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Abstract— Typically BCI (Brain Computer Interfaces) are
found in rehabilitative or restorative applications, often al-
lowing users a medium of communication that is otherwise
unavailable through conventional means. Recently, however,
there is growing interest in using BCI to assist users in searching
for images. A class of neural signals often leveraged in common
BCI paradigms are ERPs (Event Related Potentials), which
are present in the EEG (Electroencephalograph) signals from
users in response to various sensory events. One such ERP is
the P300, and is typically elicited in an oddball experiment
where a subject’s attention is orientated towards a deviant
stimulus among a stream of presented images. It has been
shown that these types of neural responses can be used to drive
an image search or labeling task, where we can rank images
by examining the presence of such ERP signals in response to
the display of images. To date, systems like these have been
demonstrated when presenting sequences of images containing
targets at up to 10Hz, however, the target images in these tasks
do not necessitate any kind of eye movement for their detection
because the targets in the images are quite salient. In this paper
we analyse the presence of discriminating signals when they are
offset to the time of eye fixations in a visual search task where
detection of target images does require eye fixations.

I. I NTRODUCTION

Recently there is growing interest in using EEG (Elec-
troencephalograph) signals to label images [1], [2]. By
examining neural signals from users in response to present-
ing images to them, we can determine information about
the images through the interpretation of them by the sub-
ject. The EEG signals that are generated in response to a
stimulus such as image presentation are more commonly
referred to as ERPs (Event Related Potentials) and are
known to have idiosyncratic components reflecting attention-
orientating events, such as a subject noticing a particular
target within a stream of images. This phenomenon is more
commonly known as P300 and has a well-established history
of study [3]. The oddball paradigm is commonly used to
elicit P300, where a subject is asked to count or respond
when a particular stimulus appears on-screen. The idea is
that the subject is unaware when the target stimuli will
appear, thus the appearance generating this ERP component
reflective of orientation of attention.

Using EEG signals to label or rank images is of practical
interest as many types of images cannot be automatically
labelled by a computer, and thus still require a human-in-
the-loop. Examples of this include radiologists examining
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medical images or intelligence analysts viewing geo-spatial
data. Aside from the demonstrated image sets used in pre-
vious studies that leverage this EEG annotation technique,
a large open question remains as to what other application
domains could this technique be used in. In previous work,
the properties defining the target images to be detected did
not necessitate any eye movement because the target is
dominant within the image and so a RSVP (Rapid Serial
Visual Presentation) paradigm can be used with speeds as
high as 10Hz.

From vision science we know that some targets within
image streams are not always salient, and can often require
search involving eye movements [4]. Obvious examples of
this include an airport security screener searching for a broad
range of targets fixating on numerous locations within an x-
ray image, or a radiologist similarly fixating on regions of
a medical scan to search for abnormalities. These types of
search activities require a number of eye fixations where
each fixation within the image reveals information as to
whether that region or the image is a target. Past work has
assessed parameters of EEG-annotation techniques on image
sets which have been displayed in fast RSVP paradigms. In
our work we seek to examine if the general technique could
be extended to determine whether individual fixations on an
image could reveal target information. Thus, by performing
such an action we would not only identify targets, but also
their potential locations within images.

EEG signals extracted with regard to a fixation time are
known as EFRPs (eye-fixation related potentials). Sajda [5]
has explored a technique for detecting faces or people as
targets and has confirmed that in such cases, pre-fixation
differentiating EEG activity is present, showing that the
user could see the target before fixation, and thus fixated
to confirm. While visual search is often guided by cues,
and target objects to be detected can be salient, we sought
to determine the case where fixations do not occur as a
confirmation of a target but are necessary in order to detect
the target. In this regard we show that a different pattern of
neural activation occurs when a subject searches for a target
without prior knowledge pre-fixation as to whether it is a
target or not.

In this paper we determine the capability to detect these
ERP signals when they are offset from the time of a fixation.
The idea is that fixations related to detecting targets should
display a differentiated EEG signal. Fixations were detected
by means of EOG (Electrooculogram) by examining the
VEOG and HEOG channels. In section 2 we outline our
experiments, the reasoning behind these, its parameters, and
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our experimental setup. In section 3 we present our results
and in section 4 we present a conclusion and future work.

Fig. 1. The top row shows examples of the stimulus target objects used,
and the bottom the non-target objects.

Fig. 2. An example of a frame. The bottom left corner contains a target
stimulus object example. The object stimuli are increased 200%in size so
that they can be seen more easily here.

II. EXPERIMENT

To address whether we can extract differentiated EEG
activity related to target detection offset from the time of
eye fixations we constructed an experiment whereby each
subject was required to perform a search task on an LCD
screen. In each of the 4 corners of the 24 inch (1680x1050)
screen, a small stimulus was present which was either a target
or a non-target object. The experiment was designed so that
when the subject’s gaze remains fixed on the central fixation
cross (Fig. 2), they would remain unaware as to whether any
of the objects are a target until the time of fixation. These
same target and non-target object stimuli were confirmed not
to be pre-attentively salient in a later experiment using the
same subjects. By evaluating the reaction times for detecting
the same objects in an array serial search task we found that
an increase in distractor objects both increased the detection
times and hindered the detection performance of a subject
in an RSVP paradigm, thus confirming that these targets did
not “stand out” and thus required serial search [4]. The target
object to be detected and counted was a broken circle with 2
lines, while the non-targets were a broken circle with 3 lines.
Examples of these are given in Fig. 1. By using such stimuli
we were able to contain detection of the target item to the
time of fixation. Subjects also confirmed whilst staring at the
central fixation cross that they were unaware as to whether
any of the corner objects were indeed targets.

The experiment was broken into 16 blocks, with each
block containing 16 frames. Preceding each block, a search
pattern was presented on-screen for 10 seconds to indicate
the route to be followed to examine the objects for that block
(shown by the arrows in Fig. 2). A white circle then appeared
in the centre of the screen to indicate that a fixation cross
would appear in 500 milliseconds after which the subject is
expected to follow the given search pattern. At the end of
a block, a subject then reports the total number of targets
observed. Each frame was displayed for 2,500 milliseconds.
Within that time, the subject was expected to view all 4
corner objects following the outlined pattern, and to then
return their focus to the central fixation cross. This central
fixation cross would then be replaced by the warning white
circle where after 500 milliseconds the fixation cross would
reappear, indicating the next frame was about to appear.

The search pattern within each block was kept consistent,
but changed from block to block, hence displaying the search
pattern at the beginning of the block. The arrows used
to indicate the search pattern were superimposed over all
frames for that block so that the subject would not forget the
pattern. With A,B,C,D referencing each corner (see Fig. 2)
on the screen (with E as the central fixation) we permuted
this sequence to create 8 distinct search sequences, each
consisting of 5 movements. 32 frames, each containing 4
corner stimuli, were then generated for that sequence. The
probability of any one object stimulus being a target was kept
to 0.125. Each of these 8 populated sequences were then cut
in half to create the 16 blocks. In this way the target count
per block would not be predicted. The order of these blocks
for each subject was randomised.

Fig. 3. EOG Channels: HEOG on top and VEOG on the bottom.

A. Data collection

For data recording, we used a KT88-1016 EEG system
with a linked mastoid reference and the chin as ground.
Ag/AgCl electrodes were used with a 10-20 placement cap
at locations F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, Oz. Signals were digitized at 100Hz and
subsequently band-passed from 0.1Hz to 20Hz. A 2 channel
pendant EEG device was used to record EOG (VEOG and
HEOG). Subjects were seated 1.2m away from the screen.



This meant each object stimulus was perceivable within .72
degrees.

An Intel Quad Core PC 2.4GHz with 3.2 gigabytes RAM
and an Nvidia 8600GT graphics card was used for stimulus
presentation and recording. All time stamping was carried
out on this machine. With ethical approval granted to carry
out these experiments from the university ethics board we
recruited a total of 7 subjects from the postgraduate and staff
population on campus. 4 males and 3 females were recruited
with an average age of 27.3, and a standard deviation of 4.7.
One of these was left handed.

B. EFRP Extraction

By using the EOG channels (VEOG and HEOG) we were
able to find the time indexes of fixations on the object stimuli.
Eye movements along one plane (i.e. horizontal) generate
signals more prominently on one channel than the other, and
the voltage deflections are sensitive to the direction of eye
movement. Eye movements in any direction are typically
characterised by either positive or negative voltage deflec-
tions on both channels. Since search patterns were consistent
within blocks, the EOG patterns remained fairly consistent
in that they always displayed a stereotyped sequence of
deflections, other noisy EOG components were often present
though. An example of a subject’s eye movement search
pattern for one such frame is shown in Fig. 3. With 8 basic
eye movements used across the blocks, we could detect
the fixations in the EOG signals using a simple scheme of
matching these deflection patterns to the movement most
likely to have generated them. Deflections present in the
EOG signals not conforming to the stereotyped sequence for
that block were discarded. In the case of two consecutive eye
movements occurring in the same direction, the second peak
was taken as the fixation upon the object (the first assumed
to be upon the arrow). The time at which the EOG signal(s)
peaked were taken as the index time from which to extract
EEG activity. The peak times were detected by finding zero-
crossings of the first derivative of the signal. To mitigate
noise in the EOG signals, we disregarded eye movements
where the combined absolute value of the peak height(s) fell
below 2 standard deviations for that movement.

In an ideal circumstance we should have been able to
extract 128 target fixations, and 896 non-target fixations
in total for each subject. In practice, for each subject (1
to 7) respectively we extracted the following target/non-
targets counts: 111/778, 107/768, 117/825, 109/772, 113/761,
118/838, 114/794.

Using these labeled time indexes of fixations, we extracted
windows of the EEG signal starting post-fixation 0ms to
1000ms for each of the 16 channels. These were then
concatenated to form a feature vector of length 640 which
was then normalised to the range [-1,1]. No distinction was
made to the eye movement associated with each target and
non-target, only that that feature vector represented a target
or non-target fixation.

III. R ESULTS

A. ERP Analysis

Both early visual EFRP and later discriminating compo-
nents are visible in the grand average scalp plots shown in
Fig. 4. The first notable component is the fixation lambda
potential [6] (related to the visual P100) which peaks at
occipital sites at 80ms (visible on the grand average of
channel Oz in Fig. 5). At this time a negative component
was also present at frontal sites which subsequently peaked
around 120ms, where it then followed a wide spatial and
temporal spread continuing to 200ms. Early frontal nega-
tivities have been shown to occur in combination with the
lambda potential following this time-course [7], while the
latter activity is consistent with the visual N1. A posterior
negative component was seen across subjects typically peak-
ing between 250ms and 350ms, and occurring later and more
generally enhanced in amplitude for target objects across
subjects. This activity is consistent with a posterior visual
N2 in a feature discrimination task [8]. A positivity was seen
far frontally between 280ms and 400ms peaking typically at
320ms for both object classes, and was diminished across
users for targets. This dimished activity may be due to the
an ealier counterpart anterior negativity related to posterior
N2 activity observed for targets.

Differentiating activity between the detection of the target
and non-target objects could be seen emerging at 250ms
for most subjects, but prominent differences appear on the
grand average scalp maps at 500ms with the presence of a
widely distributed positive component present over occipital
and parietal regions, which is consistent with P3b activity
expected to occur with an oddball task such as this [3]. This
posterior positivity began for most subjects at 460ms and
continued on to 600ms. A frontal negativity emerged for
subjects for the target objects at typically 600ms (starting
as the p3b activity diminished) and continued for up to
1000ms typically diminishing with a parietal distribution.
Previous work examining target detection in search tasks
have shown a similar late occurring component with target
detection [1]. This component may be reflective of a self-
monitoring process.

B. Machine Learning Analysis

To examine and to derive a set of measures of the
detectability of the EEG signal (P300) associated with the
target fixations, we used a support vector machine (SVM)
with radial basis function. Using 20-fold cross-validation for
each subject, we randomly sampled a training set of 80 target
and 80 non-target examples, and then used these to train an
SVM model. An independent testing set of 27 target and
27 non-target examples were randomly sampled from the
remaining feature vectors. The SVM models’ gamma and
cost parameters were found by using a gridsearch approach
on the training data only. The test sets used to generate final
results were always kept seperated from the training set.
For each iteration of the cross-validation, an ROC (Receiver
Operating Characteristic) curve was generated and its AUC



Fig. 4. Grand average scalp plots - target plots shown on top,non-target plots shown on bottom

(Area Under Curve) calculated. These AUC values were then
averaged and are displayed in Table 1 for each subject. The
AUC measure provides a ratio independent measure of the
general discriminative capability of the constructed classifier.
We also formed another 3 separate feature vectors, the first
using only signals from anterior nodes (F7, F3, Fz, F4, F8,
VEOG, HEOG), the second using posterior nodes only (T5,
P3, Pz, Oz, P4, P6) and the third using signals from all 16
channels but only extracting 600ms pre-fixation. We wanted
to confirm that the discriminative information learned by
the classifier was not largely derived from the EOG activity
alone (anterior sites), and that this activity only appeared
after fixation. The AUC averages for these are displayed in
Table I.

Using the full features from all channels we obtained
an average AUC of .76 across subjects. Using only signals
from the frontal nodes we still obtained an above-chance
classification rate, however, this lowered rate confirms that
a majority of the discriminative information learned by the
classifier came from posterior nodes. This behavior fits with
the typical scalp topography of the P3b. No discriminative
information was learned in the EEG signals pre-fixation
further confirming object detection was offset to the time
of fixation.

Fig. 5. Grand Average for site Oz

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented evidence that EFRPs can
be extracted from an EEG signal (using EOG) that show
differentiating activity related to target object detection. This
contrasts and improves upon previous work highlighting that
not all visual search tasks allow for a subject to be aware

TABLE I

AUC RESULTS FROM CLASSIFIERS

Subject AUC-All AUC-Posterior AUC-Anterior AUC-PreFixation

1 .74 .67 .58 .49
2 .81 .73 .56 .51
3 .79 .73 .66 .51
4 .85 .75 .66 .50
5 .74 .66 .58 .51
6 .68 .68 .55 .48
7 .68 .61 .48 .52

Average .76 .69 .58 .5

pre-fixation of whether an object/area is or contains a target
[5]. Eye movements related to target search in real world
tasks are often known to be guided by bottom-up features,
global image properties, and factors such as expertise. Our
future work will focus on evaluating the application of these
EFRP signals in such real world search scenarios focusing
on natural datasets.
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