficiently long [13, 139, 140]. The cyclic high temperature conditions 

along with exposure to high viscosity molten metal in semi-solid forming causes the die to 

wear and crack and causes huge loss due to downtime, die repair and replacement [84]. 

Wear mechanisms are common in tool steel dies [13, 141], including: 

a. erosion or washout from high velocity and molten metal,  

b. heat checking or thermal cracking affected by thermal fatigue causes heat checks on 

the surface of the die, and  

c. soldering and corrosion was due to chemical interaction of casting alloy and die 

material during filling and solidification.  

Figure 2.40 shows the heat checking in die casting dies. In forging, cracks appear in the die 

fillets and some oxides layers are formed on corners which could occur after less than 

10,000 forging cycles which usually ends the dies service life at 30,000 cycles [142].  



 

Figure 2.

Die materials have been

thermal cycling associated with various hot working operations. Dies are used almost 

exclusively in extrusion, die casting, plastic injection moulding, hot 

alloys and steel forging 

which the density and thermal propert

high temperature applications, the die properties and dimensions change after thousands 

of processing cycles and often cause non
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Figure 2.40: (a) Heat checking in die-casting dies 

and (b) close-up view of heat checks [13]. 

have been designed to withstand the temperature, pressure, abrasion, and 

thermal cycling associated with various hot working operations. Dies are used almost 

exclusively in extrusion, die casting, plastic injection moulding, hot 

alloys and steel forging [143, 144]. The properties of die materials are given in 

which the density and thermal properties can be seen to change at higher temperatures. In 

high temperature applications, the die properties and dimensions change after thousands 

of processing cycles and often cause non-conformity of final shape [142]

Heat 
checks 

(b) 

 

casting dies  

designed to withstand the temperature, pressure, abrasion, and 

thermal cycling associated with various hot working operations. Dies are used almost 

exclusively in extrusion, die casting, plastic injection moulding, hot pressing of copper 

. The properties of die materials are given in Table 2.2 in 

ies can be seen to change at higher temperatures. In 

high temperature applications, the die properties and dimensions change after thousands 

[142].  
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Table 2.2: Properties of die materials at room and elevated temperatures. 

Properties AISI H11 AISI H13 Maraging steel Reference 
Density (kg/m3) 

20°C 

400°C 

600°C 

  
7760 
7700 
7600 

  
[71] 
(Orvar supreme) 

Liquidus temperature (°C)  1454/1483  [141]/[71] 
Solidus temperature (°C)  1315  [141] 
Modulus of elasticity (GPa) 

20°C 

400°C 

600°C 

210 
 

210 
210 
180 
140 

191* [1] 
(Orvar supreme) 

Tensile strength (MPa) 

 

1410 1430 1763* 
1000** 

[1] 
[145] 

Yield strength (MPa) 1170 1230 1688* / 950** [1] / [145] 
Hardness (HRC) 

Forged 

As-quenched 

Tempered at 500°C 

Tempered at 630°C 

Heat treated 

Solution annealed  

 
 
           
 
 
46 

46 
49 
50 
53.3 
39.6 
 
 

 
 
 
 
 
 
30-35** 

[146] 
[144] 
 
[141] 
 
[147] 
[148] 

Coefficient of thermal expansion  
(x10-6°C-1) 

20-400°C  
20-600°C  

 
 
13.2 
13.7 

 
 
12.5 
13.1 

 
 
10** 
5.6** 

 
 
[1] 

Thermal conductivity (W/m°C) 

20°C 

500°C 

600°C 

 
25 
28.5 
29.3 

 
25 
28.5 
29.3 

 
28** 
32** 
33** 

 
[1] 

Specific heat (J/kgK)  447  [141] 
Latent heat of fusion (J/kg)  2.8x105  [141] 
Thermal diffusivity (mm2/s)  5.35  [71] 
Note: *14%Ni maraging steel, **18% Ni maraging steel. 

To improve die materials resistance, among the preferable and effective methods are 

surface modification and coating. Other surface treatments like ion-nitriding, gas-

carburizing and thermo-reactive diffusion carburising were reviewed to reduce soldering, 

increase surface hardness and wear resistance respectively in die steels [149-151]. Both 

surface treatment and coating were also previously examined to protect tool steels [40, 72, 

84, 151, 152]. Coatings of TiC/TiN/Al2O3 system were magnetron-sputtered on nitrided 

tool steel [153]. Coatings can be done in mono-layer, duplex or triple layers with several 

types of coating materials like ceramics and rare earth elements, and through different 

methods such as, chemical vapour deposition (CVD), physical vapour deposition (PVD), 

sputtering process, and thermal spray processes. Examples of coating materials used in 

die materials are nano-structured CrAlSiN system and triple layers of the Ti/TiAlN/oxide 

system, [13, 84]. Though various coating technologies were implemented for thermal 

barrier purposes, the effective coating requirements have proven difficult to meet which 

makes laser surface modification a useful potential alternate surface properties 

enhancement method. 
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2.7 Motivation and Aims of Research 

2.7.1 Motivation of Research 

In high temperature metal forming, hot work tool steels (AISI Group H series) are used 

exclusively to withstand the high working temperatures [154]. Hot work steels were 

chemically designed for good toughness, resistance to high temperature softening, high 

temperature corrosion and wear properties with low carbon content (0.4 wt.%), medium 

chromium content (5 wt.%), 1 wt.% Si and small molybdenum and vanadium additions 

(about 1%) [144]. In spite of these capabilities, above 600°C, these dies easily wear due to 

high velocity and thermal gradients from injected molten or semi-solid metal. Therefore, 

die material sustainability has motivated the development of the surface hardening study. 

Continuous efforts have been undertaken to increase die durability especially through 

coating and heat treatment technologies [2, 3, 6, 155]. Typical hardness for die casting dies 

is in the range of 436 to 513 HV (44 to 50 HRC) [140]. Most previous studies have been 

directed at improving the surface properties of die-casting dies to minimize heat checking, 

erosion, stress corrosion, and soldering [73, 156]. In this study, the research direction was 

to develop a modified layer on H13 tool steel substrate by utilising CO2 laser surface 

processing. Table 2.3 summarises the previous work on surface modification of hot work 

tool steels and Fe-based alloy.  
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Table 2.3: Properties of surface modified tool steels and Fe-based alloys.  

Materials 
Process/ Laser type (laser 

mode) 

Layer thickness 

(µm) 

Micro-structure/ 

Composition/ Phase 
Surface hardness 

Surface 

roughness (µm) 
Reference 

H13 tool steel Laser surface hardening/ 
fiber laser (PM) 200 - 480-500 HV0.1 - [40] 

DF-2 cold work 
tool steel 

Laser glazing/ 
Nd:YAG laser (PM) 111 Martensite with retained 

austenite 1414 HV0.1 Rq = 0.80 [72] 

AISI 1045 steel 
Laser melting/ 
picoseconds Nd:YAG lasers 
(PM) 

 

Laser wavelengths cause 
damage of the steel in the 
central zone of irradiated 
area 

- - [157] 

Stainless steel Laser melting/ 
Nd:YAG lasers (PM) - 

α-Fe and γ-Fe, or only γ-Fe 
in amorphous phase and 
nanograins of 4-100 nm 

- - [94] 

H13 tool steel Laser glazing/ 
CO2 laser (CW) 150 - 700 HV0.1 - [55] 

H13 tool steel 
Laser transformation 
hardening/ 
CO2 laser (CW) 

300 - 510 HV0.1 (5 GPa) - [65] 

X38CrMoV5-3 
hot work steel 

Laser melting/ 
diode laser (CW) 100-570 - 698 HV0.1 (60 HRC) Ra = 0.42-0.72 [158] 

H13 tool steel Laser surface hardening/ 
CO2 laser (CW) - 

Martensite within the 
metallic carbides 
precipitation 

- - [71] 

H13 tool steel Laser glazing/ 
CO2 laser (CW) 650 Fine grains and secondary 

carbides 
795 HV0.1 (780 
kgf/mm2) - [3] 

M1 high speed 
steel 

Laser glazing/ 
CO2 laser (CW) - Fine carbides formation - - [48] 

AISI 1080 steel Laser glazing/ 
Nd:YAG laser (PM) <100 - 655-800 HV0.1 - [6] 

FeCrPC alloy Laser glazing/ 
CO2 laser (CW) - Amorphous - - [28] 

AISI P20 mold 
steel 

Laser hardfacing/ 
CO2 laser (CW)  Tempered martensite 350 HV0.1 - [159] 

304L stainless 
steel 

Laser melting/ 
CO2 laser (CW) - Chemical compositional 

changes - - [160] 
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2.7.2 Aims of Research  

The aims of this work were: 

a. Development of design of experiments (DOEs) for H13 tool steel laser surface 

modification using pulsed laser mode to investigate the influence of the processing 

parameters of laser irradiance (W/mm2), materials-laser interaction time (ms), and 

overlapping (%). The range of each parameter was designed, iterated and improved 

after sample characterisation. Identification of factors affecting modified surface 

properties from characterisation. Thus, samples were processed at three different 

laser beam sizes to reduce surface roughness. 

b. Improvement of H13 tool steel surface absorptance for CO2 laser wavelength through 

chemical etching and surface roughening. 

c. Characterisation of samples by scanning electron microscopy, crystallinity and phase 

analysis, hardness testing, and surface profilometry. Specimen preparation for 

metallographic study, XRD analysis, hardness testing and surface profilometry. 

d. Development of an optimised parameters design for H13 tool steel surface 

modification. 

e. Thermal modelling simulations of pulsed laser surface modification at varied laser 

parameters to investigate the effect of surface absorption on the modified region 

dimensions, the effect of laser parameters on temperature distribution, and to 

establish a relationship between modified surface properties, structure, and the 

heating/cooling rate.  
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CHAPTER 3 

Research Methodology 

3.0 Chapter 3 heading 1 

3.1 Materials and Sample Preparation 

The material investigated in this study was AISI H13 tool steel with chemical composition 

given in Table 3.1. The chemical composition was measured using Spectro Max CCD-

LMX03 spark light emission spectroscopy. The as-received rods supplied by Special Steels 

Ireland were in the annealed condition with 280 HV (27 HRC) maximum hardness. The 

H13 tool steel properties are listed in Table 3.2. 

Table 3.1: Chemical composition of AISI H13tool steel. 

Material 
Elements (wt%) 

C Mn Si Cr Ni Mo V Cu P S Fe 

H13 0.32-
0.45 

0.20-
0.50 

0.80-
1.20 

4.75-
5.50 0.30 1.10-

1.75 
0.80-
1.20 0.25 0.03 0.03 Bal. 

            
 

Table 3.2: Properties of H13 tool steel at room temperature. 

H13 tool steel Properties Reference 
Density 7000 kg/m3 [141] 
Hardness annealed 285 HV [140] tempered  544 HV 
Liquidus temperature 1454°C [141] 
Thermal conductivity 28 W/mK [140] 
Specific heat 447 J/kgK [141] 
Latent heat of fusion 2.8 x 105 J/kg [141] 
Heat transfer coefficient 40 N/s/mm/°C [140] 

As-received 10 mm diameter H13 tool steel cylindrical rods were sectioned into 120 mm 

length samples. The samples were cleaned with ethanol prior to processing. Samples were 

laser processed in the as-received condition, after chemically etching the surface, and after 

surface roughening to 2.90±0.2 µm average roughness, Ra, and chemical etching. 

3.1.1 Chemical Etching 

Materials surface absorptance in laser surface processing is crucial since most metals are 

very reflective to CO2 laser wavelength. The H13 tool steel surface absorptance was 

enhanced by chemical etching. Samples were immersed in nital (8-10%) solution for 10 

minutes before laser processing. Nital (8-10%) solution was prepared by mixing 8 to 10 

ml nitric acid with 90 to 92 ml methanol under fume hood ventilation. Nital etchant 
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reacted with the surface and darken the as-received surface of the H13 sample. The 

darkened surface reduced reflectivity upon laser beam-material interaction. 

To generate some idea on the heating energy required for surface modification, a 

calculation of the energy required to melt the surface was performed. The absorption 

factor, A, was calculated using Equation 3.1 and only 2.2% of energy was absorbed by the 

as-received steel surface during surface processing.  

/ =
4 0120 + 132 + �24 Equation 3.1 

where N and k are the refractive index and absorption coefficient. For iron samples processed at 10.6 µm laser wavelength, the N and k values are 5.97 and 32.2 respectively 1624.  
The heat conduction calculation in Equation 3.2 was used to estimate the total amount of 

energy, HT, needed in the surface modification of H13 steel. The amount of energy to 

process the surface is given by the total amount of energy required to raise the surface 

temperature to the melt temperature. The specific heat capacity and latent heat of fusion 

properties of H13 tool steel that were used are given in Table 3.2. By multiplying the 

absorbance factor of as-received H13 steel with the total calculated energy, the resulted 

energy to melt the surface was calculated. Improvements in the surface absorbance were 

achieved by conducting design of experiments. 

HT = [Cp x (TL-To) x m]+ [Hfusion x m] Equation 3.2 

where Cp, TL and Hfusion are respectively the specific heat capacity (J/kgK), liquidus 

temperature (K) and latent heat of fusion (J/kgK) of H13 steel, To is room temperature (K) 

and m is the mass of material melted (kg). The mass of material was calculated from area, 

depth and H13 steel density. 

3.1.2 Surface Absorptance by Roughening 

The H13 tool steel surface absorptance was improved by surface roughening. The as-

received 10 mm diameter and 120 mm length H13 tool steel samples surfaces were 

machined using Computer Numerical Controlled (CNC) turning machine to produce a 

2.90±0.2 µm average Ra surface roughness. The final diameter of the samples after 

roughening was 9.4 mm. Figure 3.1 shows the machined sample surface profile as 

measured with TR-200 two-dimensional surface profilometer. Five measurements taken 



 

at different parts of the sample length resulted in a consistent average roughness reading

of 2.90 µm. The machined surface was then chemically treated using Nital (8

Figure 3.

3.2 Laser Surface Modification

A Rofin DC-015 diffusion

to modify the steel surface. The system specifications are given in 

system was focusable

focused spot diameter 

CO2 laser system is shown in 

gas at 0.1 MPa (1 bar) pressure was maintained to avoid oxidation of the sample surface. 

Table 3.3: Specifications of Rofin DC

Laser parameters
Wavelength, λ
Maximum power, P
Operation mode
Pulse repetition frequency
Pulse width, τ
Beam spatial mode
Beam quality factor, K
Beam propagation parameter, M

 

L
	M�NO
where, λ is the laser wavelength, f is the focal length of the lens (127 mm), Mquality 21.113 and D is the beam diameter 222 mm3. 
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at different parts of the sample length resulted in a consistent average roughness reading

of 2.90 µm. The machined surface was then chemically treated using Nital (8

Figure 3.1: Surface profile of 2.90±0.2 µm Ra machined sample.

Laser Surface Modification 

015 diffusion-cooled CO2 slab laser system with 10.6 μm wavelength was used 

to modify the steel surface. The system specifications are given in 

able to a minimum laser spot size of 90 µm on the sample surface. The 

sed spot diameter can be calculated using Equation 3.3. The beam delivery path in this 

laser system is shown in Figure 3.2. During laser processing, a constant flow of 

gas at 0.1 MPa (1 bar) pressure was maintained to avoid oxidation of the sample surface. 

: Specifications of Rofin DC-015 diffusion-cooled CO2 slab laser system.

Laser parameters Specifications 
Wavelength, λ 10.6 µm 
Maximum power, Pmax 1520 W 
Operation mode Continuous and pulse
Pulse repetition frequency 2 to 5000 Hz 
Pulse width, τ 0.026 to 125 ms 
Beam spatial mode TEM00 
Beam quality factor, K >0.9 
Beam propagation parameter, M2 1.11 

	M�NO �Q
$ O�RSN$NT, O = �(U(V'W(�  
where, λ is the laser wavelength, f is the focal length of the lens (127 mm), Mquality 21.113 and D is the beam diameter 222 mm3.  

at different parts of the sample length resulted in a consistent average roughness reading 

of 2.90 µm. The machined surface was then chemically treated using Nital (8-10%). 

 

machined sample. 

with 10.6 μm wavelength was used 

to modify the steel surface. The system specifications are given in Figure 3.2. The laser 

to a minimum laser spot size of 90 µm on the sample surface. The 

. The beam delivery path in this 

. During laser processing, a constant flow of Argon 

gas at 0.1 MPa (1 bar) pressure was maintained to avoid oxidation of the sample surface.  

slab laser system. 

Continuous and pulse 

 

Equation 3.3 
where, λ is the laser wavelength, f is the focal length of the lens (127 mm), M2 is the beam 
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Figure 3.3 shows the laser surface modification process setup. The sample was attached in 

a chuck to a translation stage. The sample surface was set normal to the laser head. The 

sample circumferential surface was treated by rotating it perpendicular to the laser firing 

direction. The sample was also linearly translated in order to process a pre-defined 

overlapping helix pattern longitudinally which allowed for complete processing of the 

surface area. The maximum circumferential speed and linear translation speed were 3,000 

rpm and 5,000 mm/min (83.33 mm/s) respectively. 

Controlled processing parameters were laser peak power, duty cycle, pulse repetition 

frequency, linear speed and rotational translation speed. The sample was rotated by using 

a DC motor (Bodine® Small Motor type-32A5BEPM with 2500 rpm) which was fixed to a 

customised laser platform moving perpendicular to the laser firing direction. Sample 

rotational translation speed was set by the voltage input controllers while the linear 

translation speed and laser processing parameters were set at the Rofin laser controller. 

The laser parameter settings resulted in the modified surface grain size, mechanical 

properties, surface morphology, phase and structure composition. The independent 

parameters were computed to produce relationships of two or more laser parameters. 

Parameters derived from the chosen settings such as pulse period, pulse width, residence 

time, average power, pulse energy, fluence and irradiance allow accurate control of the 

laser processing. 



 

Figure 3.

Figure 3.3: Laser surface modification process setup (A: 

laser head, C: rotating chuck, and D: linear translation platform.

 

Rofin DC
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Figure 3.2: Beam delivery path in CO2 laser system

: Laser surface modification process setup (A: 9.4 mm diameter H13 sample, B: 

laser head, C: rotating chuck, and D: linear translation platform.

Rofin DC-015 

CO2 slab 

1000 mm 

Focal position spot size: 0.09 mm 

20 mm 

5’’ FL lense 

Linear translation 

direction 

A 

B 

C 

D 

 

laser system 

 

ameter H13 sample, B: 

laser head, C: rotating chuck, and D: linear translation platform. 

22 mm 

 

45° 

~1000 mm 

127 mm 
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Laser Spot Size, wR and Focal Distance, z 

In the experimental design of laser processing, the laser beam was focused to the sample 

surface with 0.09 mm, 0.2 mm and 0.4 mm spot size. The processing focal position was set 

at two different distances between sample surface and the focal position to produce spot 

sizes of 0.2 mm and 0.4 mm. The focal distance was calculated using Equation 3.4. Figure 

3.4 shows the laser beam diameter plot against focal distance as calculated from Equation 

3.4. 

XY2+3 = XZY [1 + &\ � V2W XZY2,2]1 2⁄
 Equation 3.4 

where, w0R is the radius of a real 2non-Gaussian3 beam at the waist, wR is the radius of the beam at a distance z from the waist, λ is the laser wavelength and M2 is the beam quality. 

 

Figure 3.4: Laser beam diameter as a function of distance from the focal position. 

Linear Translation Speed, V  

Figure 3.5 shows the relationship of rotational and translational speed in order for 

consecutive laser passes to overlap and form a continuous processed region. For a given 

length traversed per pass, Xp, the speed for the sample to move in x-direction is given by 

Equation 3.5. 

e = 2f3 · (g) [SS �⁄ ] Equation 3.5 
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Figure 3.5: Rotational and linear sample movement in laser surface processing where d is 

the spot diameter and X2 is the processed longitudinal length of two subsequent passes. 

PRF Correlation with Pulse Overlap 

The number of pulses frequency and translational speed processed along a sample length 

determined the circumferential and longitudinal overlap percentage. The circumferential 

and longitudinal overlaps were designed to be the same. The overlap, η, can be calculated 

from Equation 3.6 

h = i1 − ∆Ol ·  100% Equation 3.6 
where, Δ = 2X2 – d3, is  the overlap distance between passes and X2 is the longitudinal length of two subsequent passes.  
The laser PRF required to process the sample surface was determined using the basic 

principle which counts the number of laser spots diameters, n, in a single pass of the 

sample circumference. The circumference of the 10 mm diameter sample calculated was 

31.42 mm and for the roughened diameter of 9.4 mm was calculated as 29.53 mm. 

Referring to Figure 3.6, when the laser spot diameter, d was 0.4 mm, the number of laser 

spots or pulses, n, required to process the sample without overlap between the spots, can 

be calculated using the relation of sample circumference divided by laser beam spot 

diameter. In the preliminary design where overlaps were 10, 30 and 50%, the number of 

circumferential laser spots used were 86, 102 and 118 respectively. 

X2 mm 
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Figure 3.6: Number of laser spots calculated without and with 50% circumferential 

overlap for a 10 mm diameter rod. 

The PRF was calculated from the number of laser spots, n divided by the time taken to 

laser process one full rotation. In this calculation, a linear relationship was established 

between PRF and overlap as shown in Figure 3.7. Using the rotational speed, the time 

required to complete the process in one full rotation is given by Equation 3.7. To calculate 

the linear translation speed with a 30% longitudinal overlap, the stage was set to move at 

a speed of seven tenths of the laser spot diameter per revolution.  

$ =  
1g  [�] Equation 3.7 

 

In this formulation, the circumferential speed was constant at any overlap percentage. As 

the PRF increased with increases overlap percentage, shorter pulse period and pulse 

width were required. Thus, the amount of energy per pulse also decreased with increasing 

frequency or overlap.  

d=0.4 mm 

q�$ℎ
M$ 
sNTtRQ, u =  
2π x 10 x 10−3

0.4 x 10−3 = 78.5 

/$ 50% 
sNTtRQ, u = i78.5 ·  50100l + 78.5 = 117.8 
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Figure 3.7: PRF as a function of overlap in pulse laser processing for a 10 mm diameter 

rod, a 0.4 mm spot size and at a rotational speed of 2000 rpm. 

Designing Pulse Overlap at Constant PRF 

Besides increasing the PRF at constant traverse speed to obtain the number of required 

pulses, the overlap pulses was also calculated using a different approach. In order to keep 

most of the laser parameters at constant values, the effective pulse energy required for 

H13 tool steel surface processing was determined. For example, when the PRF was fixed at 

a constant value of 2900 Hz, constant pulse energy, pulse period and pulse width were 

achievable at any overlap percentage. In this case, to produce overlapped pulses, the 

rotational speed was adjusted instead of increasing the number of laser spots, as shown in 

Figure 3.6. The overlap was increased by decreasing rotational speed. The overlap 

percentage can be calculated from the residence time to pulse width ratio. The pulses 

were not overlapped when the residence time was equal to pulse width. 

Surface Absorptance and Overlap 

The pulse overlap was designed by taking into account surface absorptance percentage. 

The surface absorptance, A, was calculated from molten pool geometry processed by a 

single laser pulse as given in Equation 3.8.  

/ =  
wO  ·  100 [%] Equation 3.8 

where c is the molten pool width and d is the laser spot diameter. This equation was only 

applied to samples processed at 0.4 mm diameter spot size. 
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3.2.1 Design of Experiment 1 (DOE1) 

The primary goal in DOE1 was to produce a modified surface layer with depth of 

modification dependant on the laser parameter settings. Table 3.4 shows the laser 

processing parameter for samples in DOE1. Cylindrical 10 mm diameter as-received H13 

tool steel was sectioned to 120 mm long samples which were processed at different 

settings of duty cycle, overlap and PRF. Laser processed samples were prepared for 

metallographic study. Micrographs of laser modified surface cross section were recorded 

for measuring the processed surface depth. Phase analysis of laser modified surface was 

conducted to measure the phase transformation in the processed surface. These initial 

characterisation results were focused on obtaining a maximum depth of the laser modified 

layer and reducing the α-Fe phase peak intensity as measured from metallographic and 

XRD analysis respectively. 

In DOE1, H13 samples were processed using a full factorial design of 33, with a constant 

peak power of 760 W. Three different levels of overlap (10, 30 and 50%), duty cycle (70, 

85 and 100%) and circumferential speed (2000, 2222 and 2500 rpm) were designed, see 

Table 3.4. The overlap was calculated from the traverse speed which in turn provided the 

PRF settings, see Figure 3.7. Three levels of duty cycle of 70, 85 and 100% were set which 

resulted in average powers of 532, 646 and 760 W respectively. The H13 surface was 

processed in the as-received condition. The laser beam was defocused to 0.4 mm size. The 

laser irradiances and residence times resulting from these parameter settings were in the 

range of 3,872 to 5,576 W/mm2 and 0.22 to 0.38 ms respectively.  
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Table 3.4: DOE1 processing parameter settings at constant peak power of 760 W. 

Sample 

Set parameters Outcome parameters 

DC 

(%) 

η 

(%) 

ω 

(rpm) 

PRF 

(Hz) 
PA (W) τ (ms) 

I 

(W/mm2) 
TR (ms) Ep (J) 

1 70 

10 

2500 3636 
532 0.19 5,313 0.22 0.15 

2 85 646 0.23 5,304 0.27 0.18 
3 100 760 0.28 5,269 0.32 0.21 
4 70 

2222 3200 
532 0.22 5,547 0.24 0.17 

5 85 646 0.27 5,547 0.29 0.20 
6 100 760 0.31 5,503 0.34 0.24 
7 70 

2000 2857 
532 0.25 5,570 0.27 0.19 

8 85 646 0.30 5,540 0.33 0.23 
9 100 760 0.35 5,576 0.38 0.27 

10 70 

30 

2500 4211 
532 0.17 4,626 0.22 0.13 

11 85 646 0.20 4,517 0.27 0.15 
12 100 760 0.24 4,607 0.31 0.18 
13 70 

2222 3810 
532 0.18 4,608 0.24 0.14 

14 85 646 0.22 4,631 0.29 0.17 
15 100 760 0.26 4,589 0.35 0.20 
16 70 

2000 3333 
532 0.21 4,760 0.27 0.16 

17 85 646 0.26 4,793 0.32 0.19 
18 100 760 0.30 4,798 0.38 0.23 
19 70 

50 

2500 5000 
532 0.14 3,872 0.22 0.11 

20 85 646 0.17 3,881 0.27 0.13 
21 100 760 0.20 3,881 0.31 0.15 
22 70 

2222 4444 
532 0.16 3,946 0.24 0.12 

23 85 646 0.19 3,946 0.29 0.15 
24 100 760 0.23 3,948 0.35 0.17 
25 70 

2000 4000 
532 0.18 3,959 0.27 0.13 

26 85 646 0.21 3,951 0.34 0.16 
27 100 760 0.25 3,973 0.38 0.19 

Focal Position of Defocused Laser Beam 

DOE1 was conducted using defocused beam to 0.4 mm diameter spot size. In order to gain 

a defocused spot size of 0.4 mm, the focal position was set to be 2.6 mm above the sample 

surface. Although most of the samples were processed with a positive focal position offset, 

some of the samples of DOE1 were processed at negative offset where the beam was 

focused 2.6 mm below the sample surface. In order to investigate the effect of focal 

position, six samples were processed at the parameter settings given in Table 3.5. The 

laser parameter settings were set as per sample 21, 23 and 27 in Table 3.4. 
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Table 3.5: Laser parameter settings for samples at two different focal positions and 50% 

overlap.  

Sample 
Set parameters Outcome parameters 

DC (%) Focal position (mm) PRF (Hz) TR (ms) I (W/mm2) EP (J) 

21 100 +2.6 
5000 0.31 3,881 0.15 

21b 100 -2.6 

23 85 +2.6 
4444 0.29 3,946 0.15 

23b 85 -2.6 

27 100 +2.6 
4000 0.38 3,973 0.19 

27b 100 -2.6 

       

3.2.2 Design of Experiment 2 (DOE2) 

An experimental design, DOE2, was developed with parameters given in Table 3.6. DOE2 

parameters combinations were selected from DOE1. Selected parameters were based on 

the modified surface depth findings produced in DOE1 samples. The parameters were 

designed for nital etched samples at a negative focal position of -2.6 mm, beam spot size of 

0.4 mm diameter, constant peak power of 760 W, and with four residence times. Duty 

cycle was set at 85 and 100% to produce average power of 646 and 760 W respectively, 

while overlap was set at the three levels of 10, 30 and 50%. The overlap percentage was 

calculated from the traverse speed which in turn provided the PRF settings, see Figure 3.7. 

The samples were labelled with ‘E’ to indicate etched samples and were also 10 mm 

diameter and 120 mm long. 

Table 3.6: DOE2 parameter settings for nital etched samples  
processed at negative focal position. 

Sample 

Set parameters Outcome parameters 

DC 

(%) 
η (%) 

ω 

(rpm) 

PRF 

(Hz) 
PA (W) I (W/mm2) TR (ms) EP (J) 

E6 100 
10 

2222 3200 760 5,510 0.34 0.24 
E8 85 2000 2857 646 5,548 0.32 0.23 
E9 100 2000 2857 760 5,592 0.38 0.27 
E14 85 

30 

2222 3810 646 4,618 0.29 0.17 
E15 100 2222 3810 760 4,631 0.34 0.20 
E18 100 2000 3333 760 4,774 0.38 0.23 
E12 100 2500 4211 760 4,475 0.32 0.18 
E24 100 

50 

2222 4444 760 3,958 0.34 0.17 

E26 85 2000 4000 646 3,971 0.32 0.16 

E27 100 2000 4000 760 3,971 0.38 0.19 

E21 100 2500 5000 760 3,745 0.32 0.15 
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3.2.3 Design of Experiment 3 (DOE3) 

In DOE3, the effect of surface roughening and chemical etching was investigated at 

different laser parameters settings. Laser processing experiments were also designed to 

increase the surface cooling rate using a smaller spot size of 0.2 mm. A focal distance offset 

of -1.2 mm was set to produce this spot size. Samples 120 mm long were processed at 

constant PRF of 2900 Hz. The samples for DOE3 were machined to 2.9±0.2 µm average Ra 

surface roughness and chemical etched prior to processing. The sample diameter after 

roughening was 9.4 mm. 

DOE3 design consists of four processing settings which compared three levels of peak 

power as shown in Table 3.7. An additional setting with 10% overlap was conducted at 

760 W peak power to investigate the effect of constant PRF on overlap geometry. Duty 

cycle in DOE3 was designed to be dependent on the peak power in order to control the 

average power. The residence time varied due to these duty cycle and overlap percentage 

settings.  

Table 3.7: Processing parameter for DOE3 samples. 

Sample 
Set parameters Outcome parameters 

PP (W) DC (%) η (%) PA (W) I (W/mm2) TR (ms) Ep (J) 

N4 507 49 50 249 10,930 0.25 0.09 
N10 760 36 10 274 22,139 0.14 0.10 
N24 760 36 50 274 16,388 0.19 0.10 
N12 1313 23 50 305 28,184 0.12 0.11 

Sample Heating Rate and Cooling Period 

During processing, samples surface was heated up from room temperature to its liquidus 

temperature. The heating rate, HR, of the surface can be calculated using Equation 3.9. 

Cooling period, tcooling, of the samples was determined from the ‘off’ state duration of the 

laser pulse, see Equation 3.10. Hence the cooling rate, CR, can be calculated as per Equation 

3.11. 

�Y =  
∆##Y  Equation 3.9 

  

$xyyz{|} =  
1~�L − #Y Equation 3.10 

  

�Y =  
∆#$xyyz{|} Equation 3.11 
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where ∆T is temperature deviation from room temperature to the liquidus temperature 

and TR is the residence time.  

3.2.4 Design of Experiment 4 (DOE4) 

In DOE4, a 32 factorial design was developed which produced nine sets of processing 

parameters. Two factors, peak power and overlap were designed at three levels as shown 

in Table 3.8. Duty cycles were set at three levels dependant on the peak powers and 

resulted in a constant average power of 274 W for each setting. The processing 

parameters were conducted using a minimum spot size of 0.09 mm diameter. Due to the 

very small affected area and high laser irradiance, the residence time was set to lower 

levels, see Table 3.8. Samples were roughened chemical and etched as previously 

described. The pulse energy and PRF were constant at 0.095 J and 2900 Hz respectively 

for each experiment. The outcome pulse width calculated from equation 1 (see Appendix 

B) was at the three levels of 0.06, 0.08 and 0.12 ms. 

Table 3.8: Parameter settings for DOE4 samples at constant pulse energy of 0.095 J, 

average power of 274 W and PRF of 2900 Hz. 

Sample 
Set parameters Outcome parameters 

PP (W) DC (%) η (%) I (W/mm2) TR (ms) S (mm/s) τ (ms) 

X1 760 36 
0 

238,087 0.06 
261 

0.06 
X2 1138 24 178,761 0.08 0.08 
X3 1515 18 119,436 0.12 0.12 
X4 760 36 

10 
216,524 0.07 

237 
0.06 

X5 1138 24 162,572 0.09 0.08 
X6 1515 18 108,619 0.14 0.12 
X7 760 36 

30 
183,282 0.08 

201 
0.06 

X8 1138 24 137,613 0.11 0.08 
X9 1515 18 91,943 0.16 0.12 
        

3.2.5 Design of Experiment 5 (DOE5) 

Optimisation of H13 Tool Steel Laser Surface Modification 

DOE5 parameter settings were developed based on the Box-Behnken design Response 

Surface Methodology (RSM) design using the Design Expert 7.1.4 software for results 

analysis. RSM is a collection of mathematical and statistical techniques that are useful for 

the modelling and analysis of problems in which a response of interest which is influenced 

by several variables can be analysed [161]. Experiments were conducted and 

characterisation results were analysed using regression analysis to obtain a significant 

model for the response to the independent input variables. The surface depth and 
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roughness response models were performed with a step-wise regression method which 

automatically eliminates the insignificant model terms. The sequential F-test and lack of fit 

test were carried out using the software to evaluate the model. The range of each 

parameter was determined from the four previous DOEs presented. Effects of each laser 

parameter from analysis of the characterisation results from the previous DOEs were 

established to determine suitable parameter settings for DOE5. For DOE5, three 

independent parameters (Pp, η and PRF) were varied at three different levels which 

resulted in a total of 17 parameter settings as given in Table 3.9.  

Table 3.9: DOE5 laser parameters for process optimisation. 

Sample 
Set parameters Outcome parameters 

PP (W) DC (%) η (%) 
PRF 

(Hz) 
I (W/mm2) TR (ms) Ep (J) 

S 

(mm/s) 

F1 760 36 0 2300 119,297 0.16 0.12 207 
F9 1138 24 -10 2300 198,959 0.09 0.12 230 
F11 10 162,398 0.12 188 
F2 1515 18 0 2300 237,809 0.08 0.12 207 
F5 760 36 -10 2900 132,686 0.11 0.10 290 
F7 10 108,582 0.14 237 
F13 

1138 24 0 2900 178,700 0.08 0.10 261 
F14 
F15 
F16 
F17 
F6 1515 18 -10 2900 264,499 0.06 0.10 290 
F8 10 216,449 0.07 237 
F3 760 36 0 3500 119,459 0.10 0.08 315 
F10 1138 24 -10 3500 198,631 0.06 0.08 350 
F12 10 162,593 0.08 286 
F4 1515 18 0 3500 238,133 0.05 0.08 315 

In Table 3.9 the duty cycles were dependant to the peak power settings. Five of the 

parameter settings were repetitions and were labelled F13 to F17. The peak powers used 

were 760, 1138 and 1515 W. The lower peak power of 760 W was combined with 36% 

duty cycle while the higher peak power of 1138 and 1515 W were set at 24% and 18% 

duty cycle respectively. The combinations of peak power and duty cycle were used to 

ensure a constant resulting average power of 274 W during processing. Three levels of 

PRF were set at 2300 Hz, 2900 HZ and 3500 Hz. The spot size was 0.09 mm diameter to 

reduce the laser affected area which would increase the surface temperature heating and 

cooling rates. At the very small spot size of 0.09 mm, the overlap was set at minus 10, 0 

and 10%. The minus 10% overlap was to allow a 10% gap between the consecutive laser 

spots. However, the irradiance produced by the 0.09 mm spot size caused a larger heat 

affected area which therefore still produced modified overlapped regions at this setting. 

Sample surfaces were roughened and chemical etched as previously described. 
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Analysis of variance (ANOVA) and data optimisation were conducted with significant 

terms in the model. Model reduction can be performed when non-significant terms exist. 

Non-significant terms were eliminated using an algorithmic technique which was the step-

wise regression method. In this method, a factor was added, eliminated or exchanged at 

each step. Alpha in and out values, associated with each model term, were used in the 

model reduction to indicate the terms that were allowed into the model. Each term must 

have a p-value smaller than or equal to alpha values in order to be kept in the model at 

each iteration step. The model reduction started with the algorithm adding the single new 

factor that exhibited the highest correlation with the response. Then, factors were added, 

eliminated, exchanged or the procedure stopped. With two or more terms in the model, 

terms having a p-value less than the specified alpha in requirement was added to the 

model. The terms having probability values greater than the specified alpha out were then 

removed by the algorithm one at a time. The procedure stops when no further 

improvement. Data distribution was assured by regression findings, which were predicted 

R2, actual R2 and adjusted R2. 

At the end of experiments and characterisation, the design settings were optimised for the 

three significant factors which were laser peak power, PRF and overlap percentage. This 

optimisation process involved combining the factors with set desired goals, for each 

response, into an overall desirability function. In this design the numerical optimization 

was conducted to minimize surface roughness and maximize hardness and modified layer 

depth responses. The optimization criteria for peak power, overlap and PRF factors was 

set as ‘in range’. To maximize or minimize the response, a lower and upper limit was set at 

values achieved from experimental findings and overall desirabilities were selected.  

3.3 Thermal Modelling of Heat Conduction 

Thermal modelling simulation was performed to investigate the effect of laser parameters 

and surface absorptance factor on the molten pool geometry. The thermal conduction 

model used for simulation of the laser induced thermal field had previously been 

developed [60, 134, 162]. The main objective of this part of the project was to employ the 

existing thermal model and investigate the temperature distribution in laser modified AISI 

H13 tool steel surfaces. A specific absorptance factor of 60% was added in the model to 

suit the experimental surface modification process carried out in this work.  

The thermal model used is based on a point source solution. The area of the heat affected 

zone was determined in the surrounding radial region from the point heat source. In this 
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case, the laser fluence rather than spot size was related to the resulting thermally affected 

region from laser processing. The other main assumptions in this model include that the 

thermal properties of H13 are independent of temperature and that phase changes only 

account for a small percentage of overall energy input [60]. This latter assumption can be 

accounted for to some degree in this work due to the fact that the same material H13 was 

processed in all comparison tests. 

Mathematical Model 

An analytical mathematical model of the heat field generated during the laser surface 

modification was used to predict the temperature distribution in the surface and hence 

dimensions of the treated region of microstructure phase change or melt pool formation. 

The general heat conduction equation is given in Equation 3.12 where the sample is 

considered to be moving at constant traverse speed, U, in the x-direction. Equation 3.13 

gives the three-dimensional temperature distribution within the surface which was solved 

from the general heat conduction equation, previously presented by Issa et. al [60]. By 

taking the surface preparation into account, a 60% surface absorptance factor was used. 

This absorptance factor was similar to that was used in the previous works of Bergström 

(2007) and Bhushan (1991) [66, 68]. 

"#"$ +  - "#"( =  % &"'#"(' + "'#"*' +  "'#"+' , Equation 3.12 
  

#2(, *, +, $3 =  #y + ~2$32W�T exp ��g$ +  -2% �( − T�1 + 4%g�-' �� Equation 3.13 
where P(t) is the time dependent laser power input (W), ω is the fundamental frequency 

of the power input (equal to 2πPRF, Hz), r is the radial distance from the power source 

= l(2 + *2 + +2 (m), ρ is the density (kg/m3), Cp is the heat capacity (J/kg◦C), k is the 

thermal conductivity (W/m◦C), α is the thermal diffusivity of the material (m2/s) equal to 

k/ρCp, and U is traverse speed (m/s). Physical and thermal properties of the H13 tool steel 

used for the modelling are given in Table 3.2. 

The mathematical model of heat conduction in the laser surface modification of H13 was 

previously developed using LabVIEW 8.0 software [60]. In this simulation, the significant 

input parameters are the laser processing parameters (power, PRF, pulse duration and 

traverse speed, Ux), the materials thermal conductivity and the diffusivity. Figure 3.8 

shows the ‘3D channel profile simulation’ software interface, which was used to simulate 
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the heated region geometry affected during the laser surface processing. In this software, 

the thermal field was calculated and the simulation was truncated at 1454°C such that the 

coordinates for material which reached this temperature were stored for subsequent 

viewing. Using this point of truncation temperature, the thermal model was calculated 

which resulted in a data set with the geometry of the molten region. The simulation data 

was directly saved in *.txt file format for three-dimensional viewing and analysis. A ‘3D 

channel viewer’ software was used to plot the molten region geometry dataset as shown 

by Figure 3.9. The data source file was entered and processed at the given PRFs and 

traverse speeds used in the simulation. The geometry can also be simulated for any 

number of pulses. Besides the three-dimensional geometry viewing, the dataset of the 

molten geometry was extracted to produce separate plots of temperature distribution at 

specific locations. 

Figure 3.10 shows the planar thermal profile simulation with two-dimensional 

temperature distribution profile along the sample translation axis. It generates a new 

simulation and shows the temperature profile in the x and y directions for a given selected 

depth (z). This simulated data was also saved in a (*.txt) file. The planar isothermal 

simulation code depicts the temperature distribution on H13 laser processed surface for a 

given number of pulses. In Figure 3.10, the number of pulse set was one and the time 

duration of the process plotted on x-axis was 0.34 ms. In this software, the truncation 

temperature was set at 20,000°C to allow presentation of all simulation results [60].  



 

Figure 3.8: ‘3D channel profile simulation’ software used for constructing molten pool 
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: ‘3D channel profile simulation’ software used for constructing molten pool 

geometry of laser processed surface. 

 

: ‘3D channel profile simulation’ software used for constructing molten pool 



 

 

Figure 3.
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Figure 3.9: Three-dimensional surface viewer software interface. 
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Figure 3.10: Planar isotherm software interface. 
 



 

 

Temperature Distribution in Modified Surface

The temperature distribution throug

‘planar isotherm’ software

to 120 µm beneath the surface. 

2900 Hz PRF, 24% duty cycle and 261 

parameters were plotted in the ‘

temperature data at different coordinates. The temperature data was used to plot the 

heating and cooling rates of each point in the mo

heating/cooling rate ratio and hardness properties was then established. 

3.4 Characterisation Techniques

Laser processed samples were prepared for different types of testing and analysis. 

3.11 shows the techniques used to characterise the laser processed samples. The 

characterisation techniques comprised of metallography, micro

profilometry, energy dispersive X

analysis. The metallography, micro

samples cross-sections. The XRD analysis and surface profilometry were studied to 

investigate the processed surface crystallinity and morphology respectivel

Figure 3.

3.4.1 Metallographic Study

Metallographic samples were sectioned using a

mm thick cut off wheels flooded with coolant to prevent tempering. Samples were 

mounted in Bakelite resin using Buehler Simplimet 2000 Mounting Press hot mounting 

machine. Mounted samples were ground sequentially with 240, 600, 800 and 1200
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Temperature Distribution in Modified Surface 

emperature distribution through the modified surface depths was simulated using 

lanar isotherm’ software. These profiles were recorded at 20 µm depth intervals from 0 

to 120 µm beneath the surface. The processing parameters were 

2900 Hz PRF, 24% duty cycle and 261 mm/s traverse speed. Similar processing 

parameters were plotted in the ‘3D channel profile simulation’ software to 

temperature data at different coordinates. The temperature data was used to plot the 

heating and cooling rates of each point in the modified surface. A relationship between the 

heating/cooling rate ratio and hardness properties was then established. 

Characterisation Techniques 

Laser processed samples were prepared for different types of testing and analysis. 

shows the techniques used to characterise the laser processed samples. The 

characterisation techniques comprised of metallography, micro-hardness testing, surface 

profilometry, energy dispersive X-ray spectroscopy (EDXS) and x

analysis. The metallography, micro-hardness tests and EDXS were conducted on the 

sections. The XRD analysis and surface profilometry were studied to 

investigate the processed surface crystallinity and morphology respectivel

Figure 3.11: Outline of characterisation techniques for

as-received and laser modified samples. 

Metallographic Study 

Metallographic samples were sectioned using an alumina Buehler 254 mm diameter, 1.78 

wheels flooded with coolant to prevent tempering. Samples were 

mounted in Bakelite resin using Buehler Simplimet 2000 Mounting Press hot mounting 

machine. Mounted samples were ground sequentially with 240, 600, 800 and 1200
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CHARACTERISATION TECHNIQUES 

h the modified surface depths was simulated using 

. These profiles were recorded at 20 µm depth intervals from 0 

The processing parameters were 1138 W peak power, 

mm/s traverse speed. Similar processing 

3D channel profile simulation’ software to obtain 

temperature data at different coordinates. The temperature data was used to plot the 

dified surface. A relationship between the 

heating/cooling rate ratio and hardness properties was then established.  

Laser processed samples were prepared for different types of testing and analysis. Figure 

shows the techniques used to characterise the laser processed samples. The 

hardness testing, surface 

ray spectroscopy (EDXS) and x-ray diffraction (XRD) 

hardness tests and EDXS were conducted on the 

sections. The XRD analysis and surface profilometry were studied to 

investigate the processed surface crystallinity and morphology respectively.      

techniques for 

Buehler 254 mm diameter, 1.78 

wheels flooded with coolant to prevent tempering. Samples were then 

mounted in Bakelite resin using Buehler Simplimet 2000 Mounting Press hot mounting 

machine. Mounted samples were ground sequentially with 240, 600, 800 and 1200-grit 
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size silicon carbide (SiC) papers for 5 minutes, at 0.1 MPa (1 bar) pressure and at 250 rpm 

grinding wheel speed. Ground samples were polished using Textmet 1000 cloths with 6 µ 

and 3 µ size diamond paste, and also micro-cloth with 0.05 µ size alumina polishing 

suspension for 4 minutes each, at a polishing speed of 150 rpm. Both grinding and 

polishing were done using Buehler Motopol 2000 grinder/polisher machine. Polished 

samples were washed with continuously running tap water and rinsed with acetone 

solution to prevent water stain. Samples were dried and chemically etched in a 2% nital 

solution for approximately 15 seconds. Samples were rinsed using water and dried before 

microstructural observations.  

Microstructural observations were performed using a Reichart ME F2 microscope with 

Beuhler Omnimet Enterprise image analyser software at 400x magnification. Detailed 

characterisation of the laser modified surface depth and dimensions, and grain size was 

done using a Carl-Zeiss EVO-LS15 scanning electron microscope (SEM) integrated with 

SmartSEM software. An average depth for the laser modified surface was taken from at 

least five measurements. The back-scattered detector (BSD) at high vacuum was used to 

view contrasted phase on the sample cross-sectional surfaces. A high voltage level of 20 kV 

and spot size range of 440 to 560 pm at high level of BSD gain were used to produce the 

back-scattered micrographs. Micrographs were captured at high contrast to show the 

grain phases. The degree of steel surface absorptance at the CO2 laser wavelength, the 

laser parameter settings and the sample surface properties were determined from the 

micrographs. 

Grain Size Measurement Using Image Analyser 

Grain size measurement was determined by Feret’s diameter using Image J software [163-

166]. Feret’s diameter is the greatest distance between two parallel lines touching 

opposite sides of the grain [165, 166]. This measurement was performed with the ‘analyze 

particles’ menu as shown in Figure 3.12. Measurement started with scale setting on the 

micrograph, thresholding and background subtraction. The number of grains was 

measured from high contrast micrographs which was adjusted using the image threshold 

menu. The type of measurement (e.g. Feret’s diameter, area and standard deviation) was 

set before each image analysis. The number of grains resulted from the particle analysis 

was also indicated by highlighted grains on the micrograph and distribution of grain sizes 

was presented in histogram format.  



 

 

Figure 3.12: Image J software interface with ‘Analyze Particles’ p

3.4.2 Micro-hardness Test

The micro-hardness properties on the laser modified cross

measured using a Leitz mini

Samples cross-sectional surface were prepared to be 

measurement accuracy. Measurements were recorded from five indentations at different 

locations within the modified surface cross section. Referring to ISO 14577 standard, 

indents should be kept at least three diameters (ind

surface or interface and at least five diameters of the largest indent from each other to 

avoid interference [167]

3.4.3 Surface Profilometry

Two-dimensional surface profilometry was

integrated with TIME software to record the surface profile. Cylindrical laser modified 

samples were mounted on the high precision measuring stage. Measurements were 

complied according to the ISO standard. The range of

ensure measurement of the maximum average roughness of the samples. The significant 

surface roughness measurement recorded 

was the arithmetic average, R
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: Image J software interface with ‘Analyze Particles’ p

hardness Test 

hardness properties on the laser modified cross-sectional surface were 

measured using a Leitz mini-load tester with 981 mN force and Vickers diamond indenter. 

sectional surface were prepared to be at least of 0.03 µm R

measurement accuracy. Measurements were recorded from five indentations at different 

locations within the modified surface cross section. Referring to ISO 14577 standard, 

indents should be kept at least three diameters (indentation diameter) away from a free 

surface or interface and at least five diameters of the largest indent from each other to 

[167].  

Surface Profilometry 

dimensional surface profilometry was done using a TR-200 measuring system 

integrated with TIME software to record the surface profile. Cylindrical laser modified 

samples were mounted on the high precision measuring stage. Measurements were 

complied according to the ISO standard. The range of measurement used was ±80 µm to 

ensure measurement of the maximum average roughness of the samples. The significant 

surface roughness measurement recorded from the software for comparison purposes 

was the arithmetic average, Ra. 

 

: Image J software interface with ‘Analyze Particles’ pull-down menu. 

sectional surface were 

load tester with 981 mN force and Vickers diamond indenter. 

at least of 0.03 µm Ra to ensure 

measurement accuracy. Measurements were recorded from five indentations at different 

locations within the modified surface cross section. Referring to ISO 14577 standard, 

entation diameter) away from a free 

surface or interface and at least five diameters of the largest indent from each other to 

200 measuring system 

integrated with TIME software to record the surface profile. Cylindrical laser modified 

samples were mounted on the high precision measuring stage. Measurements were 

measurement used was ±80 µm to 

ensure measurement of the maximum average roughness of the samples. The significant 

the software for comparison purposes 
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3.4.4 Energy Dispersive X-ray Spectroscopy (EDXS) 

The chemical composition of the laser modified H13 tool steel was measured 

quantitatively using Oxford Instruments - Inca x-act and micro-analysis suit EDXS. The 

samples were observed using the scanning electron microscope while the EDXS detector 

was used to collect composition data from the sample. The focusing distance was set less 

than 14 mm to allow the EDXS detector to collect the information from the sample surface. 

Identification of elements on the sample cross-sectional surfaces was carried out using the 

integrated software. 

3.4.5 X-Ray Diffraction Analysis 

X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system 

with CuKα radiation and wavelength, λ, of 1.540598 Å. The system was integrated with 

XRD Commander software which controlled the power and scanning parameter inputs. 

Cylindrical laser modified samples were cleaned with alcohol before mounting on the 

scanning stage. The scanning stage position was between the x-ray source and the 

detector. A fixed detector slit size of 0.2 mm wide and 12 mm long was used throughout 

the experiments. A z scan was used to position a sample at the correct height on the z 

drive, and was performed for each sample before the XRD measurement. Using the height 

value from the z-scan, the diffraction patterns were recorded in the 2 theta range of 20° to 

100° using locked coupled scan type. The locked coupled scan is a standard XRD scan of 

any 2 theta values. The scan rate was set at 5 seconds/step with 0.1 steps increment. The 

diffraction pattern produced was plotted on a graph with intensity plotted against the 2 

theta axis.  

The XRD analysis was done to measure the crystallinity of the laser modified surface and 

identify the formation of martensite and metastable phases in the modified layer during 

processing. The effect of sample absorptance, surface temperature, laser pulse energy and 

processing spot size of 0.4 mm, 0.2 mm and 0.09 mm on the diffracted peak intensities 

were investigated. The effect of laser processing on the surface crystallinity was measured 

at Bragg’s angles between 30 to 70°. 
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CHAPTER 4 

Results 

4.0 Chapter 4 Heading1 

4.1 Introduction 

An outline of the characterisation results and discussion presented is given in Table 4.1. 

The results presentation starts with those for the as-received AISI H13 tool steel grain 

composition and hardness properties. The laser surface modification designs are then 

presented sequentially from DOE1 to DOE5. From DOE1, the effect of laser parameters on 

the modified surface depth are presented. For DOE2, results presented are the effect of an 

etched surface on the modified surface depth and the overlapped geometry produced from 

a 0.4 mm diameter spot size. The grain composition, hardness and surface roughness 

properties are presented in DOE2. From DOE3, the effect of roughened and etched 

samples surface on the modified surface depth is presented. The overlapped geometry 

results from DOE3 with 0.2 mm spot size and constant PRF settings are shown. The effect 

of the 0.2 mm spot size on grain composition, hardness and surface roughness properties 

was also presented. From DOE4 results, the effects of a 0.09 mm diameter spot size on the 

surface properties of modified depth, hardness, roughness and phase analysis are 

presented. Optimised parameters examined from DOE5 included characterisation of 

modified layer depth, hardness properties and minimum average surface roughness. 

Comparison of as-received H13 tool steel XRD results with those for the modified surface 

samples is presented. This analysis included investigation of surface crystallinity, and 

diffraction of martensite and metastable phases in the modified layer surface. XRD results 

analysed and presented included the data collected from samples processed at 0.09 mm, 

0.2 mm and 0.4 mm spot size. 
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Table 4.1: Overview of sample preparation, parameters settings and surface characterisation for five DOEs. 

DOE 

Sample 

condition 

prior 

processing 

Set parameters Outcome parameters 

Surface properties 
Spot size 

/Beam focal 

position (mm) 

PP (W) 
DC 

(%) 
η (%) 

PRF 

(Hz) 

I 

(W/mm2) 

TR 

(ms) 
EP (J) PA (W) 

DOE1 As-received 
samples 

0.40  
/+2.6 & -2.6 760 

70 
85 

100 

10 
30 
50 

2857 
to 

5000 

3,872        
to        

5,576 

0.22 
to 

0.38 

0.11   
to   

0.27 

532 
646 
760 

• modified layer depth 

DOE2 Nital etched 
surface 

0.40 
/-2.6 760 85 

100 

10 
30 
50 

2857 
to 

5000 

3,569        
to        

5,592 

0.29 
to 

0.38 

0.15   
to   

0.27 

646 
760 

• modified layer depth & 
morphology 

• hardness 
• surface roughness 
• phase crystallinity 
• chemical composition 

DOE3 

Surface 
roughened 
and nital 

etched 

0.20 
/-1.2 

507 
760 

1313 

49 
36 
23 

10 
50 2900 

10,930     
to     

28,184 

0.12 
to 

0.25 

0.09 
0.10 
0.11 

249 
274 
305 

• modified layer depth & 
morphology 

• hardness 
• surface roughness 
• phase crystallinity 

DOE4 

Surface 
roughened 
and nital 

etched 

0.09 
/On surface 

760 
1138 
1515 

36 
24 
18 

0 
10 
30 

2900 
91,943     

to   
238,087 

0.06 
to 

0.16 
0.10 274 

• modified layer depth & 
morphology 

• hardness 
• surface roughness 
• phase crystallinity 

DOE5 

Surface 
roughened 
and nital 

etched 

0.09  
/On surface 

760 
1138 
1515 

36 
24 
18 

-10 
0 

10 

2300 
2900 
3500 

108,582   
to   

264,499 

0.05 
to 

0.16 

0.08 
0.10 
0.12 

274 

• modified layer depth 
• hardness 
• surface roughness 
• phase crystallinity 
• chemical composition 
• design optimisation 



 

 

As-received AISI H13 Tool Steel

The back-scatter detector micrograph of 

phase composition of the as

Fe) dispersion. The carbides are seen in white spheroidal form, while the α

martensite phases were respectively identified in grey and black shade regions. From the 

micrograph, it can be seen that the as

approximately 3 and 9 μm. The average hardness of the as

measured was 280 HV

Figure 4.1: Back scatter detector SEM micrograph of as received H13 tool steel.

4.2 Laser Surface Modification Design of Experiments

4.2.1 DOE1 

In DOE1, the metallographic study was performed to analyse the modified layer dep

formed on the H13 tool steel substrate at different parameter settings. The effects of pulse 

laser mode, laser irradiance, residence time, and laser spot focal position on the modified 

surface depth were determined from this work
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received AISI H13 Tool Steel 

scatter detector micrograph of Figure 4.1 depicts the α-

phase composition of the as-received H13 tool steel with M23C6 and M

Fe) dispersion. The carbides are seen in white spheroidal form, while the α

ses were respectively identified in grey and black shade regions. From the 

micrograph, it can be seen that the as-received H13 tool steel grain size was between 

approximately 3 and 9 μm. The average hardness of the as-received H13 tool steel 

80 HV0.1.  

: Back scatter detector SEM micrograph of as received H13 tool steel.

Laser Surface Modification Design of Experiments

In DOE1, the metallographic study was performed to analyse the modified layer dep

formed on the H13 tool steel substrate at different parameter settings. The effects of pulse 

laser mode, laser irradiance, residence time, and laser spot focal position on the modified 

determined from this work. 

-ferrite and martensite 

and M7C3 carbide (M=Cr, 

Fe) dispersion. The carbides are seen in white spheroidal form, while the α-ferrite and 

ses were respectively identified in grey and black shade regions. From the 

received H13 tool steel grain size was between 

received H13 tool steel 

 

: Back scatter detector SEM micrograph of as received H13 tool steel. 

Laser Surface Modification Design of Experiments 

In DOE1, the metallographic study was performed to analyse the modified layer depth 

formed on the H13 tool steel substrate at different parameter settings. The effects of pulse 

laser mode, laser irradiance, residence time, and laser spot focal position on the modified 
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Metallographic Study 

(a) The Effects of Laser Irradiance and Residence Time 

The effect of laser irradiance and residence time on the modified layer depth was 

observed. Three regions of modified layer zone, heat affected zone and substrate zone are 

seen from the micrographs in Figure 4.2. The modified layer depth increased with 

increasing laser irradiance as shown in Figure 4.2 (a) to (f). Figure 4.2 (a) and (b) show the 

samples processed at high residence time of 0.38 ms; micrographs in Figure 4.2 (c) and (d) 

are from samples processed at 0.34 ms; while micrograph in Figure 4.2 (e) and (f) are 

from samples processed at 0.31 ms residence time. The sample with minimum effect of 

melting was observed in Figure 4.2 (e) as expected at the lowest residence time and 

irradiance. Micrograph in Figure 4.3 shows the cross section of sample 12 from DOE1 

where modified layer depths were measured.  

The modified layer depths as measured from the micrographs are plotted in a three-

dimensional graph corresponding to the laser irradiance and residence time as shown in 

Figure 4.4. The range of modified layer depth produced in the 27 laser modified samples 

was between 0 and 29 µm. Modified layer was not achievable in samples processed at a 

residence time less than 0.31 ms. Residence time was seen to have the largest contribution 

to the modified layer depth. At any given laser irradiance setting, a higher residence time 

increased the modified layer depth.  
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Figure 4.2: Modified layer depth in DOE1 samples at residence time and irradiance of (a) 

0.38 ms and 3,973 W/mm2 (b) 0.38 ms and 5,576 W/mm2 (c) 0.34 ms and 3,951 W/mm2 

(d) 0.34 ms and 5503 W/mm2 (e) 0.31 ms and 3,881 W/mm2, and (f) 0.31 ms and 4,607 

W/mm2 respectively. 
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Figure 4.3: Modified layer depth measurements in sample 12 with residence time and 

irradiance of 0.24 ms and 4,607 W/mm2. 

 

Figure 4.4: Three dimensional plot of laser irradiance and residence time effect on the 

modified surface depth with spot size focused on the sample surface. 
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(b) The Effect of Focal Position 

For a focal position of -2.6 mm and +2.6 mm the laser spot size on the sample surface was 

0.4 mm. At negative focal position, the sample surface is above the focal length position 

whereas it is below the focal length position at positive focal position. Figure 4.5 shows the 

effect of focal position on samples processed at a residence time of 0.29 ms and laser 

irradiance of 3,946 W/mm2. The micrographs of the laser modified sample cross sections 

indicated three important zones, namely a ‘glazed zone’, heat affected zone and substrate 

or non affected zone. The micrograph shown in Figure 4.5 (a) indicates only two main 

layers: the heat affected zone and substrate resulting from processing at a positive focal 

position. The micrograph in Figure 4.5 (b) shows a distinct modified layer observed with 

heat affected zone and substrate in this sample processed at negative focal position. The 

area indicated by A represents the laser modified zone, B represents the heat affected zone 

and C represents the substrate. 

 

Figure 4.5: Micrographs of samples 23 and 23b processed at defocused beam of 

(a) +2.6 mm and (b) -2.6 mm respectively, where A is laser modified zone, B is heat 

affected zone and C is substrate. 

Samples investigated at different residence time for these two focal positions are shown 

by micrographs in Figure 4.6. These samples were processed at laser irradiances of 3881, 

3946 and 3973 W/mm2 and at residence times of 0.31, 0.29 and 0.38 ms respectively with 

constant 50% overlap. Figure 4.6 (a) (c) and (e) show the micrographs of laser modified 

samples processed at -2.6 mm focal position. Micrographs in Figure 4.6 (b), (d) and (f) are 

cross section of samples processed at the same laser parameter settings except that the 

beam was focused at the +2.6 mm focal position.  

(b) (a) 

B 

C 

A 
B 

C 
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Figure 4.6: The effect of focal position on modified layer depth at (a) and (b) 0.38 ms; (c) 

and (d) 0.31 ms; and (e) and (f) 0.29 ms. 

Figure 4.7 shows a comparison of maximum depths of the modified surfaces processed at 

irradiances of 3881, 3946 and 3973 W/mm2 and different residence times and focal 

positions as given in Table 3.5. Samples processed at focal position of -2.6 mm produced 

three to eight times deeper modified layer than samples processed at focal position of +2.6 

mm. The modified surface depth increased with the residence time. The modified surface 

depth difference between the two focal positions also increased with increasing residence 

time. 
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Figure 4.7: Modified layer depth as a function of residence time at positive and negative 

focal position. 

4.2.2 DOE2 

In DOE2, the metallography and hardness properties were investigated to analyse the 

modified layer depth formed on the chemically etched H13 tool steel surface at different 

laser parameter settings. Overlap geometry of the modified surface using the 0.4 mm spot 

size is shown in the micrographs. The effect of chemical etching on the modified layer 

depth, grain composition and hardness is presented for the different laser irradiances, 

overlaps and residence times. 

Metallographic Study 

(a) The Effects of Chemical Etching on Steel Surface Absorptance  

The estimation of sample surface absorptance was initially calculated from molten pool 

geometry dimension. Figure 4.8 shows the molten pool geometry produced by a single 

laser pulse of 0.17 J pulse energy and 0.29 ms residence time achieved with 3810 Hz PRF, 

85% duty cycle and 646 W average power. The geometry measurements were molten pool 

depth, a, molten pool gap, b, molten pool width, c, and modified layer height, h. The depth 

of molten pool, a, measured from the surface indicates the magnitude of laser pulse energy 

penetration.  
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Figure 4.8: Molten pool geometry of sample E14 given by molten pool depth, a, molten 

pool gap, b, molten pool width, c, and modified layer height, h. 

Table 4.2 shows the resulting molten pool geometries measured from the nital etched 

samples. With improved surface absorptance, the modified layer average height, h, ranged 

from 46 to 180 µm. A comparison was made between the 0.4 mm laser beam diameter and 

the resulted molten pool width, c. The measurement difference between the beam 

diameter and the molten pool width was to determine the surface absorptance percentage. 

The modified layer height, h, was also measured to indicate the maximum layer thickness 

resulting from the process.  

The surface absorptances measured from the ratios of molten pool widths, c, variations to 

laser spot diameters were plotted. Figure 4.9 shows that the absorptance varied between 

59% and 72% for samples processed at pulse energy, Ep, ranging from 0.18 to 0.24 J. 

Details of the processing parameters of the samples can be seen in Table 4.2. At lower 

pulse energy, the surface absorptance ranged from 44% to 53%. Energy difference from 

the theoretically calculated energy to melt the surface, and the laser energy provided 

during processing was also calculated to measure the actual energy absorptance. The total 

energy, HT, calculated using Equation 3.2 as being required to produce a molten pool on 

the H13 steel surface of the measured pool mass is given in Table 4.2. The theoretical total 

energy, HT, required to melt the region was calculated using the measured modified layer 

height, h, values, spot diameter and density to calculate the mass melted. The designed 

laser pulse energy was higher than the theoretically calculated required energy to melt the 

surface at 100% surface absorptance. The surface absorptance percentages calculated 

from the molten pool geometry and the theoretical calculated pulse energy, HT, values 

were used during settings of all subsequent DOEs. These values were useful in order to 

a 

h 

c 

 



 

 

improve the surface absorptance of subsequent samples and to reduce 

pulse energy range in subsequent DOEs. 

Table 4.2: The resulting molten pool geometry and estimated total energy, H

Sample I (W/mm2)

E6 5510 
E8 5548 
E9 5592 
E12 4475 
E14 4618 
E15 4631 
E18 4774 
E21 3745 
E26 3971 
E27 3971 

During processing, the H13 surface was mel

vaporisation was avoided. The amount of energy required to raise the H13 tool steel from 

room temperature to its melting temperature was estimated at 640,104 J/kg.

Figure 4.9: Surface absorptance measurements from molten pool width variations for 

different samples. Difference in levels 

Ep. Pulse energy for set 1 ranged from 0.18 to 0.24 J and for 
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improve the surface absorptance of subsequent samples and to reduce 

nge in subsequent DOEs.  

: The resulting molten pool geometry and estimated total energy, H

processing parameters.  

) 
η 

(%) 
τ (ms) 

TR 

(ms) 
Ep (J) HT (J)

10 0.31 0.34 0.24 0.11 
10 0.30 0.32 0.23 0.07 
10 0.35 0.38 0.27 0.14 
30 0.24 0.32 0.18 0.09 
30 0.22 0.29 0.17 0.05 
30 0.26 0.34 0.20 0.08 
30 0.30 0.38 0.23 0.13 
50 0.20 0.32 0.15 0.13 
50 0.21 0.32 0.16 0.03 
50 0.25 0.38 0.19 0.04 

During processing, the H13 surface was melted at its liquidus temperature of 1454

vaporisation was avoided. The amount of energy required to raise the H13 tool steel from 

room temperature to its melting temperature was estimated at 640,104 J/kg.

: Surface absorptance measurements from molten pool width variations for 

different samples. Difference in levels was largely due to the differences in pulse energy,

Pulse energy for set 1 ranged from 0.18 to 0.24 J and for 

set 2 from 0.15 to 0.17 J. 

     2          4                    6         8                 10
Molten pool label 

improve the surface absorptance of subsequent samples and to reduce and refine the laser 

: The resulting molten pool geometry and estimated total energy, HT, for different 

 
Average 

h (µm) 

Average 

c (µm) 

 164 257 
 86 211 
 175 245 
 153 271 
 46 189 
 161 269 
 180 275 
 142 199 
 48 192 
 169 193 

ted at its liquidus temperature of 1454°C and 

vaporisation was avoided. The amount of energy required to raise the H13 tool steel from 

room temperature to its melting temperature was estimated at 640,104 J/kg. 

 

: Surface absorptance measurements from molten pool width variations for 

the differences in pulse energy, 

Pulse energy for set 1 ranged from 0.18 to 0.24 J and for  

10              12 

Set 1 

Set 2 
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Improvement of laser energy absorptance within the nital etched surface is presented in 

micrographs of Figure 4.10, Figure 4.11 and Figure 4.12. Figure 4.10 (a) and (b) depict the 

cross section of laser modified samples processed at 10% overlap and at two different 

pulse energies of 0.23 J (85% DC) and 0.24 J (100% DC). At 10% overlap, gaps were 

observed between the molten pools. For the 0.1 J increase in pulse energy an increased 

modified surface thickness was formed, see Figure 4.10 (b) compared to sample in Figure 

4.10 (a).  

 

Figure 4.10: Modified surface cross section of samples processed at 10% overlap, and (a) 

0.23 J (sample E8) and (b) 0.24 J (sample E6) pulse energy respectively. 

Micrographs of Figure 4.11 (a) and (b) were processed at 30% overlap with 0.17 J and 

0.20 J pulse energy respectively. The small pulse energy difference of 0.03 J between the 

samples provided increased modified surface thickness and caused cracks in the modified 

surface of sample in Figure 4.11 (b). 

 

Figure 4.11: Modified surface cross section of samples processed at 30% overlap, and (a) 

0.17 J (sample E14) and (b) 0.20 J (sample E15) pulse energy respectively. 

For 50% overlap with pulse energies of 0.16 J and 0.19 J, the resulting micrographs are 

shown in Figure 4.12 (a) and (b). Though the modified surface thickness increased at 0.19 



 

 

J pulse energy, more cracks were observed, see 

0.16 J, shown in Figure 4.

relatively smooth modified surface.

Figure 4.12: Modified surface cross section of sample

0.16 J (sample 

(b) Grain Morphology

A micrograph of the laser modified surface where two subsequent pools meet 

substrate on the H13 tool steel is given in 

subsequent molten pools solidified in sample E27 which processed at 100% duty cycle, 

50% overlap, 4000 Hz PRF and 0.38 ms residence time. Three layers produced after

laser processing were A, B and C which represents 

and substrate respectively. The laser modified layer was separated by a heat affected zone 

from the substrate. Grain size decreased in both heat affected zone and laser modified 

layer relative to the substrate grain size. A similar α

with a spherical carbide dispersion was observed in both the heat affected zone and 

substrate. In Figure 4.

well defined grain boundaries. 

(a) 

86 

J pulse energy, more cracks were observed, see Figure 4.12 (b). The sample processed at 

Figure 4.12 (a), produced well overlapped molten pools and a 

relatively smooth modified surface. 

: Modified surface cross section of samples processed at 50% overlap, and (a) 

(sample E26) and (b) 0.19 J (sample E27) pulse energy 

Grain Morphology 

micrograph of the laser modified surface where two subsequent pools meet 

on the H13 tool steel is given in Figure 4.13. This shows the region where two 

molten pools solidified in sample E27 which processed at 100% duty cycle, 

50% overlap, 4000 Hz PRF and 0.38 ms residence time. Three layers produced after

laser processing were A, B and C which represents the modified zone, heat affected zone 

strate respectively. The laser modified layer was separated by a heat affected zone 

from the substrate. Grain size decreased in both heat affected zone and laser modified 

layer relative to the substrate grain size. A similar α-Fe and martensite phase compo

with a spherical carbide dispersion was observed in both the heat affected zone and 

Figure 4.13, the laser modified zone was found to consist of α

grain boundaries.  

(b) 

(b). The sample processed at 

(a), produced well overlapped molten pools and a crack-free 

 

processed at 50% overlap, and (a) 

pulse energy respectively. 

micrograph of the laser modified surface where two subsequent pools meet with the 

. This shows the region where two 

molten pools solidified in sample E27 which processed at 100% duty cycle, 

50% overlap, 4000 Hz PRF and 0.38 ms residence time. Three layers produced after this 

modified zone, heat affected zone 

strate respectively. The laser modified layer was separated by a heat affected zone 

from the substrate. Grain size decreased in both heat affected zone and laser modified 

Fe and martensite phase composition 

with a spherical carbide dispersion was observed in both the heat affected zone and 

consist of α-Fe phase with 



 

 

Figure 4.13: Back scattered detector micrograph of sample E27 cross section where A 

represents the laser modified layer, B is heat affected zone, and C is substrate.

In Figure 4.14 a mixture of coarse and fine grains was observed along with ultrafine 

subgrains. The dark shaded regions within the grains indicates martensite phase which 

was blended among the α

black spots were examined using EDXS. Nano

the grain boundaries as pointed to in 

observed for some of the micron

A 

B 

C 
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: Back scattered detector micrograph of sample E27 cross section where A 

laser modified layer, B is heat affected zone, and C is substrate.

a mixture of coarse and fine grains was observed along with ultrafine 

subgrains. The dark shaded regions within the grains indicates martensite phase which 

was blended among the α-Fe phase. Spherical form carbides shaded in white and other 

e examined using EDXS. Nano-sized grains were observed near and within 

the grain boundaries as pointed to in Figure 4.14. Several indistinct grain boundaries were 

the micron-size grains.  

Martensite 
phase 

 

: Back scattered detector micrograph of sample E27 cross section where A 

laser modified layer, B is heat affected zone, and C is substrate. 

a mixture of coarse and fine grains was observed along with ultrafine 

subgrains. The dark shaded regions within the grains indicates martensite phase which 

Fe phase. Spherical form carbides shaded in white and other 

sized grains were observed near and within 

. Several indistinct grain boundaries were 

α-Fe phase 
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Figure 4.14: Grain composition of laser modified sample E26 produced in DOE2, processed 

at 85% duty cycle, 50% overlap and 4000 Hz PRF. 

Hardness Properties 

Figure 4.15 shows the measured hardness of the modified layer for DOE2 samples. The 

maximum and minimum hardness were 1017 and 724 HV0.1 respectively. At low duty cycle 

range, the maximum hardness was achieved between 10 and 20% overlap, whereas at 

high duty cycle, the hardness properties were maximum between 40 and 50% overlap. 

The average hardness for each sample in DOE2 is given in Appendix C1. 
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Figure 4.15: Three-dimensional plot of micro-hardness for DOE2 samples. 

Surface Roughness 

A linear relationship was found between duty cycle, overlap and average surface 

roughness as given by Equation 4.1. The average surface roughness of DOE2 samples for 

the various overlaps and duty cycle percentages is plotted in Figure 4.16. The average 

surface roughness ranged between 3.5 and 38.2 µm. The average surface roughness of the 

samples at 10, 30 and 50% overlap, and 85% and 100% duty cycle with 95% confidence 

intervals are given in Appendix C2. The minimum surface roughness of 3.5 µm was 

achieved in the samples processed at 10% overlap and 85% duty cycle. At maximum duty 

cycle and overlap, the surface roughness was highest, 38.2 µm Ra. The following equation 

can be used to calculate Ra from the results of DOE2 within the bounds of tested 

parameters. 

Ra = 20.68 + 9.61A + 4.25B Equation 4.1 

where A represents duty cycle and B represents overlap. 
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Figure 4.16: Three-dimensional plot of average surface roughness for DOE2 samples at the 

different settings of overlap and duty cycle. 

DOE2 Significance and Summary 

Optimisation analysis was conducted for DOE2 within the given range of duty cycle and 

overlap settings, with a view to maximise hardness properties and minimise average 

surface roughness. The resulting parameter setting solutions, the average hardness and 

average surface roughness are listed in Table 4.3. The highest and lowest desirability are 

represented by 1 and 0 values respectively. The highest desirability was set to produce 

maximum hardness and minimum average surface roughness. The parameter solutions 

were at 85% duty cycle and overlap ranged between 10.00 and 14.46% overlap. The 

model predicted the highest desirability from DOE2 of 0.951 with a combination of 

maximum hardness of 1042 HV0.1 and surface roughness of 6.8 µm Ra. The actual 

experimental values determined at these duty cycles and overlap values were 1017 HV0.1 

and 3.5 µm Ra which indicates a level of inaccuracy in absolute value terms from the 

optimisation model. The predicted desirability of 0.951 is shown in the contour plot of 

Figure 4.17 and in Table 4.3. The desirability factor decreased as the duty cycle and 

overlap increased.  
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Table 4.3: Processing parameter settings in DOE2 based on high desirability. 

Solution DC (%) η (%) Hardness (HV)0.1 Ra (µm) Desirability 

1 85 10.00 1042 6.8 0.951 
2 85 10.29 1040 6.9 0.950 
3 85 10.82 1036 7.0 0.948 
4 85 11.65 1030 7.2 0.946 
5 85 14.46 1010 7.8 0.925 

 

Figure 4.17: Contour plot of processing parameters in DOE2 corresponding to design 

desirability. 

4.2.3 DOE3 

From DOE3, the effects from two different power settings with constant 2900 Hz PRF and 

overlap, 10% and 50% on the modified surface depth and Ra are presented for the etched 

and roughened pre-treated samples. The pulse energy effect was observed from molten 

pool height measurements. A spot size of 0.2 mm diameter was used in this DOE. Surface 

roughness and hardness property results are also presented.  
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Metallographic Study 

(a) The Effects of Constant PRF on Overlapped Melt Pool Geometry 

Micrographs in Figure 4.18 show the surface morphology and cross section of samples 

processed with the 0.2 mm spot size. Details of the processing parameters of the samples 

can be seen in Table 4.4. The most beneficial processing design solutions from DOE2 

indicated use of a 10 to 14% overlap range, however the DOE3 processing was performed 

at both 10% and 50% overlap to investigate the effect of a more continuous molten pool. 

Samples N10 and N24 were processed at 2900 Hz PRF, 0.12 ms pulse width, 0.10 J pulse 

energy and 760 W peak power. The residence time for 10% overlap was set at 0.14 ms 

while for 50% overlap it was set at 0.19 ms. As the residence time was higher for the 

higher % overlap, the irradiance used to process the sample in Figure 4.18 (a) 22,139 

W/mm2 was higher than in Figure 4.18 (c) 16,388 W/mm2. This can be seen to have 

resulted in the rougher surface and modified layer depth Figure 4.18 (d) compared to 

Figure 4.18 (b) 

Table 4.4: Processing parameters and cooling period for DOE3 samples. 

Sample I (W/mm2) η (%) τ (ms) PRF (Hz) TR (ms) Ep (J) 
tcooling 

(ms) 

N4 10,930 50 0.17 

2900 

0.25 0.09 0.094 
N10 22,139 10 0.12 0.14 0.10 0.208 
N24 16,388 50 0.12 0.19 0.10 0.160 
N12 28,184 50 0.08 0.12 0.11 0.226 

 



 

93 

 

 

Figure 4.18: Surface morphology of overlapped pulses on DOE3 samples at 10% overlap 

for sample N10 (a) plan view, (b) cross sectional view; and 50% overlap for sample N24 

(c) plan view, (d) cross sectional view. 

(b) Grain Morphology 

The grain morphology of the laser modified sample N12 processed by DOE3 at 0.2 mm 

spot size is shown in the micrograph of Figure 4.19. The micrograph was characterised by 

α-Fe phase amongst the high volume fraction of grain boundaries. The grains observed 

were homogenously shaped with the presence of ultrafine size subgrains with 

approximate minimum diameter of 560 nm. The micrograph of Figure 4.19 can be 

compared to the laser modified sample in Figure 4.14. A higher volume of grain boundary 

and more ultrafine sized grains were in general evident from the DOE3 samples compared 

to DOE2 samples. Similar indistinct grain boundaries found for some grains in the 

micrograph of Figure 4.14 are evidenced in the micrograph of Figure 4.19.  



 

 

Figure 4.19: Grain composition of laser modified sample 

Hardness Properties

The processing parameters and 

in Table 4.5. The hardness properties measured in the modified layer were at least 1.5 

times higher than the substrate hardness. The sample processed at 0.09 J exhibited the 

lowest peak hardness of 435 HV

period as calculated by 

the hardnesses measured for samples N10 (10

higher hardness was obtained in the modified layer of 

overlap. At 10% overlap, the heating rate and cooling period w

0.208 ms respectively. The 

heating rate and solidified within a 0.

0.11 J, a maximum peak

rate and 0.226 ms cooling period. 

 
 
 

94 

: Grain composition of laser modified sample N12 processed by DOE3.

Hardness Properties 

processing parameters and hardness properties measured in DOE3 samples are given 

. The hardness properties measured in the modified layer were at least 1.5 

times higher than the substrate hardness. The sample processed at 0.09 J exhibited the 

hardness of 435 HV0.1 with a 5.61x106 K/s heating rate and 0.

period as calculated by Equation 3.9 and Equation 3.10 presented in § 3.2.3. 

measured for samples N10 (10% overlap) and N24 (50% overlap)

s obtained in the modified layer of the N24 sample processed at 50% 

overlap. At 10% overlap, the heating rate and cooling period were

ms respectively. The N24 sample with 50% overlap was melted at

heating rate and solidified within a 0.160 ms cooling period. At maximum pulse energy of 

peak hardness of 996 HV0.1 was measured, with 11.8x10

ms cooling period.  

Grain 
boundaries 

α-Fe phase

 

processed by DOE3. 

hardness properties measured in DOE3 samples are given 

. The hardness properties measured in the modified layer were at least 1.5 

times higher than the substrate hardness. The sample processed at 0.09 J exhibited the 

K/s heating rate and 0.094 ms cooling 

presented in § 3.2.3. Comparing 

% overlap) and N24 (50% overlap), the 

sample processed at 50% 

ere 10.30x106 K/s and 

verlap was melted at a 7.61x106 K/s 

ms cooling period. At maximum pulse energy of 

was measured, with 11.8x106 K/s heating 

Fe phase 
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Table 4.5: The average hardness of modified surface in DOE3 samples. 

Sample η (%) Ep (J) HR (106 K/s) 
tcooling 

(ms) 

Distance from 

surface (µm) 

Average hardness 

(HV0.1) 

N4 50 0.09 5.61 0.094 

20 435 
40 297 
60 282 
80 282 

100 283 

N10 10 0.10 10.30 0.208 

20 772 
40 807 
60 711 
80 293 

100 282 

N24 50 0.10 7.61 0.160 

20 903 
40 824 
60 888 
80 464 

100 293 

N12 50 0.11 11.80 0.226 

20 996 
40 863 
60 789 
80 435 

100 293 

Surface Roughness 

The average measurement of surface roughness for the sample processed at 0.09 J pulse 

energy was 3.1 µm as shown in Table 4.6. At higher pulse energy of 0.11 J, the average 

surface roughness of sample N12 was 6.2 µm. An effect of overlap on surface roughness 

can be seen between measurements for sample N10 and N24 (at 10% and 50% overlap 

respectively) where lower average surface roughness of 5.5 µm was measured from the 

10% overlap sample. 

Table 4.6: The average surface roughness of DOE3 samples. 

Sample η (%) Ep (J) Average surface roughness, Ra (µm) 

N4 50 0.09 3.1 
N10 10 0.10 5.5 
N24 50 0.10 7.9 
N12 50 0.11 6.2 

    

4.2.4 DOE4 

From DOE4, results presented were the effect of power and overlap on the modified 

surface properties where a 0.09 mm spot size was used. Results of modified surface depth, 

grain morphology, hardness and surface roughness are presented corresponding to the 

constant PRF of 2900 Hz and 0.09 J pulse energy settings. Parameter interaction 
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investigated is presented for each surface property. Table 4.7 shows the laser parameters 

settings and corresponding heating rate and cooling period used in DOE4. 

Table 4.7: Parameter settings, heating rate and cooling period for DOE4 samples. 

Sample 

Set parameters Outcome parameters 

PP (W) DC (%) η (%) I (W/mm2) TR (ms) 
τ 

(ms) 

HR 

(106K/s) 

tcooling 

(ms) 

X1 760 36 
0 

238,087 0.06 0.06 22.50 0.282 
X2 1138 24 178,761 0.08 0.08 16.90 0.262 
X3 1515 18 119,436 0.12 0.12 11.28 0.220 
X4 760 36 

10 
216,524 0.07 0.06 20.46 0.276 

X5 1138 24 162,572 0.09 0.08 15.37 0.254 
X6 1515 18 108,619 0.14 0.12 10.26 0.208 
X7 760 36 

30 
183,282 0.08 0.06 17.32 0.264 

X8 1138 24 137,613 0.11 0.08 13.01 0.237 
X9 1515 18 91,943 0.16 0.12 8.68 0.183 

Metallographic Study 

(a) The effect of Peak Power on Modified Surface Depth 

The micrographs of DOE4 samples processed at 0, 10, 30% overlap are shown in Figure 

4.20. At the 0.09 mm spot size, the effect of overlaps investigated at three different peak 

powers is presented. At low power of 760 W, the molten pool mounted up after four 

pulses and formed a bulging geometry. Similar effects were observed at the other overlap 

percentages for this power setting. At this lower power of 760 W, the maximum depth was 

measured from the bulged molten pool, a, as described in Figure 4.8, § 4.2.2. At higher 

powers of 1138 W and 1515 W the overlapped pulses produced a uniform modified layer. 

Without overlap, the modified layer depth was smaller at 1515 W peak power compared 

to samples processed at 760 and 1138 W peak powers.  
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Figure 4.20: Micrographs of DOE4 samples at different peak powers and (a) to (c) 0%; (d) to (f) 10%; and (g) to (i) 30% overlap.



 

 

Figure 4.21 shows a contour plot of the 

depths for the overlap and power settings used for DOE4 samples. The maximum modified 

layer depth of 87.5 µm was measured in

From the contour plot, 

of 274 W, the design model indicates 

approximately 51.4 µm wa

1090 W and overlaps of less than 19%

the modified surface depth was 

material interaction ti

which on average increased the modified layer depth

each sample in DOE4 are given in 

Figure 4.21: Contour plot of modified layer depth for DOE4 samples corresponding to 
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shows a contour plot of the response surface generated for 

depths for the overlap and power settings used for DOE4 samples. The maximum modified 

µm was measured in the samples processed at 760 W p

From the contour plot, Figure 4.21, at constant pulse energy of 0.095 J and average power 

of 274 W, the design model indicates that a relatively uniform modified surface depth of 

µm was achieved in samples processed at peak power

overlaps of less than 19%. At peak power settings between 996 and 1090 W, 

the modified surface depth was approximately 58.6 µm. At high overlap of 30%, the laser

material interaction time was longer compared to samples processed at 0 or 10% overlap 

increased the modified layer depth. The modified surface depths for 

each sample in DOE4 are given in Appendix D1. 

: Contour plot of modified layer depth for DOE4 samples corresponding to 

overlap and power settings. 
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s achieved in samples processed at peak powers of more than 

between 996 and 1090 W, 

µm. At high overlap of 30%, the laser-

me was longer compared to samples processed at 0 or 10% overlap 

. The modified surface depths for 
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(b) Grain Morphology

In Figure 4.22, the grain morphology of the sample processed with 0.09 mm spot size can 

be seen to be comprised of a high volume fraction of grain boundary. Nano

were observed among the micro

amorphous phase as grain boundaries were absent. In 

crystalline resembling phases were observed amongst the crystalline phase structures. 

The quasi-crystalline phase observed depicted ‘flower

Figure 4.22: Back scattering image of g
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Grain Morphology 

, the grain morphology of the sample processed with 0.09 mm spot size can 

comprised of a high volume fraction of grain boundary. Nano

were observed among the micron-size grains. Several regions appeared to be an 

amorphous phase as grain boundaries were absent. In Figure 4.23,

crystalline resembling phases were observed amongst the crystalline phase structures. 

crystalline phase observed depicted ‘flower-like’ grains. 

Back scattering image of grain density variation of sample

0.09 mm spot size. 

, the grain morphology of the sample processed with 0.09 mm spot size can 

comprised of a high volume fraction of grain boundary. Nano-size sub-grains 

size grains. Several regions appeared to be an 

, amorphous and quasi 

crystalline resembling phases were observed amongst the crystalline phase structures. 

 

of sample X4 processed at 



 

 

Figure 4.23: Nano-size sub

Hardness Properties

The effect of 0.09 mm spot size on hardness properties at different settings of peak power 

and overlap is plotted in 

average hardness measured from the nine samples of 

value is 2.86 times higher than measured in the as

HV0.1). The average hardness of the modified layer measured was independent of the 

overlap settings. The maximum hardness achieved at 1

K/s heating rate was 976 HV

measured in sample X2 wit

calculated using Equation 3.

Nano
sub

100 

size sub-grains, amorphous and quasi-crystalline phase formation in the 

laser modified sample X4. 

Hardness Properties 

he effect of 0.09 mm spot size on hardness properties at different settings of peak power 

and overlap is plotted in Figure 4.24. The hardness properties were consistent where the 

average hardness measured from the nine samples of DOE4 was 800 HV

value is 2.86 times higher than measured in the as-received H13 tool steel sample

. The average hardness of the modified layer measured was independent of the 

overlap settings. The maximum hardness achieved at 1138 W peak power 

was 976 HV0.1 in sample X8. The minimum hardness was 670 HV

measured in sample X2 with peak power of 1138 W and 16.9x10

Equation 3.9 in § 3.2.3. 
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crystalline phase formation in the 

he effect of 0.09 mm spot size on hardness properties at different settings of peak power 

. The hardness properties were consistent where the 

DOE4 was 800 HV0.1. This hardness 

received H13 tool steel sample (280 

. The average hardness of the modified layer measured was independent of the 

138 W peak power and 13.01x106 
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Figure 4.24: Hardness range of DOE4 samples. 

Surface Profile and Roughness 

The surface roughness profile of DOE4 samples at 0% overlap are given in Figure 4.25. The 

investigated surface roughness profile is given in green coloured curves (lower lines) 

while the red coloured curves (upper lines) represent the unfiltered profile with surface 

waviness included. In Figure 4.25 (a), the sample profile was produced from 1515 W (18% 

duty cycle). Profiles for samples processed at 1138 W and 760 W, shown  in Figure 4.25 

(b) and (c) respectively, were processed at 24% and 36% duty cycle respectively. The duty 

cycle determines the pulse width and thus impacts on modified surface amplitude. The 

highest amplitude range for the green (lower) curve was between -30 to 20 µm as shown 

in Figure 4.25 (c). Samples processed at lower duty cycles of 18% and 24% in Figure 4.25 

(a) and (b) produced lower amplitudes between -14 and 20 µm and -12 and 10 µm 

respectively. 
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Figure 4.25: Two-dimensional surface profile of DOE4 samples at (a) 1515 W, (b) 1138 W 

and (c) 760 W power settings. 

In Figure 4.26, the resulting surface roughness was plotted in a contour graph to show the 

parameter-surface property relationship. The average surface roughness range was 

between 3.2 and 9.5 µm. The highest average surface roughnesses were measured in 

samples processed between 760 and 810 W power and 15 to 30% overlap. Increasing the 

laser power reduced the surface roughness. At powers above approximately 1044 W the 

roughness measured was at the minimum value of 3.2 µm. In samples processed at power 

settings of less than 1044 W, the surface roughness increased with increasing overlap 

percentage.  
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Figure 4.26: Contour plot of DOE4 sample surface roughness at different overlap and laser 

power settings. 
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4.2.5 DOE5 

From DOE5, the findings on the process optimisation of the H13 tool steel surface 

modification are presented. The metallographic study presented indicates the presence of 

a continuous modified surface on the H13 tool steel substrate for each processed sample. 

Variations of pulse energy effects on the modified surface geometry and depth were 

observed. The characterisation and statistical analysis results corresponding to the three 

different levels of peak power, overlap and PRF factors are presented. These results which 

comprised of modified layer depth, hardness and surface roughness are given in Table 4.8. 

Table 4.8: Processing parameters and characterisation results from DOE5 samples. 

Sample 
I 

(W/mm2) 

TR 

(ms) 

τ 

(ms) 

HR 

(106K/s) 

tcooling 

(ms) 

Modified 

layer depth 

(µm) 

Hardness 

(HV)0.1 

Ra 

(µm) 

F1 119,297 0.16 0.16 8.94 0.278 150 868 22.4 
F9 198,959 0.09 0.10 14.92 0.341 66 861 3.6 
F11 162,398 0.12 0.10 12.18 0.319 90 871 4.1 
F2 237,809 0.08 0.08 17.83 0.356 72 905 5.0 
F5 132,686 0.11 0.12 12.54 0.233 47 772 6.1 
F7 108,582 0.14 0.12 10.26 0.208 73 894 5.5 
F13 

178,700 0.08 0.08 16.90 0.262 

49 824 2.2 
F14 45 823 2.8 
F15 47 840 2.9 
F16 48 830 3.2 
F17 49 840 2.6 
F6 264,499 0.06 0.06 25.00 0.289 39 841 3.0 
F8 216,449 0.07 0.06 20.46 0.276 52 816 3.9 
F3 119,459 0.10 0.10 13.62 0.183 53 821 2.0 
F10 198,631 0.06 0.07 22.67 0.224 43 728 1.8 
F12 162,593 0.08 0.07 18.55 0.210 55 820 2.6 
F4 238,133 0.05 0.05 27.17 0.234 37 787 2.0 
         

Metallographic Study 

The effect of residence time investigated in samples processed at 0.12 J pulse energy is 

depicted by the micrographs in Figure 4.27. Increasing residence time resulted in 

waviness and roughness of the modified layer surface. In Figure 4.27 (a), sample F2 shown 

was processed at highest peak power of 1515 W, low residence time of 0.08 ms and 

without overlap as given in Table 3.9. Figure 4.27 (b) and (c) are respectively from 

samples F9 and F11 which were processed at 1138 W peak power and overlap of minus 

10 and plus 10% respectively. Sample F1 at lowest peak power of 760 W, longest 

residence time of 0.16 ms and without overlap in Figure 4.27 (d) shows bulging geometry 

in the modified surface as found in some of the DOE4 samples. 
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Figure 4.27: Micrographs of DOE5 samples processed at 0.12 J pulse energy and residence 

time of (a) 0.08 (sample F2), (b) 0.09 (sample F9), (c) 0.12 (sample F11) and (d) 0.16 ms 

(sample F1). 

Decreasing the pulse energy to 0.10 J in samples of Figure 4.28, decreased the waviness 

and roughness of the surface geometry. Figure 4.28 (a) and (b) are respectively sample F6 

and F8; processed at the highest peak power of 1515 W and overlap of -10 and 10% 

respectively where increased overlap or residence time increased the modified surface 

depth. Sample F13 in Figure 4.28 (c) was processed at 1138 W without overlap but 

increased residence time resulting in deeper modified layer than in Figure 4.28 (a) and 

(b). At higher residence times of 0.11 and 0.14 ms and peak power of 760 W, the upper 

part of the modified surface in Figure 4.28 (d) and (e) respectively, show waviness-type of 

geometry. 
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Figure 4.28: Micrographs of DOE5 samples processed at 0.10 J pulse energy and residence 

time of (a) 0.06 (sample F6), (b) 0.07 (sample F8), (c) 0.08 (sample F13), (d) 0.11 (sample 

F5) and (e) 0.14 ms (sample F7).  

Further decrease of pulse energy to 0.08 J decreased the modified surface depth but also 

reduced the modified surface layer roughness and waviness geometry. The micrograph in 

Figure 4.29 (a) shows the sample processed at 1515 W peak power and 0% overlap. At 

this highest peak power, the waviness effect was reduced for an overlap of 0% compared 

to an overlap of 10%. A noticeable effect of overlap was observed again in Figure 4.29 (b) 

and (c) where the modified surface depth increased at 10% overlap compared to 0% 

overlap. The sample processed by peak power of 760 W and without overlap but increased 

residence time shown in Figure 4.29 (d), still presented an undulating surface geometry.  
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Figure 4.29: Micrographs of DOE5 samples processed at 0.08 J pulse energy and residence 

time of (a) 0.05 (sample F4), (b) 0.06 (sample F10), (c) 0.08 (sample F12) and (d) 0.10 ms 

(sample F3). 

Statistical Analysis 

(a) Modified Surface Depth 

Analysis of variance (ANOVA) carried out for the modified surface depth response is given 

in Table 4.9. The quadratic model was used for analysis of modified surface depth. 

However, several terms like BC, AC, A2 and C2 were insignificant for modified surface 

depth response which were identified by p-values greater than 0.1000. The insignificant 

terms were removed using stepwise elimination process. The reduced model is shown in 

Table 4.10. 
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Table 4.9: ANOVA results for modified surface depth response using quadratic model. 

Source Sum of 

squares Df Mean 

square F value p-value 

prob > F Remarks 

Model 10526.16 9 1169.57 6.66 0.0103 Significant  
A-Power 1912.71 1 1912.71 10.89 0.0131  
B-PRF 4550.58 1 4550.58 25.90 0.0014  
C-Overlaps 708.76 1 708.76 4.03 0.0846  
AB 936.36 1 936.36 5.33 0.0543  
AC 44.22 1 44.22 0.25 0.6313 

 BC 36.00 1 36.00 0.20 0.6645 

A2 408.72 1 408.72 2.33 0.1710 

B2 1791.55 1 1791.55 10.20 0.0152  

C2 96.91 1 96.91 0.55 0.4819  
Residual 1229.93 7 175.70    
Lack of fit 1216.54 3 405.51 121.16 0.0002  
Pure Error 13.39 4 3.35    
Cor Total 11756.09 16     

 

Std. Dev. 13.26 

 

R2 0.8954 

 Mean 59.61 Adjusted R2 0.7609 

C.V. % 22.24 Adequate 
Precision 9.992 

The models adequacy was validated by examining the statistical properties which are lack 

of fit, R2, adjusted R2 and adequate precision. In the reduced model, see Table 4.10, though 

the lack of fit was significant; however R2 and adjusted R2 values were 84.7% and 77.8% 

respectively which indicates a good relationship between the factors and the modified 

surface depth response from the regression model. This model was generated after the 

insignificant terms were removed. F-value is a measure of how different the means are 

relative to the variability within each sample. The F-value of 361.85 implies that the model 

is significant with only a 0.01% chance that an F-value this large could occur due to noise. 

Terms with values of the probability less than 0.05 were taken as significant. These 

included A, B, C, AB and B2 model terms. The final response equation for the modified 

surface depth after removing the insignificant terms is given in Equation 4.2. 
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Table 4.10: ANOVA results for modified surface depth response (after stepwise 
elimination). 

Source 
Sum of 

squares 
Df 

Mean 

square 
F value 

p-value 

Prob > F 
Remarks 

Model 9959.91 11 1067.39 361.85 < 0.0001 Significant 
A-Power 1912.71 1 1912.71 11.71 0.0057  
B-PRF 4550.58 1 4550.58 27.87 0.0003  
C-Overlaps 708.76 1 708.76 4.34 0.0613  
AB 936.36 1 936.36 5.73 0.0356  
B2 1851.49 1 1851.49 11.34 0.0063  
Residual 1796.18 11 163.29    
Lack of Fit 1782.79 7 254.68 76.09 0.0004  
Pure Error 13.39 4 3.35    
Cor Total 11756.09 16     

 Std. Dev. 12.78  R2 0.8472  
 Mean 59.61  Adjusted R2 0.7778  
 

C.V. % 21.44 
 Adequate 

Precision 13.225 
 

   

 

Modified surface depth  

=49.77 – 15.46A – 23.85B + 9.41C + 15.30AB + 20.91B2  
Equation 4.2 

 

where A represents Power, B represents PRF and C represents % overlap. Figure 4.30 

shows the normal probability plot of the residuals for modified surface depth where the 

studentized residuals are in a straight line. In Figure 4.31, the observed values were 

compared with the predicted values calculated from the model. The regression model can 

be seen to have fitted very well with the observed values. 
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Figure 4.30: Normal probability plot of the studentized residuals for the modified surface 

depth response. 

 

Figure 4.31: Predicted against actual plot of modified surface depth response. 
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Variations of modified layer depth corresponding to PRF and peak power factors are 

shown in Figure 4.32. The resulting laser modified layer maximum depth for all PRF and 

power settings and for 0% overlap was between 55 and 131 µm. At 760 W peak power 

and 0% overlap, the resulting modified layer range was between 131 and 150 µm. The 

maximum and minimum layer depths were both measured at 0% overlap. From the 

model, the higehst layer depth was produced on samples processed within the 760-850 W 

peak power and 2300-2400 Hz PRF range while the minimum layer depth was predicted 

to be from the sample processed at the PRF of 2600 Hz and for 1326 W peak power.  

 

Figure 4.32: Contour plot for DOE5 samples (F1, F3, F15, F2 and F4) modified layer depth 

corresponds to PRF and power settings at 0% overlap. 

Figure 4.33 shows the contour plot of modified layer depths corresponding to the overlap 

and power settings at constant PRF of 2300 Hz. At these parameter settings, the 

corresponding modified layer depth range was 72 to 144 µm. The modified layer depth 

increased with decreasing power and increasing overlap percentage. At less than 5% 

overlap and power range of 1075 to 1515 W, the measured depth was approximately 72 

µm. The model also indicates that the maximum achievable modified layer depth at 2300 

Hz PRF was approximately 144 µm. The maximum modified layer depths obtained at 2900 
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Hz and 3500 Hz PRF were 66 and 54 µm respectively (see Appendix E1). The depth range 

decreased at higher PRF settings due to corresponding lower pulse energies produced.  

 

Figure 4.33: Contour plot of modified layer depths for DOE5 samples (F1, F9, F11 and F2) 

corresponding to overlap and power settings at 2300 Hz PRF. 

Figure 4.34 shows the relationship between overlap and PRF at 760 W and the modified 

layer depth. The maximum and minimum modified layer depths were 140 and 54 µm 

respectively. The modified layer depth range measured at 1138 W power was from 42 to 

80 µm whereas at 1515 W power, the range was between 36 and 69 µm (see Appendix 

E2(b)). At low power of 760 W, the depth range was higher as the duty cycle was 36% 

compared to 24% and 18% for 1138 W and 1515 W power settings respectively. Lower 

depth range measured at the high power settings was caused by the shorter pulse widths 

where the pulse width was limited by the duty cycle setting.  
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Figure 4.34: Contour plot of modified layer depths for DOE5 samples (F1, F5, F7 and F3) 

corresponding to overlap and PRF settings at 760 W peak power. 

(b) Hardness Properties 

The variance analysis for hardness response is tabulated in Table 4.11 where a quadratic 

model fit was used. The model F-value of 67.90, with p-value less than 0.0001, indicates 

the model is significant. In this model the terms B, C, AB, AC, BC, A2 and C2 were significant. 

Peak power (A) and second order of PRF (B2) were not significant. The predicted R2 and 

adjusted R2 were 95.06% and 97.41% respectively. Adequate signal precision of 32.65 was 

revealed from the model. The final response surface equation for the quadratic model of 

micro-hardness is shown in Equation 4.3. 
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Table 4.11: ANOVA results for hardness properties response using quadratic model. 

Source Sum of 

squares df Mean 

square 
F value at 

95% CI 
p-value 

Prob > F Remarks 

Model 29809.02 9 3312.11 67.90 < 0.0001 significant 
A-Power 4.50 1 4.50 0.092 0.7702  
B-PRF 15225.13 1 15225.13 312.13 < 0.0001  
C-Overlaps 4950.13 1 4950.13 101.48 < 0.0001  
AB 1260.25 1 1260.25 25.84 0.0014  
AC 5402.25 1 5402.25 110.75 < 0.0001  
BC 1681.00 1 1681.00 34.46 0.0006  
A2 637.01 1 637.01 13.06 0.0086  
B2 10.12 1 10.12 0.21 0.6626  
C2 706.12 1 706.12 14.48 0.0067  
Residual 341.45 7 48.78    
Lack of Fit 66.25 3 22.08 0.32 0.8112 not significant 
Pure Error 275.20 4 68.80    
Cor Total 30150.47 16     
 Std. Dev. 6.98  R2 0.9887  
 Mean 831.82  Adjusted R2 0.9741  
 C.V.% 0.84  Predicted R2 0.9506  

 PRESS 1490.0
0  Adequate 

Precision 32.647  

*Predicted residual error of sum of squares (PRESS) 

Micro-hardness  
= 831.40 - 0.75A - 43.63B + 24.88C - 17.75AB - 36.75AC + 20.50BC + 12.30A2 + 1.55B2 - 12.95C2 

Equation 4.3 

Figure 4.35 shows the normal probability plot of the residuals for hardness properties 

with studentized residuals fall in a straight line. The observed values were compared with 

the predicted values calculated from the model where the regression model fitted well 

with the observed values as shown in Figure 4.36.  
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Figure 4.35: Normal probability plot of the studentized residuals for hardness properties 

response. 

 

Figure 4.36 Predicted against actual plot for hardness properties response. 

The hardness properties of DOE5 samples at different parameter setting are shown by 

contour graphs in Figure 4.37, Figure 4.38 and Figure 4.39. Figure 4.37 indicates the 

relationship of PRF and power with hardness at minus 10% overlap. The maximum 

hardness achieved was 892 HV0.1 while the minimum was 758 HV0.1. Hardness values 

increased as the power increased and PRF decreased. The maximum hardness range 

decreased with increasing overlap. At 0% overlap, the hardness range was between 803 
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and 885 HV0.1, see Appendix E3(a) with maximum measurement recorded at the high 

power setting of 1515 W and low PRF of 2300 Hz. In samples processed at 10% overlap, 

the maximum hardness of 880 HV0.1 measured was at the low power setting of 760 W and 

the minimum hardness of 799 HV0.1.measured at the high power setting of 1515 W, see 

Appendix E3(b). 

 

Figure 4.37: Contour plot of PRF and power effect on hardness at minus 10% overlap. 

Design points shown are for sample F5, F9, F10 and F6. 

The effect of overlap and power on hardness properties investigated at constant 2300 Hz 

PRF setting is shown in contour plot Figure 4.38. The maximum hardness is recorded at 

low PRF of 2300 Hz in the region of 907 HV0.1. A hardness of 892 HV0.1 was measured 

between minus 10% and 0% overlap with power settings between 1420 W and 1515 W. 

The maximum hardness properties measured at 2900 and 3500 Hz were 873 and 862 

HV0.1 respectively (see Appendix E4).  



 

117 

 

 

Figure 4.38: Contour plot of overlap and power effect on hardness at 2300 Hz PRF. Design 

points shown are for samples F1, F9, F11 and F2. 

Investigation on overlap and PRF effect on hardness at 1515 W is presented in Figure 4.39. 

The maximum hardness of 898 HV0.1 was measured at low PRF and overlap settings. At 

highest PRF, the measured hardness was 789 HV0.1. The maximum hardness decreased to 

853 HV0.1 at 1138 W power, see Appendix E5(b).  
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Figure 4.39: Contour plot of overlap and PRF effect on hardness at 1515 W power. Design 

points shown are for samples F2, F6, F8 and F4. 

(c) Surface Roughness 

In Table 4.12, the variance analysis for surface roughness response with cubic model is 

presented. The model F-value of 244.95 and p-value of 0.0001 imply the model is 

significant with related terms of A, B, AB, A2, B2, C2, A2B and AB2. The overlap (C) and 

second order of PRF (B2) were not significant in the model. The predicted R2 and adjusted 

R2 were 99.59% and 99.19% respectively. The final response surface equation for the 

cubic model of surface roughness is given by Equation 4.4.  
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Table 4.12: ANOVA results for surface roughness response using cubic model (after 

stepwise elimination). 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F Value 

p-value 

Prob > F 
Remarks 

Model 365.94 8 45.74 244.95 < 0.0001 significant 
A-Power 5.59 1 5.59 29.93 0.0006  
B-PRF 2.74 1 2.74 14.68 0.0050  
AB 76.28 1 76.28 408.50 < 0.0001  
A2 47.72 1 47.72 255.55 < 0.0001  
B2 12.98 1 12.98 69.48 < 0.0001  
C2 8.92 1 8.92 47.79 0.0001  
A2B 50.51 1 50.51 270.48 < 0.0001  
AB2 19.81 1 19.81 106.10 < 0.0001  
Residual 1.49 8 0.19    

Lack of Fit 0.95 4 0.24 1.76 0.2984 not 
significant 

Pure Error 0.54 4 0.14    
Cor Total 367.43 16     
 Std. Dev. 0.43  R2 0.9959  
 Mean 4.45  Adjusted R2 0.9919  
 C.V. % 9.70  Predicted R2 N/A  
    Adequate 

Precision 
65.009  

 

Surface roughness  

=    2.73 - 1.18A - 0.83B + 4.37AB + 3.37A2 + 1.76B2 - 1.46C2   

      - 5.03A2B - 3.15AB2 

Equation 4.4 

Figure 4.40 shows the normal probability plot of the residuals for surface roughness 

response where studentized residuals fall in a straight line. The observed values were 

compared with the predicted values calculated from the model where the regression 

model fitted well with the observed values as shown in Figure 4.41. 
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Figure 4.40: Normal probability plot of the studentized residuals for surface roughness 

response. 

 

Figure 4.41: Predicted against actual plot for surface roughness response. 

The average surface roughness is given in Appendix E6 with four measurements for each 

sample. There were 13 samples measured with a Ra of 5.0 µm and less. The minimum Ra of 
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1.8 µm was measured at minus 10 % overlap, 1138 W peak power and 3500 Hz PRF (see 

Appendix E6, sample F10).  

In the reduced model, a significant interaction term was that between PRF and the peak 

power. The average surface roughness, Ra, measured from laser modified samples was 

plotted on a contour graph corresponding to peak power and PRF settings at minus 10 % 

overlap as shown in Figure 4.42. The Ra ranged mostly between 3.6 and 17.7 µm as shown 

in Figure 4.42. At low power of 760 W, the Ra values were as high as 17.7 µm due to 

prolonged laser-material interaction time which increased the molten pool thickness. The 

lowest Ra measured from the model at 0% and 10% overlap was respectively 5.4 and 3.7 

µm (see Appendix E7). 

 

Figure 4.42: Contour plot of PRF, peak power and surface roughness relationship at minus 

10% overlap. Design points are shown for samples F5, F9, F10 and F6. 

The effect of overlap and power settings on surface roughness at the high PRF setting of 

3500 Hz is shown by Figure 4.43. This interaction was acquired from the initial model. The 

resulting Ra range was between 0.7 and 3.1 µm. However, at the lower PRF of 2300 Hz, the 

Ra values increased where the minimum measurement was at 4.7 µm and maximum was 
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18.9 µm (see Appendix E8 (a)). Samples processed at 2900 Hz exhibited Ra values in the 

range of 1.9 to 6.2 µm, see Appendix E8 (b). 

 

Figure 4.43: Contour plot of the insignificant effect of overlap and peak power on surface 

roughness response at 3500 Hz PRF. Design points are shown for samples F3, F10, F12 

and F4. 

Design Optimisation 

Process optimisation was calculated within the constraints and range given in Table 4.13. 

Peak power, PRF and overlap ranges were as outlined between 760 and 1387 W; 2300 and 

3500 Hz; and minus 10 and plus 10% respectively. Design solutions calculated are given in 

Table 4.14 where the optimised parameters are within the range of experimentally 

achieved hardness and modified surface depth results, but with a goal of minimising 

surface roughness. The highest and lowest desirability factors obtained were 1.000 and 

0.940. The minimum surface roughness predicted was 1.3 µm Ra with 52 and 53 µm 

modified surface depth and hardness of 842 and 843 HV0.1 (solution 22 and 14). The 

maximum achievable predicted modified layer depth was 70 µm, with 1.7 µm surface 

roughness and 857 HV0.1 hardness (solution 24). The average hardness, surface roughness 
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and modified layer depth achieved from all of the 30 solutions were 861 HV0.1, 1.7 µm and 

53 µm.  

Table 4.13: Constraints in design optimisation with hardness and modified layer depth 

were in range and surface roughness was minimised 

Name Goal Lower Limit Upper Limit Importance 

Power (W) is in range 760 1515 3 
PRF (Hz) is in range 2300 3500 3 
Overlap (%) is in range 0.9 1.1 3 
Hardness (HV0.1) is in range 728 905 3 
Surface roughness (µm) minimize 1.82 3.50 5 
Modified layer depth 
(µm) is in range 50 150 3 

     

Table 4.14: Design solutions in DOE5 to minimise surface roughness with range of 

hardness and modified layer depth. 

 

Solu

tion 

Power 

(W) 

PRF 

(Hz) 
η (%) 

Micro-

hardness 

(HV)0.1 

Surface 

roughness, 

Ra (µm) 

Modified 

layer 

depth 

(µm) 

Desirability 

1 760.06 3499.85 1.03 844.28 1.8 56 1.000 
2 998.50 3386.91 1.09 842.89 1.8 54 1.000 
3 1153.85 2844.67 1.09 844.96 1.5 53 1.000 
4 865.99 3222.09 1.09 867.97 1.7 54 1.000 
5 947.42 3144.69 1.09 857.72 1.7 53 1.000 
6 834.07 3488.00 1.09 865.51 1.5 58 1.000 
7 766.33 3436.84 1.05 855.28 1.8 55 1.000 
8 1290.50 2759.99 1.10 838.91 1.4 54 1.000 
9 1260.99 2582.08 1.09 851.70 1.8 62 1.000 

10 989.92 3233.14 1.08 846.44 1.8 51 1.000 
11 1004.73 3196.93 1.09 847.59 1.6 51 1.000 
12 1284.79 2314.26 0.90 880.31 1.8 56 1.000 
13 1165.57 2953.78 1.08 838.99 1.7 50 1.000 
14 1167.34 2856.45 1.10 843.12 1.3 53 1.000 
15 1306.15 2871.46 1.09 833.92 1.8 50 1.000 
16 1277.15 2334.08 0.90 876.28 1.7 54 1.000 
17 827.81 3457.65 1.07 860.26 1.7 57 1.000 
18 1016.44 3230.86 1.09 844.58 1.7 51 1.000 
19 1284.50 2704.33 1.09 842.70 1.5 56 1.000 
20 1305.27 2345.22 0.91 880.66 1.8 54 1.000 
21 1312.05 2471.26 1.10 853.40 1.6 66 1.000 
22 1167.12 2889.78 1.10 841.80 1.3 52 1.000 
23 1289.27 2399.69 0.90 871.36 1.7 51 1.000 
24 1335.82 2390.93 1.10 856.84 1.7 70 1.000 
25 1214.12 2915.52 1.09 837.22 1.5 50 1.000 
26 1356.25 2403.22 0.90 881.86 1.8 50 1.000 
27 1337.53 2784.47 1.10 834.43 1.6 53 1.000 
28 1310.36 2315.18 0.91 885.02 1.8 56 1.000 
29 760.00 3500.00 0.98 804.44 1.9 51 0.942 
30 1215.96 2441.27 0.90 854.33 1.9 50 0.940 
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The design goal was next set as to maximise the modified surface depth and hardness and 

to minimise the surface roughness. The parameter limits and importance levels in Table 

4.15 were set at the same values and levels as in Table 4.13. Changing the parameter goals 

resulted in new desirable solutions. From a set of 17 design solutions found, the highest 

and lowest desirability factors obtained were 0.661 and 0.427 respectively, see Table 4.16. 

Comparing to the design solutions in Table 4.14, a lower surface roughness of 0.7 µm Ra 

was predicted with higher modified layer depth and hardness of 58 µm and 886 HV0.1 

respectively (solution 10). The maximum achievable modified layer depth of 79 µm was 

also higher than was achieved in Table 4.14 with 1.8 µm surface roughness and 863 HV0.1 

hardness (solution 1). The average hardness, surface roughness and modified layer depth 

achieved from all the 17 solutions were 876 HV0.1, 1.4 µm and 66 µm. Changing the 

parameter importance level reduced the number of solutions and desirable factor range, 

see Appendix F1 and F2.  

Table 4.15: Constraints in design optimisation with hardness and modified layer depth 

were maximised and surface roughness was minimised. 

Name Goal Lower Limit Upper Limit Importance 

Power (W) is in range 760 1515 3 
PRF (Hz) is in range 2300 3500 3 
Overlap (%) is in range 0.9 1.1 3 
Hardness (HV0.1) maximise 728 905 3 
Surface roughness (µm) minimise 1.82 3.50 5 
Modified layer depth (µm) maximise 50 150 3 
     

Table 4.16: Design solutions in DOE5 to minimise surface roughness with maximising 

hardness and modified layer depth. 

Solu

tion 

Power 

(W) 

PRF 

(Hz) 
η (%) 

Hardness 

(HV)0.1 

Surface 

roughness, 

Ra (µm) 

Modified 

layer depth 

(µm) 

Desirability 

1 1272.43 2300.00 1.10 862.52 1.8 79 0.661 
2 1278.88 2300.00 1.10 862.87 1.8 78 0.659 
3 1287.60 2300.00 1.10 863.28 1.8 78 0.657 
4 1291.39 2300.00 1.10 863.44 1.8 78 0.656 
5 1307.90 2300.00 1.09 864.65 1.9 77 0.643 
6 1335.24 2300.38 1.10 861.01 1.6 76 0.641 
7 1366.32 2300.00 1.09 862.87 1.8 75 0.637 
8 795.03 3500.00 1.10 882.00 0.8 59 0.492 
9 789.15 3500.00 1.10 883.21 0.8 58 0.492 

10 777.92 3500.00 1.10 885.51 0.7 58 0.491 
11 811.69 3499.56 1.10 878.60 0.9 59 0.491 
12 798.16 3500.00 1.10 880.57 0.9 59 0.491 
13 771.98 3500.00 1.09 882.52 0.8 58 0.487 
14 1313.80 2300.00 0.91 888.29 1.9 57 0.463 
15 760.00 3213.48 1.10 890.73 1.8 56 0.451 
16 760.00 3354.42 1.10 889.94 0.9 55 0.427 
17 760.00 3293.78 1.10 889.56 1.3 55 0.425 
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Validation of this design was not conducted as laser irradiance range produced a planar 

response surface with high repeatability within the low range used (0.12 and 0.26 

MW/mm2). At this low range of irradiance, the effect of the laser parameters on surface 

was such that only surface melting took place. Therefore, the resulted model can be 

assumed to produce the expected properties within the investigated range. 

4.2.6 EDXS Analysis 

The chemical composition of H13 tool steel substrate analysed using EDXS is given in 

Table 4.17. In Table 4.17, ten elements were detected from the H13 tool steel substrate; 

carbon (C), silicon (Si), sulphur (S), vanadium (V), chromium (Cr), manganese (Mn), iron 

(Fe), nickel (Ni), copper (Cu) and molybdenum (Mo). Figure 4.44 shows the selected area 

in the H13 tool steel substrate used for compositional area analysis. The elements 

distribution in the selected area of the H13 tool steel substrate is shown by micrographs in 

Figure 4.45. The EDXS qualitative analysis spectrums of phases detected in the selected 

area is given in Figure 4.46. 

Table 4.17: Chemical composition of the H13 tool steel substrate 

analysed from selected area. 

Elements 

(wt.%) 
C Si S V Cr Mn Fe Ni Cu Mo 

Spectrum 1.56 1.13 0.47 1.10 5.01 0.42 88.41 0.18 0.21 1.51 

           

 

Figure 4.44: Selected area in H13 tool steel substrate.  
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Figure 4.45: EDXS area analysis in H13 tool steel substrate with elements distribution  

(as-labeled). 

(a) 

(c) 

(b) 

(d) 

(f) (e) 

(g) 
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(j) 



 

127 

 

 

Figure 4.46: EDXS qualitative analysis spectrum of phases for H13 tool steel substrate. 

The chemical composition of laser processed H13 tool steel samples was compared with 

the H13 tool steel substrate. The modified samples from DOE2 and DOE5 were analysed 

for their chemical composition. Table 4.18 shows the resulting analysis conducted for 

sample E8 (DOE2). The analysis for E8 sample was conducted using a single spectrum 

where the chemical composition was measured from the area selected as shown in Figure 

4.47 (a). In Figure 4.47 (b) to (i), the presence of manganese (Mn), chromium (Cr), iron 

(Fe), nickel (Ni), molybdenum (Mo), silicon (Si), carbon (C) and sulphur (V) elements were 

seen as white shade in the selected area. From observation, distribution of elements like 

Ni, Mo and V resembled the grain boundaries geometries. A larger image of Ni distribution 

that shows its presence in grain boundaries is given in Figure 4.48. Figure 4.49 shows the 

spectrum of phases detected for sample E8. 

Table 4.18: Chemical composition of sample E8 from selected area analysis. 

Elements 

(wt.%) 
C Si V Cr Mn Fe Ni Mo 

Spectrum 5.47 1.12 0.94 4.98 0.46 85.35 0.22 1.46 
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Figure 4.47: EDXS area analysis in sample E8 with elements distribution (as labeled). 
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Figure 4.48: Nickel elements distribution in sample E8. 

 

Figure 4.49: EDXS qualitative analysis spectrum of phases for sample E8. 

 

  

5 µm 
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Sample E15 and E27 were analysed using line spectra. The resulting chemical composition 

of the modified layers is given in Table 4.19. Figure 4.50 (a) and (b) show the 

measurements conducted in the modified layer of sample E27 and the resulting spectrum 

of phases detected respectively. The presence of eight elements in sample E27 was 

detected while in sample E15, nine elements were identified. In sample E15, the content of 

C was higher; while Cr content was lower when compared with sample E27. Cu was 

detected in sample E15 at 0.24 wt% which was absent in sample E8 and E27. In sample E8, 

Mo was detected at 1.46 wt%. Cr was recorded at is the highest level in sample E27 among 

the three samples. Variations of elements composition were observed in Table 4.19, where 

the samples were processed at different overlap, PRF and pulse energy. The maximum 

range of C in sample E15 was higher than the maximum level detected in sample E27.  

Table 4.19: Chemical composition of modified layer in DOE2 samples cross section. 

Sample  E15 E27 

Processing 

parameters 

η (%) 
PRF (Hz) 
Ep (J) 

30 
3810 
0.20 

50 
4000 
0.19 

Elements 

(wt.%) 

C 7.05-12.11 5.31-9.05 
Si 0.87-1.21 0.94-1.33 
S 0.35-0.44 0.35-0.89 
V 0.80-0.95 0.77-1.33 
Cr 4.59-4.93 4.44-6.23 
Mn 0.42-0.49 0.44-0.62 
Fe 81.19-84.99 82.85-86.77 
Ni 0.20-0.22 0.26-0.31 
Cu 0.24 - 
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Figure 4.50: (a) Micrograph shows line spectrum measurements across sample E27 cross 

section and (b) EDXS qualitative spectrum analysis of phases indicates presence of 

primarily eight elements in sample E27. 

 

 

Line spectrum (1) Line spectrum (10) 

(a) 

(b) 

  

5 µm 
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From DOE5, four samples were analysed (F1, F11, F8 and F3) using line spectra. The 

chemical composition of each sample is given in Table 4.20. In F1 and F8 samples seven 

elements were detected, while eight elements were analysed in F11 and F3 samples. 

Micrograph in Figure 4.51 (a) shows eight line spectra across the modified layer and H13 

tool steel substrate. EDXS qualitative analysis spectrums of phases in sample F11 is shown 

in Figure 4.51 (b) with C, V, Cr, Mn, Fe, Si, S and Mo detected. Two elements, Cu and Ni, 

were absent in these four samples. The processing parameter seemed to vary the elements 

composition where S was detected in sample F11 and F3 but was none in sample F1 and 

F8. Cr and Mo composition was the highest in sample F8 compared to other samples 

observed.  

Table 4.20: Chemical composition comparison for DOE5 samples 

at different processing parameters. 

Sample  F1 F11 F8 F3 

Processing 

parameters 

Pp (W) 
PRF (Hz) 
Ep (J) 
TR (ms) 

760 
2300 
0.12 
0.16 

1138 
2300 
0.12 
0.12 

1515 
2900 
0.10 
0.07 

760 
3500 
0.08 
0.10 

Elements 

(wt.%) 

C 0.01-4.67 0.33-4.97 1.25 0.3-6.76 
Si 1.24-1.41 1.11-1.29 1.24-1.27 1.13-1.22 
S - 0.48-0.52 - 0.49-0.50 
V 0.95-1.45 0.82-1.04 0.97-1.27 0.89-0.99 
Cr 4.98-5.53 4.99-5.44 5.27-6.23 4.69-5.26 
Mn 0.46-0.48 0.44-0.46 0.46-0.48 0.42-0.48 
Fe 87.35-89.72 87.15-91.03 88.58-92.02 85.80-90.90 
Mo 1.73-1.79 1.52 1.50-2.18 1.46 

 

 

 

 

 

 



 

 

Figure 4.51: (a) Micrograph shows line spectrum measurements and (b) EDXS qualitative 

analysis spectrum of phases indicates presence of eight elements in sample F11 cross 

 

 

 

(a) 

(b) 
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: (a) Micrograph shows line spectrum measurements and (b) EDXS qualitative 

analysis spectrum of phases indicates presence of eight elements in sample F11 cross 

section. 

 

10 µm  

 

: (a) Micrograph shows line spectrum measurements and (b) EDXS qualitative 

analysis spectrum of phases indicates presence of eight elements in sample F11 cross 

10 µm 
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4.2.7 XRD Analysis 

The laser modified surface H13 was analysed for surface crystallinity and compared with 

the diffraction pattern of the as-received H13 steel. In Figure 4.52, the diffraction peaks of 

as-received H13 steel surface were characterised by distinct reflections of α-Fe (110), 

(200), (211) and (220) phase at 44.6°, 64.8°, 82.1° and 98.6° Bragg’s angles (2 theta) 

respectively. The peaks intensity distribution was similar with the α-Fe phase (06-0696) 

peaks listed in the Joint Committee on Powder Diffraction Standards (JCPDS) database.  
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Figure 4.52: X-ray diffraction pattern of as received H13 tool steel. 

The x-ray diffraction patterns produced by samples processed at 0.4 mm, 0.2 mm and 0.09 

mm spot size are shown in Figure 4.53, Figure 4.54 and Figure 4.55 respectively. The 

peaks detected from Figure 4.53 (a) were (211) martensite, (110) and (200) α-Fe. 

Whereas in Figure 4.53 (b), the (200) α-Fe peak became less distinct and suppressed.  At 

0.4 mm spot size, the (110) α-Fe phase peak in Figure 4.53 (a) decreased as much as 66 % 

compared to the as-received H13 steel surface peak reflection, see Figure 4.52. Presence of 

(211) martensite peak was detected at 35.45° Bragg’s angle, see Figure 4.53. The (211) 

martensite structure is body-centred-cubic in contrast with as-quenched martensite body-

centred-tetragonal structure. 
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Figure 4.53: X-ray diffraction patterns of (a) E15 and (b) E8 sample from DOE2 processed 

at 0.4 mm spot size. 

In Figure 4.54 (a) and (b), samples processed at 0.2 mm spot size produced (110) α-Fe 

peaks at a 60 % lower intensity than the as-received H13. The (200) α-Fe peak for samples 

in Figure 4.54 was decreased to 48 % and 84 % respectively compared to the as-received 

H13 tool steel.  

Further (110) α-Fe peak reduction was observed on diffraction patterns of samples 

processed at a 0.09 mm spot size as shown in Figure 4.55 (a) and (b). The peak intensity of 

(110) α-Fe resulted from an as-received H13 sample was more than four times stronger 

compared to samples in Figure 4.55. A broadening effect of (200) α-Fe peak was found in 

the sample of Figure 4.55 (b) 
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Figure 4.54: X-ray diffraction patterns of (a) N4 and (b) N12 sample of DOE3 processed at 

0.2 mm spot size. 

. 

Figure 4.55: X-ray diffraction patterns of (a) X5 and (b) X2 sample from DOE4 processed at 

0.09 mm spot size. 
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The crystallinity of the laser modified H13 tool steel sample surfaces were different from 

the as-received H13 steel in terms of relative strength ratio, I/I1, of diffraction peaks. Table 

4.21 indicates a comparison of x-ray diffraction values for characterised angle measured 

from the samples scanning patterns and the standard peaks of α-Fe from the JCPDS 

database. The peaks’ angles associated with as-received H13 steel surface were compared 

with the modified samples. All of the peaks detected on modified samples were at similar 

angles of reflection as the as-received H13 sample. The inter-planar spacing, d of the 

modified samples was retained while the relative intensity strengths differed. Referring to 

α-Fe (06-0696) from the JCPDS database, the relative strength ratio of the peaks at the 

four different angles were 100, 20, 30 and 10. The (200) α-Fe peak was diminished in 

sample E8 while it became more distinct in sample N12. Sample E8 processed at 0.4 mm 

spot size produced (211) martensite peak at 35.4° with at least 10 % of the relative 

strength ratio. The relative strength ratio of (211) α-Fe peak in sample X2 and X5 was 

higher than the as-received H13 steel (see Table 4.21). The FWHM values of (110) α-Fe 

peak in samples E8, E15, N4 and N12 increased at least 2.5 times higher than in as-

received H13 steel. In sample X5, the increment was 2.7 times. A broadening of 1.045° was 

analysed on (200) α-Fe peak of sample X2 which was three times that of the as-received 

H13 peak.             

Table 4.21: Contrast of x-ray diffraction values for as-received H13 steel and laser 

modified H13 steel surface. 

Sample/spot 

size (mm)  

Measured values 
Data from JCPDS (α-

Fe: 06-0696) 

2θ (°) 

Max. 

intensity 

(CPS) 

d (nm) I/I1 
FWHM 

(2θ) 
d (nm) I/I1 

Plane 

(hkl) 

As-received 
H13 

44.6 
64.8 
82.1 
98.6 

591.0 
43.2 
72.8 
25.3 

0.2031 
0.1437 
0.1173 
0.1016 

100 
7 

12 
4 

0.342 
0.584 
0.598 
1.003 

0.2027 
0.1433 
0.1170 
0.1013 

100 
20 
30 
10 

110 
200 
211 
220 

E15/0.4  
35.5 
44.5 
64.8 

24.6 
199.4 
19.7 

0.2530 
0.2035 
0.1438 

12 
100 
10 

0.607 
0.854 
0.692 

   

E8/0.4  35.4 
44.6 

25.4 
243.6 

0.2530 
0.2036 

10 
100 

0.601 
0.861    

N12/0.2  44.5 
65.1 

233.4 
20.6 

0.2033 
0.1431 

100 
9 

0.849 
1.962    

N4/0.2  44.6 
64.5 

233.0 
36.5 

0.2033 
0.1443 

100 
16 

0.925 
1.969    

X5/0.09  
44.6 
64.8 
82.2 

123.0 
12.3 
30.8 

0.2032 
0.1438 
0.1172 

100 
10 
25 

0.940 
n/a 
n/a 

   

X2/0.09 
44.6 
64.3 
82.2 

131.0 
12.3 
26.9 

0.2031 
0.1448 
0.1172 

100 
9 

21 

1.045 
n/a 
n/a 
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Formation of Martensite and Meta-Stable Phases 

Additional peaks were examined from the diffraction pattern. Apart from the α-Fe peaks 

reflected on the laser modified surface, samples processed with 0.4 mm spot size exhibited 

additional peak at 35.5° Bragg’s angle. The peak was identified as (211) martensite peak as 

shown in Figure 4.56 (a), (b) (c) and (d). Figure 4.56 (b) reflected a more distinct (211) 

martensite peak compared to the other three samples.  
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Figure 4.56: Reflection of martensite phase in (a) E18, (b) E15, (c) E21 and (d) E27 sample of DOE2 processed at 0.4 mm spot size.  
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The development of metastable phases was investigated on the laser modified samples 

processed at 0.09 mm spot size. Figure 4.57 (a) shows the reflection of (110) α-Fe peak on 

as-received H13 surface where a smooth peak outline was detected. However, in Figure 

4.58 (a), (b) and (c), anomalous crystalline metastable phase peaks were reflected at 

different Bragg’s angles. In Figure 4.58 (a), the peaks were reflected at 44.1 and 45.1° 

Bragg’s angle while sample in Figure 4.58 (b) produced a sharp peak at 44.7°. Smaller 

peaks were reflected at 44.15, 44.65 and 45.25 ° in Figure 4.58 (b). Sample in Figure 4.58 

(c) produced more peaks which were traced at Bragg’s angles of 44.08, 44.11, 44.18, 44.28, 

44.32, 44.44, 44.48, 44.52, 44.66, 44.7, 44.82, 44.87, 44.96 and 45.01°. Referring to the 

laser processing, the pulse energies used to modify samples in Figure 4.58 (a), (b) and (c) 

were 0.12 J, 0.10 J and 0.08 J respectively. At the lower pulse energy of 0.078 J, more than 

10 metastable phase peaks were detected on the sample F10, Figure 4.58 (c). At the higher 

pulse energy of 0.12 J, only two anomalous peaks were reflected on sample of Figure 4.58 

(a). 
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Figure 4.57: A close up of (110) α-Fe peak reflected from as-received H13 surface.  

44.6 

(110) α-Fe 
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Figure 4.58: Metastable phase peaks reflected from sample (a) F1, (b) F6 and (c) F10. 
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4.3 Thermal Modelling Simulations of Laser Surface 

Modification of H13 Tool Steel  

4.3.1 Temperature Distribution in Modified Surface 

Thermal profiles of laser surface modification were simulated with the model as described 

in §3.4 with input laser parameters, surface absorptance factor and thermal properties of 

H13 steel at several Z values, as shown in Figure 4.59. In Figure 4.59 (a) to (e), the thermal 

model simulations indicate reducing temperature as expected for each subsequently 

deeper Z (depth) plane value upon progressing further into the substrate. Figure 4.59 (a) 

shows that when the thermal model was simulated at Z = 0 μm, the maximum temperature 

achieved is represented at a nominal value of 1. At 80 μm depth, the maximum nominal 

temperature achieved was 0.62 as shown in Figure 4.59 (c). In Figure 4.59 (d) and (e), the 

maximum nominal temperatures of 0.28 and 0.13 were recorded at 100 μm and 120 μm 

depth respectively. The temperature distribution plots from simulation allowed for the 

heating and cooling rates of any particular point within the modified surface to be 

calculated.  

Figure 4.60 shows the cross section of the modified surface of sample F13 in the Y and Z 

axis. The dimension of the melted region, which is required for surface modification to 

occur, was limited by the volume of material for which the energy provided could raise the 

metal temperature to the material melt temperature, 1454°C. In Figure 4.59, the maximum 

modified layer depth simulated using the experimental laser processing parameters was 

approximately 100 μm. However, the micrograph of Figure 4.60 shows that, using the 

similar parameter settings as in the simulation, the region where the temperature was 

raised to the melt temperature was only approximately 49 μm deep.  

 



 

 

 

(c) 

Figure 4.59: Nominal temperature distribution simulation in modified surface of 

X2 along depth, at (a) Z = 20 µm, (b) Z = 40 µm, (c) Z = 80 µm, (d) 

Figure 4.60: Modified layer [A] formed on substrate [B] after laser surface modification
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(a)  

 

(b)  

 

X axis (µm)

 

(d) 

 

(e) 

 

X axis (µm) 

: Nominal temperature distribution simulation in modified surface of 

along depth, at (a) Z = 20 µm, (b) Z = 40 µm, (c) Z = 80 µm, (d) 

and (e) Z = 120 µm. 

: Modified layer [A] formed on substrate [B] after laser surface modification

sample F13. 
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4.3.2 Effect of Heating and Cooling Rate on Hardness Properties  

Heating and cooling profiles from the model are shown in Figure 4.61. In Figure 4.61, the 

nominal temperature as a function of time was modelled for the H13 sample F13 

processed at 1138 W power, 24% duty cycle, and 261 mm/s traverse speed. At 2900 Hz, 

the time needed for a complete pulse was 0.35 ms. At a specific point of Y= 70.6 μm, the 

nominal temperature distribution along the molten pool depth was plotted. The time 

needed to reach the maximum nominal temperature at the surface (where Z = 0), was 

0.121 ms. The initial and maximum temperature achieved decreased with increasing 

depth. The time duration to reach these temperatures at deeper Z positions was also 

longer relative to shallower regions. Cooling rates recorded at the centre of the melt pool 

were twenty times higher than the cooling rate at a distance of 100 µm from the centre in 

Y direction, for six Z positions (0, 20, 40, 60, 80 and 100 µm).  

 

Figure 4.61: Nominal temperature as a function of time at 

Y=70.6 µm position for various depths. 

The simulation of temperature profile in the modified surface was indirectly examined 

experimentally. The processing was conducted using similar laser parameter settings and 

sample surface absorptivity level to achieve maximum hardness. Seven sets of parameter 

settings were examined. These included 1138 W peak power, 2900 Hz PRF, 0.083 ms pulse 

width, 261 mm/s traverse speed, 5.35x10-6 m2/s H13 tool steel thermal diffusivity, 28.6 

W/m°C H13 tool steel thermal conductivity and 0.6 absorptivity factor, presented here. 
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The micro-hardness values measured at different distances within the processed surface is 

presented in Figure 4.62. The maximum hardness of 824 HV0.1 resulted from 2377 s-1 

nominal cooling rate and 4618 s-1 nominal heating rate, at a 20 µm modified surface depth. 

At 724 and 572 HV0.1 micro-hardness, the nominal heating to cooling rate ratio was 1.76 

and 1.54 respectively. As the heating to cooling rate ratio decreased, the micro-hardness 

also decreased.  

 

Figure 4.62: Micro-hardness of the modified surface corresponding to nominal heating and 

cooling rate of molten pool in the modified surface of sample F13 along the depth. 
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CHAPTER 5 

Discussion 

5.0 Chapter 1 Heading 1 

5.1 Introduction 

The results discussion presented in this chapter is outlined in Figure 5.1. The 

characterisation results of laser surface modified H13 tool steel are discussed according to 

the characterisation methods. From the metallographic study, the effects of processing 

parameters on the surface absorptance, grain size and melt pool geometry are discussed 

and elaborated from each design of experiment. The hardness properties are discussed 

based on different hardening mechanisms in the samples. A review of the effects of 

processing parameters in each design of experiments on the surface profile and roughness 

is presented. In the XRD analysis section, discussion on metastable phase formation in the 

modified samples is presented. Temperature distribution during the surface processing, 

and heating and cooling rate effects on hardness properties are discussed in the thermal 

modelling section. The overall results from each DOE are presented in Table 5.1. 
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Figure 5.1: Outline of order of results discussion presented in this chapter. 
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Table 5.1: Summary of laser parameters setting ranges and characterisation results for the laser modified H13 tool steel samples. 

DOE 

Set parameters Outcome parameters Results 

PP 

(W) 

PA 

(W) 

DC 

(%) 

η 

(%) 

PRF 

(Hz) 
τ (ms) EP (J) 

TR 

(ms) 

I 

(W/mm2) 

Depth 

(µm) 

Hardness 

(HV0.1) 
Ra (µm) 

Minimum 

intensity of (110) 

α-Fe peak from 

XRD scan (cps) 

DOE1 760 
532 
646 
760 

70 
85 

100 

10 
30 
50 

2857 
to 

5000 

0.14  
to  

0.35 

0.11   
to   

0.27 

0.22  
to  

0.38 

3,872        
to        

5,576 
0-29 - - - 

DOE2 760 646 
760 

85 
100 

10 
30 
50 

2857 
to 

5000 

0.20  
to  

0.35 

0.15   
to   

0.27 

0.29  
to  

0.38 

3,569        
to        

5,592 
46-180 724-1017 3.5-38.2 199.4 

DOE3 
507 
760 

1313 

249 
274 
305 

49 
36 
23 

10 
50 2900 

0.17 
0.12 
0.08 

0.09 
0.10 
0.11 

0.12  
to  

0.25 

10,930    
to    

28,184 
48-80 435-996 3.1-7.9 233.0 

DOE4 
760 

1138 
1515 

274 
36 
24 
18 

0 
10 
30 

2900 
0.06 
0.08 
0.12 

0.10 
0.06  

to  
0.16 

91,943    
to 

23,8087 
42-88 670-976 3.2-9.5 123.0 

DOE5 
760 

1138 
1515 

274 
36 
24 
18 

-10 
0 

10 

2300 
2900 
3500 

0.05 to 
0.16 

0.08 
0.10 
0.12 

0.05  
to  

0.16 

108,582 
to 

264,499 
37-150 728-905 1.8-22.4 50.0 
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5.1.1 As-received H13 Tool Steel 

The as-received H13 tool steel had an average hardness of 280 HV0.1 (approximately 28 

HRC) contributed to by homogenous ferritic matrix and spheroidal carbides. Samples were 

in the annealed condition which allowed machining to be performed. For die application, 

H13 tool steel is heat treated to achieve hardness in the range of 484 to 544 HV (48 to 52 

HRC) [154]. The hardening mechanisms are different in as-quenched and fully heat 

treated tool steels. In the as-quenched tool work-hardening and solid solution hardening 

occur and the steel hardness is contributed to by carbon content in the solid solution. The 

fully heat treated tool steels hardness is affected by precipitates that cause precipitation 

hardening and solid solution hardening [168].  

5.2 Laser Surface Modified H13 Tool Steel 

Significant undercooling of the melt during laser processing leads to metastable effects 

with resulting enhanced surface properties. Pulse processing mode was selected to limit 

the material-laser interaction time and control the material’s surface temperature. 

Appropriate selection of PRF and pulse width has been seen in previous specific cases to 

produce defect free modified surfaces [7, 8]. 

5.2.1 Metallographic Study 

The Effects of Laser Irradiance and Residence Time 

The measured modified surface depth in DOE1 was between 0 to 29 µm due to low energy 

absorptance. The micrographs of DOE1 samples indicate inefficiently processed H13 tool 

steel surface due to the laser spot focal position, surface reflectivity at the CO2 laser 

wavelength, and the low laser irradiance which resulted from a defocused beam diameter. 

Although focusing the laser spot both above and below the surface position can produce a 

0.4 mm spot diameter, focusing above the surface results in less energy absorption into 

the materials surface during processing [40, 53]. The reflectivity of metals’ surfaces at the 

CO2 laser wavelength is a problem in surface processing. Theoretically, a steel surface 

would normally absorb less than 15% energy when processed with CO2 laser [62]. The 

irradiance was small due to the defocused beam diameter of 0.4 mm in DOE1. These 

factors explain why a non-melted surface resulted in samples processed at residence time 

of less than 0.31 ms.  
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The Effects of Focal Position  

In DOE1, the findings indicating that the focal position affects the efficiency of material-

laser interaction was also found in previous work [53]. Though the modified layer depth 

surface morphology was non-uniform, the modified layer formation indicated surface 

melting was improved when the focal position was below the surface. Reduced energy 

absorption by focusing above the surface caused broad and shallow melt pool formation. 

This finding is in general agreement with that of other workers [40, 53]. The findings from 

the work presented in this thesis indicate that residence time is the main factor controlling 

the energy loss factors and modified surface depth within the investigated irradiance 

range of 3000 to 5000 W/mm2. 

The Effects of Chemical Etching and Surface Roughening 

Samples processed in DOE2 at 10% overlap produced regions with different surface 

depths due to the Gaussian beam profile used in the processing. Referring to Dickey et al., 

the irradiation effect of a Gaussian beam gives by Region I where the material can be 

processed, see Figure 5.2 (a), while Region II and Region III may not have sufficient 

irradiance for surface modification [169]. During processing, approximately 80% of the 

spot diameter was taken as the region of processing with the required beam intensity. 

Thus, the expected size of molten pool was 0.32 mm for the 0.4 mm laser beam spot size. 

However, the average molten pool width measurement was 0.23 mm which corresponds 

to an average effective beam diameter of 57% of the focused spot size. Existence of gaps 

between molten pools set with 10% overlap indicates the effective overlap percentage for 

both circumferential and linear translation should be set at a minimum of 30% for the 0.4 

mm spot size and 5510, 5548 and 5592 W/mm2 laser irradiance, 0.32, 0.34 and 0.38 ms 

residence time and, 2857 and 3200 Hz PRF settings, see Table 3.6. At 30% overlap, the 

pulses were overlapped within Region II and III. Figure 5.2 (a) and (b) from sample E8 

show the corresponding Gaussian beam effect on the molten pool dimension where the 

deepest region was developed within Region I. The molten pool depth reduced within 

Region II and III. 
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. 

Figure 5.2: (a) Theoretical [169] and (b) experimental division of a Gaussian beam into 

regions on sample E8 modified surface cross section.  

An increase of modified surface depth in DOE2 occurred due to enhanced surface 

absorptance from surface chemical etching pre-treatment. The findings from DOE2 

informed the amount of laser energy required in the surface modification process of H13 

tool steel. In DOE2, to produce more overlaps, PRF was increased. In this processing 

design, increasing pulse energy at higher overlap percentage required higher PRF settings 

in order to control the surface temperature. PRF settings above 5,000 Hz produced a 

continuous processing mode effect which creates defects in the surface. Low pulse energy 

(0.23 J) at high PRF (5000 Hz) failed to produce overlapped pulses as shown in the 

micrograph in Figure 4.10 (a). At high pulse energy and residence time, the sample 

temperature raises and sample surface reflectivity decreases [62, 63]. The surface 

absorptance increases, but molten pool profile on the upper surface was irregular for most 

samples produced in DOE2. This resulted from a high pulse energy and residence time 

combination where the liquid accumulated above the surface and left the pool edges 

during solidification as shown in Figure 4.10 (b). Chemically altered H13 tool steel surface 

became less reflective and absorbed more energy into the surface. The melt pool geometry 

formed at high pulse energy was shallow due to heat loss during processing. At high pulse 

energy processing, samples experienced vaporisation and it was revealed that heat loss 

due to element vaporisation reduced the heat input to the sample surface [170]. Variations 
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in molten pool depth and modified layer thickness indicate that the laser parameter 

settings and sample traverse speed could be set within a wide range of processing 

parameters to minimise the surface superheat temperature. 

Surface roughened samples in DOE3 were processed at lower pulse energy as surface 

absorptance was further improved by roughening in addition to the etching pre-

treatment. The increase of heat input into surface was due to the increased absorption of 

the laser beam energy on specimen surface. Similar results were found by other workers 

[53]. Compared to smooth surfaces, an increase in average surface roughness to 

approximately 3.0 µm for H13 tool steel has been seen to significantly increase 

absorptivity at the CO2 laser wavelength by as much as 60% [66, 68]. Using a 0.2 mm spot 

size, the resultant molten pool diameter was approximately 0.25 mm which allowed use of 

10% overlap between pulses. Lower percentages of overlapped pulses provided decreased 

residence time and reduced the modified surface roughness. 

The Effects of Constant PRF Setting on Overlapped Melt Pool Geometry 

In DOE3, overlap was possible either by increasing the PRF to gain more pulses and 

overlaps, or by keeping the PRF constant (2900 Hz) and varying the residence time via 

alterations to duty cycle. In previous work, overlap was achieved by increasing the PRF 

[9]. No previous studies have presented an investigation of alteration of duty cycle and 

related variation in the melt pool geometries during surface modification. From DOE2 and 

DOE3 sample observations, both settings resulted in overlapped geometries, but different 

surface properties were achieved. At constant PRF of 2900 Hz (of sample N10 and N24), 

the pulse width and pulse energy remained constant at 0.12 ms and 0.10 J respectively 

though the overlap was changed, see Table 4.4. The residence time increased when the 

overlap was increased. At 0% overlap the residence time is equivalent to the pulse width. 

With improved surface absorptance, a lower overlap percentage than 30% was possible as 

the surface covered by Region II and III in the Gaussian beam also melted. For longer 

residence time with 50% overlap the sample surface temperature increased and 

prolonged surface melting occurred. Lower percentages of overlap are preferable in the 

pulse laser surface modification process as the surface defects tend to develop in the 

higher overlap designs. This was also noted by other workers [28, 53]. The constant PRF 

setting also allowed the investigation of peak power effect exclusively on the modified 

surface depth.  
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The Effect of Peak Power on Modified Surface Depth 

In DOE4, low peak power of 760 W produced bulging geometry at three different overlaps 

due to pulse width setting of 0.125 ms which was longer than set for the other two peak 

powers. Pulse width determines the laser-material interaction time or residence time at 

0% overlap. Increasing pulse width decreased the heat penetration depth [70]. Low duty 

cycle allows short pulse duration which limits the energy penetration into sample surface. 

Though maximum modified surface depth was achieved at longer pulse width, this 

resulted in bulging surface geometry after every four pulses due to retained surface 

temperature. The bulging geometry occurrence leads to a conclusion that the molten 

surface was dragged along the translation direction, mounted up and only fully solidified 

after four cycles of pulse. At 36% duty cycle, the laser ‘off’ state of 64% was insufficient to 

cool down the surface [14]. While, higher peak power settings of 1138 and 1515 W were 

investigated at shorter pulse widths of 0.08 and 0.06 ms respectively; this allowed 

immediate solidification after each pulse hit as the laser off state/ cooling period 

(calculated using Equation 3.10) was 76% from the duty cycle or more. The penetration 

depth was deeper due to a combination of higher peak power and residence time. When 

the pulse energy was constant, peak power together with residence time determined the 

temperature profile. The observed modified surface indicates the significance of laser peak 

power and pulse width on surface property variations.  

The Effects of Laser Spot Size on Modified Surface Properties 

Table 5.2 shows the processing parameters used in the comparison of laser spot size 

effect. The effect of beam size on grain size of modified surface is shown by micrographs in 

Figure 5.3. Micrographs (a) to (c) in Figure 5.3 depict the grain size observation at high 

magnification corresponding to the specific laser irradiance and residence time settings 

indicated.. At 0.09 mm spot size processing, the laser irradiance ranged from 108 to 264 

kW/mm2 and residence times were between 0.06 ms and 0.16 ms. The irradiance range 

for 0.2 mm and 0.4 mm spot size processing was between 3.9 and 28.0 kW/mm2 with a 

residence time range of 0.12 to 0.38 ms. Grain size of modified layer in micrograph (a), (b) 

and (c) of Figure 5.3 was smaller compared to the as-received H13 tool steel grain size in 

Figure 4.1. The grain diameter linearly decreased with decreasing laser spot size. 

 

 

 



 

Table 5.2: Processing parameters for 

Beam spot size 

(mm) 

0.4 

0.2 

0.09 

 

Figure 5.3: Micrographs of laser modified H13 samples processed at (a) 0.09, (b) 0.2 and 

(c) 0.4 mm spot size corresponding to the laser irradiance and residence time settings.
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: Processing parameters for H13 tool steel samples at three beam spot sizes.

Sample Pp (W) DC (%) η (%) I (W/mm

E8 

760 

85 
10 

5,548
E9 100 5,592

E14 85 
30 

4,618
E15 100 4,631
E26 85 

50 
3,971

E27 100 3,971
N4 507 49 

50 
10,930

N24 760 36 16,388
N12 1313 23 28,184
F5 760 36 

-10 
132,686

F6 1515 18 264,499
F1 760 36 

0 
119,297

F2 1515 18 237,809
F7 760 36 

10 
108,582

F8 1515 18 216,449

: Micrographs of laser modified H13 samples processed at (a) 0.09, (b) 0.2 and 

(c) 0.4 mm spot size corresponding to the laser irradiance and residence time settings.

H13 tool steel samples at three beam spot sizes. 

I (W/mm2) TR (ms) 

5,548 0.32 
5,592 0.38 
4,618 0.29 
4,631 0.34 
3,971 0.32 
3,971 0.38 

10,930 0.25 
16,388 0.19 
28,184 0.12 

132,686 0.11 
264,499 0.06 
119,297 0.16 
237,809 0.08 
108,582 0.14 
216,449 0.07 

 

: Micrographs of laser modified H13 samples processed at (a) 0.09, (b) 0.2 and 

(c) 0.4 mm spot size corresponding to the laser irradiance and residence time settings. 
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Decreasing spot size in processing H13 steel influenced the sample surface morphology. 

The resulting surface morphology of the laser processed samples at different beam sizes is 

shown in the micrographs of Figure 5.4. Micrographs (a) (c) and (e) in Figure 5.4 show the 

surface of the sample E26, N12 and F8 processed at 0.4, 0.2 and 0.09 mm spot size 

respectively. Figure 5.4 (b) shows varying molten pool depths of the sample processed 

with 0.4 mm spot size; where the maximum depth ranged from 135 to 205 µm. 

Micrographs in Figure 5.4 (d) and (f) depict consistent modified layer depths in the range 

of 70 µm to 80 µm produced by samples processed at 0.2 and 0.09 mm spot size. The 

molten pool geometrical pattern on the sample surface of Figure 5.4 (a) was not consistent 

and not measurable in a similar manner to other samples. The molten pool width 

measured from the sample processed at 0.2 mm spot size, Figure 5.4 (c), was 245 µm, 

while at 0.09 mm spot size, Figure 5.4 (e), the width was 286 µm. Bulging solidified molten 

pool geometries were observed in the micrographs of Figure 5.4 (b) and (d) while a 

relatively flat surface was formed for sample F8, as shown in Figure 5.4 (f). 

The grain size was measured using Image J software on samples processed at 0.4 mm, 0.2 

mm and 0.09 mm spot size as shown in Figure 5.5. Figure 5.5 (a) and (b) respectively show 

the micrograph layout used in the analysis at required image selection and adjusted 

threshold stages of image analysis. The range and distribution of grain sizes measured 

based on the Feret’s diameter, are given in Table 5.3 and Figure 5.6. The Feret’s diameter 

is the greatest straight line distance possible between any two points along the boundary 

of a region of interest [165, 166]. The grain size of samples produced with the 0.4 mm spot 

size ranged from 2.54 to 5.99 µm which was a large range when referred to the overall 

grain size distribution in Figure 5.6. At smaller spot size of 0.2 mm and 0.09 mm, the range 

of grain sizes decreased and produced a more consistent grain size in the modified surface.  
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Figure 5.4: Molten pool width and thickness of samples processed at 0.4 mm (a), (b) and 

0.2 mm (c), (d) and 0.09 mm (e), (f) spot size. Micrographs (a), (b) represent sample E26; 

(c), (d) represent sample N12; and (e), (f) represent sample F8.  

 



 

Figure 5.5: Grain measurement layout at (a) required selection and (b) threshold 

adjustment stages of analysis using Image J software. This micrograph was captured from 

the sample processed with a 0.2 mm spot size

Table 5.3: Range of modi

Laser spot diameter (mm)

0.40
0.20
0.09

Figure 5.6: Average Feret

Samples processed using 0.4 mm spot size produced a deeper modified surface due to 

higher duty cycle settings. In DOE2, the irradiance was lower compared to the other DOEs. 

Therefore, pulse width was

power. At smaller spot sizes of 0.2 and 0.09 mm, the laser irradiance was higher due to the 

(a) 
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n measurement layout at (a) required selection and (b) threshold 

adjustment stages of analysis using Image J software. This micrograph was captured from 

the sample processed with a 0.2 mm spot size, N12

: Range of modified H13 grain size processed at three beam spot sizes.

Laser spot diameter (mm) Range of Feret diameter (µm)

0.40 2.54 – 5.99 
0.20 1.60 – 2.83 
0.09 0.51 – 1.09 

  

: Average Feret’s diameter distribution for 12 different samples processed at 

three different spot sizes 

Samples processed using 0.4 mm spot size produced a deeper modified surface due to 

higher duty cycle settings. In DOE2, the irradiance was lower compared to the other DOEs. 

Therefore, pulse width was set between 0.20 and 0.35 ms regardless of the constant peak 

power. At smaller spot sizes of 0.2 and 0.09 mm, the laser irradiance was higher due to the 

(b) 
 

5 µm 
 

 

n measurement layout at (a) required selection and (b) threshold 

adjustment stages of analysis using Image J software. This micrograph was captured from 

, N12.  

fied H13 grain size processed at three beam spot sizes. 

Range of Feret diameter (µm) 

 
 
 

 

ifferent samples processed at 

Samples processed using 0.4 mm spot size produced a deeper modified surface due to 

higher duty cycle settings. In DOE2, the irradiance was lower compared to the other DOEs. 

set between 0.20 and 0.35 ms regardless of the constant peak 

power. At smaller spot sizes of 0.2 and 0.09 mm, the laser irradiance was higher due to the 

5 µm 
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smaller affected area. In DOE3, the duty cycle was varied between 23 and 49% for 

different peak powers ranging between 507 and 1313 W. From the duty cycle setting, the 

resulting pulse width range was 0.125 to 0.080 ms to limit the high irradiance interaction 

time with the surface. Samples of DOE4 were processed at a higher range of peak power 

from 760 to 1515 W and at duty cycles of 18 to 36% to produce pulse widths ranging from 

0.125 to 0.083 ms. Both DOEs yielded similar ranges of average modified surface depth 

(between 42 and 80 µm) due to the similar range of pulse width and the constant PRF of 

2900 Hz used in both DOEs.  

Low irradiances which were used with longer pulse widths roughened the modified 

surface due to longer residence times. The energy produced by the higher laser 

irradiances penetrated deep into the sample surface and formed definite solidified molten 

pools geometries. The samples processed with spot sizes of 0.2 mm and 0.09 mm resulted 

in molten pool diameters which were multiples of the laser beam spot diameter due to the 

corresponding high irradiance levels.  

Decreasing the laser spot size increased the heating and cooling rates. Change of heating 

and cooling rate was evidenced by resulting observed different grain size ranges in the 

modified surface. Nano and ultrafine-grain size structures were developed in modified 

surface due to the large undercoolings produced from 0.09 mm spot size processing. 

Figure 5.7 shows a schematic image of a nano-crystalline material where the grain-

boundary atoms are white and are not clearly associated with crystalline symmetry [171]. 

The micrographs of samples processed at 0.2 mm and 0.09 mm spot size in Figure 5.3 (a) 

and (b) clearly resemble the nano-crystalline structure. Nano-crystalline materials are 

characterized by a large volume fraction of grain boundaries and grain sizes have been 

observed to range between 10 and 300 nm [87]. The grain size range was found to vary 

greatly in this work with processing at a 0.4 mm spot size since the prolonged melting 

duration caused energy accumulation on the surface and recalescence. The local heat field 

and the local surface cooling rate can be varied greatly allowing control of grain formation 

through the surface layers. The smaller spot size of 0.09 and 0.2 mm resulted in a more 

controlled surface temperature gradient range due to the short residence time. The ‘off’ 

state in the laser pulse produced in these cases a sufficient time for development of 

undercooled austenite after each pulse and transformation to ultrafine-sized ferrite 

ranging from 0 to 3 µm. This is comparable with the austenite to ultrafine ferrite 

transformation obtained by thermo-mechanical controlled processing [111].  



 

159 

 

Figure 5.7: Two-dimensional model of a nano-structured material. The atoms in the 

centres of the crystals are indicated in black [171]. 

Consistent grain size distribution in the modified surface of samples processed with 0.09 

and 0.20 mm spot size was possibly due to the large amount of grain boundary in the 

initial austenite phase. Similar trends have been previously recorded [172]. Initial 

austenite grain size was found from review to have a significant effect on the ferrite 

characteristics. The ferrite grain size distribution tends to be more uniform for a fine 

initial austenite grain size when compared to an initial coarse austenite grain size [111]. 

On the other hand, at large undercoolings, the austenite grain size becomes less 

deterministic for final grain structure [173]. 

Grain Morphology 

Grain refinement in the modified surface and heat affected zone was found to be due to a 

steep temperature gradient and high cooling rate. The steep temperature gradient 

resulted in phase transformation, and supercooled/undercooled austenite which 

increased the number of nucleation sites for ferrite and lead to ferrite grain refinement 

[96, 98, 99]. In Fe70Co30 alloy, quenching without undercooling results in long elongated 

dendritic growth of the stable austenite phase [174]. In DOE2, ferrite transformation 

occurred at very low undercooling where martensite phase presence was also observed 

among the ferrite phase. The martensite phase in the modified surface resulted from 

solubility extension of the solute atoms at high cooling rate [94, 102]. Previous work also 

found that for laser processed Fe-based alloys, rapid austenizing followed by quenching 

can develop a unique microstructure consisting of ultrafine-grained martensite [99]. The 

martensitic transformation in Fe-Cr alloy begins in the grain boundary areas of significant 

Cr-depletion, where the chemical driving force is the main driving force [107].  

The presence of α-Fe and martensite phases was accompanied with a small amount of 

carbides as found in previous work where carbides were detected at 45 µm below the 
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laser processed surface [32]. When austenite decomposes into ferrite, carbon must diffuse 

across the boundary between the two phases and away through the γ lattice [114]. 

However, as the solubility of carbon in ferrite at 723°C is only 0.02 wt%, a large amount of 

carbon still remains in the modified surface of H13 tool steel. During rapid quenching of 

Fe-based alloy, undercooled austenite caused incomplete carbon diffusion, nucleation and 

growth of carbide or M23(B,C)6 type crystalline phase [88]. However if the diffusion was 

allowed to complete, cementite phase will form.  

The grain size is dependant to the undercooling where smaller sized grains were formed 

at high undercooling as the solidification process takes place in a short period of time. 

Variations of undercooling caused nano and ultrafine size grain formation near and within 

grain boundaries. Generally, ferrite forms as grain boundary allotriomorphs and nucleates 

at austenite grain boundaries above the eutectoid temperature. The allotriomorphic 

ferrite is usually lenticular in shape since it tends to grow preferentially along the grain 

boundary [114]. Indistinct grain boundaries could be due to recalescence effect in the 

steels during cooling. The temperature evolution from transformation heat causes 

recalescence and reduces the effective undercooling. Thus, at some large undercooling 

below the equilibrium temperature, the grain size achieved in practice is far greater than 

predicted theoretically [173].  

In DOE3, similar phase transformation was observed due to undercoolings. Ultrafine 

grains with high volume fraction of grain boundaries were formed as a result of large 

undercoolings compared to DOE2 samples. The smallest ferrite grain size that can be 

achieved occurs when all of free energy for nucleation is used up in creating ferrite/ferrite 

grain boundaries [173]. Rapid heating and cooling rates from laser irradiation can yield 

nano-crystalline and/or amorphous structures [94, 175, 176]. Consequently, the number 

of grains increased in laser modified samples compared to the number of grains present 

within the same volume in the substrate. At the same time, grain growth was observed 

from coarse grains with faded grain boundaries due to recalescence and grain growth 

process in polycrystals [177]. Furthermore, solidification rate differed at different surface 

depths and overlapped areas due to thermal capacity and conduction of the substrate. In 

the overlapped regions, grain growth occurred, together with subgrains formation due to 

increased surface temperature and heat sink from the adjacent substrate.  

In DOE4 and DOE5, high volume fraction of grain boundary, amorphous-like and quasi-

crystalline phases were observed due to the large undercooling. The ‘flower like’ grains 

were also found in previous works of Rios et al. and Biswas et al. [101, 122]. In Fe-based 

alloys, the quench rate can be as high as 105-106K/s to produce amorphous phase and is 
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limited to a maximum of 50% of Fe content composition [91]. In surface modification of 

H13 tool steel, the higher Fe composition necessitates a more rapid quench rate to 

produce amorphous phase. With the 0.09 mm laser spot size processing and duty cycles of 

18 to 36%, the approximate cooling period range was 0.183 to 0.356 ms, see Table 4.7 and 

Table 4.8. At these cooling periods, the cooling rates calculated using Equation 3.11 were 

between 3.95x106 and 7.70x106 K/s. In order to develop metallic glass, the empirical rules 

are; that the alloy should contain more than three constituent elements, a large difference 

of more than 12% in the atomic size of the constituent elements, and the mixing enthalpy 

of the elements should be negative [178]. Due to the small weight percentage of each 

element in H13 tool steel relative to the Fe content, only amorphous-like phase formation 

was observed and randomly distributed within the ultrafine ferrite, even though the H13 

tool steel pools were highly undercooled.  

5.2.2 Hardness Properties 

The laser parameter settings in DOE2, DOE3, DOE4 and DOE5 were designed to produce a 

range of heating and cooling rates, and resulted in different grain compositions and sizes. 

The hardness properties of laser modified samples correspond to different hardening 

mechanisms. Two major strengthening mechanisms identified from the metallographic 

study were grain refinement and metastable phase formation. In steels, ferrite grain size 

refinement is an important method for improving both the strength and toughness as 

ferrite is the stable phase at ambient temperature [173]. Ultrafine-grained materials 

exhibit excellent mechanical properties compared with conventional fine-grained 

materials or coarse-grained materials [6, 72, 115, 116, 168]. Table 5.4 shows the range of 

average hardness measured in the as-received and modified samples of four of the 

conducted DOEs.  

Table 5.4: Hardness properties of as-received and laser modified H13 tool steels at a range 

of heating rate and cooling periods. 

Sample As-received 

H13 

Laser modified H13 tool steel 

DOE2 DOE3 DOE4 DOE5 

Range of 
hardness (HV0.1) 280 724-1017 435-996 690-922 728-905 

Range of HR  
(106 K/s) - 3.69-4.81 5.61-11.80 8.68-22.50 8.94-27.20 

Range of tcooling 
(ms) - ≤0.026 0.094-0.226 0.183-0.282 0.183-0.363 

Range of CR 
(106 K/s) - ≥54.69 6.21-14.90 4.97-7.67 3.95-7.70 

Increment of hardness properties in DOE2 samples was contributed to by grain 

refinement along with martensite phase presence which is in agreement with previous 
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work [127]. The offset grain size, on microhardness, by changing from 30 µm (pre laser 

treatment) to 200 nm (post laser treatment) was found to be consistent with the Hall–

Petch relationship. The Hall–Petch behaviour can be observed for low-carbon steel with 

grain changing from micron to submicron, independent of production method, and is valid 

for grain size changing over a range of two orders of magnitude [125]. The hardness 

properties of DOE2 samples correspond to varied duty cycles and overlaps, which 

indicates the dual effect of pulse energy and residence time. From the developed design 

model, a high hardness modified surface can be produced at high pulse energy of 0.23 J 

with less than 20% overlap and at lower duty cycles from DOE2 in the range of 85 to 88%, 

see Figure 4.15. While using lower pulse energy of 0.17 to 0.19 J necessitates high duty 

cycle of more than 97% and overlap of at least 35%, see Figure 4.15. The pulse energy and 

residence time combination determines the surface heating rate and quench rate of 

undercooled austenite. At 100% duty cycle, samples were cooled more slowly which 

caused heat accumulation on the surface and variations in undercooling rate and effect. 

The cooling rate at 85% duty cycle was sufficient at low overlap for large undercooling 

and the production of ultrafine ferrite. At high duty cycles of 98 to 100% the hardness was 

maximum at 40% and 50% overlap due to the lower laser irradiance used (by setting a 

higher PRF) which allowed for larger undercoolings. Lower irradiance resulted in a higher 

cooling rate caused by a higher degree of undercooling [137]. 

In DOE3, hardness enhancement occurred due to grain refinement and the presence of a 

high volume fraction of grain boundaries in the modified layer. The Hall–Petch 

relationship describes the increase of flow stress with decreasing grain size [179]. The 

smaller spot size of 0.2 mm compared to the 0.4 mm spot size yielded higher irradiance 

and retained stress during surface processing. Variation of average hardness in the 

modified layer was due to changes in both the peak and average power settings. Though 

high peak and average power resulted in high hardness properties, in pulse laser 

processing mode the average power should be constant. Changing the peak power and 

duty cycle at constant average power is sufficient to alter the resulting properties of the 

processed surface [59]. Low hardness in sample N4, see Table 4.5, processed at 0.09 J 

pulse energy was due to insufficient pulse energy for phase transformation. At a pulse 

energy of 0.10 J, lower hardness properties were measured in sample N10 processed at 

10% overlap in contrast to sample N24 with 50% overlap due to insufficient residence 

time at this setting and the longer cooling period of 0.208 ms compared to 0.160 ms, see 

Table 4.4. Longer residence time at this setting allowed phase transformation to approach 

completion and formed finer grains during the shorter cooling period of 0.160 ms. The 

highest hardness measured in the sample processed at 0.11 J pulse energy indicates that a 
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finer grain size ferrite was transformed from undercooled austenite at this higher 

irradiance and shorter residence time setting, see sample N12 in Table 4.4 and Table 4.5.  

Even though a lower irradiance needs a longer residence time for surface melting, 

however, for grain refinement, the grain size depends on the cooling period and the effect 

of both irradiance and residence time setting on the sample surface temporal temperature. 

Variations of hardness indicated that surface re-melting from overlapped pulses caused 

tempering of the previous laser irradiated surface and heat accumulation increased the 

average global surface temperature. The hardness decrease at a surface depth of 

approximately 80 µm (depending on the modified surface geometry) was due to the lower 

cooling rate as surface depth increased. Low hardness properties were recorded from heat 

affected zone (HAZ) where formation of ferrite and pearlite structure mostly found in the 

HAZ decreased the hardness properties [127]. Yet, the measurements recorded in the HAZ 

were still higher than measured in the substrate as refinement of ferrite occurred at low 

undercooling which is found to improve both strength and ductility of the steel [172]. A 

reduction in ferrite grain size to 1 µm will significantly strengthen Fe compared to other 

structural metals [111]. 

Hardness properties measured in DOE4 and DOE5 were contributed to by the ultrafine 

grain size generated and metastable phase formation detected in the SEM micrographs. In 

DOE4 and DOE5, the average power was constant at 274 W while peak power was varied 

at three levels which resulted in a mean hardness of 800 HV0.1 for both DOEs. At the same 

pulse energy of 0.09 J in DOE 4, the change of average hardness corresponded to residence 

time variations regardless of the peak power settings.  

5.2.3 Surface Roughness 

Surface roughness results varied with pulse energy and laser spot size as given in Table 

5.1. In DOE2 a range of average surface roughness (Ra) was achieved between 3.5 and 38.2 

µm with the two significant factors identified as overlap and duty cycle, which are in 

agreement with previous work [53, 70]. The minimum surface roughness was achieved in 

samples processed at the minimum overlap of 10% and at a duty cycle of 85%. This which 

resulted from a lower number of pulses from 10% overlap compared to 30% overlap. 

Increasing both the number of pulses and the duty cycle increased the material-laser 

interaction time which leads to higher laser energy absorption [3, 50]. When more laser 

energy was absorbed the surface temperature increased and formed irregular geometries 

which increased the surface roughness [19, 74].  
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A lower range of surface roughness was recorded in DOE3 samples compared to DOE2 

samples due to the smaller laser spot size of 0.2 mm used in sample processing. Although 

high irradiance settings at 0.2 mm spot size might cause an increase of surface roughness, 

the pulse energies and widths were reduced compared to samples processed in DOE2 [7, 

19, 76]. Among the samples processed using 0.2 mm spot size, the surface roughness was 

lower in sample N4 where the pulse energy was lowest at 0.9 J, see Table 4.6. Higher 

surface temperature which resulted from a higher irradiance, improved the surface 

absorptance which promoted energy penetration and efficient surface melting. While 

increased overlap affected the residence time, 50% overlap setting increased the surface 

temperature compared to 10% overlap. The surface temperature was lower for processing 

with smaller pulse energy and improved surface topography resulted.  

Higher laser irradiance was designed into sample processing conditions for the 0.09 mm 

spot size (DOE5), with three levels of peak power. A higher range of surface roughness 

was measured for these samples, between 1.8 and 22.4 µm, in comparison to 

measurements taken from samples processed with a 0.2 mm spot size. Increase of surface 

roughness for sample N24 from DOE3 was contributed to by the high duty cycle setting of 

50% at the low peak power of 760 W. While duty cycle determines the pulse duration, an 

increase of overlapped pulses prolongs the laser-surface interaction time, both of which 

affect the surface temperature.  

5.2.4 Statistical Analysis 

(a) Modified Surface Depth 

The cubic model selected for modified surface depth response was aliased. Some of the 

main interaction effects were insignificant. Using the stepwise elimination method, the 

model was reduced and the insignificant terms were automatically removed. Reducing the 

design model by removing the insignificant terms has been illustrated in previous work 

[161]. Though the initial model was aliased, the reduced model was significant and fitted 

well with the three key factors of peak power, overlap and PRF affecting the modified 

surface. The factor interactions were sufficient to achieve the design goal and were 

consistent with findings in DOE3 and DOE4. 

The contour plot of PRF and overlap against peak power showed an elliptical shape which 

suggests factor interactions [180]. In DOE5, variation of pulse energy was investigated to 

obtain the optimised parameters for enhanced surface properties. Peak power settings 

remained as they were in DOE4, while the overlap range was reduced. The pulse energy 

resulting from PRF setting controlled the surface temperature. At higher pulse energy and 
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residence time, the sample temperature raised which increased sample surface 

absorptance [63]. Therefore, maximum modified surface depth, 150 µm, was formed at 

2300 Hz PRF and 760 W peak power settings where the laser ‘on’ state was longer, for 

sample F1, see Table 3.9 and Table 4.8. The modified surface depth also increased with 

increasing overlap percentage due to increasing laser-material interaction time, see Figure 

4.33. Longer laser-material interaction time/ residence time delayed surface cooling 

which is a disadvantage for enhanced surface morphology as shown in sample F1, see 

Figure 4.27 (d).  

(b) Hardness Properties 

A quadratic model was generated for the hardness response where the peak power was an 

insignificant factor for DOE5, see Figure 4.3. For the hardness response, the quadratic 

model was not aliased which allowed all interaction effects to be estimated. The 

insignificant terms were not removed as the original model was significant and well fitted. 

In this model, peak power was however insignificant as supercooling of austenite occurred 

within the irradiance and residence range. Supercooled austenite transformation to 

ultrafine grain refinement due to rapid laser pulse heating and cooling, yielded high 

hardness in the modified surface. Though the peak power term was insignificant, its 

interaction with other factors was significant in determination of the hardness properties.  

The elliptical shape of contour plots for PRF and overlap against peak power, and overlap 

against PRF graphs suggested factor interactions with respect to the hardness response. 

The main cause of hardness variation was due to the three levels of pulse energy. The peak 

power and PRF interaction effect was significant. The maximum hardness achieved at 

minimum overlap of -10%, 1515 W peak power and 2300 Hz PRF was due to rapid 

solidification of supercooled austenite at a low duty cycle of 18%. The maximum hardness 

was resulted from the heating rate of 17.83 x 106 K/s at the highest pulse energy of 0.12 J 

and 0.08 ms residence time, see sample F2 in Table 4.8. The surface was solidified within a 

cooling period of 0.356 ms which was adequate to supercool the austenite phase and form 

ultrafine ferrite. The minimum hardness was measured from the sample processed at 0.08 

J pulse energy and 0.06 ms residence time, see sample F10 in Table 4.8. The surface was 

melted at a heating rate of 22.67 x 106 K/s and consequently supercooled at a short 

cooling period of 0.195 ms. At this short cooling period, the austenite-ferrite 

transformation was interrupted and caused heat accumulation on the surface when 

subsequent pulses struck. Both heating rate and cooling time are significant parameters in 

laser surface modification in order to control the size of the microstructurally altered 

surface. The indentation marks in Figure 5.8 were observed on the sample cross section. 
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Smaller grain size in modified layer resulted in small indentation mark which exhibit 

higher hardness.  

 

Figure 5.8: Increase of indentation mark diameter from modified surface [A] to substrate 

material [B] for sample F11. 

The interaction of overlap and peak power shows high hardness was achieved at diagonal 

regions of the contour plot where the overlap and power was maximum, see Figure 4.38. 

Increasing the overlap at the lower power of 760 W was beneficial to increase the 

hardness. The changes in hardness were due to a balance interplay of residence time and 

pulse energy on the modified surface during processing. On the other hand, the 

mechanical properties were more homogenous at the 0% overlap [25]. 

The interaction of overlap and PRF setting indicates an increase of hardness properties 

with decreasing PRF due to larger supercooling during phase transformation. The overlap-

PRF interaction effect on hardness properties was weak in contrast to the overlap-peak 

power interaction as both overlap and PRF were time based parameters. While peak 

power contributes to pulse energy, changes in overlap affect the residence time and 

consequently the surface cooling rate.  

(c) Surface Roughness 

The fit model for the DOE5 surface roughness response was cubic with eight significant 

terms. In this model, the overlap was an insignificant term as minimum surface roughness 

can be achieved at any overlap provided that the pulse energy and residence time were 

balanced to produce a supercooled surface. Many models work better as prediction 

equations without including the insignificant factors [181]. At 0.09 mm spot size, the laser 

irradiance was high which melted a large region allowing melt pool interaction from 

subsequent pulses for minus 10% overlap.  

[A] 

[B] 
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The range of surface roughness was broader in DOE5 compared to the other three DOEs 

due to the three levels of pulse energy used. Pulse energy setting has a significant effect for 

variation of surface roughness. In DOE5 the surface roughness decreased in samples 

processed at 0 % or -10 % overlap due to the short residence time. The residence time or 

material-laser interaction time at -10 % overlap was shorter than the time computed at 10 

% overlap due to changes in the sample traverse speed. The residence time was computed 

from laser spot size, traverse speed and duty cycle, see Equation 4 in Appendix B. The 

resulting actual interaction time between the laser and material surface during processing 

was decreased as the overlap decreased at constant peak power and PRF. Low PRFs tend 

to produce high pulse energies which can roughen the surface at prolonged exposure to 

the laser energy [60, 74]. This explanation supports the surface roughness decrease with 

increasing PRF and decreasing residence time. Rapidly melted and solidified H13 surface 

by high pulse energy yields smaller grain size in the modified layer which exhibited higher 

hardness.  

The contour plot of PRF against peak power indicates decreasing surface roughness with 

increasing peak power and PRF which explains the advantage of lower energy in laser 

surface processing, see Figure 4.42. In laser surface modification, high peak power setting 

was coupled with low duty cycle, while vice versa for low peak power, in order to obtain a 

similar proportion of the irradiance to residence time (I/TR) setting. 

The circular shape from the contour graph of overlap and peak power interaction suggests 

a level of interaction of these factor effects [180]. At high PRF, variation of overlaps and 

peak power to reduced surface roughness was insignificant due to the low pulse energy 

operation [19]. The overlap-power interaction was found significant at the lower PRFs of 

2900 Hz or less. 

Design Optimisation 

The optimisation process involved combining the goals into the overall desirability 

function. A maximum desirability of one was set as the goal to be accomplished from the 

28 parameter settings with high priority of minimising the surface roughness response. 

The hardness factor goal was set within a range of upper and lower limits because the 

results were already higher than found in previous works [3, 40, 55, 56, 65]. The modified 

surface depth range was less than found in some previous works. However in terms of 

hard surfacing or coating, the modified surface depth range coupled with high hardness 

achieved was applicable for wear resistant components. A thin and thick duplex coating 

system on H13 tool steel was previously presented between 3.0±0.17 and 8.3±0.16 μm 

respectively [182]. Other multilayer type of thin coatings found on die tools had a 
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thickness measurement of 2.875±0.074 μm [84]. Nevertheless, the laser modified surface 

is known to be well-bonded to the substrate and can fulfil the interfacial bonding strength 

requirement in coated surface [6]. The surface roughness response was minimised with 

high importance to meet die application requirement of less than 5.0 µm Ra [58]. In many 

engineering applications, minimum surface roughness is important to inhibit premature 

failure of components that generally initiate on the surface [77, 142, 183].  

5.2.5 EDXS Analysis 

The EDXS results showed that higher carbon percentage was detected in the as-received 

H13 tool steel when compared to the composition measured by spark light emission 

spectroscopy, see Table 3.1 in § 3.1. EDXS is commonly known however to produce C 

concentration results than are actually present due to the lack sensitivity of the lower 

mass elements. In the EDXS analysis, the untreated H13 tool steel cross section was 

measured from sample F10 substrate region. The high rate of heating and cooling during 

processing had possibly increased the percentage of C through diffusion. However, as the 

measurements were carried out deeper into the substrate, the cooling rate was much 

slower than the processed surface which explains the uniform distribution of elements in 

the selected area, see Figure 4.45 and Table 4.17.  

The parameters used in modifying the H13 tool steel samples caused variation of elements 

composition. By heating the sample surface at its liquidus temperature of 1454˚C the 

elements were redistributed. From the analysis conducted for DOE2 samples which were 

processed at pulse energies of 0.19, 0.20 and 0.23 J, the existence of the elements like Mo, 

Cu and Ni, and the range of the elements composition in the modified layer were 

determined. Diffusion of elements occurred during laser heating as the modified layer 

composition changed from that of the H13 tool steel substrate. Diffusion possibly occurred 

for C, Cr, Cu and S elements. The C diffusion was identified in the three samples (E8, E15 

and E27) as the C content was higher when compared to the EDXS measurements of the 

H13 tool steel substrate. Increased pulse energy increased the sample temperature which 

increased the atomic diffusion rate. For sample E8, the high pulse energy of 0.23 J had 

resulted in a high diffusion rate in the molten surface. However under a high cooling rate, 

the rapid decrease of melt temperature trapped the atoms in their location. It seemed that 

the presence of elements in the modified layer was dependant on the energy, residence 

time and speed of undercooling during processing. The effect of higher laser scan speed on 

lowering the elements diffusion in molten region was also reported in previous works 

[46]. 
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In DOE5 samples, the higher irradiance settings with 0.08, 0.10 and 0.12 J pulse energy 

had caused more diffused elements in the modified layer. In sample F1 and F8, with the 

range of cooling rates 5.06x106 to 5.09x106 K/s, sulfur diffusion occurred; see Table 4.20. 

Sulfur diffuses in steels at high temperatures (more than 1000˚C). A similar finding was 

reported previously [184]. For all four DOE5 samples, Ni diffusion possibly occurred in the 

modified layer due to the higher irradiance used during processing compared to DOE2. In 

general, Ni diffusion in steel occurs at high temperature (over 1100˚C) [185]. A Ni 

diffusion was observed in all four samples of DOE5 where the irradiances were between 

119,297 and 216,449 W/mm2. These irradiances increased the sample surface 

temperature rapidly at shorter residence times compared to the lower irradiances and 

longer residence times in DOE2. The shorter residence time in sample F8 from DOE5 

produced a higher composition of Cr and Mo elements in the modified layer when 

compared to other three samples. Shorter residence time increased the undercooling 

speed which possibly stopped the diffusion earlier than in other samples. 

5.2.6 XRD Analysis  

The peak reflection analysis of the modified samples conducted between 30 to 70° Bragg’s 

angle was sufficient to investigate the phase crystallinity and broadening effect of the 

(110) α-Fe phase. The α-Fe phase expresses super saturation solid solution martensite 

and ferrite [186]. Peak reduction occurred in all laser modified samples with maximum 

reduction in samples X2 and X5 shown in Figure 4.55. Since sharp and strong peaks show 

a well-crystalline nature of α-Fe phase, the peak intensity reductions resulted from 

decreasing phase crystallinity [187]. The finding on decreasing phase crystallinity also 

supports the supercooled austenite transformation discussion earlier. 

Referring to the processing parameter effects on samples in Table 4.21, the smaller spot 

size of 0.09 mm resulted in a more rapid heating rate compared to 0.2 and 0.4 mm spot 

size due to the combination of settings of high irradiance and short exposure time. Longer 

exposure times were necessary when processing samples at low laser irradiance to allow 

surface melting to take place. A low heating rate and small undercooling interplay in 

sample E8 and E15 to produce martensite phase during processing, see Figure 4.53. A 

similar peak traced at 35° angle position was referred to as structural transformation in 

water quenched Fe-Ga alloys after being heat treated at 1000°C [100]. At 4,600 W/mm2 

laser irradiance and 0.34 ms exposure time, the (110) and (200) α-Fe crystalline peaks 

intensity of sample E15 were reduced, see Figure 4.53 (a). A small increase of heating rate 

(5,548 W/mm2 laser irradiance and 0.32 ms exposure time) was adjusted for sample E8 

which suppressed the (200) α-Fe peak, see Figure 4.53 (b).  
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In Table 4.21, the laser irradiances for sample N4 and N12 were 10,930 W/mm2 and 

28,184 W/mm2 with residence times of 0.25 and 0.12 ms respectively. The martensite 

peak was absent in both samples N4 and N12. A noticeable change was the intensity of the 

(200) α-Fe peak decreased 10 % more in sample N12 in contrast to N4 due to higher laser 

irradiance. The samples processed at spot size of 0.09 mm indicated the presence of a 

small amount of randomly distributed nano-subgrains in the laser modified surface from 

the decrease of the crystalline peak intensity, see Figure 4.23. The findings show 

significant effect of heating rate where at low irradiance and longer exposure time 

combination, the martensitic transformation was initiated. Whereas, the large 

undercooling allowed for the martensitic transformation to be skipped and suppressed 

several long range order peaks. 

The formation of nano size and ultra fine size grain structures in the modified layer 

corresponds to the diffraction peak intensities found in the XRD analysis. A small 

broadening effect occurred in the diffracted peaks of the modified surface due to an 

increase of grain boundaries from ultra-fine size sub-grain formations. In sample E15 and 

E8, one of the factors which caused grain refinement was the growth and evolution of 

martensite phase due to grain-subgrain boundaries and lattice structure changes under 

the specific variation in temperature [188, 189]. The broadening effect investigated is also 

correlated with the mechanical properties of steel where ultrafine grain exhibits high 

strength and good ductility in metallic materials [190, 191]. 

Formation of Martensite and Metastable Phases 

As highlighted in the previous section, samples processed at 0.4 mm spot size underwent 

martensitic transformation with refined grains. The (211) martensite peak reflected was 

due to martensitic transformation from surface tempering. Grain refinement resulted from 

the laser energy which caused undercoolings and severe plastic deformation. The majority 

of nano-crystalline α’ (bcc) resulted from the austenite to martensite (γ―›α’) 

transformation during severe plastic transformation [117]. Generally, martensitic 

transformations are characterised by a diffusionless change in crystal structure. When the 

laser beam melted the surface at 0.4 mm spot size, the consequent rapid cooling rate 

caused martensitic transformation to occur. At the same time, the heat from processing 

increased the sample temperature which functioned to cause heat accumulation in the 

sample. Tempering effect then could take place on the martensitic structure due to the 

entrapped heat resulting in reduced cooling rates. In Fe-based alloys, the temperature 

dependant martensitic structure, α’ was found at the grain–subgrain boundaries [188]. 
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The anomalous phases are the most similar to quasicrystalline or metastable phases as 

referred to in previous works [102, 122]. Besides, metastability presents in grain 

refinement of undercooled melts [192]. The anomalous peaks were observed to split from 

the main (110) α-Fe peak due to formation of metastable phases during laser processing 

and could not be indexed on BCC or FCC symmetry. The peak splitting of X-ray diffraction 

is connected with the coexistence of rhombohedral and tetragonal phases and the 

presence of small-angle grains in the crystal [193-195]. However, the sharp peaks 

reflected were close to the characterisation of quasi-crystalline materials which contained 

non-periodic long range order featuring non-crystallographic symmetry [122]. The quasi-

crystalline state is between the crystalline and amorphous phase [102]. The rapid heating 

and cooling rate during laser surface modification could yield the quasi crystalline phase. 

The preliminary results showed the metastable phases were affected by the pulse energy. 

The presence of metastable phase peaks were more reflected in the sample processed at 

the low pulse energy of 0.08 J, see Figure 4.58 (c). The findings are similar with those of 

previous works where formation and evolution of quasicrystalline phase can occur at 

either rapid or during conventional solidification from the melt [94, 102, 196]. In this way, 

novel materials can be developed by laser surface modification without being restricted by 

the equilibrium phase diagram [175]. 

5.3 Thermal Modelling Simulations of Laser Surface 

Modification of H13 Tool Steel 

Temperature Distribution in Modified Surface 

The analytical thermal model used to predict the temperature distribution of the pulsed 

laser surface modified H13 tool steel sample (F13) shows that the temperatures achieved 

were correlated with the micro-structural changes as determined from the metallographic 

study. Surface absorptance input was set as 60% of the pulse energy and simulation 

outputs were used to visualise the thermal field. The actual laser pulse energy absorbed 

depends on many factors including surface roughness, material type, laser wavelength and 

sample temperature. Therefore, nominal temperature values were used in this work 

instead of actual calculated temperature values. Heating and cooling rates are significant 

values in laser surface modification in order to control the size of the micro-structurally 

altered region after solidification. Prolonged heating rates results in heat accumulation in 

the surface and delays the solidification process which affects the grain size and hardness 

properties. The simulation considered constant thermal properties of H13 steel 
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throughout the process, therefore the modified layer shown by simulation was slightly 

deeper than that seen in the experimental results. 

Effect of Heating and Cooling Rate on Hardness Properties  

The simulations of temperature distribution in the pulse laser glazed surface can allow for 

prediction of the heating and cooling rate at specific points in the molten pool. Decreased 

cooling rate from the centre to the edge of the molten pool in the simulation was due to 

temperature drop at liquid-solid interface. The cooling rate at the liquid-solid transient 

boundary of the molten pool determines the solidification process and microstructure 

[197]. The heating and cooling rates were correlated with the hardness of the processed 

samples. The maximum hardness of 824 HV0.1 was achieved at a nominal heating to 

cooling rate ratio of 1.94. At higher Z values, lower heating and cooling rates occurred with 

corresponding reductions in the micro-hardness. In comparison to the substrate hardness 

of 280 HV0.1, the laser surface modification produced an extremely hard surface which was 

at least three times higher than the substrate. There exists a strong relationship between 

reductions of micro-hardness and decreases of heating and cooling rate. The simulation 

findings can therefore be used to predict the hardness properties measured 

experimentally. This model was found to be useful and important for the provision of 

surface modification process maps for use with the pulse laser mode. 
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CHAPTER 6 

Conclusion 

6.0 Chapter 6 Heading 1 

6.1 Conclusion 

The findings presented in this thesis can be concluded to several important points: 

(a) DOE 

Designs of experiment were developed to investigate the significance of each laser 

parameter on the surface properties and achieved optimised processing parameters. At 

the end of the parameter investigation it was found that, a deeper modified surface depth 

was developed by focusing the laser beam underneath the sample surface. By decreasing 

the laser spot size to process the samples, a definite size of molten pool developed from 

laser processing was achieved. Thus, overlap calculation was more precise which allowed 

generation of a continuous modified surface using pulsed laser processing. 

Designing the overlap at constant PRF was successful to minimise the surface roughness 

properties. In order to process other sample geometries, the surface traverse speed at 

particular laser irradiance was found to be important factor to produce a specific surface 

roughness. The determined and investigated combinations of laser irradiance and 

residence time to process H13 tool steel samples were capable to produce supercooled 

surfaces with enhanced hardness properties.  

(b) Metallographic Study  

From the metallographic study, a significant effect of laser parameters on the modified 

surface depth, grain size and composition was determined. A summary of modified surface 

depth and grain size range, and grain composition of the as-received sample and samples 

from each DOE is given in Table 6.1. The overlapped pulses design and surface 

absorptance design developed in DOE3, DOE4 and DOE5 successfully produced a uniform 

modified surface with enhanced surface properties.  
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Table 6.1: Summary of metallographic study findings of as-received and laser modified 

H13 tool steel for the different DOE. 

Sample 

characteristic 

As-

received  

Laser modified H13 tool steel 

DOE1 DOE2 DOE3 DOE4 DOE5 

Average 
modified 
surface depth 
range (µm) 

- 0-29 46-180 48-80 42-88 37-150 

Feret grain 
size range 
(µm) 

3.00-9.00 
Not 

measu-
red 

2.54-5.99 1.60 -2.83 0.51-1.09 0.40-1.25 

Grain 
composition 

α-ferrite, 
martensit

e phase 
with 

M23C6 and 
M7C3 

carbides 
(M=Cr, Fe) 

Not 
measu-

red 

α-ferrite 
and lath 

martensite 
phase 

α-ferrite 
and 

martensite 
phase at 

grain 
boundaries 

α-ferrite 
and 

metastable 
phases-

amorphous 
and quasi-
crystalline 

α-ferrite 
and 

metastable 
phases-

amorphous 
and quasi-
crystalline 

(c) Hardness 

The laser modified surface hardness properties were enhanced to greater than three times 

higher than the unmodified H13 tool steel substrate in the DOEs. Increase of hardness due 

to grain size decrease was in agreement with the Hall-Petch relationship. The laser 

irradiance and residence time variations at three different laser spot sizes used in the 

processing were suitable to enhance the surface hardness. In many previous works 

maximum hardness obtained in laser modified H13 tool steel was between 243 and 700 

HV0.1. In this research, the hardness achieved from design optimisation was from 435 to 

996 HV0.1 for all DOEs and from 728 to 905 HV0.1 (61 to 67 HRC) from DOE5. Hardness 

properties are important in order to allow the laser modified surface to be used and 

developed for specific engineering applications. 

(d) Surface roughness 

Significant decrease of surface roughness with variation of laser parameter was achieved 

in laser surface modification of H13 tool steel. Component failure often initiates at the 

surface, the surface roughness requirement of Ra < 5 µm commonly used for semi solid 

metal processing tooling applications. Table 6.2 shows the summarised results from four 

DOEs which indicate the minimum surface roughness achieved in the samples.  

Table 6.2: Surface roughness of laser modified H13 tool steel from different DOE. 

 DOE2 DOE3 DOE4 DOE5 

Range of average 
surface roughness 
(µm) 

3.5-38.2 3.1-7.9 3.2-9.5 1.8-22.4 
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(e) EDXS 

Change of elements composition in the modified layer region was detected in DOE2 and 

DOE5 samples. The surface composition variation was due to the processing parameters: 

irradiance, pulse energy, residence time and the resulting heating and cooling rates. 

Heating the samples at high temperature allowed atomic diffusion to occur. The rapid 

drop of temperature which provided the stopped further atomic diffusion and then froze 

the present structure in place. Higher irradiances and shorter residence times in DOE5 

caused a greater degree of element diffusion compared to DOE2.  

(f) XRD 

A significant decrease of α-Fe crystallinity and development of metastable phases were 

identified in the laser modified surface. Decreasing phase crystallinity and phase 

transformation variation in the laser modified surface were dependant on processing 

parameter settings, in particular the laser spot size. Processing the H13 tool steel samples 

using a laser spot size of 0.4 mm yielded martensite phase. Absence of martensite phase in 

samples processed at 0.2 and 0.09 mm laser spot size was due to the higher cooling rate 

on the sample surface. However, previous works indicate that the anomalous peaks 

developed in the samples processed at 0.2 and 0.09 mm laser spot size were possible to be 

identified in quasicrystalline phases. These findings reveal the phase source of the 

hardening mechanism and grain composition in the laser modified surface.  

(g) Thermal modelling 

In this work, an analytical thermal model was used to predict the temperature distribution 

of the pulsed laser modified samples. The temperatures achieved were correlated with the 

position of the microstructural changes as determined from the experimental work. The 

heating and cooling rates were correlated with hardness values achieved at various steps. 

This model was shown to be useful for the determination of laser parameters for surface 

hardening. The simulations of temperature distribution in pulse laser glazed surface can 

predict the heating and cooling rate at specific points in the molten pool. By evaluating 

these rates, the hardness of the processed samples can be determined. The hardness of 

882 HV was achieved at nominal heating to cooling rate ratio of 1.94. At higher Z (surface 

depth) values, lower heating and cooling rates occurred with corresponding reductions in 

the micro-hardness. The findings are important for the provision of pulse laser surface 

modification process maps. 
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(h) Process optimisation 

One set of optimised processing parameters were found at 1138 W peak power, 3500 Hz 

PRF and -10% overlap which produced a hardened surface of 728 HV0.1 with minimum 

average surface roughness of 1.8 µm and modified layer depth range between 42 and 50 

µm. The Ra parameter was selected with minimum surface roughness as the highest 

desirability factor due to its importance in many engineering applications. The modified 

layer depth range at minimum surface roughness was also sufficient to act as a thermal 

barrier coating and protect the substrate. The hardness of sample processed at these 

parameters was 2.6 times higher than measured in the substrate. These findings are 

significant for the development of high hardness and smooth surface in many applications 

like dies, moulds and other toolings. 

6.2 Future Work 

Future works propose in this field include, analysis of surface cooling and heating rate 

using high magnification and temperature thermal camera. A detail study on molten pool 

properties of modified surface is crucial to create quasicrystal or amorphous surface in 

high %Fe content alloys. Amorphous alloys have been commercialised in many wear 

resistant applications due to their unique properties, however little information is 

available in the literature on developing amorphous surface on Fe-based alloy substrates.  

Investigation of laser modified phase using transmission electron microscope (TEM) is 

important to study the presence of quasicrystalline phases and their properties. 

Supercooled surfaces contain superior properties compared to the substrate due to grain 

refinement and phase transformations. In many alloys especially Fe based, quasicrystals 

have not been properly characterised. Thus, by revealing the phase properties and 

stability, laser modified Fe-based alloy surfaces could be exploited in many interesting 

applications especially where application at elevated temperature (more than 1000°C) is 

required. 

As the laser glazed surface has a reduced coefficient of thermal expansion compared to the 

substrate; ceramic coating of the glazed surface should be investigated to examine the 

potential benefits from functional grading of the thermal expansion coefficients and hence 

better adhesion and life time from the coating.  
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APPENDICES 

APPENDIX A1: Effect of pulsing frequency on overlapping withTi-6Al-4V alloy [9]. 
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APPENDIX A2: Change of depth of melted zone with heat input rate in laser glazing of H13 

tool steel using fiber laser system [40]. 
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APPENDIX A3(a): Changes of modified layer depth with frequency, h, pulse width, w, and 

scan rate, U in Ti-6AL-4V using Nd:YAG laser system [9]. 
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APPENDIX A3 (b): Variations of the heat penetration of the work piece relative to the 

pulse duration in st14 steel using Nd:YAG laser system [69]. 
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APPENDIX A4(a): X-ray diffraction profiles of the top surface of the (a) as-received and (b) 

laser melted high chrome steel [99]. 
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APPENDIX A4 (b): XRD patterns of the laser treated (a) Zr based, (b) Mg-based, and (c), (d) 

Al-based alloy samples using Mo-Kα radiation [98]. 
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APPENDIX B: Laser processing parameters  

Peak Power, PP  

Peak power is the maximum occurring optical power transmitted to the material’s surface 

measured in Watts (W).  

Duty Cycle, DC  

Duty cycle is the division of time when the laser system is in ‘active’ or ‘on’ condition 

measured in percentage (%) during a laser pulse period. It affects the pulse width and 

imparted laser power by controlling the material-beam interaction time and the average 

power at the same time. Low duty cycles produce shorter pulse widths and reduce the 

materials-beam interaction time at the set maximum peak power.  

Pulse Repetition Frequency, PRF  

Pulse repetition frequency is defined as the number of emitted pulses per second, or the 

inverse temporal pulse spacing. The number of pulses produced by the laser system in one 

second is measured in Hertz (Hz). In different interpretation, PRF determines the laser 

speed which controls materials-laser interaction time when the laser system actively 

operates at 100 % duty cycle. For example, if PRF was set to 2500 Hz, the laser beam firing 

time was 0.4 ms for each pulse.  

Pulse Period, T 

Pulse period is the time duration for each pulse triggered from the laser head. In the pulse 

laser processing mode, pulse period is determined from the inverse value of pulse 

repetition frequency. For example, when the PRF was set to 2500 Hz, the resulted period 

for each pulse was 0.4 ms. Period of 0.4 ms is also the time frame for a pulse in both 

‘active’ and ‘inactive’ or ‘on’ and ‘off’ condition as shown in Figure 2.41.  

Pulse Width, τ  

Pulse width refers to the time duration when the pulse was in ‘active’ or ‘on’ state as 

shown in Figure 2.41. The active condition is controlled by the duty cycle percentage and 

can be calculated using Equation 1. For example, at 35% duty cycle and 2500 Hz 

frequency, the pulse width is 0.14 ms.  

� =  1~�L  ( �� 1SS/�4 Equation 1 
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Figure 2.41: Power as a function of time in pulse processing mode.  

Traverse Speed, S 

Traverse speed is the sample movement velocity during processing measured in 

millimetre per second (mm/s). With the processing distance taken as the beam diameter, 

d, the traverse speed is given by Equation 2. 

� =  O$  1SS/�4 Equation 2 
Circumferential Speed, ω  

Circumferential speed is the sample speed at the rotational direction measured in 

revolutions per minute (rpm). Samples are rotated continuously to produce a rapid 

cooling rate during processing. To determine the circumferential speed, the traverse speed 

in Equation 2 is used. Taking the processing distance as the sample circumference, the 

circumferential speed, ω is given by Equation 3. The circumferential speed can then 

multiply by 60 to set controller inputs in unit of rpm. 

g =  
��RSQtN 	�T	MSUNTNu	N  [

TNs� ] Equation 3 
Residence Time, TR  

Residence time is the materials-beam interaction time measured in millisecond (ms). The 

materials-beam interaction time depends on both laser speed and sample traverse speed. 

At zero overlap where the laser processing beam was set to continuous mode, the 

residence time relation is represented by Equation 2. However, in pulse mode, the 
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materials-laser interaction time is limited by the set duty cycle. The residence time 

calculation for pulse mode laser processing is given by Equation 4.  

#Y =
�� ( O�  Equation 4 

Average Power, Pave  

The average power during pulse mode indicates the effective laser power at a given duty 

cycle. When the peak power is set to a maximum value of 1520 W, at 50 % duty cycle, the 

average power is 760 W. Equation 5 shows the average laser power formula at a peak 

power, pulse width and pulse period.  

~��� =  
~� ( �#  Equation 5 

Pulse Energy, E  

Pulse energy is the amount of heat resulting from a given peak power and pulse width, 

measured in Joule (J). The pulse energy is calculated using Equation 6. The pulse energy 

determination is significant to estimate the total energy needed to raise the materials 

surface temperature and consequently melt the surface. Fluence or energy density, F, is 

calculated as pulse energy divided by laser beam spot area. 

� =  
~���~�L Equation 6 

Laser Irradiance, I  

Laser irradiance is the laser power density measured in Watts per beam area (W/mm2). 

Laser irradiance is determined from energy density, residence time and duty cycle and is 

calculated using Equation 7. At constant peak power, the laser irradiance increases as the 

beam size gets smaller. 

� =
L#Y  ( �� Equation 7 
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APPENDIX C1: Average hardness of DOE2 samples 

 

Sample 
Hardness (HV0.1) 

Mean Std. Dev. 
Std. 

Dev./√√√√n 
Interval 

Lower 

range 

Upper 

range 1 2 3 

E6 772 765 780 772 7.5056 4.3333 18.6463 753 791 

E8 1017 1016 1017 1017 0.5774 0.3333 1.4343 1016 1018 

E9 946 950 942 946 4.0000 2.3094 9.9374 936 956 

E12 865 882 898 882 16.5025 9.5277 40.9979 841 923 

E14 960 946 932 946 14.0000 8.0829 34.7807 911 981 

E15 1020 1012 1018 1017 4.1633 2.4037 10.3431 1007 1027 

E18 875 880 890 882 7.6376 4.4096 18.9744 863 901 

E21 950 928 960 946 16.3707 9.4516 40.6704 905 987 

E26 725 720 728 724 4.0415 2.3333 10.0403 714 734 

E27 1017 1015 1020 1017 2.5166 1.4530 6.2521 1011 1023 
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APPENDIX C2: Surface roughness of DOE2 samples with 95% CI 

 

Sample 
Surface roughness, Ra (µm) 

Mean 
Std. 

Dev. 

Std. 

Dev./√√√√n 
Interval 

Lower 

range 

Upper 

range 1 2 3 

E6 21.4 20.5 22.5 21.5 1.0017 0.1113 0.478907 21.0 21.9 
E8 3.6 3.5 3.4 3.5 0.1000 0.0111 0.047811 3.5 3.5 
E9 30.9 31.4 29.8 30.7 0.8185 0.0909 0.391351 30.3 31.1 
E12 28.2 29.4 28.6 28.7 0.6110 0.0679 0.292131 28.4 29.0 
E14 7.7 8.1 7.4 7.7 0.3512 0.0390 0.167907 7.6 7.9 
E15 33.2 33.9 34.1 33.7 0.4726 0.0525 0.225946 33.5 34.0 
E18 37.0 38.7 39.0 38.2 1.0786 0.1198 0.515681 37.7 38.7 
E21 25.4 24.3 25.9 25.2 0.8185 0.0909 0.391351 24.8 25.6 
E24 29.5 28.9 29.2 29.2 0.3000 0.0333 0.143433 29.1 29.3 
E26 21.9 20.9 23.1 22.0 1.1015 0.1224 0.526646 21.4 22.5 
E27 30.1 29.5 30.4 30.0 0.4583 0.0509 0.219098 29.8 30.2 

Df = 2, CI = 0.95, a = 0.025, t distribution = 4.303 
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APPENDIX D1: Modified surface depth of DOE4 samples. 

 

Sample Modified layer 
depth (μm) Mean Std. Dev. Std. Dev./√n Interval Lower 

range 
Upper 
range 

X1 88.7 84.9 88.8 87.5 2.2097 1.2758 5.4896 82.0 93.0 

X2 55.0 49.7 42.8 49.2 6.1350 3.5421 15.2415 33.9 64.4 

X3 53.5 50.5 47.4 50.5 3.0642 1.7691 7.6126 42.8 58.1 

X4 85.6 78.8 75.7 80.0 5.0931 2.9405 12.6529 67.4 92.7 

X5 46.6 44.3 36.7 42.6 5.2075 3.0065 12.9371 29.6 55.5 

X6 67.0 57.1 51.0 58.4 8.1035 4.6786 20.1318 38.2 78.5 

X7 88.2 85.4 83.8 85.8 2.2048 1.2730 5.4775 80.3 91.3 

X8 72.4 69.8 66.8 69.7 2.8024 1.6180 6.9621 62.7 76.6 

X9 86.9 80.8 76.7 81.5 5.1256 2.9593 12.7337 68.7 94.2 
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APPENDIX E1: Contour plot of overlap, power and modified layer depth for DOE5 samples 

at (a) 2900 Hz and (b) 3500 Hz PRF 

 
  (a) 2900 Hz PRF 
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APPENDIX E2: Contour plot of overlap, PRF and modified layer depth for DOE5 samples at 

(a) 1138 W and (b) 1515 W power 
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APPENDIX E3: Contour plot of PRF, power and hardness for DOE5 samples at (a) 0% and 

(b) 10% overlap 
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APPENDIX E4: Contour plot of overlap, power and hardness for DOE5 samples at (a) 2900 

Hz and (b) 3500 Hz PRF 
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APPENDIX E5: Contour plot of PRF, overlap and hardness for DOE5 samples at  

(a) 760 W and (b) 1138 W peak power 
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APPENDIX E6: Average surface roughness of DOE5 samples with 95% CI. 

 

Sample 
Average surface 

roughness, Ra (µm) Mean Std. 
Dev. 

(Std. 
Dev./√n) 

Interval Lower 
range 

Upper 
range 

1 2 3 4 

F1 23.2 16.7 25.5 24.2 22.4 3.915 0.24468 0.77858 21.62 23.18 
F2 4.5 5.3 5.1 5.2 5.0 0.359 0.02246 0.07148 4.93 5.07 
F3 1.8 1.9 2.0 2.1 2.0 0.129 0.00807 0.02567 1.97 2.03 
F4 2.2 1.7 2.0 2.3 2.0 0.265 0.01654 0.05262 1.95 2.05 
F5 6.9 8.1 5.1 4.2 6.1 1.756 0.10973 0.34917 5.75 6.45 
F6 2.7 3.6 3.0 2.9 3.0 0.387 0.02421 0.07702 2.92 3.08 
F7 6.5 5.8 5.9 4.0 5.5 1.079 0.06741 0.21450 5.29 5.71 
F8 3.9 3.7 3.7 4.3 3.9 0.283 0.01768 0.05625 3.84 3.96 
F9 4.3 3.2 3.2 3.5 3.6 0.520 0.03248 0.10334 3.50 3.70 
F10 1.7 1.8 2.1 1.7 1.8 0.189 0.01183 0.03765 1.76 1.84 
F11 4.0 3.5 4.5 4.5 4.1 0.479 0.02992 0.09520 4.00 4.20 
F12 2.8 2.4 2.3 2.8 2.6 0.263 0.01644 0.05230 2.55 2.65 
F13 1.9 2.3 2.3 2.3 2.2 0.200 0.01250 0.03978 2.16 2.24 
F14 2.8 2.7 2.9 2.8 2.8 0.082 0.00510 0.01624 2.78 2.82 
F15 3.0 2.7 2.8 3.0 2.9 0.150 0.00937 0.02983 2.87 2.93 
F16 3.1 3.2 3.0 3.4 3.2 0.171 0.01067 0.03396 3.17 3.23 
F17 2.7 2.8 2.6 2.4 2.6 0.171 0.01067 0.03396 2.57 2.63 

**Df = 3, CI = 0.95, a = 0.025, t distribution = 3.182 
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Appendix E7: Contour plot of PRF, power and surface roughness for DOE5 samples at (a) 

0% and (b) 10% overlap 
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Appendix E8: Contour plot of overlap, power and surface roughness for DOE5 samples at 

(a) 2300 Hz and (b) 2900 Hz PRF 
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APPENDIX F1: Constraints in design optimisation with maximum rank of response 

importance 

 

Name Goal Lower Limit Upper Limit Importance 

Power (W) is in range 760 1515 3 
PRF (Hz) is in range 2300 3500 3 
Overlap (%) is in range 0.9 1.1 3 
Hardness (HV0.1) maximise 728 905 5 
Surface roughness (µm) minimize 1.82 3.50 5 
Modified layer depth (µm) maximise 50 150 4 
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APPENDIX F2: Design solutions in DOE5 using maximum rank of response importance. 

 

 

 

 

Solution 
Power 

(W) 

PRF 

(Hz) 
η (%) 

Micro-

hardness 

(HV)0.1 

Surface 

roughness, 

Ra (µm) 

Modified 

layer 

depth 

(µm) 

Desirability 

1 1272.32 2300.00 1.10 862.52 1.82 79 0.636 
2 1287.52 2300.00 1.10 863.28 1.82 78 0.631 
3 1286.34 2300.00 1.10 862.13 1.73 78 0.630 
4 1296.55 2300.00 1.06 873.26 2.52 77 0.525 
5 776.32 3500.00 1.10 885.87 0.65 58 0.471 
6 782.71 3500.00 1.10 884.54 0.70 58 0.471 
7 787.69 3500.00 1.10 883.51 0.74 58 0.471 
8 764.92 3500.00 1.10 888.26 0.55 58 0.471 
9 762.06 3500.00 1.10 888.86 0.52 58 0.471 

10 777.98 3500.00 1.10 884.80 0.70 58 0.470 
11 847.35 3500.00 1.10 871.48 1.19 59 0.465 
12 1320.24 2300.00 0.92 890.14 2.14 59 0.450 
13 1319.39 2300.00 0.91 889.50 1.99 58 0.448 
14 1324.24 2300.00 0.93 891.29 2.34 60 0.447 
15 1319.67 2300.00 0.94 890.92 2.49 62 0.440 
16 760.00 3216.47 1.10 890.31 1.82 56 0.429 


