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Abstract

We design and evaluate several models for integrating Machranslation (MT) output
into a Translation Memory (TM) environment to facilitateethdoption of MT technology
in the localization industry.

We begin with the integration on the segment level via traimh recommendation
and translation reranking. Given an input to be transladed translation recommendation
model compares the output from the MT and the TM systems, easgpts the better one to
the post-editor. Our translation reranking model combinégst lists from both systems,
and generates a new list according to estimated post-gdifiort. We perform both au-
tomatic and human evaluation on these models. When meaagagaist the consensus of
human judgement, the recommendation model obtains 0.@isfme at 0.93 recall, and the
reranking model obtains 0.86 precision at 0.59 recall. Tigh precision of these models
indicates that they can be integrated into TM environmeritisout the risk of deteriorating
the quality of the post-editing candidate, and can therakggrve TM assets and estab-
lished cost estimation methods associated with TMs.

We then explore methods for a deeper integration of translahemory and machine
translation on the sub-segment level. We predict whetheagghpairs derived from fuzzy
matches could be used to constrain the translation of art sggment. Using a series of
novel linguistically-motivated features, our constraifgad both to more consistent trans-
lation output, and to improved translation quality, reféecby a 1.2 improvement in BLEU
score and a 0.72 reduction in TER score, both of statistigalficance f < 0.01).

In sum, we present our work in three aspects: 1) translaioommendation and trans-
lation reranking models that can access high quality MT atstin the TM environment, 2)
a sub-segment translation memory and machine translatiegration model that improves
both translation consistency and translation quality, 3nd human evaluation pipeline to

validate the effectiveness of our models with human judgeme
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Chapter 1

Introduction

Since the publication of [Brown et al., 1993], statisticahchine translation (SMT) has
made significant progress, both in terms of translationityuahd ease of deployment and
maintenance. SMT technologies are beginning to make isrodd the localization indus-
try:1 successful integration of SMT into localization workflovadelp reduce the amount
of human labor involved in localization and drive down costs

Despite its promise, however, SMT has been embraced sornewdna reluctantly by
some parts of the localization community than some SMT pmepts may have hoped.
There are several important reasons for this:

Firstly, translation memories (TMs), rather than machna@glation, are the main-stay
technology used in the localization industry. TMs are dasais consisting of previously hu-
man translated segments. Given new text to be translated,Mhis searched for matching
(source) text segments and the associated (human) tianslare reused “recycled” in the
jargon used in the localization industry). Given the rapetinature of the (often) technical
text processed in many localization workflows, TM hit ratags be up to 30% of new text

to be translated (cf. e.d), and TMs can thus provide considerable savings. In thenalese

ILocalization is the industrial process of adapting digitahtent to culture, locale and linguistic environ-
ment. A core part of localization is translation of (ofterg@amounts of usually technical) text. Localization is
a global business with an estimated turnover of 12 Billion$J8 2010 (Common Sense Advisory — Research
and Consulting).

2http://www.iai-sb.de/docs/aslib-js.pdf , for reports of TM hit rates



of a full match, TMs provide a fuzzy matéfiacility, where the closest match in the TM
given some input is retrieved and the translation assatiatth the closest match is pre-
sented to the professional human translator to be postee(lie. adapted to a translation of
the input), again with the potential for considerable sgsinver a manual translation from
scratch. TMs thus represent considerable value and pieingastment in translation, and
TMs are assets that the industry does not want to abandon.

Secondly, in the localization industry, translation costireation is based on TM hit
rates and fuzzy match scores, with full rates paid for segsnehich require translation
from scratch (these are segments with low fuzzy match sdoréee TM), reduced rates
for segments with high fuzzy match scores that need to bequiitedd and a small fee for
proofing segments that have a full match in the TM. In contrastMs, SMT does not
yet have a reliable translation cost estimation method,thisdcreates a difficulty for the
industry to prepare accurate project plans.

Finally, acceptance of SMT (and other MT) technologies iit stimewhat mixed, as
some professional translators are reluctant to embraceanelwunfamiliar technologies,
especially if they are perceived as a potential threat td@yngent and/or human creativity.

TMs are used throughout the localization industry. Firsiposed by Kay [1980], this
paradigm is well established, and has been serving tramslatofessionals and the industry
well (cf. Somers [2003]).

At the same time, advances in SMT have shown a strong pdtémftiarther improve
the productivity of translators and post-editors, as SMipouis now quite acceptable for
certain language pairs and applications, especially inailesrwhere large parallel training
corpora are available. Furthermore, SMT and TM technofgie complementary in that
() SMT models can easily be trained on TM data; (ii) while TMrislations are always
fluent (they are, after all, human translations), for fuzzgtches TM translations are not
actually translations of the input (but of the fuzzy matctij) while SMT output is not

always fluent, it is a genuine attempt at translating thetinpnd (iv) unlike most SMT

3Usually a version of string edit distance.



technologies, TM technologies always support and closgbgrate the human translator
and post-editor into the translation workflow. Because &, ttesearch on combining TM
with SMT technologies is important. Ideally, such a comhorashould preserve what is

best in the TM and SMT paradigms, exploiting their completagnstrengths.

1.1 Research Questions

Given the crucial role of TMs in the workflows of localizationdustry, as well as the
advancements of SMT systems in recent years, it is quiteralafior us to firstly focus
on using high-quality SMT outputs to enrich the TM enviromtjevhich leads to the first

research question of this thesis:

(RQ1) Can we provide translators with high-quality MT segmemtisiTM

environment, without sacrificing the strengths of TMs?

Considering that most modern TM and SMT systems are ablethupe k-best outputs,
RQ1 actually has to handle two sub-problems: 1) to enrich TM$diibest MT outputs,
and 2) to enrich TMs with k-best MT outputs. We will handlelbogses in this thesis.

In RQ1, we mainly consider TM-MT integration on the segment ledgbwever, we
can also integrate these two paradigms more tightly, onthessgment level, so that even
when the whole TM segment is not good enough, we may still letalyeuse parts of it to

improve translation consistency and quality. This leadsutosecond research question:

(RQ2) Can we reuse sub-segment chunks from TMs to improve SMTigons

tency and quality?

Last but not least, we have to keep in mind that, while in Meagsh the focus is often
on automatic evaluation metrics (e.g. to support paranteteng), the TM-MT integration
research requires human validation to support its effentgs. After all, the purpose of
TM-MT integration is to reduce the workload of human tratmia and the cost of localiza-

tion vendors. This observation leads to the final researeltan of this thesis:

3



(RQ3) Can we validate our TM-MT integration models with humanlesaa

tion?

1.2 Thesis Structure

In this thesis we will tackle the research questions propaseSection 1.1. We will also
provide necessary background information on TM, MT, anddiaion quality estimation
to make the thesis self-contained. We will present the rizias follows:

In Chapter 2, we introduce the two paradigms used in the ilat@n industry: the
TM paradigm and the MT paradigm. We discuss how candidateslations are chosen
or generated in these two paradigms, and we will show thegtine of each paradigm,
namely the ability to reuse previously translated segmantsto perform more reliable
confidence estimation and cost estimation for the TM systam, the ability to produce
fully automatic, high-coverage end-to-end translationtfie MT system. We will briefly
discuss how these two paradigms can complement each other.

In Chapter 3, we focus on existing quality estimation teghas for TM and MT sys-
tems. When integrating MT outputs into the TM environmeng, ave essentially compar-
ing the quality of MT outputs with the TM outputs, and seldw bnes that are better. The
methods and linguistic features used in translation guaktimation are a major inspira-
tion of our work on TM-MT integration. Moreover, we analyzeetDCU-DEP metric, a
linguistically-inspired metric, as an example to show himguistic features can be used to
evaluate MT quality. We will use similar features for sulgisent TM-MT integration in
Chapter 6.

In Chapter 4, we present the translation recommendatiorehwaldich integrates TM
and MT systems by automatically recommending 1-best MTwatthat are more suitable
for post-editing to translators working in a TM environm¢RQ1). We will show that the
recommendation model has high precision, so that TM-bassitestimations are still valid

as an upperbound if the recommendation model is applied. rét@mmendation model



can also produce a recommendation confidence score, on tei¢hanslators can set the
threshold, and control how progressive/conservative abemmendations should be.

In Chapter 5, we extend the recommendation model in Chapterkdbest lists of
MT and TM system outputs. By reranking the k-best outputenfidM and MT systems,
we provide a larger set of translation candidates for tedos$ to choose from, and the
translated segments in TMs will not be wasted, as they afeepll in the reranked k-best
list.

In Chapter 6, we validate our models proposed in Chapter £dwaghter 5 with judge-
ments provided by human translatoR(3). We collect preferences of human translators
and compare them with the recommendation and rerankingupeatdby our models. We
also analyze the behavior of the translators in the courski®iiser study, and hear their
feedback. The results and user feedback will confirm the®fness of our models, and
the necessity to perform TM-MT integration.

After tackling segment-level TM-MT integration in Chapet, 5, and 6, we move on
to perform sub-segment level TM-MT integration in ChaptdR02). We automatically
select high quality chunks from TM fuzzy matches, and usmtteeconstrain SMT. Exper-
iments show that this approach not only ensures translatiosistency, but also leads to a
significant improvement in translation quality.

Finally, we summarize our work and point out avenues forriutesearch in Chapter 8.



Chapter 2

Translation Memory and Statistical

Machine Translation in Localization

In this chapter, we review two technologies used in the Ipatibn industry that help trans-
lators to finish their tasks more efficiently: Translation ivteies (TMs) and Statistical
Machine Translation (SMT). We also briefly discuss why and e would propose an

integrated paradigm that combines these two systems. Npeaifically, we will cover:

» The TM paradigm and the reason for its popularity in the liaaéion industry.
» The SMT paradigm: its components, workflow, strength, ardkmess.

* How SMT can potentially further improve the efficiency odnislators, if they are

properly integrated into the MT workflow.

2.1 Translation Memory

TMs are databases that store a translation history, i.eca@entences and their translations
as produced by humans. When there is a new segment to tegrasTell system will present
the entry in the database to the translator, whose soureeisithost similar to the new

segment.



This similarity is often measured using the fuzzy matchecahich in turn is based on

Levenshtein Distance [Levenshtein, 1966] as in (2.1):

L hteinDist
FuzzyMatch(t) = 1 — min evenshteinDistance(s, e)
e Len(s)

(2.1)
wheres is the source side of the TM hif ande is the source side of an entry in the TM.
When exactly the same segment can be found (i.e. an exactm@@eh), the translation
of this segment can be directly reused, without any extrekwatherwise the translation
retrieved from the database may still be used as a skeledoslation, which translators

post-editto produce the correct translation.

]

Translation Memory .
b
(Translated >

Sentences) Post-Editing the Best Output

Verifies whether a .
Source-side

N recovery point is valid imilarit
L similarity
or corrupt beforeitis |
restored (0.61) — | measured t;,y the
Use a recovery point to fuzzy match score

Translation Memory System recover a drive from
within windows (0.31)

Determines whether a
recovery point is valid or
corrupt before restoring it

J00AME

Figure 2.1: The TM Paradigm

We depict an example of this paradigm in Figure 2.1. If we reg®urce segment to

translate:

Source SegmenDetermines whether a recovery point is valid or corrupt befo

restoring it

The TM system would query the TM consisting of previousiynglated sentence pairs,
and would select the segment whose source side is most istmillais segment measured

by the fuzzy match score. In our example, the following selwgegment will be selected,



with a fuzzy match score of 0.61:

The Fuzzy Match:Verifies whether a recovery point is valid or corrupt before

it is restored

The translator will be presented with this fuzzy match seagnaad its human trans-
lation, so that instead of translating from scratch, thely oreed to post-edit a human

translated segment in French:

Translation of the Fuzzy Match:Vérifie si un point de&cuygration est valide

ou endommagavant la restauration.

Usually the matched chunks in the source and fuzzy matchesegniunderlined in the
examples) are color-coded or highlighted in the frontendmater-aided translation system
for the translator to find where to post-edit. The translatiirchangeVérifieto Détermine

and finish translating this segment.

2.1.1 Advantages of the TM Paradigm

As we can see, although the TM paradigm could be as simpleexyiqg a database and
presenting the user with the most similar translated segnitezan significantly help the

work of a translator with respect to the following aspects::

» Leveraging legacy materials With translation memory, translators in the localiza-
tion industry will not need to work on materials that havesalty been translated
before. In turn, localization companies and customers daeed to pay for these

materials. This significantly reduces the cost for the li@egibn industry.

» Estimating localization cost The fuzzy match score measures the source side simi-
larity, and can thus be computed before translation agtbakjins. This helps local-

ization vendors to effectively estimate the cost beforg #at out to work.



 Friendly Computer-Aided Translation(CAT) environment. The fuzzy matched
chunks in a segment can be highlighted in the CAT environmehich helps the

translators to find where to post-edit.

In the following sections, we further review the intuitiondatechniques behind the TM

paradigm.

2.1.2 The Origin of the TM Paradigm

The TM paradigm emerged when localization and translatiofegsionals began to realize
the limitations of MT and realized the necessity of reusingvipusly translated material
to reduce translation workload. In one of the earliest papleat inspired today’s TMs,
Kay [1980] analyzes the limitations of MT in both the cogwefiinguistic sense and the

resource/computer science sense:

» The Linguistic Point of View. Kay [1980] uses the example of pronominal reference
(anaphora resolution) in translation to illustrate thdidliity of making translation
decisions. The large number of such problems renders itdiffior machines at that

time to obtain high-quality translation without human mention.

» The Computer Science Point of View From the computer science point of view,
Kay [1980] compares the complexity of dictionary search @adslation, and con-
jectures that there will hardly be an efficient enough atbanifor MT at that time.

It would be proved later in [Knight, 1999], that the problefregact MT-decoding is

NP-complete.

Although these arguments were made at a time when our uaddisy of computer
science and the ability of hardware were much inferior camegb4o that of today, the major
points still hold. Based on the above analysis, Kay [1980ppses to build a human-centric
paradigm, in which a computer begins by offering help to thagslator on the lexical level.

As more data is gathered during the translation procesgrdhslator will later be able to



“call for a display of all the units in the text that contain et@in word, phrase, string of
characters, or whatever”, but the human translators caayahwntervene if the translation
is of inferior quality.

In some sense, this thesis also follows the spirit of thippsal to build a translator’s
amanuensis but the work in this thesis now has access to SMT systentsateamuch

more powerful than those 30 years ago.

2.1.3 TM Technologies

The success of modern TM systems — the extent to which thi©yamézm can help hu-
man translators — relies mainly on two technologies: 1)iefficstorage and acquisition of

existing translation data, and 2) fast and intelligent d@iag of the database.

2.1.3.1 Building and Exchanging Data

The success of a TM application depends very much on whethes ts enough in-domain
exact or high fuzzy match data in the database. It is repdntedlr Ms are most useful when
there is a large portion of exact matches (which often ocadnen the translation task is to
update an old version of a document to a new version), and TiMsfflow fuzzy matches
may well be useless [Sofer, 2006].

It is therefore very important to collect enough transhatitata for TMs to work prop-

erly. TM users have two options to obtain the database:

* Internal Collection. Obviously, the data can be collected in the translatiorcgss
itself. This is preferable in many circumstances, becalseway the information
in the data is kept secure. However, it is a time consumingga®, and it is quite

natural for users to consider sharing some TMs.

e Sharing and Exchanging Most of the TMs used in the industry today conform to

the TMX (Translation Memory eXchange) formagn XML-based format created

Thttp://www.lisa.org/tmx/
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to encode TM information, and can be shared on professiogalization web sites
such as TDA. Therefore, it is now entirely possible technically to €hd@M data

with other parties.

Comparing these two approaches of TM data collection, shand exchanging can obvi-
ously collect required amounts of data more efficiently. Buthe real world, not all TM
data is suitable to share, and the translation industiyhsidl to look for other methods that

can improve translation efficiency.

2.1.3.2 Searching Techniques

Another factor affecting the performance of TMs is the sea&echnique. The first consider-
ation in searching is obviously speed, so that TM systemsetaieve the best fuzzy match
in real time. This remains an area under active optimizatieor example, in [Koehn and
Senellart, 2010a], matching is first performed on the n-gearal to find the potential can-
didates, then A* search-based filtering is applied, andlfireli parsing (instead of directly
computing the Levenshtein distance [Levenshtein, 1966i)sed to validate the matched
segment. This is a typical example of the techniques useddoare efficient searching in
translation memaories.

The other consideration is how fuzzy the source-side maacthbe. In the strictest
sense, two words are considered to match only if these twdsMoave exactly the same
surface forms. Using our example in Section 2.1, wordstbring and “restored will not
be considered as matched, because their forms are different

However, now some TM systems (e.g. SDL Trafjosill give credit to partially
matched words, so that Trados will considesstoring’ and “restored as partially matched,

and add a fraction into the segment level fuzzy match score.

2http://www.translationautomation.com/
3http://www.sdl.com/en/language-technology/products/ translation-memory/
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2.2 Statistical Machine Translation

Another paradigm that has the potential to aid the work ofdi@ors is MT. In contrast to
TMs that facilitatehumantranslation by reusing translated segments, MT systemdaim
provide end-to-end translation solutions without humaarirention.

Many approaches have been proposed for MT. One paradigrhabaireviously served
translators is rule-based MT. Rule-based MT translatesiacesentence to the target lan-
guage by using hand-crafted transformation rules, and Headvantage of usually pro-
ducing more grammatical and consistent translations (gvére sense that the translation
errors are consistent, and are thus easier to identify ipalséediting process). When the
hand-crafted rules do not cover the material being traedlaell enough, one can use statis-
tical post-editing [Dugast et al., 2007], which automdticenakes changes on the outputs
of rule-based MT to further reduce potential workload, befihe translation is finalized by
human translators.

Although rule-based MT is still in active use in the locatiaa industry, there is now a
growing interest from the industry to leverage SMT systemithié workflow, with promis-
ing results. For example, Flournoy and Duran [2009] reploat using the Language
Weavef SMT system, post-editing MT outputs achieves 4-fold spgedh a pilot study to
translate product documents compared to translating favaich.

The interest and positive feedback on the SMT paradigm firamdcalization industry
can be reduced to two reasons. From the translation quadityppctive, SMT is able to
provide translation for segments that TMs might not be ableaver, and from the cost

perspective, the extra cost of introducing SMT into the liaeéion workflow is reasonable.

* Improved Coverage As we have discussed in Section 2.1.3.1, one of the chateng
that the TM paradigm is facing is to construct an effectidalge database of trans-
lated segments, otherwise many of the segments will be aysborly and are less

valuable for post-editing. Using an MT system can providedytranslation candi-

“http://lwww.sdl.com/en/language-technology/products/
automated-translation/ (Now part of the SDL product line)

12



dates for these uncovered segments.

Moreover, statistical models used in SMT are language akutieaning that one can
easily build SMT systems for any language pair as long asefg¢purpose) paral-
lel corpora exist. Even for translations between low-resedanguages for which
the initial translation database hardly exists, it is gtiksible to use a high-resource
language as a pivot and produce usable translations [Wu ang VE007]. This prop-
erty is growing in importance as the localization industaggets an ever-increasing

number of languages.

» Low Extra Cost. Assuming that the translators are already using TM todls, t
extra cost of introducing an extra SMT layer to reduce tiaiwh workload can be
absorbed reasonably quickly by the cost it saves. For exgrapé can resort to third-
party SMT services, such as Gooynd Bing translation, which are both provided
as free services. It would therefore be worthwhile to teshwiese services, as long
as the cost they save can compensate for the integratiomngolted. Localization
vendors can also use out-of-the-box open source toolkits as MoseSsto build in-
house SMT systems with a small maintenance team, withoundpde continuously
support bi-lingual grammarians capable of writing transfation rules to keep rule-
based MT systems in good shape. In-house systems can badingtinternal data,
and can potentially save more translation cost than putaitstation services in the

long run.

Although SMT has the potential to improve the localizatioarkflow, it is unlikely
that SMT output can be used without review, especially ifliegfons where high quality
translations are required. Furthermore, current stateefirt SMT also lacks a confidence
estimation method as reliable as the fuzzy match score in, BN often is not integrated

well enough in CAT tools. This thesis will therefore focustbe integration of SMT and

Shttp://translate.google.com
Shttp://translate.bing.com
"http://www.statmt.org/moses
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TM, in which the strengths of both sides can be preserved.

In the following sections, we introduce the SMT paradigm iorendetail.

2.2.1 The SMT Workflow

Given a source segmehtthe SMT paradigm models the translation problem as thedfisk

finding the translatior which maximizes the probability @ givenf, as in (2.2):

e = arg max P(elf) (2.2)
e

However, the direct translation model in (2.2) rarely wownkll by itself, because the
model is too coarse and the search space foathenax operator is too large. Therefore,
(2.2) is usually formulated in terms of the noisy-channedeidBrown et al., 1993] using

Bayes’ theorem, as in (2.3):

Pry(fle)Pras(e)
e—=
arg gnax P

= argmax Pry(fle)Pry(e) (2.3)
wherePr); is the translation model anf;,,, is the language model probability. Note that
the second equation in (2.3) is valid because whisrgiven, P(f) becomes a constant and
does not impact on therg max operator.

A further step in statistical modeling of MT comes from théuition that using more
features will help to improve translation quality, whiclatis researchers away from the
noisy-channel model towards the log-linear translatiordeho In log-linear SMT [Och
and Ney, 2002],Pry;(f|e) is further estimated using a log-linear combination of stan
tion features. For example, in phrase-based SMT, the aamsimodel is estimated using a
combination of (direct and inverse) phrase translatiomabdities, (direct and inverse) lex-
ical translation probabilities, position- and lexicalskd distortion probabilities, the word
penalty and the phrase penalty, so that different aspedtarglation choices (word trans-

lation, reordering, etc.) can be modeled directly and pgetioer as a model of translation.

Furthermore, these features are assigned different veeagttording to their importance

14



in the translation model, and a weight is also assigned tdatmguage model. After this

decomposition, the translation process can be represbptb@arg max operation in (2.4).

€= arg maxH?zl)\iPTM(i))\LMPLM (24)
e

For convenience of computation and presentation, we ystadélog on the right side

of (2.4). Leth; = log(PF;), for eachP in (2.4), and we can rewrite (2.4), as in (2.5).

e=argmax X, \h; (2.5)
e

Using the representation in (2.5), we can identify thremttee components in the SMT

workflow:
 Training finds the feature function’s;
» Tuning finds the weights for features

» Evaluation, or quality estimation, measures the quality of the outpat] points out

direction for further training and tuning.

After the models are built and the parameters are tunadbcadercan decode new
source sentences into their translations in the targetlkzge

We depict the workflow of SMT systems in Figure 2.2: given apar corpus, we first
train the language model and translation models. Thendbaisesome quality estimator,
we tune the models to find a set of parameters. Using the madédlparameters we decode
the new sentences.

Suppose we need to translate the segment from Section 2rilBrmlish to French

using SMT, as in (2.6):

Determines whether a recovery point is valid or corrupt befestoring it  (2.6)
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First of all, we have to have the models and parameters ra&fdytrain a French lan-
guage model using the French corpus which ensures the flugrayr output (upper left
of Figure 2.2). We also estimate a series of translation ifedéure functions using the
parallel English—French corpus (lower left of Figure 2.@jhen these features are ready,
we tune the weights of these features against a developmefmsdle of Figure 2.2).

Now, suppose we have the feature functions and parametaly fer a phrase-based
SMT system. The system will then split the source segmeatdsaveral phrases, translate
the phrases using the features, and re-combine them togeadde output. In the example,

we have rules as in (2.7):

Determines whether détermine si
a recovery point is— un point de ecuggration est 2.7)
valid or corrupt+— valide ou endommdip

before restoring it— avant la restauration

And we obtain the translation by combing these translatedsgls, and the SMT system
will choose the phrasal translation and recombination thaximizes (2.5) as the output

(with translation errors), as in (2.8):
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détermine si un point deécugeration est valide ou endommiag avant la restauration.
(2.8)
We discuss training, tuning, and quality estimation in nabetail in following sections.
2.2.2 Training
In the context of modern SMTraining usually means the process of finding translation and
language model feature functions, usually consisting i@dltomponents.
2.2.2.1 Language Modeling

Language Modeling estimates the language model probalilit,;. Most often, n-gram
language models are used in SMT, which predict one word aialtiased on the history of

preceding words, following the Markovian assumption, aif)

P(wi, w2, ,wp) = p(wr)p(wa|wr) - - - p(wy|wiws - - - wp 1) (2.9)

wherew - - - w,, is a sequence of words, and the conditional probabilitiegw,, |w;ws- - -
w,_1) are estimated using relative frequency, usually with s&mnd of smoothing (e.g.
modified Kneser-Ney smoothing [Kneser and Ney, 1995]).

2.2.2.2 Word Alignment

Word alignment builds word-level correspondences betweanals in the source and their
corresponding translations. Letbe an alignment function that maps the target word at

position; to the source word at positianas in (2.10):

i = alj) (2.10)
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It follows that the word alignment process is to find an aligmta that maximizesP (a|e, f),
asin (2.11).
a = arg max P(ale,f) (2.11)

Using the IBM word-based translation models [Brown et &93], a can be found implic-
itly in an Expectation-Maximization [Baum, 1972] (EM) pexure that at the same time
determines word-level translation probabilities. Foreeasdiscussion, we use IBM Model
1 as an example. Besides, the IBM Model 1 alignment protighidialso a feature used in
our translation recommendation/reranking models. Thatmots and presentation in this
section basically follows that of [Koehn, 2010], ratherrtlihat of [Brown et al., 1993].
IBM Model 1 is a word to word translation model, in the sensat tthe translation
probability P(e|a, f) is estimated only via word translation probabiliti€s; | f;), wheree;
is thejth source word andi; is theith target word.
IBM Model 1 defines the translatiomand alignment: given the sourcg as follows,

asin (2.12):

€

(Iy + 1)k

which is based on the product over glwith

P(ealf) = I t(es] fagi)) (2.12)

W for normalization, so that the proba-
bilities can sum to 1.

Following this definition, we have:

€

(Iy + 1)k

Using (2.12) and (2.13), we can calculdtéu|e, ), as in (2.14):

l
P(elf) = £, P(e,alf) = e S t(es] fag) (2.13)

Plalef) = LD _ . 17t(ej|f“(j)) (2.14)

Pelf) TSl el f)

Here we obtain the probability af, which finishes the E-step in the EM procedure. On

the other hand, we can also define a count function, based @i wie can perform the
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M-step, which re-estimatese| f), as in (2.15):

clelf;ef) = SaP(ale )X, 5(e,¢))0(f, fuis) (2.15)

wheres is the Kronecker function which is equal to 1df= b in §(a,b), and 0 otherwise.

Then we can re-estimatée| f), as in (2.16):

( !f'ef)

Accordingly c(e| f; e, f) andt(e| f) can be iteratively determined in the EM procedure.
In practical SMT, the probabilities estimated by IBM modedrg too coarse, and are used
to find good initial starts for higher order IBM models. Howewvthe EM scheme does not
change in these models. IBM model 1 can also be used as aratstifor word-to-word
translation quality in MT quality estimation, as we do instithesis.

One limitation of IBM models is that they only allow one-tcany alignment. To fix
this, SMT developers usually merge alignments in two dioest and apply some kind of

heuristics, such as intersection and union [Och and Ney3]200

2.2.2.3 Translation Rule Extraction

Although itis possible to extract translation rules dikgfitom corpora (e.g. phrasal transla-
tion rules in [Marcu and Wong, 2002]), most popular transtatule extraction techniques,
both phrasal and syntactic, rely on the symmetric alignnbeiveen the source and the
target sentences. We briefly review the phrase-based rtigcégn method as an exam-
ple as we mainly rely on phrase-based models to build MT syst@ this thesis. Note
that in TM-MT integration, the probabilities from the phealsased models are also used as
features to estimate translation quality.

In phrase-based translation models, the translation medaist decomposed into a

phrasal translation model and a reordering model, as if)2.1
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P(fl|el) =TI, 6(f;, &)d(start; — end;_y — 1) (2.17)

where is the phrasal translation model adds the position-based reordering model.
can usually be estimated with a decay function in distaraset) reordering models, such
thatd(x) = ol®!, wherea € [0, 1].

Estimating¢ requires extracting phrase pairs from the symmetricallynald corpus
and calculating their relative count. The phrase pairsaeitid have the constraint that they
should be consistent with the alignment, such that givegnaiientq, if ¢ is aligned tof,
all words frome that have alignment points in should have their corresponding aligned

words in f, and vice versaz and f should also contain at least one alignment point.

avant la restauration
0 1 2
before ©
it 1
iS 2
restored 3

Figure 2.3: Phrasal Translation Rule Extraction

The idea of phrase pairs consistent with the alignment cdfus&rated by the following
example. Suppose we have the alignment in Figure 2.3.

In this example, if we start from alignment point (3, 2), wardand thatrestored—
restaurationis a valid translation rule, as it corresponds to an aligrtrpeint. The follow-
ing rules in (2.18) are also valid, because they are all starsi with alignment point (3, 2),

and do not involve other alignment points:
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it is restored— la restauration
is restored— la restauration

(2.18)
it is restored— restauration

However, the following two rules in (2.19) are not valid, bs first is inconsistent with

the alignment point (0, 0), and the second does not coverlagmnzent point:

before it is restored— la restauration
(2.19)
itis — la
After the phrases are extracted, the calculation 6§ straightforward using relative

frequency, as in (2.20):

o(file:) = % (2.20)
This estimation does not perform any smoothing, and is tbexg@rone to bias. There is

evidence that smoothing translation rule probabilities feether improve the performance

of SMT [Foster et al., 2006, Duan et al., 2010]. However, iniategration models we still

stick to the unsmoothed probabilities which are more widesigd.

2.2.3 Tuning

Given the translation feature functions...,,, their weights\;...,, can be determined in a
discriminative learning process, the most popular of wigsdiinimum Error Rate Training
(MERT). MERT [Och, 2003] tunes the weighis of the features; in (2.5) to minimize
the error function on the error surface of the N-best list degelopment (or ‘dev’) set, as

in (2.21):

A = argmin Err(e*(\); ref) (2.21)
A
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wheree* is the 1-best translation. In practice, the functiBnr is actually approximated
by a specific automatic evaluation metfi;; in which case MERT is actually optimizing on

(2.22):

A = argminerrg(e*(\);ref) (2.22)
A

whereerrg in (2.22) is a specific automatic evaluation metric used fw@amateErr in
(2.21). Och [2003] uses an improved version of Powell’s Bearch to find the optimal
. Besides MERT, new training schemes such as the MarginddféRelaxed Algorithm
(MIRA: Crammer et al. [2006]) have been introduced to MT (§fVatanabe et al., 2007],
[Chiang et al., 2008] and [Chiang et al., 2009]), so that nfieatures can be tuned.

2.2.4 The Role of Quality Estimation in the MT Workflow

The techniques used for translation quality estimation bél discussed in more detail in
Chapter 3. However, quality estimation has some direct anpa the development of MT
itself, and is essential to the success to some of the MT ,tagkb as tuning and reranking,

which we discuss below.

e Tuning. As is shown in (2.22), MERT relies on the choice of error tioTerrg.
In practice, BEuU [Papineni et al., 2002] is often used as the error functi@spie
the fact that it has been shown to have a lower correlatioh tvitman judgement
than other metrics such aseVWlEOR [Banerjee and Lavie, 2005] andeR [Snhover
et al., 2006]. It is shown in [Cer et al., 2010] that when pnésé with multiple
references, tuning on kU leads to more consistent results than tuning on other
metrics. However, as we reported in [He and Way, 2009], woim BLEU is not that

stable when only a single reference is available.

» Reranking. Another aspect where quality estimation techniques halieat impact
on SMT performance is reranking. The idea behind reranlgrig take the N-best

outputs from an SMT system, judging them with some qualitymetion method,
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and selecting the best translation from this N-best listraRling is shown to lead
to significant improvements in translation quality [Shemlet2004]. It is quite clear
that the performance of the reranking process is deternbgdte size, quality, and
diversity of the N-best list, as well as how well the quabitifidence estimation

metric can capture the quality of these candidate traosisti

 Implications for TM-MT Integration . The impact of quality estimation methods
on SMT performance has a considerable impact on TM-MT iategn. TM-MT
integration also relies on accurately determining theituaf translations (in fact,
one of our integration models performs reranking on a costbikbest list of TM
and MT outputs, much like SMT reranking). With this in mindetTM-MT integra-
tion models presented in this thesis formulate many integrgroblems as quality
comparison or quality ranking problems, and follow manylaf standard practices

in MT quality estimation.

2.3 The Convergence of TM and SMT Paradigms

In the previous sections, we reviewed the both the TM and @ Paradigms. Both

paradigms have strengths and weaknesses, as we enuméialdeir2.1.

Table 2.1: Comparison of the TM and the SMT paradigms

SMT ™
Process Fully automatic Computer assisted human-translation
Adequacy Real translation Not translation per se
Fluency No guarantee Human translation
Environment N/A Color-coded
Cost Estimation N/A Fuzzy match score
Investment MT software Human translation collection

We see that the TM paradigm has several advantages that Snsycurrently cannot
provide, such as color-coded post-editing environmendsiezzy match-based localization
cost estimation. However, we can also see that SMT systemtocaplement some of TM'’s

shortcomings (especially on coverage) and improve loatdin efficiency by providing au-
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tomatic end-to-end translation to any input segment. Tdasl$ us to devise mechanisms
that can help translators to access SMT outputs in the TM@mvient, which would pre-

serve the strengths of TMs and leverage the advances of SMT.

2.4 Summary

In this chapter, we reviewed two paradigms that facilited@slation tasks using computing
technology. In the TM paradigm, the system queries a dagatifgseviously translated seg-
ments and sends them back to translators for post-editingn MT system, the end-to-end
system translates the segment without human interveniiéam.show that TM paradigms
have several attractive properties for the localizatiomkftow, but if we introduce MT out-
puts into the pipeline, we can potentially obtain bettercefficy as we will have better
coverage on the localization material.

We also looked at the features TM systems and (phrase-bgséstical) MT systems
use to find the best translation: the fuzzy match score andraimslation and language
model features. These features will be used as a startimg ipoour TM-MT integration
research.

Based on the analysis of the TM and the MT paradigms, we preggrproposal to
perform TM-MT integration by integrating MT outputs intoetffM environment. We will

discuss the details of this proposal in Chapters 4, 5, 6, and 7
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Chapter 3

Translation Quality Estimation

In this chapter, we present existing technologies in thd B€IMT quality estimation. We
briefly describe both methods using surface-level featamelsmethods trying to apply deep
features. We analyze the DCU-DEP metric as an example, acdsd potential pros and
cons of surface and deep features. These insights will feetp design better features to
integrate TM and MT.

After demonstrating existing technologies, we discusspibtential of combining the
best from both TM and MT, on a segment or sub-segment levedubymatically choosing
the translation segment/chunk of better quality usinguf@afunctions inspired by trans-
lation quality estimation. Finally, we present the bluagsifor our TM-MT integration

models based on the techniques we review.

3.1 From Human to Automatic Estimation of Translation Qual-
ity
Developers and users of TM or MT systems rely on quality esiion techniques to quickly

and easily estimate the quality of an MT output. Arguablg itheal estimation method is

judgement made by bilingual translators, as the effectiserof an MT system (like all

Part of the research presented in this chapter has beersipetblin [He et al., 2010a].
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systems) should eventually be judged by the people who ug®iigh human judges still
have their limitations.

Firstly, the human judgement may vary from task to task. kangple, for information
retrieval applications, translation adequacy should beermaportant than grammaticality,
while for post-editing, a half well-translated segment iscim better than a translation that
is correct in meaning but has grammatical errors scatteredywhere. Therefore, human
judgement is not that consistent an evaluation measure.

Furthermore, human judges do not always agree with each, otlaéing people ques-
tion the reliability of human judgement results. In one aatibn task (WMT 2007), the
inter annotator agreement of human judges measured by thakszore is 0.37 when rank-
ing sentence pairs [Callison-Burch et al., 2007], sugggstinly afair correlation. This
shows that human judges can reach a consensus quite oftéhepalso make conflicting
decisions a substantial amount of times.

That said, human judgement is still the best resource we esortrto when we need
to assess the quality of a translation, or validate an autorgaality estimation method.
Very often, however, time and economic constraints rerndsrdption impossible. In such
cases, automatic translation quality estimation methags o be relied upon to obtain an
approximation of output quality.

Automatic translation quality estimation methods can liegarized into two families:

» Translation Evaluation Metrics. For translation output (hypothesis)p, a source
src and a set of human translationssot: (referencesye f, an MT evaluation metric
m produces a metric scokg;, which aims to reproduce the scores given by bilingual

human judges tayp givensrec.

» Translation Confidence Estimations.For translation outputyp and a sourcerc,
a confidence estimatiofi produces a confidence scatg, which aims to reproduce

the scores given by bilingual human judgesiip givensrec.

Heresrc, ref andhyp can be a sentence, a document, or a set of system outputs com-
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prising several documents. Accordingly, quality estimaitould happen at sentence-level,
document-level and/or system-level. The most obviougifice between evaluation met-
rics and confidence estimations is that confidence estingatio not rely on human refer-
ence translationse f, but evaluation metrics do.

In the following sections, we first review confidence estioraimethods used by the

MT and the TM community, and then review MT evaluation metric

3.2 Target-Driven Translation Confidence Estimation in MT

Confidence estimation is the technique used to assessatiangijuality given therc and
the hyp. However, the MT and the TM communities take very differappraaches to the
prediction of translation confidence.

Often, the focus of the MT community is to apply prior or poste knowledge to
predict the quality given a particulanp. This strand of research was initiated by [Ueffing
et al., 2003], in which posterior probabilities on the wordgh or N-best list are used to
estimate the quality of MT outputs. The idea is explored numn@prehensively in [Blatz
et al., 2004]. These estimations are often used to rerankitheutput and to optimize it
directly. Extensions of this strand are presented in [QuW004] and [Ueffing and Ney,
2005]. The former experimented with confidence estimatidh geveral different learning
algorithms; the latter use word-level confidence measwordstermine whether a particular
translation choice should be accepted or rejected in araictiee translation system.

In the context of TM-MT integration, efforts have been maalantorporate confidence
measures into a post-editing environment. To the best okoowledge, the first paper in
this area is [Specia et al., 2009a]. Instead of modelingarstation quality (often measured
by automatic evaluation scores), this research uses sgmnesn both the automatic scores
and scores assigned by post-editors. The method is imprioviggbecia et al., 2009b],
which applies Inductive Confidence Machines (ICMs) [Voviakt 2005] and a larger set

of features to model post-editors’ judgement of the traimslequality between “good” and
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“bad”, or among three levels of post-editing effort.

3.3 Source-Driven Translation Confidence Estimation in TM

The TM community, on the other hand, relies on the similaoityhe source side to judge
whether a translation retrieved from the TM database cosldiseful to translate a new
segment.

The calculation of fuzzy match score itself is one of the demhnologies in TM sys-
tems and varies among different vendors, but most oftenatoelation is based on Leven-

shtein Distance [Levenshtein, 1966], as in (3.1):

L hteinDist
FuzzyMatch(s) = 1 — min evenshteinDistance(s, e)
e Len(s)

(3.2)
wheres is the input, ana is the source side of an entry in the TM.

Despite its simplicity, the fuzzy match score used in TM&i#fa good approximation
of post-editing effort, which is useful both for translatand translation cost estimation,
while current SMT translation confidence estimation messware not as robust as TM

fuzzy match scores in this respect. Consequently profeakteanslators are not yet ready

to replace fuzzy match scores with SMT-oriented confideneasures.

3.4 MT Evaluation Methods

3.4.1 Surface-Level MT Evaluation

Many of the evaluation metrics used in day-to-day MT dewvedept are surface-level, or
string-based metrics. Here we review three representatateics: B .EU [Papineni et al.,
2002], MeTEOR [Banerjee and Lavie, 2005], ancR [Snover et al., 2006], as they repre-
sent three different design considerationsEB uses n-gram precision to ensure translation
fluency and fidelity; METEOR, by contrast, relies on unigrams and linguistic resouraed;

TER is modeled after post-editing operations, therefoe® $cores can have the most intu-
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itive interpretation for translation and post-editingkisis

There are other string-based MT evaluation metrics theddiice novel string matching
techniques and are of interest in the MT community, inclgdBiTM [Turian et al., 2003],
which pioneered the idea of balancing precision and reR&IUGE [Lin and Och, 2004],
which models MT evaluation as the longest common subsegquaatching, and MAXSIM

[Chan and Ng, 2008], which fomulates MT evaluation as a litgagraph match.

BLEU BLEU is the most popular evaluation metric in MT development. héltgh it
suffers from several shortcomings, such as low correlatith human judgement on the
sentence level, preference to statistical systems [CGaHiurch et al., 2006] and incon-
sistency in related evaluation scenarios [Chiang et aD8R(t is still the most popular
automatic evaluation metric used in many translation céagmsaand remains the most of-
ten used loss function in discriminative training of MT mtxle

BLEU performsn-gram matching between the output and the reference, usiggam

precision with a brevity penalty as the score, as in (3.2):

len(ref)

“ 1 .
BLEU(n) = HPREC’Z-n -exp(min(l — len(hyp)’

1=1

0)) (3.2)

wheren is the order ofn-gram, PREC; is thei-gram precision/en(ref) is the length of
the reference, antkn(hyp) is the length of the output. It has been shown in evaluation
tasks [Callison-Burch et al., 2008] that.Bu has a lower correlation with human judge-
ment than newer metrics that make use of more linguisticuress and better matching

strategies, including MTEORand TER.

METEOR METEORTtries to solve the problems oftBu by performing multi-stage un-
igram matching and adding recall into consideration. Witk tise of unigram matching,
METEORIS less sensitive to variations in word order, and with restiige matching, &
TEOR can consider stemming and WordNet ([Fellbaum, 1998], atisrdor English only)

semantic information. The EIrEOR score is calculated as in (3.3):
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B PR . . B #chunks |
METEOR = (1 —¢p)inwhichep = v (#matches)

aP+(1—-a)R (3.3)

where P is the unigram precisionR is the unigram recall andp is the chunk penalty,

which is used to penalize disfluent outputs.

TER TERIis a Levenshtein Distance-style evaluation metric. Itdales how many in-
sertions, deletions, substitutions and sequence shitaieeded to make the output and
reference token sequences identical. The difference leetvier and the classical Leven-
shtein Distance [Levenshtein, 1966] is the sequence ghétation, which allows phrasal
shifts in the hypothesis to be captureRIis calculated as in (3.4). There is also a version
of TER in which references are not predefined but created by the mamaotators based

on the MT output. This version (calledTi#R) measures post-editing effort directly.

_ #INS + #DEL + #SUB + #SHIFT
N len(ref)

One advantage of surface-level metrics is that they can siéyenhanced with lex-

TER

(3.4)

ical or shallow syntactic features, such as POS tags or paxsgs. For example, POS-
BLEU [Popovit and Ney, 2009], uses POS tags to enhaneuBwhile METEORNEXT
[Denkowski and Lavie, 2010] andeERP [Snover et al., 2009] rely on paraphrases to im-
prove the coverage of Mreor and TER, respectively. Using such resources leads to im-

proved correlation with human judgement, as might be exaect

3.4.2 Deep Features in MT Evaluation

Some researchers have gone beyond the surface level agdetbsietrics that incorporate
syntactic features. The first step in this direction was hyand Gildea [2005], who used
syntactic structure and dependency information in ordeetopast the surface phenomena.

Two of these metrics are based on matching syntactic sughietveen the translation and
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the reference, and the third is based on matching headwaids;tbut only forunlabelled
dependencies.

Since then, Owczarzak et al. [2007] have extended this limesearch with the use of
a term-based encoding of LF@belled dependency graphs into unordered sets of depen-
dency triples, and calculating precision, recall, and &swe on the sets corresponding to
the translation and reference sentences. With the addifigrartial matching ana-best
parses, [Owczarzak et al., 2007] considerably outperfdrion and Gildea, 2005] with re-
spect to correlation with human judgement. We will use aem@sion of [Owczarzak et al.,
2007] as a case study in the contribution of surface/lingufeatures in MT evaluation (cf.
Section 3.5).

Instead of relying solely on one type of deep linguistic teat some researchers eval-
uate and combine many heterogeneous linguistically ntetivenetrics. The best example
of this strand of research is perhaps [Giménez and Mar@@88, Giménez and Marquez,
2010], where the linguistic analysis applied in MT evaloatincludes constituency parses,
dependency parses, semantic roles, and discourse rejpitasen In their experiments, de-
pendency parses and discourse representations all leeshtdsphg correlation with human

judgement.

3.4.3 Convergence of Surface and Deep Features in MT Evaluah

Given that both surface- and deep- level metrics have agtiipromising correlation results
in the literature, it is quite natural that researchers legrin to compare and combine these
two approaches in search of even better MT evaluation nsetric

In one such effort, [Amigo et al., 2009] systematically quare the strength and weak-
ness of n-gram and linguistic-driven metrics. They obséhat linguistically motivated
metrics can outperform n-gram metrics at system level anilaewarding poor transla-
tions that happen to have surface-level overlapping wighrdierence, as more linguistic
constraints are introduced in the alignment process. Theyshow that a linear combina-

tion of these two types of metric can obtain the highest taticen with human judgement
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among the metrics they have evaluated.

Besides explicit combinations, one can also apply featinoes different levels inher-
ently by virtue of text entailment systems. Pado et al. [2@98luate translation outputs by
examining whether the source and the reference entail éaeh @ his metric is built upon
the Stanford RTE system [Raina et al., 2005], and is also @ab#ehieve state-of-the-art
correlation performance.

The most obvious drawback of these methods is that, as tlyeyreea large amount
of potentially computationally expensive linguistic ayss, they are thus often slow and
resource-consuming. This renders these all-in-one nsdass useful in certain tasks, such

as MT tuning. Such metrics are also more restricted to spemifiput languages.

3.4.4 Evaluation of Translation Quality Estimation

As mentioned in Section 3.1, when evaluatettinsically, the performance of translation
guality estimation can be assessed by how well it confornisdgements by human raters.
When comparing two MT outputs, we can calculate accuraegigion, and recall by using
human judgement as the gold standard. In this thesis, wg #mse criteria to evaluate the
quality of our integration model against judgements madbwyan translators.

Let A be the set of system outputs, aBdbe the set of gold standards. We standardly

define precisionP, recall R and F-value as in (3.5):

|AN B] |AN B] 2PR
P = andR = andF = ——— 3.5
|A| |B| P+ R (3.5)

When rating more than two MT systems, the performance of htgestimation tech-
nique is often measured by its correlation with human judg®m If we have gold stan-
dard human evaluation scores, we can compute Pearsoredatimnn [Hollander and Wolfe,
1999]. Given a sequence of quality estimation scores (ssi@umatic evaluation scores)
X = {zy...z;..z,} and a sequence of gold standard scores (such as human ievaluat

scores)Y = {y;...y;...yn }, We compute Pearson’s correlation score, as in (3.6):
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r= Lo @Y, (356)

n—1 SX Sy

wherez; is the value of theé!” score, X is the mean score and, is the standard deviation.
r is areal value in the randge-1, 1]. The value 0 implies tha&X andY are independent, and
1 or -1 implies a perfect relationship (positively or negelty).

Itis also possible to measure Spearman’s correlation §ddir and Wolfe, 1999] when
only human rankings (instead of human scores) are availaZBpearman’s correlation is
defined in (3.7), wherd is the difference between corresponding values in rankamgih

is the length of the rankings:

63 d?

Y (3.7)

p=1—(
Another way to measure ranking correlation is Kendalloefficient.

Kendall's - measures the relevance of two rankings by comparing the euoflzon-

cordant and discordant pairs in these rankings, as in (3.8)

P-Q
P+Q

(3.8)

7(ra, ) =

whereP and( are the amount of concordant and discordant pairg sndr.

There is also the option to evaluate the performance oflados quality estimation
extrinsically, which means evaluating it in specific use cases. For exarifileevaluation
metrics or confidence estimation methods can be evaluatdeblwymuch they can boost
the performance of MERT, or MT reranking. In this thesis, visapply this type of
evaluation, and we would evaluate how good our quality egion is by measuring the
improved translation quality/reduced post-editing dffastained using quality-estimation

based translation recommendation and reranking.

33



3.5 The DCU DEP-based Metric

In this section we present our extension to [Owczarzak g@07] as an example of how
the combination of surface and deep features can improveeagymtax-based evaluation
metric. Furthermore, many of the features used in this mbk&ve been successfully applied

in sub-sentential integration of TM and MT paradigms.

3.5.1 Background

Our DCU-DEP metric is based on [Owczarzak et al., 2007], tvhises a term-based en-
coding of LFG (Lexical-Functional Grammagbelled dependency graphs into unordered
sets of dependency triples, and calculates precisionll,recal F-score on the sets corre-
sponding to the translation and reference sentences.

The line of research is extended by theds metric [Kahn et al., 2010] which uses
arc labels derived from a PCFG parse to replace the LFG labelthat a PCFG parser is
sufficient for preprocessing. dPM also incorporates more information sources: e.g. the
parser confidence, the Porter stemmer, WordNet synonympaaghrases.

Besides these, information from the dependency parserasngpanent of some other
metrics that use a larger knowledge source, such as theatestwiailment-based met-
ric [Pado et al., 2009].

Here we present another extension of the work of [Owczarzak,&2007]. We use the
Stanford parsérto obtain Stanford dependencies and merge some labels \grarsgarity
is too fine for the MT evaluation task. We incorporate the stémg, synonym and para-
phrase information as in [Kahn et al., 2010], and at the same e introduce a chunk
penalty in the spirit of MTEOR to punish discontinuous matches. We sort the matches
according to the match level and the dependency type, arghtwbie matches to maximize

the correlation with human judgement.

2http://nlp.stanford.edu/software/lex-parser.shtml
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3.5.2 The Dependency-based Metric

In this section, we briefly review the metric presented in [2arzak et al., 2007]. The

basic method can be illustrated by the example in Table 3.1.

Table 3.1: Sample Hypothesis and Reference
Hypothesis
rice will be held talks in egypt next week
Hyp-Triples

nsubjpass(held, rice)

aux(held, will)

auxpass(held, be)

dobj(held, talks)

nn(week, egypt)

amod(week, next)

prep-in(talks, week)

Reference

rice to hold talks in egypt next week
Ref-Triples

nsubj(hold, rice)

aux(hold, to)

dobj(hold, talks)

nn(week, egypt)

nn(week, next)

prep-in(talks, week)

The metric in [Owczarzak et al., 2007] performs triple matgrover the Hyp- and Ref-
Triples and calculates the metric score using the F-sconeadéhing precision and recall.
Let m be the number of matchek,be the number of triples in the hypothesis arae the
number of triples in the reference. Then we have the matcpiegision? = m/h and
recall R = m/e. The score of the hypothesis in [Owczarzak et al., 2007] ésR¥score

based on the precision and recall of matching, as in (3.9):

2PR
P+ R

(3.9)

Fscore =
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3.5.3 Details of the Matching Strategy

Owczarzak et al. [2007] use several techniques to fa@litaple matching. First of all,
considering that the MT-generated hypotheses have varilality and are sometimes un-
grammatical, the metric searches the 50-best parses oftlmthypothesis and reference
and uses the pair that has the highest matching F-score tfoecwate for parser noise.

Secondly, the metric performsompleteor partial matching according to the depen-

dency labels, so the metric will find more matches on deperydstnuctures that are more

informative.
More specifically, for all except the LF@redicate-Only labeled triples of the
form dep(head, modifier) , the method does not allow a match if the dependency

labels leps) are different, thus enforcingcmpletematch. For théPredicate-Only
dependenciegyartial matching is allowed: i.e. two triples are considered id=dteven
if only the head or themodifier are the same. Predicate-Only dependencies are those
relations whose paths end in a predicate-value pair. Tleofdpredicate” in LFG does not
have a direct correspondent in Stanford dependency niesatidowever, we allow partial
matches on labels of therg category, following the spirit of [Owczarzak et al., 2007].

Finally, the metric also uses linguistic resources fordyetioverage. Besides using
WordNet synonyms, the method also uses the lemmatizedtooitthe LFG parser [Cahill
et al., 2004], which is equivalent to using an English lemneat

If we do not consider the linguistic resources, the metrialddind these matches in the
example:nn(week, egypt) ,nn(week, next)  andprep-in(talks, week)

We see several points for improvement from the above arsalysi

» More linguistic resources. We can use more linguistic ueses besides WordNet in

pursuit for better coverage, such as a stemmer and paraghras

» Simplifying dependency labels. As is shown in Table 3.an&ird dependency labels
are too fine-grained for our metric, which prevents matctmagbjpass(held,

rice) to nsubj(hold, rice) , even if we use linguistic resources, since the
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metric does not allow matching trigrams with different degency labels.

» Boosting continuous matches. It would be more desirabteftect the fact that the

3 matches currently found are continuous in Table 3.1.

We introduce our improvements to the metric in response dedtobservations in the

following sections.

3.5.4 Capturing Variations in Language
3.5.4.1 Merging Stanford Dependency Labels

We saw in Section 3.5.2 that the granularity of Stanford ddpacies does not fit our
dependency-based metric very well. We identify three setlependency-types to merge:
subj , obj andprep .

The Stanford parser gives a very detailed analysgibf andobj dependencies (e.g.
active or passive, nominal or clausal, etc.). Though thégerable behavior of a parser,
these details differentiate very similar dependency iaiatand prevent our metric from
capturing useful correspondences. Therefore, we merggeiendency labels undsubj
andobj , respectively.

For theprep type, the Stanford parser differentiates between the foteposition and
labels such relations as, for exampteep-in , so the corresponding triples can match

only if the preposition itself is correctly translated. Wenge all these labels intofaep

type.

3.5.4.2 Linguistic Resources

In [Owczarzak et al., 2007], lexical variations at the wéedel are captured by WordNet.
We use a Porter stemmer and a unigram paraphrase databdlesvtmare lexical varia-
tions.

With these two resources combined, there are four stagesroflevel matching in our

system: exactmatch, stemmatch, WordNetmatch and unigranparaphrasematch. The
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stemming module uses Porter's stemmer implementatonl the WordNet module uses
the JAWS WordNet interfact.Our metric only considers unigram paraphrases, which are

extracted from the paraphrase databasesrRPP using the script in the MTEOR metric.

3.5.5 Adding Chunk Penalty to the Dependency-based Metric

The metric described in [Owczarzak et al., 2007] does noli@hp consider word order
and fluency. METEOR, on the other hand, utilizes this information through a é¢hpanalty.

We introduce a chunk penalty to our dependency-based nfi@tdwing METEORS string-

based approach.

Given areference = w,...w,y, We denoteu,; as ‘covered’ if it is the head or modifier
of a matched triple. We only consider thg;s that appear dsead or modifier  in the
reference triples. Given this notation, we follow the ag@mtotaken in MeETEORbDY counting
the number of chunks in the reference string, where a chunk.w,, is a sequence of
adjacent covered words in the reference. Using the hypetiaesl reference in Table 3.1
as an example, the three matched trigdgunct(talks, in) , obj(in, egypt)
andadjunct(week, next) will covera continuous word sequence in the reference

(underlined), constituting one single chunk:

rice to hold talks (in) egypt next week

Based on this observation, we introduce a similar chunklpeii&n as in METEORIN

our metric, as in (3.10):

#chunks |

- 3.10
#matches ( )

Pen=~-(

where and~ are free parameters, which we tune in Section 3.5.6.2. Wehaslghenalty

to the dependency-based metric (cf. (3.9)), as in (3.11).

3http://tartarus.org/ ~martin/PorterStemmer/
“http://lyle.smu.edu/ ~tspell/jaws/index.html
Shttp://www.umiacs.umd.edu/ ~shover/terp/
Shttp://www.cs.cmu.edu/ ~ alavie/METEOR/
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score = (1 — Pen) - Fscore (3.11)

3.5.6 Parameter Tuning
3.5.6.1 Parameters of the Metric

In this metric, dependency triple matches can be categbdreording to many criteria.
We assume that some matches are more critical than othersrenodie the importance
of matches by weighting them differently. The final matchlw# the sum of weighted

matches, as in (3.12):

where \; andm; are the weight and number of match categoryWe categorize a triple

match from three perspectives:
 The level of matchl = {complete, partial}
* The linguistic resource used in matchiRg= {exact, stem, WordNet, paraphrase}

» The type of dependendy. If we tune weights for each dependency type, there is the
danger that we will overfit on the training data and our modélhe very language-
specific, so we choose to only discriminate between thosatbargument depen-

dencies and those that are not, with= { Arg, NoArg}.

Therefore for each triple mataeh, we can have the type of the matck L x R x D.

3.5.6.2 Tuning

In sum, we have the following parameters to tune in our mepriecision weighty, chunk
penalty parameters§ , v and the match type weights;...\,,. We perform Powell’s line

search on the sufficient statistics of our metric to find the set ofypaeters that maximizes

"Powell’'s line search optimizes an objective function byt Besarching along all directions, and then starting
again at the linear combination of the optimum found in edoéction.
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Pearson'sy on the segment level. We perform the optimization on the MpOGion of
NIST MetricsMATR 2010 development set (consisting of Aatiinglish translations from

8 systems on 249 segments) with 2-fold cross validation.

3.5.7 Experiments

We experiment with different settings of the metric: WY, WN-STEM-PARA (phrase),
WN-STEM-PARA-TYPE and WEIGHTED, in order to validate our enhancements. The first
two settings calculate F-scores using the linguistic resmisuggested by their names. The
third setting merges similar Stanford dependency labélsSection 3.5.4.1) and the final
setting uses weighted parameters. All words are lowerdasedl settings.

We report Pearson’s, Spearman’y and Kendall’'st on segment and system levels

using Snover’s scoring to8l.

Table 3.2: Correlation on the Segment Level

r P T
WN-ONLY 0.606 0.636 0.212
WN-STEM-PARA 0.655 0.664 0.236
WN-STEM-PARA-TYPE 0.655 0.661 0.233
WEIGHTED 0.704 0.715 0.280

In Table 3.2, we see that by incorporating more linguistsoreces into the dependency-
based metric, we improve the metric’s correlation with horuagement according to all
correlation scores. The effect of simplifying dependenges is not that clear at system
level, but parameter tuning almost boosts Pearsoa's much as linguistic resources. Al-
though the parameters might somehow overfit the data setfeverapply cross-validation,
this certainly confirms the necessity of weighting depergienatches according to their
types.

When considering the system-level correlation in TabletB&biggest difference to the
results on the segment level is that it shows the validity efging dependency labels: Pear-

son’sr coefficients are close before and after label merging, lutahking correlations are

8http://www.umiacs.umd.edu/ ~ snhover/terp/scoring/
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Table 3.3: Correlation on the System Level

T P T
WN-ONLY 0.961 0.738 0.643
WN-STEM-PARA 0.977 0.881 0.786
WN-STEM-PARA-TYPE 0.978 0.929 0.857
WEIGHTED 0.959 0.929 0.857

much improved, suggesting that a simpler set of dependehgld could be more suitable
to evaluate MT outputs. WIGHTED match types lead to a slightly lowerat system level,

but that does not affect ranking accuracy, as suggestecehyahdr coefficients.

3.5.8 Discussion

As we review the DCU-DEP metric, we can see that combinintasarand deep level fea-
tures can improve the performance of a syntax-oriented Miluetion metric. Compared
to other metrics, this metric is competitive at the systewelleout not as competitive at the
segment level. One of the reasons for this could be that omesegglevel evaluation, the
dependency-based metric filters out some valid matches;hwias a negative impact on
evaluation performance. On the system level, howeveratget amount of data compen-
sates for the segment-level score fluctuation caused byabendiency-oriented matching
scheme. This phenomenon is also observed by Amigo et &19]20

Although the improvements brought by dependency matchimget clear on MT eval-
uation, we suspect that they could be more useful when we toggabdict the translation
quality of sub-segment chunks, where many fewer lexicaiufea can be explored (the
chunks may not be long enough to constitute a valid n-grard, id@as such as chunk
penalty or longest match sequence will be less meaningiulChapter 7, we will see the
application of dependency-based features in sub-segmagsidtion quality estimation.

We also suspect that the dependency-based method would feesoitable for eval-
uating more structurally-related properties of transkatisuch as translation consistency,
as is discussed in Chapter 7. Compared to evaluating justlaton quality, translation

consistency evaluation should also consider whether chahthe same meaning and sim-
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ilar grammatical functions have uniform translations. Wk show that deep features can

substantially help improve such prediction tasks.

3.6 Bringing the Two Worlds Together via Quality Estimation

As presented in the previous chapter, SMT has achieved mygrevements in recent years.
This, in combination with the promising results achievedégent MT quality estimation
methods, leads us to consider the possibility of integgatilgh-quality MT outputs — in
whole or in part — into TM outputs which are used actively gnslators. Translation
guality estimation plays two roles in this process. Firstlginslation quality estimation is
essential in determining whether we should use segmeuntgtshfrom MT or from TM.
TM-MT integration is only useful when translations havingtter quality can be selected
automatically. Secondly, translation quality estimati®also necessary to provide a confi-
dence score in TM-MT integration. The confidence score islegas a replacement of the
fuzzy match scores in the TM, when we choose to favor segneertisunks from the MT

system.

3.6.1 Translation Confidence-Inspired Integration of TM ard MT

The successful application of surface-level features inévdluation metrics suggests that
the quality of translation can be estimated reasonably ewelh without deep features. In
[Specia et al., 2009b], it is also shown that surface featare capable of generating confi-
dence estimation scores for MT outputs.

Based on such evidence, we would first experiment with sefaeel features on segment-
level TM-MT integration. As our results show, using surfdeeel features — even if only
those features derived from translation models — on the seghavel can already achieve

satisfactory results, especially on the recommendatisi ta
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3.6.2 From Segment Level Integration to Sub-segment-Levéhtegration

When we move from segment-level to sub-segment level, hexnvéve surface-level fea-
tures begin to reach their limit. As we will see in Chapter $ing only translation model
features, such as those used in the segment-level TM-Mgratien models, cannot lead to
improvements. Therefore, we introduce a much more compeare feature set to model
the sub-segment-level TM-MT integration, and show thatgisieep features indeed helps

us to capture the properties of translation consistenclyignsietting.

3.7 Summary

In this chapter, we reviewed MT quality estimation methadsluding techniques for hu-
man evaluation, automatic MT evaluation, and MT confiderstaration. We compared
the use of surface- and deep-level features in MT qualitynesion, and used the DCU-
DEP metric as an example to put the discussion in context. N\éyzed the pros and cons
of this metric, and the idea of using linguistically-motied features to predict translation
quality will be applied again in Chapter 7.

Finally, based on the analysis of the TM and the MT paradigmsyell as quality esti-
mation methods, we sketched our proposal to perform TM-Mé&gration on the segment
or sub-segment level using techniques that are similar togM&lity estimation. We also
hinted at the choice of surface- or deep-level featuresrdowp to the characteristics of
the integration. We will develop this sketch into a fully @fional and human-validated

integration scheme in Chapters 4, 5, 6, and 7.
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Chapter 4

TM-MT Integration as Translation

Recommendation

4.1 Introduction?

In this chapter, we begin the integration of TM and MT engibggocusing on the 1-best
output of each system. In Table 4.1, we present an examplaesggrom a Symantec
translation memory, together with a reference translapimduced by a human, and the
outputs from the TM and the MT system. Note that a typical TMtesn will display
both the sourceT(M Source) and the targetTM Target) side, as translators will use the
alignment information (as aligned parts of the source segraee usually color-coded in
TM systems) on the source side to identify the spans that editidg.
Table 4.1: An Example of TM and MT Output

Source Restore over existing virtual machines .

TM Source  Check restore over existing files .

TM Target  Cochez la case restaurer sur les fichiers existants .

MT Output  Restaurer des machines virtuelles existantes .
Reference  Restaurer sur les machines virtuelles existantes .

In Table 4.1, the TM does not find a translation that is clogadéaning to the source, but

Part of the research presented in this chapter has beersipedlin [He et al., 2010c]
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there is some similarity between the input and the soureedithe TM fuzzy match. From
TM Source, the translators know that they probably do not need to adjgstranslation
for restore and should instead pay attention to other parts of the seigridée can also see
that in this case the MT output would be much easier to pastiesh the TM output.

In this chapter we present a translation recommendatioremelere translators can
have access to MT segments that are more suitable to pastittiout having to leave the
TM environment, and can still use TM-based cost estimatsaraupperbound. To achieve
this, we estimate the relative quality of the TM output anel BT output, and present the
one that is more suitable for post-editing (the MT outputiis £xample) to translators.

We describe the elements of our translation recommendatiodel in the following
sections: we present the translation recommendation iganad Section 4.2, and discuss
the details of the paradigm in Section 4.3. We describe thtifes we use in our recom-
mender in Section 4.4. We present experiments to test tiierpemnce of our recommender
in Section 4.5, and approximate the reduced post-editifuyten Section. We review re-

lated work in Section 4.7 and summarize this chapter in Sieeti8.

4.2 The Translation Recommendation Paradigm

The example in Section 4.1 shows that sometimes current MiE)s are capable of pro-
ducing outputs that are more suitable for post-editing thisirhits. However, MT technol-
ogy is sometimes adopted only slowly and somewhat relugtamthe localization indus-
try, because 1) TMs represent considerable effort and timerg by a company or (even
more so) an individual translator; 2) the fuzzy match scaedun TMs offers a good ap-
proximation of post-editing effort, which is useful bothr foanslators and translation cost
estimation and, 3) current SMT translation confidence egion measures are not as robust
as TM fuzzy match scores and professional translators agertot ready to replace fuzzy
match scores with SMT internal quality measures.

It is therefore important to keep in mind that when integrgtMT outputs into TM
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systems, the original attractive properties of TMs showddkbpt intact. Our translation
recommendation model presented in this chapter is designserve this purpose: given
that most post-editing work is (still) based on TM output, prepose to recommend MT
outputs which are better than TM hits to translators. Infitsisework, translators still work
with the TM while benefiting from (better) SMT outputs; thesais in TMs are not wasted
and TM fuzzy match scores can still be used to estimate (tperupound of) post-editing
labor.

There are three specific goals we need to achieve for the reeodfation based TM-
MT integration to work smoothly. Firstly, the recommendatshould have high precision,
otherwise it would be confusing for translators and may tieglg affect the lower bound
of the post-editing effort. Secondly, although we have &gltess to the SMT system used
in this paper, our method should be able to generalize tcsoskere SMT is treated as a
black-box, which is often the case in the translation ingusFinally, translators should
be able to easily adjust the recommendation threshold tiicpkar requirements without
having to retrain the recommendation model.

Based on these requirements, we recast translation recodati@n as a binary clas-
sification (rather than regression) problem using SVMsfagoer RBF kernel parameter
optimization, employ posterior probability-based conficie estimation to support user-
based tuning for precision and recall, experiment withuieasets involving MT-, TM- and
system-independent features, and use automatic MT ewaluatetrics to simulate post-
editing effort.

We depict the translation recommendation paradigm in Eigut: both the TM and
the SMT systems are used at the backend. When there is a navesep translate, we
compare the output from the TM and the MT system. Using an 3&sked classifier,
we predict which of the two translations is more suitable gost-editing, along with a
confidence score. In the TM environment, the translator eada sonfidence threshold, and
only MT outputs that are predicted to be better than the thigiicorrespondents with high

confidence (above the threshold) will be presented to timslaor. Otherwise the translator
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Figure 4.1: The Translation Recommendation Paradigm

will continue to use the TM output.

4.3 The SVM-based Recommendation Model

4.3.1 Support Vector Machines

We train an SVM binary classifier to perform translation meceendation between the TM
and the MT output. SVMs [Cortes and Vapnik, 1995] classifyirgout instance based on

decision rules which minimize the regularized error fumetin (7.5):

l
.17
min §W W—i—C’;fl
- 4.1
s. t. yl(WT(I)(Xl) + b) >1-¢ ( )

& >0
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where(x;,y;) € R™ x {+1,—1} arel training instances that are mapped by the function
® to a higher dimensional spac® is the weight vector¢ is the relaxation variable and
C > 0 is the penalty parameter.

Solving SVMs with® is performed by finding a kernel functidii in (7.5) with K’ (x;, X;) =
®(x;)T®(x;). We perform our experiments with the Radial Basis FunctRBR) kernel,

asin (7.6):

K (xi,%;) = exp(=lIxi = x;[[*),7 > 0 (4.2)

When using SVMs with the RBF kernel, we have two free pararedtetune on: the
cost parametef’ in (7.5) and the radius parametein (7.6). In each of our experimental
settings, the parametefsand-~ are optimized by a brute-force grid search. The classifica-
tion result of each set of parameters is evaluated by crdisttian on the training set. Note
that as we have a relatively small set of features, we relyherability of the RBF kernel
to map the features to higher dimensional space. This idlgrieilitated using SVMs,
where the tuning of’ and~ is also important to obtain better prediction performance.

The SVM classifier will predict the relative quality of the Mautput, and determine
whether it is worthwhile presenting it to the post-editanstéad of the TM output. The
classifier uses features from the MT system, the TM and additilinguistic features to es-
timate whether the SMT output is better than the best hit fiteenT M. Ideally the classifier
will recommend the output that needs the least post-edéffayt. As large-scale human
annotated data is not yet available for this task, we usem@atio TER scores [Snover et al.,
2006] as the measure for the required post-editing effartthé future, we hope to train
our system on HTER (TER with human-targeted referencesesd&nover et al., 2006]
once the necessary human annotations are in plaethe meantime we use TER, as

TER is shown to have high correlation with HTER. This methoualidated by our human

2While our Symantec data set was not annotated by post-sditome small data sets do exist, dp:
lIpers-www.wlv.ac.uk/ ~inl316/resources/datasets_ce_eamt.tar.gz
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evaluation (cf. Section 6.3.4).

We label the training examples as in (7.7):

+1 if TER(MT) < TER(TM)
y= (4.3)
~1 if TER(MT) > TER(TM)

Each instance is associated with a set of features from betiVifT and TM outputs,

which are discussed in more detail in Section 4.4.

4.3.2 Recommendation Confidence Estimation

In classical settings involving SVMs, confidence levelsramesented as margins of binary
predictions. However, these margins provide little insifgin our application because the
numbers are only meaningful when compared to each othert Whaore preferable is a
probabilistic confidence score (e.g. 90% confidence) whidbetter understood by post-
editors and translators.

We use the techniques proposed by Platt [1999] and improyddrbet al. [2007] to
convert the classification margin to a posterior probabiithich is used as the confidence
score in our system.

Platt's method estimates the posterior probability witligan®id function, as in (7.8):

1
~ 1+ exp(Af + B)

Pr(y = 1|X) = Pa p(f) (4.4)

wheref = f(x) is the decision function of the estimated SVM. A and B are ipeters

that minimize the cross-entropy error functiéhon the training data, as in Eq. (7.9):

l

z*(j\nB)F(z) == (tilog(p:) + (1 — ti)log(1 — py)),
VY i=1

. 4.5

g if g = +1 (4-3)

wherep; = P4 p(fi),andt; =

N_t2 |f yz:_l

wherez = (A, B) is a parameter setting, and, and N_ are the numbers of observed

49



positive and negative examples, respectively, for thel lgheThese numbers are obtained

using an internal cross-validation on the training set.

4.4 The Feature Set

We use three types of features in classification: the MT sy$tatures, the TM feature and

system-independent features.

4.4.1 The MT System Features

The MT system features are derived from the translation inafdehrase-based SMT (cf.
Chapter 2). We use:

» Phrase-based Translation Model ScoresPhrase-based translation model scores are
the model scores proposed in [Koehn et al., 2003] as thelétars model scores in
phrase-based SMT. This includes the direct and reverse@lmanslation probability

and direct and reverse lexical translation probability.

» The Language Model (LM) Probability. This is the language model probability of
the MT output.

» The Distance-based Reordering ScoreThis is the distance based reordering score

estimated using a decay function in phrase-based SMT.

* Lexicalized Reordering Model Scores These are the lexicalized reordering model
scores. These scores estimate the probability of monoswep, or discontinuous

reordering for a given phrase pair [Och et al., 2004].

In sum, by reusing the feature scores from the standard elrased SMT model, we
are able to roughly predict the quality of the MT output. Altigh these features are not that
powerful to predict the exact translation quality (othessvMT reranking should always be

able to correctly select the oracle translation, which isthe case, cf. [Shen et al., 2004]),
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when combined with the fuzzy match cost feature from TM, wé e able to predict

whether the TM or the MT output is of better quality.

4.4.2 The TM Feature

The TM feature is the fuzzy match [Sikes, 2007] cost of the TiMThe calculation of fuzzy
match score itself is one of the core technologies in TM sgstand varies among different
vendors. We compute fuzzy match cost as the minimum LeveimsBlistance [Leven-
shtein, 1966] between the source and TM entry, normalizethéyength of the source as
in (7.10), as most of the current implementations are basestih distance while allowing

some additional flexible matching.

LevenshteinDistance(s, e)

Len(s)

him(t) = Inein (4.6)

wheres is the source side @f-the sentence to be translated — amglthe source side of an
entry in the TM. For fuzzy match scorés this fuzzy match cost ,,, roughly corresponds
to 1 — F'. The difference in calculation does not influence clasgifica and allows direct

comparison between a pure TM system and a translation reeohation system in Section

45.5.

4.4.3 System-Independent Features

Ideally, localization organizations will train their ownTand translation recommendation
systems in order to obtain high quality in-domain tranelatbutputs. However, there is
still the choice of using a third party translation servigewhich case the system-internal
recommendation features from the SMT system will not belalvk.

To handle this situation, as well as to gather recommenuaadence from rich and
varied sources, we use several features that are indegesidba translation system, which
are useful when a third-party translation service is usedyhen the MT system is simply

treated as a black-box:
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» Source-Side Language Model Score and PerplexityWe compute the LM score
and perplexity of the input source sentence on an LM trainedhe source-side
training data of the SMT system. The inputs that have lowgslpgity or higher LM

score are more similar to the dataset on which the SMT systdmilk.

» Target-Side Language Model Perplexity We compute the LM probability and per

plexity of the target side as a measure of fluency. Languagiehperplexity of the
MT outputs is calculated, and LM probability is already paftthe MT system’s
scores. LM scores on TM outputs are also computed, thoughatigenot as informa-
tive as scores on the MT side, as TM outputs are human traorgaand should be

grammatically perfect.

* The Pseudo-Source Fuzzy Match ScoreWe back-translate the output to obtain
a pseudo source sentence. We compute the fuzzy match s¢aeebehe original
source sentence and this pseudo-source. If the MT/TM syséeforms well enough,
these two sentences should be the same or very similar. foheréhe fuzzy match
score here gives an estimation of the confidence level ofutut We compute this
score for both the MT output and the TM hit. This method is exgdl previously by
Somers [2005] as an independent MT quality estimation mreagthough Somers
[2005] does not recommend it as a stand-alone MT confiderizeag®n measure,
we are using it along with other features to exploit useftibimation from back-

translation.

* The IBM Model 1 Score. The fuzzy match score does not measure whether the hit
could be a correct translation, i.e. it does not take int@actthe correspondence
between the source and target, but rather only the sowleehsiormation. For the
TM hit, the IBM Model 1 score [Brown et al., 1993] serves as agto estimation of
how good a translation it is on the word level; for the MT oufmn the other hand,
it is a black-box feature to estimate translation qualityewkhe information from the

translation model is not available. We compute bidirealofsource-to-target and
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target-to-source) model 1 scores on both TM and MT outputs.

We will show in Section 4.5.3 that we are still able to obtaighhrecommendation
performance only with the system independent featurefiamur models still work if the

MT system is used as a black box.

4.5 Experiments and Balancing Precision and Recall

We test the precision and recall of our recommendation moefelre evaluating its impact
on post-editing effort to measure whether such a model céeaneed well using the SVM
framework. More thorough automatic and human evaluatioegpeesented in Section 4.6

and Chapter 6.

4.5.1 Experimental Settings

Our raw data set is an English—French translation memotty t@ithnical translations from

Symantec, consisting of 51K sentence pairs. This size ilantiaan many parallel corpora
that are used to train SMT systems, such as Europarl [Ko€l¥g]2but it is comparable to

the larger TMs used in the localization industry. We randosellected 43K to train an SMT

system and translated the English side of the remaining 8ikesee pairs. The average
sentence length of the training set is 13.5 words. Note tleatemove exact matches in
the TM from our dataset, because exact matches will be rearsédhot presented to the
post-editor in a typical TM setting.

As for the SMT system, we use a standard log-linear PB-SMTeahfidich and Ney,
2002): Gza++ implementation of IBM word alignment model®4the refinement and
phrase-extraction heuristics described in [Koehn et &032 minimum-error-rate train-
ing [Och, 2003], &-gram language model with Kneser-Ney smoothing [KneserNey
1995] trained with SRILM [Stolcke, 2002] on the French sidette training data, and

3More specifically, we performed iterations of Model 15 iterations of HMM, 3 iterations of Model 3,
and3 iterations of Model 4.
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Moses [Koehn et al., 2007] to decode. We train a system inppesite direction using the
same data to produce the pseudo-source sentences.

We train the SVM classifier using the libSVM [Chang and Lin02ptoolkit. The
SVM-training and testing is performed on the remaining 8Ktsaces withi-fold cross
validation. We also report 95% confidence intervals.

The SVM hyper-parameters are tuned using the SVM training dathe first fold in
the 4-fold cross validation via a brute force grid search. Morecsiically, for parameter
C in (7.5) we search in the rang2—>,2!5], and for parametey in (7.6) we search in the

range[2~ 1%, 23]. The step size is 2 on the exponent.

4.5.2 The Evaluation Metrics

We measure the quality of the classification by precision r@cdll. LetA be the set of
recommended MT outputs, argl be the set of MT outputs that have lower TER scores
than the corresponding TM hits. We standardly define pratisj, recall R and F-value as

in (7.11):

_ ANB|

|AN B 2PR
P = _
Al

R = andF =
|B| P+ R

(4.7)

45.3 Recommendation Results

In Table 4.2, we report recommendation performance usingad TM system features
(Sys), system features plus system-independent featunas. 8k s+S1), and system-independent

features only (9.

Table 4.2: Recommendation Results
Precision Recall F-Score

Sys 82.53t:1.17 96.44-0.68 88.9%.56
S 82.56:1.46 95.8%0.52 88.7&.65
ALL 83.45t1.33 95.56:1.33 89.09-.24

54



From Table 4.2, we observe that MT and TM system-internglufea are very useful
for producing a stable (as indicated by the smaller confideénterval) recommendation
system (§5s). Interestingly, only using some simple system-exterpatudres as described
in Section 4.4.3 can also yield a system with reasonably geofbrmance (§. We expect
that the performance can be further boosted by adding matacyc and semantic features.
Combining all the system-internal and -external featueasl$ to limited gains in Precision
and F-score compared to using system-internal features)(@ly. This indicates that at
the default confidence level of the recommendation systeB),(Burrent system-external
(resp. system-internal) features can only play a limitdd o informing the system when
current system-internal (resp. system-external) featare available. Additionally, the per-
formance of system1Ss promising given the fact that we are using only a limitedhber
of simple features, which demonstrates a good prospectpdyiag our recommendation

system to MT systems where we do not have access to theinahteatures.

Table 4.3: Contribution of Features
Precision Recall F Score

Sys 82.53:1.17 96.44-0.68 88.95.56
Sys+M1 82.8A41.26 96.230.53 89.0%.52
Sys+LM 82.82+1.16 96.2@-1.14 89.0%.23
Sys+PS  83.2%1.33 96.610.44 89.41.84

45.4 Contribution of Features

In Section 4.4.3 we suggested three sets of system-indepeffehtures: features based
on the source- and target-side LM, the IBM Model 1 (M1) andftiezy match scores on
pseudo-source (PS). We compare the contribution of thedgerés in Table 4.3.

In sum, all three sets of system-independent features wephe precision and F-scores
of the MT and TM system features. The improvement is not fiiganit, but improvement on
every set of system-independent features gives some todtie capability of Sfeatures,

as does the fact that atures perform close toyS features in Table 4.2.
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4.5.5 Further Improving Recommendation Precision

Table 4.2 shows that classification recall is very high, Wisaggests that precision can
still be improved, if recall can be compromised to some ext&onsidering that TM is
the dominant (and tried and trusted) technology used by-guigirs, a recommendation
to replace the hit from the TM by MT output should require higinfidence, i.e. high

precision.

4.55.1 Adjusting Confidence Levels

We output a confidence score during prediction and thregleslommendation on the con-
fidence score.

We use the SVM confidence estimation techniques in Sect®2 4o obtain the con-
fidence level of the recommendation, and change the confidimeshold for recommen-
dation when necessary. This also allows us to compare ljiragainst a simple baseline
inspired by TM users. In a TM environment, some users singiyptie TM hits below a
certain fuzzy match scorg' (usually from 0.7 to 0.8). This fuzzy match score reflects the
confidence of recommending the TM hits. To obtain the confidesf recommending an
SMT output, our baseline (f) uses fuzzy match costs-y; ~ 1 — F (cf. Section 4.4.2)
for the TM hits as the level of confidence. In other words, tighér the fuzzy match cost
of the TM hit (lower fuzzy match score), the higher the conficke of recommending the
SMT output. We compare this baseline with the three setiim@section 4.5.

Figure 4.2 shows that the precision curve of 5 low and flat when the fuzzy match
costs are low (from 0 to 0.6), indicating that it is unwise égommend an SMT output
when the TM hit has a low fuzzy match cost (corresponding ¢inéri fuzzy match score,
from 0.4 to 1). We also observe that the precision of the resendation receives a boost
when the fuzzy match costs for the TM hits are above 0.7 (fumaych score lower than
0.3), indicating that SMT output should be recommended whed M hit has a high fuzzy
match cost (low fuzzy match score). With this boost, the igree of the baseline system

can reach 0.85, demonstrating that a proper thresholdifugp§ match scores can be used
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Figure 4.2: Precision Changes with Confidence Level

effectively to discriminate the recommendation of the TMffom the recommendation of
the SMT output.

However, using the TM information only does not always finel dasiest-to-edit trans-
lation. For example, an excellent SMT output should be renended even if there exists a
good TM hit (e.g. fuzzy match score is 0.7 or more). On therdtlaed, a misleading SMT
output should not be recommended if there exists a poor &itlu§M match (e.g. fuzzy
match score is 0.2 or below).

Our system is able to address these complications as itgacates features from the
MT and the TM systems simultaneously. Figure 4.2 shows tbtit the &s and the AL
settings consistently outperformvi- indicating that our classification scheme can better
integrate the MT output into the TM system than our naivedaseline. The advantage of
our method over the TM-cutoff-basediFbaseline is further confirmed by human evalua-
tion (cf. Chapter 6).

The S feature set does not perform well when the confidence levatti@bove 0.85
(cf. the descending tail of thel 8urve in Figure 4.2). This might indicate that this feature

set is not reliable enough to extract the best translatibtmyvever, when the requirement
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on precision is not that high, and the MT-internal featunesret available, it would still
be desirable to obtain translation recommendations wighbillack-box $ features. The
difference between¥& and ALL is generally small, but AL performs steadily better in

the range [0.5, 0,8].

Table 4.4: Recall at Fixed Precision
Recall

SYys @85RREC 88.12:1.32
SYs @90REC 52.73:2.31
SI @85RREC 87.33t1.53
ALL @85RREC 88.5H-1.95
ALL @90REC 51.92+-4.28

4.5.5.2 Precision Constraints

In Table 4.4 we also present the recall scores at 0.85 andr@c¥sn for &s, SI and
ALL models to demonstrate our system’s performance when therdnard constraint on
precision. Note that our system will return the TM entry whleare is an exact match, so
the overall precision of the system in a typical mature TMiemment is well above the
precision score we set here, as a significant portion of thenmhto be translated will have
a complete match in the TM system.

In Table 4.4 for MODEL@K, the recall scores are achieved when the prediction{preci
sion is better than K with 0.95 confidence. For each modetjigion at 0.85 can be obtained
without a very big loss in recall. However, if we want to demdnrther recommendation
precision (corresponding to a more conservative recomatardof SMT output), the re-
call level will begin to drop more rapidly. If we use only sgst-independent featuresijS
we cannot achieve as high precision as with other modelsiéwansacrifice more recall.

Based on these results, the users of the integrated TM/Me&rsysan choose between
precision and recall according to their own needs. As gpetliresholds does not involve re-
training of the SMT system or the SVM classifier, the user Ie &bdetermine this trade-off

at runtime.
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4.6 Edit Statistics Using the Recommendation Model

A natural question regarding the integration models is tvretecommendation or rerank-
ing reduces the effort of the translators and post-editefter reading the recommended
segments or reranked list, will they translate/edit less tthey would otherwise have to?
In this section, we try to approximate the amount of reducest-pditing effort using the
edit operations in the TER automatic MT evaluation metrice Will continue to present
evidence from human evaluation that supports validatioth@efconclusions reported here
in Chapter 6. Eventually, we plan to test this method in a $clle industrial TM and

post-editing environment.

Table 4.5: Edit Statistics when Recommending MT Outputs las€ification, confi-

dence=0.5
Insertion Substitution Deletion Shift

MT 0.9849+ 0.0408 2.288H 0.0672 0.8686t 0.0370 1.250Gt 0.0598
T™M 0.77624+ 0.0408 4.5841 0.1036 3.1567 0.1120 1.2096t 0.0554

Table 4.6: Edit Statistics when NOT Recommending MT OutpuiSlassification, confi-

dence=0.5
Insertion Substitution Deletion Shift

MT 1.0830+ 0.1167 2.2885t 0.1376 1.0964t 0.1137 1.538H 0.1962
TM 0.75544+0.0376 1.5524 0.1584 1.009Gt 0.1850 0.473H 0.1083

Table 4.7: Edit Statistics when Recommending MT Outputs las€ification, confi-

dence=0.85
Insertion Substitution Deletion Shift

MT 1.1665+ 0.0615 2.7334t 0.0969 1.027Z 0.0544 1.5549t 0.0899
TM 0.88944+ 0.0594 6.0085: 0.1501 4.177G£0.1719 1.672°# 0.0846

4.6.1 The Statistics Using the Recommendation Model

For the recommendation model, we provide the statistich®htumber of edits for each
sentence with 0.95 confidence intervals, sorted by TER gpdést Statistics of positive

instances in classification (i.e. the instances in which Mipaot is recommended over the
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TM hit) are given in Table 4.5. These statistics are the geeaumber of edits on the
segment level.

When an MT output is recommended, its TM counterpart wiluiegja larger average
number of total edits, as we expect. If we drill down, however also observe that many
of the saved edits come from tisbstitutioncategory, which is the most costly operation
from the post-editing perspective. In this case, the recentad MT output actually saves
more effort for the editors than what is shown by the TER scdtes reflects the fact that
often fuzzy match-based TM outputs are not actual tramsiatiand need heavier editing.

Table 4.6 shows the statistics of negative instances imsiilzegion (i.e. the instances
in which MT output is not recommended over the TM hit). In thise, the MT output
requires considerably more edits than the TM hits in termalldbur TER edit types, i.e.
insertion, substitution, deletion and shift. This showet tome high-quality TM matches

can be very useful as translations in their own right.

4.6.2 The Statistics on Recommendations of Higher Confideac

We present the edit statistics of recommendations withdrigbnfidence in Table 4.7. Com-
paring Tables 4.5 and 4.7, we see that if recommended wittkehigonfidence, the MT
output will need substantially fewer edits than the TM oaitjgug. 3.28 fewer substitutions
on average.

From the characteristics of the high confidence recommenmdatwe suspect that these
mainly comprise harder to translate (i.e. different from 8MT training set/TM database)
sentences, as indicated by the slightly increased edittpas on the MT side. TM pro-
duces much worse edit-candidates for such sentences, ieatettiby the numbers in Ta-
ble 4.7, since TM does not usually have the ability to autacally reconstruct an output

through the combination of several segments.
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4.6.3 A Recommendation Example

From the recommendation precison/recall evaluation aacafiproximated edit statistics,
we can see that the translation recommendation model ig@lkect the segment that is
most suitable to post-edit from the TM and the MT output fansiators, and reduce their
workload in a TM environment. Before we review related wonkl @onclude this chapter,
we walk through the example at the beginning of this chaptesee how the translation
recommendation paradigm can help translators in action.
Table 4.8: An Example of TM and MT Output - Revisited

Source Restore over existing virtual machines .

TM Source  Check restore over existing filegFuzzy Match Score: 0.5)

TM Target  Cochez la case restaurer sur les fichiers existants .

MT Output  Restaurer des machines virtuelles existant@onfidence: 0.8571)
Reference  Restaurer sur les machines virtuelles existantes .

In Table 4.8, when we have a source segment to translate, @ddith a TM fuzzy
match with fuzzy match score 0.5, and an MT output. Our recendar compares these
two systems, and recommends the MT output with confidencerQ.8

Based on the threshold setting of the translator, she chereitork on the MT or TM
output: given the results in Table 4.7, setting the threshol0.85 is very safe for most
translators, in the sense that they are very unlikely to Mgk quality TM hits. In this
example, the translator can benefit from the MT output whichfibetter quality if the
threshold is set to 0.85. However, most conservative dms can still set the threshold

even higher, if they feel more comfortable in the traditiohisl environment.

4.7 Related Work

To the best of our knowledge, the work reported in this chaptie first work that performs
recommendation between TM and MT output and produces a meeoittation confidence
score. Previous research relating to this work mainly fesum predicting MT quality.

The first strand is confidence estimation for MT, initiated[Dgffing et al., 2003], in
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which posterior probabilities on the word graph or N-besttdre used to estimate the quality
of MT outputs. The idea is explored more comprehensivel\Biatg et al., 2004]. These
estimations are often used to rerank the MT output and toraggi it directly. Extensions
of this strand are presented in [Quirk, 2004] and [Ueffing &ley, 2005]. The former
experimented with confidence estimation with several diffieé learning algorithms; the
latter uses word-level confidence measures to determin¢hesha particular translation
choice should be accepted or rejected in an interactivelaaon system.

The second strand of research focuses on combining TM imdbom with an SMT
system, so that the SMT system can produce better targetdgegputput when there is an
exact or close match in the TM [Simard and Isabelle, 2009is Tiine of research is shown
to help the performance of MT, but is less relevant to our tagkis chapter.

A third strand of research tries to incorporate confidencasuees into a post-editing
environment. To the best of our knowledge, the first papehis érea is [Specia et al.,
2009a]. Instead of modeling on translation quality (oftezasured by automatic evaluation
scores), this research uses regression on both the autesoaties and scores assigned by
translators. The method is improved in [Specia et al., 2)0&hich applies Inductive
Confidence Machines and a larger set of features to moddlatans’ judgement of the
translation quality between ‘good’ and ‘bad’, or among élevels of post-editing effort.

Our research is more similar in spirit to the third strandwweer, we use outputs and
features from the TM explicitly; therefore instead of hayto solve a regression problem,
we only have to solve a much easier binary prediction probldrich can be integrated into
TMs in a straightforward manner. Because of this, the pia@tiand recall scores reported
in this paper are not directly comparable to those in [Spetil., 2009b] as the latter are

computed on a pure SMT system without a TM in the background.
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4.8 Summary

In this chapter we presented a classification model to iateg8MT into a TM system, in
order to facilitate the work of translators. In so doing wadiiad the problem of MT quality
estimation as binary prediction instead of regression.mFtioe translators’ perspective,
they can continue to work in their familiar TM environmengeuthe same cost-estimation
methods, and at the same time benefit from the power of stdteart MT. We used SVMs
to make these predictions, and used grid search to find heBErkernel parameters.

We explored features from inside the MT system, from the TMweall as features
that make no assumption on the translation model for thepiclassification. With these
features we made glass-box and black-box predictions. riErpats show that the models
can achieve 0.85 precision at a level of 0.89 recall, and bigdrer precision if we sacrifice
more recall. With this guarantee on precision, our methadbeaused in a TM environment
without changing the upper-bound of the related cost estima

Finally, we analyzed the characteristics of the integratgiputs. We presented results
to show that, if measured by number, type and content of edif&€R, the recommended
sentences produced by the classification model would biogitaess post-editing effort
than the TM outputs.

We will extend this model in the following ways. First of atlur current model can
handle only 1-best outputs from TM and SMT, while both thealzation and the SMT
communities have benefited from k-best outputs, so it ishvditle to extend the recom-
mendation model to the k-best case. Secondly, it is usefiglstcthe model in user studies.
A user study can serve two purposes: 1) it can validate tleetafeness of the method by
measuring the actual (as opposed to estimated) amounttaffémit it saves, and 2) it can
help the creation of human annotated gold standards for tiaitobetter models. Finally,
the current model integrates TM and MT systems on the seglaesl; we will also ex-
plore sub-segment level models that can further boost firdegicy of post-editing. We

will report advances in these directions in the chaptersitovf.
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Chapter 5

TM-MT Integration as Translation

Reranking

5.1 Introduction?

In the previous chapter, we presented a translation recomatien model that automati-
cally selects the better segment from the TM and the MT outputhe translator to post-
edit. Translation recommendation has the advantage @inglhigh quality MT outputs,
while keeping the TM environment (and its cost estimatiotaét. However, the translation
recommendation paradigm is not able to employ k-best kgksch modern TM and MT
systems can both produce.

With this in mind, we continue to investigate a deeper iradgn of TM and MT
paradigms: we now study reranking models that can intededttest outputs from TM
and MT systems. Presenting k-best output in a TM can provas-@ditors with more
translation options, though reading and differentiatingpag closely related options may
result in substantial cognitive overhead. This overheadbeaalleviated sigificantly if we
can rank translations of better quality higher.

In Table 5.1, we compare the k-best output of the TM and the &tesn on the same

Part of the research presented in this chapter has beersipetblin [He et al., 2010d]
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Table 5.1: An Example of TM and MT 3-best Output

Source Restore over existing virtual machines .

TM 3-BEST

k=1 Cochez la case restaurer sur les fichiers existants .

k=2 Suppression de machines virtuelles existantes .

k=3 Restaurer sur les documents existants .

MT 3-BEST

k=1 Restaurer des machines virtuelles existantes .

k=2 Restauration sur des machines virtuelles existantes .

k=3 Restaurer par-dessus des machines virtuelles existantes .

Reference  Restaurer sur les machines virtuelles existantes .

segment as in our translation recommendation example ipt€hd. If we measure the
post-editing effort on the output segments using the TEReseee find that all MT outputs
are easier to post-edit than the top TM output (TER 0.29 foval segments vs. 0.57 for
the best TM segment). The second best TM output is also wditing. Although it has a
higher TER score than the MT outputs, its errors are eas\ettify in an color-coded envi-
ronment Suppression dat the beginning of the segment). Our translation rerankingel
reranks the combined TM-MT k-best list and aims to rank sua$ies-to-edit segments
higher.

The rest of the chapter is organized as follows: we outlireetthnslation reranking
paradigm in Section 5.2. The precise formulation of the |gnol(using Ranking SVM) and
experiments with the ranking models are presented in Seci@® and 5.4, respectively. We
analyze the post-editing effort approximated by the TERrim@t Section 5.5. We review

related research in Section 5.6, and summarize in Section 5.

5.2 The Translation Reranking Paradigm

In the previous chapter, the recommender is a binary p@dibat works on the 1-best
output of the MT and the TM system, presenting either the onie other to the post-
editor. In this chapter, we develop the idea further by mgvitom binary prediction to

ranking. We use a reranking model to merge the k-best ligtseafvo systems, and produce
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a ranked merged list for post-editing. As the list is an drettversion of the TM’s k-best
list, the TM related assets are preserved and TM-based stistation is still valid as an
upper bound.

More specifically, we recast SMT-TM integration as a rankingblem, where we apply
the Ranking SVM technique to produce a ranked list of trdizgia combining the k-best
lists of both the MT and the TM systems. We use features inuigo® of the MT and the
TM system for ranking, so that outputs from MT and TM can hésedame set of features.
Ideally the translations should be ranked by their assedipbst-editing efforts, but given
the very limited amounts of human annotated data, we use tamatic MT evaluation
metric, TER [Snover et al., 2006], which is specifically desid to simulate post-editing

effort to train and test our ranking model.

SMT
Models

Translation

Memory

K-Best N-Best
List TM System MT System List
= '
New
»| N+K
= Best _

List R
New Post-Editing

K Environment
Reranking the

N+K Best List

Figure 5.1: The Translation Reranking Paradigm

We depict the Translation Reranking model in Figure 5.1 elttke translation recom-

mendation model, we have both the SMT system and the TM syatehe backend. The
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main difference is that in the translation reranking motte, reranker will receive k-best
list from the systems, rerank them, and provide a new k-bsistd the translator. The

translator can choose the best translation from the redaligtdby herself.

5.3 Ranking SVM for SMT-TM Integration

5.3.1 Problem Formulation with Ranking SVM

SVMs are proposed as binary classifiers in [Cortes and Vagdi®i®5], and were not de-
signed to solve ranking problems in the original settingwieeer, by modifying the training
objective and the constraints, many alternative formafetiof SVMs have been proposed
for different types of problems. In this chapter, we leverdige ranking SVM algorithm
in [Joachims, 2002] to extend our translation recommeadatiodel to handle the rank-
ing case. The idea of the ranking SVM is to produce a rankitigat has the maximum
Kendall's 7 coefficient with the the gold standard rankirig
Kendall'sT measures the relevance of two ranking&:,, r,) = ﬁ—jrg, whereP and(@
are the amount of concordant and discordant pairg @ndr;,. In practice, this is done by
building constraints to minimize the discordant p@pksFollowing this basic idea, we show
how Ranking SVM can be applied to MT-TM integration as folkow
Assume that for each source sentenc#e have a set of outputs from MV}, and a
set of outputs from TMT . If we have a ranking(s) over translation outputs! | J T where
for each translation output € M T, (d;, d;) € r(s) iff d; <, () d;, we can rewrite the
ranking constraints as optimization constraints in an S¥Min Eq. (5.1).
glll)ré %WTW +C Z £
subject to:

V(dz,dj) (S 7’(51) : W((I)(Sl,dz) — (I)(Sl,dj)) >1- gi,j,l (51)

V(di,dj) € (sn) : W(P(Sn,di) — P(sn,dj)) =1 —&ijm

&ijke =0
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where® (s, d;) is a feature vector of translation outpijtgiven source sentencg,. The
Ranking SVM minimizes the discordant number of ranking$wlie gold standard accord-
ing to Kendall'st.

As in Chapter 4, we perform our experiments with the Radiadi8&unction (RBF)

kernel.

5.3.2 Elements of the Reranking Model

Our reranking model merges the k-best list from TM and MT todoice a new list, which
aims to rank segments that are more suitable for post-gdiigther, so that the post-editors
are offered more and better translation options. The mani@ists of three elements: The

MT k-best list, the TM k-best list, and the reranker.

5.3.2.1 The MT k-best List

The k-best list of the SMT system is generated during decpdatording to the internal
feature scores. The features include language and trimmstabdel probabilities, reorder-

ing model scores and a word penalty.

5.3.2.2 The TM k-Best List and the Fuzzy Match Score

The k-best list of the TM system is generated in descendingyfiatch score. The fuzzy
match cost [Sikes, 2007] is the similarity of the source seces used in translation mem-

ories, which is the same as we use in Chapter 4.

5.3.2.3 The Reranker

Based on Ranking SVMs [Joachims, 2002] that we introducegieiction 5.3, which have
already been applied successfully in machine translatatuation [Ye et al., 2007], we
build a reranker to rerank a merged list of MT and TM outputsl produce a new reranked

k-best list.
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5.3.3 The Feature Set

In the previous chapter, we explored using features bothn tiee internals of the TM and
the MT system, and features that are independent of thensgsté/hen building features
for the Ranking SVM, however, we are limited to features @ratindependent of the MT
and TM systems: we need a set of features that are both aplglittathe TM outputs and
the MT outputs in reranking, while in recommendation we camaet different features
from TM and MT outputs simultaneously.

For the translation reranking model, we experiment withesysindependent features
that capture translation fluency and adequacy. For morel,det use source-side LM
scores, target-side LM scores, the pseudo-source fuzzghmnsabre and the IBM model 1

Score.

» Source-Side Language Model Score and PerplexityWe compute the LM score
and perplexity of the input source sentence on an LM trainedhe source-side

training data of the SMT system.

» Target-Side Language Model Perplexity We compute the LM probability and per-
plexity of both the MT and TM outputs.

» The Pseudo-Source Fuzzy Match ScoréWe back-translate the output to obtain a
pseudo source sentence. We compute the fuzzy match scavednmethe original

source sentence and this pseudo-source.

* The IBM Model 1 Score. We compute the IBM Model 1 score [Brown et al., 1993],
which serves as a rough estimation of how good a translatisron the word level,

for both the TM and the MT output.

5.4 Reranking Experiments

As we did in Chapter 4, before we estimate the post-editifaytehe reranking model can

save, we first evaluate whether ranking SVM and our featureae model the segment
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ranking problem effectively.

5.4.1 The Experimental Settings

We use the same experimental setting as in Chapter 4 to ruexperiments: we use the
51K sentence-pair English—French translation memory f&gmantec, randomly selected
43K to train an SMT system and translated the English sidbefémaining 8K sentence
pairs.

We use a standard log-linear PB-SMT model [Och and Ney, 288#%he SMT engine:
Giza++ implementation of IBM word alignment model?4the refinement and phrase-
extraction heuristics described in [Koehn et al., 2003fimume-error-rate training [Och,
2003], ab-gram language model with Kneser-Ney smoothing [Kneser ldag, 1995]
trained with SRILM [Stolcke, 2002] on the French side of tfzérting data, and Moses [Koehn
et al., 2007] to decode. We train a system in the oppositetitire using the same data to
produce the pseudo-source sentences. The only differemretiie translation recommen-
dation experiments is that we obtain k-best lists from thedrd the MT systems, and use

them as input for the SVM-based reranker.

5.4.2 Training, Tuning and Testing the Ranking SVM

We run training and prediction of the Ranking SVM in 4-folebss validation. We use the
SVMIight? toolkit to perform training and testing.

We optimizeC' (cost) andy (radius) meta-parameters of the SVM and the RBF kernel
using a brute-force grid search before running cross-&atid and maximize precision at
top-5, with an inner 3-fold cross validation on the (outeo)d-1 training set. We search
within the rangg2~%, 2°] for both C and-, with a step size of 2 on the exponent.

We rerank the combined list produced with the top-5 distiutputs from both systems.

2More specifically, we performed iterations of Model 15 iterations of HMM, 3 iterations of Model 3,
and3 iterations of Model 4.
3http://svmlight.joachims.org/
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5.4.3 The Gold Standard

Gold Standard %

Figure 5.2: MT and TM’s percentage in gold standard

Figure 5.2 shows the composition of translations in the géohdard. Each source
sentence is associated with a list of translations from twoes, namely MT output and
TM matches. This list of translations is ranked from best twsivaccording to TER scores.
The figure shows that over 80% of the translations are fromMfiesystem if we only
consider the top-1 translation. As the number of top trdizsla considered increases, more
TM matches can be seen. On the one hand, this does show a &ge guality between
MT outputs and TM matches; however, it also reveals that wehave to ensure two
objectives in ranking: the first is to rank the 80% MT transias higher and the second is

to keep the 20% ‘good’ TM hits in the Top-5. We design our esabn metrics accordingly.

5.4.4 Evaluation Metrics

Unlike translation recommendation which chooses the basslation for the post-editor,
translation reranking tries to provide post-editors witbrentranslation options. The benefit
of the reranking model is that if the better translationsrarked higher, post-editors will be
able to find them more easily, compared to an ordinary TM systehere the first candidate
will always be the top TM hit. Therefore, the top TM outputhe fpivot in our evaluation, in
the sense that the precision and recall numbers we repagfaeeting whether the reranked
list can rank higher those translations that are better tth@top TM output (the pivot).
Based on this observation, we introduce the idegelgvanttranslations, and our eval-

uation metrics: PREC@k and HIT@Kk.
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5.4.4.1 Relevant Translations

We borrow the idea ofelevancefrom the IR community to define the idea of translations
worthy of a high ranking. For a source sentescehich has a top TM hit, we define
an MT/TM outputm as relevant, if’ ER(m) < TER(t). According to the definition,
relevant translations should need no more post-edits ti@original top hit from the TM

system. Clearly the top TM hit is always relevant accordmthis definition.

5442 PREC@k

We calculate the precision (PREC@K) of the ranking for eadédumn. Assuming that there
aren relevant translations in the top-k list for a source sergenwe have PREC@k n/k
for s. We test PREC@K, fok = 1...10, in order to evaluate the overall quality of the

ranking.

5.4.4.3 HIT@k

We also estimate the probability of having one of the releveanslations in the top k,
denoted as HIT@Kk. For a source sentencelIT@Kk is equal to 1 if there is at least one
relevant translation in the top k, and O otherwise. This messsthe quality of the best
translation in the top k, which is the translation the patites will find and work on if she

reads till the ki place in the list. HIT@k is equal to 1.0 at the end of the list.

5.4.5 Experimental Results

In Table 5.2 we report PREC@k and HIT@k foe= 1. .. 10. The ranking receives 0.8747
PREC@1, which means that most of the top-ranked transtatiave at least the same
quality as the top TM output. We note that precision remabwva 0.8 tillk = 5, leading
us to conclude that most of televanttranslations are ranked in the top-5 positions in the
list.

Using the HIT@k scores we can corroborate this argumentigtiher. The HIT@k

score grows steadily from 0.8747 to 0.9941 foe 1...6, so most often there will be at
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Table 5.2: PREC@k and HIT@k of Ranking
PREC % HIT %

87.441.60 87.441.60
85.42:1.07 93.36-0.53
84.13t0.94 95.74-0.61
82.79:0.57 97.08:-0.26
81.34:0.51 98.04-0.23
79.26:0.59 99.410.25
74.99£0.53 99.66-0.29
70.872-0.59 99.84-0.10
67.23:0.48 99.94-0.08

0 64.06:0.46 100.6-0.00

W?\‘W?\‘W?I\I_WXWX
P OoO~NO UL, WNPE

least onerelevanttranslation in the top-6 for the post-editor to work with.té&fthat there
is very little room left for improvement.

In sum, both the PREC@k scores and HIT@k scores show thatatiiéng model
effectively integrates the two translation sources (MT @M) into one merged k-best list,

and ranks relevant translations higher.

Table 5.3: PREC@k - MT and TM Systems
MT % ™ %
85.874:1.32 100.6-0.00
82.52:1.60 73.58:1.04
80.05:1.11 62.451.14
77.92:0.95 56.111.11
76.22£0.87 51.780.78

W?\‘ﬁ?\‘?\_
a b wN Pk

To measure whether the ranking model is effective comparpdrie MT or TM outputs,
we report the PREC@Kk of those outputs in Table 5.3. On theatefthe PREC numbers
if we only rely on the Top-5 MT outputs; on the right are the rinars using only the Top-
5 TM outputs. We see that the combined and reranked resulfakite 5.2 consistently
outperform the results in Table 5.3, indicating that outtesysclearly outperforms these
two simple baselines.

The TM outputs alone are generally of much lower quality tt@MT and Ranked
outputs, as is shown by the precision scoreskfoe 2...5. However, TM translations

obtain 1.0 for PREC@1 according to the definition of the PRE(Cwation. Note that
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this does not mean that those outputs will need less postgdcf. Section 5.5.1); rather,
it indicates that each one of these outputs meets the lowesptable criterion of being

relevant.

Table 5.4: Edit Statistics on Ranked MT and TM Outputs - Siriggst
Insertion Substitution Deletion Shift
TM-Topl  0.7554+ 0.0376 4.2461 0.0960 2.9173+0.1027 1.1275 0.0509
MT-Topl  0.99594+0.0385 2.2793t 0.0628 0.8940k 0.0353 1.2821 0.0575
Rank-Topl 1.0674-0.0414 2.6990+ 0.0699 1.1246+ 0.0412 1.2800t 0.0570
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Table 5.5: Edit Statistics on Ranked MT and TM Outputs - Top 3

Insertion

Substitution

Deletion

Shift

TM-Best-in-Top3

TM-Mean-Top3

0.424% 0.0250
0.6718t 0.0200

3.7395E 0.0887
5.1428t 0.0559

2.956H 0.0966
3.6192t 0.0649

0.9738t 0.0505
1.3233t 0.0310

MT-Best—in-Top3

MT-Mean-Top3

0.7696- 0.0351
1.1296: 0.0229

1.9216t 0.0610
2.4405t 0.0368

0.7706t 0.0332
0.934H 0.0209

1.0842t 0.0545
1.3794 0.0344

Rank-Best-in-Top3 0.817& 0.0355

Rank-Mean-Top3

1.0942 0.0234

2.0744+ 0.0608
2.743'# 0.0392

0.841Gt 0.0338
1.0786t 0.0231

1.0399t 0.0529
1.3309t 0.0334

Table 5.6: Edit Statistics on Ranked MT and TM Outputs - Top 5

Insertion Substitution Deletion Shift
TM-Best-in-Top5 0.4239- 0.0250 3.7319-0.0885 2.9552-0.0967 0.9673k 0.0504
TM-Mean-Top5 0.6143-0.0147 5.5092: 0.0473 3.945H4 0.0521 1.373% 0.0240
MT-Best-in-Top5 0.7690: 0.0351 1.9163: 0.0610 0.7685: 0.0332 1.0811 0.0544

MT-Mean-Top5

1.1912- 0.0182

2.5326t 0.0291

0.948# 0.0165

1.4305t 0.0272

Rank-Best-in-Top5
Rank-Mean-Top5

0.7244 0.0338*
1.117& 0.0181

1.8887 0.0598
2.877# 0.0312

0.7562t 0.0327
1.1585t 0.0200

0.9705t 0.0515*
1.3675t 0.0260




5.5 Edit Statistics Using the Reranking Model

In this section, we move on to approximate the post-editifigrteassociated with the
reranking model using TER operations. We report the resultthe Top-1/3/5 candidates
of the reranked lists to reflect the performance of the magiréble candidate as well as

the overall quality of the list.

5.5.1 Top-1 Edit Statistics

We report the results on the 1-best output of TM, MT and oukirapsystem in Table 5.4.
In the single best results, it is easy to see that the 1-béptibfrom the MT system
requires the least post-editing effort. This is not suipggiven the distribution of the gold
standard in Section 5.4.3, where most MT outputs are ofbgtiality than the TM hits.
Moreover, since TM translations are generally of much loguality as is indicated by
the numbers in Table 5.4 (e.gv 2x as many substitutions and 3x as many deletions
compared to MT), unjustly including very few of them in thekang output will increase
loss in the edit statistics. This explains why the rankingleidnas better ranking precision
in Tables 5.2 and 5.3, but seems to incur more editing efftotvever, in practice it is likely

that post-editors will be able to dismiss an obviously ‘badhslation very quickly.

5.5.2 Top-k Edit Statistics

We report edit statistics of the Top-3 and Top-5 outputs iblds5.5 and 5.6, respectively.
For each system we report two sets of statistics: the Betttisgcs calculated on the best
output (according to TER score) in the list, and the Meanatistics calculated on the
whole top-k list.

The Mean- numbers allow us to have a general overview of thkirrg quality, but
this is strongly influenced by the poor TM hits that can easédyneglected in practice. To
control the impact of those TM hits, we rely on the Best- nuralie estimate the edits

performed on the translations that are more likely to be sepbst-editors, provided that
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they can identify the best translation in the top-k list.

In Table 5.5, the ranking output’s edit statistics are aldeethe MT output than the
Top-1 case in Table 5.4. Table 5.6 continues this tendeneyhich the Best-in-Top5 Rank-
ing output requires marginally few&ubstitutiorandDeletionoperations and significantly
fewer Insertion and Shift operations (starred) than its MT counterpart. This shoves$ th
when more of the list is explored, the advantage of the rankiodel — utilizing multiple
translation sources — begins to compensate for the podaiigie number of edits required
by poor TM hits, and finally leads to reduced post-editingrff

There are several explanations to why the relative perfoomaf the ranking model
improves wherk increases, as compared to other models. The most obvioleneatipn is
that a single poor translation is less likely to hurt editistecs on a k-best list with a larger
k, if most of the translations in the k-best list are of goodlifpiaWe see from Tables 5.2
and 5.3 that the ranking output is of better quality than tiedvid TM outputs with regard
to precision. For a largek, the small number of incorrectly ranked translations ass le
likely to be chosen as the Best-* translation and negatiaéfgct the Best-* numbers.

A further reason is related to our ranking model which optesion Kendall's- score.
Accordingly the output might not be optimal when we evalibhteTop-1 output, but it will
behave better when we evaluate on the whole list. This isialaocordance with our aim,
which is to enrich the TM with MT outputs and help the posttediinstead of choosing

the 1-best translation for the post-editor.

5.5.3 Discussion on the Relative Performance of TM and MT Ougduts in

Reranking

One of the interesting findings from Tables 5.4 and 5.5 is #élcabrding to the TER edit

statistics, the MT outputs generally need a smaller numbedlits than the TM and Ranking

outputs. This certainly confirms the necessity to integkéiteinto today’s TM systems.
However, this fact should not lead to the conclusion that HMsuld be replaced by

MT completely. First of all, all of our experiments excludeaet TM matches, as those
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translations will simply be reused and not translated. WHiis is a realistic setting in
the translation industry, it removes all sentences for Wwhie TM works best from our
evaluations.

Furthermore, Table 5.6 shows that the Best-in-Top5 Rankimgut performs better
than the MT outputs, hence there are TM outputs that lead wedlesr number of edits. As
k increases, the ranking model is able to better utilize thhegsuts.

Finally, in this task we concentrate on ranking useful tlaiens more highly in the
k-best lists, but we are not interested in how very poor tediosis are ranked. A ranking
SVM optimizes on the ranking of the whole list, which is slighdifferent from what we
actually require when calculating edit statistics. Ondampts to use other optimization
techniques that can make use of this property to obtain rbtetek edit statistics for a
smaller k. Another option is to perform regression directlythe number of edits instead

of modeling on the ranking.

5.5.4 A Reranking Example

Before we review related work and conclude, we walk throlgheixample at the beginning
of this chapter to see how the reranking model works in aipg@bn environment. For the

example in Table 5.7, our reranker will generate the new Jtipt as in Table 5.8.

Table 5.7: An Example of TM and MT 3-best Output — Revisited

Source Restore over existing virtual machines .

TM 3-BEST

k=1 Cochez la case restaurer sur les fichiers existants .

k=2 Suppression de machines virtuelles existantes .

k=3 Restaurer sur les documents existants .

MT 3-BEST

k=1 Restaurer des machines virtuelles existantes .

k=2 Restauration sur des machines virtuelles existantes .

k=3 Restaurer par-dessus des machines virtuelles existantes .

Reference  Restaurer sur les machines virtuelles existantes .

As we can see, the new Top-3 list works as we expect. It rarks$ojn MT output at

the top place. From the translator’s perspective, thisdeed the translation that requires
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Table 5.8: An Example of TM and MT 3-best Output — New Top-3
ORIGIN  Output Score
MT k=1 Restaurer des machines virtuelles existantes . -0.4645
MT k=2 Restauration sur des machines virtuelles existantes0.2620
TM k=2 Suppression de machines virtuelles existantes . -0.2602

minimal effort: the translator only needs to change the tioncword “des to “sur les.

It is also worth noting that the one TM segment that transldle tail of the segment
correctly is also kept in the new Top-3 list. If the transtai® not satisfied with the top
2 MT translated segments, she can still work on the TM segmEmis demonstrates the
translation reranking model’s capability of preservinduadle TM assets for use in the

translation workflow.

5.6 Related Work

The work presented in this chapter is an extension of the \wotle previous chapter, the
aim of which is to integrate high confidence MT outputs inte M, so that the “good”
TM entries will remain untouched. In the previous chapteg,recommend SMT outputs
to a TM user when a binary classifier predicts that SMT outptgsmore suitable for post-
editing for a particular sentence.

The contribution we made in this chapter is that we do nottlourselves to the 1-best
output but try to produce a k-best output in a ranking modehe Tanking scheme also
enables us to show all TM hits to the user, and thus furtheept® the TM assets.

There has also been work to improve SMT using the knowledwge the TM. In [Simard
and Isabelle, 2009], the SMT system can produce a bettesiataon when there is an exact
or close match in the corresponding TM. They use regressipp@t Vector Machines to
model the quality of the TM segments. This is also relateduioveork in spirit, but our
work is in the opposite direction, i.e. using SMT to enrich TM

Moreover, our ranking model is related to reranking [Sheal.e2004] in SMT as well.

However, our method does not focus on producing better fLteasslation output for an
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SMT system, but on improving the overall quality of the kides that TM systems present
to post-editors. Some features in our work are also difterenature to those used in MT
reranking. For instance we cannot use N-best posterioesas they do not make sense

for the TM outputs.

5.7 Summary

In this chapter we present a ranking-based model to inle@MT into a TM system, in
order to facilitate the work of post-editors. In such a mode¢ user of the TM will be
presented with an augmented k-best list, consisting ostasions from both the TM and
the MT systems, and ranked according to ascending progpeuist-editing effort.

From the post-editors’ point of view, the TM remains inta&hd unlike in the binary
translation recommendation, where only one translaticomemendation is provided, the
ranking model offers k-best post-editing candidates, Emgkthe user to use more resources
when translating. As we do not actually throw away any tratieh produced from the TM,
the assets represented by the TM are preserved and the redtiteation of the upper bound
cost is still valid.

We extract system independent features from the MT and Tldutsiiand use Ranking
SVMs to train the ranking model, which outperforms both tid'STand MT's k-best list
w.r.t. precision ak, for all ks.

We also analyze the edit statistics of the integrated k-befiut using the TER edit
statistics. Our ranking model results in a slightly incesheiumber of edits compared to
the MT output (apparently held back by a small number of pddrolitputs that are ranked
high) for a smallerk, but requires fewer edits than both the MT and the TM outpuiafo
largerk.

In the next chapter, we will perform human evaluation todete the translation rec-
ommendation model presented in Chapter 4, and the tramslaranking model presented

in this chapter.
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Chapter 6

Human Evaluation of TM-MT

Integration

6.1 Introduction?

In Chapters 4 and 5, we presented two solutions to promotagpkcation of recent ad-
vances in statistical MT (such as [Koehn et al., 2003]) inltiwalization industry by com-
bining the strengths of both worlds via integrating SMT witks.

Given that most post-editing work is based on TM output, wappse to use recom-
mendation or reranking paradigms, in which the translatait©nly use MT outputs which
are better (in terms of estimated post-editing effort) tladfhits to post-editors. In these
frameworks, post-editors still work with the TM while berfy from (better) SMT out-
puts; the assets in TMs are not wasted and TM fuzzy match s@ae still be used to
estimate (the upper bound of) post-editing labour.

Chapters 4 and 5 recast TM-MT integration as a binary classifin/reranking prob-
lem using Support Vector Machine (SVMs: [Cortes and Vapa®95]) algorithms, per-
form Radial Basis Function (RBF) kernel parameter optitigzato find the optimal meta-

parameters for the classifier, and use the automatic TERati@h metric to simulate post-

Part of the research reported in this chapter has been patlis [He et al., 2010b]
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editing effort.

Despite the fact that the correlations between automaéituation metrics and human
judgements are improving, professional translators arst-@ditors are the ones that hold
the final verdict over the quality of MT/TM integration. Inder to draw grounded con-
clusions on the performance of our translation recomméndaind translation reranking
paradigms, it is essential to conduct user studies to shoetheh or not systems developed
using automatic evaluation metrics are confirmed by humdggments.

We conduct human evaluation on both the recommendationtencetanking models
with professional post-editors. In this chapter we intmglthe evaluation data we use,
the post-editors, the evaluation environment, the questive which we give to the post-
editors after they have completed the evaluation, and tHerpeance of the recommenda-
tion and the reranking models according to the judgementiopost-editors.

The rest of this chapter is organized as follows. We firsbuilice our evaluation setting
in Section 6.2. We then present human evaluation resulte@ananalysis on the translation
recommendtion model and the translation reranking modgkiction 6.3 and 6.4, respec-
tively. We discuss the post-editors’ feedback during thalweation in Section 6.5. We

review related work and summarize this chapter in Sectiofis6d 6.7.

6.2 The Evaluation Setting

6.2.1 Data

We use the translation recommendation system and the datemskeranking system that
we built in Chapter 4 and Chapter 5. We randomly pick 300 segsreom the first fold
test set in the cross-validation data set (cf. Section ¥t6.fierform human evaluation.

For the translation recommendation model, we use all theifes.in Chapter 4, we
also apply the confidence threshold that we describe in €hdptWe choose to use the
confidence level instead of the binary classification resulthat we can evaluate the per-

formance on varying thresholds.
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For the translation reranking evaluation, we use all theufea in Chapter 5.

6.2.2 The Post-editors

Five professional post-editors helped us to complete thidys Four of them are full-time
post-editors, and one is a part-time post-editor. All of dutors are hired through the
localization vendors of Symantec and have experience ittgubsng machine-generated

segments (including TM, Rule-based MT or Statistical MT).

Segment 1/310
Goto: [0 | Go
User: pe001 | Logout

Choose a segment that is most SUITABLE FOR POSTEDITING

English Segment A restore job was submitted, but an hour has passed and the restore job is not complete.
Candidate 1 Le travail de restauration est en cours d'exéecution depuis 12heures.
Candidate 2 Un travail de restauration a été envoye, mais qu'une heure s'est écoulée et le travail de restauration n'est pas terminé.
Equally suitable for post-editing

© Neither is good enough for post-editing. I will translate from scratch

Previous | | Next

Figure 6.1: Interface of the Evaluation Environment

6.2.3 The Evaluation Environment

We design an evaluation environment to present the 300 gingigments translated into
French using the TM and MT systems to the post-editors. Thiea@mment is a web appli-
cation developed in Python with the Django framework.

Each post-editor is given a username and password to loghatsystem. After login,
there is only one English segment together with two Frenahstations shown on each
page. The two French translations are shuffled randomlyasslation candidate 1 and
candidate 2 can both be the MT or the TM output. For the tréinslaecommendation

model, one of these two translations is from TM, and anotedrom MT. However, for

2http://www.djangoproject.com
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the translation reranking model, one translation is thedt-butput of the TM system, and
another is an alternative translation that can either beymed by the TM or the MT system.

As this experiment tries to evaluate the performance of thiéMT integration tech-
nigue, we need to keep it blind: we do not reveal which engeregates which output to
the post-editors. A screenshot of the interface is showngarg 6.1.

The post-editors’ operations in the system are recordddaitime stamp in the database,
which allows us to analyze the time they spend on each segriiéet system allows the
users to log in and out of the environment so that their previgork is not lost. They are
presented with the last segment they worked on once theylagain.

Each post-editor is provided with an introduction to thekthsfore the experiment
begins. Note that the post-editors are asked to choose kense that is most suitable for
post-editing (which is also emphasized in the introductimthe task). The post-editors are
told that even if a French translation does not fully tratestae English segment, they may
still select it because they would spend less time postrgdit into a grammatical French
segment whose meaning would match that of the English segifiee original guidelines
provided to the post-editors can be found in the Appendix.

To control data quality and to measure intra-annotatoretation, we pre-select 10
segments from the 300 and make them appear twice in the amvinat. Therefore the

post-editors are actually presented with 310 segments.

6.2.4 Questionnaire

After they finished rating the 310 segments, the post-eslit@re presented with four ques-

tions:

» Whether they are full-time post-editors,
« If they are full-time post-editors, how long have they wexlas full-time post-editors,

» Whether they have edited MT output professionally,
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» What they think of MT (five choices: no idea, very useful, stimes useful, not

useful, and useless).

6.3 Analysis of Recommendation Performance

In this section we investigate the effectiveness of thestedion recommendation model
according to the judgements of professional post-editd¥e. also compare these results
with the result on a gold standard approximated by TER sdorekow whether it is at all
valid to use automatic evaluation metric scores to appraténpost-editing effort, instead

of human judgement in this task.

6.3.1 Precision and Recall of Translation Recommendation

We measure the precision and recall of the automatic tramsleecommendation, using

the judgements of individual post-editors as a gold stahd#e report the precision and
recall numbers in Table 6.1. The precision can be furtheravegd at the cost of recall,

for which we set the confidence threshold0t@5 in Table 6.2. In these calculations, we
discard the segments which the post-editors choose tddtarisom scratch, as translation
recommendation cannot improve the post-editor's proditgtin such cases, no matter
what it recommends. When the post-editor chooses ‘tie’, gterthine that the TM output

should be preserved, in accordance with the gold standatti@pter 4, where ties on TER
scores are regarded as negative examples in recommendation

Table 6.1: Precision and Recall of Recommendation, IndaidPost-editors, confidence =

0.5
Post-Editor ID Precision Recall

PEO1 0.8812 0.9223
PEO2 0.9315 0.9315
PEO3 0.8945 0.9138
PEO4 0.9123  0.9369
PEO5 0.8734  0.9409

In Table 6.1, the automatic recommendation obtains ovenre@#ll according to all post-
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Table 6.2: Precision and Recall of Recommendation, IndalidPost-editors, confidence =

0.75
Post-Editor ID Precision Recall

PEO1 0.9379 0.7824
PEO2 0.9643 0.7621
PEO3 0.9415 0.7629
PEO4 0.9500 0.7703
PEO5 0.9153 0.7864

editors. The precision of recommendation is always abd®@é.0lable 6.2 suggests that if
post-editors require higher recommendation confidenas translation recommendation
can obtain 0.9 precision at the cost of reducing recall. Widse results on recommendation
precision, there is a rather strong guarantee that therateyMT-TM system will not waste
the assets in the TM system and will not change the upper bofumaiated cost estimation,
even at the sentence level, because the recommended SMifsartg, in fact, more suitable

for post-editing from the post-editors’ perspective.

6.3.2 Precision and Recall on Consensus Preferences

The localization industry might expect even stronger camfie in the recommendation, so
we measure recommendation precision on the segments wiseesis a consensus prefer-
ence towards MT outputs among the post-editors.

To reflect consensus, we first discard the segments whichdfwitg of the post-editors
(more than 3 in this experiment) choose to post-edit fromatsbr For the rest of the re-
maining segments, we consider that MT output should be rewmded if NV post-editors
prefer to post-edit the MT output. Otherwise, we considat the TM output should be
recommended.

We report the precision and recall numbers on a series ofdemde thresholds for
N =3 andN = 4 post-editors in Tables 6.3 and 6.4, respectively.

Table 6.3 shows that if we consider the consensus among 3gibsts, precision is
still high. This demonstrates that our system correlatéte quell with the judgement of

the majority of the post-editors. On the other hand, whemibes to a larger majority of
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Table 6.3: Precision and Recall of Recommendation, ConseRseferences aV = 3

Post-Editors
Threshold Precision Recall

0.5 0.9110 0.9348
0.6 0.9412  0.9043
0.7 0.9606 0.8478
0.8 0.9689 0.6783
0.85 0.9695 0.5522

Table 6.4: Precision and Recall of Recommendation, ConseRseferences aV = 4

Post-Editors
Threshold Precision Recall

0.5 0.8263  0.9420
0.6 0.8507  0.9082
0.7 0.8768  0.8599
0.8 0.8944  0.6957
0.85 0.8931  0.5652

the post-editors/{ = 4), precision begins to drop. Understanding the fact that ian
inherently more complex task than thé = 3 case, we also notice some inconsistency of
judgements between post-editor PEO1 and the other pdsigdivhich also renders it more
difficult to achieve a consensus wheéve= 4 (i.e. all the rest of the editors should have the

same judgement), which thus reduces the number of poskampgles.

6.3.3 The TER score and the Preference of Post-Editors

We measure the TER score of the TM and MT outputs, and sort #emording to the
post-editors’ preferences in Table 6.5. The TER score iglé@rdestance-based metric that
calculates the number of insertions, deletions, subistitatand shifts required to transform
an MT output into a reference sentence, and is thereforeceeghéo be a reasonable auto-
matic metric to approximate post-editing effort. We refdbs results in Table 6.5, where
the scores are averaged among the five post-editors.

In Table 6.5, TER scores are shown to be positively relatest-@ditors’ preferences:
when the post-editor prefers MT, the MT output obtains a loWEeR score, and vice versa.

This validates our method in Chapter 4, where the TER scovsésd to generate a gold
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Table 6.5: TER Scores Sorted by Preference
Post-editors’ Selection
™ MT Tie  Scratch
TM Output 25.00 57.37 19.16 70.33
MT Output 31.85 25.90 20.93 41.74

standard for the translation recommendation system. THesSderes also demonstrate that
the sentences which the users would translate from scraéchhare difficult to translate
in nature than the rest, shown by a big increase in TER pootgpared to when TM/MT-

output (70.33 vs. 25.00/57.37 and 41.74 vs. 31.85/25.9€hasen.

6.3.4 Comparison with a TER-Approximated Gold Standard

We present the precision and recall numbers at recommendetinfidence [0.5, 0.85] in
Figure 6.2. Series PEO1 — PEO5 use the judgement of the ponéisig post-editor as
the gold standard; seriesod®RSENSUS3 and WNSENSUS4 use the consensus of 3 or 4
post-editors as the gold standard; series TER uses the goldasd approximated by TER
scores. By presenting results on human-annotated andcragiproximated gold standards
head-to-head, we are able to see the relationship betwesea ¢gold standards.

In Figure 6.2, we find that although the post-editors havieidiht preferences regarding
MT and TM outputs (i.e. some reuse MT outputs more than othirs trend of precision
on the variation of recommendation confidence remains ainagiilmnong the post-editors,
and also applies to the TER-approximated gold standard ddrees with our approach in
Chapter 4, which uses TER scores to approximate human juglgsrio prepare the training
data and perform evaluation. Note that when calculatingigien, the denominator is the
total number of segments recommended by the recommendatidel, no matter whether
the post-editors have consensus judgements on them oif ma.limit the denominator to
the number of segments where post-editors do reach a caissprgement (on whether
using the MT or the TM output), the precision will be 0.9641L@NSENSUS3 and 0.9848
for CONSENSUs4. We also note that recall drops quite sharply when we raséhreshold

in order to achieve higher precision. Since the majorityhaf better translations in this
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Figure 6.2: Recommendation Precision (upper) and Reaallef) According to Human-
Annotated and TER-Approximated Gold Standards

work come from MT, setting a higher threshold in recommeiodatvill lead us to miss

many better translations.

6.3.5 Accuracy on High Fuzzy Match Segments

The localization industry currently uses fuzzy match s¢orestimate the amount of local-
ization work to be carried out. Specifically, many tranglsfoost-editors set threshold on
the fuzzy match, and only reuse those segments whose fuzohseores are above that

threshold. This can be viewed as a simple baseline settaigebommends MT segments
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when the fuzzy match score is below a certain level.

We report in Table 6.6 the recommendation accuracy of ouretdn order to enable

a direct comparison with this setting. We use the consenkB8spost-editors as the gold

standard of the accuracy calculation.

Table 6.6: Recommendation Accuracy on High Fuzzy Match Sesn
Fuzzy Match Scores

0.5 0.55 0.6 0.65 0.7 0.75 0.8
Conf=0.50 0.8265 0.8049 0.7895 0.7557 0.7414 0.7263 0.7237
Conf=0.55 0.8265 0.8049 0.7895 0.7557 0.7414 0.7263 0.7237
Conf=0.60 0.8316  0.8110 0.7961 0.7634 0.7586 0.7368 0.7237
Conf=0.65 0.8010 0.7744 0.7566 0.7252 0.7414 0.7158 0.6974
Conf=0.70 0.7908 0.7622 0.7434 0.7176 0.7328 0.6947 0.6579
Conf=0.75 0.7296 0.6890 0.6711 0.6565 0.6638 0.6421 0.6053
Conf=0.80 0.6224 0.5732 0.5461 0.5267 0.5517 0.5158 0.4868
Conf=0.85 0.5204 04939 0.4605 0.4351 0.4483 0.4316 0.4211
Baseline Conf.  0.2296  0.2622  0.2829 0.3282 0.3534 0.38980760.
PreferMT/Total 151/196 121/164 109/152 88/131 75/116 58/945/76

In Table 6.6,Baseline Conf.is the accuracy of the recommendation of MT output to

post-editors using the fuzzy match score as a thresholdlifdndenoted byConf=xreports

the accuracy of our recommendation system at confidenserted by fuzzy match levels

from 0.5 to 0.8. We see that our recommendation approacledatms the baseline at any

threshold. This can be partly attributed to the fact that M3tems perform very well on

this task. As is reported in the liiereferMT/Tota) the majority of post-editors consistently

prefer more MT segments than TM segments, even when the fmztgh score of the

corresponding TM segment is above 0.8.

6.3.6 User Behavior

Besides recommendation performance, we are also intdrastbe users’ reaction to the

translation recommendation scheme using this system, lhaswehat they think about the

TM and MT technologies. We report statistics of their bebaalong with their ideas and

comments on TM and MT.
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6.3.6.1 Experience of Post-Editors

We list the years of experience as translators of the pagiredcalong with the number of

sentences they prefer to translate from scratch in our gwpat in Table 6.7, since the

latter is an indication of the willingness to reuse a compgtnerated translation. We also
present the number of MT outputs (out of 300) selected by-gdisbrs to work on.

Table 6.7: Participants’ Experience and Preference
Post-Editor ID Years Scratch MT

PEO1 5 59 193
PEO2 3 11 248
PEO3 12 22 232
PEO4 8 33 222
PEO5 part-time 23 220

The results show that the willingness to reuse automatipubutaries considerably
among post-editors. PEO1 is willing to translate one-fiftithe sentences from scratch in
this experiment, which is more than five-times the numberE®2 This preference does
not correlate well with the years of experience, suggestiag this is more related to the
particular habits of post-editors, rather than to theirezigmnce in the industry. The result

also shows that all post-editors select more MT outputs #-pdit than the other options.

6.3.6.2 Inter-annotator Agreement

To gauge the validity of human evaluation results, we coegbtibe inter-rater agreement
measured by Fleiss’ Kappa coefficient [Fleiss, 1981] whigh assess the agreement be-
tween multiple raters, as opposed to Cohen’s Kappa coeftigdohen, 1960] which works
with just two raters.

Fleiss’ Kappa coefficient for our five post-editorsfid64 + 0.024, indicating a mod-
erate agreement. We also obtained Fleiss’ Kappa coeffitbergach category as shown
in Table 6.8. From this table, we can observe moderate agmtsramong post-editors in
selecting TM or MT output as the most suitable for post-aditiThere is also a moderate

agreement in making their decision to translate from shrattowever, there is only a fair
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agreement in determining whether TM and MT outputs are é&ggalod for post-editing

(“Tie”).

Table 6.8: Annotator agreement for each category
Category Kappa

™ 0.519
MT 0.516
Tie 0.285

Scratch 0.426

6.3.6.3 Intra-annotator Agreement

We have ten duplicate samples in our evaluation intendedeasore the level of intrin-
sic agreement for each post-editor. Both percentage otamrrt and Cohen’s Kappa are
calculated as shown in Table 6.9. From this table, we canrebskat all five post-editors
achieved almost perfect intrinsic agreement, indicativag the evaluation results are highly

reliable.

Table 6.9: Intra-annotator Agreement
Post-Editor ID Agreement Kappa

PEO1 90% 0.87
PEO2 100% 1.0
PEO3 90% 0.87
PEO4 80% 0.73
PEO5 90% 0.87

6.3.6.4 Correlation between Sentence Length and EvaluatioTime

Our evaluation interface is capable of logging the time sjpgnthe post-editors in eval-
uating each sentence. One may expect that post-editors peay snore time in evaluat-
ing longer sentences and less time evaluating shorterresrge We calculated Pearson’s
product moment correlation between the evaluation timesemience length as shown in
Table 6.10. The results appear to be inconclusive: we obsehigh correlation between

the evaluation time and sentence length for PE02 and PEQ&vew, for the other three
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post-editors, there is a low correlation. These inconetusgsults can partly be attributed to
the fact that we did not compel the post-editors to conduit #valuation in one session.
We expect to achieve more conclusive results in future wwhich would happen in a real

working post-editing environment.

Table 6.10: Pearson’s Product Moment Correlation
Post-Editor ID PMCC (r) r-square

PEO1 0.2246 0.0505
PEO2 0.6957 0.4840
PEO3 0.3916 0.1534
PEO4 0.0746 0.0056
PEO5 0.4907 0.2408
Average 0.2274 0.0517

6.4 Analysis of Reranking Performance

Following Section 6.3, in this section we analyze the penfomce of the reranking model
using segments extracted from the same set of data as aabdnitsection 6.2. Due to
resource limitations, we do not measure whether the remgnkiodel has produced correct
complete rankings, as that would need much more effort fardnijudges. Instead, we try
to focus on whether the translation candidates that areretsedit than the original top
TM outputs are actually ranked higher by our reranking mo@nsidering this, we ask
the post-editors to judge between two segments: one is thd Wooutput, and another is
an alternative output from either the MT or the TM system, st tve can learn whether

the reranking model outperforms the 1-best TM output.

6.4.1 Precision and Recall of Translation Reranking

In Table 6.11 we present the precision and recall of favotiveyalternative translation.
Compared to Table 6.1, the precision and recall of the rémgnkodel both decline. (Note
that in Table 6.1, the human-judged precision ranges fr@wn32 to 0.9315, and the recall

ranges from 0.9138 to 0.9409) The precision of the rerankmglel still remains solid
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Table 6.11: Precision and Recall of Reranking, IndividuastReditors
Post-Editor ID Precision Recall Scratch

PEO1 0.8345 0.5762 6

PEO2 0.9327 0.5879 86
PEO3 0.8750  0.5583 83
PEO4 0.8250 0.6074 58
PEOS 0.8786  0.5829 16

in Table 6.11, but we observe a larger decline in recall, ftbm 0.9-1.0 range for the
recommendation model to the 0.5-0.6 range in the rerankiogem

We suspect that the reason for this is because we use a smaifdrer of features in
this task, among which the language model-related featuilegherently favor the TM
output and will lead our reranking model to be more conseman favoring MT outputs

over the TM outputs.

6.4.2 Precision and Recall on Consensus Preferences

Table 6.12: Precision and Recall of Recommendation, CauseRreferences of = 3,4

Post-Editors
N Precision Recall

N=3 0.8583 0.5860
N=4 0.7323 0.5886

Following Section 6.3.2, we also calculate the precisiod eatall of the reranking
model against the consensus of post-editors in Table 6 H2tr€nd of the results is similar
to those in Table 6.3 and Table 6.4. In the=3 case the precision and recall calculated
against the judgements of individual post-editors is staioimparing to the baselines, but
the precision drops when it comes A=4, as the impact of the disagreement among the

post-editors becomes a major issue.

Table 6.13: Precision and Recall of Recommendation, CaoseRreferences df = 3
Post-Editors Grouped by the Source of the Alternative Tedios
Source Precision Recall Segments Sys-humaneval-Favor ahkHi@avor
MT 0.8689 0.5824 238 122 182
™ 0.6000 0.7500 62 5 4
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To see how our reranker performs on the segments producedTlgnil the segments
produced by TM respectively, we group the segments wheret3qubtors reach consensus
into two groups according to the source of the alternatimagiation. We then calculate
precision and recall numbers separately within these twoiggs in Table 6.13. We can
interpret the result from three angles: firstly it again aon§ that in our task the outputs
from the MT prevail over those from the TM, as more than hathefk-best MT outputs are
favored over the 1-best TM output; secondly, our model perfosteadily when reranking
the MT outputs which achieves our aim of TM-MT integratiomddfinally, the fact that
post-editors favor many of the segments from the K-best TNM®routput confirms the

necessity to utilize the k-best output in TM-MT integration

6.4.3 The TER Score and the Preference of Post-Editors

As in Section 6.3.3, we measure the TER score of the TM andltdmative outputs, and
sort them according to the post-editors’ preferences inef@li4, where we still average
the scores among the 5 post-editors.

Table 6.14: TER Scores Sorted by Preference
TM-Topl Other Tie  Scratch

TM-Topl 34.99 61.49 32.04 81.76
Other 54.70 36.79 38.18 72.26

In Table 6.14, the trend continues to show that TER is a goedigtor for post-editing
preference, confirming the results in Table 6.5: the outphitlwis preferred by the post-
editors will have the lower TER score. We also note that th&k BEores in this table
are higher than their counterparts in Table 6.5, becauskisrtdsk the top-k outputs are
included, which are supposed to have lower quality than iy I outputs used in the

recommendation model.
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6.4.4 Accuracy on High Fuzzy Match Segments

In Table 6.15 we report the accuracy of ranking choices Vahg the setting in Section
6.3.5. TheSysAccrow reports the accuracy of our ranking system, andBaselinerow
reports the corresponding baseline that uses the fuzzyhmsatre as the choice threshold.
We still see that the reranking system outperforms the mesaehough with a smaller mar-
gin than the binary recommender. This provides furtherewie that the ranking model
does offer better translation options, and can still finddsetanslations from the MT and
TM k-best lists when the TM segment is of high quality.
Table 6.15: Ranking Accuracy on High Fuzzy Match Segments
Fuzzy Match
0.5 0.55 0.6 0.65 0.7 0.75 0.8
SysAcc 0.5471 0.5382 0.5330 0.5349 0.5379 0.5400 0.5406

Baseline 0.3882 0.4236 0.4400 0.4762 0.4889 0.4937 0.5000
PreferMT/Total 104/170 83/144 70/125 ©55/105 46/90 40/79 /631

6.4.5 User Behavior

We investigate the users’ behavior during the evaluatigdgh@feranking system using sim-

ilar measures as in Section 6.3.6.

6.4.5.1 Inter-annotator Agreement

Fleiss’ Kappa coefficient for our five post-editorsOigl79 + 0.012, indicating a moder-
ate agreement. We also obtained Fleiss’ Kappa coefficierdgoh category as shown in
Table 6.16. From this table, we can observe moderate agregramong post-editors in
selecting TM or MT output as the most suitable for post-aditiThere is also a moderate
agreement in making their decision to translate from shrattowever, there is only a fair
agreement in determining whether TM and MT outputs are é&ggalod for post-editing

(“Tie”).
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Table 6.16: Annotator agreement for each category
Category Kappa

™ 0.516
MT 0.593
Tie 0.344

Scratch 0.328

6.4.5.2 Intra-annotator Agreement

We also have ten duplicate samples in our evaluation intetaleneasure the level of in-
trinsic agreement for each post-editor, as in Section 6.Bdh percentage of agreement
and Cohen’s Kappa are calculated as shown in Table 6.17 hEgahking evaluation, we
can still observe that all five post-editors achieved alrpestect intrinsic agreement.

Table 6.17: Intra-annotator Agreement
Post-Editor ID Agreement Kappa

PEO1 80% 0.73
PEO2 90% 0.87
PEO3 90% 0.87
PEO4 100% 1.0
PEOS 100% 1.0

6.4.5.3 Correlation between Sentence Length and EvaluatioTime

As in Section 6.3.6 we calculated Pearson’s product monmn¢lation between the eval-
uation time and sentence length as shown in Table 6.18. €hd ts similar: this time we
observe a high correlation between the evaluation time antkace length for PEO1, PE0O2
and PEO5; for the other two post-editors, there is still a tmarelation. As is analyzed in
Section 6.3.6, the reason could be that we did not compeldbequlitors to conduct their
evaluation in one session during the experiments, and expexhieve more conclusive

results in future work, which would happen in a real workirgieediting environment.
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Table 6.18: Pearson’s Product Moment Correlation
Post-Editor ID PMCC (r) r-square

PEO1 0.4683 0.2193
PEO2 0.5439 0.2958
PEO3 0.2022 0.0409
PEO4 0.1486 0.0221
PEO5 0.6242 0.3896
Average 0.4605 0.2120

6.5 Discussions on Feedback from Post-editors

We requested post-editors to comment on their attitude t@NiI'TM. In our questionnaire,
all post-editors claim that they have post-edited MT owgaurtd think that MT is sometimes
useful, which might be said to be representative of the atistate of MT penetration in
the localization industry.

However, the more interesting comment comes from one of osi-gditors in private

communication, that we think could be worthwhile to note:

| think that | managed to detect that the TM-based translatias better. Some
segments didn’'t need any changes (or needed very littlegesanthat was

mainly the case for short segments.

Although the post-editor does not know which of the two cdatks we present in the
evaluation interface is from the MT system, he claims aftanpleting the evaluation that
he has found that the TM outputs are more suitable for pastigdalthough in fact every
post-editor prefers MT outputs in the experiment (cf. Tableand Table 6.13).

Although this can only reflect the thinking of a single podit@r, this comment is still
revealing for two reasons. First of all, the post-editoriobgly mistakes MT outputs for
TM outputs, which indicates that in this closed-domainisgttmainly composed of simple
short sentences, a state-of-the-art phrase-based SMehsystable to produce outputs that
are not only correct on the word-to-word level, but also gratically acceptable enough
to be recognized as human translations in the TM, and threré¢ihat the SMT output can

be smoothly integrated into the TM environment.
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The comment also shows how much the post-editors subcas$givust the TM. This
may be an explanation for the relatively low acceptance oftdthnology in the localiza-

tion industry, and demonstrates the need for TM—MT intégmatiechniques, such as ours.

6.6 Related Work

The translation recommendation system we experiment witmiimplementation of the
translation recommendation model proposed in [He et al02]) and the reranking model
is first proposed in [He et al., 2010d]. Research relatedeaa¢hommendation and rerank-
ing models is already reviewed in Chapter 4 and Chapter 5.

As regards other Uls that are capable of evaluating posingdéfficiency, [Koehn and
Haddow, 2009] presents a post-editing environment usifgrimation from the phrase-
based SMT system Moses [Koehn et al., 2007], instead of theyfmatch information
from TMs. The web-based Ul is built with the Ruby on Rails (RdRRmework? and is
available online ahttp://tool.statmt.org/

The research presented in this paper focuses on aspectsef atudy of post-editors
working with MT and TMs. In this respect, it is related to [Glerof, 2009], which
compares the post-editing effort required for MT and TM oiigprespectively, as well as
[Tatsumi, 2009], which studies the correlation betweeromattic evaluation scores and
post-editing effort. Our work differs in that our researclkeasures how the integration of
TM and MT systems can help post-editors, not how post-eslgerform using separate TM

or MT systems.

6.7 Summary

In this chapter, we evaluated the effectiveness of translaecommendation and transla-
tion reranking in the context of TM—MT integration with pesfsional post-editors. The

evaluation results support validation of the utility of bdtanslation recommendation and

3http://rubyonrails.org
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translation reranking paradigms, as well as our approaoking automatic evaluation met-
rics to approximate actual post-editing effort.

We find that a translation recommendation model trained ¢onaatic evaluation met-
ric scores can obtain a precision above 0.9 and a recall dh@®&ewith proper thresholds
according to each of the post-editors. The model showssioecabove 0.8 when we eval-
uate against the consensus of post-editors.

For the translation reranking paradigm, altough it triepriesent translators with more
segments at the cost of possibly including low quality segsieit can still obtain 0.85
precision and 0.58 recall when evaluated against the censgndgement of 3 translators.
It can also outperform the naive baseline which uses TM fumagch score as threshold.

From the analysis of user behaviour, we note that the users sbnsistency in their
judgements according to both the inter-annotator agreeamhthe intra-annotator agree-
ment for both the recommendation and the reranking tasksrddommended MT outputs
are incorrectly recognized as TM outputs by one post-editbich shows both the potential
and the necessity for TM—MT integration.

In future, we can further extend the evaluation in severatswaFirst of all, in this
paper we concentrated on proprietary data and professpmsleditors, according to the
major paradigm in the localization industry. However, a game time this limits the
number of annotators we can hire, as well as the types of &Vahs we can perform. We
can obtain more comprehensive results by experimentingpen-domain data sets, and
applying crowd-sourcing technologies such as Amazon MachbTurk* [Callison-Burch,
2009].

Secondly, during the evaluation we were able to collect abmrmof human judgements
for training a new translation recommendation system. \da pb train a new recommen-
dation model and to compare the difference with modelsecon automatic metric scores,
when we have collected more human-annotated data.

Finally, this experiment can also be extended by measuh@gcttual post-editing time

*https://www.mturk.com

100



instead of the judgement time, which can lead to a more @epproximation of reduced
post-editing effort when using translation recommendatmintegrate MT outputs into a

TM system.
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Chapter 7

Towards Consistent Sub-Segment

MT-TM Integration

7.1 Introduction?

In previous chapters, we presented methods to integrate iBMTTM systems, while the
strengths of TMs — effective cost estimation, friendly gregion with CAT, and highly
reusable high fuzzy match chunks — were all kept intact.

Both our translation recommendation and translation kengnschemes operate on the
segment level. However, TM fuzzy matches may contain somakshof higher quality
than SMT outputs, while not having enough content words éniiput correctly translated
or translated at all. In such cases, our recommender orkeravill favor SMT outputs,
and is not able to leverage the information (chunks) from Tk matches.

Let us look at a segment from the Symantec English—Chinesédtikbase as an exam-
ple, as in Table 7.1.

In this example, we are able to find a fuzzy match in the TM, Wiperfectly corre-

sponds to the second part of the source segment, but lacksdhpart of the source. If

1The idea of selecting TM markups with discriminative leafivas first conceived by Yanjun Ma. An
earlier version of the research presented in this paperd&s published in [Ma et al., 2011]. The feature set
we use in this chapter is different from that of [Ma et al., 2DXand leads to stronger results.
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Table 7.1: Motivating Example

Source after policy name , type the name of the policy (it shoew host integrity
policy by default) .

TM Source type the name of the policy ( it shows new host iiittegolicy by default ) .

TM Output 4 et L&A (BKiIL &7 « 3 £40 280 K% 7 )

MT Output & « Rw > LAk E@ . A Res 8 LR (LR 25 A < # T4 2 ¥FH"
Hwg KN )

Reference 4 “ %% %Ak > J&d@ . 4EXN K% 44 (KL 25 «# 2 2 8%
Reg > )

we use the translation recommendation scheme, translailbhewve to choose between the
MT output, which makes several translation mistakes, aead ¥ output, which misses the
beginning of the segment completely.

In a commercial localization setting, however, we wouldaitiehope to leverage both
the TM and the MT outputs, because 1) the combination of thetfBslation from the
second part of the segment and the MT output from the first tpgether can produce
a better translation, and 2) more importantly, in the cantéxocalization, we hope that
translations exhibitonsistencyso that the same technical phrases in one language always
correspond to the same translations in another language.

Following this intuition, we extend the translation recoemdation and translation
reranking schemes to the sub-segment level, and show thaitbynatically selecting TM
matches that ensure consistent translation, and reusngitha constrained SMT pipeline,
we can obtain better SMT outputs that incorporate the kndgde’rom such TM matches.
We will show by automatic evaluation that, apart from ensmithat consistent translation
chunks are reused, our method also produces better tianslateflected by a 1.2 IBuU
point improvement (2.62% relative) and a 0.72RTpoint reduction (1.81% relative), both
of which are statistically significant.

In the following sections, we will first discuss the idea @frtslation consistency in the
TM and the SMT setting in Section 7.2. Then we present the wvoponents of our sub-
segment integration scheme: the constrained translateonefivork using discriminative
learning in Section 7.3, and our rich linguistically-maetigd feature set in Section 7.4. We

present experimental results and compare the effectigesfadifferent types of features in
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Section 7.5. We review previous work in Section 7.6. We aatieland point out possible

avenues for future work in Section 7.7.

7.2 Translation Consistency in TM and SMT

Translation consistency is an important factor for largatestranslation, especially for com-
mercial translations in an industrial environment. Forregke, when translating technical
documents (especially those with a large amount of term@gl lexical as well as struc-
tural consistency is essential to produce a fluent targefiage segment. Moreover, even
in the case of translation errors, consistent in the ermig (repetitive error patterns) are
easier to diagnose and subsequently correct by translators

In phrase-based SMT, translation models and language sacdeautomatically learned
and/or generalized from the training data, and a transiag@roduced by maximizing a
weighted combination of these models. Given that globaleednal information is not nor-
mally incorporated, and that training data is usually ndispature, there is no guarantee
that an SMT system can produce translations in a consistanhen.

On the other hand, TM systems — widely used by translatonmsduastrial environments
for enterprise localization by translators — can shed saghé dn mitigating this limitation.
TM systems can assist translators by retrieving and digmgyreviously translated similar
“example” segments (displayed as source-target pairsglyvichlled ‘fuzzy matches’ in
the localization industry). In TM systems, fuzzy matches i@trieved by calculating the
similarity or the so-called ‘fuzzy match score’ (rangingrr O to 1 with O indicating no
matches and 1 indicating a full match) between the input segrand segments in the
source side of the translation memory.

When presented with fuzzy matches, translators can thehadweseful chunks in pre-
vious translations while composing the translation of a segment. One might expect
that most translators only consider a few segments that asé similar to the current input

segment; this process can inherently improve the consigtehtranslation, given that the
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new translations produced by translators are likely to balai to the target side of the
fuzzy match they have consulted.

Previous research (cf. Section 7.6) has focused on usiryg fuatch score as a thresh-
old when using the target side of the fuzzy matches to cdangtra translation of the input

segment. In this chapter, we make two improvements ovelttie-sf-the-art:

 Discriminative Learning. As we do in the translation recommendation and transla-
tion reranking paradigms, we use a more fine-grained digtaitwe learning method
to determine whether the target side of the fuzzy matchesldlom® used as a con-

straint in translating the input segment.

* A Rich Feature Set The only factor that prior thresholding methods considehe
fuzzy match score. However, we notice that many factors elevaint in deciding
whether the matched TM chunks should be reused in congtr&iaeslation: there-
fore we use translation model, lexical, syntactic (depangdg and semantic features
to model translation consistency. This not only leads todliations of better qual-
ity, but also provides insight into the linguistic propesiof consistent translation

chunks.

We will demonstrate that by using discriminative learningla rich feature set, our
method can consistently improve translation quality, amperform the naive fuzzy match-

driven baseline.

7.3 Constrained Translation with Discriminative Learning

We introduce our method to tightly integrate TM with MT at #h#-subsegment level. The
basic idea is as follows: given a source segment to transkadirstly use a TM system
to retrieve the most similar “example” source segmentsthmgyewith their translations. If
matched chunks between input segment and fuzzy matchesdetdrted, we can directly
reuse the corresponding parts of the translation in theyfomtches, and use an MT system

to translate the remaining chunks.
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As a matter of fact, implementing this idea is pretty stréfigfward. A TM system
can easily detect the word alignment between the input segamel the source side of the
fuzzy match by retracing the paths used in calculating tlzeyfunatch score. To obtain
the translation for the matched chunks, we just require thiehalignment between source
and target TM matches, which can be addressed using st#te-aft word alignment tech-
niques. More importantly, albeit not explicitly spelledtan previous work (e.g. [Koehn
and Senellart, 2010b]), this method can potentially ineeeifaie consistency of translation,
as the translation of new input segments is closely inforematiguided (or constrained) by
previously translated segments.

Now we define this idea formally. Given a segmertb translate, we retrieve the most
similar segmeng’ from the TM associated with target translati6h The m common
“phrases”&" betweene ande’ can be identified. Given the word alignment information
betweere’ andf’, one can obtain the corresponding translatiffisfor each of the phrases
in @™ (cf. Section 7.3.1). This process can derive a number ofdghpairs’< é,,, f/,, >,
which can be used to specify the translations of the matcheabkps in the input segment.
The remaining words without specified translations will i@nslated by an MT system.

For example, given an input segment, - - - e;e;11 - - - e, and a phrase pait e, f' >,
€=eieir1, fl = f; £ derived from the fuzzy match, we can mark up the input segment

asin (7.1):

ereg - <tM=fIfi )" > eieipn < /tM>---ef. (7.1)

We decode this segment, and only the unmarked pottien. - - e;_; ande; 1 - - - er.will
be translated, while the marked-up portiem; . ; will reuse the translation from the TM,

whichis fifi. .
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7.3.1 Consistent Phrase Pair Extraction

The consistent “phrase pairs” we derive from the symmelignement between the TM
fuzzy match and its translation are different from the pérnagirs extracted as translation
rules in phrase-based translation. To achieve sufficidataoverage, typical phrase-based
SMT systems will extract all the rules that do not conflictiwtihe alignment points, while
our “phrase pairs” should directly correspond to alignmgwints in order to ensure that
our phrase pairs represent much more consistent tramslagittons (at the cost of lower

coverage) than typical phrasal translation rules.

display  the  drives on your computer
it F
=
a9
IR %

Figure 7.1: Consistent Phrase Pair Extraction

We illustrate this difference using the following exampl8uppose that we have an
alignment between English and Chinese as in Figure 7.1. @tinad to extract consistent

phrase pairs only obtains two pairs that are directly ddrfvem this alignment, as in (7.2):

displa A
pray= = (7.2)

on your computer THA AL L

Phrasal extraction heuristics in phrase-based SMT [Koe¢lah,e2003] have the capa-
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bility of extracting a longer consistent phrase pair, as/iB)

the drives on your computes 7+ 4L £ 8 383 5 (7.3)

However, we should not rely on such heuristics in our modehbse they cannot ensure
the consistency of phrase pairs, and we do not have a priapatdighting step to rule out
any inconsistent pairs. Some of the inconsistent phrase bt can be derived from this
alignment include those in (7.4):

the drives on your computes 7+ 4 £

(7.4)
on your computer AL L 69 385 &

The method used to obtain the constrained alignment usinfukky matches is similar
to [Koehn and Senellart, 2010b], except that in our case tire wlignment betwees and
f’ is the intersection of bidirectional GIZA++ [Och and Ney03) posterior alignments. In
marking up the input segment, we use the intersected wagdraknt to minimize the noise

introduced by word alignment in only one direction, so astsuge translation consistency.

7.3.2 Discriminative Learning

In our approach, whether the translation information frairzfy matches should be used or
not (i.e. whether the input segment should be marked upXesmed by a discriminative

learning procedure. We cast this problem as a binary cleagdh problem.

7.3.2.1 Support Vector Machines

Similar to our work on recommendation and ranking for full B\d MT segements, here
we use SVMs [Cortes and Vapnik, 1995], binary classifiers ¢kassify an input instance
based on decision rules which minimize the regularizedrdtnoction in (7.5) to deter-

mine whether constraining translation with our consisfgmise pairs can help translation

108



quality:
l
) 1 -
min §W W—I—C’;{l

s.toyiwWio(x) +b) >1-¢ (7.5)

& =0

where(x;,y;) € R™ x {+1,—1} arel training instances that are mapped by the function
¢ to a higher dimensional space is the weight vector¢ is the relaxation variable and

C > 0 is the penalty parameter.

We perform our experiments with the Radial Basis FunctioBRRkernel, as in (7.6):
K (%i, %) = exp(—7[Ixi = x;*),7 > 0 (7.6)

When using SVMs with the RBF kernel, we have two free pararedtetune on: the cost
parameterC in (7.5) and the radius parameteiin (7.6). We optimize the parametets
and~ by a brute-force grid search. The classification result cheset of parameters is
evaluated by cross validation on the training set.

The SVM classifier will thus be able to predict the usefulnefsthe TM fuzzy match,
and determine whether the input segment should be markeding relevant phrase pairs
derived from the fuzzy match before being sent to the SMTesgdbr translation.

When training SVMs, we need gold standard annotations tel lahining examples.
As large-scale manually annotated data is not availablthietask, we use automatic TER

scores [Snover et al., 2006] as the measure for trainingattatatation.

We label the training examples as in (7.7):

+1 if TER(w. markup < TER(w/o markup
y = (7.7)
—1 if TER(w/o markup > T ER(w. markup

Each instance is associated with a set of features whichiscassed in more detail in

Section 7.4.

109



7.3.2.2 Classification Confidence Estimation

We use the techniques proposed by Platt [1999] and improyé&dhket al. [2007] to convert
classification margin to posterior probability, so that vea @asily threshold our classifier

(cf. Section 7.5.3.3).
Platt's method estimates the posterior probability withgan®id function, as in (7.8):

1

Priy =10~ Pas(f) = 1o By

(7.8)

wheref = f(x) is the decision function of the estimated SVM. A and B are ipeters

that minimize the cross-entropy error functiéhon the training data, as in (7.9):

l

min F(z) = =3 (tilog(ps) + (1~ ti)log(1 = pi)),
e i=1
Nt if g = +1 (79

wherep; = P p(fi),andt; =
1
N_+2

if yi:—l

wherez = (A, B) is a parameter setting, ard, and N_ are the numbers of observed
positive and negative examples, respectively, for thellgheThese numbers are obtained

using an internal cross-validation on the training set.

7.4 Feature Set

The features used to train the discriminative classifiegrathe segment level, are described
in the following sections.
7.4.1 Translation Model Features

We begin with features extracted from the internals of thedrd the MT components, as
these are the features that we also use in our translati@mraendation and translation

reranking models.
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» The TM Feature. The TM feature is the fuzzy match score, which indicates the
overall similarity between the input segment and the soside of the TM output.
If the input segment is similar to the source side of the matchegment, it is more
likely that the matching segment can be used to mark up the sggment.
We compute fuzzy match cost as the minimum Levenshtein mgst@l_evenshtein,
1966] between the source and TM entry, normalised by thetheogthe source as

in (7.10), as most of the current implementations are baseedd distance while

allowing some additional flexible matching (cf. Chapter 2).

hjm(€) = min LevenshteinDistance(e, s)

s Len(e)

(7.10)

wheree is the segment to translate, asds the source side of an entry in the TM.

For fuzzy match scoreB, h s, roughly corresponds tb — F.

» Translation Features We use four features from the SMT translation model: the
phrase translation and lexical probabilities for the plnaairs< é,,, f/,, > derived
using the method in Section 7.3. More specifically, we useptintase translation
probabilitiesp(f’,,,|€.,) andp(e,.| f',,,), as well as the lexical translation probabilities
Diez(f'inl€m) @andpiez (€| f/,,,) @s calculated in [Koehn et al., 2003]. In cases where
multiple phrase pairs are used to mark up one single inpuhsete, we use a unified
score for each of the four features, which is an average beardrresponding feature
in each phrase pair. The intuition behind these features fellbws: phrase pairs
< &m, f',, > derived from the fuzzy match should also be reliable witlpees to

statistically produced models.

We also have a count feature, i.e. the number of phrases asadrk up the input
segment, and a binary feature, i.e. whether the phrase ¢abkains at least one

phrase paik é,,, f/,,, > that is used to mark up the input segment.
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7.4.2 Linguistic Features

Now we move on to linguistic features ranging from the swefé@ the semantic level.

The linguistic-oriented features measure how well the edulp portion covers the source
segment. The assessments could be (but are not limitedetggticentage of content words
that are marked up (lexical level), the number of coveredneo{Part-of-speech (POS)
level), the type and number of covered dependency relafgymgactic dependency level),
and whether the agent of the main predicate is covered comhplsemantic level). We

also measure position-related properties, such as whtéteemarked-up chunk is at the

beginning or the end of the segment.

7.4.2.1 Lexical Features

The lexical features reveal the surface-level properti¢seomarked-up translation. We use

the following indicators given a segment and its markup:

» Coverage Coverage measures the percentage of words covered by thedng

segment. We calculate the percentage on both the sourcbetarget side.

 Alphabetical Words. This feature measures the percentage of words that ara-alph
betical (i.e. not numbers and punctuation marks) in thecsside of marked up

chunks.

* Punctuation Marks. This feature in turn measures the percentage of words in the

source side of marked up chunks that are punctuation marks.

» Content Words. This feature calculates the percentage of content wolttigisource
side of marked up chunks. We use the snowball stop wordsdssthe resource for

function words and consider all other words to be content.or

* Position. We use two binary features which fire if marked-up chunksecdtive head

or the tail of the source segment.
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Constrained Translation Chunk BENFR LA ( BRART “FFEMTEMLREL” )

Source after policy name, type the name of the policy (it shows new host integrity policy by default ) .

Figure 7.2: Lexical Features

We give an example of these features in Figure 7.2. In thimela the shaded chunk
“type the name of the policy (it shows new host integrity pplby default).” is marked up
with a corresponding Chinese translation. We extract featon the input segment. The
length of the input segment is 21 and the length of the marlechunk is 17. Therefore
we have the coverage featul:E)LCOVER%—Z. We also calculate the the percentage of
alphabetical words, punctuation marks and content wortiseirmarked up chunk. For ex-
ample, there are 3 punctuation marks in the marked up chuWeS'[aveLEKPUNC'E%.

Besides, the tail of this segment is covered by the markufhesposition feature will fire.

7.4.2.2 POS Features

For the POS features, we simply extend the calculation atd¢features to the POS level.
The POS tags in our experiments are obtained using the SdaRéosef

The POS features we use are:

* POS Coverage We calculate the percentage of coverage by the markup tr ea

POS tag in the source segment.

* POS Position We also use binary features to indicate whether the hedtkdail of

the source segment is covered by the markup, sorted by PGS tag

We illustrate the POS features in Figure 7.3. If we look atWB¥ tag, our markup
covers the only third person singular verb in the segmenihaeBOSCOVERVBZ feature

is 1.0. ThePOSTAIL _. feature will also fire as the markup covers the full stop attéile

2http://snowball.tartarus.org/algorithms/english/sto p.txt
3http://nlp.stanford.edu/software/lex-parser.shtml
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Constrained Translation Chunk BENFR LA ( BIANR T “HEMTELERR )

Source after policy name, type the name of the policy (it shows new host integrity policy by default ) .

IN NN NN, NN DT NN IN DT NN LRBPRPVBZ NNP  NNP NNP NNP IN NN RRB .

Figure 7.3: Part-of-speech Features

of the segment. Note that the word “type” is mistakenly tahgeNN(instead ofVBP), so
this will introduce errors in deeper linguistic analysishi§ also confirms the necessity of
using a richer set of features so that analysis errors canrhpensated for by surface-level

indicators in the whole feature set.

7.4.2.3 Dependency Features

Given the phrase pairs é,,, f/,, > derived from the fuzzy match, and used to translate
the corresponding chunks of the input segment (cf. Secti®y these translations are more
likely to be coherent in the context of the particular inpagment if the matched parts on
the input side are syntactically related.

We use dependency relations to capture this syntacticiowe$diip. For marked-up
phrases,, in the source segment, we use dependency relations betwaes ay, in é,,
and the remaining words; in the input segment to determine their syntactic function.

We use the Stanford parser to obtain the dependency seuditthie input segment. We
add a pseudo-labelYS_PuUNCT to punctuation marks, whose governor and dependent are
both the punctuation mark. The dependency features dektgreapture the context of the

matched input phrases, are as follows:

e DEP Coverage DEP coverage measures the coverage of dependency labitle on
input segment in order to obtain a bigger picture of the medgbarts in the input.
For each dependency lallelwe consider its head or modifier egveredif the cor-
responding input word,,, is covered by a matched phragg. Our coverage features

are the frequencies of governor and dependent coveragelatalt separately for
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each dependency label.

» DEP Position DEP position identifies whether the head and the tail of ensed are
matched, as these are the cases in which the matched ttam#aiot affected by the
preceding words (when it is the head) or following words (whtes the tail), and is
therefore more reliable. The feature is set to 1 if this happeand to 0 otherwise. We
distinguish among the possible dependency labels, thedrahd tail of the segment,
and whether the aligned word is the governor or the depenaigrike we do for POS
tags. As a result, each permutation of these possibilitestitutes a distinct binary

feature.

» DEP Consistency DEP Consistency is a single feature which determines wenheth
matched phrases,, belong to a consistent dependency structure, instead n§bei
distributed discontinuously in the input segment. We assthmt a consistent struc-
ture is less influenced by its surrounding context. We seat fidture to 1 if every

word iné¢,, is dependent on another worddp,, and to 0 otherwise.

Constrained Translation Chunk BNFR LA ( BART “HEMTEMERL )

Source after policy name, type the name of the policy (it shows new host integrity policy by default ) .

A

PREP DET, NSUBJ NN PREP  PREP

PREP DEP NN

PREP NN

DOBJ

Figure 7.4: Dependency Features

We give an example for dependency features in Figure 7.4.tHeodependency la-
belDOBJ we have two relationBOBJ(type, name) andDOBJ(shows, policy)
The governors “type” and “shows” are both covered by the marko we hav®EP.DOBJIGOW1.0.
This is also the case for the dependents, so we alsoDBRDOBJIDEPR=1.0. There is a
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mistakenly annotateBREParc from the marked-up “type” to the unmarked-up “after”, so
the consistency feature will not fire. The position featwegarding the tail of the segment

will fire.

7.4.2.4 Semantic Role Features

We also suspect that the usefulness of marked-up conglraieslations is related to their
semantic role [Gildea and Jurafsky, 2002] in the segment. ekample, we suspect that
if the agent of the predicate is completely marked-up andéhasnstrained translation,
the overall consistency of the segment might improve, aafhgdor the case of Symantec
technical documents, as agents are often either user sgs'{he administrator”) or prod-
uct names (e.g. “symantec mail security console”) thatireca high level of translation
consistency.

Our semantic role labels are obtained using the SRL labascribed in [Li et al.,
2009], with constituent trees produced by the Stanfordgraas input. The labels follow
the PropBank [Palmer et al., 2005] annotation. We use theWolg semantic role features

in our system:

» SEM Coverage We calculate the marked-up percentage for each argumsezit 1&
there is more than one predicate, the percentage is aveaageay argument labels

for each predicate. We label these featureSBSIPARTIAL * .

» SEM Complete Coverage This feature is a binary feature that fires if phrases with
argument labeArgN, are completely covered by the markup. If there is more than
one predicate, the binary feature requires thaf\edN s are completely covered. In
other wordsSEMCOMPLETEARGNires if and only fSEMCOVERARGNS equal
to 1.0.

» SEM Position. The SEM position feature fires if an argument at the beginnirthe
end of the segment is covered by the markup. We also disshguinong cases when

the coverage is partial or complete, so if part of an agdRG0in PropBank) chunk
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is partially marked up at the head of the segmentSE&POSITION_ARGQHEAD

feature will fire.

* SEM Predicate The PropBank-style semantic role labels are predicatemtrithe
labeler first identifies the predicate of a segment and tHmidats arguments. If there
is no predicate, the whole segment will not be labeled angenrantic features will
not fire. To distinguish this situation from the cases whardéhare semantic labels
but the markup covers none of them, we design a binary feétatdires only if the

segment has no predicate.

Constrained Translation Chunk RNFR LA ( BINRT “HEMTEMRRL )

Source after policy name, type the name of the policy (it shows new host integrity policy by default ) .

ARGO V ARG1

Figure 7.5: Semantic Role Features

We give an example for semantic role features in Figure n.this example, thARGQ
ARG1 andV roles are all covered by the markup, so we will hEMCOMPLETE and
SEMPARTIAL_* equal to 1.0. The position-based features will not fire, &sehding
punctuation marks are not covered by semantic role labeaige thhat if analyzed correctly,
“type” should also be a predicate and should have its owrmaegis. If so, we will have an
uncoveredAM-LOCchunk “after policy name” with coverage features equal @ but all

other features will remain the same.

7.5 Experiments

Our data set is an English—Chinese TM with technical traiesidrom Symantec, consist-
ing of 87K segment pairs. The average segment length of théidartraining set is 13.3
words and the size of the training set is comparable to tiygetarMs used in the industry.

Detailed corpus statistics about the training, develograad test sets for the SMT system
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are shown in Table 7.2.

Table 7.2: Corpus Statistics

Train Develop  Test
SEGMENTS 86,602 762 943
ENG. TOKENS 1,148,126 13,955 20,786
ENG. vocC. 13,074 3,212 3,115
CHI. TOKENS 1,171,322 10,791 16,375
CHI. voc. 12,823 3,212 1,431

The composition of test subsets based on fuzzy match scséswn in Table 7.3. We
can see that segments in the test sets are longer than thibeetiaining data, implying a
relatively difficult translation task.

We train the SVM classifier using the libSVM Chang and Lin [2Dolkit. The SVM-
training and validation is on the same training segnfeassthe SMT system with-fold

cross validation. As for SVM parameters, we set 2.0 andvy = 0.125.

Table 7.3: Composition of test subsets based on fuzzy matres

Scores segments  Words W/S
(0.9,1.0) 80 1526 19.0750
(0.8,0.9] 96 1430 14.8958
(0.7,0.8] 110 1596 14.5091
(0.6, 0.7] 74 1031 13.9324
(0.5, 0.6] 104 1811 17.4135
(0, 0.5] 479 8972 18.7307

We conducted experiments using a standard log-linear PB-8iddel: QzA++ im-
plementation of IBM word alignment model 4 [Och and Ney, Z0@Be refinement and
phrase-extraction heuristics described in [Koehn et &032 minimum-error-rate train-
ing [Och, 2003], a 5-gram language model with Kneser-Neyathing [Kneser and Ney,
1995] trained with SRILM [Stolcke, 2002] on the Chinese side¢he training data, and
Moses [Koehn et al., 2007] which is capable of handling speeified translations for

some portions of the input during decoding. The maximum gghtangth is set to 7.

“We have around 87K segment pairs in our training data. Houéwes7.5% of the input segments, our MT
system produces the same translation irrespective of whétle input segment is marked up or not. Having
said that, our results show that selecting better tramsiaidbn the approximately one third of segments to which
markup does make a difference, leads to significant imprewtson the system level.
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7.5.1 Evaluation

The performance of the phrase-based SMT system is measyf@dEJ score [Papineni
etal., 2002] and TER [Snover et al., 2006]. Significancertgss carried out using approx-
imate randomization [Noreen, 1989] with a 95% confidencellev

We also measure the quality of the classification using pi@tiand recall. Le# be
the set of predicted markup input segments, #hthe the set of input segments where
the markup version has a lower TER score than the plain versige standardly define
precisionP and recallR as in (7.11):

AN B
A

_lANBi

P = JR—
|B|

(7.11)

7.5.2 Cross-fold translation

In order to obtain training samples for the classifier, wednteelabel each segment in the
SMT training data as to whether marking up the segment catupsobetter translations.
To achieve this, we translate both the marked-up versiodgkin versions of the segment
and compare the two translations using the segment-lea@laion metric TER.

We do not make use of additional training data to translaesiyments for SMT train-
ing, but instead use cross-fold translation. We create atrening corpusil’ by keeping
95% of the segments in the original training corpus, andticrga new test corpuél by
using the remaining 5% of the segments. Using this schemeake 20 different pairs of
corpora(T;, H;) in such a way that each segment from the original trainingusoccurs
in exactly oneH; for somel < i < 20. We train 20 different systems using edth and
use each system to translate the correspondings well as the marked-up version &
using the procedure described in Section 7.3. The developset is kept the same for all

systems.
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7.5.3 Experimental Results

7.5.3.1 Feature Validation

Table 7.4: Contribution of Features (%)
TER BLEU P R
BASELINE 39.82 4580 N/A N/A
TRANS 39.80 4584 66.67 1.02

LEX 39.65 46.20 71.43 10.20
Pos 39.30 46.71* 61.54 28.57
DEpP 39.81 46.14 58.25 30.61
SEM 39.74 46.35 59.09 19.90
LPDS 39.32 46.81* 61.36 41.33

We first validate the contribution of the feature sets we psel. The classification and
translation results using different features are repairtethble 7.4. Scores marked with
“* are statistically significantly bettery( < 0.01) than the B\SELINE.

First of all, we observe that using translation model-dstifeatures similar to those
used in our translation recommendation/reranking modaislarings about a trivial differ-
ence in translation quality. In fact, very low recall indies that the SVM actually cannot
obtain enough information from this feature set, and haake aidvantage of the prior dis-
tribution of the samples (where we have more negative exa@srthlan positive ones) and
reject almost every attempt of markup to obtain the bestracgu This shows that these
features cannot capture the properties of the TM chunksh#ipttranslation consistency.

Secondly, we observe that the linguistic features can brioge improvement to clas-
sification accuracy and translation quality. The improvetme BLEU scores ranges from
0.36 (DeP) to a statistically significant 0.91 (#%). However, that is not to say that deeper
features such as#P and SM are much less informative than part-of-speech features. We
note that s features reject more marked-up chunks than deeper fegaseés indicated
by low recall), which means that only a small number of segsiean benefit from this ap-
proach if we only use theds feature set. Besides, the low recall also limits the polsibi
of pursuing even better translation quality by confidengedholding (i.e. by sacrificing

recall to achieve even higher precision). Therefore it \idag¢ worthwhile to combine all

120



these linguistic-driven features for better classifiaatacuracy, and more importantly, for
higher recall.

Finally, we put the [Ex, Pos, DEP, and Ros features together in the LPDS setting.
We can see that this setting achieves the bestuBscore among all the settings, which is
also significantly better than the baseline. TrerRTand precision numbers are marginally
inferior to those obtained using theoBfeatures alone. However, as we will see, the much
higher recall enables us to perform more confidence thrddteded tuning and achieve

better results.

7.5.3.2 Translation Results with and without Markup

Table 7.5 contains the translation results of the SMT systdran we use discriminative
learning with LPDS to mark up the input segment (LPDS). Th&t fiow (BASELINE) is
the result of translating plain test sets without any maykubile the second row is the
result when all the test segments are marked up. We alsot idygooracle scores, i.e. the
upperbound of using our discriminative learning approasfiwe can see from this table,
Table 7.5: Performance of Discriminative Learning (%)
TER BLEU
BASELINE 39.82 45.80
MARKUP  41.62 4441

LPDS 39.32 46.81*
ORACLE 37.27 48.32

we obtain significantly inferior results compared to the Baseline system if we categor-
ically mark up all the input segments using phrase pairssédrirom fuzzy matches. This
is reflected by an absolute 1.4 point drop in BLEU score an@adint increase in TER.
On the other hand, both the oracle BLEU and TER scores ragrasenuch as a 2.5 point
improvement over the baseline. Our discriminative leaymrethod with linguistic features
(LPDS), which automatically classifies whether an inputnsegt should be marked up,
leads to an increase of 1.01 absolute BLEU points (2.53%ivejaover the B\SELINE,

which is statistically significant. We also observe a 0.51{1.10% relative) drop in TER
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compared to the BSELINE. This shows that our classifier with linguistic featuresapable
of judging whether the sub-segment level-constrainedstation is helpful for the overall

translation quality or not.

7.5.3.3 Translation Results with Confidence Thresholding

To further analyze our discriminative learning approachk algo investigate the use of clas-

sification confidence (cf. Section 7.3.2.2) as a thresholdotust classification precision.

Table 7.6 shows the classification and translation resuteswwve use different confidence
Table 7.6: The impact of classification confidence threshgld

BASELINE 0.50 0.55 0.60 0.65 0.70 0.75
BLEU 45.80 46.81* 47.00¢ 46.79* 46.47 46.11 46.03

TER 39.82 39.32 39.10 39.28 3945 39.66 39.70
P N/A 61.36 67.96 71.01 75.00 70.97 71.43
R N/A 41.33 3571 25.00 18.37 1122 7.65

thresholds, where the scores marked with “*” are signifigabetter ¢ = 0.01) than the
BASELINE. The default classification confidence is 0.50.

We investigate the impact of increasing classification clamfce on the performance
of the classifier and the translation results using LPDSufeat As can be seen from Ta-
ble 7.6, increasing the classification confidence up to 0e@8ld to a steady increase in
classification precision with a corresponding sacrificeeicatl. The fluctuation in classi-
fication performance has an impact on the translation sigtmeasured bylBu and
TER. We can see that the bestBU as well as ER scores are achieved when we set the
classification confidence to 0.55, representing a furthe® Points improvement in B=u
score and 0.22 points drop ireR score, compared to the default threshold of 0.50.

Compared to the BSELINE, we obtain a 1.20 (2.62 % relative)LBu point improve-
ment and 0.72 (1.81 % relative)ER point improvement (with lower TER score), all with
statistical significancep(= 0.01), when we set the confidence to 0.55. Despite the higher
precision when the confidence is set above 0.60, the draaediease in recall cannot be

compensated for by the increase in precision.
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Figure 7.6: Confidence Threshold on Various Feature Sets

We also compare the effect of applying confidence threshtdall linguistically-
motivated feature sets we have proposed in Figure 7.6. Katdhe LPDS features obtain
the best REU scores in the [0.5, 0.65] range and obtain the highastuBscore at the
confidence level of 0.55, which confirms our approach of cainlgi a variety of linguistic
features for this task. We also observe that although tteuBscore of B sfeatures is also
competitive at the confidence of 0.5, the translation qualill not improve as we set a

higher threshold, because its recall is already low irtial

7.5.3.4 Comparison with Previous Work

In previous work (cf. Section 7.6), both Koehn and Sene]01.0b] and Zhechev and van
Genabith [2010] used fuzzy match score to determine wheligeinput segments should
be marked up. The input segments are only marked up whenzhg fiaatch score is above
a certain threshold. We present the results using this rdethdable 7.7. From this table,

we can see an inferior performance compared to theeBINE results (cf. Table 7.5) when
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Table 7.7: Performance using fuzzy match score for claasific
Fuzzy Match Scores
050 060 070 0.80 0.90
BLEU 45.13 4555 4558 45.84 45.82
TER 40.99 40.62 40.56 40.29 40.07

the fuzzy match score is below 0.70. A modest gain can onlych&aed when the fuzzy
match score is above 0.8. This is slightly different from toaclusions drawn in [Koehn
and Senellart, 2010b], where gains are observed when thg foatch score is above 0.7,
and in [Zhechev and van Genabith, 2010] where gains are drdgroed when the score is
above 0.9. Comparing Table 7.7 with Table 7.6, we can seetiratlassification method
is more effective. This confirms our argument in the last gieah of Section 7.6, namely
that fuzzy match score is not informative enough to deteentiive usefulness of the sub-
segments in a fuzzy match, and that a more comprehensive $esitares, as we have
explored in this paper, is essential for the discriminakdagning-based method to work.

Table 7.8: Percentage of training segments with markup tsowi markup grouped by

fuzzy match (FM) score ranges
FM Scores w. markup w/o markup

[0,0.5] 37.75 62.24
(0.5,0.6] 40.64 59.36
(0.6,0.7] 40.94 59.06
(0.7,0.8] 46.67 53.33
(0.8,0.9] 54.28 45.72
(0.9,1.0] 44.14 55.86

To further validate our assumption, we analyze the traisggments by grouping them
according to their fuzzy match score ranges. For each grogegments, we calculate
the percentage of segments where markup (and respectivibiguvmarkup) can produce
better translations. The statistics are shown in TableWWecan see that for segments with
fuzzy match scores lower than 0.8, more segments can be tratislated without markup.
For segments where fuzzy match scores are within the rehgg).9], more segments can
be better translated with markup. However, within the raiig& 1.0], surprisingly, actually
more segments receive better translation without markinis ifidicates that fuzzy match

score is not a good measure to predict whether fuzzy matechdseacficial when used to
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Table 7.9: Translation Examples
Example 1
w/o markup  after policy name , type the name of the policy hidves new host integrity
policy by default ) .
Translation & “ Kw > LR JGE . XN R 6 LR (LA IF A« #H I 2¥H

kb KA )
w. markup  after policy namectm translation=% 4t & LAk (KK 25« #
AL ZEMN K 2 ) . ">, type the name of the policy (it shows new host

integrity policy by default )< /tm>
Translation & “ k%% » Lk GE@ ., #A R L4 (RAET “#H I ZEHE R%E” )
Reference # “ %% %> B@ ., X K% 4HF (KAIEFT <& E4 D8N Z% " )
Example 2
w/o markup  changes apply only to the specific scan that yacsel
Translation &2 A &R T 42 4248 69 AN .
w. markup changes apply only to the specific scan that yoetselen translation="* ">.< /tm>
Translation £ X & AT & #%iF 69 T =24 .
Reference #& 2 2AT 8 #4F ¢ 4 a4y .

constrain the translation of an input segment.

7.5.4 Improved Translations

In order to pinpoint the sources of improvements by markipghe input segment, we
performed some manual analysis of the output. We obsentetlthamprovements can
broadly be attributed to two reasons: 1) the use of long ghpasrs which are missing in
the phrase table, and 2) deterministically using highliabé¢ phrase pairs.

Phrase-based SMT systems normally impose a limit on theHeofgphrase pairs for
storage and speed considerations. Our method can overtdsrartitation by retrieving
and reusing long phrase pairs on-the-fly. A similar ideagialioom a different perspective,
was explored by Lopez [2008], where he proposed to constrpbrase table on the fly for
each segment to be translated. Differently from his apgroagr method directly translates
part of the input segment using fuzzy matches retrievedherfly, with the rest of the
segment translated by the pre-trained MT system. We offeresmore insights into the
advantages of our method by means of a few examples.

Example 1 shows translation improvements by using longgghpairs. Compared to
the reference translation, we can see that for the unddrphease, the translation without

markup contains (i) word ordering errors and (ii) a missiigintr quotation mark. In Ex-
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ample 2, by specifying the translation of the final punctuatnark, the system correctly
translates the relative clause ‘that you select’. The tagios of this relative clause is miss-
ing when translating the input without markup. This impnment can be partly attributed
to the reduction in search errors by specifying the highliabée translations for phrases in

an input segment.

7.6 Related Work

The work in this chapter lies at the intersection of two diisaof research. Firstly, it brings
our quality-estimation-based TM-MT integration reseaficdim the segment level to the
sub-segment level. In this chapter, we rely on the SVM diasgion and confidence esti-
mation schemes in translation recommendation [He et @Q¢&Go predict the the usability
of constrained translation chunks.

Secondly, this work also improves upon previous efforts tise TM chunks to improve
SMT performance. There are several different ways of udiegttanslation information
derived from fuzzy matches, with the following two being thest widely adopted: 1) to
add these translations into a phrase table as in [Bicicilymietman, 2008, Simard and
Isabelle, 2009], or 2) to mark up the input segment usingélevant chunk translations in
the fuzzy match, and to use an MT system to translate thetbattare not marked up, as in
[Smith and Clark, 2009, Koehn and Senellart, 2010b, ZheehneWwan Genabith, 2010]. It
is worth mentioning that translation consistency was nptieitly regarded as their primary
motivation in this previous work. Our research follows theection of the second strand
given that consistency can no longer be guaranteed by cetisyy another phrase table.

However, to categorically reuse the translations of mataieinks without any differ-
entiation might generate inferior translations given tie that the context of these matched
chunks in the input segment could be completely differemtfthe source side of the fuzzy
match. To address this problem, both Koehn and SenellatiOfg0and Zhechev and van

Genabith [2010] used fuzzy match score as a threshold tondieie whether to reuse the
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translations of the matched chunks. For example, Koehn andlart [2010b] showed that
reusing these translations as large rules in a hierarcéysa¢ém [Chiang, 2005] can be ben-
eficial when the fuzzy match score is above 0.7, while Zheamal/van Genabith [2010]
reported that it is only beneficial to a phrase-based systbenwhe fuzzy match score is

above 0.9.

7.7 Summary

In this chapter, we introduced a discriminative learninghod to tightly integrate fuzzy
matches retrieved using translation memory technologids ptrase-based SMT systems
to improve translation consistency. We used an SVM clasdii@redict whether phrase
pairs derived from fuzzy matches could be used to constrentranslation of an input
segment. A number of feature functions including a seriesookl dependency features
were used to train the classifier. Experiments demonstidi@iddiscriminative learning
and linguistically-motivated features are effective irpioving translation quality and are
more informative than the fuzzy match score and translatiaalel-based features used
in previous research. We report a 1.2 absolute improvenmeBLEU score and a 0.72
absolute improvement in TER score, both of statisticaliance p < 0.01) when using
our approach.

As mentioned in Section 7.6, the potential improvement gnsent-level translation
consistency using our method can be attributed to the fattlhie translation of new input
segments is closely informed and guided (or constrainegydyiously translated segments
using global features such as dependencies. However, brthwoting that the level of
improvment in translation consistency is also dependerthemature of the TM itself; a
self-contained and coherent TM would facilitate consisteanslations.

There are many possibilities we can explore along this lihneesearch. We plan to
investigate the impact of TM quality on translation coreisly when using our approach.

Furthermore, we will explore methods to promote transtetionsistency at document level.
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Moreover, we also plan to experiment with phrase-by-phiassification instead of
segment-by-segment classification presented in this paperder to obtain more stable
classification results. We can also label the training exasnpsing other segment-level
evaluation metrics such as Meteor [Banerjee and Lavie, 2D8Bkowski and Lavie, 2010].

Currently, only a standard phrase-based SMT system is s&edie plan to test our
method on a hierarchical system [Chiang, 2005] to facditiitect comparison with [Koehn
and Senellart, 2010b]. We will also carry out experimentother data sets and for more

language pairs.
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Chapter 8

Conclusion

In this thesis, we explored a series of approaches to irnteedfd outputs into TM environ-
ments. Using these methods, TM environments are enrichidchigih quality MT outputs,
but the assets and cost estimations associated with TMseatarkact. Our approaches
work both for 1-best and k-best translation candidateso#t begment and sub-segment
levels. Most importantly, our approaches are validated loydmn translators, the target
users of our approaches.

We start this thesis in Chapter 2 by reviewing TMs and MTs, tihe paradigms that
we try to integrate in this thesis. We observe both TM’s gjtls of precisely reusing pre-
viously translated segments and performing reliable tadios cost estimation, and MT'’s
capability to produce automatic high quality end-to-erahstation. Based on this obser-
vation, we propose to integrate high quality MT outputs itite TM environment, so that
translators can still work in TMs, but at the same time carebefrom recent advancements
in SMT.

In Chapter 3, we review existing methods of translation it&stimation, including
the fuzzy match score for TMs, and confidence estimation atahzatic evaluation metrics
for MT systems. As our TM-MT integration approaches are Basequality comparison,
these existing methods are closely related to the work tegan this thesis, and inspired

the approaches presented in this thesis, especially thgndetlinguistically motivated

129



features.

We begin presenting our TM-MT integration approaches ingfdra4 by introducing
the translation recommendation model. In the translattmommendation model, we only
present MT outputs that we predict (with high confidence) éontore suitable for post-
editing to translators. At the same time, we also providecamenendation confidence
score, on which the translators can set thresholds by theesseAs only the better MT
segments are presented in the TM environment, the assetsaied with the TM are kept
intact, and the related cost estimation can still be used apper bound.

In Chapter 5, we extend our work on translation recommeadatiith the translation
reranking model. While the translation recommendation ehémtuses only on the 1-best
outputs, the reranking model is capable of handling k-befgiuds by merging and reranking
the TM and MT k-best lists. Using the reranking model, eveyrsent found by the fuzzy
match scheme is kept in the environment, but translators éasier access to better quality
translations as these are reranked higher in the new kib&st |

We report the results we collected from a user study to detraiasthat our method
is validated by human translators in Chapter 6. We show thatecommendation model
can obtain a precision above 0.9 and a recall above 0.75 waiep thresholds, and that
our reranking model can obtain 0.85 precision and 0.58 Ired&n evaluated against the
consensus judgement of 3 translators. We also report aestiteg user feedback that lends
further support to TM-MT integration and acts as implicidersement of our integration
models.

Finally, in Chapter 7, we develop our TM-MT integration pdiga to the sub-segment
level. Instead of comparing the quality of TM and MT outpugisents and presenting
the better one to translators, we explore the possibilitgedper integration by reusing
high quality TM sub-segment chunks to enrich SMT systemgeErments on a real world
dataset shows that our method not only better guarantegsidatian consistency, but also
leads to improved translations, reflected by a 1L2Bpoint improvement (2.62% relative)

and a 0.72 ER point reduction (1.81% relative).
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Now let us look at the research questions we proposed in €hapt

(RQ1) Can we provide translators with high-quality MT segmemtsaiTM

environment, without sacrificing the strengths of TMs?

(RQ2) Can we reuse sub-segment chunks from TMs to improve SMTisons
tency and quality?
(RQ3) Can we validate our TM-MT integration models with humanleaa

tion?

We tackleRQ1 with the methods we present in Chapters 4 and 5. The tramislscom-
mendation and translation reranking models enable thslatms to access SMT outputs
in an TM environment, only when the SMT outputs are predit¢tede more suitable for
post-editing with high confidence. This way, we kept TM'&sgth of a more user friendly
post-editing environment and only when the TM cannot predacompetitive candidate
for post-editing, we take advantage of SMT's high coverage laad the translator to the
SMT output.

We bring these integration paradigms to sub-segment levebponse tRQ2 in Chap-
ter 7. We use high confidence TM chunks to mark up and consg&im. We also incor-
porate a rich linguistic feature set inspired by our work atoenatic evaluation metrics in
Chapter 3 to improve the expressiveness of this model. Opererents show that both
consistency and quality of SMT outputs improve by reusingsegment chunks from TM.

In Chapter 6, we perform human evaluation on our recomméandahd reranking mod-
els. Results from our experiments show that human evaluatipport validation of both

models, providing a positive answerR)3.

8.1 Contribution of this Thesis

In sum, we have explored both loose segment-level integratind tight sub-segment-level
integration of TM and MT systems, so as to help translatoexctess the SMT outputs in a

TM environment. We have made the following contributions.
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» Segment-level TM-MT Integration Models. We present two segment-level TM-
MT integration models that allow translators to access ghiguality MT, while
keeping strengths of the TM environment. The effectiveradghese two models is

validated by judgements from human translators.

e A Sub-Segment level TM-MT Integration Model. We also present a model to
perform sub-segment level integration for TM and MT, so tien if the overall
quality of a TM fuzzy match is not good enough, it is still pibés to use high-
quality sub-segments from it to enrich the SMT engine to poeda more consistent

translation of higher quality.

* Human Evaluation Paradigm for TM-MT Integration . When evaluating our mod-
els against human judgements, we present a paradigm t@eydlivl-MT integration
quality against both individual and consensus judgementd, enable comparison
with naive fuzzy match thresholding-based methods cugrersted in the industry.

This paradigm can be reused in future research on the todiMefT integration.

8.2 Future Work

The integration of TM and MT paradigms is a field undergoingvaaesearch, as is indi-
cated in the related research we discussed in Chapters,&aiq . The research described
in this thesis can be strengthened both by more thorouglstigation of the method itself,
and by the interaction with other MT-TM integration techumes.

The method presented in this thesis is tested on a proprigtdrin the IT security
domain, consisting mainly of short segments. The utilittho§ approach can be better
evaluated by testing on TMs from broader domains and ofréiffiecharacteristics. We also
note that while using proprietary TMs enables us to test adtets in an industrial setting,
it does not always facilitate crowdsourcing as a cheapeioagh to perform more extended
human evaluations, so testing the method in an open domald belp us to obtain more

and better data. Eventually, we hope to tune the system ohuiman evaluation data in
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order to provide better recommendations.

On the other hand, from the perspective of localization eesdour human evalua-
tion can still be strengthened by statistics collected feoreal industrial setting instead of
guestionnaires. So it would also be interesting to see haypdradigm can improve the
efficiency of translators in an industrial localization pess.

With regard to the interaction with other methods, it willNexy useful to integrate MT
confidence estimation scores such as Specia et al. [200@bdum translation recommen-
dation and translation reranking models, so that the taéms can still have a translation
confidence score (in addition to a recommendation confideome), when MT outputs are
presented. Moreover, our segment- and sub-segmentatigagimodels can be integrated,
so that when the TM output is inferior to the MT output, it canused to generate an alter-
native translation, and then the recommender/rerankepietict its quality compared to
other “pure” MT outputs.

Finally, our sub-segment integration model is a first stephia direction. Like its
segment-level counterparts, this method can be understnmth better if human evalu-
ation can be conducted. This method also opens several ptissibilities. Firstly, the
current model performs classification on a segment-by-segtnasis, and we suspect the
performance can be further improved if we classify on a mautcdmarkup basis. Secondly,
as we actually reuse part of the TM fuzzy match, and have tioenration on alignment
and confidence estimation, we can potentially use suchnrdtion to produce confidence
scores for the final translation output, as well as providirgetter color-coding scheme to

assist translators.
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Appendix

Guidelines Provided to Professional Post-Editors during Fiman

Evaluation
Please read this step by step instruction fully and casehdfore you conduct the task.

» Tolog in the evaluation interface, click the followingkinhttp://eval.yifanhe.
org/login/ The server will be up and running from 6:00am 17 May to midhigh
19 May, 2010. You should have received your user name andvpesgo log into

the server.

» On the login page, input your username and password younebtand click the

“Submit” button, you will be logged into the evaluation page

* In total, there are 300 English segments translated indmc¢fr using two different
systems. There is only one English segment together wittviid=rench translations
shown on each webpage. The two French translations haveshaéfted randomly;
therefore translation 1 can either be output from trarmhasiystem 1 or 2 and simi-

larly for translation 2. You will see a snapshot of the inded on the third page.

You are asked to choose the sentence that is most SUITABLEFORT-EDITING.
By “suitable for post-editing”, you are NOT asked to chodse best French transla-
tion Rather, you are asked to choose the French transldtainvould save you the

most time if you were to post-edit it. Therefore, even if arfétetranslation does not
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fully translate the English segment, you may still seletieitause you would spend
less time post-editing it into a grammatical French segm&hbse meaning would
match the English segment’s. Please make sure to bear thigahthroughout the

task.

Let's take the following example:

Source: Determines whether a recovery point is valid orugrbefore

restoring it.

Candidate 1: Vérifie si un point de récupération est watid endommagé
avant la restauration.

Candidate 2: détermine si un point de récupération d&tevau endom-

mageée avant la restauration.

Candidate 1 is a grammatical segment but it does not conweyniéaning of the
source segment (“Determines” is semantically differentrfr‘Veérifie”), so an im-

portant lexical change would be required. On the other hamdlidate 2 is not a
grammatical sentence (Lack of initial capitalisation andng agreement “endom-

mageée”), so two small changes would be required.

While Candidate 2 is a better translation than Candidaterh ft semantic perspec-

tive, you might consider that it would be quicker to posttéthndidate 1

There is an option of “Equally suitable for post-editingfe@se only select this when

you are genuinely sure that they are absolutely equallslsigit

There is also an option of “Neither is suitable for postiedit | will translate from
scratch”. Please only use this option when you think botldickte translations are

not useful. For example:

Source: IDD_ADD _ SHARE_ PAGE_COMPUTER
Candidate 1: IDD. ADD _- SHARE_ PAGE_INTRO

Candidate 2: IDD. ADD _ SHARE _ PAGE _ ordinateur
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In this case, you will directly copy the source segment; df@e neither candidate

translation is suitable.

» Please complete the selection for all 300 English segmédhtsecessary, you may
take an extra 20 minutes (paid) in order to complete all oftheYou will then
come to a page showing the following message “Evaluatiorpéeted! Thank you!”,
which is followed by a very short questionnaire. After youdinthis, Please click

the “Logout” button to log out.

* You may log out in the middle of this task by clicking the “Lagt” button in the
upper half of your page. Your work will be saved. When you logéxt time, it will

start from a page you haven’t completed last time.

» Whenever you have questions during this task, please seedail to Dr. Yanjun
Ma (yma@computing.dcu.ie ), your query will be replied as soon as we possibly

can.

All your appreciated effort in this task will greatly help ts improve our existing

technology. Many thanks for your cooperation!
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