

# Ionic liquids for enzymatic sensing



Kevin J Fraser,<sup>a</sup> Caroline Barry,<sup>a</sup> Robert Byrne,<sup>a</sup> Fernando Benito-Lopez,<sup>a</sup> Susan Warren,<sup>b</sup> Eithne Dempsey $^b$  and Dermot Diamond $^a$ .

<sup>a</sup> CLARITY: Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Dublin 9, IRELAND

<sup>b</sup> Centre for Research Electroanalytical Technologies, Dept. Science, Institute of Technology Tallaght (ITT Dublin), Tallaght, Dublin 24, Ireland.

### **Introduction:**

- Point-of-care (POC) glucose biosensors play an important role in the management of blood sugar levels in patients with diabetes.
- One of the most commonly used enzymes in glucose biosensors is Glucose Oxidase (GOx).
- Ionic liquids (ILs) have evolved as a new type of solvent for biocatalysis, mainly due to their unique and tunable physical properties.[1]
- · Amperometric biosensors employing IL's have been reported previously, for example, ([C<sub>4</sub>mIm][BF<sub>4</sub>]) has been used as a mediator in a electrochemical H<sub>2</sub>O<sub>2</sub> biosensor<sup>[2]</sup>.
- . This work investigates colorimetric and electrochemical methods of glucose detection by Combining the enzyme's specificity, with the unique characteristics of IL's and either a chromogen (o-Dianisidine) or electrochemical mediator (ferrocene) to enhance the detection
- This interest is driven by the need to find molecular environments in which enzymes are highly stabilized while retaining redox activity.

## **Experimental:**

• Ionic liquids used in this study include  $[C_2mIm][EtSO_4]$ ,  $[P_{6,6,6,14}][Cl]$ ,  $[P_{6,6,6,14}][dca]$  and [P<sub>6,6,6,14</sub>][NTf<sub>2</sub>] (Fig 1)

$$\bigoplus_{C_1 \neq H_2}^{C_1 \neq H_{20}} \bigoplus_{C_2 \neq H_3}^{\bigoplus} \bigoplus_{C_3 \neq H_3}^{\bigoplus} \bigoplus_{C_2 \neq H_3}^{\bigoplus} \bigoplus_{C_3 \oplus H_3}^{\bigoplus} \bigoplus_{C_3 \oplus H_3}^{\bigoplus} \bigoplus_{C_3 \oplus H_3}^{\bigoplus}$$

Fig 1: Cations / anions used in this study.

#### Colorimetric:

• The mechanism of the GOx / peroxidase reaction is shown in Fig 2 for colorimetric analysis. Glucose is quantified via the indirect oxidation of o-Dianisidine



Fig 2: Glucose quantification measured using colorimetric analysis.

#### Electrochemical:

- Counter & working electrode consisted of Carbon Cloth- Graphitized Spun Yarn Carbon Fabrics
- 500  $\mu m$  threads consisting of a bundle of 10  $\mu m$  fibres.
- · Allows for flexible substrates.
- Potentials were against a Ag/AgCl reference electrode 500 μm silver wire chloridised in FeCl<sub>3</sub>.
- · Single threads were soaked in a IL / Ferrocene / GOx enzyme solution
- The electrochemical mechanism for glucose detection in a Ferrocene mediated system<sup>[3]</sup>:

GOx-FAD+ Glucose 
$$\rightarrow$$
 GOx-FADH<sub>2</sub> + Gluconolactone  $2Fe^{+3}$  + GOx-FADH<sub>2</sub>  $\rightarrow$   $2Fe^{+2}$  + GOx-FAD+  $2Fe^{+2}$   $\rightarrow$   $2Fe^{+3}$  +  $2e^{-}$ 

## **Results & Discussion:**

#### **Colorimetric:**



Fig 3: Colorimetric assay for GOx in different ILs at 0.55 M glucose.

Fig 4: Standard curve of GOx assay with [C2mIm][EtSO4] & varying glucose

- [C<sub>2</sub>mIm][EtSO<sub>4</sub>] showed favourable results for colorimetric analysis (Fig 3).
- Varying concentrations of glucose in [C<sub>2</sub>mIm][EtSO<sub>4</sub>] resulted in a linear standard curve (Fig 4).

#### **Electrochemical:**

- SEM image (Fig 5) shows excellent coverage of the threads resulting in a large working surface area. Using the Anson equation, the calculated working area was approx 0.138 cm<sup>2</sup>
- Due to the hydrophobic nature of the cloth,  $[P_{6,6,6,14}][dca]$  was chosen as the electrolyte.
- Significant response shown at 7.5 mM glucose addition (Fig 6).





Fig 5: SEM images of carbon cloth & carbon cloth soaked in [P<sub>6,6,6,14</sub>][dca] / Ferrocene / Gox.



Fig 6: CV of Glucose additions to [P<sub>6,6,6,1,4</sub>][dca]/Ferrocene/Gox on carbon cloth. Scan rate 0.01 V/S

## **Conclusions:**

- [C<sub>2</sub>mIm][EtSO<sub>4</sub>] showed favourable results for colorimetric analysis (Fig 3).
- · Carbon cloth shows potential as a flexible working electrode.
- $\bullet$  [P<sub>6,6,6,1,4</sub>][dca] as an electrolyte in the glucose system shows favourable limit of detection
- A flexible, wearable one shot sensor maybe produced using IL formulations

#### References

[1] Zhao, H. (2010), Methods for stabilizing and activating enzymes in ionic liquids—a review. Journal of Chemical Technology & Biotechnology, 85: 891–907. doi: 10.1002/jctb.2375

[2] Liu.Y, Shi.L, Wang. M, Li.Z, Liu. H and Li. J, Green Chem 7:655 - 658 (2005). [3] J.F. Rusling, K Ito, Analytica Chimica Acta 252 (1991) 23-27

Funding Acknowledgement

This work is supported by a Marie Curie Actions International Re-integration Grant (IRG) (PIRG07-GA-2010-268365) and Irish Research Council for Science, Engineering and Technology



