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Abstract

We present a numerical scheme for an efficient discretization of reanlisystems of
differential equations subjected to highly oscillatory perturbations. Thibodes supe-
rior to standard ODE numerical solvers in the presence of high freguencing terms,
and is based on asymptotic expansions of the solution in inverse powtes agcillatory
parametew, featuring modulated Fourier series in the expansion coefficients. ginalf/
numerical stability and numerical examples are included.

1 Introduction

In this paper we are concerned with systems of ordinarymdifféal equations (ODES) of the
form

y'(t) =h(y(t)) + 9. Fy®),  y(0) =1y, (1.2)

wherey(t) : C — CY, f(y),h(y) : C¢* — C* are analytic functions, and the scalar term
g (t) can be expressed as a modulated Fourier expansion (MFEjs tha

o0

go(t) = D am(t)e™! (1.2)

m=—0o0

— see (Cohen, Hairer & Lubich 2005, Hairer, Lubich & Wanned@0Sanz-Serna 2009) for
applications of MFE in the theory of numerical analysis ofitiléonian and oscillatory ODEs.
Observe that we allow the coefficients, (¢) to depend on. Therefore it is possible to think
of the functiong,,(¢) as periodic in the variablet, but not necessarily i, which allows us
to consider a wide range of different perturbations.

Typical examples of highly oscillatory forcing terms ingldontext are

gw(t) = elwt gu(t) = eneoset, (1.3)

The first example involves just a Fourier oscillator (andikirty one can considey,, (t) =
sinwt or g,,(t) = cos wt), whereas the second appears in the modelling of diode ansistor
circuits, see for instance (Dautbegovic, Condon & Brenn@®52. An essential difference
between these two examples is that the first one is band tiraitd the other is not, which has
an impact on the implementation of our method, as explain&gttion 3.
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This general problem also has a very immediate applicatioiihé context of commu-
nications and optical systems, which are governed by neatiulifferential and algebraic-
differential equations (DAES), see for example (Dautbégev al. 2005, Pedro & Carvalho
2002, Roychowdhury 2001). Also, oscillators are employadifequency translation of in-
formation signals, channel selection or for synchronarati In this context, our problem
corresponds with the situation where a physical systemhigsuto a high frequency forcing
term (which could for instance be an electromagnetic wawe miechanical excitation), and
one wishes to analyse the behaviour of the system on a tinleewbéch is much larger than
the period of the forcing function.

It is also well known that this type of periodic forcing can bged to change intrinsic
features of the system, see for instance an applicatiorjeotion-locking of circuits in (Bar-
tuccelli, Deane & Gentile 2009) or (O'Neill, Bourke, Ye & Keady 2005). This is of impor-
tance when the frequency of the external force is close tadhgral frequency of the system,
but investigation of oscillators subject to external pdyaions which do not cause locking is
also of interest (Lai & Roychowdhury 2004), for understanggdihe operation and bandwidth
limitations of injection locked oscillators. The effectérturbations of differing frequencies
is also important for oscillator design and operation (L@®&). Furthermore, the effect of
power supply interference or high-frequency signal irexice on oscillator performance is
an important phenomenon to be accounted for in design wak Ahu & Feng 2009).

The numerical challenge of this setting is underlied by #e that in many communica-
tions systems it is common to employ high frequenciesvhich are in the MHz range and
higher, in such a way that physical devices of practical disiens can be employed. Also, a
particular concern in the operation of electronic systents@scillators is the effect of noise
and spurious high-frequency signals, see (Demir, Meh&tRoychowdhury 2000). Such
unwanted signals can result in undesired phenomena suctteashiannel interference and
timing jitter, see (Demir 2000).

All these applications are a formidable computational lelmgle since, whew > 1, the
highly oscillatory nature of the solution imposes a very Bistapsize on standard numerical
methods for ODEs. The reason for the poor performance osicllsnumerical methods
for solving ODEs in the presence of high oscillation liesta tery heart of the standard
numerical theory, which is essentially based on Taylor agfmm of the solution. In any
numerical method of order with steph, the error scales roughly like?+1y(®+1)(#). Since
the derivatives of highly oscillatory functions grow veagst, typicallyy®*+1 (t) = O(wPt1),
we requireh to be extremely small in order to keep the error down to an@tetée size. This
usually renders standard numerical methods exceedingbresie, see for instance (Condon,
Dedio & Iserles 2008).

An alternative is given by perturbation theory, albeit noti completely standard form.
The setting (1.1) belongs to the general framework of theadled parametric perturbation or
parametric modulation of differential equations. In thetimeanatical literature this has been
a recurring topic in the field of perturbation theory, seeif@tance the classical reference
(Bogoliubov & Mitropolsky 1961), (Verhulst 1990) or (Jomd& Smith 2007). However,
most standard methods, such as averaging, are developggsfems where the perturbation
is multiplied by a small parameter In this context, the general idea is that the solution of
the unperturbed system plus corrections in powetsméy yield a good approximation to the
solution of the perturbed problem.

In our case the perturbation is not necessarily small, boireesvhat related idea can be ap-



plied. Intuitively, for large values ab, the exceedingly fast oscillations @f (¢) will produce
massive cancellation between positive and negative pattedorcing termg,, (t) f (y(¢)),
and will therefore give a small contribution, roughly sp@ak More rigorously, if we con-
sider the unperturbed system

Z'(t) =h(z(t),  2(0) =y, (1.4)

then nonlinear variation of constants (Hairer, Ngrsett & W 1993) allows us to connect
the two solutions

t
y(t) = =)= [ Bt 5)f(y()gls)ds
0
where® solves the so-called variational equation

_OR(=()

@/
0z ’

P(0) =1.

The matrix® may not be analytically available in general, but the imaotfact is that if
the integrand is smooth enough apdt) is a trigonometric function (see the examples cited
before), then integration by parts gives

/0 ®(t —5)f(y(s))gw(s)ds = O(1/w), w — 00.

This motivates the fundamental ansatz that we proposedatethat is, that the solution
y(t) admits an expansion in inverse powers of the oscillatorgpaterw. The terms in this
expansion can be computed explicitly in a quite generainggtaind they adopt the form of
modulated Fourier expansions themselves. The expansioheaeen therefore as a correc-
tion (in inverse powers ab this time) of the solution of the unperturbed system.

We remark that one cannot expect this approach to be satisfao general when the
system exhibits chaotic behaviour, for example. It is kndhet a parametric perturbation
can be used to take such a system into or out of chaotic balravipto alter the chaotic
states of the original problem, see for instance (Wu, Lu, IW&ng 2007), but the very high
sensitivity of the problem to changes in the data will tyflicaender useless any method
based on perturbation theory.

The paper is organised as follows: in Sections 2.1 and 2.2resept the basic features
of our method and how to construct the expansion expliclgxt, in Section 3 we analyse
the bandwidth of the different terms in the expansion, ddpenon the original bandwidth
of the forcing termy,, (¢). In Section 4 we pay special attention to the stability props of
the algorithm, which essentially depends, as expectedh@mbehaviour of the linearisation
of the system around the nonoscillatory base function. Welcole the paper with several
examples to illustrate the performance of the method.



2 Asymptotic-numerical solvers

2.1 Construction

Our basicansatzin constructing asymptotic-numerical solvers is that thletson y(¢) admits
an asymptotic expansion in inverse powers of the osciljgtarametet:

D~Y o) ws 2.1)
s=0

where they,(t)s depend ow, but,(t) ~ O(1), w > 1, for s € Z,.. Given the structure
of the original ODE, a reasonable assumption is that eagh) in (2.1), except wher = 0,
has itself the form of a modulated Fourier expansion,

> penem™t s>1. 2.2)

m=—0o0

Furthermorea)(t) = p, o(t) is independent of, i.e. p, ,,,(t) = 0 whenm # 0. In
order to satisfy the initial condition of the differentiajation, we impose&,(0) = y(0) =
Yo, Which means thap,(0) = 0 for s > 1, or equivalently

> Pom(0) =y, > poa0)=0 s>1.

m=—0o0 m=—0oo

Thus our basiansatz reads

oo oo

1
y NpOO +Zws Z psm lth’

and differentiation term by term gives, formally,
= 1 — : imw
y'(t) ~ pho(t) + Z o Z [P, (t) + imwp ,,, (t)] ™.
s=1 m=—o00

Sinceh, f : C* — C? are analytic functions, we can expand them into Taylor serie
aroundy,, assuming that this term will yield the main contribution,

n times
> 1 —
h(":bo =+ 0) = Z ;hﬂ('l,bo, 0, 0, ey 0)
n=0

Hereh,, is ann-tensor related to the-th derivative ofh at,,

ho("/’o) = ("/’0)

oh
(1/"07 ) (;ZO) )
hs (b, 0,0 —iia-thT(”bO)e- =1,2,....d
( 2(111)()7 ) ))’r‘_i:1j:1 ZW] r=14...,4a,



etc. In general we have

d d
ho(10.0,....0)), = o) g9, -0, -1,2,....d.
( ("Po Z: Z: ayll . 8yzn n r

Note that eaclh,, (¢, 0, ..., 0) is linear in each of thé,s. Itis clear that if the functions
and f are not analytic, but sa@’“, we can still consider the first few terms of the expansion
and adapt everything accordingly.

In the sequel, we will use the following notation,

h(y) ~ h(py,) Zwszn' Z pOO’Xkla"'ann)7 (2.3)

s=1 n=1 kecl, s
where -
> pra e (2.4)
and
L,s={(k1,...,kn) e N" : |k| = s}, (2.5)

with the standard notation for multi-indicés| = k; + k2 + ... + k,. A similar formula
applies to the functiorf. Furthermore, we can express this expansion in the follpwiay,

h(y) thoo Zwszn, Z elmet Z Z hn( pOOvpkl,lp" 5pk:,“l”)

n=1 m=—o00 k€l s I€EK, m
(2.6)

where
Kpm ={(l1,...,01n) €Z" : |l =m}. 2.7)

Observe that for simplicity of notation, we have omitted tlependence ohof the dif-
ferent termgp, ,,, in the expansion.
Putting all the ingredients together, we can equate bothg@nd we obtain

p:),() + Z E Z [p;,m + imwps,m] elmwt

s=1 m=—o00
1 s
imwt
CNED S5 S 1D S S S TS
m=—oo kel, s 1eK, m
= 1
imwt
RCIEETES 355 3 DELED DD OF AL NAERE N |
s=1 n=1  m=—00 kel, s l€Kn, m

Now we identify coefficients in two levels: first we consideders of magnitude (inverse
powers ofw), and then frequencies (values:o) within each order of magnitude. The first
level (corresponding te = 0) is clear:

oo

o0
17,0,0"‘i Z mp1me elmet h(poo)+ Z am(t)eimmf(Po,o)~ (2.8)

m=—0o0 m=—0oo



Separation of frequencies yields a differential equatanttie coefficienp, ,(t):

Po.0 = h(po o) +ao(t) (o) (2.9)
together with the initial conditiop, ,(0) = y(0) = y,, and additionally
i, (t
pim= WD ppyg).  mo 210)

)

Observe that the ODE fgy,, , is nonoscillatory. Hence, even if it is not solvable explic-
itly (due to the nonlinear termis and f), it can be efficiently solved using standard numerical
methods. Note also that the componepts,, (t) depend ort in general, even if the coef-
ficientsa,,(t) are independent of (that is, if the forcing terny, (¢) is periodic and has a
classical Fourier expansion).

Fors > 1 andm € Z, we have

p;,m + imps+1,m = bs,m[h] + Z ar(t)bs,mfr[f]a (2.11)

r=—00

where

S

1
bs,’m,[h] = Z E Z Z hTL(p0,0apkl,lla e ’pkn,ln,)’ me Z7 (212)
n=1 """ k€l, s €Ky, m

and similarly withb, ,,[f]. Note that once again we have omitted the dependencefan
brevity. Observe that fos > 1 we have on the one hand the ODE

pls,o = bs,O[h] + Z ar(t)bs,fr[f] (2.13)
with initial condition
ps,O(O) = Z ps,m(0)7 (214)
m#0

since we have imposegl, (0) = 0, and on the other hand the recursion

i o0
Popiom =~ | =Pl + bumlh] + > ar()bem—r[f] (2.15)

r=—00

for m # 0. This is the pattern that we will find for each valuesof 1. From a computational
perspective, an alternative to this scheme would be to solyestems of DAES involving all
the termsp, ,, () up to the desired value of In this context, the analysis of bandwidth
presented in Section 3 is relevant to determine the numberois that we need within each
level.

2.2 Explicit form of the asymptotic expansion

In this section we derive explicitly the first few terms of asymptotic expansion. We first
note that there is an important simplification in the abovenidas when the number of.(¢)
terms that are different fromis finite (in other words when the input functign (¢) is band
limited). As an example, we illustrate the case where thaugeation is of the forny,, (t) =
wsinwt. Inthat case itis clear that | (¢) = iu/2, a1 (t) = —ip/2 anda,, (t) = 0if |m| # 1.
Thus, the original bandwidth ig= 1. Similar results hold for the cagg (t) = p cos wt.



2.2.1 The zeroth term

As explained before, the term, ,(t) obeys the differential equation

Po.0 = h(Po o) + ao(t) f(Po)

together with the initial conditiomp, ,(0) = y(0) = y,. Equating terms with the same
frequency, we obtain additionally

lam(t)

Pim = F(Poyo); m # 0.

With g,,(t) = psinwt, the previous ODE can be reduced to

Po.0 = h(poo), Po,0(0) =0,

s

and also

P11 =P1,1= —%f(Po,o)7 (2.16)

together withp, ,,,(t) = 0 when|m| > 2.

2.2.2 The firstterm

Whens = 1 we obtain

oo

Pio=brolhl+ > ar(t)br_.[f]. (2.17)

rT=—00

Here
bl,m[h‘] = hl(p0,0’pl,m)v me Z?

and similarly for f. Additionally we have the initial condition

Pl,o(o) = - Z pl,m(0)7

m#0
which follows frome, (0) = 0. Furthermore, we get

. 00
1

Pom = = _p/l,m + bim([h] + Z ar()b1m—r[f]] m # 0. (2.18)

)
rT=—00

Wheng,, (t) = usinwt then (2.17), the differential equation fpx , reads

Pho = brolh] + % (bui[f] — by, 1[F]) = B (b p10) = T (Po)Pro

Here J[h](p, ) is the Jacobian matrix df evaluated ap, ,. It is not difficult to check
thatb; 1[f] — bi,—1[f] = 0, because of the symmetry of the coefficiepts ; andp; ;.
Since we impose), (0) = 0, the initial condition forp, ,(t) is

p1,0(0) == Z pl,m(o) = _P1,71(0) - pl,l(o) = Nf(po,o)'
m#0



Putting all the information together, and taking into aauo2.16), we obtain

Py (t) = Pio— Mf(Po,o) cos wt. (2.19)

Furthermore, we can compugs, ,, for m # 0 from (2.18). According to Section 3,
the predicted bandwidth is equal 2@ = 2, and therefore we only need to compute the
coefficientsp, ,, andp, ;5. Thus

Po1 = iph 1 —ibiafh] —i(a—1(t)bi2[f] + ai1(t)bio[f])

in d
—%Ef(Po,o) —1J[R|(Po,0)P11 — %J[f] (Po,0)P1,0

sinceb; o[ f](t) = 0.
Because of symmetry of the, ,,, coefficients, we deduce that

ip d . p
Py 1= Eaf(Po,o) +iJ[h)(Po,0)P1,—1 — EJ[f](po,o)PLo-

Now

Pap = . (=P o+ b12[h] + a1 (£)brs[f] + ar(t)bi 1 [f]] = —%J[f](Po,o)PLp

2

and clearlyp, _,(t) = p, 5(t). Therefore, we have

d .
Py(t) =pyg + Maf(Po,o) +2J[h](py )Py 1 | sinwt — pJ[f](Pg 0)P1 o cOSWE

- gﬂf](ﬁo,o)pm cos 2wt (2.20)

The equation and initial conditions fgr, , are obtained when analysing tii&w—?)
terms.

2.2.3 The second term

Whens = 2 we obtain

oo

Pho=baolhl+ > ar(t)ba .[f]. (2.21)

r=—00

Here

1 oo
b2.,m[h] = hl(p0,07p2,m) + ) Z h2(Po,oaP1,laP1,m4)7 m € Z,

l=—o00

and similarly forf, together with

P2 o(0) = — Z P2,m(0),

m#0

8



and

oo

i
Pom == | =P tbomlh] + > arbomi[fll,  m#£0. (2.22)

T=—00

Wheng,, (t) = psinwt then we have the following ODE fg, (%), in accordance with
(2.21):

Pho = baolh] + 2 (baalf] — s, [£)). (223)

where we have used (t) = —a_1(t). Now

1 o0
baolh] = hl(p0,0aPQ,O) + 5 Z h2(Po,07P1,laP1,—z)

l=—o00

1
= hi1(pg,0;P2,0) + §h2(Po,07P1,0ap1,0) + ha(Pg o, P1,1,P1,-1)

Next, we have

b21[f] = £1(Po,0sP2,1) + F2(Po,0sP1,0sP1,1)-

The differencebs 1 [ f]— b2, —1[f] can be simplified using the symmetry of the coefficients:
b271[.ﬂ - b2,—1[f] = .f1(Po,07P2,1) - fl(p0,0aPQ,—l)

=~ T1A1P00) |10 53 F o) + 2RI

Furthermore, we have the initial condition

P2,0(0) = - Z Pz,m(o)-

m#0

Equation (2.22) gives the coefficients ,, (t). Notice that now the bandwidth 8p = 3,
so we only need these terms whem| < 3.

Itis clear that the process can be iterated, at the pricecod@singly cumbersome expres-
sions. We also note that in many relevant cases the functicensd f are quite simple, for
example multivariate polynomials of low degree, and henaeyrierms involving high order
derivatives vanish identically. We omit any further stepsidrevity.

3 Bandwidth and blossoming

There is an important observation to be made regarding theviadth of the different func-
tions(t). Due to the nonlinearity of the original equation, the numifenonzero frequen-
cies (i.e. values ofn) increases as we move to higher values.ofVe call this phenomenon
blossoming, and it is relevant when discussing efficiency issues, stripeantifies the number
of terms that we need to compute in each step of the algorithm.



Let us suppose that there exists N such thaiz,,, = 0 when|m| > p+1. In other words,
we suppose that the forcing temn(t) is band limited. Let); be the maximum bandwidth of
the termp,(t), that is

05 :=max{m € Z: p, |, # 0}.

It can be checked that the first few values are
6y =0, 0, = o.
For the general case, we can prove the following result.
Theorem 1 For s > 0, the maximum bandwidth 6, of thetermp () is
0s = so.
Proof We shall use formula (2.15),

psﬂ,m(t):—% Dl (t) FbsmlBl(E) + D ar(t)bsm—r[F1(1)

r=—00

We note that differentiation does not alter the bandwidtig also that the component
bs.m[R](t) is a combination of terms of the form

Z Z hn(Po,mPkl,lla--~7Pkn,ln)~

kel s I€EKy,m

Since

n

s = Zk}j,
j=1

we obtain by induction on that

Zf)kj = ngj = Sp.
j=1 j=1

This is the maximum bandwidth contributed by the tebm,, [k](t). However, when
m = (s + 1)p andr = p then

ar(t)bsyrn—r[f] (t) = a@(t)bs,b'@[.f](t)

is different from0 in general, since for example it contains the element

fs(popvpl,g» e )p17g)'

If we try m > (s + 1)p, thenm — r > sp, and according to the result given before we
getbs .,—.[f](t) = 0. A similar argument can be used with negative frequencieting
m = —(s + 1)p andr = —p. Therefore, the maximum total bandwidth#f_ , (¢) is indeed
(s+1)o.
O

10



It is important to observe that this result corresponds ¢ontfaximal possible bandwidth,
and that the actual one could well be smaller. For instahtee functionf is constant (which
corresponds to the case of a system of ODEs with an oscildocing term), therb, [ f]
is identically0 for s > 1. Therefore, we would have

Pritn(t) = = [PL(0) + bonlRI0)] 521 (3.24)

The corresponding result is the following.
Theorem 2 Let f(y) be constant, then we have 6, = 0, ; = g and
0s =(s—1)o, s> 2.

Proof We shall use formula (3.24) and proceed along the lines gbtbef of Theorem
4.1 in (Condon, Dedo & Iserles 200B). We recall that we have a combination of terms of

the form
Z Z h‘ﬂ(po,mpkl,llv'"7pkn,ln)v

k€ln, s €Ky m
and we write
{k17~"7kn} = {ﬁla"wﬁnl} U {717"'7’7712}7

wherep; = ... = 3,, = 1. We thus have

n no
n =nj + no, s:E kj:nl—I—E Vi
j=1 =1

By induction,

na no

n
S Ok, =mo+ D 6y, =nio+0d (v —1)=s0—nw0 < so,
j=1 j=1 j=1

with equality whemsy = 0, which corresponds to the case of the multi-indék 1,...,1)}.
O

Further reduction of the actual bandwidth can occur in soim&tions, particularly if
higher order derivatives di and f vanish identically. This is the case if these functions are
(multivariate) polynomials, which is typical in many apgations. Compare with the analysis
in (Condon et al. 20a9, where blossoming appears at a slower rate, though censistth
the results presented above.

4 Stability

As a direct consequence of the construction of the metholddrptevious subsections, one
obtainsy(t) — 1, (t) = O(1/w), wherey(t) is the solution of the perturbed system apglt)
is the solution of the unperturbed one.

More precisely, suppose thaft) is a solution of the perturbed system

y' =h(y)+9.t)f(y),  y(0) =1y,

11



and consider the unperturbed system

"%(t) = h(1y), %o(0) = o,

Then, if we writey(t) = 1,(t) + w(t), assuming thatv(t) = O(1/w) for largew, we
obtain to leading order

w' = [A(t) + B(t)go ()] w + g, () f (),  w(0) =0, (4.25)

where A(t) and B(t) are respectively the Jacobian matriceshadind f evaluated atp (¢).
This is nothing but a local linearisation of the solutionward1),. Now we split the matrices
A(t) + B(t)g.(t) = U + V(t), whereU is a constant matrix, and compare (4.25) with the
system

Z' =Uz, z(0) =0,

with trivial solutionz = 0. Using standard variation of constants it follows that
t t
w(t) =0+ / O(t—s)F(s)ds = / =V R (s)ds, (4.26)
0 0

where®(t) = eV is the fundamental matrix of the system and

F(s) = V(s)w(s) + gu(s) f (1o (s))-

It is clear from (4.26) thatv(t) represents a deviation from the zero solutig), and
therefore the behaviour ab(¢) ast > 0 is related to the stability of this zero solution. This
in turn is governed by the eigenvalues of the fundamentafixn&t see for instance (Verhulst
1990, Ch. 6). More explicitly, we can state the followinguies

Theorem 3 If

e all the eigenvalues of the matrix C, say A\, k = 1,...,d, satisfy that Re A\, < 0, and
those eigenvalues with zero real part are simple, and

e itistruethat for any ¢t > 0 there exist constants c¢;, co > 0 such that

V(s)lds < e, / 19.:(5) f (1o ()] ds < c2,
0 0

then the zero solution solution v(t) is stable in the sense of Lyapunov, and w(t) is
bounded.

Proof The proof follows along the lines of the one given in (Verthd990, Th. 6.2).
Since

w(t) = / B(t — $)V(s)w(s) ds + / B(t — 5)g. () F (4o (5)) ds,

we get the immediate bound
t t
IIwHS/ ||<I>(t—s)||-IIV(s)\I-I\w(s)\\ds+/ 1@t = 9)I - |9 () F (%o (s))] ds,
0 0

12



Because of the first condition, we haj@|| < cs, for a certain constant;, and therefore

t
Jwl < 03/0 IV (s)]l - lw(s)][ ds + czca,

Applying Gronwall’s inequality, we get

IV (s)ll ds

el < eseaes o < eyerett

a

It is possible to obtain a stronger result if we impose strezjativity of the real part of all
the eigenvalueg, of the matrixU. In that case, one has the bound

@) < cae™,

for suitable positive constants andv, see (Verhulst 1990). Thus the zero solutig) is
asymptotically stable andy(¢) will tend exponentially fast t® with ¢. This fact, together
with large values ofy will make our method very effective.

In the particular case where the system has a linear patiistha

y=My+g.0)f(y), y(0) =y,

for some constant matrix/ ¢ C™*", then clearlyM = C and stability is determined by the
eigenvalues of the linear part of the system.

If the conditions of the theorem are not met, we expect thetisol w(t) to grow un-
boundedly int, and then the difference betwegfy) and,(t) can be very large. A typical
example of this situation occurs when the system exhibastib behaviour (like in the case of
the Lorenz system), and as such is very sensitive to smalinpations in the data. However,
we remark that from a computational perspective, if the efzine eigenvalues is moderate,
it may happen that the difference between the perturbedisoly(¢) and the unperturbed
onew,(t) is small enough to be acceptable wheis large. Some examples further on will
illustrate this last point.

5 Examples

In this section we present several examples that illustteeconstruction and properties of
the expansion that we have presented in previous sectiongll tases we will compare
the approximation given by the first few terms of the asymgptotmerical solver with the
exact solution (which is either analytically available engputed numerically with standard
MATLAB routines up to prescribed accuracy). We will normally usedtandard ODE solver
ode45 in MATLAB, with an absolute and relative tolerance equalto'?.

We stress that the valueswfthat we use are much smaller than the ones normally present
in applications. This restriction is essentially imposettiee fact that the comparison with
the exact solution should be reliable and affordable. sireyw will benefit the asymptotic-
numerical solver, since the approximation with a fixed numdfeterms is more accurate,
while the computational cost is roughly similar.
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We use the notation

for the errors, taken componentwise.

5.1 Alinear system

As a first example, we can consider a simple forced oscillatttr damping. This system is
modelled by a simple second order ODE:

2" (t) + b’ (t) + kx(t) = pcoswt, x(0) = o, 2'(0) = xy,

whereb is the damping coefficient; the spring constant and we have set the madsfto
simplicity. We introduce a forcing term with amplitugeand frequency, and we assume that
w > wp, Wherewy is the natural frequency of the unperturbed oscillator @muhderdamped
case. In a matrix form

0 1

/() = [ oL ] (1) + { (1) }ucoswt, (5.1)

thereby, using our notation,

nw=| G L le s@=) V]

In this case, since the system is already linear, the métisdirectly

0 1
o-[5 4]
with eigenvalues
) b+ Vb? — 4k
+t=—F.
2

Since bothh, &k > 0, the real parts of both eigenvalues are always negative @nidawe
asymptotic stability according to Section 4. The constamcof the asymptotic expansion is
particularly simple in this case, since we have after brighputation

p6,0 = UP0,07 po,o(o) = z(0),

together with
in| 0
P11 = o [ 1 } = —Pi11-
Actually, because of the functiofi being constant, we have from (2.13) and (2.14) that
fors>1

p;,O = Ups,O? ps,O(O) = - Z ps,m(o)'
m##0

14



In particular, that means that

P/1,0 = Up1,07 Ps70(0) =0,

which leads tg, , = 0. Hence we conclude that in this case the first term is

b (1) = { 2 ]sinwt.

Figure 5.1: Solution of the perturbed system (5.1)4o£ 100.

Note that the orde©(1/w) term is0 for the first component of the solution. In other
words,z(t) is superimposed with tiny oscillations of amplitu@&1/w?), whereas in the case
of the derivativer’(¢) these are of ordeP(1/w). This is intuitively consistent with what can
be observed in Figure 5.1. Analogously,

o 1
P21 = ) { b ] =DP21

and since the bandwidth in this exampléis= 1, see Section 3, we know that ,, = 0 if
|m| > 1. Furthermore

1
pl2,0 = UP2,07 pz,o(o) = —2172,1(0) =p { b ] )

hence

hy(t) =Pao + 1 [ b ] cos wt.

In Figures 5.1 and 5.2 we plot the solution of the perturbesdesy with parameters =
4.2,b = 0.6, u = 0.8, w = 100 and initial valuesz(0) = «/(0) = 1/2, and the errors when
we compare with the first terms of the approximation, respelgt

15



Figure 5.2: Absolute errors in the approximation of the soluof the perturbed system (5.1)
for k = 4.2, b = 0.6, p = 0.8 andw = 100. Top row, errors inz(t) using the zeroth term
(left), using up to the first term of the approximation (ceptnd using up to the second term
of the approximation (right). Bottom row, same for the dative 2’ (t).

5.2 A model for an injection-locked frequency divider

Next we consider a nonlinear example, given by the followsygtem, which is used in
(O’Neill et al. 2005) and (Bartuccelli et al. 2009),

dVe dly,
c—S =1 v, L—Lt = _RI, -V,
T L+ f(Ve), i L — Vo,

where

f(Ve) = AVe < VcZ) ;

B Vd2d
and A, Vy4, C, L and R are parameters of the system. A periodic perturbation canthe
duced as follows,

f(Ve,t) = (A+ BsinQt)Vg (1 VC) .,  A>0, BeR

Vi
After normalisation and scaling, this system can be wridgn
du d
?72 =av + d(t)u(l — u?), eq} =—u—w, (5.2)
where
L LA LB QL
a= Ié] = O(t) =0+ psinwt, w=—

~ RC’ RC’

16



Hence, using our notation, we have

—UuU—v

hae) { av + Bu(l — u2) } |

and
fluo = 0],

together withg,, (t) = psinwt, and thusi_; (¢) = iu/2 anda; (t) = —ip/2.
The first term of the expansion, following (2.9), solves thstem

P6,0 = h(po,o)a

sinceqq = 0, and we also get from (2.10)

I
P11 = _gf(Po,o) = P11

together withp, ,,, = 0 when|m/| > 1. From (2.17), the coefficient, , satisfies the ODE
Pl =biolh] +a_1bi1[f]+ a1bi _1[f] = big[h] +a_1 (bi1[f] — b1, _1[f]) = b1o[h],
because of the parity of the coefficiemts, ;. Here
bl,O[h} = J[h} (p(),())pl,()'
Furthermore, the initial condition is
P1,0(0) = —P1,71(0) - p1,1(0) = Mf(Po,o(O))-
Putting everything together, we have
Py (t) = D1 — Mf(Po,o) cos wt.

The termp, () can be obtained from (2.20) substituting all the data cpoeding to the
functionsh and f in this example.
In the following example, we have taken the following valoéthe parameters,

A=25%x10"3 B=1x10"3, Vyu=9 R=3.06, L=22x10"%

We vary the parameters ands2 in the examples, buf' is always positive and small and
Q) large enough so that the scaled frequesncy L/ R is large. We observe that the matrix

U in this case is
_| B«
=[5

B—-1+£+/(0+1) -4
5 .

With the parameters given (in particular becadse< 1), the term(s + 1) — 4a is
negative, and we have complex eigenvalues. This is consisfth the observed oscillatory

with eigenvalues

A =
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u(t)

v(t)
=

-0.5 1 1 1 1

Figure 5.3: Solution of the perturbed system (5.2)doe= 10~5 and) = 27 x 106

behaviour of the solutions, see Figure 5.3. The real pahéigenvalues is given t%}(ﬁfl),
and for stability we need — 1 < 0, see Section 4. Thus

8—-1<0 & LA < RC,

which holds for roughlyC' > 107,

In Figure 5.4 we plot the solution of the unperturbed systaththe absolute errors when
using the first terms of the expansions whén= 106, Q = 27 x 10% (which givesw =
451.73 after scaling) and initial values(0) = v(0) = 1/2.

Similar results, with smaller errors, are obtained if wesidar larger values d. If we
useC = 102 then the eigenvalues of the matilixare \; = 8.49 + 47.53i, therefore we
do not expect numerical stability in this case. Indeed, FEidu5 shows that no significant
improvement is obtained when adding more terms in the expanddowever, it is worth
noting that the errors are quite small on the whole interfahtegration, so the numerical
solution might be acceptable, depending on the requiredgracg.

5.3 An expcos oscillator

A more complicated example features a linear part plus aigEtion of the forny,, (¢t) =
ercoswt For example, in the modelling of diode circuits with induetloads, we would find
an equation of the form

' (t) = ,%x(t) + IEL {exp(gw(t)VT I(t)> - 1] - éy(t), y'(t) = z(t),

whereL, R, C, I, and V are parameters. We will take the valubs= 10~%, R = 100,
C =1075, I, = 10712 andVr = 0.0259. The forcing term igy,, (t) = u coswt, with large
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2x 10 2x 10 1x 10
o 0 o 0 o 0
-2 5 4 2 2 4 _10 2 4
t t t
6 -7 8
1x 10 5x 10 2x 10
0
o o 0 o 0
-1

Figure 5.4: Absolute errors in the approximation of the 8ohuof the perturbed system (5.2)
for C = 1075 andQ = 27 x 10°. Top row, errors inu(t) using the zeroth term (left),
using up to the first term of the approximation (centre) aridgugp to the second term of the
approximation (right). Bottom row, same fof(t).

w. The constant term-I,L/C' can be added in th@(1) level in a straightforward way. Thus
the resulting system is

Bg; ] - [_L{RC _Lo/O} BEQ ] - [ﬁe_?/w } exp{g‘{/ﬂ - [g } (5.3)

whereg = I,L/C. The properties of similar types of oscillator have beeryeeal in (Con-
don et al. 2008) and (Condon, Dd#@, Iserles, Maczyski & Xu 200%). The relevant fact
is that this function can be expanded in Fourier series usiodified Bessel functions, see
(Abramowitz & Stegun 1964, Eq. 9.6.34)

MO = [o(1) +2 3 Tn() cos mut, (6.4)
m=1

and the asymptotic behaviour of the modified Bessel funstion large orders guarantees
convergence for fixed values pfandt.

It is clear that the coefficients atg, = I,,(u) for m € Z, using the fact that for integer
ordersI,, (i) = I_, (1), see (Abramowitz & Stegun 1964, Eq. 9.6.6). The base equatio
follows from (2.9),

Po,o = h(Po,o) + Lo(1) f(Po.o); Po,0(0) = x(0),
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Figure 5.5: Same as Figure 5.4 but with parameters: 10~® andQ = 27 x 10, in the
unstable regime.

and also L ()
Uy, (U
plﬂn = m f(p0,0)’ m # 0.

The differential equation fgp, , cannot be analytically solved because of the nonlinearity
originating in the functionf, but it is nonoscillatory and therefore amenable to nunaéric
solution using standard methods.

The differential equation fop, , apparently involves an infinite number of terms,

Pl = biolh] + Z ar(t)b1, [ f],
however
S arlbs 15 = Tolbrolf] 150 T fpy ) = oli)buolf),
r=—00 r#0

the last sum being zero because of the symmetry of the mo&iésdel functions with respect
to the order. Hence

P o = biolh] + Io(p)biolf] = (J[h] + To(w)J[f]) P1 05 P1,(0) =0,

which implies thatp, , = 0. Therefore,

sm mwt.

Py (t) = 2 (po o) Z
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Observe that this last sum converges as well due to the rapmlydf the modified Bessel
functions, so its numerical implementation is not problema

The second terng, (¢) can be computed from the general setting, although thereifte
sums involving modified Bessel functions that appear canuite @xpensive to evaluate. In
particular, observe that = 1/Vr, so if Vo = 0.0259 thenp is moderately large and the
convergence of the series (5.4) can be slow. As a compensat®note that our expansion
has two important advantages, namely that its cost is aaigrmbhdependent ofu (whereas
any standard numerical method will need to reduce the gtepsinsiderably when grows),
and that large values a@f will yield a more accurate expansion with the same number of
terms.

5.4 A Lorenz-type system
A final example is provided by the Lorenz-type system, sea(@2009):

i = oly—u)
i = alp—2)—y
z = wxy—pz

whereo, p and are given parameters. Usual values of the parameters ard 0, p = 28
andg = 8/3, for which the system exhibits chaotic behaviour and depgtostrange attractor.
Thush : R?* — R?, namely

oy —z)
h(z,y,z)=| z(p—2)—vy
Ty — Bz

The perturbation considered in (Chang 2009) is given by

25(y — x)
.f(xayVZ) = =35z + 29y )
—z/3
together with (using our notation),(t) = 1 + S coswt. In this wayag = %, a_1(t) =

a1 (t) = 1 anda,, (t) = 0 otherwise.
Alternatively, in (Wu et al. 2007) one has

0

flx,y,2)= | cy |,
0

andg,(t) = esinwt. It follows thata_;(t) = ic/2, a1(t) = —ie/2 anda,,(t) = 0 when
m| # 1.
Yet another perturbation of this system is given in (Choehiég Benner & Kivshar 2005),

where
0

flx,y,2)= | pr |,
0
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together withy,, (t) = k coswt, wherebya, (t) = a_1(t) = k/2, a,,(t) = 0if |m| # 1. Thus
the original bandwidth ip = 1.

The computations can be carried out in a similar way to theipus examples. Away
from the chaotic regime the approximation gives good resbiit when the perturbation is
used for chaos suppression then one should not expect tbeduwne to be accurate, since the
unperturbed solution will be chaotic and the perturbed oitlenat be so.
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