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Abstract

We design and evaluate several models for integrating Machine Translation (MT) output

into a Translation Memory (TM) environment to facilitate the adoption of MT technology

in the localization industry.

We begin with the integration on the segment level via translation recommendation

and translation reranking. Given an input to be translated,our translation recommendation

model compares the output from the MT and the TM systems, and presents the better one to

the post-editor. Our translation reranking model combinesk-best lists from both systems,

and generates a new list according to estimated post-editing effort. We perform both au-

tomatic and human evaluation on these models. When measuredagainst the consensus of

human judgement, the recommendation model obtains 0.91 precision at 0.93 recall, and the

reranking model obtains 0.86 precision at 0.59 recall. The high precision of these models

indicates that they can be integrated into TM environments without the risk of deteriorating

the quality of the post-editing candidate, and can thereby preserve TM assets and estab-

lished cost estimation methods associated with TMs.

We then explore methods for a deeper integration of translation memory and machine

translation on the sub-segment level. We predict whether phrase pairs derived from fuzzy

matches could be used to constrain the translation of an input segment. Using a series of

novel linguistically-motivated features, our constraints lead both to more consistent trans-

lation output, and to improved translation quality, reflected by a 1.2 improvement in BLEU

score and a 0.72 reduction in TER score, both of statistical significance (p < 0.01).

In sum, we present our work in three aspects: 1) translation recommendation and trans-

lation reranking models that can access high quality MT outputs in the TM environment, 2)

a sub-segment translation memory and machine translation integration model that improves

both translation consistency and translation quality, and3) a human evaluation pipeline to

validate the effectiveness of our models with human judgements.
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Chapter 1

Introduction

Since the publication of [Brown et al., 1993], statistical machine translation (SMT) has

made significant progress, both in terms of translation quality and ease of deployment and

maintenance. SMT technologies are beginning to make inroads into the localization indus-

try:1 successful integration of SMT into localization workflows can help reduce the amount

of human labor involved in localization and drive down costs.

Despite its promise, however, SMT has been embraced somewhat more reluctantly by

some parts of the localization community than some SMT proponents may have hoped.

There are several important reasons for this:

Firstly, translation memories (TMs), rather than machine translation, are the main-stay

technology used in the localization industry. TMs are databases consisting of previously hu-

man translated segments. Given new text to be translated, the TM is searched for matching

(source) text segments and the associated (human) translations are reused “recycled” in the

jargon used in the localization industry). Given the repetitive nature of the (often) technical

text processed in many localization workflows, TM hit rates can be up to 30% of new text

to be translated (cf. e.g.2), and TMs can thus provide considerable savings. In the absence

1Localization is the industrial process of adapting digitalcontent to culture, locale and linguistic environ-
ment. A core part of localization is translation of (often large amounts of usually technical) text. Localization is
a global business with an estimated turnover of 12 Billion US$ in 2010 (Common Sense Advisory – Research
and Consulting).

2http://www.iai-sb.de/docs/aslib-js.pdf , for reports of TM hit rates
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of a full match, TMs provide a fuzzy match3 facility, where the closest match in the TM

given some input is retrieved and the translation associated with the closest match is pre-

sented to the professional human translator to be post-edited (i.e. adapted to a translation of

the input), again with the potential for considerable savings over a manual translation from

scratch. TMs thus represent considerable value and previous investment in translation, and

TMs are assets that the industry does not want to abandon.

Secondly, in the localization industry, translation cost estimation is based on TM hit

rates and fuzzy match scores, with full rates paid for segments which require translation

from scratch (these are segments with low fuzzy match scoresin the TM), reduced rates

for segments with high fuzzy match scores that need to be post-edited and a small fee for

proofing segments that have a full match in the TM. In contrastto TMs, SMT does not

yet have a reliable translation cost estimation method, andthis creates a difficulty for the

industry to prepare accurate project plans.

Finally, acceptance of SMT (and other MT) technologies is still somewhat mixed, as

some professional translators are reluctant to embrace newand unfamiliar technologies,

especially if they are perceived as a potential threat to employment and/or human creativity.

TMs are used throughout the localization industry. First proposed by Kay [1980], this

paradigm is well established, and has been serving translation professionals and the industry

well (cf. Somers [2003]).

At the same time, advances in SMT have shown a strong potential to further improve

the productivity of translators and post-editors, as SMT output is now quite acceptable for

certain language pairs and applications, especially in domains where large parallel training

corpora are available. Furthermore, SMT and TM technologies are complementary in that

(i) SMT models can easily be trained on TM data; (ii) while TM translations are always

fluent (they are, after all, human translations), for fuzzy matches TM translations are not

actually translations of the input (but of the fuzzy match);(iii) while SMT output is not

always fluent, it is a genuine attempt at translating the input; and (iv) unlike most SMT

3Usually a version of string edit distance.
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technologies, TM technologies always support and closely integrate the human translator

and post-editor into the translation workflow. Because of this, research on combining TM

with SMT technologies is important. Ideally, such a combination should preserve what is

best in the TM and SMT paradigms, exploiting their complementary strengths.

1.1 Research Questions

Given the crucial role of TMs in the workflows of localizationindustry, as well as the

advancements of SMT systems in recent years, it is quite natural for us to firstly focus

on using high-quality SMT outputs to enrich the TM environment, which leads to the first

research question of this thesis:

(RQ1) Can we provide translators with high-quality MT segments in a TM

environment, without sacrificing the strengths of TMs?

Considering that most modern TM and SMT systems are able to produce k-best outputs,

RQ1 actually has to handle two sub-problems: 1) to enrich TMs with 1-best MT outputs,

and 2) to enrich TMs with k-best MT outputs. We will handle both cases in this thesis.

In RQ1, we mainly consider TM-MT integration on the segment level.However, we

can also integrate these two paradigms more tightly, on the sub-segment level, so that even

when the whole TM segment is not good enough, we may still be able to reuse parts of it to

improve translation consistency and quality. This leads toour second research question:

(RQ2) Can we reuse sub-segment chunks from TMs to improve SMT consis-

tency and quality?

Last but not least, we have to keep in mind that, while in MT research the focus is often

on automatic evaluation metrics (e.g. to support parametertuning), the TM-MT integration

research requires human validation to support its effectiveness. After all, the purpose of

TM-MT integration is to reduce the workload of human translators and the cost of localiza-

tion vendors. This observation leads to the final research question of this thesis:
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(RQ3) Can we validate our TM-MT integration models with human evalua-

tion?

1.2 Thesis Structure

In this thesis we will tackle the research questions proposed in Section 1.1. We will also

provide necessary background information on TM, MT, and translation quality estimation

to make the thesis self-contained. We will present the material as follows:

In Chapter 2, we introduce the two paradigms used in the localization industry: the

TM paradigm and the MT paradigm. We discuss how candidate translations are chosen

or generated in these two paradigms, and we will show the strengths of each paradigm,

namely the ability to reuse previously translated segmentsand to perform more reliable

confidence estimation and cost estimation for the TM system,and the ability to produce

fully automatic, high-coverage end-to-end translation for the MT system. We will briefly

discuss how these two paradigms can complement each other.

In Chapter 3, we focus on existing quality estimation techniques for TM and MT sys-

tems. When integrating MT outputs into the TM environment, we are essentially compar-

ing the quality of MT outputs with the TM outputs, and select the ones that are better. The

methods and linguistic features used in translation quality estimation are a major inspira-

tion of our work on TM-MT integration. Moreover, we analyze the DCU-DEP metric, a

linguistically-inspired metric, as an example to show how linguistic features can be used to

evaluate MT quality. We will use similar features for sub-segment TM-MT integration in

Chapter 6.

In Chapter 4, we present the translation recommendation model which integrates TM

and MT systems by automatically recommending 1-best MT outputs that are more suitable

for post-editing to translators working in a TM environment(RQ1). We will show that the

recommendation model has high precision, so that TM-based cost estimations are still valid

as an upperbound if the recommendation model is applied. Therecommendation model
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can also produce a recommendation confidence score, on whichthe translators can set the

threshold, and control how progressive/conservative the recommendations should be.

In Chapter 5, we extend the recommendation model in Chapter 4to k-best lists of

MT and TM system outputs. By reranking the k-best outputs from TM and MT systems,

we provide a larger set of translation candidates for translators to choose from, and the

translated segments in TMs will not be wasted, as they are allkept in the reranked k-best

list.

In Chapter 6, we validate our models proposed in Chapter 4 andChapter 5 with judge-

ments provided by human translators (RQ3). We collect preferences of human translators

and compare them with the recommendation and reranking produced by our models. We

also analyze the behavior of the translators in the course ofthis user study, and hear their

feedback. The results and user feedback will confirm the effectiveness of our models, and

the necessity to perform TM-MT integration.

After tackling segment-level TM-MT integration in Chapters 4, 5, and 6, we move on

to perform sub-segment level TM-MT integration in Chapter 7(RQ2). We automatically

select high quality chunks from TM fuzzy matches, and use them to constrain SMT. Exper-

iments show that this approach not only ensures translationconsistency, but also leads to a

significant improvement in translation quality.

Finally, we summarize our work and point out avenues for future research in Chapter 8.
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Chapter 2

Translation Memory and Statistical

Machine Translation in Localization

In this chapter, we review two technologies used in the localization industry that help trans-

lators to finish their tasks more efficiently: Translation Memories (TMs) and Statistical

Machine Translation (SMT). We also briefly discuss why and how we would propose an

integrated paradigm that combines these two systems. More specifically, we will cover:

• The TM paradigm and the reason for its popularity in the localization industry.

• The SMT paradigm: its components, workflow, strength, and weakness.

• How SMT can potentially further improve the efficiency of translators, if they are

properly integrated into the MT workflow.

2.1 Translation Memory

TMs are databases that store a translation history, i.e. source sentences and their translations

as produced by humans. When there is a new segment to translate, a TM system will present

the entry in the database to the translator, whose source side is most similar to the new

segment.
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This similarity is often measured using the fuzzy match score, which in turn is based on

Levenshtein Distance [Levenshtein, 1966] as in (2.1):

FuzzyMatch(t) = 1 − min
e

LevenshteinDistance(s, e)

Len(s)
(2.1)

wheres is the source side of the TM hitt, ande is the source side of an entry in the TM.

When exactly the same segment can be found (i.e. an exact 100%match), the translation

of this segment can be directly reused, without any extra work, otherwise the translation

retrieved from the database may still be used as a skeleton translation, which translators

post-editto produce the correct translation.

Translation Memory

(Translated 

Sentences)

Translation Memory System

Determines whether a 

recovery point is valid or 

corrupt before restoring it

Verifies whether a 

recovery point is valid 

or corrupt before it is 

restored (0.61)

Use a recovery point to 

recover a drive from 

within windows (0.31)

Post-Editing the Best Output

Source-side 

similarity 

measured by the 

fuzzy match score

Figure 2.1: The TM Paradigm

We depict an example of this paradigm in Figure 2.1. If we havea source segment to

translate:

Source Segment:Determines whether a recovery point is valid or corrupt before

restoring it

The TM system would query the TM consisting of previously translated sentence pairs,

and would select the segment whose source side is most similar to this segment measured

by the fuzzy match score. In our example, the following source segment will be selected,
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with a fuzzy match score of 0.61:

The Fuzzy Match:Verifies whether a recovery point is valid or corrupt before

it is restored

The translator will be presented with this fuzzy match segment and its human trans-

lation, so that instead of translating from scratch, they only need to post-edit a human

translated segment in French:

Translation of the Fuzzy Match:Vérifie si un point de ŕecuṕeration est valide

ou endommaǵe avant la restauration.

Usually the matched chunks in the source and fuzzy match segments (underlined in the

examples) are color-coded or highlighted in the frontend computer-aided translation system

for the translator to find where to post-edit. The translatorwill changeVérifie to Détermine,

and finish translating this segment.

2.1.1 Advantages of the TM Paradigm

As we can see, although the TM paradigm could be as simple as querying a database and

presenting the user with the most similar translated segment, it can significantly help the

work of a translator with respect to the following aspects::

• Leveraging legacy materials. With translation memory, translators in the localiza-

tion industry will not need to work on materials that have already been translated

before. In turn, localization companies and customers do not need to pay for these

materials. This significantly reduces the cost for the localization industry.

• Estimating localization cost. The fuzzy match score measures the source side simi-

larity, and can thus be computed before translation actually begins. This helps local-

ization vendors to effectively estimate the cost before they set out to work.
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• Friendly Computer-Aided Translation(CAT) environment . The fuzzy matched

chunks in a segment can be highlighted in the CAT environment, which helps the

translators to find where to post-edit.

In the following sections, we further review the intuition and techniques behind the TM

paradigm.

2.1.2 The Origin of the TM Paradigm

The TM paradigm emerged when localization and translation professionals began to realize

the limitations of MT and realized the necessity of reusing previously translated material

to reduce translation workload. In one of the earliest papers that inspired today’s TMs,

Kay [1980] analyzes the limitations of MT in both the cognitive/linguistic sense and the

resource/computer science sense:

• The Linguistic Point of View. Kay [1980] uses the example of pronominal reference

(anaphora resolution) in translation to illustrate the difficulty of making translation

decisions. The large number of such problems renders it difficult for machines at that

time to obtain high-quality translation without human intervention.

• The Computer Science Point of View. From the computer science point of view,

Kay [1980] compares the complexity of dictionary search andtranslation, and con-

jectures that there will hardly be an efficient enough algorithm for MT at that time.

It would be proved later in [Knight, 1999], that the problem of exact MT-decoding is

NP-complete.

Although these arguments were made at a time when our understanding of computer

science and the ability of hardware were much inferior compared to that of today, the major

points still hold. Based on the above analysis, Kay [1980] proposes to build a human-centric

paradigm, in which a computer begins by offering help to the translator on the lexical level.

As more data is gathered during the translation process, thetranslator will later be able to

9



“call for a display of all the units in the text that contain a certain word, phrase, string of

characters, or whatever”, but the human translators can always intervene if the translation

is of inferior quality.

In some sense, this thesis also follows the spirit of this proposal to build a “translator’s

amanuensis”, but the work in this thesis now has access to SMT systems that are much

more powerful than those 30 years ago.

2.1.3 TM Technologies

The success of modern TM systems – the extent to which this mechanism can help hu-

man translators – relies mainly on two technologies: 1) efficient storage and acquisition of

existing translation data, and 2) fast and intelligent searching of the database.

2.1.3.1 Building and Exchanging Data

The success of a TM application depends very much on whether there is enough in-domain

exact or high fuzzy match data in the database. It is reportedthat TMs are most useful when

there is a large portion of exact matches (which often occurswhen the translation task is to

update an old version of a document to a new version), and TMs full of low fuzzy matches

may well be useless [Sofer, 2006].

It is therefore very important to collect enough translation data for TMs to work prop-

erly. TM users have two options to obtain the database:

• Internal Collection . Obviously, the data can be collected in the translation process

itself. This is preferable in many circumstances, because this way the information

in the data is kept secure. However, it is a time consuming process, and it is quite

natural for users to consider sharing some TMs.

• Sharing and Exchanging. Most of the TMs used in the industry today conform to

the TMX (Translation Memory eXchange) format,1 an XML-based format created

1http://www.lisa.org/tmx/
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to encode TM information, and can be shared on professional localization web sites

such as TDA2. Therefore, it is now entirely possible technically to share TM data

with other parties.

Comparing these two approaches of TM data collection, sharing and exchanging can obvi-

ously collect required amounts of data more efficiently. Butin the real world, not all TM

data is suitable to share, and the translation industry still has to look for other methods that

can improve translation efficiency.

2.1.3.2 Searching Techniques

Another factor affecting the performance of TMs is the search technique. The first consider-

ation in searching is obviously speed, so that TM systems canretrieve the best fuzzy match

in real time. This remains an area under active optimization. For example, in [Koehn and

Senellart, 2010a], matching is first performed on the n-gramlevel to find the potential can-

didates, then A* search-based filtering is applied, and finally A* parsing (instead of directly

computing the Levenshtein distance [Levenshtein, 1966]) is used to validate the matched

segment. This is a typical example of the techniques used to ensure efficient searching in

translation memories.

The other consideration is how fuzzy the source-side match can be. In the strictest

sense, two words are considered to match only if these two words have exactly the same

surface forms. Using our example in Section 2.1, words “restoring” and “restored” will not

be considered as matched, because their forms are different.

However, now some TM systems (e.g. SDL Trados3) will give credit to partially

matched words, so that Trados will consider “restoring” and “restored” as partially matched,

and add a fraction into the segment level fuzzy match score.

2http://www.translationautomation.com/
3http://www.sdl.com/en/language-technology/products/ translation-memory/
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2.2 Statistical Machine Translation

Another paradigm that has the potential to aid the work of translators is MT. In contrast to

TMs that facilitatehumantranslation by reusing translated segments, MT systems aimto

provide end-to-end translation solutions without human intervention.

Many approaches have been proposed for MT. One paradigm thathas previously served

translators is rule-based MT. Rule-based MT translates a source sentence to the target lan-

guage by using hand-crafted transformation rules, and has the advantage of usually pro-

ducing more grammatical and consistent translations (evenin the sense that the translation

errors are consistent, and are thus easier to identify in thepost-editing process). When the

hand-crafted rules do not cover the material being translated well enough, one can use statis-

tical post-editing [Dugast et al., 2007], which automatically makes changes on the outputs

of rule-based MT to further reduce potential workload, before the translation is finalized by

human translators.

Although rule-based MT is still in active use in the localization industry, there is now a

growing interest from the industry to leverage SMT systems in the workflow, with promis-

ing results. For example, Flournoy and Duran [2009] report that using the Language

Weaver4 SMT system, post-editing MT outputs achieves 4-fold speed-up in a pilot study to

translate product documents compared to translating from scratch.

The interest and positive feedback on the SMT paradigm from the localization industry

can be reduced to two reasons. From the translation quality perspective, SMT is able to

provide translation for segments that TMs might not be able to cover, and from the cost

perspective, the extra cost of introducing SMT into the localization workflow is reasonable.

• Improved Coverage. As we have discussed in Section 2.1.3.1, one of the challenges

that the TM paradigm is facing is to construct an effectivelylarge database of trans-

lated segments, otherwise many of the segments will be matched poorly and are less

valuable for post-editing. Using an MT system can provide good translation candi-

4http://www.sdl.com/en/language-technology/products/
automated-translation/ (Now part of the SDL product line)
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dates for these uncovered segments.

Moreover, statistical models used in SMT are language neutral, meaning that one can

easily build SMT systems for any language pair as long as (general purpose) paral-

lel corpora exist. Even for translations between low-resource languages for which

the initial translation database hardly exists, it is stillpossible to use a high-resource

language as a pivot and produce usable translations [Wu and Wang, 2007]. This prop-

erty is growing in importance as the localization industry targets an ever-increasing

number of languages.

• Low Extra Cost. Assuming that the translators are already using TM tools, the

extra cost of introducing an extra SMT layer to reduce translation workload can be

absorbed reasonably quickly by the cost it saves. For example, one can resort to third-

party SMT services, such as Google5 and Bing6 translation, which are both provided

as free services. It would therefore be worthwhile to test with these services, as long

as the cost they save can compensate for the integration costinvolved. Localization

vendors can also use out-of-the-box open source toolkits such as Moses7 to build in-

house SMT systems with a small maintenance team, without having to continuously

support bi-lingual grammarians capable of writing transformation rules to keep rule-

based MT systems in good shape. In-house systems can be builtusing internal data,

and can potentially save more translation cost than public translation services in the

long run.

Although SMT has the potential to improve the localization workflow, it is unlikely

that SMT output can be used without review, especially in applications where high quality

translations are required. Furthermore, current state-of-the-art SMT also lacks a confidence

estimation method as reliable as the fuzzy match score in TMs, and often is not integrated

well enough in CAT tools. This thesis will therefore focus onthe integration of SMT and

5http://translate.google.com
6http://translate.bing.com
7http://www.statmt.org/moses
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TM, in which the strengths of both sides can be preserved.

In the following sections, we introduce the SMT paradigm in more detail.

2.2.1 The SMT Workflow

Given a source segmentf, the SMT paradigm models the translation problem as the taskof

finding the translationewhich maximizes the probability ofegiven f, as in (2.2):

e = arg max
e

P (e|f) (2.2)

However, the direct translation model in (2.2) rarely workswell by itself, because the

model is too coarse and the search space for thearg max operator is too large. Therefore,

(2.2) is usually formulated in terms of the noisy-channel model [Brown et al., 1993] using

Bayes’ theorem, as in (2.3):

e = arg max
e

PTM (f|e)PLM (e)
P (f)

= arg max
e

PTM (f|e)PLM (e) (2.3)

wherePTM is the translation model andPLM is the language model probability. Note that

the second equation in (2.3) is valid because whenf is given,P (f) becomes a constant and

does not impact on thearg max operator.

A further step in statistical modeling of MT comes from the intuition that using more

features will help to improve translation quality, which leads researchers away from the

noisy-channel model towards the log-linear translation model. In log-linear SMT [Och

and Ney, 2002],PTM (f|e) is further estimated using a log-linear combination of transla-

tion features. For example, in phrase-based SMT, the translation model is estimated using a

combination of (direct and inverse) phrase translation probabilities, (direct and inverse) lex-

ical translation probabilities, position- and lexical-based distortion probabilities, the word

penalty and the phrase penalty, so that different aspects oftranslation choices (word trans-

lation, reordering, etc.) can be modeled directly and put together as a model of translation.

Furthermore, these features are assigned different weights according to their importance
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in the translation model, and a weight is also assigned to thelanguage model. After this

decomposition, the translation process can be representedby thearg max operation in (2.4).

e = arg max
e

Πn
i=1λiPTM(i)λLMPLM (2.4)

For convenience of computation and presentation, we usually takelog on the right side

of (2.4). Lethi = log(Pi), for eachP in (2.4), and we can rewrite (2.4), as in (2.5).

e = arg max
e

Σn
i=1λihi (2.5)

Using the representation in (2.5), we can identify three iterative components in the SMT

workflow:

• Training finds the feature functionshi

• Tuning finds the weights for featuresλi

• Evaluation, or quality estimation, measures the quality of the output,and points out

direction for further training and tuning.

After the models are built and the parameters are tuned, adecodercan decode new

source sentences into their translations in the target language.

We depict the workflow of SMT systems in Figure 2.2: given a parallel corpus, we first

train the language model and translation models. Then, based on some quality estimator,

we tune the models to find a set of parameters. Using the modelsand parameters we decode

the new sentences.

Suppose we need to translate the segment from Section 2.1 from English to French

using SMT, as in (2.6):

Determines whether a recovery point is valid or corrupt before restoring it (2.6)
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Decoding

Output

Input

Figure 2.2: The SMT Workflow for EN-FR

First of all, we have to have the models and parameters ready.We train a French lan-

guage model using the French corpus which ensures the fluencyof our output (upper left

of Figure 2.2). We also estimate a series of translation model feature functions using the

parallel English–French corpus (lower left of Figure 2.2).When these features are ready,

we tune the weights of these features against a development set (middle of Figure 2.2).

Now, suppose we have the feature functions and parameters ready for a phrase-based

SMT system. The system will then split the source segment into several phrases, translate

the phrases using the features, and re-combine them to produce the output. In the example,

we have rules as in (2.7):

Determines whether7→ détermine si

a recovery point is7→ un point de ŕecuṕeration est

valid or corrupt 7→ valide ou endommagée

before restoring it7→ avant la restauration

(2.7)

And we obtain the translation by combing these translated phrases, and the SMT system

will choose the phrasal translation and recombination thatmaximizes (2.5) as the output

(with translation errors), as in (2.8):
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détermine si un point de récuṕeration est valide ou endommagée avant la restauration.

(2.8)

We discuss training, tuning, and quality estimation in moredetail in following sections.

2.2.2 Training

In the context of modern SMT,training usually means the process of finding translation and

language model feature functions, usually consisting of three components.

2.2.2.1 Language Modeling

Language Modeling estimates the language model probability PLM . Most often, n-gram

language models are used in SMT, which predict one word at a time based on the history of

preceding words, following the Markovian assumption, as in(2.9)

P (w1, w2, · · · , wn) = p(w1)p(w2|w1) · · · p(wn|w1w2 · · ·wn−1) (2.9)

wherew1 · · ·wn is a sequence ofn words, and the conditional probabilitiesp(wn|w1w2· · ·

wn−1) are estimated using relative frequency, usually with somekind of smoothing (e.g.

modified Kneser-Ney smoothing [Kneser and Ney, 1995]).

2.2.2.2 Word Alignment

Word alignment builds word-level correspondences betweenwords in the source and their

corresponding translations. Leta be an alignment function that maps the target word at

positionj to the source word at positioni, as in (2.10):

i = a(j) (2.10)
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It follows that the word alignment process is to find an alignmenta that maximizesP (a|e, f),

as in (2.11).

a = arg max
a

P (a|e, f) (2.11)

Using the IBM word-based translation models [Brown et al., 1993],a can be found implic-

itly in an Expectation-Maximization [Baum, 1972] (EM) procedure that at the same time

determines word-level translation probabilities. For ease of discussion, we use IBM Model

1 as an example. Besides, the IBM Model 1 alignment probability is also a feature used in

our translation recommendation/reranking models. The notations and presentation in this

section basically follows that of [Koehn, 2010], rather than that of [Brown et al., 1993].

IBM Model 1 is a word to word translation model, in the sense that the translation

probabilityP (e|a, f) is estimated only via word translation probabilitiest(ej |fi), whereej

is thejth source word andfi is theith target word.

IBM Model 1 defines the translatione and alignmenta given the sourcef as follows,

as in (2.12):

P (e, a|f) =
ǫ

(lf + 1)le
Πle

j=1t(ej |fa(j)) (2.12)

which is based on the product over allt, with ǫ
(lf +1)le

for normalization, so that the proba-

bilities can sum to 1.

Following this definition, we have:

P (e|f) = ΣaP (e, a|f) =
ǫ

(lf + 1)le
Πle

j=1Σ
lf
i=1t(ej |fa(j)) (2.13)

Using (2.12) and (2.13), we can calculateP (a|e, f), as in (2.14):

P (a|e, f) =
P (e, a|f)
P (e|f)

= Πle
j=1

t(ej |fa(j))

Σ
lf
i=0t(ej |fi)

(2.14)

Here we obtain the probability ofa, which finishes the E-step in the EM procedure. On

the other hand, we can also define a count function, based on which we can perform the
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M-step, which re-estimatest(e|f), as in (2.15):

c(e|f ; e, f) = ΣaP (a|e, f)Σle
j=1δ(e, ej)δ(f, fa(j)) (2.15)

whereδ is the Kronecker function which is equal to 1 ifa = b in δ(a, b), and 0 otherwise.

Then we can re-estimatet(e|f), as in (2.16):

t(e|f ; e, f) =
Σ(e,f)c(e|f ; e, f)

ΣeΣ(e,f)c(e|f, e; f)
(2.16)

Accordingly c(e|f ; e, f) andt(e|f) can be iteratively determined in the EM procedure.

In practical SMT, the probabilities estimated by IBM model 1are too coarse, and are used

to find good initial starts for higher order IBM models. However, the EM scheme does not

change in these models. IBM model 1 can also be used as an estimator for word-to-word

translation quality in MT quality estimation, as we do in this thesis.

One limitation of IBM models is that they only allow one-to-many alignment. To fix

this, SMT developers usually merge alignments in two directions and apply some kind of

heuristics, such as intersection and union [Och and Ney, 2003].

2.2.2.3 Translation Rule Extraction

Although it is possible to extract translation rules directly from corpora (e.g. phrasal transla-

tion rules in [Marcu and Wong, 2002]), most popular translation rule extraction techniques,

both phrasal and syntactic, rely on the symmetric alignmentbetween the source and the

target sentences. We briefly review the phrase-based rule extraction method as an exam-

ple as we mainly rely on phrase-based models to build MT systems in this thesis. Note

that in TM-MT integration, the probabilities from the phrase-based models are also used as

features to estimate translation quality.

In phrase-based translation models, the translation modelis first decomposed into a

phrasal translation model and a reordering model, as in (2.17):
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P (f̄ I
1 |ē

I
1) = ΠI

i=1φ(f̄i, ēi)d(starti − endi−1 − 1) (2.17)

whereφ is the phrasal translation model andd is the position-based reordering model.d

can usually be estimated with a decay function in distance-based reordering models, such

thatd(x) = α|x|, whereα ∈ [0, 1].

Estimatingφ requires extracting phrase pairs from the symmetrically aligned corpus

and calculating their relative count. The phrase pairs extracted have the constraint that they

should be consistent with the alignment, such that given alignmenta, if ē is aligned tof̄ ,

all words fromē that have alignment points ina should have their corresponding aligned

words inf̄ , and vice versa.̄e andf̄ should also contain at least one alignment point.

before

it

is

restored

avant la restauration

0                        1                        2

0

1

2

3

Figure 2.3: Phrasal Translation Rule Extraction

The idea of phrase pairs consistent with the alignment can beillustrated by the following

example. Suppose we have the alignment in Figure 2.3.

In this example, if we start from alignment point (3, 2), we can find thatrestored 7→

restaurationis a valid translation rule, as it corresponds to an alignment point. The follow-

ing rules in (2.18) are also valid, because they are all consistent with alignment point (3, 2),

and do not involve other alignment points:
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it is restored7→ la restauration

is restored7→ la restauration

it is restored7→ restauration

· · ·

(2.18)

However, the following two rules in (2.19) are not valid, as the first is inconsistent with

the alignment point (0, 0), and the second does not cover any alignment point:

before it is restored7→ la restauration

it is 7→ la
(2.19)

After the phrases are extracted, the calculation ofφ is straightforward using relative

frequency, as in (2.20):

φ(f̄i|ēi) =
count(f̄i, ēi)

Σfcount(f̄ , ēi)
(2.20)

This estimation does not perform any smoothing, and is therefore prone to bias. There is

evidence that smoothing translation rule probabilities can further improve the performance

of SMT [Foster et al., 2006, Duan et al., 2010]. However, in our integration models we still

stick to the unsmoothed probabilities which are more widelyused.

2.2.3 Tuning

Given the translation feature functionsh1···n, their weightsλ1···n can be determined in a

discriminative learning process, the most popular of whichis Minimum Error Rate Training

(MERT). MERT [Och, 2003] tunes the weightsλi of the featureshi in (2.5) to minimize

the error function on the error surface of the N-best list of adevelopment (or ‘dev’) set, as

in (2.21):

λ = arg min
λ

Err(e∗(λ); ref) (2.21)
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wheree∗ is the 1-best translation. In practice, the functionErr is actually approximated

by a specific automatic evaluation metricE, in which case MERT is actually optimizing on

(2.22):

λ = arg min
λ

errE(e∗(λ); ref) (2.22)

whereerrE in (2.22) is a specific automatic evaluation metric used to approximateErr in

(2.21). Och [2003] uses an improved version of Powell’s linesearch to find the optimal

λ. Besides MERT, new training schemes such as the Margin Infused Relaxed Algorithm

(MIRA: Crammer et al. [2006]) have been introduced to MT (cf.[Watanabe et al., 2007],

[Chiang et al., 2008] and [Chiang et al., 2009]), so that morefeatures can be tuned.

2.2.4 The Role of Quality Estimation in the MT Workflow

The techniques used for translation quality estimation will be discussed in more detail in

Chapter 3. However, quality estimation has some direct impact on the development of MT

itself, and is essential to the success to some of the MT tasks, such as tuning and reranking,

which we discuss below.

• Tuning. As is shown in (2.22), MERT relies on the choice of error function errE.

In practice, BLEU [Papineni et al., 2002] is often used as the error function, despite

the fact that it has been shown to have a lower correlation with human judgement

than other metrics such as METEOR [Banerjee and Lavie, 2005] and TER [Snover

et al., 2006]. It is shown in [Cer et al., 2010] that when presented with multiple

references, tuning on BLEU leads to more consistent results than tuning on other

metrics. However, as we reported in [He and Way, 2009], tuning on BLEU is not that

stable when only a single reference is available.

• Reranking. Another aspect where quality estimation techniques have adirect impact

on SMT performance is reranking. The idea behind reranking is to take the N-best

outputs from an SMT system, judging them with some quality estimation method,
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and selecting the best translation from this N-best list. Reranking is shown to lead

to significant improvements in translation quality [Shen etal., 2004]. It is quite clear

that the performance of the reranking process is determinedby the size, quality, and

diversity of the N-best list, as well as how well the quality/confidence estimation

metric can capture the quality of these candidate translations.

• Implications for TM-MT Integration . The impact of quality estimation methods

on SMT performance has a considerable impact on TM-MT integration. TM-MT

integration also relies on accurately determining the quality of translations (in fact,

one of our integration models performs reranking on a combined k-best list of TM

and MT outputs, much like SMT reranking). With this in mind, the TM-MT integra-

tion models presented in this thesis formulate many integration problems as quality

comparison or quality ranking problems, and follow many of the standard practices

in MT quality estimation.

2.3 The Convergence of TM and SMT Paradigms

In the previous sections, we reviewed the both the TM and the SMT paradigms. Both

paradigms have strengths and weaknesses, as we enumerate inTable 2.1.

Table 2.1: Comparison of the TM and the SMT paradigms
SMT TM

Process Fully automatic Computer assisted human-translation
Adequacy Real translation Not translation per se
Fluency No guarantee Human translation
Environment N/A Color-coded
Cost Estimation N/A Fuzzy match score
Investment MT software Human translation collection

We see that the TM paradigm has several advantages that SMT systems currently cannot

provide, such as color-coded post-editing environments and fuzzy match-based localization

cost estimation. However, we can also see that SMT systems can complement some of TM’s

shortcomings (especially on coverage) and improve localization efficiency by providing au-
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tomatic end-to-end translation to any input segment. This leads us to devise mechanisms

that can help translators to access SMT outputs in the TM environment, which would pre-

serve the strengths of TMs and leverage the advances of SMT.

2.4 Summary

In this chapter, we reviewed two paradigms that facilitate translation tasks using computing

technology. In the TM paradigm, the system queries a database of previously translated seg-

ments and sends them back to translators for post-editing. In an MT system, the end-to-end

system translates the segment without human intervention.We show that TM paradigms

have several attractive properties for the localization workflow, but if we introduce MT out-

puts into the pipeline, we can potentially obtain better efficiency as we will have better

coverage on the localization material.

We also looked at the features TM systems and (phrase-based statistical) MT systems

use to find the best translation: the fuzzy match score and thetranslation and language

model features. These features will be used as a starting point in our TM-MT integration

research.

Based on the analysis of the TM and the MT paradigms, we present our proposal to

perform TM-MT integration by integrating MT outputs into the TM environment. We will

discuss the details of this proposal in Chapters 4, 5, 6, and 7.
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Chapter 3

Translation Quality Estimation

In this chapter, we present existing technologies in the field of MT quality estimation. We

briefly describe both methods using surface-level featuresand methods trying to apply deep

features. We analyze the DCU-DEP metric as an example, and discuss potential pros and

cons of surface and deep features. These insights will help us to design better features to

integrate TM and MT.

After demonstrating existing technologies, we discuss thepotential of combining the

best from both TM and MT, on a segment or sub-segment level, byautomatically choosing

the translation segment/chunk of better quality using feature functions inspired by trans-

lation quality estimation. Finally, we present the blueprints for our TM-MT integration

models based on the techniques we review.1

3.1 From Human to Automatic Estimation of Translation Qual-

ity

Developers and users of TM or MT systems rely on quality estimation techniques to quickly

and easily estimate the quality of an MT output. Arguably, the ideal estimation method is

judgement made by bilingual translators, as the effectiveness of an MT system (like all

1Part of the research presented in this chapter has been published in [He et al., 2010a].
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systems) should eventually be judged by the people who use it, though human judges still

have their limitations.

Firstly, the human judgement may vary from task to task. For example, for information

retrieval applications, translation adequacy should be more important than grammaticality,

while for post-editing, a half well-translated segment is much better than a translation that

is correct in meaning but has grammatical errors scattered everywhere. Therefore, human

judgement is not that consistent an evaluation measure.

Furthermore, human judges do not always agree with each other, making people ques-

tion the reliability of human judgement results. In one evaluation task (WMT 2007), the

inter annotator agreement of human judges measured by the Kappa score is 0.37 when rank-

ing sentence pairs [Callison-Burch et al., 2007], suggesting only afair correlation. This

shows that human judges can reach a consensus quite often, but they also make conflicting

decisions a substantial amount of times.

That said, human judgement is still the best resource we can resort to when we need

to assess the quality of a translation, or validate an automatic quality estimation method.

Very often, however, time and economic constraints render this option impossible. In such

cases, automatic translation quality estimation methods have to be relied upon to obtain an

approximation of output quality.

Automatic translation quality estimation methods can be categorized into two families:

• Translation Evaluation Metrics. For translation output (hypothesis)hyp, a source

src and a set of human translations ofsrc (references)ref , an MT evaluation metric

m produces a metric scoresE , which aims to reproduce the scores given by bilingual

human judges tohyp givensrc.

• Translation Confidence Estimations.For translation outputhyp and a sourcesrc,

a confidence estimationC produces a confidence scoresC , which aims to reproduce

the scores given by bilingual human judges tohyp givensrc.

Heresrc, ref andhyp can be a sentence, a document, or a set of system outputs com-
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prising several documents. Accordingly, quality estimation could happen at sentence-level,

document-level and/or system-level. The most obvious difference between evaluation met-

rics and confidence estimations is that confidence estimations do not rely on human refer-

ence translationsref , but evaluation metrics do.

In the following sections, we first review confidence estimation methods used by the

MT and the TM community, and then review MT evaluation metrics.

3.2 Target-Driven Translation Confidence Estimation in MT

Confidence estimation is the technique used to assess translation quality given thesrc and

thehyp. However, the MT and the TM communities take very different approaches to the

prediction of translation confidence.

Often, the focus of the MT community is to apply prior or posterior knowledge to

predict the quality given a particularhyp. This strand of research was initiated by [Ueffing

et al., 2003], in which posterior probabilities on the word graph or N-best list are used to

estimate the quality of MT outputs. The idea is explored morecomprehensively in [Blatz

et al., 2004]. These estimations are often used to rerank theMT output and to optimize it

directly. Extensions of this strand are presented in [Quirk, 2004] and [Ueffing and Ney,

2005]. The former experimented with confidence estimation with several different learning

algorithms; the latter use word-level confidence measures to determine whether a particular

translation choice should be accepted or rejected in an interactive translation system.

In the context of TM-MT integration, efforts have been made to incorporate confidence

measures into a post-editing environment. To the best of ourknowledge, the first paper in

this area is [Specia et al., 2009a]. Instead of modeling on translation quality (often measured

by automatic evaluation scores), this research uses regression on both the automatic scores

and scores assigned by post-editors. The method is improvedin [Specia et al., 2009b],

which applies Inductive Confidence Machines (ICMs) [Vovk etal., 2005] and a larger set

of features to model post-editors’ judgement of the translation quality between “good” and
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“bad”, or among three levels of post-editing effort.

3.3 Source-Driven Translation Confidence Estimation in TM

The TM community, on the other hand, relies on the similarityof the source side to judge

whether a translation retrieved from the TM database could be useful to translate a new

segment.

The calculation of fuzzy match score itself is one of the coretechnologies in TM sys-

tems and varies among different vendors, but most often the calculation is based on Leven-

shtein Distance [Levenshtein, 1966], as in (3.1):

FuzzyMatch(s) = 1 − min
e

LevenshteinDistance(s, e)

Len(s)
(3.1)

wheres is the input, ande is the source side of an entry in the TM.

Despite its simplicity, the fuzzy match score used in TMs offers a good approximation

of post-editing effort, which is useful both for translators and translation cost estimation,

while current SMT translation confidence estimation measures are not as robust as TM

fuzzy match scores in this respect. Consequently professional translators are not yet ready

to replace fuzzy match scores with SMT-oriented confidence measures.

3.4 MT Evaluation Methods

3.4.1 Surface-Level MT Evaluation

Many of the evaluation metrics used in day-to-day MT development are surface-level, or

string-based metrics. Here we review three representativemetrics: BLEU [Papineni et al.,

2002], METEOR [Banerjee and Lavie, 2005], and TER [Snover et al., 2006], as they repre-

sent three different design considerations: BLEU uses n-gram precision to ensure translation

fluency and fidelity; METEOR, by contrast, relies on unigrams and linguistic resources;and

TER is modeled after post-editing operations, therefore TER scores can have the most intu-
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itive interpretation for translation and post-editing tasks.

There are other string-based MT evaluation metrics that introduce novel string matching

techniques and are of interest in the MT community, including GTM [Turian et al., 2003],

which pioneered the idea of balancing precision and recall,ROUGE [Lin and Och, 2004],

which models MT evaluation as the longest common subsequence matching, and MAXSIM

[Chan and Ng, 2008], which fomulates MT evaluation as a bipartite graph match.

BLEU BLEU is the most popular evaluation metric in MT development. Although it

suffers from several shortcomings, such as low correlationwith human judgement on the

sentence level, preference to statistical systems [Callison-Burch et al., 2006] and incon-

sistency in related evaluation scenarios [Chiang et al., 2008], it is still the most popular

automatic evaluation metric used in many translation campaigns and remains the most of-

ten used loss function in discriminative training of MT models.

BLEU performsn-gram matching between the output and the reference, usingn-gram

precision with a brevity penalty as the score, as in (3.2):

BLEU(n) =

n
∏

i=1

PRECi

1

n · exp(min(1 −
len(ref)

len(hyp)
, 0)) (3.2)

wheren is the order ofn-gram,PRECi is thei-gram precision,len(ref) is the length of

the reference, andlen(hyp) is the length of the output. It has been shown in evaluation

tasks [Callison-Burch et al., 2008] that BLEU has a lower correlation with human judge-

ment than newer metrics that make use of more linguistic resources and better matching

strategies, including METEORand TER.

METEOR METEOR tries to solve the problems of BLEU by performing multi-stage un-

igram matching and adding recall into consideration. With the use of unigram matching,

METEOR is less sensitive to variations in word order, and with multi-stage matching, ME-

TEOR can consider stemming and WordNet ([Fellbaum, 1998], currently for English only)

semantic information. The METEOR score is calculated as in (3.3):
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METEOR =
PR

αP + (1 − α)R
· (1 − cp) in which cp = γ · (

#chunks

#matches
)β (3.3)

whereP is the unigram precision,R is the unigram recall andcp is the chunk penalty,

which is used to penalize disfluent outputs.

TER TER is a Levenshtein Distance-style evaluation metric. It calculates how many in-

sertions, deletions, substitutions and sequence shifts are needed to make the output and

reference token sequences identical. The difference between TER and the classical Leven-

shtein Distance [Levenshtein, 1966] is the sequence shift operation, which allows phrasal

shifts in the hypothesis to be captured. TER is calculated as in (3.4). There is also a version

of TER in which references are not predefined but created by the human annotators based

on the MT output. This version (called HTER) measures post-editing effort directly.

TER =
#INS + #DEL + #SUB + #SHIFT

len(ref)
(3.4)

One advantage of surface-level metrics is that they can be easily enhanced with lex-

ical or shallow syntactic features, such as POS tags or paraphrases. For example, POS-

BLEU [Popović and Ney, 2009], uses POS tags to enhance BLEU, while METEOR-NEXT

[Denkowski and Lavie, 2010] and TERP [Snover et al., 2009] rely on paraphrases to im-

prove the coverage of METEOR and TER, respectively. Using such resources leads to im-

proved correlation with human judgement, as might be expected.

3.4.2 Deep Features in MT Evaluation

Some researchers have gone beyond the surface level and designed metrics that incorporate

syntactic features. The first step in this direction was by Liu and Gildea [2005], who used

syntactic structure and dependency information in order tosee past the surface phenomena.

Two of these metrics are based on matching syntactic subtrees between the translation and
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the reference, and the third is based on matching headword chains, but only forunlabelled

dependencies.

Since then, Owczarzak et al. [2007] have extended this line of research with the use of

a term-based encoding of LFGlabelleddependency graphs into unordered sets of depen-

dency triples, and calculating precision, recall, and f-measure on the sets corresponding to

the translation and reference sentences. With the additionof partial matching andn-best

parses, [Owczarzak et al., 2007] considerably outperform [Liu and Gildea, 2005] with re-

spect to correlation with human judgement. We will use an extension of [Owczarzak et al.,

2007] as a case study in the contribution of surface/linguistic features in MT evaluation (cf.

Section 3.5).

Instead of relying solely on one type of deep linguistic feature, some researchers eval-

uate and combine many heterogeneous linguistically motivated metrics. The best example

of this strand of research is perhaps [Giménez and Màrquez, 2008, Giménez and Màrquez,

2010], where the linguistic analysis applied in MT evaluation includes constituency parses,

dependency parses, semantic roles, and discourse representations. In their experiments, de-

pendency parses and discourse representations all lead to promising correlation with human

judgement.

3.4.3 Convergence of Surface and Deep Features in MT Evaluation

Given that both surface- and deep- level metrics have achieved promising correlation results

in the literature, it is quite natural that researchers havebegun to compare and combine these

two approaches in search of even better MT evaluation metrics.

In one such effort, [Amigó et al., 2009] systematically compare the strength and weak-

ness of n-gram and linguistic-driven metrics. They observethat linguistically motivated

metrics can outperform n-gram metrics at system level and avoid rewarding poor transla-

tions that happen to have surface-level overlapping with the reference, as more linguistic

constraints are introduced in the alignment process. They also show that a linear combina-

tion of these two types of metric can obtain the highest correlation with human judgement
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among the metrics they have evaluated.

Besides explicit combinations, one can also apply featuresfrom different levels inher-

ently by virtue of text entailment systems. Pado et al. [2009] evaluate translation outputs by

examining whether the source and the reference entail each other. This metric is built upon

the Stanford RTE system [Raina et al., 2005], and is also ableto achieve state-of-the-art

correlation performance.

The most obvious drawback of these methods is that, as they require a large amount

of potentially computationally expensive linguistic analysis, they are thus often slow and

resource-consuming. This renders these all-in-one metrics less useful in certain tasks, such

as MT tuning. Such metrics are also more restricted to specific output languages.

3.4.4 Evaluation of Translation Quality Estimation

As mentioned in Section 3.1, when evaluatedintrinsically, the performance of translation

quality estimation can be assessed by how well it conforms tojudgements by human raters.

When comparing two MT outputs, we can calculate accuracy, precision, and recall by using

human judgement as the gold standard. In this thesis, we apply these criteria to evaluate the

quality of our integration model against judgements made byhuman translators.

Let A be the set of system outputs, andB be the set of gold standards. We standardly

define precisionP , recallR and F-value as in (3.5):

P =
|A

⋂

B|

|A|
andR =

|A
⋂

B|

|B|
andF =

2PR

P + R
(3.5)

When rating more than two MT systems, the performance of a quality estimation tech-

nique is often measured by its correlation with human judgement. If we have gold stan-

dard human evaluation scores, we can compute Pearson’s correlation [Hollander and Wolfe,

1999]. Given a sequence of quality estimation scores (such as automatic evaluation scores)

X = {x1...xi...xn} and a sequence of gold standard scores (such as human evaluation

scores)Y = {y1...yi...yn}, we compute Pearson’s correlation score, as in (3.6):
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r =
1

n − 1

∑

(
xi − X̄

sX
)(

yi − Ȳ
sY

) (3.6)

wherexi is the value of theith score,X̄ is the mean score andsX is the standard deviation.

r is a real value in the range[−1, 1]. The value 0 implies thatX andY are independent, and

1 or -1 implies a perfect relationship (positively or negatively).

It is also possible to measure Spearman’s correlation [Hollander and Wolfe, 1999] when

only human rankings (instead of human scores) are available. Spearman’s correlation is

defined in (3.7), whered is the difference between corresponding values in rankingsandn

is the length of the rankings:

ρ = 1 − (
6

∑

d2

n(n2 − 1)
) (3.7)

Another way to measure ranking correlation is Kendall’sτ coefficient.

Kendall’s τ measures the relevance of two rankings by comparing the number of con-

cordant and discordant pairs in these rankings, as in (3.8)

τ(ra, rb) =
P − Q

P + Q
(3.8)

whereP andQ are the amount of concordant and discordant pairs inra andrb.

There is also the option to evaluate the performance of translation quality estimation

extrinsically, which means evaluating it in specific use cases. For example, MT evaluation

metrics or confidence estimation methods can be evaluated byhow much they can boost

the performance of MERT, or MT reranking. In this thesis, we also apply this type of

evaluation, and we would evaluate how good our quality estimation is by measuring the

improved translation quality/reduced post-editing effort obtained using quality-estimation

based translation recommendation and reranking.
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3.5 The DCU DEP-based Metric

In this section we present our extension to [Owczarzak et al., 2007] as an example of how

the combination of surface and deep features can improve a pure syntax-based evaluation

metric. Furthermore, many of the features used in this metric have been successfully applied

in sub-sentential integration of TM and MT paradigms.

3.5.1 Background

Our DCU-DEP metric is based on [Owczarzak et al., 2007], which uses a term-based en-

coding of LFG (Lexical-Functional Grammar)labelleddependency graphs into unordered

sets of dependency triples, and calculates precision, recall, and F-score on the sets corre-

sponding to the translation and reference sentences.

The line of research is extended by the EDPM metric [Kahn et al., 2010] which uses

arc labels derived from a PCFG parse to replace the LFG labels, so that a PCFG parser is

sufficient for preprocessing. EDPM also incorporates more information sources: e.g. the

parser confidence, the Porter stemmer, WordNet synonyms andparaphrases.

Besides these, information from the dependency parser is a component of some other

metrics that use a larger knowledge source, such as the textual entailment-based met-

ric [Pado et al., 2009].

Here we present another extension of the work of [Owczarzak et al., 2007]. We use the

Stanford parser2 to obtain Stanford dependencies and merge some labels whosegranularity

is too fine for the MT evaluation task. We incorporate the stemming, synonym and para-

phrase information as in [Kahn et al., 2010], and at the same time we introduce a chunk

penalty in the spirit of METEOR to punish discontinuous matches. We sort the matches

according to the match level and the dependency type, and weight the matches to maximize

the correlation with human judgement.

2http://nlp.stanford.edu/software/lex-parser.shtml
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3.5.2 The Dependency-based Metric

In this section, we briefly review the metric presented in [Owczarzak et al., 2007]. The

basic method can be illustrated by the example in Table 3.1.

Table 3.1: Sample Hypothesis and Reference
Hypothesis
rice will be held talks in egypt next week
Hyp-Triples
nsubjpass(held, rice)
aux(held, will)
auxpass(held, be)
dobj(held, talks)
nn(week, egypt)
amod(week, next)
prep-in(talks, week)
Reference
rice to hold talks in egypt next week
Ref-Triples
nsubj(hold, rice)
aux(hold, to)
dobj(hold, talks)
nn(week, egypt)
nn(week, next)
prep-in(talks, week)

The metric in [Owczarzak et al., 2007] performs triple matching over the Hyp- and Ref-

Triples and calculates the metric score using the F-score ofmatching precision and recall.

Let m be the number of matches,h be the number of triples in the hypothesis ande be the

number of triples in the reference. Then we have the matchingprecisionP = m/h and

recall R = m/e. The score of the hypothesis in [Owczarzak et al., 2007] is the F-score

based on the precision and recall of matching, as in (3.9):

Fscore =
2PR

P + R
(3.9)
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3.5.3 Details of the Matching Strategy

Owczarzak et al. [2007] use several techniques to facilitate triple matching. First of all,

considering that the MT-generated hypotheses have variable quality and are sometimes un-

grammatical, the metric searches the 50-best parses of boththe hypothesis and reference

and uses the pair that has the highest matching F-score to compensate for parser noise.

Secondly, the metric performscompleteor partial matching according to the depen-

dency labels, so the metric will find more matches on dependency structures that are more

informative.

More specifically, for all except the LFGPredicate-Only labeled triples of the

form dep(head, modifier) , the method does not allow a match if the dependency

labels (deps) are different, thus enforcing acompletematch. For thePredicate-Only

dependencies,partial matching is allowed: i.e. two triples are considered identical even

if only the head or themodifier are the same. Predicate-Only dependencies are those

relations whose paths end in a predicate-value pair. The role of “predicate” in LFG does not

have a direct correspondent in Stanford dependency notations. However, we allow partial

matches on labels of thearg category, following the spirit of [Owczarzak et al., 2007].

Finally, the metric also uses linguistic resources for better coverage. Besides using

WordNet synonyms, the method also uses the lemmatized output of the LFG parser [Cahill

et al., 2004], which is equivalent to using an English lemmatizer.

If we do not consider the linguistic resources, the metric would find these matches in the

example:nn(week, egypt) , nn(week, next) andprep-in(talks, week) .

We see several points for improvement from the above analysis:

• More linguistic resources. We can use more linguistic resources besides WordNet in

pursuit for better coverage, such as a stemmer and paraphrases.

• Simplifying dependency labels. As is shown in Table 3.1, Stanford dependency labels

are too fine-grained for our metric, which prevents matchingnsubjpass(held,

rice) to nsubj(hold, rice) , even if we use linguistic resources, since the
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metric does not allow matching trigrams with different dependency labels.

• Boosting continuous matches. It would be more desirable toreflect the fact that the

3 matches currently found are continuous in Table 3.1.

We introduce our improvements to the metric in response to these observations in the

following sections.

3.5.4 Capturing Variations in Language

3.5.4.1 Merging Stanford Dependency Labels

We saw in Section 3.5.2 that the granularity of Stanford dependencies does not fit our

dependency-based metric very well. We identify three sets of dependency-types to merge:

subj , obj andprep .

The Stanford parser gives a very detailed analysis ofsubj andobj dependencies (e.g.

active or passive, nominal or clausal, etc.). Though this ispreferable behavior of a parser,

these details differentiate very similar dependency relations and prevent our metric from

capturing useful correspondences. Therefore, we merge thedependency labels undersubj

andobj , respectively.

For theprep type, the Stanford parser differentiates between the actual preposition and

labels such relations as, for example,prep-in , so the corresponding triples can match

only if the preposition itself is correctly translated. We merge all these labels into aprep

type.

3.5.4.2 Linguistic Resources

In [Owczarzak et al., 2007], lexical variations at the word-level are captured by WordNet.

We use a Porter stemmer and a unigram paraphrase database to allow more lexical varia-

tions.

With these two resources combined, there are four stages of word-level matching in our

system: exactmatch,stemmatch,WordNetmatch and unigramparaphrasematch. The
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stemming module uses Porter’s stemmer implementation3 and the WordNet module uses

the JAWS WordNet interface.4 Our metric only considers unigram paraphrases, which are

extracted from the paraphrase database in TERP5 using the script in the METEOR6 metric.

3.5.5 Adding Chunk Penalty to the Dependency-based Metric

The metric described in [Owczarzak et al., 2007] does not explicitly consider word order

and fluency. METEOR, on the other hand, utilizes this information through a chunk penalty.

We introduce a chunk penalty to our dependency-based metricfollowing METEOR’s string-

based approach.

Given a referencer = wr1...wrn, we denotewri as ‘covered’ if it is the head or modifier

of a matched triple. We only consider thewris that appear ashead or modifier in the

reference triples. Given this notation, we follow the approach taken in METEORby counting

the number of chunks in the reference string, where a chunkwrj...wrk is a sequence of

adjacent covered words in the reference. Using the hypothesis and reference in Table 3.1

as an example, the three matched triplesadjunct(talks, in) , obj(in, egypt)

andadjunct(week, next) will cover a continuous word sequence in the reference

(underlined), constituting one single chunk:

rice to hold talks (in) egypt next week

Based on this observation, we introduce a similar chunk penalty Pen as in METEOR in

our metric, as in (3.10):

Pen = γ · (
#chunks

#matches
)β (3.10)

whereβ andγ are free parameters, which we tune in Section 3.5.6.2. We addthis penalty

to the dependency-based metric (cf. (3.9)), as in (3.11).

3http://tartarus.org/ ˜ martin/PorterStemmer/
4http://lyle.smu.edu/ ˜ tspell/jaws/index.html
5http://www.umiacs.umd.edu/ ˜ snover/terp/
6http://www.cs.cmu.edu/ ˜ alavie/METEOR/
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score = (1 − Pen) · Fscore (3.11)

3.5.6 Parameter Tuning

3.5.6.1 Parameters of the Metric

In this metric, dependency triple matches can be categorized according to many criteria.

We assume that some matches are more critical than others andencode the importance

of matches by weighting them differently. The final match will be the sum of weighted

matches, as in (3.12):

m = λtmt (3.12)

whereλt andmt are the weight and number of match categoryt. We categorize a triple

match from three perspectives:

• The level of matchL = {complete, partial}

• The linguistic resource used in matchingR = {exact, stem,WordNet, paraphrase}

• The type of dependencyD. If we tune weights for each dependency type, there is the

danger that we will overfit on the training data and our model will be very language-

specific, so we choose to only discriminate between those that areargument depen-

dencies and those that are not, withD = {Arg,NoArg}.

Therefore for each triple matchm, we can have the type of the matcht ∈ L × R × D.

3.5.6.2 Tuning

In sum, we have the following parameters to tune in our metric: precision weightα, chunk

penalty parametersβ , γ and the match type weightsλ1...λn. We perform Powell’s line

search7 on the sufficient statistics of our metric to find the set of parameters that maximizes

7Powell’s line search optimizes an objective function by first searching along all directions, and then starting
again at the linear combination of the optimum found in each direction.
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Pearson’sρ on the segment level. We perform the optimization on the MT06portion of

NIST MetricsMATR 2010 development set (consisting of Arabic–English translations from

8 systems on 249 segments) with 2-fold cross validation.

3.5.7 Experiments

We experiment with different settings of the metric: WN-ONLY, WN-STEM-PARA(phrase),

WN-STEM-PARA-TYPE and WEIGHTED, in order to validate our enhancements. The first

two settings calculate F-scores using the linguistic resources suggested by their names. The

third setting merges similar Stanford dependency labels (cf. Section 3.5.4.1) and the final

setting uses weighted parameters. All words are lowercasedfor all settings.

We report Pearson’sr, Spearman’sρ and Kendall’sτ on segment and system levels

using Snover’s scoring tool.8

Table 3.2: Correlation on the Segment Level
r ρ τ

WN-ONLY 0.606 0.636 0.212
WN-STEM-PARA 0.655 0.664 0.236
WN-STEM-PARA-TYPE 0.655 0.661 0.233
WEIGHTED 0.704 0.715 0.280

In Table 3.2, we see that by incorporating more linguistic resources into the dependency-

based metric, we improve the metric’s correlation with human judgement according to all

correlation scores. The effect of simplifying dependency types is not that clear at system

level, but parameter tuning almost boosts Pearson’sr as much as linguistic resources. Al-

though the parameters might somehow overfit the data set evenif we apply cross-validation,

this certainly confirms the necessity of weighting dependency matches according to their

types.

When considering the system-level correlation in Table 3.3, the biggest difference to the

results on the segment level is that it shows the validity of merging dependency labels: Pear-

son’sr coefficients are close before and after label merging, but the ranking correlations are

8http://www.umiacs.umd.edu/ ˜ snover/terp/scoring/
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Table 3.3: Correlation on the System Level
r ρ τ

WN-ONLY 0.961 0.738 0.643
WN-STEM-PARA 0.977 0.881 0.786
WN-STEM-PARA-TYPE 0.978 0.929 0.857
WEIGHTED 0.959 0.929 0.857

much improved, suggesting that a simpler set of dependency labels could be more suitable

to evaluate MT outputs. WEIGHTED match types lead to a slightly lowerr at system level,

but that does not affect ranking accuracy, as suggested by theρ andτ coefficients.

3.5.8 Discussion

As we review the DCU-DEP metric, we can see that combining surface and deep level fea-

tures can improve the performance of a syntax-oriented MT evaluation metric. Compared

to other metrics, this metric is competitive at the system level, but not as competitive at the

segment level. One of the reasons for this could be that on segment-level evaluation, the

dependency-based metric filters out some valid matches, which has a negative impact on

evaluation performance. On the system level, however, the larger amount of data compen-

sates for the segment-level score fluctuation caused by the dependency-oriented matching

scheme. This phenomenon is also observed by Amigó et al. [2009].

Although the improvements brought by dependency matching are not clear on MT eval-

uation, we suspect that they could be more useful when we needto predict the translation

quality of sub-segment chunks, where many fewer lexical features can be explored (the

chunks may not be long enough to constitute a valid n-gram, and ideas such as chunk

penalty or longest match sequence will be less meaningful).In Chapter 7, we will see the

application of dependency-based features in sub-segment translation quality estimation.

We also suspect that the dependency-based method would be more suitable for eval-

uating more structurally-related properties of translation, such as translation consistency,

as is discussed in Chapter 7. Compared to evaluating just translation quality, translation

consistency evaluation should also consider whether chunks of the same meaning and sim-
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ilar grammatical functions have uniform translations. We will show that deep features can

substantially help improve such prediction tasks.

3.6 Bringing the Two Worlds Together via Quality Estimation

As presented in the previous chapter, SMT has achieved huge improvements in recent years.

This, in combination with the promising results achieved byrecent MT quality estimation

methods, leads us to consider the possibility of integrating high-quality MT outputs – in

whole or in part – into TM outputs which are used actively by translators. Translation

quality estimation plays two roles in this process. Firstly, translation quality estimation is

essential in determining whether we should use segments/chunks from MT or from TM.

TM-MT integration is only useful when translations having better quality can be selected

automatically. Secondly, translation quality estimationis also necessary to provide a confi-

dence score in TM-MT integration. The confidence score is needed as a replacement of the

fuzzy match scores in the TM, when we choose to favor segmentsor chunks from the MT

system.

3.6.1 Translation Confidence-Inspired Integration of TM and MT

The successful application of surface-level features in MTevaluation metrics suggests that

the quality of translation can be estimated reasonably welleven without deep features. In

[Specia et al., 2009b], it is also shown that surface features are capable of generating confi-

dence estimation scores for MT outputs.

Based on such evidence, we would first experiment with surface-level features on segment-

level TM-MT integration. As our results show, using surface-level features – even if only

those features derived from translation models – on the segment level can already achieve

satisfactory results, especially on the recommendation task.
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3.6.2 From Segment Level Integration to Sub-segment-LevelIntegration

When we move from segment-level to sub-segment level, however, the surface-level fea-

tures begin to reach their limit. As we will see in Chapter 7, using only translation model

features, such as those used in the segment-level TM-MT integration models, cannot lead to

improvements. Therefore, we introduce a much more comprehensive feature set to model

the sub-segment-level TM-MT integration, and show that using deep features indeed helps

us to capture the properties of translation consistency in this setting.

3.7 Summary

In this chapter, we reviewed MT quality estimation methods,including techniques for hu-

man evaluation, automatic MT evaluation, and MT confidence estimation. We compared

the use of surface- and deep-level features in MT quality estimation, and used the DCU-

DEP metric as an example to put the discussion in context. We analyzed the pros and cons

of this metric, and the idea of using linguistically-motivated features to predict translation

quality will be applied again in Chapter 7.

Finally, based on the analysis of the TM and the MT paradigms,as well as quality esti-

mation methods, we sketched our proposal to perform TM-MT integration on the segment

or sub-segment level using techniques that are similar to MTquality estimation. We also

hinted at the choice of surface- or deep-level features according to the characteristics of

the integration. We will develop this sketch into a fully functional and human-validated

integration scheme in Chapters 4, 5, 6, and 7.
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Chapter 4

TM-MT Integration as Translation

Recommendation

4.1 Introduction1

In this chapter, we begin the integration of TM and MT enginesby focusing on the 1-best

output of each system. In Table 4.1, we present an example segment from a Symantec

translation memory, together with a reference translationproduced by a human, and the

outputs from the TM and the MT system. Note that a typical TM system will display

both the source (TM Source) and the target (TM Target ) side, as translators will use the

alignment information (as aligned parts of the source segment are usually color-coded in

TM systems) on the source side to identify the spans that needediting.

Table 4.1: An Example of TM and MT Output
Source Restore over existing virtual machines .
TM Source Check restore over existing files .
TM Target Cochez la case restaurer sur les fichiers existants .
MT Output Restaurer des machines virtuelles existantes .
Reference Restaurer sur les machines virtuelles existantes .

In Table 4.1, the TM does not find a translation that is close inmeaning to the source, but

1Part of the research presented in this chapter has been published in [He et al., 2010c]
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there is some similarity between the input and the source side of the TM fuzzy match. From

TM Source, the translators know that they probably do not need to adjust the translation

for restore, and should instead pay attention to other parts of the segment. We can also see

that in this case the MT output would be much easier to post-edit than the TM output.

In this chapter we present a translation recommendation model where translators can

have access to MT segments that are more suitable to post-edit, without having to leave the

TM environment, and can still use TM-based cost estimation as an upperbound. To achieve

this, we estimate the relative quality of the TM output and the MT output, and present the

one that is more suitable for post-editing (the MT output in this example) to translators.

We describe the elements of our translation recommendationmodel in the following

sections: we present the translation recommendation paradigm in Section 4.2, and discuss

the details of the paradigm in Section 4.3. We describe the features we use in our recom-

mender in Section 4.4. We present experiments to test the performance of our recommender

in Section 4.5, and approximate the reduced post-editing effort in Section. We review re-

lated work in Section 4.7 and summarize this chapter in Section 4.8.

4.2 The Translation Recommendation Paradigm

The example in Section 4.1 shows that sometimes current MT systems are capable of pro-

ducing outputs that are more suitable for post-editing thanTM hits. However, MT technol-

ogy is sometimes adopted only slowly and somewhat reluctantly in the localization indus-

try, because 1) TMs represent considerable effort and investment by a company or (even

more so) an individual translator; 2) the fuzzy match score used in TMs offers a good ap-

proximation of post-editing effort, which is useful both for translators and translation cost

estimation and, 3) current SMT translation confidence estimation measures are not as robust

as TM fuzzy match scores and professional translators are thus not ready to replace fuzzy

match scores with SMT internal quality measures.

It is therefore important to keep in mind that when integrating MT outputs into TM
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systems, the original attractive properties of TMs should be kept intact. Our translation

recommendation model presented in this chapter is designedto serve this purpose: given

that most post-editing work is (still) based on TM output, wepropose to recommend MT

outputs which are better than TM hits to translators. In thisframework, translators still work

with the TM while benefiting from (better) SMT outputs; the assets in TMs are not wasted

and TM fuzzy match scores can still be used to estimate (the upper bound of) post-editing

labor.

There are three specific goals we need to achieve for the recommendation based TM-

MT integration to work smoothly. Firstly, the recommendation should have high precision,

otherwise it would be confusing for translators and may negatively affect the lower bound

of the post-editing effort. Secondly, although we have fullaccess to the SMT system used

in this paper, our method should be able to generalize to cases where SMT is treated as a

black-box, which is often the case in the translation industry. Finally, translators should

be able to easily adjust the recommendation threshold to particular requirements without

having to retrain the recommendation model.

Based on these requirements, we recast translation recommendation as a binary clas-

sification (rather than regression) problem using SVMs, perform RBF kernel parameter

optimization, employ posterior probability-based confidence estimation to support user-

based tuning for precision and recall, experiment with feature sets involving MT-, TM- and

system-independent features, and use automatic MT evaluation metrics to simulate post-

editing effort.

We depict the translation recommendation paradigm in Figure 4.1: both the TM and

the SMT systems are used at the backend. When there is a new segment to translate, we

compare the output from the TM and the MT system. Using an SVM-based classifier,

we predict which of the two translations is more suitable forpost-editing, along with a

confidence score. In the TM environment, the translator can set a confidence threshold, and

only MT outputs that are predicted to be better than the theirTM correspondents with high

confidence (above the threshold) will be presented to the translator. Otherwise the translator
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Figure 4.1: The Translation Recommendation Paradigm

will continue to use the TM output.

4.3 The SVM-based Recommendation Model

4.3.1 Support Vector Machines

We train an SVM binary classifier to perform translation recommendation between the TM

and the MT output. SVMs [Cortes and Vapnik, 1995] classify aninput instance based on

decision rules which minimize the regularized error function in (7.5):

min
w,b,ξ

1

2
wT w + C

l
∑

i=1

ξi

s. t. yi(wT Φ(xi) + b) > 1 − ξi

ξi > 0

(4.1)
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where(xi, yi) ∈ Rn × {+1,−1} arel training instances that are mapped by the function

Φ to a higher dimensional space.w is the weight vector,ξ is the relaxation variable and

C > 0 is the penalty parameter.

Solving SVMs withΦ is performed by finding a kernel functionK in (7.5) withK(xi, xj) =

Φ(xi)
T Φ(xj). We perform our experiments with the Radial Basis Function (RBF) kernel,

as in (7.6):

K(xi, xj) = exp(−γ||xi − xj ||
2), γ > 0 (4.2)

When using SVMs with the RBF kernel, we have two free parameters to tune on: the

cost parameterC in (7.5) and the radius parameterγ in (7.6). In each of our experimental

settings, the parametersC andγ are optimized by a brute-force grid search. The classifica-

tion result of each set of parameters is evaluated by cross validation on the training set. Note

that as we have a relatively small set of features, we rely on the ability of the RBF kernel

to map the features to higher dimensional space. This is greatly facilitated using SVMs,

where the tuning ofC andγ is also important to obtain better prediction performance.

The SVM classifier will predict the relative quality of the MToutput, and determine

whether it is worthwhile presenting it to the post-editors instead of the TM output. The

classifier uses features from the MT system, the TM and additional linguistic features to es-

timate whether the SMT output is better than the best hit fromthe TM. Ideally the classifier

will recommend the output that needs the least post-editingeffort. As large-scale human

annotated data is not yet available for this task, we use automatic TER scores [Snover et al.,

2006] as the measure for the required post-editing effort. In the future, we hope to train

our system on HTER (TER with human-targeted references) scores [Snover et al., 2006]

once the necessary human annotations are in place.2 In the meantime we use TER, as

TER is shown to have high correlation with HTER. This method is validated by our human

2While our Symantec data set was not annotated by post-editors, some small data sets do exist, e.g.http:
//pers-www.wlv.ac.uk/ ˜ in1316/resources/datasets_ce_eamt.tar.gz
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evaluation (cf. Section 6.3.4).

We label the training examples as in (7.7):

y =











+1 if TER(MT) < TER(TM)

−1 if TER(MT) ≥ TER(TM)

(4.3)

Each instance is associated with a set of features from both the MT and TM outputs,

which are discussed in more detail in Section 4.4.

4.3.2 Recommendation Confidence Estimation

In classical settings involving SVMs, confidence levels arerepresented as margins of binary

predictions. However, these margins provide little insight for our application because the

numbers are only meaningful when compared to each other. What is more preferable is a

probabilistic confidence score (e.g. 90% confidence) which is better understood by post-

editors and translators.

We use the techniques proposed by Platt [1999] and improved by Lin et al. [2007] to

convert the classification margin to a posterior probability, which is used as the confidence

score in our system.

Platt’s method estimates the posterior probability with a sigmoid function, as in (7.8):

Pr(y = 1|x) ≈ PA,B(f) ≡
1

1 + exp(Af + B)
(4.4)

wheref = f(x) is the decision function of the estimated SVM. A and B are parameters

that minimize the cross-entropy error functionF on the training data, as in Eq. (7.9):

min
z=(A,B)

F (z) = −
l

∑

i=1

(tilog(pi) + (1 − ti)log(1 − pi)),

wherepi = PA,B(fi), andti =











N++1
N++2 if yi = +1

1
N

−
+2 if yi = −1

(4.5)

wherez = (A,B) is a parameter setting, andN+ andN− are the numbers of observed
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positive and negative examples, respectively, for the label yi. These numbers are obtained

using an internal cross-validation on the training set.

4.4 The Feature Set

We use three types of features in classification: the MT system features, the TM feature and

system-independent features.

4.4.1 The MT System Features

The MT system features are derived from the translation model of phrase-based SMT (cf.

Chapter 2). We use:

• Phrase-based Translation Model Scores. Phrase-based translation model scores are

the model scores proposed in [Koehn et al., 2003] as the translation model scores in

phrase-based SMT. This includes the direct and reverse phrase translation probability

and direct and reverse lexical translation probability.

• The Language Model (LM) Probability . This is the language model probability of

the MT output.

• The Distance-based Reordering Score. This is the distance based reordering score

estimated using a decay function in phrase-based SMT.

• Lexicalized Reordering Model Scores. These are the lexicalized reordering model

scores. These scores estimate the probability of monotone,swap, or discontinuous

reordering for a given phrase pair [Och et al., 2004].

In sum, by reusing the feature scores from the standard phrase-based SMT model, we

are able to roughly predict the quality of the MT output. Although these features are not that

powerful to predict the exact translation quality (otherwise MT reranking should always be

able to correctly select the oracle translation, which is not the case, cf. [Shen et al., 2004]),
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when combined with the fuzzy match cost feature from TM, we will be able to predict

whether the TM or the MT output is of better quality.

4.4.2 The TM Feature

The TM feature is the fuzzy match [Sikes, 2007] cost of the TM hit. The calculation of fuzzy

match score itself is one of the core technologies in TM systems and varies among different

vendors. We compute fuzzy match cost as the minimum Levenshtein Distance [Leven-

shtein, 1966] between the source and TM entry, normalized bythe length of the source as

in (7.10), as most of the current implementations are based on edit distance while allowing

some additional flexible matching.

hfm(t) = min
e

LevenshteinDistance(s, e)

Len(s)
(4.6)

wheres is the source side oft – the sentence to be translated – ande is the source side of an

entry in the TM. For fuzzy match scoresF , this fuzzy match costhfm roughly corresponds

to 1 − F . The difference in calculation does not influence classification, and allows direct

comparison between a pure TM system and a translation recommendation system in Section

4.5.5.

4.4.3 System-Independent Features

Ideally, localization organizations will train their own MT and translation recommendation

systems in order to obtain high quality in-domain translation outputs. However, there is

still the choice of using a third party translation service,in which case the system-internal

recommendation features from the SMT system will not be available.

To handle this situation, as well as to gather recommendation evidence from rich and

varied sources, we use several features that are independent of the translation system, which

are useful when a third-party translation service is used, or when the MT system is simply

treated as a black-box:
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• Source-Side Language Model Score and Perplexity. We compute the LM score

and perplexity of the input source sentence on an LM trained on the source-side

training data of the SMT system. The inputs that have lower perplexity or higher LM

score are more similar to the dataset on which the SMT system is built.

• Target-Side Language Model Perplexity. We compute the LM probability and per-

plexity of the target side as a measure of fluency. Language model perplexity of the

MT outputs is calculated, and LM probability is already partof the MT system’s

scores. LM scores on TM outputs are also computed, though they are not as informa-

tive as scores on the MT side, as TM outputs are human translations and should be

grammatically perfect.

• The Pseudo-Source Fuzzy Match Score. We back-translate the output to obtain

a pseudo source sentence. We compute the fuzzy match score between the original

source sentence and this pseudo-source. If the MT/TM systemperforms well enough,

these two sentences should be the same or very similar. Therefore, the fuzzy match

score here gives an estimation of the confidence level of the output. We compute this

score for both the MT output and the TM hit. This method is explored previously by

Somers [2005] as an independent MT quality estimation measure. Although Somers

[2005] does not recommend it as a stand-alone MT confidence estimation measure,

we are using it along with other features to exploit useful information from back-

translation.

• The IBM Model 1 Score. The fuzzy match score does not measure whether the hit

could be a correct translation, i.e. it does not take into account the correspondence

between the source and target, but rather only the source-side information. For the

TM hit, the IBM Model 1 score [Brown et al., 1993] serves as a rough estimation of

how good a translation it is on the word level; for the MT output, on the other hand,

it is a black-box feature to estimate translation quality when the information from the

translation model is not available. We compute bidirectional (source-to-target and
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target-to-source) model 1 scores on both TM and MT outputs.

We will show in Section 4.5.3 that we are still able to obtain high recommendation

performance only with the system independent features, so that our models still work if the

MT system is used as a black box.

4.5 Experiments and Balancing Precision and Recall

We test the precision and recall of our recommendation modelbefore evaluating its impact

on post-editing effort to measure whether such a model can belearned well using the SVM

framework. More thorough automatic and human evaluations are presented in Section 4.6

and Chapter 6.

4.5.1 Experimental Settings

Our raw data set is an English–French translation memory with technical translations from

Symantec, consisting of 51K sentence pairs. This size is smaller than many parallel corpora

that are used to train SMT systems, such as Europarl [Koehn, 2005], but it is comparable to

the larger TMs used in the localization industry. We randomly selected 43K to train an SMT

system and translated the English side of the remaining 8K sentence pairs. The average

sentence length of the training set is 13.5 words. Note that we remove exact matches in

the TM from our dataset, because exact matches will be reusedand not presented to the

post-editor in a typical TM setting.

As for the SMT system, we use a standard log-linear PB-SMT model [Och and Ney,

2002]: GIZA ++ implementation of IBM word alignment model 4,3 the refinement and

phrase-extraction heuristics described in [Koehn et al., 2003], minimum-error-rate train-

ing [Och, 2003], a5-gram language model with Kneser-Ney smoothing [Kneser andNey,

1995] trained with SRILM [Stolcke, 2002] on the French side of the training data, and

3More specifically, we performed5 iterations of Model 1,5 iterations of HMM,3 iterations of Model 3,
and3 iterations of Model 4.
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Moses [Koehn et al., 2007] to decode. We train a system in the opposite direction using the

same data to produce the pseudo-source sentences.

We train the SVM classifier using the libSVM [Chang and Lin, 2001] toolkit. The

SVM-training and testing is performed on the remaining 8K sentences with4-fold cross

validation. We also report 95% confidence intervals.

The SVM hyper-parameters are tuned using the SVM training data of the first fold in

the 4-fold cross validation via a brute force grid search. More specifically, for parameter

C in (7.5) we search in the range[2−5, 215], and for parameterγ in (7.6) we search in the

range[2−15, 23]. The step size is 2 on the exponent.

4.5.2 The Evaluation Metrics

We measure the quality of the classification by precision andrecall. LetA be the set of

recommended MT outputs, andB be the set of MT outputs that have lower TER scores

than the corresponding TM hits. We standardly define precision P , recallR and F-value as

in (7.11):

P =
|A

⋂

B|

|A|
, R =

|A
⋂

B|

|B|
andF =

2PR

P + R
(4.7)

4.5.3 Recommendation Results

In Table 4.2, we report recommendation performance using MTand TM system features

(SYS), system features plus system-independent features (ALL :SYS+SI), and system-independent

features only (SI).

Table 4.2: Recommendation Results
Precision Recall F-Score

SYS 82.53±1.17 96.44±0.68 88.95±.56
SI 82.56±1.46 95.83±0.52 88.70±.65
ALL 83.45±1.33 95.56±1.33 89.09±.24
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From Table 4.2, we observe that MT and TM system-internal features are very useful

for producing a stable (as indicated by the smaller confidence interval) recommendation

system (SYS). Interestingly, only using some simple system-external features as described

in Section 4.4.3 can also yield a system with reasonably goodperformance (SI). We expect

that the performance can be further boosted by adding more syntactic and semantic features.

Combining all the system-internal and -external features leads to limited gains in Precision

and F-score compared to using system-internal features (SYS) only. This indicates that at

the default confidence level of the recommendation system (0.5), current system-external

(resp. system-internal) features can only play a limited role in informing the system when

current system-internal (resp. system-external) features are available. Additionally, the per-

formance of system SI is promising given the fact that we are using only a limited number

of simple features, which demonstrates a good prospect of applying our recommendation

system to MT systems where we do not have access to their internal features.

Table 4.3: Contribution of Features
Precision Recall F Score

SYS 82.53±1.17 96.44±0.68 88.95±.56
SYS+M1 82.87±1.26 96.23±0.53 89.05±.52
SYS+LM 82.82±1.16 96.20±1.14 89.01±.23
SYS+PS 83.21±1.33 96.61±0.44 89.41±.84

4.5.4 Contribution of Features

In Section 4.4.3 we suggested three sets of system-independent features: features based

on the source- and target-side LM, the IBM Model 1 (M1) and thefuzzy match scores on

pseudo-source (PS). We compare the contribution of these features in Table 4.3.

In sum, all three sets of system-independent features improve the precision and F-scores

of the MT and TM system features. The improvement is not significant, but improvement on

every set of system-independent features gives some creditto the capability of SI features,

as does the fact that SI features perform close to SYS features in Table 4.2.
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4.5.5 Further Improving Recommendation Precision

Table 4.2 shows that classification recall is very high, which suggests that precision can

still be improved, if recall can be compromised to some extent. Considering that TM is

the dominant (and tried and trusted) technology used by post-editors, a recommendation

to replace the hit from the TM by MT output should require highconfidence, i.e. high

precision.

4.5.5.1 Adjusting Confidence Levels

We output a confidence score during prediction and thresholdrecommendation on the con-

fidence score.

We use the SVM confidence estimation techniques in Section 4.3.2 to obtain the con-

fidence level of the recommendation, and change the confidence threshold for recommen-

dation when necessary. This also allows us to compare directly against a simple baseline

inspired by TM users. In a TM environment, some users simply ignore TM hits below a

certain fuzzy match scoreF (usually from 0.7 to 0.8). This fuzzy match score reflects the

confidence of recommending the TM hits. To obtain the confidence of recommending an

SMT output, our baseline (FM) uses fuzzy match costshFM ≈ 1 − F (cf. Section 4.4.2)

for the TM hits as the level of confidence. In other words, the higher the fuzzy match cost

of the TM hit (lower fuzzy match score), the higher the confidence of recommending the

SMT output. We compare this baseline with the three settingsin Section 4.5.

Figure 4.2 shows that the precision curve of FM is low and flat when the fuzzy match

costs are low (from 0 to 0.6), indicating that it is unwise to recommend an SMT output

when the TM hit has a low fuzzy match cost (corresponding to higher fuzzy match score,

from 0.4 to 1). We also observe that the precision of the recommendation receives a boost

when the fuzzy match costs for the TM hits are above 0.7 (fuzzymatch score lower than

0.3), indicating that SMT output should be recommended whenthe TM hit has a high fuzzy

match cost (low fuzzy match score). With this boost, the precision of the baseline system

can reach 0.85, demonstrating that a proper thresholding offuzzy match scores can be used
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Figure 4.2: Precision Changes with Confidence Level

effectively to discriminate the recommendation of the TM hit from the recommendation of

the SMT output.

However, using the TM information only does not always find the easiest-to-edit trans-

lation. For example, an excellent SMT output should be recommended even if there exists a

good TM hit (e.g. fuzzy match score is 0.7 or more). On the other hand, a misleading SMT

output should not be recommended if there exists a poor but useful TM match (e.g. fuzzy

match score is 0.2 or below).

Our system is able to address these complications as it incorporates features from the

MT and the TM systems simultaneously. Figure 4.2 shows that both the SYS and the ALL

settings consistently outperform FM, indicating that our classification scheme can better

integrate the MT output into the TM system than our naive FM baseline. The advantage of

our method over the TM-cutoff-based FM baseline is further confirmed by human evalua-

tion (cf. Chapter 6).

The SI feature set does not perform well when the confidence level isset above 0.85

(cf. the descending tail of the SI curve in Figure 4.2). This might indicate that this feature

set is not reliable enough to extract the best translations.However, when the requirement
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on precision is not that high, and the MT-internal features are not available, it would still

be desirable to obtain translation recommendations with the black-box SI features. The

difference between SYS and ALL is generally small, but ALL performs steadily better in

the range [0.5, 0,8].

Table 4.4: Recall at Fixed Precision
Recall

SYS @85PREC 88.12±1.32
SYS @90PREC 52.73±2.31
SI @85PREC 87.33±1.53
ALL @85PREC 88.57±1.95
ALL @90PREC 51.92±4.28

4.5.5.2 Precision Constraints

In Table 4.4 we also present the recall scores at 0.85 and 0.9 precision for SYS, SI and

ALL models to demonstrate our system’s performance when there is a hard constraint on

precision. Note that our system will return the TM entry whenthere is an exact match, so

the overall precision of the system in a typical mature TM environment is well above the

precision score we set here, as a significant portion of the material to be translated will have

a complete match in the TM system.

In Table 4.4 for MODEL@K, the recall scores are achieved when the prediction preci-

sion is better than K with 0.95 confidence. For each model, precision at 0.85 can be obtained

without a very big loss in recall. However, if we want to demand further recommendation

precision (corresponding to a more conservative recommendation of SMT output), the re-

call level will begin to drop more rapidly. If we use only system-independent features (SI),

we cannot achieve as high precision as with other models evenif we sacrifice more recall.

Based on these results, the users of the integrated TM/MT system can choose between

precision and recall according to their own needs. As setting thresholds does not involve re-

training of the SMT system or the SVM classifier, the user is able to determine this trade-off

at runtime.
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4.6 Edit Statistics Using the Recommendation Model

A natural question regarding the integration models is whether recommendation or rerank-

ing reduces the effort of the translators and post-editors:after reading the recommended

segments or reranked list, will they translate/edit less than they would otherwise have to?

In this section, we try to approximate the amount of reduced post-editing effort using the

edit operations in the TER automatic MT evaluation metric. We will continue to present

evidence from human evaluation that supports validation ofthe conclusions reported here

in Chapter 6. Eventually, we plan to test this method in a fullscale industrial TM and

post-editing environment.

Table 4.5: Edit Statistics when Recommending MT Outputs in Classification, confi-
dence=0.5

Insertion Substitution Deletion Shift
MT 0.9849± 0.0408 2.2881± 0.0672 0.8686± 0.0370 1.2500± 0.0598
TM 0.7762± 0.0408 4.5841± 0.1036 3.1567± 0.1120 1.2096± 0.0554

Table 4.6: Edit Statistics when NOT Recommending MT Outputsin Classification, confi-
dence=0.5

Insertion Substitution Deletion Shift
MT 1.0830± 0.1167 2.2885± 0.1376 1.0964± 0.1137 1.5381± 0.1962
TM 0.7554± 0.0376 1.5527± 0.1584 1.0090± 0.1850 0.4731± 0.1083

Table 4.7: Edit Statistics when Recommending MT Outputs in Classification, confi-
dence=0.85

Insertion Substitution Deletion Shift
MT 1.1665± 0.0615 2.7334± 0.0969 1.0277± 0.0544 1.5549± 0.0899
TM 0.8894± 0.0594 6.0085± 0.1501 4.1770± 0.1719 1.6727± 0.0846

4.6.1 The Statistics Using the Recommendation Model

For the recommendation model, we provide the statistics of the number of edits for each

sentence with 0.95 confidence intervals, sorted by TER edit types. Statistics of positive

instances in classification (i.e. the instances in which MT output is recommended over the
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TM hit) are given in Table 4.5. These statistics are the avearge number of edits on the

segment level.

When an MT output is recommended, its TM counterpart will require a larger average

number of total edits, as we expect. If we drill down, however, we also observe that many

of the saved edits come from theSubstitutioncategory, which is the most costly operation

from the post-editing perspective. In this case, the recommended MT output actually saves

more effort for the editors than what is shown by the TER score. This reflects the fact that

often fuzzy match-based TM outputs are not actual translations, and need heavier editing.

Table 4.6 shows the statistics of negative instances in classification (i.e. the instances

in which MT output is not recommended over the TM hit). In thiscase, the MT output

requires considerably more edits than the TM hits in terms ofall four TER edit types, i.e.

insertion, substitution, deletion and shift. This shows that some high-quality TM matches

can be very useful as translations in their own right.

4.6.2 The Statistics on Recommendations of Higher Confidence

We present the edit statistics of recommendations with higher confidence in Table 4.7. Com-

paring Tables 4.5 and 4.7, we see that if recommended with higher confidence, the MT

output will need substantially fewer edits than the TM output, e.g. 3.28 fewer substitutions

on average.

From the characteristics of the high confidence recommendations, we suspect that these

mainly comprise harder to translate (i.e. different from the SMT training set/TM database)

sentences, as indicated by the slightly increased edit operations on the MT side. TM pro-

duces much worse edit-candidates for such sentences, as indicated by the numbers in Ta-

ble 4.7, since TM does not usually have the ability to automatically reconstruct an output

through the combination of several segments.
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4.6.3 A Recommendation Example

From the recommendation precison/recall evaluation and the approximated edit statistics,

we can see that the translation recommendation model is ableto select the segment that is

most suitable to post-edit from the TM and the MT output for translators, and reduce their

workload in a TM environment. Before we review related work and conclude this chapter,

we walk through the example at the beginning of this chapter to see how the translation

recommendation paradigm can help translators in action.

Table 4.8: An Example of TM and MT Output - Revisited
Source Restore over existing virtual machines .
TM Source Check restore over existing files .(Fuzzy Match Score: 0.5)
TM Target Cochez la case restaurer sur les fichiers existants .
MT Output Restaurer des machines virtuelles existantes .(Confidence: 0.8571)
Reference Restaurer sur les machines virtuelles existantes .

In Table 4.8, when we have a source segment to translate, we find both a TM fuzzy

match with fuzzy match score 0.5, and an MT output. Our recommender compares these

two systems, and recommends the MT output with confidence 0.8571.

Based on the threshold setting of the translator, she can either work on the MT or TM

output: given the results in Table 4.7, setting the threshold to 0.85 is very safe for most

translators, in the sense that they are very unlikely to misshigh quality TM hits. In this

example, the translator can benefit from the MT output which is of better quality if the

threshold is set to 0.85. However, most conservative translators can still set the threshold

even higher, if they feel more comfortable in the traditional TM environment.

4.7 Related Work

To the best of our knowledge, the work reported in this chapter is the first work that performs

recommendation between TM and MT output and produces a recommendation confidence

score. Previous research relating to this work mainly focuses on predicting MT quality.

The first strand is confidence estimation for MT, initiated by[Ueffing et al., 2003], in
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which posterior probabilities on the word graph or N-best list are used to estimate the quality

of MT outputs. The idea is explored more comprehensively in [Blatz et al., 2004]. These

estimations are often used to rerank the MT output and to optimize it directly. Extensions

of this strand are presented in [Quirk, 2004] and [Ueffing andNey, 2005]. The former

experimented with confidence estimation with several different learning algorithms; the

latter uses word-level confidence measures to determine whether a particular translation

choice should be accepted or rejected in an interactive translation system.

The second strand of research focuses on combining TM information with an SMT

system, so that the SMT system can produce better target language output when there is an

exact or close match in the TM [Simard and Isabelle, 2009]. This line of research is shown

to help the performance of MT, but is less relevant to our taskin this chapter.

A third strand of research tries to incorporate confidence measures into a post-editing

environment. To the best of our knowledge, the first paper in this area is [Specia et al.,

2009a]. Instead of modeling on translation quality (often measured by automatic evaluation

scores), this research uses regression on both the automatic scores and scores assigned by

translators. The method is improved in [Specia et al., 2009b], which applies Inductive

Confidence Machines and a larger set of features to model translators’ judgement of the

translation quality between ‘good’ and ‘bad’, or among three levels of post-editing effort.

Our research is more similar in spirit to the third strand. However, we use outputs and

features from the TM explicitly; therefore instead of having to solve a regression problem,

we only have to solve a much easier binary prediction problemwhich can be integrated into

TMs in a straightforward manner. Because of this, the precision and recall scores reported

in this paper are not directly comparable to those in [Speciaet al., 2009b] as the latter are

computed on a pure SMT system without a TM in the background.
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4.8 Summary

In this chapter we presented a classification model to integrate SMT into a TM system, in

order to facilitate the work of translators. In so doing we handled the problem of MT quality

estimation as binary prediction instead of regression. From the translators’ perspective,

they can continue to work in their familiar TM environment, use the same cost-estimation

methods, and at the same time benefit from the power of state-of-the-art MT. We used SVMs

to make these predictions, and used grid search to find betterRBF kernel parameters.

We explored features from inside the MT system, from the TM, as well as features

that make no assumption on the translation model for the binary classification. With these

features we made glass-box and black-box predictions. Experiments show that the models

can achieve 0.85 precision at a level of 0.89 recall, and evenhigher precision if we sacrifice

more recall. With this guarantee on precision, our method can be used in a TM environment

without changing the upper-bound of the related cost estimation.

Finally, we analyzed the characteristics of the integratedoutputs. We presented results

to show that, if measured by number, type and content of editsin TER, the recommended

sentences produced by the classification model would bring about less post-editing effort

than the TM outputs.

We will extend this model in the following ways. First of all,our current model can

handle only 1-best outputs from TM and SMT, while both the localization and the SMT

communities have benefited from k-best outputs, so it is worthwhile to extend the recom-

mendation model to the k-best case. Secondly, it is useful totest the model in user studies.

A user study can serve two purposes: 1) it can validate the effectiveness of the method by

measuring the actual (as opposed to estimated) amount of edit effort it saves, and 2) it can

help the creation of human annotated gold standards for us totrain better models. Finally,

the current model integrates TM and MT systems on the segmentlevel, we will also ex-

plore sub-segment level models that can further boost the efficiency of post-editing. We

will report advances in these directions in the chapters to follow.
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Chapter 5

TM-MT Integration as Translation

Reranking

5.1 Introduction1

In the previous chapter, we presented a translation recommendation model that automati-

cally selects the better segment from the TM and the MT outputfor the translator to post-

edit. Translation recommendation has the advantage of utilizing high quality MT outputs,

while keeping the TM environment (and its cost estimation) intact. However, the translation

recommendation paradigm is not able to employ k-best lists,which modern TM and MT

systems can both produce.

With this in mind, we continue to investigate a deeper integration of TM and MT

paradigms: we now study reranking models that can integratek-best outputs from TM

and MT systems. Presenting k-best output in a TM can provide post-editors with more

translation options, though reading and differentiating among closely related options may

result in substantial cognitive overhead. This overhead can be alleviated sigificantly if we

can rank translations of better quality higher.

In Table 5.1, we compare the k-best output of the TM and the MT system on the same

1Part of the research presented in this chapter has been published in [He et al., 2010d]
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Table 5.1: An Example of TM and MT 3-best Output
Source Restore over existing virtual machines .
TM 3-BEST

k=1 Cochez la case restaurer sur les fichiers existants .
k=2 Suppression de machines virtuelles existantes .
k=3 Restaurer sur les documents existants .
MT 3-BEST

k=1 Restaurer des machines virtuelles existantes .
k=2 Restauration sur des machines virtuelles existantes .
k=3 Restaurer par-dessus des machines virtuelles existantes .
Reference Restaurer sur les machines virtuelles existantes .

segment as in our translation recommendation example in Chapter 4. If we measure the

post-editing effort on the output segments using the TER score, we find that all MT outputs

are easier to post-edit than the top TM output (TER 0.29 for all MT segments vs. 0.57 for

the best TM segment). The second best TM output is also worth editing. Although it has a

higher TER score than the MT outputs, its errors are easy to identify in an color-coded envi-

ronment (Suppression deat the beginning of the segment). Our translation rerankingmodel

reranks the combined TM-MT k-best list and aims to rank such easier-to-edit segments

higher.

The rest of the chapter is organized as follows: we outline the translation reranking

paradigm in Section 5.2. The precise formulation of the problem (using Ranking SVM) and

experiments with the ranking models are presented in Sections 5.3 and 5.4, respectively. We

analyze the post-editing effort approximated by the TER metric in Section 5.5. We review

related research in Section 5.6, and summarize in Section 5.7.

5.2 The Translation Reranking Paradigm

In the previous chapter, the recommender is a binary predictor that works on the 1-best

output of the MT and the TM system, presenting either the one or the other to the post-

editor. In this chapter, we develop the idea further by moving from binary prediction to

ranking. We use a reranking model to merge the k-best lists ofthe two systems, and produce
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a ranked merged list for post-editing. As the list is an enriched version of the TM’s k-best

list, the TM related assets are preserved and TM-based cost estimation is still valid as an

upper bound.

More specifically, we recast SMT-TM integration as a rankingproblem, where we apply

the Ranking SVM technique to produce a ranked list of translations combining the k-best

lists of both the MT and the TM systems. We use features independent of the MT and the

TM system for ranking, so that outputs from MT and TM can have the same set of features.

Ideally the translations should be ranked by their associated post-editing efforts, but given

the very limited amounts of human annotated data, we use an automatic MT evaluation

metric, TER [Snover et al., 2006], which is specifically designed to simulate post-editing

effort to train and test our ranking model.

Translation
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TM System MT System

Reranking the

N+K Best List
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Environment
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Figure 5.1: The Translation Reranking Paradigm

We depict the Translation Reranking model in Figure 5.1. Like the translation recom-

mendation model, we have both the SMT system and the TM systemat the backend. The
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main difference is that in the translation reranking model,the reranker will receive k-best

list from the systems, rerank them, and provide a new k-best list to the translator. The

translator can choose the best translation from the reranked list by herself.

5.3 Ranking SVM for SMT-TM Integration

5.3.1 Problem Formulation with Ranking SVM

SVMs are proposed as binary classifiers in [Cortes and Vapnik, 1995], and were not de-

signed to solve ranking problems in the original setting. However, by modifying the training

objective and the constraints, many alternative formulations of SVMs have been proposed

for different types of problems. In this chapter, we leverage the ranking SVM algorithm

in [Joachims, 2002] to extend our translation recommendation model to handle the rank-

ing case. The idea of the ranking SVM is to produce a rankingr that has the maximum

Kendall’sτ coefficient with the the gold standard rankingr∗.

Kendall’sτ measures the relevance of two rankings:τ(ra, rb) = P−Q
P+Q

, whereP andQ

are the amount of concordant and discordant pairs inra andrb. In practice, this is done by

building constraints to minimize the discordant pairsQ. Following this basic idea, we show

how Ranking SVM can be applied to MT-TM integration as follows.

Assume that for each source sentences, we have a set of outputs from MT,M , and a

set of outputs from TM,T. If we have a rankingr(s) over translation outputsM
⋃

T where

for each translation outputd ∈ M
⋃

T, (di, dj) ∈ r(s) iff di <r(s) dj , we can rewrite the

ranking constraints as optimization constraints in an SVM,as in Eq. (5.1).

min
w,b,ξ

1

2
wT w + C

∑

ξ

subject to:

∀(di, dj) ∈ r(s1) : w(Φ(s1, di) − Φ(s1, dj)) > 1 − ξi,j,1

...

∀(di, dj) ∈ r(sn) : w(Φ(sn, di) − Φ(sn, dj)) > 1 − ξi,j,n

ξi,j,k > 0

(5.1)
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whereΦ(sn, di) is a feature vector of translation outputdi given source sentencesn. The

Ranking SVM minimizes the discordant number of rankings with the gold standard accord-

ing to Kendall’sτ .

As in Chapter 4, we perform our experiments with the Radial Basis Function (RBF)

kernel.

5.3.2 Elements of the Reranking Model

Our reranking model merges the k-best list from TM and MT to produce a new list, which

aims to rank segments that are more suitable for post-editing higher, so that the post-editors

are offered more and better translation options. The model consists of three elements: The

MT k-best list, the TM k-best list, and the reranker.

5.3.2.1 The MT k-best List

The k-best list of the SMT system is generated during decoding according to the internal

feature scores. The features include language and translation model probabilities, reorder-

ing model scores and a word penalty.

5.3.2.2 The TM k-Best List and the Fuzzy Match Score

The k-best list of the TM system is generated in descending fuzzy match score. The fuzzy

match cost [Sikes, 2007] is the similarity of the source sentences used in translation mem-

ories, which is the same as we use in Chapter 4.

5.3.2.3 The Reranker

Based on Ranking SVMs [Joachims, 2002] that we introduced inSection 5.3, which have

already been applied successfully in machine translation evaluation [Ye et al., 2007], we

build a reranker to rerank a merged list of MT and TM outputs, and produce a new reranked

k-best list.
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5.3.3 The Feature Set

In the previous chapter, we explored using features both from the internals of the TM and

the MT system, and features that are independent of the systems. When building features

for the Ranking SVM, however, we are limited to features thatare independent of the MT

and TM systems: we need a set of features that are both applicable to the TM outputs and

the MT outputs in reranking, while in recommendation we can extract different features

from TM and MT outputs simultaneously.

For the translation reranking model, we experiment with system-independent features

that capture translation fluency and adequacy. For more detail, we use source-side LM

scores, target-side LM scores, the pseudo-source fuzzy match score and the IBM model 1

score.

• Source-Side Language Model Score and Perplexity. We compute the LM score

and perplexity of the input source sentence on an LM trained on the source-side

training data of the SMT system.

• Target-Side Language Model Perplexity. We compute the LM probability and per-

plexity of both the MT and TM outputs.

• The Pseudo-Source Fuzzy Match Score. We back-translate the output to obtain a

pseudo source sentence. We compute the fuzzy match score between the original

source sentence and this pseudo-source.

• The IBM Model 1 Score. We compute the IBM Model 1 score [Brown et al., 1993],

which serves as a rough estimation of how good a translation it is on the word level,

for both the TM and the MT output.

5.4 Reranking Experiments

As we did in Chapter 4, before we estimate the post-editing effort the reranking model can

save, we first evaluate whether ranking SVM and our feature set can model the segment
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ranking problem effectively.

5.4.1 The Experimental Settings

We use the same experimental setting as in Chapter 4 to run ourexperiments: we use the

51K sentence-pair English–French translation memory fromSymantec, randomly selected

43K to train an SMT system and translated the English side of the remaining 8K sentence

pairs.

We use a standard log-linear PB-SMT model [Och and Ney, 2002]as the SMT engine:

GIZA ++ implementation of IBM word alignment model 4,2 the refinement and phrase-

extraction heuristics described in [Koehn et al., 2003], minimum-error-rate training [Och,

2003], a5-gram language model with Kneser-Ney smoothing [Kneser andNey, 1995]

trained with SRILM [Stolcke, 2002] on the French side of the training data, and Moses [Koehn

et al., 2007] to decode. We train a system in the opposite direction using the same data to

produce the pseudo-source sentences. The only difference from the translation recommen-

dation experiments is that we obtain k-best lists from the TMand the MT systems, and use

them as input for the SVM-based reranker.

5.4.2 Training, Tuning and Testing the Ranking SVM

We run training and prediction of the Ranking SVM in 4-fold cross validation. We use the

SVMlight3 toolkit to perform training and testing.

We optimizeC (cost) andγ (radius) meta-parameters of the SVM and the RBF kernel

using a brute-force grid search before running cross-validation and maximize precision at

top-5, with an inner 3-fold cross validation on the (outer) Fold-1 training set. We search

within the range[2−6, 29] for bothC andγ, with a step size of 2 on the exponent.

We rerank the combined list produced with the top-5 distinctoutputs from both systems.

2More specifically, we performed5 iterations of Model 1,5 iterations of HMM,3 iterations of Model 3,
and3 iterations of Model 4.

3http://svmlight.joachims.org/
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5.4.3 The Gold Standard
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Figure 5.2: MT and TM’s percentage in gold standard

Figure 5.2 shows the composition of translations in the goldstandard. Each source

sentence is associated with a list of translations from two sources, namely MT output and

TM matches. This list of translations is ranked from best to worst according to TER scores.

The figure shows that over 80% of the translations are from theMT system if we only

consider the top-1 translation. As the number of top translations considered increases, more

TM matches can be seen. On the one hand, this does show a large gap in quality between

MT outputs and TM matches; however, it also reveals that we will have to ensure two

objectives in ranking: the first is to rank the 80% MT translations higher and the second is

to keep the 20% ‘good’ TM hits in the Top-5. We design our evaluation metrics accordingly.

5.4.4 Evaluation Metrics

Unlike translation recommendation which chooses the best translation for the post-editor,

translation reranking tries to provide post-editors with more translation options. The benefit

of the reranking model is that if the better translations areranked higher, post-editors will be

able to find them more easily, compared to an ordinary TM system, where the first candidate

will always be the top TM hit. Therefore, the top TM output is the pivot in our evaluation, in

the sense that the precision and recall numbers we report arereflecting whether the reranked

list can rank higher those translations that are better thanthe top TM output (the pivot).

Based on this observation, we introduce the idea ofrelevanttranslations, and our eval-

uation metrics: PREC@k and HIT@k.
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5.4.4.1 Relevant Translations

We borrow the idea ofrelevancefrom the IR community to define the idea of translations

worthy of a high ranking. For a source sentences which has a top TM hitt, we define

an MT/TM outputm as relevant, ifTER(m) ≤ TER(t). According to the definition,

relevant translations should need no more post-edits than the original top hit from the TM

system. Clearly the top TM hit is always relevant according to this definition.

5.4.4.2 PREC@k

We calculate the precision (PREC@k) of the ranking for evaluation. Assuming that there

aren relevant translations in the top-k list for a source sentences, we have PREC@k= n/k

for s. We test PREC@k, fork = 1 . . . 10, in order to evaluate the overall quality of the

ranking.

5.4.4.3 HIT@k

We also estimate the probability of having one of the relevant translations in the top k,

denoted as HIT@k. For a source sentences, HIT@k is equal to 1 if there is at least one

relevant translation in the top k, and 0 otherwise. This measures the quality of the best

translation in the top k, which is the translation the post-editor will find and work on if she

reads till the kth place in the list. HIT@k is equal to 1.0 at the end of the list.

5.4.5 Experimental Results

In Table 5.2 we report PREC@k and HIT@k fork = 1 . . . 10. The ranking receives 0.8747

PREC@1, which means that most of the top-ranked translations have at least the same

quality as the top TM output. We note that precision remains above 0.8 tillk = 5, leading

us to conclude that most of therelevanttranslations are ranked in the top-5 positions in the

list.

Using the HIT@k scores we can corroborate this argument still further. The HIT@k

score grows steadily from 0.8747 to 0.9941 fork = 1 . . . 6, so most often there will be at
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Table 5.2: PREC@k and HIT@k of Ranking
PREC % HIT %

k=1 87.47±1.60 87.47±1.60
k=2 85.42±1.07 93.36±0.53
k=3 84.13±0.94 95.74±0.61
k=4 82.79±0.57 97.08±0.26
k=5 81.34±0.51 98.04±0.23
k=6 79.26±0.59 99.41±0.25
k=7 74.99±0.53 99.66±0.29
k=8 70.87±0.59 99.84±0.10
k=9 67.23±0.48 99.94±0.08
k=10 64.00±0.46 100.0±0.00

least onerelevanttranslation in the top-6 for the post-editor to work with. After that there

is very little room left for improvement.

In sum, both the PREC@k scores and HIT@k scores show that the ranking model

effectively integrates the two translation sources (MT andTM) into one merged k-best list,

and ranks relevant translations higher.

Table 5.3: PREC@k - MT and TM Systems
MT % TM %

k=1 85.87±1.32 100.0±0.00
k=2 82.52±1.60 73.58±1.04
k=3 80.05±1.11 62.45±1.14
k=4 77.92±0.95 56.11±1.11
k=5 76.22±0.87 51.78±0.78

To measure whether the ranking model is effective compared to pure MT or TM outputs,

we report the PREC@k of those outputs in Table 5.3. On the leftare the PREC numbers

if we only rely on the Top-5 MT outputs; on the right are the numbers using only the Top-

5 TM outputs. We see that the combined and reranked results inTable 5.2 consistently

outperform the results in Table 5.3, indicating that our system clearly outperforms these

two simple baselines.

The TM outputs alone are generally of much lower quality thanthe MT and Ranked

outputs, as is shown by the precision scores fork = 2 . . . 5. However, TM translations

obtain 1.0 for PREC@1 according to the definition of the PREC calculation. Note that
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this does not mean that those outputs will need less post-editing (cf. Section 5.5.1); rather,

it indicates that each one of these outputs meets the lowest acceptable criterion of being

relevant.

Table 5.4: Edit Statistics on Ranked MT and TM Outputs - Single Best
Insertion Substitution Deletion Shift

TM-Top1 0.7554± 0.0376 4.2461± 0.0960 2.9173± 0.1027 1.1275± 0.0509
MT-Top1 0.9959± 0.0385 2.2793± 0.0628 0.8940± 0.0353 1.2821± 0.0575
Rank-Top1 1.0674± 0.0414 2.6990± 0.0699 1.1246± 0.0412 1.2800± 0.0570
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Table 5.5: Edit Statistics on Ranked MT and TM Outputs - Top 3
Insertion Substitution Deletion Shift

TM-Best-in-Top3 0.4241± 0.0250 3.7395± 0.0887 2.9561± 0.0966 0.9738± 0.0505
TM-Mean-Top3 0.6718± 0.0200 5.1428± 0.0559 3.6192± 0.0649 1.3233± 0.0310
MT-Best–in-Top3 0.7696± 0.0351 1.9210± 0.0610 0.7706± 0.0332 1.0842± 0.0545
MT-Mean-Top3 1.1296± 0.0229 2.4405± 0.0368 0.9341± 0.0209 1.3797± 0.0344
Rank-Best-in-Top3 0.8170± 0.0355 2.0744± 0.0608 0.8410± 0.0338 1.0399± 0.0529
Rank-Mean-Top3 1.0942± 0.0234 2.7437± 0.0392 1.0786± 0.0231 1.3309± 0.0334

Table 5.6: Edit Statistics on Ranked MT and TM Outputs - Top 5
Insertion Substitution Deletion Shift

TM-Best-in-Top5 0.4239± 0.0250 3.7319± 0.0885 2.9552± 0.0967 0.9673± 0.0504
TM-Mean-Top5 0.6143± 0.0147 5.5092± 0.0473 3.9451± 0.0521 1.3737± 0.0240
MT-Best-in-Top5 0.7690± 0.0351 1.9163± 0.0610 0.7685± 0.0332 1.0811± 0.0544
MT-Mean-Top5 1.1912± 0.0182 2.5326± 0.0291 0.9487± 0.0165 1.4305± 0.0272
Rank-Best-in-Top5 0.7246± 0.0338* 1.8887± 0.0598 0.7562± 0.0327 0.9705± 0.0515*
Rank-Mean-Top5 1.1173± 0.0181 2.8777± 0.0312 1.1585± 0.0200 1.3675± 0.0260
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5.5 Edit Statistics Using the Reranking Model

In this section, we move on to approximate the post-editing effort associated with the

reranking model using TER operations. We report the resultson the Top-1/3/5 candidates

of the reranked lists to reflect the performance of the most favorable candidate as well as

the overall quality of the list.

5.5.1 Top-1 Edit Statistics

We report the results on the 1-best output of TM, MT and our ranking system in Table 5.4.

In the single best results, it is easy to see that the 1-best output from the MT system

requires the least post-editing effort. This is not surprising given the distribution of the gold

standard in Section 5.4.3, where most MT outputs are of better quality than the TM hits.

Moreover, since TM translations are generally of much lowerquality as is indicated by

the numbers in Table 5.4 (e.g.∼ 2x as many substitutions and∼ 3x as many deletions

compared to MT), unjustly including very few of them in the ranking output will increase

loss in the edit statistics. This explains why the ranking model has better ranking precision

in Tables 5.2 and 5.3, but seems to incur more editing effort.However, in practice it is likely

that post-editors will be able to dismiss an obviously ‘bad’translation very quickly.

5.5.2 Top-k Edit Statistics

We report edit statistics of the Top-3 and Top-5 outputs in Tables 5.5 and 5.6, respectively.

For each system we report two sets of statistics: the Best-* statistics calculated on the best

output (according to TER score) in the list, and the Mean-* statistics calculated on the

whole top-k list.

The Mean- numbers allow us to have a general overview of the ranking quality, but

this is strongly influenced by the poor TM hits that can easilybe neglected in practice. To

control the impact of those TM hits, we rely on the Best- numbers to estimate the edits

performed on the translations that are more likely to be usedby post-editors, provided that
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they can identify the best translation in the top-k list.

In Table 5.5, the ranking output’s edit statistics are closer to the MT output than the

Top-1 case in Table 5.4. Table 5.6 continues this tendency, in which the Best-in-Top5 Rank-

ing output requires marginally fewerSubstitutionandDeletionoperations and significantly

fewer Insertion and Shift operations (starred) than its MT counterpart. This shows that

when more of the list is explored, the advantage of the ranking model – utilizing multiple

translation sources – begins to compensate for the possiblelarge number of edits required

by poor TM hits, and finally leads to reduced post-editing effort.

There are several explanations to why the relative performance of the ranking model

improves whenk increases, as compared to other models. The most obvious explanation is

that a single poor translation is less likely to hurt edit statistics on a k-best list with a larger

k, if most of the translations in the k-best list are of good quality. We see from Tables 5.2

and 5.3 that the ranking output is of better quality than the MT and TM outputs with regard

to precision. For a largerk, the small number of incorrectly ranked translations are less

likely to be chosen as the Best-* translation and negativelyaffect the Best-* numbers.

A further reason is related to our ranking model which optimizes on Kendall’sτ score.

Accordingly the output might not be optimal when we evaluatethe Top-1 output, but it will

behave better when we evaluate on the whole list. This is alsoin accordance with our aim,

which is to enrich the TM with MT outputs and help the post-editor, instead of choosing

the 1-best translation for the post-editor.

5.5.3 Discussion on the Relative Performance of TM and MT Outputs in

Reranking

One of the interesting findings from Tables 5.4 and 5.5 is thataccording to the TER edit

statistics, the MT outputs generally need a smaller number of edits than the TM and Ranking

outputs. This certainly confirms the necessity to integrateMT into today’s TM systems.

However, this fact should not lead to the conclusion that TMsshould be replaced by

MT completely. First of all, all of our experiments exclude exact TM matches, as those
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translations will simply be reused and not translated. While this is a realistic setting in

the translation industry, it removes all sentences for which the TM works best from our

evaluations.

Furthermore, Table 5.6 shows that the Best-in-Top5 Rankingoutput performs better

than the MT outputs, hence there are TM outputs that lead to a smaller number of edits. As

k increases, the ranking model is able to better utilize theseoutputs.

Finally, in this task we concentrate on ranking useful translations more highly in the

k-best lists, but we are not interested in how very poor translations are ranked. A ranking

SVM optimizes on the ranking of the whole list, which is slightly different from what we

actually require when calculating edit statistics. One option is to use other optimization

techniques that can make use of this property to obtain better top-k edit statistics for a

smaller k. Another option is to perform regression directlyon the number of edits instead

of modeling on the ranking.

5.5.4 A Reranking Example

Before we review related work and conclude, we walk through the example at the beginning

of this chapter to see how the reranking model works in a localization environment. For the

example in Table 5.7, our reranker will generate the new Top-3 list as in Table 5.8.

Table 5.7: An Example of TM and MT 3-best Output – Revisited
Source Restore over existing virtual machines .
TM 3-BEST

k=1 Cochez la case restaurer sur les fichiers existants .
k=2 Suppression de machines virtuelles existantes .
k=3 Restaurer sur les documents existants .
MT 3-BEST

k=1 Restaurer des machines virtuelles existantes .
k=2 Restauration sur des machines virtuelles existantes .
k=3 Restaurer par-dessus des machines virtuelles existantes .
Reference Restaurer sur les machines virtuelles existantes .

As we can see, the new Top-3 list works as we expect. It ranks the top MT output at

the top place. From the translator’s perspective, this is indeed the translation that requires
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Table 5.8: An Example of TM and MT 3-best Output – New Top-3
ORIGIN Output Score
MT k=1 Restaurer des machines virtuelles existantes . -0.4645
MT k=2 Restauration sur des machines virtuelles existantes .-0.2620
TM k=2 Suppression de machines virtuelles existantes . -0.2602

minimal effort: the translator only needs to change the function word “des” to “ sur les”.

It is also worth noting that the one TM segment that translates the tail of the segment

correctly is also kept in the new Top-3 list. If the translator is not satisfied with the top

2 MT translated segments, she can still work on the TM segment. This demonstrates the

translation reranking model’s capability of preserving valuable TM assets for use in the

translation workflow.

5.6 Related Work

The work presented in this chapter is an extension of the workin the previous chapter, the

aim of which is to integrate high confidence MT outputs into the TM, so that the “good”

TM entries will remain untouched. In the previous chapter, we recommend SMT outputs

to a TM user when a binary classifier predicts that SMT outputsare more suitable for post-

editing for a particular sentence.

The contribution we made in this chapter is that we do not limit ourselves to the 1-best

output but try to produce a k-best output in a ranking model. The ranking scheme also

enables us to show all TM hits to the user, and thus further protects the TM assets.

There has also been work to improve SMT using the knowledge from the TM. In [Simard

and Isabelle, 2009], the SMT system can produce a better translation when there is an exact

or close match in the corresponding TM. They use regression Support Vector Machines to

model the quality of the TM segments. This is also related to our work in spirit, but our

work is in the opposite direction, i.e. using SMT to enrich TM.

Moreover, our ranking model is related to reranking [Shen etal., 2004] in SMT as well.

However, our method does not focus on producing better 1-best translation output for an
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SMT system, but on improving the overall quality of the k-best list that TM systems present

to post-editors. Some features in our work are also different in nature to those used in MT

reranking. For instance we cannot use N-best posterior scores as they do not make sense

for the TM outputs.

5.7 Summary

In this chapter we present a ranking-based model to integrate SMT into a TM system, in

order to facilitate the work of post-editors. In such a model, the user of the TM will be

presented with an augmented k-best list, consisting of translations from both the TM and

the MT systems, and ranked according to ascending prospective post-editing effort.

From the post-editors’ point of view, the TM remains intact.And unlike in the binary

translation recommendation, where only one translation recommendation is provided, the

ranking model offers k-best post-editing candidates, enabling the user to use more resources

when translating. As we do not actually throw away any translation produced from the TM,

the assets represented by the TM are preserved and the related estimation of the upper bound

cost is still valid.

We extract system independent features from the MT and TM outputs and use Ranking

SVMs to train the ranking model, which outperforms both the TM’s and MT’s k-best list

w.r.t. precision atk, for all ks.

We also analyze the edit statistics of the integrated k-bestoutput using the TER edit

statistics. Our ranking model results in a slightly increased number of edits compared to

the MT output (apparently held back by a small number of poor TM outputs that are ranked

high) for a smallerk, but requires fewer edits than both the MT and the TM output for a

largerk.

In the next chapter, we will perform human evaluation to validate the translation rec-

ommendation model presented in Chapter 4, and the translation reranking model presented

in this chapter.
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Chapter 6

Human Evaluation of TM-MT

Integration

6.1 Introduction1

In Chapters 4 and 5, we presented two solutions to promote theapplication of recent ad-

vances in statistical MT (such as [Koehn et al., 2003]) in thelocalization industry by com-

bining the strengths of both worlds via integrating SMT withTMs.

Given that most post-editing work is based on TM output, we propose to use recom-

mendation or reranking paradigms, in which the translatorswill only use MT outputs which

are better (in terms of estimated post-editing effort) thanTM hits to post-editors. In these

frameworks, post-editors still work with the TM while benefiting from (better) SMT out-

puts; the assets in TMs are not wasted and TM fuzzy match scores can still be used to

estimate (the upper bound of) post-editing labour.

Chapters 4 and 5 recast TM-MT integration as a binary classification/reranking prob-

lem using Support Vector Machine (SVMs: [Cortes and Vapnik,1995]) algorithms, per-

form Radial Basis Function (RBF) kernel parameter optimization to find the optimal meta-

parameters for the classifier, and use the automatic TER evaluation metric to simulate post-

1Part of the research reported in this chapter has been published in [He et al., 2010b]
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editing effort.

Despite the fact that the correlations between automatic evaluation metrics and human

judgements are improving, professional translators and post-editors are the ones that hold

the final verdict over the quality of MT/TM integration. In order to draw grounded con-

clusions on the performance of our translation recommendation and translation reranking

paradigms, it is essential to conduct user studies to show whether or not systems developed

using automatic evaluation metrics are confirmed by human judgements.

We conduct human evaluation on both the recommendation and the reranking models

with professional post-editors. In this chapter we introduce the evaluation data we use,

the post-editors, the evaluation environment, the questionnaire which we give to the post-

editors after they have completed the evaluation, and the performance of the recommenda-

tion and the reranking models according to the judgement of our post-editors.

The rest of this chapter is organized as follows. We first introduce our evaluation setting

in Section 6.2. We then present human evaluation results andour analysis on the translation

recommendtion model and the translation reranking model inSection 6.3 and 6.4, respec-

tively. We discuss the post-editors’ feedback during the evaluation in Section 6.5. We

review related work and summarize this chapter in Sections 6.6 and 6.7.

6.2 The Evaluation Setting

6.2.1 Data

We use the translation recommendation system and the translation reranking system that

we built in Chapter 4 and Chapter 5. We randomly pick 300 segments from the first fold

test set in the cross-validation data set (cf. Section 4.5.1) to perform human evaluation.

For the translation recommendation model, we use all the features in Chapter 4, we

also apply the confidence threshold that we describe in Chapter 4. We choose to use the

confidence level instead of the binary classification resultso that we can evaluate the per-

formance on varying thresholds.

82



For the translation reranking evaluation, we use all the features in Chapter 5.

6.2.2 The Post-editors

Five professional post-editors helped us to complete this study. Four of them are full-time

post-editors, and one is a part-time post-editor. All of theeditors are hired through the

localization vendors of Symantec and have experience in post-editing machine-generated

segments (including TM, Rule-based MT or Statistical MT).

Figure 6.1: Interface of the Evaluation Environment

6.2.3 The Evaluation Environment

We design an evaluation environment to present the 300 English segments translated into

French using the TM and MT systems to the post-editors. The environment is a web appli-

cation developed in Python with the Django framework.2

Each post-editor is given a username and password to log intothe system. After login,

there is only one English segment together with two French translations shown on each

page. The two French translations are shuffled randomly, so translation candidate 1 and

candidate 2 can both be the MT or the TM output. For the translation recommendation

model, one of these two translations is from TM, and another is from MT. However, for

2http://www.djangoproject.com
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the translation reranking model, one translation is the 1-best output of the TM system, and

another is an alternative translation that can either be produced by the TM or the MT system.

As this experiment tries to evaluate the performance of the TM/MT integration tech-

nique, we need to keep it blind: we do not reveal which engine generates which output to

the post-editors. A screenshot of the interface is shown in Figure 6.1.

The post-editors’ operations in the system are recorded with a time stamp in the database,

which allows us to analyze the time they spend on each segment. The system allows the

users to log in and out of the environment so that their previous work is not lost. They are

presented with the last segment they worked on once they log in again.

Each post-editor is provided with an introduction to the task before the experiment

begins. Note that the post-editors are asked to choose the sentence that is most suitable for

post-editing (which is also emphasized in the introductionto the task). The post-editors are

told that even if a French translation does not fully translate the English segment, they may

still select it because they would spend less time post-editing it into a grammatical French

segment whose meaning would match that of the English segment. The original guidelines

provided to the post-editors can be found in the Appendix.

To control data quality and to measure intra-annotator correlation, we pre-select 10

segments from the 300 and make them appear twice in the environment. Therefore the

post-editors are actually presented with 310 segments.

6.2.4 Questionnaire

After they finished rating the 310 segments, the post-editors were presented with four ques-

tions:

• Whether they are full-time post-editors,

• If they are full-time post-editors, how long have they worked as full-time post-editors,

• Whether they have edited MT output professionally,
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• What they think of MT (five choices: no idea, very useful, sometimes useful, not

useful, and useless).

6.3 Analysis of Recommendation Performance

In this section we investigate the effectiveness of the translation recommendation model

according to the judgements of professional post-editors.We also compare these results

with the result on a gold standard approximated by TER scoresto show whether it is at all

valid to use automatic evaluation metric scores to approximate post-editing effort, instead

of human judgement in this task.

6.3.1 Precision and Recall of Translation Recommendation

We measure the precision and recall of the automatic translation recommendation, using

the judgements of individual post-editors as a gold standard. We report the precision and

recall numbers in Table 6.1. The precision can be further improved at the cost of recall,

for which we set the confidence threshold to0.75 in Table 6.2. In these calculations, we

discard the segments which the post-editors choose to translate from scratch, as translation

recommendation cannot improve the post-editor’s productivity in such cases, no matter

what it recommends. When the post-editor chooses ‘tie’, we determine that the TM output

should be preserved, in accordance with the gold standard inChapter 4, where ties on TER

scores are regarded as negative examples in recommendation.

Table 6.1: Precision and Recall of Recommendation, Individual Post-editors, confidence =
0.5

Post-Editor ID Precision Recall
PE01 0.8812 0.9223
PE02 0.9315 0.9315
PE03 0.8945 0.9138
PE04 0.9123 0.9369
PE05 0.8734 0.9409

In Table 6.1, the automatic recommendation obtains over 0.9recall according to all post-
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Table 6.2: Precision and Recall of Recommendation, Individual Post-editors, confidence =
0.75

Post-Editor ID Precision Recall
PE01 0.9379 0.7824
PE02 0.9643 0.7621
PE03 0.9415 0.7629
PE04 0.9500 0.7703
PE05 0.9153 0.7864

editors. The precision of recommendation is always above 0.87. Table 6.2 suggests that if

post-editors require higher recommendation confidence, then translation recommendation

can obtain 0.9 precision at the cost of reducing recall. Withthese results on recommendation

precision, there is a rather strong guarantee that the integrated MT-TM system will not waste

the assets in the TM system and will not change the upper boundof related cost estimation,

even at the sentence level, because the recommended SMT outputs are, in fact, more suitable

for post-editing from the post-editors’ perspective.

6.3.2 Precision and Recall on Consensus Preferences

The localization industry might expect even stronger confidence in the recommendation, so

we measure recommendation precision on the segments where there is a consensus prefer-

ence towards MT outputs among the post-editors.

To reflect consensus, we first discard the segments which the majority of the post-editors

(more than 3 in this experiment) choose to post-edit from scratch. For the rest of the re-

maining segments, we consider that MT output should be recommended ifN post-editors

prefer to post-edit the MT output. Otherwise, we consider that the TM output should be

recommended.

We report the precision and recall numbers on a series of confidence thresholds for

N = 3 andN = 4 post-editors in Tables 6.3 and 6.4, respectively.

Table 6.3 shows that if we consider the consensus among 3 post-editors, precision is

still high. This demonstrates that our system correlates quite well with the judgement of

the majority of the post-editors. On the other hand, when it comes to a larger majority of
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Table 6.3: Precision and Recall of Recommendation, Consensus Preferences ofN = 3
Post-Editors

Threshold Precision Recall
0.5 0.9110 0.9348
0.6 0.9412 0.9043
0.7 0.9606 0.8478
0.8 0.9689 0.6783
0.85 0.9695 0.5522

Table 6.4: Precision and Recall of Recommendation, Consensus Preferences ofN = 4
Post-Editors

Threshold Precision Recall
0.5 0.8263 0.9420
0.6 0.8507 0.9082
0.7 0.8768 0.8599
0.8 0.8944 0.6957
0.85 0.8931 0.5652

the post-editors (N = 4), precision begins to drop. Understanding the fact that this is an

inherently more complex task than theN = 3 case, we also notice some inconsistency of

judgements between post-editor PE01 and the other post-editors, which also renders it more

difficult to achieve a consensus whereN = 4 (i.e. all the rest of the editors should have the

same judgement), which thus reduces the number of positive examples.

6.3.3 The TER score and the Preference of Post-Editors

We measure the TER score of the TM and MT outputs, and sort themaccording to the

post-editors’ preferences in Table 6.5. The TER score is an edit distance-based metric that

calculates the number of insertions, deletions, substitutions and shifts required to transform

an MT output into a reference sentence, and is therefore expected to be a reasonable auto-

matic metric to approximate post-editing effort. We reportthe results in Table 6.5, where

the scores are averaged among the five post-editors.

In Table 6.5, TER scores are shown to be positively related post-editors’ preferences:

when the post-editor prefers MT, the MT output obtains a lower TER score, and vice versa.

This validates our method in Chapter 4, where the TER score isused to generate a gold
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Table 6.5: TER Scores Sorted by Preference
Post-editors’ Selection

TM MT Tie Scratch
TM Output 25.00 57.37 19.16 70.33
MT Output 31.85 25.90 20.93 41.74

standard for the translation recommendation system. The TER scores also demonstrate that

the sentences which the users would translate from scratch are more difficult to translate

in nature than the rest, shown by a big increase in TER points compared to when TM/MT-

output (70.33 vs. 25.00/57.37 and 41.74 vs. 31.85/25.90) ischosen.

6.3.4 Comparison with a TER-Approximated Gold Standard

We present the precision and recall numbers at recommendation confidence [0.5, 0.85] in

Figure 6.2. Series PE01 – PE05 use the judgement of the corresponding post-editor as

the gold standard; series CONSENSUS3 and CONSENSUS4 use the consensus of 3 or 4

post-editors as the gold standard; series TER uses the gold standard approximated by TER

scores. By presenting results on human-annotated and metric-approximated gold standards

head-to-head, we are able to see the relationship between these gold standards.

In Figure 6.2, we find that although the post-editors have different preferences regarding

MT and TM outputs (i.e. some reuse MT outputs more than others), the trend of precision

on the variation of recommendation confidence remains similar among the post-editors,

and also applies to the TER-approximated gold standard. This agrees with our approach in

Chapter 4, which uses TER scores to approximate human judgements to prepare the training

data and perform evaluation. Note that when calculating precision, the denominator is the

total number of segments recommended by the recommendationmodel, no matter whether

the post-editors have consensus judgements on them or not. If we limit the denominator to

the number of segments where post-editors do reach a consensus judgement (on whether

using the MT or the TM output), the precision will be 0.9641 for CONSENSUS3 and 0.9848

for CONSENSUS4. We also note that recall drops quite sharply when we raise the threshold

in order to achieve higher precision. Since the majority of the better translations in this
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Figure 6.2: Recommendation Precision (upper) and Recall (lower) According to Human-
Annotated and TER-Approximated Gold Standards

work come from MT, setting a higher threshold in recommendation will lead us to miss

many better translations.

6.3.5 Accuracy on High Fuzzy Match Segments

The localization industry currently uses fuzzy match scoreto estimate the amount of local-

ization work to be carried out. Specifically, many translators/post-editors set threshold on

the fuzzy match, and only reuse those segments whose fuzzy match scores are above that

threshold. This can be viewed as a simple baseline setting that recommends MT segments
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when the fuzzy match score is below a certain level.

We report in Table 6.6 the recommendation accuracy of our model, in order to enable

a direct comparison with this setting. We use the consensus of 3 post-editors as the gold

standard of the accuracy calculation.

Table 6.6: Recommendation Accuracy on High Fuzzy Match Segments
Fuzzy Match Scores

0.5 0.55 0.6 0.65 0.7 0.75 0.8
Conf=0.50 0.8265 0.8049 0.7895 0.7557 0.7414 0.7263 0.7237
Conf=0.55 0.8265 0.8049 0.7895 0.7557 0.7414 0.7263 0.7237
Conf=0.60 0.8316 0.8110 0.7961 0.7634 0.7586 0.7368 0.7237
Conf=0.65 0.8010 0.7744 0.7566 0.7252 0.7414 0.7158 0.6974
Conf=0.70 0.7908 0.7622 0.7434 0.7176 0.7328 0.6947 0.6579
Conf=0.75 0.7296 0.6890 0.6711 0.6565 0.6638 0.6421 0.6053
Conf=0.80 0.6224 0.5732 0.5461 0.5267 0.5517 0.5158 0.4868
Conf=0.85 0.5204 0.4939 0.4605 0.4351 0.4483 0.4316 0.4211
Baseline Conf. 0.2296 0.2622 0.2829 0.3282 0.3534 0.3895 0.4079
PreferMT/Total 151/196 121/164 109/152 88/131 75/116 58/95 45/76

In Table 6.6,Baseline Conf.is the accuracy of the recommendation of MT output to

post-editors using the fuzzy match score as a threshold. Theline denoted byConf=x reports

the accuracy of our recommendation system at confidencex, sorted by fuzzy match levels

from 0.5 to 0.8. We see that our recommendation approach outperforms the baseline at any

threshold. This can be partly attributed to the fact that MT systems perform very well on

this task. As is reported in the linePreferMT/Total, the majority of post-editors consistently

prefer more MT segments than TM segments, even when the fuzzymatch score of the

corresponding TM segment is above 0.8.

6.3.6 User Behavior

Besides recommendation performance, we are also interested in the users’ reaction to the

translation recommendation scheme using this system, as well as what they think about the

TM and MT technologies. We report statistics of their behavior along with their ideas and

comments on TM and MT.
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6.3.6.1 Experience of Post-Editors

We list the years of experience as translators of the post-editors along with the number of

sentences they prefer to translate from scratch in our experiment in Table 6.7, since the

latter is an indication of the willingness to reuse a computer-generated translation. We also

present the number of MT outputs (out of 300) selected by post-editors to work on.

Table 6.7: Participants’ Experience and Preference
Post-Editor ID Years Scratch MT
PE01 5 59 193
PE02 3 11 248
PE03 12 22 232
PE04 8 33 222
PE05 part-time 23 220

The results show that the willingness to reuse automatic output varies considerably

among post-editors. PE01 is willing to translate one-fifth of the sentences from scratch in

this experiment, which is more than five-times the number of PE02. This preference does

not correlate well with the years of experience, suggestingthat this is more related to the

particular habits of post-editors, rather than to their experience in the industry. The result

also shows that all post-editors select more MT outputs to post-edit than the other options.

6.3.6.2 Inter-annotator Agreement

To gauge the validity of human evaluation results, we computed the inter-rater agreement

measured by Fleiss’ Kappa coefficient [Fleiss, 1981] which can assess the agreement be-

tween multiple raters, as opposed to Cohen’s Kappa coefficient [Cohen, 1960] which works

with just two raters.

Fleiss’ Kappa coefficient for our five post-editors is0.464 ± 0.024, indicating a mod-

erate agreement. We also obtained Fleiss’ Kappa coefficientfor each category as shown

in Table 6.8. From this table, we can observe moderate agreements among post-editors in

selecting TM or MT output as the most suitable for post-editing. There is also a moderate

agreement in making their decision to translate from scratch. However, there is only a fair
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agreement in determining whether TM and MT outputs are equally good for post-editing

(“Tie”).

Table 6.8: Annotator agreement for each category
Category Kappa
TM 0.519
MT 0.516
Tie 0.285
Scratch 0.426

6.3.6.3 Intra-annotator Agreement

We have ten duplicate samples in our evaluation intended to measure the level of intrin-

sic agreement for each post-editor. Both percentage of agreement and Cohen’s Kappa are

calculated as shown in Table 6.9. From this table, we can observe that all five post-editors

achieved almost perfect intrinsic agreement, indicating that the evaluation results are highly

reliable.

Table 6.9: Intra-annotator Agreement
Post-Editor ID Agreement Kappa
PE01 90% 0.87
PE02 100% 1.0
PE03 90% 0.87
PE04 80% 0.73
PE05 90% 0.87

6.3.6.4 Correlation between Sentence Length and Evaluation Time

Our evaluation interface is capable of logging the time spent by the post-editors in eval-

uating each sentence. One may expect that post-editors may spend more time in evaluat-

ing longer sentences and less time evaluating shorter sentences. We calculated Pearson’s

product moment correlation between the evaluation time andsentence length as shown in

Table 6.10. The results appear to be inconclusive: we observe a high correlation between

the evaluation time and sentence length for PE02 and PE05; however, for the other three

92



post-editors, there is a low correlation. These inconclusive results can partly be attributed to

the fact that we did not compel the post-editors to conduct their evaluation in one session.

We expect to achieve more conclusive results in future work,which would happen in a real

working post-editing environment.

Table 6.10: Pearson’s Product Moment Correlation
Post-Editor ID PMCC (r) r-square
PE01 0.2246 0.0505
PE02 0.6957 0.4840
PE03 0.3916 0.1534
PE04 0.0746 0.0056
PE05 0.4907 0.2408
Average 0.2274 0.0517

6.4 Analysis of Reranking Performance

Following Section 6.3, in this section we analyze the performance of the reranking model

using segments extracted from the same set of data as described in Section 6.2. Due to

resource limitations, we do not measure whether the reranking model has produced correct

complete rankings, as that would need much more effort for human judges. Instead, we try

to focus on whether the translation candidates that are easier to edit than the original top

TM outputs are actually ranked higher by our reranking model. Considering this, we ask

the post-editors to judge between two segments: one is the Top TM output, and another is

an alternative output from either the MT or the TM system, so that we can learn whether

the reranking model outperforms the 1-best TM output.

6.4.1 Precision and Recall of Translation Reranking

In Table 6.11 we present the precision and recall of favoringthe alternative translation.

Compared to Table 6.1, the precision and recall of the reranking model both decline. (Note

that in Table 6.1, the human-judged precision ranges from 0.8734 to 0.9315, and the recall

ranges from 0.9138 to 0.9409) The precision of the rerankingmodel still remains solid
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Table 6.11: Precision and Recall of Reranking, Individual Post-editors
Post-Editor ID Precision Recall Scratch
PE01 0.8345 0.5762 6
PE02 0.9327 0.5879 86
PE03 0.8750 0.5583 83
PE04 0.8250 0.6074 58
PE05 0.8786 0.5829 16

in Table 6.11, but we observe a larger decline in recall, fromthe 0.9–1.0 range for the

recommendation model to the 0.5–0.6 range in the reranking model.

We suspect that the reason for this is because we use a smallernumber of features in

this task, among which the language model-related featureswill inherently favor the TM

output and will lead our reranking model to be more conservative in favoring MT outputs

over the TM outputs.

6.4.2 Precision and Recall on Consensus Preferences

Table 6.12: Precision and Recall of Recommendation, Consensus Preferences ofN = 3, 4
Post-Editors

N Precision Recall
N=3 0.8583 0.5860
N=4 0.7323 0.5886

Following Section 6.3.2, we also calculate the precision and recall of the reranking

model against the consensus of post-editors in Table 6.12. The trend of the results is similar

to those in Table 6.3 and Table 6.4. In theN=3 case the precision and recall calculated

against the judgements of individual post-editors is stable comparing to the baselines, but

the precision drops when it comes toN=4, as the impact of the disagreement among the

post-editors becomes a major issue.

Table 6.13: Precision and Recall of Recommendation, Consensus Preferences ofN = 3
Post-Editors Grouped by the Source of the Alternative Translation

Source Precision Recall Segments Sys-humaneval-Favor Human-Favor
MT 0.8689 0.5824 238 122 182
TM 0.6000 0.7500 62 5 4
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To see how our reranker performs on the segments produced by MT and the segments

produced by TM respectively, we group the segments where 3 post-editors reach consensus

into two groups according to the source of the alternative translation. We then calculate

precision and recall numbers separately within these two groups in Table 6.13. We can

interpret the result from three angles: firstly it again confirms that in our task the outputs

from the MT prevail over those from the TM, as more than half ofthe k-best MT outputs are

favored over the 1-best TM output; secondly, our model performs steadily when reranking

the MT outputs which achieves our aim of TM-MT integration; and finally, the fact that

post-editors favor many of the segments from the K-best TM orMT output confirms the

necessity to utilize the k-best output in TM-MT integration.

6.4.3 The TER Score and the Preference of Post-Editors

As in Section 6.3.3, we measure the TER score of the TM and the alternative outputs, and

sort them according to the post-editors’ preferences in Table 6.14, where we still average

the scores among the 5 post-editors.

Table 6.14: TER Scores Sorted by Preference
TM-Top1 Other Tie Scratch

TM-Top1 34.99 61.49 32.04 81.76
Other 54.70 36.79 38.18 72.26

In Table 6.14, the trend continues to show that TER is a good predictor for post-editing

preference, confirming the results in Table 6.5: the output which is preferred by the post-

editors will have the lower TER score. We also note that the TER scores in this table

are higher than their counterparts in Table 6.5, because in this task the top-k outputs are

included, which are supposed to have lower quality than the Top-1 outputs used in the

recommendation model.
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6.4.4 Accuracy on High Fuzzy Match Segments

In Table 6.15 we report the accuracy of ranking choices following the setting in Section

6.3.5. TheSysAcc row reports the accuracy of our ranking system, and theBaselinerow

reports the corresponding baseline that uses the fuzzy match score as the choice threshold.

We still see that the reranking system outperforms the baseline, though with a smaller mar-

gin than the binary recommender. This provides further evidence that the ranking model

does offer better translation options, and can still find better translations from the MT and

TM k-best lists when the TM segment is of high quality.

Table 6.15: Ranking Accuracy on High Fuzzy Match Segments
Fuzzy Match

0.5 0.55 0.6 0.65 0.7 0.75 0.8
SysAcc 0.5471 0.5382 0.5330 0.5349 0.5379 0.5400 0.5406
Baseline 0.3882 0.4236 0.4400 0.4762 0.4889 0.4937 0.5000
PreferMT/Total 104/170 83/144 70/125 55/105 46/90 40/79 31/62

6.4.5 User Behavior

We investigate the users’ behavior during the evaluation ofthe reranking system using sim-

ilar measures as in Section 6.3.6.

6.4.5.1 Inter-annotator Agreement

Fleiss’ Kappa coefficient for our five post-editors is0.479 ± 0.012, indicating a moder-

ate agreement. We also obtained Fleiss’ Kappa coefficient for each category as shown in

Table 6.16. From this table, we can observe moderate agreements among post-editors in

selecting TM or MT output as the most suitable for post-editing. There is also a moderate

agreement in making their decision to translate from scratch. However, there is only a fair

agreement in determining whether TM and MT outputs are equally good for post-editing

(“Tie”).
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Table 6.16: Annotator agreement for each category
Category Kappa
TM 0.516
MT 0.593
Tie 0.344
Scratch 0.328

6.4.5.2 Intra-annotator Agreement

We also have ten duplicate samples in our evaluation intended to measure the level of in-

trinsic agreement for each post-editor, as in Section 6.3.6. Both percentage of agreement

and Cohen’s Kappa are calculated as shown in Table 6.17. For the ranking evaluation, we

can still observe that all five post-editors achieved almostperfect intrinsic agreement.

Table 6.17: Intra-annotator Agreement
Post-Editor ID Agreement Kappa
PE01 80% 0.73
PE02 90% 0.87
PE03 90% 0.87
PE04 100% 1.0
PE05 100% 1.0

6.4.5.3 Correlation between Sentence Length and Evaluation Time

As in Section 6.3.6 we calculated Pearson’s product moment correlation between the eval-

uation time and sentence length as shown in Table 6.18. The trend is similar: this time we

observe a high correlation between the evaluation time and sentence length for PE01, PE02

and PE05; for the other two post-editors, there is still a lowcorrelation. As is analyzed in

Section 6.3.6, the reason could be that we did not compel the post-editors to conduct their

evaluation in one session during the experiments, and expect to achieve more conclusive

results in future work, which would happen in a real working post-editing environment.

97



Table 6.18: Pearson’s Product Moment Correlation
Post-Editor ID PMCC (r) r-square
PE01 0.4683 0.2193
PE02 0.5439 0.2958
PE03 0.2022 0.0409
PE04 0.1486 0.0221
PE05 0.6242 0.3896
Average 0.4605 0.2120

6.5 Discussions on Feedback from Post-editors

We requested post-editors to comment on their attitude to MTand TM. In our questionnaire,

all post-editors claim that they have post-edited MT outputs and think that MT is sometimes

useful, which might be said to be representative of the current state of MT penetration in

the localization industry.

However, the more interesting comment comes from one of our post-editors in private

communication, that we think could be worthwhile to note:

I think that I managed to detect that the TM-based translation was better. Some

segments didn’t need any changes (or needed very little changes), that was

mainly the case for short segments.

Although the post-editor does not know which of the two candidates we present in the

evaluation interface is from the MT system, he claims after completing the evaluation that

he has found that the TM outputs are more suitable for post-editing, although in fact every

post-editor prefers MT outputs in the experiment (cf. Table6.7 and Table 6.13).

Although this can only reflect the thinking of a single post-editor, this comment is still

revealing for two reasons. First of all, the post-editor obviously mistakes MT outputs for

TM outputs, which indicates that in this closed-domain setting mainly composed of simple

short sentences, a state-of-the-art phrase-based SMT system is able to produce outputs that

are not only correct on the word-to-word level, but also grammatically acceptable enough

to be recognized as human translations in the TM, and therefore that the SMT output can

be smoothly integrated into the TM environment.
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The comment also shows how much the post-editors subconsciously trust the TM. This

may be an explanation for the relatively low acceptance of MTtechnology in the localiza-

tion industry, and demonstrates the need for TM–MT integration techniques, such as ours.

6.6 Related Work

The translation recommendation system we experiment with is an implementation of the

translation recommendation model proposed in [He et al., 2010c], and the reranking model

is first proposed in [He et al., 2010d]. Research related to the recommendation and rerank-

ing models is already reviewed in Chapter 4 and Chapter 5.

As regards other UIs that are capable of evaluating post-editing efficiency, [Koehn and

Haddow, 2009] presents a post-editing environment using information from the phrase-

based SMT system Moses [Koehn et al., 2007], instead of the fuzzy match information

from TMs. The web-based UI is built with the Ruby on Rails (RoR) framework,3 and is

available online athttp://tool.statmt.org/ .

The research presented in this paper focuses on aspects of a user study of post-editors

working with MT and TMs. In this respect, it is related to [Guerberof, 2009], which

compares the post-editing effort required for MT and TM outputs respectively, as well as

[Tatsumi, 2009], which studies the correlation between automatic evaluation scores and

post-editing effort. Our work differs in that our research measures how the integration of

TM and MT systems can help post-editors, not how post-editors perform using separate TM

or MT systems.

6.7 Summary

In this chapter, we evaluated the effectiveness of translation recommendation and transla-

tion reranking in the context of TM–MT integration with professional post-editors. The

evaluation results support validation of the utility of both translation recommendation and

3http://rubyonrails.org
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translation reranking paradigms, as well as our approach ofusing automatic evaluation met-

rics to approximate actual post-editing effort.

We find that a translation recommendation model trained on automatic evaluation met-

ric scores can obtain a precision above 0.9 and a recall above0.75 with proper thresholds

according to each of the post-editors. The model shows precision above 0.8 when we eval-

uate against the consensus of post-editors.

For the translation reranking paradigm, altough it tries topresent translators with more

segments at the cost of possibly including low quality segments, it can still obtain 0.85

precision and 0.58 recall when evaluated against the consensus judgement of 3 translators.

It can also outperform the naive baseline which uses TM fuzzymatch score as threshold.

From the analysis of user behaviour, we note that the users show consistency in their

judgements according to both the inter-annotator agreement and the intra-annotator agree-

ment for both the recommendation and the reranking tasks. The recommended MT outputs

are incorrectly recognized as TM outputs by one post-editor, which shows both the potential

and the necessity for TM–MT integration.

In future, we can further extend the evaluation in several ways. First of all, in this

paper we concentrated on proprietary data and professionalpost-editors, according to the

major paradigm in the localization industry. However, at the same time this limits the

number of annotators we can hire, as well as the types of evaluations we can perform. We

can obtain more comprehensive results by experimenting on open-domain data sets, and

applying crowd-sourcing technologies such as Amazon Mechanical Turk4 [Callison-Burch,

2009].

Secondly, during the evaluation we were able to collect a number of human judgements

for training a new translation recommendation system. We plan to train a new recommen-

dation model and to compare the difference with models trained on automatic metric scores,

when we have collected more human-annotated data.

Finally, this experiment can also be extended by measuring the actual post-editing time

4https://www.mturk.com
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instead of the judgement time, which can lead to a more precise approximation of reduced

post-editing effort when using translation recommendation to integrate MT outputs into a

TM system.
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Chapter 7

Towards Consistent Sub-Segment

MT-TM Integration

7.1 Introduction1

In previous chapters, we presented methods to integrate SMTinto TM systems, while the

strengths of TMs – effective cost estimation, friendly integration with CAT, and highly

reusable high fuzzy match chunks – were all kept intact.

Both our translation recommendation and translation reranking schemes operate on the

segment level. However, TM fuzzy matches may contain some chunks of higher quality

than SMT outputs, while not having enough content words in the input correctly translated

or translated at all. In such cases, our recommender or reranker will favor SMT outputs,

and is not able to leverage the information (chunks) from TM fuzzy matches.

Let us look at a segment from the Symantec English–Chinese TMdatabase as an exam-

ple, as in Table 7.1.

In this example, we are able to find a fuzzy match in the TM, which perfectly corre-

sponds to the second part of the source segment, but lacks thefirst part of the source. If

1The idea of selecting TM markups with discriminative learning was first conceived by Yanjun Ma. An
earlier version of the research presented in this paper has been published in [Ma et al., 2011]. The feature set
we use in this chapter is different from that of [Ma et al., 2011], and leads to stronger results.
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Table 7.1: Motivating Example
Source after policy name , type the name of the policy (it shows new host integrity

policy by default ) .
TM Source type the name of the policy ( it shows new host integrity policy by default ) .
TM Output 键入策略名称（默认显示 “新主机完整性策略”）。

MT Output 在“策略”名称后面，键入策略的名称 (名称显示为 “新主机 完整性
策略默认）。

Reference 在“策略名称”后面，键入策略名称（默认显示 “新主机 完整性

策略”）。

we use the translation recommendation scheme, translatorswill have to choose between the

MT output, which makes several translation mistakes, and the TM output, which misses the

beginning of the segment completely.

In a commercial localization setting, however, we would ideally hope to leverage both

the TM and the MT outputs, because 1) the combination of the TMtranslation from the

second part of the segment and the MT output from the first parttogether can produce

a better translation, and 2) more importantly, in the context of localization, we hope that

translations exhibitconsistency, so that the same technical phrases in one language always

correspond to the same translations in another language.

Following this intuition, we extend the translation recommendation and translation

reranking schemes to the sub-segment level, and show that byautomatically selecting TM

matches that ensure consistent translation, and reusing them in a constrained SMT pipeline,

we can obtain better SMT outputs that incorporate the knowledge from such TM matches.

We will show by automatic evaluation that, apart from ensuring that consistent translation

chunks are reused, our method also produces better translations, reflected by a 1.2 BLEU

point improvement (2.62% relative) and a 0.72 TER point reduction (1.81% relative), both

of which are statistically significant.

In the following sections, we will first discuss the idea of translation consistency in the

TM and the SMT setting in Section 7.2. Then we present the two components of our sub-

segment integration scheme: the constrained translation framework using discriminative

learning in Section 7.3, and our rich linguistically-motivated feature set in Section 7.4. We

present experimental results and compare the effectiveness of different types of features in
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Section 7.5. We review previous work in Section 7.6. We conclude and point out possible

avenues for future work in Section 7.7.

7.2 Translation Consistency in TM and SMT

Translation consistency is an important factor for large-scale translation, especially for com-

mercial translations in an industrial environment. For example, when translating technical

documents (especially those with a large amount of terminology), lexical as well as struc-

tural consistency is essential to produce a fluent target-language segment. Moreover, even

in the case of translation errors, consistent in the errors (e.g. repetitive error patterns) are

easier to diagnose and subsequently correct by translators.

In phrase-based SMT, translation models and language models are automatically learned

and/or generalized from the training data, and a translation is produced by maximizing a

weighted combination of these models. Given that global contextual information is not nor-

mally incorporated, and that training data is usually noisyin nature, there is no guarantee

that an SMT system can produce translations in a consistent manner.

On the other hand, TM systems – widely used by translators in industrial environments

for enterprise localization by translators – can shed some light on mitigating this limitation.

TM systems can assist translators by retrieving and displaying previously translated similar

“example” segments (displayed as source-target pairs, widely called ‘fuzzy matches’ in

the localization industry). In TM systems, fuzzy matches are retrieved by calculating the

similarity or the so-called ‘fuzzy match score’ (ranging from 0 to 1 with 0 indicating no

matches and 1 indicating a full match) between the input segment and segments in the

source side of the translation memory.

When presented with fuzzy matches, translators can then avail of useful chunks in pre-

vious translations while composing the translation of a newsegment. One might expect

that most translators only consider a few segments that are most similar to the current input

segment; this process can inherently improve the consistency of translation, given that the
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new translations produced by translators are likely to be similar to the target side of the

fuzzy match they have consulted.

Previous research (cf. Section 7.6) has focused on using fuzzy match score as a thresh-

old when using the target side of the fuzzy matches to constrain the translation of the input

segment. In this chapter, we make two improvements over the state-of-the-art:

• Discriminative Learning . As we do in the translation recommendation and transla-

tion reranking paradigms, we use a more fine-grained discriminative learning method

to determine whether the target side of the fuzzy matches should be used as a con-

straint in translating the input segment.

• A Rich Feature Set. The only factor that prior thresholding methods consider is the

fuzzy match score. However, we notice that many factors are relevant in deciding

whether the matched TM chunks should be reused in constrained translation: there-

fore we use translation model, lexical, syntactic (dependency), and semantic features

to model translation consistency. This not only leads to translations of better qual-

ity, but also provides insight into the linguistic properties of consistent translation

chunks.

We will demonstrate that by using discriminative learning and a rich feature set, our

method can consistently improve translation quality, and outperform the naive fuzzy match-

driven baseline.

7.3 Constrained Translation with Discriminative Learning

We introduce our method to tightly integrate TM with MT at thesub-subsegment level. The

basic idea is as follows: given a source segment to translate, we firstly use a TM system

to retrieve the most similar “example” source segments together with their translations. If

matched chunks between input segment and fuzzy matches can be detected, we can directly

reuse the corresponding parts of the translation in the fuzzy matches, and use an MT system

to translate the remaining chunks.
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As a matter of fact, implementing this idea is pretty straightforward. A TM system

can easily detect the word alignment between the input segment and the source side of the

fuzzy match by retracing the paths used in calculating the fuzzy match score. To obtain

the translation for the matched chunks, we just require the word alignment between source

and target TM matches, which can be addressed using state-of-the-art word alignment tech-

niques. More importantly, albeit not explicitly spelled out in previous work (e.g. [Koehn

and Senellart, 2010b]), this method can potentially increase the consistency of translation,

as the translation of new input segments is closely informedand guided (or constrained) by

previously translated segments.

Now we define this idea formally. Given a segmente to translate, we retrieve the most

similar segmente′ from the TM associated with target translationf ′. The m common

“phrases”ēm

1
betweene ande

′ can be identified. Given the word alignment information

betweene′ andf
′, one can obtain the corresponding translationsf̄ ′

m

1
for each of the phrases

in ē
m

1
(cf. Section 7.3.1). This process can derive a number of “phrase pairs”< ēm, f̄ ′

m >,

which can be used to specify the translations of the matched phrases in the input segment.

The remaining words without specified translations will be translated by an MT system.

For example, given an input segmente1e2 · · · eiei+1 · · · eI , and a phrase pair< ē, f̄ ′ >,

ē = eiei+1, f̄ ′ = f ′
jf

′
j+1 derived from the fuzzy match, we can mark up the input segment

as in (7.1):

e1e2 · · · < tm=“f ′

jf
′

j+1” > eiei+1 < /tm > · · · eI . (7.1)

We decode this segment, and only the unmarked portione1e2 · · · ei−1 andei+1 · · · eI .will

be translated, while the marked-up portioneiei+1 will reuse the translation from the TM,

which isf ′
jf

′
j+1.
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7.3.1 Consistent Phrase Pair Extraction

The consistent “phrase pairs” we derive from the symmetric alignment between the TM

fuzzy match and its translation are different from the phrase pairs extracted as translation

rules in phrase-based translation. To achieve sufficient rule coverage, typical phrase-based

SMT systems will extract all the rules that do not conflict with the alignment points, while

our “phrase pairs” should directly correspond to alignmentpoints in order to ensure that

our phrase pairs represent much more consistent translation options (at the cost of lower

coverage) than typical phrasal translation rules.

display the drives on your computer

Figure 7.1: Consistent Phrase Pair Extraction

We illustrate this difference using the following example.Suppose that we have an

alignment between English and Chinese as in Figure 7.1. Our method to extract consistent

phrase pairs only obtains two pairs that are directly derived from this alignment, as in (7.2):

display 7→显示

on your computer7→计算机上
(7.2)

Phrasal extraction heuristics in phrase-based SMT [Koehn et al., 2003] have the capa-
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bility of extracting a longer consistent phrase pair, as in (7.3)

the drives on your computer7→计算机上的驱动器 (7.3)

However, we should not rely on such heuristics in our model because they cannot ensure

the consistency of phrase pairs, and we do not have a probability weighting step to rule out

any inconsistent pairs. Some of the inconsistent phrase pairs that can be derived from this

alignment include those in (7.4):

the drives on your computer7→计算机上

on your computer7→计算机上的驱动器
(7.4)

The method used to obtain the constrained alignment using TMfuzzy matches is similar

to [Koehn and Senellart, 2010b], except that in our case the word alignment betweene′ and

f
′ is the intersection of bidirectional GIZA++ [Och and Ney, 2003] posterior alignments. In

marking up the input segment, we use the intersected word alignment to minimize the noise

introduced by word alignment in only one direction, so as to ensure translation consistency.

7.3.2 Discriminative Learning

In our approach, whether the translation information from fuzzy matches should be used or

not (i.e. whether the input segment should be marked up) is determined by a discriminative

learning procedure. We cast this problem as a binary classification problem.

7.3.2.1 Support Vector Machines

Similar to our work on recommendation and ranking for full TMand MT segements, here

we use SVMs [Cortes and Vapnik, 1995], binary classifiers that classify an input instance

based on decision rules which minimize the regularized error function in (7.5) to deter-

mine whether constraining translation with our consistentphrase pairs can help translation
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quality:

min
w,b,ξ

1

2
wT w + C

l
∑

i=1

ξi

s. t. yi(wT φ(xi) + b) > 1 − ξi

ξi > 0

(7.5)

where(xi, yi) ∈ Rn × {+1,−1} are l training instances that are mapped by the function

φ to a higher dimensional space.w is the weight vector,ξ is the relaxation variable and

C > 0 is the penalty parameter.

We perform our experiments with the Radial Basis Function (RBF) kernel, as in (7.6):

K(xi, xj) = exp(−γ||xi − xj ||
2), γ > 0 (7.6)

When using SVMs with the RBF kernel, we have two free parameters to tune on: the cost

parameterC in (7.5) and the radius parameterγ in (7.6). We optimize the parametersC

andγ by a brute-force grid search. The classification result of each set of parameters is

evaluated by cross validation on the training set.

The SVM classifier will thus be able to predict the usefulnessof the TM fuzzy match,

and determine whether the input segment should be marked up using relevant phrase pairs

derived from the fuzzy match before being sent to the SMT system for translation.

When training SVMs, we need gold standard annotations to label training examples.

As large-scale manually annotated data is not available forthis task, we use automatic TER

scores [Snover et al., 2006] as the measure for training dataannotation.

We label the training examples as in (7.7):

y =











+1 if TER(w. markup) < TER(w/o markup)

−1 if TER(w/o markup) ≥ TER(w. markup)
(7.7)

Each instance is associated with a set of features which are discussed in more detail in

Section 7.4.
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7.3.2.2 Classification Confidence Estimation

We use the techniques proposed by Platt [1999] and improved by Lin et al. [2007] to convert

classification margin to posterior probability, so that we can easily threshold our classifier

(cf. Section 7.5.3.3).

Platt’s method estimates the posterior probability with a sigmoid function, as in (7.8):

Pr(y = 1|x) ≈ PA,B(f) ≡
1

1 + exp(Af + B)
(7.8)

wheref = f(x) is the decision function of the estimated SVM. A and B are parameters

that minimize the cross-entropy error functionF on the training data, as in (7.9):

min
z=(A,B)

F (z) = −

l
∑

i=1

(tilog(pi) + (1 − ti)log(1 − pi)),

wherepi = PA,B(fi), andti =











N++1
N++2 if yi = +1

1
N

−
+2 if yi = −1

(7.9)

wherez = (A,B) is a parameter setting, andN+ andN− are the numbers of observed

positive and negative examples, respectively, for the label yi. These numbers are obtained

using an internal cross-validation on the training set.

7.4 Feature Set

The features used to train the discriminative classifier, all on the segment level, are described

in the following sections.

7.4.1 Translation Model Features

We begin with features extracted from the internals of the TMand the MT components, as

these are the features that we also use in our translation recommendation and translation

reranking models.
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• The TM Feature. The TM feature is the fuzzy match score, which indicates the

overall similarity between the input segment and the sourceside of the TM output.

If the input segment is similar to the source side of the matching segment, it is more

likely that the matching segment can be used to mark up the input segment.

We compute fuzzy match cost as the minimum Levenshtein Distance [Levenshtein,

1966] between the source and TM entry, normalised by the length of the source as

in (7.10), as most of the current implementations are based on edit distance while

allowing some additional flexible matching (cf. Chapter 2).

hfm(e) = min
s

LevenshteinDistance(e, s)

Len(e)
(7.10)

wheree is the segment to translate, ands is the source side of an entry in the TM.

For fuzzy match scoresF , hfm roughly corresponds to1 − F .

• Translation Features. We use four features from the SMT translation model: the

phrase translation and lexical probabilities for the phrase pairs< ēm, f̄ ′
m > derived

using the method in Section 7.3. More specifically, we use thephrase translation

probabilitiesp(f̄ ′
m|ēm) andp(ēm|f̄ ′

m), as well as the lexical translation probabilities

plex(f̄ ′
m|ēm) andplex(ēm|f̄ ′

m) as calculated in [Koehn et al., 2003]. In cases where

multiple phrase pairs are used to mark up one single input segmente, we use a unified

score for each of the four features, which is an average over the corresponding feature

in each phrase pair. The intuition behind these features is as follows: phrase pairs

< ēm, f̄ ′
m > derived from the fuzzy match should also be reliable with respect to

statistically produced models.

We also have a count feature, i.e. the number of phrases used to mark up the input

segment, and a binary feature, i.e. whether the phrase tablecontains at least one

phrase pair< ēm, f̄ ′
m > that is used to mark up the input segment.
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7.4.2 Linguistic Features

Now we move on to linguistic features ranging from the surface to the semantic level.

The linguistic-oriented features measure how well the marked-up portion covers the source

segment. The assessments could be (but are not limited to) the percentage of content words

that are marked up (lexical level), the number of covered nouns (Part-of-speech (POS)

level), the type and number of covered dependency relations(syntactic dependency level),

and whether the agent of the main predicate is covered completely (semantic level). We

also measure position-related properties, such as whetherthe marked-up chunk is at the

beginning or the end of the segment.

7.4.2.1 Lexical Features

The lexical features reveal the surface-level properties of the marked-up translation. We use

the following indicators given a segment and its markup:

• Coverage. Coverage measures the percentage of words covered by the marked up

segment. We calculate the percentage on both the source and the target side.

• Alphabetical Words. This feature measures the percentage of words that are alpha-

betical (i.e. not numbers and punctuation marks) in the source side of marked up

chunks.

• Punctuation Marks. This feature in turn measures the percentage of words in the

source side of marked up chunks that are punctuation marks.

• Content Words. This feature calculates the percentage of content words inthe source

side of marked up chunks. We use the snowball stop words list2 as the resource for

function words and consider all other words to be content words.

• Position. We use two binary features which fire if marked-up chunks cover the head

or the tail of the source segment.
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type the name of the policy (it shows new host integrity policy by default ) .after policy name,

Figure 7.2: Lexical Features

We give an example of these features in Figure 7.2. In this example, the shaded chunk

“type the name of the policy (it shows new host integrity policy by default).” is marked up

with a corresponding Chinese translation. We extract features on the input segment. The

length of the input segment is 21 and the length of the marked up chunk is 17. Therefore

we have the coverage featureLEX COVER=17
21 . We also calculate the the percentage of

alphabetical words, punctuation marks and content words inthe marked up chunk. For ex-

ample, there are 3 punctuation marks in the marked up chunk sowe haveLEX PUNCT= 3
17 .

Besides, the tail of this segment is covered by the markup, sothe position feature will fire.

7.4.2.2 POS Features

For the POS features, we simply extend the calculation of lexical features to the POS level.

The POS tags in our experiments are obtained using the Stanford Parser.3

The POS features we use are:

• POS Coverage. We calculate the percentage of coverage by the markup for each

POS tag in the source segment.

• POS Position. We also use binary features to indicate whether the head or the tail of

the source segment is covered by the markup, sorted by POS tags.

We illustrate the POS features in Figure 7.3. If we look at theVBZ tag, our markup

covers the only third person singular verb in the segment, sothePOSCOVERVBZ feature

is 1.0. ThePOSTAIL . feature will also fire as the markup covers the full stop at thetail

2http://snowball.tartarus.org/algorithms/english/sto p.txt
3http://nlp.stanford.edu/software/lex-parser.shtml
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type the name of the policy (it shows new host integrity policy by default ) .after policy name,

IN              NN          NN      ,     NN      DT        NN      IN     DT        NN    LRB PRP VBZ         NNP    NNP           NNP             NNP        IN        NN        RRB .

Figure 7.3: Part-of-speech Features

of the segment. Note that the word “type” is mistakenly tagged asNN(instead ofVBP), so

this will introduce errors in deeper linguistic analysis. This also confirms the necessity of

using a richer set of features so that analysis errors can be compensated for by surface-level

indicators in the whole feature set.

7.4.2.3 Dependency Features

Given the phrase pairs< ēm, f̄ ′
m > derived from the fuzzy match, and used to translate

the corresponding chunks of the input segment (cf. Section 7.3), these translations are more

likely to be coherent in the context of the particular input segment if the matched parts on

the input side are syntactically related.

We use dependency relations to capture this syntactic relationship. For marked-up

phrases̄em in the source segment, we use dependency relations between wordsem in ēm

and the remaining wordsej in the input segmente to determine their syntactic function.

We use the Stanford parser to obtain the dependency structure of the input segment. We

add a pseudo-label SYS PUNCT to punctuation marks, whose governor and dependent are

both the punctuation mark. The dependency features designed to capture the context of the

matched input phrases̄em are as follows:

• DEP Coverage. DEP coverage measures the coverage of dependency labels onthe

input segment in order to obtain a bigger picture of the matched parts in the input.

For each dependency labelL, we consider its head or modifier ascoveredif the cor-

responding input wordem is covered by a matched phraseēm. Our coverage features

are the frequencies of governor and dependent coverage calculated separately for
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each dependency label.

• DEP Position. DEP position identifies whether the head and the tail of a segment are

matched, as these are the cases in which the matched translation is not affected by the

preceding words (when it is the head) or following words (when it is the tail), and is

therefore more reliable. The feature is set to 1 if this happens, and to 0 otherwise. We

distinguish among the possible dependency labels, the heador the tail of the segment,

and whether the aligned word is the governor or the dependentjust like we do for POS

tags. As a result, each permutation of these possibilities constitutes a distinct binary

feature.

• DEP Consistency. DEP Consistency is a single feature which determines whether

matched phrases̄em belong to a consistent dependency structure, instead of being

distributed discontinuously in the input segment. We assume that a consistent struc-

ture is less influenced by its surrounding context. We set this feature to 1 if every

word in ēm is dependent on another word inēm, and to 0 otherwise.

type the name of the policy (it shows new host integrity policy by default ) .after policy name,

PREP

PREP

PREP

PREP PREPDET DET

DOBJ

DOBJ

DEP

NSUBJ

NN

NN

NN
NN

PREP

Figure 7.4: Dependency Features

We give an example for dependency features in Figure 7.4. Forthe dependency la-

belDOBJ, we have two relationsDOBJ(type, name) andDOBJ(shows, policy) .

The governors “type” and “shows” are both covered by the markup, so we haveDEPDOBJGOV=1.0.

This is also the case for the dependents, so we also haveDEPDOBJDEP=1.0. There is a
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mistakenly annotatedPREParc from the marked-up “type” to the unmarked-up “after”, so

the consistency feature will not fire. The position feature regarding the tail of the segment

will fire.

7.4.2.4 Semantic Role Features

We also suspect that the usefulness of marked-up constrained translations is related to their

semantic role [Gildea and Jurafsky, 2002] in the segment. For example, we suspect that

if the agent of the predicate is completely marked-up and hasa constrained translation,

the overall consistency of the segment might improve, especially for the case of Symantec

technical documents, as agents are often either user roles (e.g. “the administrator”) or prod-

uct names (e.g. “symantec mail security console”) that require a high level of translation

consistency.

Our semantic role labels are obtained using the SRL labeler described in [Li et al.,

2009], with constituent trees produced by the Stanford parser as input. The labels follow

the PropBank [Palmer et al., 2005] annotation. We use the following semantic role features

in our system:

• SEM Coverage. We calculate the marked-up percentage for each argument label. If

there is more than one predicate, the percentage is averagedamong argument labels

for each predicate. We label these features asSEMPARTIAL * .

• SEM Complete Coverage. This feature is a binary feature that fires if phrases with

argument labelArgN , are completely covered by the markup. If there is more than

one predicate, the binary feature requires that allArgNs are completely covered. In

other words,SEMCOMPLETEARGNfires if and only ifSEMCOVERARGNis equal

to 1.0.

• SEM Position. The SEM position feature fires if an argument at the beginning or the

end of the segment is covered by the markup. We also distinguish among cases when

the coverage is partial or complete, so if part of an agent (ARG0in PropBank) chunk
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is partially marked up at the head of the segment, theSEMPOSITION ARG0HEAD

feature will fire.

• SEM Predicate. The PropBank-style semantic role labels are predicate driven: the

labeler first identifies the predicate of a segment and then labels its arguments. If there

is no predicate, the whole segment will not be labeled and oursemantic features will

not fire. To distinguish this situation from the cases when there are semantic labels

but the markup covers none of them, we design a binary featurethat fires only if the

segment has no predicate.

type the name of the policy (it shows new host integrity policy by default ) .after policy name,

ARG0      V                                                 ARG1

Figure 7.5: Semantic Role Features

We give an example for semantic role features in Figure 7.5. In this example, theARG0,

ARG1, andV roles are all covered by the markup, so we will haveSEMCOMPLETE* and

SEMPARTIAL * equal to 1.0. The position-based features will not fire, as the ending

punctuation marks are not covered by semantic role labels. Note that if analyzed correctly,

“type” should also be a predicate and should have its own arguments. If so, we will have an

uncoveredAM-LOCchunk “after policy name” with coverage features equal to 0.0, but all

other features will remain the same.

7.5 Experiments

Our data set is an English–Chinese TM with technical translation from Symantec, consist-

ing of 87K segment pairs. The average segment length of the English training set is 13.3

words and the size of the training set is comparable to the larger TMs used in the industry.

Detailed corpus statistics about the training, development and test sets for the SMT system
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are shown in Table 7.2.

Table 7.2: Corpus Statistics
Train Develop Test

SEGMENTS 86,602 762 943
ENG. TOKENS 1,148,126 13,955 20,786
ENG. VOC. 13,074 3,212 3,115
CHI . TOKENS 1,171,322 10,791 16,375
CHI . VOC. 12,823 3,212 1,431

The composition of test subsets based on fuzzy match scores is shown in Table 7.3. We

can see that segments in the test sets are longer than those inthe training data, implying a

relatively difficult translation task.

We train the SVM classifier using the libSVM Chang and Lin [2001] toolkit. The SVM-

training and validation is on the same training segments4 as the SMT system with5-fold

cross validation. As for SVM parameters, we setc = 2.0 andγ = 0.125.

Table 7.3: Composition of test subsets based on fuzzy match scores
Scores segments Words W/S
(0.9, 1.0) 80 1526 19.0750
(0.8, 0.9] 96 1430 14.8958
(0.7, 0.8] 110 1596 14.5091
(0.6, 0.7] 74 1031 13.9324
(0.5, 0.6] 104 1811 17.4135
(0, 0.5] 479 8972 18.7307

We conducted experiments using a standard log-linear PB-SMT model: GIZA ++ im-

plementation of IBM word alignment model 4 [Och and Ney, 2003], the refinement and

phrase-extraction heuristics described in [Koehn et al., 2003], minimum-error-rate train-

ing [Och, 2003], a 5-gram language model with Kneser-Ney smoothing [Kneser and Ney,

1995] trained with SRILM [Stolcke, 2002] on the Chinese sideof the training data, and

Moses [Koehn et al., 2007] which is capable of handling user-specified translations for

some portions of the input during decoding. The maximum phrase length is set to 7.

4We have around 87K segment pairs in our training data. However, for 67.5% of the input segments, our MT
system produces the same translation irrespective of whether the input segment is marked up or not. Having
said that, our results show that selecting better translations on the approximately one third of segments to which
markup does make a difference, leads to significant improvements on the system level.
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7.5.1 Evaluation

The performance of the phrase-based SMT system is measured by BLEU score [Papineni

et al., 2002] and TER [Snover et al., 2006]. Significance testing is carried out using approx-

imate randomization [Noreen, 1989] with a 95% confidence level.

We also measure the quality of the classification using precision and recall. LetA be

the set of predicted markup input segments, andB be the set of input segments where

the markup version has a lower TER score than the plain version. We standardly define

precisionP and recallR as in (7.11):

P =
|A

⋂

B|

|A|
, R =

|A
⋂

B|

|B|
(7.11)

7.5.2 Cross-fold translation

In order to obtain training samples for the classifier, we need to label each segment in the

SMT training data as to whether marking up the segment can produce better translations.

To achieve this, we translate both the marked-up versions and plain versions of the segment

and compare the two translations using the segment-level evaluation metric TER.

We do not make use of additional training data to translate the segments for SMT train-

ing, but instead use cross-fold translation. We create a newtraining corpusT by keeping

95% of the segments in the original training corpus, and creating a new test corpusH by

using the remaining 5% of the segments. Using this scheme we make 20 different pairs of

corpora(Ti,Hi) in such a way that each segment from the original training corpus occurs

in exactly oneHi for some1 ≤ i ≤ 20. We train 20 different systems using eachTi, and

use each system to translate the correspondingHi as well as the marked-up version ofHi

using the procedure described in Section 7.3. The development set is kept the same for all

systems.

119



7.5.3 Experimental Results

7.5.3.1 Feature Validation

Table 7.4: Contribution of Features (%)
TER BLEU P R

BASELINE 39.82 45.80 N/A N/A
TRANS 39.80 45.84 66.67 1.02
LEX 39.65 46.20 71.43 10.20
POS 39.30 46.71* 61.54 28.57
DEP 39.81 46.14 58.25 30.61
SEM 39.74 46.35 59.09 19.90
LPDS 39.32 46.81* 61.36 41.33

We first validate the contribution of the feature sets we proposed. The classification and

translation results using different features are reportedin Table 7.4. Scores marked with

“*” are statistically significantly better (p < 0.01) than the BASELINE.

First of all, we observe that using translation model-derived features similar to those

used in our translation recommendation/reranking models only brings about a trivial differ-

ence in translation quality. In fact, very low recall indicates that the SVM actually cannot

obtain enough information from this feature set, and has to take advantage of the prior dis-

tribution of the samples (where we have more negative examples than positive ones) and

reject almost every attempt of markup to obtain the best accuracy. This shows that these

features cannot capture the properties of the TM chunks thathelp translation consistency.

Secondly, we observe that the linguistic features can bringmore improvement to clas-

sification accuracy and translation quality. The improvement in BLEU scores ranges from

0.36 (DEP) to a statistically significant 0.91 (POS). However, that is not to say that deeper

features such as DEP and SEM are much less informative than part-of-speech features. We

note that POS features reject more marked-up chunks than deeper features(as is indicated

by low recall), which means that only a small number of segments can benefit from this ap-

proach if we only use the POS feature set. Besides, the low recall also limits the possibility

of pursuing even better translation quality by confidence thresholding (i.e. by sacrificing

recall to achieve even higher precision). Therefore it would be worthwhile to combine all
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these linguistic-driven features for better classification accuracy, and more importantly, for

higher recall.

Finally, we put the LEX, POS, DEP, and POS features together in the LPDS setting.

We can see that this setting achieves the best BLEU score among all the settings, which is

also significantly better than the baseline. The TER and precision numbers are marginally

inferior to those obtained using the POS features alone. However, as we will see, the much

higher recall enables us to perform more confidence threshold-based tuning and achieve

better results.

7.5.3.2 Translation Results with and without Markup

Table 7.5 contains the translation results of the SMT systemwhen we use discriminative

learning with LPDS to mark up the input segment (LPDS). The first row (BASELINE) is

the result of translating plain test sets without any markup, while the second row is the

result when all the test segments are marked up. We also report the oracle scores, i.e. the

upperbound of using our discriminative learning approach.As we can see from this table,

Table 7.5: Performance of Discriminative Learning (%)
TER BLEU

BASELINE 39.82 45.80
MARKUP 41.62 44.41
LPDS 39.32 46.81*
ORACLE 37.27 48.32

we obtain significantly inferior results compared to the theBaseline system if we categor-

ically mark up all the input segments using phrase pairs derived from fuzzy matches. This

is reflected by an absolute 1.4 point drop in BLEU score and a 1.8 point increase in TER.

On the other hand, both the oracle BLEU and TER scores represent as much as a 2.5 point

improvement over the baseline. Our discriminative learning method with linguistic features

(LPDS), which automatically classifies whether an input segment should be marked up,

leads to an increase of 1.01 absolute BLEU points (2.53% relative) over the BASELINE,

which is statistically significant. We also observe a 0.5 points (1.10% relative) drop in TER
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compared to the BASELINE. This shows that our classifier with linguistic features is capable

of judging whether the sub-segment level-constrained translation is helpful for the overall

translation quality or not.

7.5.3.3 Translation Results with Confidence Thresholding

To further analyze our discriminative learning approach, we also investigate the use of clas-

sification confidence (cf. Section 7.3.2.2) as a threshold toboost classification precision.

Table 7.6 shows the classification and translation results when we use different confidence

Table 7.6: The impact of classification confidence thresholding
BASELINE 0.50 0.55 0.60 0.65 0.70 0.75

BLEU 45.80 46.81* 47.00* 46.79* 46.47 46.11 46.03
TER 39.82 39.32 39.10* 39.28 39.45 39.66 39.70
P N/A 61.36 67.96 71.01 75.00 70.97 71.43
R N/A 41.33 35.71 25.00 18.37 11.22 7.65

thresholds, where the scores marked with “*” are significantly better (p = 0.01) than the

BASELINE. The default classification confidence is 0.50.

We investigate the impact of increasing classification confidence on the performance

of the classifier and the translation results using LPDS features. As can be seen from Ta-

ble 7.6, increasing the classification confidence up to 0.65 leads to a steady increase in

classification precision with a corresponding sacrifice in recall. The fluctuation in classi-

fication performance has an impact on the translation results as measured by BLEU and

TER. We can see that the best BLEU as well as TER scores are achieved when we set the

classification confidence to 0.55, representing a further 0.19 points improvement in BLEU

score and 0.22 points drop in TER score, compared to the default threshold of 0.50.

Compared to the BASELINE, we obtain a 1.20 (2.62 % relative) BLEU point improve-

ment and 0.72 (1.81 % relative) TER point improvement (with lower TER score), all with

statistical significance (p = 0.01), when we set the confidence to 0.55. Despite the higher

precision when the confidence is set above 0.60, the dramaticdecrease in recall cannot be

compensated for by the increase in precision.
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Figure 7.6: Confidence Threshold on Various Feature Sets

We also compare the effect of applying confidence thresholdsto all linguistically-

motivated feature sets we have proposed in Figure 7.6. Note that the LPDS features obtain

the best BLEU scores in the [0.5, 0.65] range and obtain the highest BLEU score at the

confidence level of 0.55, which confirms our approach of combining a variety of linguistic

features for this task. We also observe that although the BLEU score of POS features is also

competitive at the confidence of 0.5, the translation quality will not improve as we set a

higher threshold, because its recall is already low initially.

7.5.3.4 Comparison with Previous Work

In previous work (cf. Section 7.6), both Koehn and Senellart[2010b] and Zhechev and van

Genabith [2010] used fuzzy match score to determine whetherthe input segments should

be marked up. The input segments are only marked up when the fuzzy match score is above

a certain threshold. We present the results using this method in Table 7.7. From this table,

we can see an inferior performance compared to the BASELINE results (cf. Table 7.5) when
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Table 7.7: Performance using fuzzy match score for classification
Fuzzy Match Scores

0.50 0.60 0.70 0.80 0.90
BLEU 45.13 45.55 45.58 45.84 45.82
TER 40.99 40.62 40.56 40.29 40.07

the fuzzy match score is below 0.70. A modest gain can only be achieved when the fuzzy

match score is above 0.8. This is slightly different from theconclusions drawn in [Koehn

and Senellart, 2010b], where gains are observed when the fuzzy match score is above 0.7,

and in [Zhechev and van Genabith, 2010] where gains are only observed when the score is

above 0.9. Comparing Table 7.7 with Table 7.6, we can see thatour classification method

is more effective. This confirms our argument in the last paragraph of Section 7.6, namely

that fuzzy match score is not informative enough to determine the usefulness of the sub-

segments in a fuzzy match, and that a more comprehensive set of features, as we have

explored in this paper, is essential for the discriminativelearning-based method to work.

Table 7.8: Percentage of training segments with markup vs without markup grouped by
fuzzy match (FM) score ranges

FM Scores w. markup w/o markup
[0,0.5] 37.75 62.24
(0.5,0.6] 40.64 59.36
(0.6,0.7] 40.94 59.06
(0.7,0.8] 46.67 53.33
(0.8,0.9] 54.28 45.72
(0.9,1.0] 44.14 55.86

To further validate our assumption, we analyze the trainingsegments by grouping them

according to their fuzzy match score ranges. For each group of segments, we calculate

the percentage of segments where markup (and respectively without markup) can produce

better translations. The statistics are shown in Table 7.8.We can see that for segments with

fuzzy match scores lower than 0.8, more segments can be better translated without markup.

For segments where fuzzy match scores are within the range(0.8, 0.9], more segments can

be better translated with markup. However, within the range(0.9, 1.0], surprisingly, actually

more segments receive better translation without markup. This indicates that fuzzy match

score is not a good measure to predict whether fuzzy matches are beneficial when used to

124



Table 7.9: Translation Examples
Example 1

w/o markup after policy name , type the name of the policy ( it shows new host integrity
policy by default ) .

Translation 在“策略”名称后面，键入策略的名称 (名称显示为 “新主机 完整性
策略默认）。

w. markup after policy name<tm translation=“，键入策略名称（默认显示 “新
主机 完整性策略”）。”>, type the name of the policy ( it shows new host
integrity policy by default ) .< /tm>

Translation 在“策略”名称后面，键入策略名称（默认显示 “新主机完整性策略”）。

Reference 在“策略名称”后面，键入策略名称（默认显示 “新主机完整性策略”）。

Example 2
w/o markup changes apply only to the specific scan that you select.
Translation 更改仅适用于特定扫描的规则。

w. markup changes apply only to the specific scan that you select <tm translation=“。”>.< /tm>
Translation 更改仅适用于您选择的特定扫描。

Reference 更改只应用于您选择的特定扫描。

constrain the translation of an input segment.

7.5.4 Improved Translations

In order to pinpoint the sources of improvements by marking up the input segment, we

performed some manual analysis of the output. We observe that the improvements can

broadly be attributed to two reasons: 1) the use of long phrase pairs which are missing in

the phrase table, and 2) deterministically using highly reliable phrase pairs.

Phrase-based SMT systems normally impose a limit on the length of phrase pairs for

storage and speed considerations. Our method can overcome this limitation by retrieving

and reusing long phrase pairs on-the-fly. A similar idea, albeit from a different perspective,

was explored by Lopez [2008], where he proposed to constructa phrase table on the fly for

each segment to be translated. Differently from his approach, our method directly translates

part of the input segment using fuzzy matches retrieved on-the-fly, with the rest of the

segment translated by the pre-trained MT system. We offer some more insights into the

advantages of our method by means of a few examples.

Example 1 shows translation improvements by using long phrase pairs. Compared to

the reference translation, we can see that for the underlined phrase, the translation without

markup contains (i) word ordering errors and (ii) a missing right quotation mark. In Ex-

125



ample 2, by specifying the translation of the final punctuation mark, the system correctly

translates the relative clause ‘that you select’. The translation of this relative clause is miss-

ing when translating the input without markup. This improvement can be partly attributed

to the reduction in search errors by specifying the highly reliable translations for phrases in

an input segment.

7.6 Related Work

The work in this chapter lies at the intersection of two strands of research. Firstly, it brings

our quality-estimation-based TM-MT integration researchfrom the segment level to the

sub-segment level. In this chapter, we rely on the SVM classification and confidence esti-

mation schemes in translation recommendation [He et al., 2010c] to predict the the usability

of constrained translation chunks.

Secondly, this work also improves upon previous efforts that use TM chunks to improve

SMT performance. There are several different ways of using the translation information

derived from fuzzy matches, with the following two being themost widely adopted: 1) to

add these translations into a phrase table as in [Biçici andDymetman, 2008, Simard and

Isabelle, 2009], or 2) to mark up the input segment using the relevant chunk translations in

the fuzzy match, and to use an MT system to translate the partsthat are not marked up, as in

[Smith and Clark, 2009, Koehn and Senellart, 2010b, Zhechevand van Genabith, 2010]. It

is worth mentioning that translation consistency was not explicitly regarded as their primary

motivation in this previous work. Our research follows the direction of the second strand

given that consistency can no longer be guaranteed by constructing another phrase table.

However, to categorically reuse the translations of matched chunks without any differ-

entiation might generate inferior translations given the fact that the context of these matched

chunks in the input segment could be completely different from the source side of the fuzzy

match. To address this problem, both Koehn and Senellart [2010b] and Zhechev and van

Genabith [2010] used fuzzy match score as a threshold to determine whether to reuse the
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translations of the matched chunks. For example, Koehn and Senellart [2010b] showed that

reusing these translations as large rules in a hierarchicalsystem [Chiang, 2005] can be ben-

eficial when the fuzzy match score is above 0.7, while Zhechevand van Genabith [2010]

reported that it is only beneficial to a phrase-based system when the fuzzy match score is

above 0.9.

7.7 Summary

In this chapter, we introduced a discriminative learning method to tightly integrate fuzzy

matches retrieved using translation memory technologies with phrase-based SMT systems

to improve translation consistency. We used an SVM classifier to predict whether phrase

pairs derived from fuzzy matches could be used to constrain the translation of an input

segment. A number of feature functions including a series ofnovel dependency features

were used to train the classifier. Experiments demonstratedthat discriminative learning

and linguistically-motivated features are effective in improving translation quality and are

more informative than the fuzzy match score and translationmodel-based features used

in previous research. We report a 1.2 absolute improvement in BLEU score and a 0.72

absolute improvement in TER score, both of statistical significance (p < 0.01) when using

our approach.

As mentioned in Section 7.6, the potential improvement in segment-level translation

consistency using our method can be attributed to the fact that the translation of new input

segments is closely informed and guided (or constrained) bypreviously translated segments

using global features such as dependencies. However, it is worth noting that the level of

improvment in translation consistency is also dependent onthe nature of the TM itself; a

self-contained and coherent TM would facilitate consistent translations.

There are many possibilities we can explore along this line of research. We plan to

investigate the impact of TM quality on translation consistency when using our approach.

Furthermore, we will explore methods to promote translation consistency at document level.
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Moreover, we also plan to experiment with phrase-by-phraseclassification instead of

segment-by-segment classification presented in this paper, in order to obtain more stable

classification results. We can also label the training examples using other segment-level

evaluation metrics such as Meteor [Banerjee and Lavie, 2005, Denkowski and Lavie, 2010].

Currently, only a standard phrase-based SMT system is used,so we plan to test our

method on a hierarchical system [Chiang, 2005] to facilitate direct comparison with [Koehn

and Senellart, 2010b]. We will also carry out experiments onother data sets and for more

language pairs.
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Chapter 8

Conclusion

In this thesis, we explored a series of approaches to integrate MT outputs into TM environ-

ments. Using these methods, TM environments are enriched with high quality MT outputs,

but the assets and cost estimations associated with TMs are kept intact. Our approaches

work both for 1-best and k-best translation candidates, at both segment and sub-segment

levels. Most importantly, our approaches are validated by human translators, the target

users of our approaches.

We start this thesis in Chapter 2 by reviewing TMs and MTs, thetwo paradigms that

we try to integrate in this thesis. We observe both TM’s strengths of precisely reusing pre-

viously translated segments and performing reliable translation cost estimation, and MT’s

capability to produce automatic high quality end-to-end translation. Based on this obser-

vation, we propose to integrate high quality MT outputs intothe TM environment, so that

translators can still work in TMs, but at the same time can benefit from recent advancements

in SMT.

In Chapter 3, we review existing methods of translation quality estimation, including

the fuzzy match score for TMs, and confidence estimation and automatic evaluation metrics

for MT systems. As our TM-MT integration approaches are based on quality comparison,

these existing methods are closely related to the work reported in this thesis, and inspired

the approaches presented in this thesis, especially the design of linguistically motivated
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features.

We begin presenting our TM-MT integration approaches in Chapter 4 by introducing

the translation recommendation model. In the translation recommendation model, we only

present MT outputs that we predict (with high confidence) to be more suitable for post-

editing to translators. At the same time, we also provide a recommendation confidence

score, on which the translators can set thresholds by themselves. As only the better MT

segments are presented in the TM environment, the assets associated with the TM are kept

intact, and the related cost estimation can still be used as an upper bound.

In Chapter 5, we extend our work on translation recommendation with the translation

reranking model. While the translation recommendation model focuses only on the 1-best

outputs, the reranking model is capable of handling k-best outputs by merging and reranking

the TM and MT k-best lists. Using the reranking model, every segment found by the fuzzy

match scheme is kept in the environment, but translators have easier access to better quality

translations as these are reranked higher in the new k-best lists.

We report the results we collected from a user study to demonstrate that our method

is validated by human translators in Chapter 6. We show that our recommendation model

can obtain a precision above 0.9 and a recall above 0.75 with proper thresholds, and that

our reranking model can obtain 0.85 precision and 0.58 recall when evaluated against the

consensus judgement of 3 translators. We also report an interesting user feedback that lends

further support to TM-MT integration and acts as implicit endorsement of our integration

models.

Finally, in Chapter 7, we develop our TM-MT integration paradigm to the sub-segment

level. Instead of comparing the quality of TM and MT output segments and presenting

the better one to translators, we explore the possibility ofdeeper integration by reusing

high quality TM sub-segment chunks to enrich SMT systems. Experiments on a real world

dataset shows that our method not only better guarantees translation consistency, but also

leads to improved translations, reflected by a 1.2 BLEU point improvement (2.62% relative)

and a 0.72 TER point reduction (1.81% relative).
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Now let us look at the research questions we proposed in Chapter 1.

(RQ1) Can we provide translators with high-quality MT segments in a TM

environment, without sacrificing the strengths of TMs?

(RQ2) Can we reuse sub-segment chunks from TMs to improve SMT consis-

tency and quality?

(RQ3) Can we validate our TM-MT integration models with human evalua-

tion?

We tackleRQ1with the methods we present in Chapters 4 and 5. The translation recom-

mendation and translation reranking models enable the translators to access SMT outputs

in an TM environment, only when the SMT outputs are predictedto be more suitable for

post-editing with high confidence. This way, we kept TM’s strength of a more user friendly

post-editing environment and only when the TM cannot produce a competitive candidate

for post-editing, we take advantage of SMT’s high coverage and lead the translator to the

SMT output.

We bring these integration paradigms to sub-segment level in response toRQ2 in Chap-

ter 7. We use high confidence TM chunks to mark up and constrainSMT. We also incor-

porate a rich linguistic feature set inspired by our work on automatic evaluation metrics in

Chapter 3 to improve the expressiveness of this model. Our experiments show that both

consistency and quality of SMT outputs improve by reusing sub-segment chunks from TM.

In Chapter 6, we perform human evaluation on our recommendation and reranking mod-

els. Results from our experiments show that human evaluation support validation of both

models, providing a positive answer toRQ3.

8.1 Contribution of this Thesis

In sum, we have explored both loose segment-level integration and tight sub-segment-level

integration of TM and MT systems, so as to help translators toaccess the SMT outputs in a

TM environment. We have made the following contributions.
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• Segment-level TM-MT Integration Models. We present two segment-level TM-

MT integration models that allow translators to access to high-quality MT, while

keeping strengths of the TM environment. The effectivenessof these two models is

validated by judgements from human translators.

• A Sub-Segment level TM-MT Integration Model. We also present a model to

perform sub-segment level integration for TM and MT, so thateven if the overall

quality of a TM fuzzy match is not good enough, it is still possible to use high-

quality sub-segments from it to enrich the SMT engine to produce a more consistent

translation of higher quality.

• Human Evaluation Paradigm for TM-MT Integration . When evaluating our mod-

els against human judgements, we present a paradigm to evaluate TM-MT integration

quality against both individual and consensus judgements,and enable comparison

with naive fuzzy match thresholding-based methods currently used in the industry.

This paradigm can be reused in future research on the topic ofTM-MT integration.

8.2 Future Work

The integration of TM and MT paradigms is a field undergoing active research, as is indi-

cated in the related research we discussed in Chapters 4, 5, 6, and 7. The research described

in this thesis can be strengthened both by more thorough investigation of the method itself,

and by the interaction with other MT-TM integration techniques.

The method presented in this thesis is tested on a proprietary TM in the IT security

domain, consisting mainly of short segments. The utility ofthis approach can be better

evaluated by testing on TMs from broader domains and of different characteristics. We also

note that while using proprietary TMs enables us to test our models in an industrial setting,

it does not always facilitate crowdsourcing as a cheaper approach to perform more extended

human evaluations, so testing the method in an open domain could help us to obtain more

and better data. Eventually, we hope to tune the system on thehuman evaluation data in
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order to provide better recommendations.

On the other hand, from the perspective of localization vendors, our human evalua-

tion can still be strengthened by statistics collected froma real industrial setting instead of

questionnaires. So it would also be interesting to see how this paradigm can improve the

efficiency of translators in an industrial localization process.

With regard to the interaction with other methods, it will bevery useful to integrate MT

confidence estimation scores such as Specia et al. [2009b] into our translation recommen-

dation and translation reranking models, so that the translators can still have a translation

confidence score (in addition to a recommendation confidencescore), when MT outputs are

presented. Moreover, our segment- and sub-segment-integration models can be integrated,

so that when the TM output is inferior to the MT output, it can be used to generate an alter-

native translation, and then the recommender/reranker canpredict its quality compared to

other “pure” MT outputs.

Finally, our sub-segment integration model is a first step inthis direction. Like its

segment-level counterparts, this method can be understoodmuch better if human evalu-

ation can be conducted. This method also opens several otherpossibilities. Firstly, the

current model performs classification on a segment-by-segment basis, and we suspect the

performance can be further improved if we classify on a markup-to-markup basis. Secondly,

as we actually reuse part of the TM fuzzy match, and have the information on alignment

and confidence estimation, we can potentially use such information to produce confidence

scores for the final translation output, as well as providinga better color-coding scheme to

assist translators.
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Appendix

Guidelines Provided to Professional Post-Editors during Human

Evaluation

Please read this step by step instruction fully and carefully before you conduct the task.

• To log in the evaluation interface, click the following link: http://eval.yifanhe.

org/login/ The server will be up and running from 6:00am 17 May to midnight

19 May, 2010. You should have received your user name and password to log into

the server.

• On the login page, input your username and password you obtained and click the

“Submit” button, you will be logged into the evaluation page.

• In total, there are 300 English segments translated into French using two different

systems. There is only one English segment together with itstwo French translations

shown on each webpage. The two French translations have beenshuffled randomly;

therefore translation 1 can either be output from translation system 1 or 2 and simi-

larly for translation 2. You will see a snapshot of the interface on the third page.

You are asked to choose the sentence that is most SUITABLE FORPOST-EDITING.

By “suitable for post-editing”, you are NOT asked to choose the best French transla-

tion Rather, you are asked to choose the French translation that would save you the

most time if you were to post-edit it. Therefore, even if a French translation does not
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fully translate the English segment, you may still select itbecause you would spend

less time post-editing it into a grammatical French segment, whose meaning would

match the English segment’s. Please make sure to bear this inmind throughout the

task.

Let’s take the following example:

Source: Determines whether a recovery point is valid or corrupt before

restoring it.

Candidate 1: Vérifie si un point de récupération est valide ou endommagé

avant la restauration.

Candidate 2: détermine si un point de récupération est valide ou endom-

magée avant la restauration.

Candidate 1 is a grammatical segment but it does not convey the meaning of the

source segment (“Determines” is semantically different from “Vérifie”), so an im-

portant lexical change would be required. On the other hand candidate 2 is not a

grammatical sentence (Lack of initial capitalisation and wrong agreement “endom-

magée”), so two small changes would be required.

While Candidate 2 is a better translation than Candidate 1 from a semantic perspec-

tive, you might consider that it would be quicker to post-edit Candidate 1

There is an option of “Equally suitable for post-editing”, please only select this when

you are genuinely sure that they are absolutely equally suitable.

There is also an option of “Neither is suitable for post-editing, I will translate from

scratch”. Please only use this option when you think both candidate translations are

not useful. For example:

Source: IDD ADD SHARE PAGE COMPUTER

Candidate 1: IDD ADD SHARE PAGE INTRO

Candidate 2: IDD ADD SHARE PAGE ordinateur
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In this case, you will directly copy the source segment; therefore neither candidate

translation is suitable.

• Please complete the selection for all 300 English segments. If necessary, you may

take an extra 20 minutes (paid) in order to complete all of them. You will then

come to a page showing the following message “Evaluation completed! Thank you!”,

which is followed by a very short questionnaire. After you finish this, Please click

the “Logout” button to log out.

• You may log out in the middle of this task by clicking the “Logout” button in the

upper half of your page. Your work will be saved. When you log in next time, it will

start from a page you haven’t completed last time.

• Whenever you have questions during this task, please send an email to Dr. Yanjun

Ma (yma@computing.dcu.ie ), your query will be replied as soon as we possibly

can.

All your appreciated effort in this task will greatly help usto improve our existing

technology. Many thanks for your cooperation!
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