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Abstract

In this paper, we report our experiments
in combining two EBMT systems that
rely on generalized templates, Marclator
and CMU-EBMT, on an English–German
translation task. Our goal was to see
whether a statistically significant improve-
ment could be achieved over the individ-
ual performances of these two systems. We
observed that this was not the case. How-
ever, our system consistently outperformed
a lexical EBMT baseline system.

1 Introduction

The state-of-the-art approach in MT is phrase-
based Statistical Machine Translation (SMT)
(Koehn et al., 2003). Together with Example-
Based Machine Translation (EBMT) (Nagao,
1984), SMT belongs to the Corpus-Based Machine
Translation (CBMT) paradigm. Hence, both SMT
and EBMT rely on a sententially aligned bilin-
gual corpus. EBMT systems make use of the par-
allel corpus by consulting the training set (their
example base) directly at runtime. In contrast,
SMT systems consult the probabilities of source-
language–target-language (SL–TL) word or phrase
pairs which they have learned from the training
data offline. Hence, the main feature that distin-
guishes the two paradigms is the type of knowl-
edge used during the translation step.

EBMT systems have often performed worse
than SMT systems in the past (cf., for example,
Groves and Way (2005)). The biggest shortcoming
of EBMT is that it does not combine translations
of phrases well. This problem is known as bound-
ary friction (Way, 2001, p. 2). It is particularly fre-
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quent when translating into a morphologically rich
language. As an example for translating from En-
glish into German, assume that the sentence pairs
listed in Example 1 are contained in the example
base (Way, 2001).

(1) A big dog eats a lot of meat. – Ein großer
Hund frisst viel Fleisch.
I have two ears. – Ich habe zwei Ohren.

An EBMT system might make use of the phrases
shown in bold to translate a sentence like I have a
big dog. into Ich habe ein großer Hund. In doing
so, it would neglect the fact that German uses dif-
ferent inflectional forms to mark grammatical case:
the German phrase ein großer Hund in the first sen-
tence is a nominative noun phrase and therefore a
legitimate choice as the subject of this sentence,
but Ich habe requires an accusative object (einen
großen Hund).

Among the best-performing systems in EBMT
are systems that make use of generalized tem-
plates. Generalized templates are SL–TL pairs in
which certain parts have been replaced by vari-
ables. They provide an additional layer of abstrac-
tion and can thus prevent a system from having to
revert to word-by-word translation.1 In this paper,
we present our experiments in combining two ex-
isting EBMT systems that rely on generalized tem-
plates. Our goal was to see whether a statistically
significant improvement over the individual per-
formances of these two systems could be achieved.
We will show that this was not the case, but that our
system performed significantly better than a lexical
EBMT baseline system.
1It is generally accepted that translating a sentence word by
word leads to poorer translation quality than translating it in
larger segments.
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The remainder of this paper is structured as fol-
lows: in Section 2, we provide an overview of the
different types of generalization that have been ap-
plied in EBMT. In Section 3, we introduce the two
systems which we used for our experiments. In
Section 4, we introduce our experimental data set
as well as our approach. We then present the re-
sults of our experiments and a discussion thereof.
In Section 5, we give an overview of the issues
which we tackled and offer an outlook on future
research questions.

2 Related Work

When compiling generalized templates, there is
a risk of replacing too many parts of an SL–TL
pair with variables. To avoid this risk of overgen-
eralization, generalized templates are usually re-
stricted to certain categories of words. Common
candidates for generalization are content words,
as replacing them with other content words does
not affect the grammar of the sentence. Seman-
tic generalization was explored by Kitamura and
Matsumoto (1995). Kaji et al. (1992) applied se-
mantic constraints to their approach to syntactic
generalization. Pure syntactic generalization was
performed by Güvenir and Tunc (1996).

Cicekli and Güvenir (2001) generalized over se-
quences of words. The underlying assumption is
that given two SL–TL sentence pairs, if the two
SL sentences have certain word form sequences in
common, the corresponding TL sentences are ex-
pected to exhibit the same similarities among each
other. The similar parts of the SL sentences are
then assumed to be translations of the similar parts
of the TL sentences, and the same applies for the
differing parts.

In the following section we describe the two
EBMT systems which we used for our experi-
ments. Both systems started out as purely lexical
EBMT systems, i. e., they did not make use of gen-
eralized templates. We describe their original ap-
proach and explain how they were extended. For
the first system, Marclator, the extension consists
of applying generalization over function words.
The second system, CMU-EBMT makes use of se-
mantic and, to some extent, syntactic generaliza-
tion.

Category Example

determiner den
personal pronoun euch
demonstrative pronoun jenem
possessive pronoun seine
interrogative pronoun welch
indefinite pronoun andere
relative pronoun denen
preposition abseits
coordinative conjunction aber
subordinative conjunction falls
cardinal numeral eins
numeric expression neunundneunzig
auxiliary/modal verb darf
punctuation !

Table 1: German Marker categories and examples

3 Syntactic and Semantic Generalized
Templates

3.1 EBMT at DCU: Marclator
Marclator was developed at Dublin City Univer-
sity (DCU) and is part of the MaTrEx architec-
ture (Stroppa and Way, 2006).2 The system does
not apply the greedy matching strategy typical of
many EBMT systems. Instead, it segments both
the training and the test data into chunks. Chunk-
ing is based on the Marker Hypothesis (Green,
1979). This is a psycholinguistic hypothesis stat-
ing that every language has a closed set of elements
that are used to mark certain syntactic construc-
tions. The set of elements includes function words
and bound morphemes, such as -ing as an indica-
tor of English progressive-tense verbs and -ly as an
indicator of English adverbs.

The Marclator chunking module solely consid-
ers function words as indicators of chunk bound-
aries. Each function word (subsequently called
Marker word) triggers the opening of a new chunk,
provided that the preceding chunk contains at least
one non-Marker word; e. g., He was | on the bus.
For English and German, this leads to left-marking
chunks, with the exception that a few German
prepositions can also function as postpositions, in
which case they are right-marking (e. g., wegen:
der Sache wegen).

For English, Marclator relies on a Marker word
list derived from the English monolingual dictio-
nary of the rule-based MT system Apertium (Tyers
et al., 2010).3 The German Marker words were ex-
2http://www.openmatrex.org/marclator/
marclator.html
3http://www.apertium.org/

210



tracted from the Celex database.4 The lists contain
a total of 450 Marker words for English and 550
for German. Table 1 lists a sample Marker word
for each category. The examples show that en-
tries are included in their inflected forms. Stroppa
and Way (2006) found that treating the punctua-
tion marks ! ? , . : ; as additional Marker elements
improved performance in their experiments.

Following the chunking of the training data,
Marclator performs word and chunk alignment.
The system relies on Giza++ (Och and Ney, 2003)
for word alignment. The chunk alignment algo-
rithm is an edit-distance style algorithm in which
the distances are replaced by opposite-log condi-
tional probabilities (Tinsley et al., 2008).5 The re-
combinator of Marclator is a left-to-right mono-
tone recombinator. When translating an input sen-
tence, it first looks for a matching sentence in the
example base. If none is found, the sentence is
chunked. Each chunk that is not found in the ex-
ample base is then split into single words. If sev-
eral TL correspondences for an SL chunk or word
are found in the example base, the one with the
highest probability is chosen.6 Thus, for each in-
put sentence, the recombinator outputs a single hy-
pothesis.

A problem inherent in the approach described
above is that the chunks of an input sentence often
cannot be found in the example base. Since trans-
lating a chunk as a whole is likely to yield a better
translation than translating it word by word, it is
desirable to increase the chunk coverage of a sys-
tem. Gough and Way (2003) extended the precur-
sor to Marclator by including an additional layer
of abstraction: they produced generalized chunks
from word form chunks by replacing the Marker
word at the beginning of a word form chunk with
the name of its category, e. g., of a marathon →
<PREP> a marathon. The generalized template
extension is not part of the current Marclator sys-
tem. We reimplemented it for our experiments.

3.2 CMU-EBMT
The second EBMT system which we used for our
experiments is CMU-EBMT.7 The system forms
4http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC96L14
5Note that both word and chunk alignment involve statistical
knowledge.
6This is a common procedure for recombinators that do not
incorporate a language model.
7http://sourceforge.net/projects/
cmu-ebmt/

part of PanLite (Frederking and Brown, 1996),
an MT architecture developed at Carnegie-Mellon
University (CMU). It can also be invoked on its
own. The system requires a parallel corpus and
a bilingual dictionary. Brown (1996) used entries
from a commercial bilingual dictionary for his ex-
periments in translation from Spanish to English.

Unlike Marclator, CMU-EBMT does not re-
quire subsentential units to be compiled before the
actual translation step. The matching step resem-
bles closely that of a traditional EBMT system:
CMU-EBMT extracts every substring of the input
sentence with a minimum length of two tokens
that appears in the SL half of the example base.
For each of these fragments, it then identifies the
smallest and the largest possible segment in the TL
sentence that correspond to it. This is done on the
basis of a bilingual dictionary and, optionally, a
TL synonym list. Every possible substring of the
largest segment that contains at least the minimal
segment receives a score. The best alignment is the
one with the lowest score. The alignment score is
the weighted sum of the values of eight features,
which include: the number of SL words with no
correspondences in the TL segment, the number of
TL words with no correspondences in the SL frag-
ment, the number of SL words with a correspon-
dence in the TL sentence but not in the relevant
TL segment, and the difference in length between
the SL and the TL segment. Each translation is
passed on to the recombination step as long as its
score does not exceed five times the length of the
SL fragment.

Brown (1999) proposed an extension to CMU-
EBMT that makes use of semantic and syntactic
generalized templates. He referred to the template
categories as equivalence classes. Examples of se-
mantic and syntactic equivalence classes are given
in Table 2. The table shows that class members
can in turn contain classes. This is evident from
the last line (shown in bold).

The system generalizes both the training and the
test set: it recursively replaces words and phrases
that are part of an equivalence class with the cor-
responding class tag. Syntactic classes are applied
before semantic classes, and disambiguation num-
bers are introduced to distinguish between multiple
occurrences of the same class tag in a sentence.
In the training data, generalization is performed
only if a member of a particular equivalence class
is found in both the SL and the corresponding TL
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Class Sample member

<religion> Christianity – Christentum
<month> December – Dezember
<fullname-m> <firstname-m> <lastname> – <firstname-m> <lastname>
<fullname-m> George Washington – George Washington

<adj-s> affordable – accesible
<noun-m-p> painters – pintores
<np-m> <poss> <noun-m> – <poss> <noun-m>
<np-f> the <noun-f> – la <noun-f>
<np-f> a <color> <noun-f> – une <noun-f> <color>

Table 2: Semantic and syntactic equivalence classes

sentence. In the case of single-word replacements,
the word forms that are replaced are retained as al-
ternatives during the matching process. This does
not apply to replacements of more than one word,
due to the difference in length to the (single-token)
class tags.

In the sentences of the test set, all members of
an equivalence class are replaced recursively. The
matching process is equivalent to that of the purely
lexical CMU-EBMT system, with the apparent dif-
ference that here, two matching levels – a lexical
and a generalized one – exist. Alignment proceeds
in the same way as in CMU-EBMT. Following this,
the rules that were stored during the generalization
of the input sentence are applied in reverse so as to
transform the generalized TL fragments into word
form TL fragments.

4 Experiments and Evaluation

4.1 Our Approach
Our experimental data set consisted of English–
German subtitles that were kindly provided to us
by a commercial subtitling company. Our corpus
contained 1,133,063 subtitles which consisted of
on average 8.9 tokens for English and 7.9 for Ger-
man. For our experiments in translating from En-
glish to German, we divided the subtitle data into
a training set of 1,130,717 subtitles and a test set
and development set of 1173 subtitles each.

Our approach to EBMT consisted of combining
the generalized template extensions of the Mar-
clator and CMU-EBMT systems described in Sec-
tion 3. This meant building a new system that
applies both the DCU and the CMU generaliza-
tion scheme. Our goal was to see whether our
combined system could outperform the two indi-
vidual systems. For this, we ran an experiment
with the combined system as well as one with
each individual system. We (re-)implemented the
three approaches on top of Marclator: we included

the word alignment, Marker-based chunking and
chunk alignment module of Marclator. We also
used the Marclator recombinator and adjusted it
separately for each of the three systems so as to
make it capable of dealing with the particular gen-
eralization scheme. In summary, we built three
systems: Marclator with DCU generalized tem-
plates (System 1), Marclator with CMU gener-
alized templates (System 2) and Marclator with
DCU & CMU generalized templates (System 3).
In what follows, we describe each of these systems
along with the baseline systems.

System 1 includes the generalized template ex-
tension to Marclator that was described in Sec-
tion 3.1. Recall that Marclator is based on Marker
words, which are function words. Hence, the
extension generalizes over the Marker words at
the beginning of Marker-based chunks. We re-
implemented it by using the Marclator compo-
nents mentioned above and adding a module that
generalizes the aligned SL–TL chunk pairs. We
also extended the Marclator recombination mod-
ule: in its original form, the recombination module
checks for the presence of matching sentences and
word form chunks8 before reverting to word-by-
word translation. We added an additional match-
ing step to follow the chunk matching: in this step,
the system replaces the Marker word at the begin-
ning of a chunk by its corresponding Marker tag
and searches for the resulting generalized chunk
in the example base. Where this attempt fails, the
system reverts to word-by-word translation.

The only difference remaining to the approach
described in Section 3.1 is that the system of
Gough and Way (2004) outputs all possible hy-
potheses for an input sentence, while the Mar-
clator recombinator only outputs the one-best hy-
pothesis. This means that once our system has
8We subsequently refer to word form chunks (as opposed to
generalized chunks) simply as chunks.
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established a generalized chunk match with the
SL side of the example base and has extracted
the corresponding TL generalized chunk, it has to
make a decision as to which Marker word to insert
for the Marker tag. For this, it identifies the SL
Marker word underlying the SL generalized chunk
that was matched. It gathers the word alignment
links that contain the SL Marker word and chooses
the alignment with the highest frequency, provided
that the resulting TL word is also a Marker word.

For example, assume that an SL chunk i ’ve fi-
nally got cannot be found in the example base. Sys-
tem 1 therefore generalizes it to <PERS PRON>
’ve finally got and extracts the corresponding
TL generalized chunk, which is <PERS PRON>
haben. The system subsequently searches for a
German translation for the SL Marker word i (un-
derlying the SL Marker tag <PERS PRON>) in
the word alignments. Assuming that it finds ich, it
produces the TL chunk ich haben.9

Figure 1, adapted from Armstrong et al. (2006),
visualizes the system’s training and translation
process. The numbers attached to the arrows (I to
IV) specify the matching order.

System 2 incorporates the CMU semantic and
syntactic equivalence classes described in Sec-
tion 3.2. Of the 81 classes for the language pair
English–German that were provided to us by the
developer of the CMU-EBMT extension, the ma-
jority are semantic classes. The classes contain a
total of 5545 replacement rules. Recall that a re-
placement rule specifies an equivalence class tag
and an SL–TL pair whose two halves may be re-
placed by the tag. Unlike the original implemen-
tation (CMU-EBMT), System 2 has Marclator at
its core, which means that it relies on the word
alignment, chunking, chunk alignment and (ex-
tended) recombination module of Marclator. We
implemented an additional module that generalizes
Marker-based chunk pairs on the basis of the CMU
generalized templates.

System 3 combines Systems 1 and 2. Accord-
ingly, it generalizes over DCU Marker words as
well as CMU semantic and syntactic equivalence
classes. Like Systems 1 and 2, the system has
Marclator at its core. This makes it possible to
directly compare the effectiveness of the gener-
alization schemes. However, the DCU and the
CMU generalization schemes are not mutually ex-
9Note that this translation is deficient. We discuss the prob-
lems inherent in the approach of System 1 in Section 4.3.

System BLEU NIST METEOR

1 0.1274 4.3948 0.4052
2 0.1269 4.3815 0.4047
3 0.1277 4.3937 0.4051
Marclator 0.0995 4.2411 0.3990
OpenMaTrEx 0.2763 5.7880 0.4914
Moses 0.2709 5.7472 0.4854

Table 3: Evaluation scores

clusive. There are a number of overlaps, i. e.,
the CMU classes contain 50 words that are also
Marker words for English (e. g., after, and, be-
fore), and 19 for German (e. g., aber, allen, er). We
prompted the system to generalize over the Marker
words first, thereby giving preference to the DCU
scheme in case of overlaps.

Baselines: We established three baselines: Mar-
clator, OpenMaTrEx (Dandapat et al., 2010) and
Moses (Koehn et al., 2007). The Marclator base-
line was the purely lexical system described in
Section 3.1. For the Moses baseline, we used the
default system included in OpenMaTrEx. The sys-
tem uses a 5-gram language model and modified
Kneser-Ney smoothing. Training is performed ac-
cording to the default options and thus includes
tuning via MERT (Och, 2003). In addition, a lex-
icalized reordering model is learnt. The OpenMa-
TrEx baseline system makes use of EBMT chunk
pairs from Marclator and SMT phrase pairs from
Moses. We used the default configuration, which
includes a 5-gram language model with modified
Kneser-Ney smoothing and tuning via MERT. We
included the optional binary feature that records
whether a phrase pair is an EBMT chunk pair or
not. To train the language models for Moses and
OpenMaTrEx, we used the TL side of the training
data.

4.2 Results of the MT Systems
Table 3 shows the results of our experiments. The
best of our systems (Systems 1 to 3) with regard to
each of the three evaluation metrics (BLEU, NIST
and METEOR) is shown in bold. The table shows
that there was no agreement among all three met-
rics as to which system performed best: System
3 performed best according to BLEU, while Sys-
tem 1 performed best according to NIST and ME-
TEOR. The three systems outperformed the lexical
baseline system Marclator according to all three
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training data English Marker file German Marker file

chunking module chunking module word alignment module

English Marker chunks German Marker chunks

chunk alignment module

aligned chunks generalization module aligned generalized chunks aligned wordsaligned sentences

input recombination module output

I. II.
III. IV.

Figure 1: System 1: training and translation process

metrics.10 We measured statistical significance by
bootstrap resampling (Koehn, 2004) on BLEU.11

The improvement of System 3 over System 2 is
statistically significant, while the improvement of
System 3 over System 1 is not. The improvements
of Systems 1, 2 and 3 over the baseline Marcla-
tor system are all significant, as are the improve-
ments of the baseline OpenMaTrEx and Moses sys-
tem over Systems 1 to 3.

4.3 Chunk Coverage and Chunk-Internal
Boundary Friction

The evaluation results in Table 3 show that our
generalized EBMT systems achieved higher scores
than the lexical EBMT system Marclator. This
observation supports earlier findings according to
which EBMT systems benefit from generalized
templates. We believe that it is reinforced by the
performance results of System 1 and System 2: Sys-
tem 1 performed better than System 2 according to
all three evaluation metrics. We investigated the
generalized chunk coverage of the two systems,
i. e., the number of successful generalized chunk
matches with respect to the total number of at-
tempts made at matching a generalized chunk.12

The coverage was 8.26 % for System 1. For System
2, it was 2.14 %, which is very low. We conclude
10In experiments carried out on half of the data, System 1 per-
formed best according to BLEU, while System 2 performed
best according to NIST and METEOR. Systems 1 to 3 also
performed better than the Marclator baseline.
11An approximate randomization with 500 shuffles was per-
formed for the significance tests. All further statements about
significance refer to a significance level of α=5 % and to
BLEU.
12Recall that a generalized chunk match is attempted after ev-
ery unsuccessful word form chunk match.

from this that the higher generalized chunk cover-
age of System 1 was the reason why this system
performed better than System 2.

Table 3 also shows that combining System 1
and System 2 into System 3 did not yield a clear
improvement over the individual performances of
these two systems. We think that this is due to
minor differences in the way in which chunks are
generalized in our systems as well as to overlaps
in the generalization schemes: recall that the two
schemes have certain class members in common.
The results might also indicate that System 3 over-
generalized.13 However, we think that this expla-
nation is not valid in our case: we demonstrated
that the CMU generalization scheme led to a low
generalized chunk coverage in System 2. Hence, it
also did not contribute many generalized chunks to
the translation process of System 3.

We believe that the low generalized chunk cov-
erage of System 2 demonstrates the problem in-
herent in the use of semantic word classes, which
form the majority of the CMU equivalence classes.
The classes are very specific; many of them (e. g.,
city, company, country) have proper name mem-
bers. On average, each class contains 69 members.
To improve the generalized chunk coverage, this
number would have to be increased.

When investigating the output of System 1, we
observed one major source of errors, which we call
chunk-internal boundary friction. Boundary fric-
tion is normally caused by the juxtaposition of two
separate translation units that do not agree in gram-
13We mentioned the risk of overgeneralization in our intro-
duction.
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matical case. With the introduction of Marker-
based templates, it can also take place within a
single chunk, i. e., when a Marker word is in-
serted that does not accommodate the grammat-
ical properties of the rest of the chunk. In the
case of English–German translation, inserting TL
Marker words context-insensitively (as is done in
System 1) is error-prone: due to the morpholog-
ical richness of German, an English Marker word
can correspond to multiple word forms of the same
lemma on the German side. For example, the En-
glish Marker word are can be translated into the
German Marker words bist, sind and seid. Ex-
ample 2 shows an English input sentence and the
corresponding German output sentence, translated
by System 1. The section where chunk-internal
boundary friction occurred is shown in bold.

(2) are you sure that superman was hypnotized
last night ? – sind du sicher dass das
superman war hypnotisiert gestern nacht ?

To translate the English sentence in (2) into Ger-
man, our system made use of a German general-
ized chunk <AUX> du sicher. It then instantiated
<AUX> with sind. sind is a German verb in the
first or third person plural, while du is a second-
person singular pronoun and the subject of the sen-
tence. In German, the subject and the verb of a sen-
tence have to agree in person and number. There-
fore, the combination of du and sind is grammati-
cally incorrect.

Table 3 also shows that our EBMT systems
performed much worse than the baseline systems
Moses and OpenMaTrEx. We think that the per-
formance gap is largely due to the recombination
module of Marclator: the recombinator is mono-
tone in nature and outputs only the one-best hy-
pothesis. No language model is applied. Both
OpenMaTrEx and Moses apply a language model
for hypothesis recombination. We believe that it
is essential for an EBMT system to make use of
a language model to reward output sentences that
are more fluent with respect to the TL.

In summary, our combined system did not per-
form significantly better than the two individual
systems according to all three evaluation metrics.
However, all three generalized EBMT systems out-
performed the purely lexical Marclator baseline.

5 Conclusion

In this paper, we reported the results of experi-
ments in combining two existing EBMT systems

that rely on generalized templates. The combined
system did not yield a significant improvement
in translation quality compared to the individual
performances of the two systems; it still exhib-
ited a low generalized chunk coverage. However,
our generalized EBMT systems consistently out-
performed the lexical EBMT baseline. This shows
that generalized templates are advantageous to an
EBMT system’s performance.

We demonstrated that it is more difficult to
achieve a high generalized chunk coverage with
semantic generalized templates than with general-
ized templates based on function words. Seman-
tic generalized templates have the advantage that
they do not interfere with the grammar of a sen-
tence. In contrast, generalized templates based
on function words are relatively easy to compile.
However, we showed that a system which relies
on such templates can suffer from chunk-internal
boundary friction. In our English–German exper-
iments, it occurred when German preposition or
auxiliary verb Marker tags were instantiated. To
reduce the chunk-internal boundary friction prob-
lem, we are currently developing an algorithm that
context-sensitively instantiates TL Marker tags by
using a language model. We plan to incorporate it
into our generalized template extension of Marcla-
tor.
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