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Abstract 
 
A novel scalable model of substrate components for deep n-well (DNW) RF MOSFETs with different num-
ber of fingers is presented for the first time. The test structure developed in [1] is employed to directly access 
the characteristics of the substrate to extract the different substrate components. A methodology is developed 
to directly extract the parameters for the substrate network from the measured data. By using the measured 
two-port data of a set of nMOSFETs with different number of fingers, with the DNW in grounded and float 
configuration, respectively, the parameters of the scalable substrate model are obtained. The method and the 
substrate model are further verified and validated by matching the measured and simulated output admit-
tances. Excellent agreement up to 40 GHz for configurations in common-source has been achieved. 
 
Keywords: Deep N-Well (DNW), RF Mosfets, Substrate Network, Scalable Model 

1. Introduction 
 
THE incorporation of a Deep N-Well (DNW) implantation 
into a standard CMOS technology has become a popular 
choice for reducing undesired interference in CMOS 
mixed-signal/RF SoC designs [2-6]. Substrate network 
parameters are of the utmost importance in accurately 
modeling the output admittance of RF MOSFETs. For 
mixed-signal/RF SoC design, a scalable model of RF 
MOSFETs is useful. Many papers have reported about 
scalable models of substrate network components [7-13]. 
However, there are few detailed works on scalable mod-
els with substrate network components in DNW RF 
MOSFETs with different number of fingers. In contrast 
to the RF MOSFET without DNW implantation (as seen 
from the nMOSFETs in Figure 1), the DNW actually 
partitions the substrate of a DNW RF MOSFET into three 
parts [1]: The DNW itself, the p-well in the DNW, and 
the original substrate where the DNW is formed. The 
DNW layer forms a capacitive coupling path in the sub-
strate, which exists no matter what the electrical con-
figuration is. Furthermore, most previous works [7-19] 
dealt with substrate parasitic effects in RF MOSFETs by 
using resistance networks only. The capacitive coupling 
effect, which is physically in existence, is always ne-
glected. All of these make the previously reported sub-

strate models less physically reasonable to use for accu-
rately extracting the substrate network components of 
DNW RF MOSFETs. 

In this paper, a compact, physically based substrate 
network is proposed targeted specifically at DNW RF 
MOSFET modeling. A novel test structure proposed in 
[1] is expanded and employed in deriving and extracting 
the Nf - dependent equations involving substrate compo-
nents in multi-finger DNW RF MOSFETs. The geomet-
ric effects such as shallow trench isolation (STI), which 
have never been considered in previous reported works, 
are accurately modeled. The results show that the sub-
strate components within the p-well and the capacitances 
caused by the DNW are strongly dependent on Nf, while 
the parasitic components in the original p-substrate have 
a slight dependence on Nf in multi-finger devices. 

To verify the validity of the derived scalable model of 
the substrate network components, a macro-model con-
sisting of the BSIM3v3.2 model core with the proposed 
substrate-network based on the extracted parameters, is 
simulated in Agilent Advanced Design System (ADS). 
Excellent agreement between the simulated and meas-
ured output admittance for a set of devices with different 
number of fingers up to 40 GHz validated the accuracy 
of the methodology proposed for DNW RF-MOSFET 
modeling in this paper. 
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Figure 1. Equivalent circuit for the substrate resistance and capacitance networks of multi-finger (Nf) DNW RF MOSFET 
with all the source (S), drain (D) and gate (G) terminals for different fingers connected together. Source, drain, and gate re-
sistances are ignored for their slight contribution to the output impedance. 

 
2. Analysis of the Substrate Network and the 

Scalable Model Derivation 
 
A multi-finger DNW RF MOSFET with the test configu-
ration proposed in [1] is investigated. All of the source 
(S), drain (D) and gate (G) terminals for different fingers 
are connected together and used as port one, while the 
body (B) terminal is port two, and the p-substrate is 
grounded, for two-port measurement. Figure 1 shows the 
substrate network when the junction diodes are turned 
off. In Figure 1, Cjs,i, Cjd,i are each S/D junction region 
capacitors, Rjs,i, Rjd,i are each S/D junction resistors. Cdnwo, 
which combined with Cwo, Cbo, Rwo1, Rwo2 and Rwo, is used 
to capture the difference between the inner and outer S/D 
regions in this work. Cdnwu,i and Cdnwd,i  represent the 
p-well-to-DNW and the DNW-to-p-substrate capacitors 
under each finger region. Cws,i and Cwd,i are each finger 
capacitors from the bottom of the S/D regions to B within 
the Deep N-Well. Rws1,i, Rwd1,i, Rws2,i and Rwd2,i represent 
the single finger resistors between the bottom of the S/D 
region and B. Csb,i, Cdb,i and Cgb,i are the S-to-B, G-to-B 
and D-to-B capacitors of each finger region, Rsubl, Rsubr 
and Csub are the capacitor and the resistor of the 
p-substrate, Rdnw,i represent the resistors of the DNW un-
der each finger region. Rdnwo represents the n-well ring 
resistor. 

Based on the equivalent circuits identified in Figure 1, 
a simplified substrate network, as shown in Figure 2, 
with the following relationships can be obtained for any 
number of fingers:  

 

B

Cbo

Csgdb

Cjd

Rjs

2Cdnwo

Rsub

Cjs

Rws1

Rjd

Rwd1

Csub

B

Cdnwd

Cdnwu
Cbo

Cwd

Rwd2
SGD

Rws2

Cws

Cwo

Rwo2

Rwo2

Cwo

Rdnw

DNW

Rsub≈ Rsubr// Rsubl

Rwo1

Rwo1

 

Figure 2. Equivalent circuit of multi-finger DNW RF 
MOSFETs with S/G/D terminals connected together. 
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where, Cjs, Cjd represent the total S/D junction region 
capacitances, Rjs,, Rjd represent the total S/D junction re-
sistances, Rsub represents the total resistance of the 
p-substrate, Cdnw represents the total capacitance caused 
by the DNW, Cws, Cwd are the total capacitances from the 
bottom of the S/D regions to B within the Deep N-Well, 
Rws1/wd1 and Rws2/wd2 are the total resistances between the 
bottom of the S/D regions and B within the Deep N-Well 
and Ns and Nd  represent the numbers of source and drain 
diffusion regions, respectively. In the model, when the 
number fingers is odd, Ns = Nd = (Nf + 1)/2. Ns = Nf/2 + 1 
and Nd = Nf/2 when the number of fingers is even. 

Assuming that there are no differences in the inner S/D 
regions, the above equations, (1a)-(1h), can be formed as 
follows: 
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where 

j ,i js ,i jd ,iC C C  j ,i js ,i jd ,iR R R  , sdb sb,i db,iC C C 

w,i ws ,i wd ,iC C C  , 1 1 1w ,i ws ,i wd ,iR R R   

and            2 2 2w ,i ws ,i wd ,iR R R  . 

In this paper, the following equations are used to em-
pirically model the Nf - dependence of Rsub and Csub: 

sub subI f subunitR R N R              (2j) 

sub subI f subunitC C N C             (2k) 

where RsubI and CsubI represent the p-substrate resistance 
and capacitance of a one-finger device, Rsubunit and Csubunit 
are used to explain the increase in Rsub and Csub with the 
increase in the number of gate fingers. 
 
3. Scalable Model Parameter Extraction  
 
In order to accurately predict the scalability of the sub-
strate elements, a direct parameter extraction methodol-
ogy is of the utmost importance. In this work, two dif-
ferent test configurations are used. One has the DNW 
floating (as shown in Figure 3(a)) and the other has the 
DNW grounded (as shown in Figure 4(a)). In each case, 
all S/D/G terminals for different fingers are connected 
together as port one, the B terminal is port two, and the 
p-substrate grounded. The equivalent circuits shown in 
Figure 3(b) and Figure 4(b) can easily be derived from 
the complete equivalent circuit shown in Figure 2, for  
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Figure 3. (a) Simplified layout plane figure of DNW RF-MOSFETs with S/G/D terminals connected together, while the DNW 
is floating. (b) Equivalent circuit model for the device shown in Figure 3(a). Rdnw is ignored for its slight influence on two-port 
measurement. (c) Simplified equivalent circuit for parameter extraction. 
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Figure 4. (a) Simplified layout plane figure of DNW RF-MOSFETs with S/G/D terminals connected together, with the DNW 
grounded. (b) Equivalent circuit model for device shown in Figure 4(a). Since Rdnw is much smaller than Rsub, the contribution 
of Cdnwd, Rsub and Csub to Z-parameters becomes so slight that it can be ignored. (c) Simplified equivalent circuit for parameter 
extraction. 
 
modeling the above two test structures (e.g., with the DNW in grounded or float configuration, respectively). 
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As seen from Figure 3(b) and Figure 4(b), since the 
topologies from S to B are the same as that from D to B, 
both of the equivalent circuits shown in Figure 3(b) and 
Figure 4(b) can be reduced to T-networks by using sim-
ple approaches as shown at the bottom of Figure 3(c) 
and Figure 4(c). Based on (2a)-(2i) and the approaches 
used to simplify Figure 3(b) and Figure 4(b) to Figure 
3(c) and Figure 4(c), respectively, the elements of the 
two T-networks shown in Figure 3(c) and Figure 4(c) 
can be calculated with the following equations: 

 1j f j ,iC N C                 (3a) 

 1j j ,i fR R N                 (3b) 

 2 1w wo f w,iC C N C              (3c) 
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Using (3h.1), Cdnw,i can be calculated as follows: 
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            (3h.2) 

(2c), (2g)-(2k) and (3a)-(3h) give the Nf -dependent eq-
uations of the equivalent circuit in Figure 2. This enables 
the direct identification of the scalability of the substrate 
components. This will be shown later in this section.  

As the ZL and ZR of the T-network shown in Figure 
4(c) are the same as the ZL and ZR shown in Figure 3(c), 
with the ground terminal as reference, the Z-parameters 
of the T-networks shown in Figure 3(c) and Figure 4(c) 
can be calculated approximately with the following equ-
ations: 
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where Zdnw_floating and Zdnw_grounded are measured Z-para- 
meters of DNW RF MOSFETs with S/G/D terminals 
connected together, when the DNW is floating or grounded, 
respectively.  

Further, the real and imaginary parts of the above 
Z-parameter expressions can be rearranged as follows:  
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2 2 2 2Im 1dnw MF sub sub sub subC Z R C / R C  


       

      (5f) 
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  1
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Using (5a) and (5c), Rj and Cw can be extracted from 
the slopes of the linear regression curves of the experi-

mental   12 Re LZ 
 and  Im RZ  versus 2 ,  

respectively. (5a) and (5c), after subtracting Rj and Cw, 
give Cj and Rw2. Further, (5b) and (5d) give Csgdbt and Rw1. 
Using (5e), Rsub and Csub can be determined from the 
intercept of the linear regression curve of the experimen-
tal  1 MFRe Z versus 2 , and the slope gives Csub after 
subtracting Rsub. After subtracting Rsub and Csub, (5f) 
gives Cdnw. Using (5h), Cdnwuo can be extracted from the 
slope of the linear regression curve of the experimental 
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 Im MGZ versus , while (5g) gives Rdnw directly. Thus, 
all elements of the equivalent circuit of Figure 3(c) 
and/or Figure 4(c) are extracted.   

For extracting the values of the derived scalable model 
parameters in (2c), (2g)-(2k) and (3a)-(3h), two different 
test structures for nine devices with different number of 
fingers (Nf of each device is 1, 2, 4, 8, 16, 24, 32, 48 and 
64, the length (Lf) and width (Wf) for each finger are 
fixed at 0.18 m and 2.5 m), with the DNW floating 
and grounded, respectively, were fabricated using the 
SMIC 0.18 m 1P6M RF-CMOS process. M1 is used to 
connect all of the S/D/G terminals for different fingers 
together as port one, while the B terminal is port two for 
two-port RF measurement. 

In this work, two-port S-parameters were measured 
and de-embedded (Open + Short) for parasitics intro-
duced by the GSG PAD using an Agilent E8363B Net-
work Analyzer and a CASCADE Summit probe station. 
Then, the de-embedded S-parameters were transformed 
to Z-parameters for directly extracting all the parameters 
of the T-networks shown in Figure 3(c) and Figure 4(c) 
using the parameter extraction methodology developed 
in this section. 

As mentioned in [1], when the junctions become sig-
nificant, the equivalent circuit in Figure 2 and its corre-
sponding parameter values are less reasonable. Thus, in 
this work, the extraction of the substrate network pa-
rameters is executed at VB = –1 V and VSGD = 0 V. A 
detailed extraction procedure for a 32-finger DNW nMO- 
SFET (Lf = 0.18 m and Wf = 2.5 m for each finger) is 
given in Figure 5 to Figure 8. Excellent linear regres-
sions validated the feasibility and accuracy of the pa-
rameter extraction methodology developed in this section. 
Similar extraction procedures are finally used for sub-
strate parameter value extraction for the nine fabricated 
devices with different number of fingers at VB = –1 V 
and VSGD = 0 V. The extracted results are plotted in Fig-
ure 9.  
 
4. Scalable Model Verification and  

Validation 
 
Once Rj, Cj, Cw, Rw1, Rw2, Csgdbt, Rdnw, Rsub, Csub, Cdnwuo and 
Cdnw are extracted, by using (3a)-(3h) and (2i), Rj,i , Cj,i, 
Cwo, Cw,i,  Rwo1, Rw1,i, Rwo2, Rw2,i, Cbo, (2Csdbi + Cgbi ), 
Rdnwo, Rdnwi, RsubI, Rsubunit, CsubI, Csubunit, Cdnwo, Cdnwui and 
Cdnwi can be obtained with a simple optimization proce-
dure from the relationships between the total extracted 
results and Nf. After determining Cdnwui and Cdnwi, (3h.2) 
gives Cdnwd,i. Thus, (2a)-(2k) and (3a)-(3h) become only 
Ns/d – and Nf – dependence equations. Table 1 gives the 
extracted scalable model parameter values. Figure 9 
depicts the comparisons between the extracted substrate 

resistances and capacitances of the nine DNW nMOS- 
FETs and the modeled results based on the extracted 
parameter values shown in Table 1. The excellent agree- 
ment between the extracted and modeled Nf - dependent 
substrate network components verifies that the proposed 
scalable model ((3a-3h)) can accurately describe the sca-
labilities of the substrate network components of DNW 
MOSFETs. 

To verify the validity of the proposed substrate net-
work, the accuracy of the derived scalable model and the 
developed methodology for parameter extraction, mul-
ti-finger DNW nMOSFETs, with the G terminal defining 
port one, the D terminal defining port two and the S, B 
and the p-substrate connected together with ground 
serving as the common terminal (i.e. common-source test 
configuration) with the DNW connected to ground, are 
also fabricated and tested. A macro-model (as shown in 
 

 
(a) 

 
(b) 

Figure 5. (a) Determine Rj from the slope of the linear re-

gression curve of the experimental   2 1Lw ZRe  ver-

sus 2. Cj can be calculated from the intercept. (b) After 
subtracting Rj and Cj, (5b) gives Csgdbt. 
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(a) 

 
(b) 

Figure 6. (a) Extract Cw from the slope of the linear regres-
sion curve of the experimental – [ ]w ZRIm  versus w2. Rw2 

can be extracted from the intercept. (b) After subtracting 
Rw2 and Cw, (5d) gives Rw1. 
 

 
(a) 

 
 

(b) 
Figure 7. (a) Extract Rsub from the intercept of the experi-
mental   1  MFZRe  versus w2, and the slope gives Csub 

after subtracting Rsub. (b) After subtracting Rsub and Csub, 
(5f) gives Cdnw. 

 
(a) 

 
(b) 

Figure 8. (a) Extract Cdnwuo from the slope of the linear re-
gression curve of the experimental   MGZIm  versus w. (b) 

Rdnw can be determined from the real part of ZMG. 
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Figure 10) for common-source connected DNW RF 
MOSFETs modeling was developed. The model consists 
of the BSIM3v3.2 model core with the proposed new 
substrate-network and is simulated in Agilent Advanced 
Design System (ADS) directly. 

In Figure 10, Rg, Rd, and Rs are G, D and S terminal 
series resistances, Cds is D-to-S capacitance. Cgs, and Cgd 
represent the G-to-S and G-to-D capacitances, respec-
tively. Cgb, Cdb and Csb indicate the G-to-B, D-to-B, 
S-to-B capacitances, and the sum of the three compo- 
nents has been extracted in section 4. A conventional  
method developed in [13] is used to extract the initial 
values of three terminal series resistances from de-em- 
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Figure 9. (a) Extracted and modeled substrate resistances 
and (b) capacitances of DNW nMOSFETs with different 
number of fingers, while the length (Lf) and width (Wf) for 
each finger are fixed at 0.18 m and 2.5 m. 
 
Table 1. Extracted parameter values of the proposed model 
of the substrate network in DNW RF MOSFETs 

Rj,i(  ) Cj,i(fF) Cwo(fF) Cw,i(fF) Rwo1 (  )
4162 2.395 30.64 0.737 87.78 

Rwo2(  ) Rw2,i (  ) Cbo(fF) 2Csdbi+Cgbi(fF) 
203.7 2775 5.471 0.91 

Rdnwi (  ) RsubI (  ) Rsubunit (  ) CsubI(fF) Csubunit(fF)
73.79 282.8 0.137 26.18 0.11 

Cdnwui(fF) Cdnwdi(fF) Rw1,i (  ) Rdnwo (  ) Cdnwo(fF)

5.045 4.771 447.7 3.46 15.2 

Table 2. Values of the extracted external capacitors from 
common source connected devices with different Nf, at zero 
bias.(Lf = 0.18 m;Wf = 2.5 m) 

Nf Cgs/d (fF) Cgb (fF) Cds (fF) 
1 0.66 3.4 0.68 
2 3.5 4.2 1.02 
4 3.9 7.2 3.1 
8 8.6 8.5 10.7 

16 18.4 10.3 24.1 
24 28.3 13.2 41.2 
32 36.1 15.5 54.6 
48 55.4 16.2 83.4 

64 72.2 17.5 110.2 

Cjs Rjs

2Cdnwo

Csub

Rsub

Cws

Rws1

Rws2

Rwd1

G

S/B/DNW

Cds

Cjd Rjd

Rwd2

Cwd

Rg

Rd

Rs

D

BSIM3v3.2 core

Cdnwd
Cdnwu

Cdb

Csb

Cwo

Cwo

Rwo1

Rwo2

Rwo1

Rwo2

Rdnw

Cgd

Cgb

Cgs

Cbo

Cbo

 

Figure 10. Macro-model for DNW RF-MOSFETs modeling 
when S/D junctions are not significant. The test configura-
tion with the G terminal defining port one, the D terminal 
defining port two and the S, B and the p-substrate con-
nected together with ground serving as the common termi-
nal (i.e. common-source test configuration), with the DNW 
is tied to ground using M1 (metal level 1), are used in 
two-port measurement. All the parameters of the BSIM3v3.2, 
including the terminal resistances Rd, Rg and Rs, are ex-
tracted beforehand. 
 
bedded Y-parameters. By using the extraction method 
proposed in [13], the following equations are employed 
for the remaining components extraction: 

 12Im
gd

Y
C


                (6a) 

gs gdC C                  (6b) 

 11 12Im
gb gd

Y Y
C C




             (6c) 

According to (1c), the total Cgb of an RF MOSFET 
with the number of fingers is Nf can be calculated as fol-
lows: 

w2

w1 

wo1 

wo2

wd2

ws2

wo2

BSIM3v3.2 core 

wo1 

ws1 

2C 

wd1 
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gb f gb,iC N C                (6d) 

Thus, Cgb,i can be extracted for two or more devices 
with different number of fingers. Once Cgb,i is obtained, 
(3f) gives Csdb,i. 

2

2

sgdbt bo f gb,i

sdb,i
f

C C N C
C

N

            (6e) 

In this work, the extracted values of Cgb,i and Csdb,i for 
multi-finger devices with the length (L) and width (W) 
for each finger fixed at 0.18 m and 2.5 m, are 0.338 fF 
and 0.285 fF, respectively. Cds in Figure 10 is calculated 
from de-embedded Y-parameters of the common-source 
connected nMOSFET as follows: 

   22 12Im d s t
ds

d s t

C C CY Y
C

C C C


 
 

      (6f) 

where 

d jd bo dbC C C C   , s js bo sbC C C C    , 

2 n sub
t wo wd ws

n sub

C C
C C C C

C C
   


 

and         2 dnwu dnwd
n dnwo

dnwu dnwd

C C
C C

C C
 


. 

The external capacitances in Figure 10 (i.e. Cgd, Cgs 
and Cds) extracted from the nine devices with different Nf 
at zero-bias condition (VG = 0 V; VD = 0 V and VS/B/DNW = 
0 V) are listed in Table 2. After all the parameters have 
been extracted, measured and simulated output admit-
tances (Y22) at zero-bias for the nine devices with differ-
ent number of fingers are compared and plotted in Fig-
ure 11. Excellent agreement is achieved between the 
measured and simulated results. Due to the oscillation of 
the measurements at high frequencies, the resistive para-
sitics of the substrate are hard to be extracted accurately, 
which is further introducing errors between the measured 
and simulated results of the real parts of the output ad-
mittances of transistors.  
 
5. Summary 
 
A compact, physically based scalable model for the sub-
strate network of DNW RF MOSFETs has been demon-
strated. All of the substrate components are directly ex- 
tracted from two-port measurements. The derived and 
extracted scalable model is directly used to capture the 
substrate characteristics of common-source connected de- 
vices. The model shows excellent agreement with meas-
ured output admittances of devices with different number 
of fingers at an operation frequency up to 40 GHz. The 
model and methodology developed in this paper also can 
be used to accurately extract the substrate network in RF 
MOSFETs without DNW implantation by removing the 
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Figure 11. Measured and simulated output admittances of 
DNW nMOSFETs with different number of fingers at zero 
bias (VG = 0 V, VD = 0 V and VS/B/DNW = 0 V). All the devices 
are connected in common source configuration, while the 
DNW is grounded. 
 
sub-network for the DNW.  
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