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— Abstract —

In this paper, we describe the automatic annotation of the Cast3LB Treebank with LFG f-structures for

the subsequent extraction of Spanish probabilistic grammar and lexical resources. We adapt the approach

and methodology of Cahillet al. (2004), O’Donovanet al. (2004) and elsewhere for English to Spanish

and the Cast3LB treebank encoding. We report on the quality and coverage of the automatic f-structure

annotation. Following the pipeline and integrated models of Cahill et al. (2004), we extract wide-coverage

probabilistic LFG approximations and parse unseen Spanishtext into f-structures. We also extend Bikel’s

(2002) Multilingual Parse Engine to include a Spanish language module. Using the retrained Bikel parser

in the pipeline model gives the best results against a manually constructed gold standard (73.20% preds-

only f-score). We also extract Spanish lexical resources: 4090 semantic form types with 98 frame types.

Subcategorised prepositions and particles are included inthe frames.

1 Introduction

Manual construction of rich grammatical and lexical resources, particularly multilingual resources, is time-

consuming, expensive and requires considerable linguistic and computational expertise. Previously in

(Cahill et al., 2004) and (O’Donovan et al., 2004), we outlined an approach which exploits information en-

coded in treebank trees to automatically annotate each nodein each tree with f-structure equations represent-

ing abstract predicate-argument structure relations. From the annotated treebank, we automatically extract

large-scale unification grammar resources, namely probabilistic approximations of LFGs1, and subcategori-

sation information, for parsing new text into f-structures. A growing number of treebanks for languages other

than English (including Japanese, Chinese, German, French, Czech and Spanish) are becoming available.

Cahill et al. (2003) and Burkeet al. (2004) show how the lexical and grammatical extraction approaches

described in (Cahill et al., 2004) and (O’Donovan et al., 2004) for English can be successfully migrated to

typologically different languages (German and Chinese) and different treebank encodings (TIGER (Brants

et al., 2002) and Penn CTB (Xue, Chiou, and Palmer, 2002)). Here we describe the porting of the method-

ology to Spanish and the Cast3LB Treebank (Civit, 2003). We present an f-structure annotation algorithm

for Cast3LB and describe how LFG grammars for Spanish can be induced from the f-structure-annotated

treebank. We extract PCFG-based LFG approximations and report on a number of parsing experiments. We

evaluate both the quality of the automatic f-structure annotation of the Cast3LB treebank, and the parser

output. Finally, we describe how lexical resources can be extracted from the f-structure-annotated treebank

and present sample lexical entries.

1See (Cahill et al., 2004) and (O’Donovan et al., 2004) for details on how these resources differ from traditional LFGs.



2 From Cast3LB to a Spanish LFG

2.1 Cast3LB Treebank

The Cast3LB treebank (Civit, 2003) consists of 125,000 words (approximately 3,500 trees) taken from a

wide variety of Spanish texts (journalistic, literary, scientific) from both Spain and South America. Despite

the free word order of Spanish, constituency rather then dependency annotation is used in the Cast3LB

treebank. Unlike the Penn-II Treebank which loosely complies with X-bar theory, the phrase-structure trees

of the Spanish Treebank are essentially theory neutral. Only lexically realised constituents are annotated

with the exception of elided subjects in pro-drop constructions. There are therefore no empty nodes and

traces unlike in the Penn-II Treebank. Another policy of theCast3LB creators was not to alter the surface

word order of the constituents. Due to the free word order of Spanish, a verb phrase containing the verb

and its arguments (other than subject) cannot always be established. As a result the main constituents of the

sentence are daughters of the root node. The free word order of Spanish also means that phrase-structural

position is not an indication of grammatical function, a feature of English which was heavily exploited in

the automatic annotation of the Penn-II Treebank. Instead we take advantage of the rich Cast3LB functional

annotation of verbal dependents and the fine-grained non-terminals to annotate the treebank with f-structure

equations.

Figure 1 shows an example tree from the Cast3LB Treebank. Theverbal elements of the sentence are

realised by thegv (grupo verbal) subtree. Thesn (sintagma nominal) subject of the sentence is marked as

such using the functional tagSUJ. Any other verbal complements and adjuncts are marked in a similar way

in the treebank. The full list of functional labels is provided in Table 1. Constituents which are not verbal

complements do not receive functional annotations. The full list of phrasal category labels (i.e. excluding

preterminals) is presented in Table 2. In addition to these,any of the clausal nodes may be annotated with an

asterisk to indicate verbal ellipsis in coordinated structures. The tree in Figure 2 where the verbesis omitted

from the second conjunct demonstrates this phenomenon. Thepreterminal tags in Cast3LB are fine-grained

(see Figures 1 and 2) because they encode morphological as well as part of speech (POS) information. For

example the tagncms000 indicates thatrecursois a common noun which is masculine and singular. While

there are some distinctions beyond POS encoded in the Penn-II tags, the limited inflectional morphology of

English does not allow for or require the same level of detailas Spanish. In Penn-II there are just six verbal

tags (excluding the modal tag) which suffice for English inflection. As a single Spanish verb morpheme

carries information about person, number, tense, aspect and mood, the 147 verbal tags are by necessity

considerably more complex.
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Figure 1: Example Tree from the Cast3LB Treebank
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Figure 2: Cast3LB Annotation of Verbal Ellipsis in Coordinated Constructions



SUJ Subject

CD Direct Complement

CI Indirect Complement

ATR Attributive

CPRED Predicative Complement

CAG Agentive Complement

CREG Prepositional Phrase Complement

CC Adjunct

ET Textual Element

MOD Modal Adverb

NEG Negative

PASS Passive

IMPERS Impersonal

VOC Vocative

Table 1: Functional Annotations used in the Cast3LB Treebank

2.2 Automatic Annotation of Cast3LB Trees

The annotation algorithm for Spanish is constructed following the same methodology used for English, Ger-

man and Chinese. We begin by automatically extracting all the rules and their associated frequencies from

the treebank. We extract 7972 rules when we conflate preterminals containing morphological information

to basic POS tags.2 We then select the most frequent rule types for each left handside (lhs) category which

together give 85% coverage of all rule tokens expanding thatcategory. This results in a reduced set of 3638

rules. The right hand sides (rhs) of these 3638 rules are thenautomatically assigned default annotations, e.g.

any node with aSUJ functional annotation is assigned the functional equation↑SUBJ=↓. The rules are also

head lexicalised following the head lexicalisation rules developed for Spanish. The reason for the relatively

large number of CFG rules is the fine-grained tags for sentential nodes which are used in the treebank (Fig-

ure 2). Of the 3638 rule types, 3533 have a sentential node on the left hand side. As many of the daughters

of sentential nodes are tagged with Cast3LB functional tags, the right hand sides of 2870 of the 3638 rules

are unsurprisingly completely annotated after automatic head lexicalisation and default annotation. Out of

a total of 15039 right hand side nodes, 14091 (93.70%) are assigned an annotation automatically. Next the

remaining partially annotated rules (768 in total) are manually examined and used to construct annotation

matrices which generalise to unseen rules. The annotation matrices encode information about the left and

right context of a rule’s head. For example, anespec node to the left of the head of ansn’s head is a spec-

2For example the preterminalsncms000 andncfs000 are conflated to the generic POS tagn.



S.F.C Subordinated Finite Complement

S.F.R Subordinated Finite Adjectival

S.F.A Subordinated Finite Adverbial

S.F.A.Cond Subordinated Conditional Finite Adverbial

S.F.A.Conc Subordinated Concessive Finite Adverbial

S.F.A.Cons Subordinated Consecutive Finite Adverbial

S.F.A.Comp Subordinated Comparative Finite Adverbial

S.NF.C Subordinated Non-Finite Complement

S.NF.A Subordinated Non-Finite Adverbial

S.NF.P Subordinated Non-Finite Adjectival

S.NF.R Subordinated Non-Finite Relative

INC Parenthetical

sn(.e) Noun Phrase (elided)

sa Adjectival Phrase

sadv Adverbial Phrase

sp Prepositional Phrase

gv Verbal Group

infinitiu Infinitival

gerundi Gerund

grup.nom Nominal group

prep Preposition

interjeccio Interjection

neg Negation (no)

relatiu Relative Pronoun

numero Number

morfema.verbal Pronounsein passive and impersonal constructions

morf.pron Reflexive Pronoun

espec Specifier

Table 2: Phrasal categories from the Cast3LB Treebank



ifier while ansp node to the right of agrup.nom’s head is an adjunct. Lexical information is provided by

macros which are written for the POS tags.

The f-structure algorithm is implemented in Java followinga similar architecture to that used for English,

German and Chinese. The automatic annotation of the entire treebank is essentially a four step process

illustrated in Figure 3. First, the annotation algorithm attempts to assign an f-structure equation to each

node in the tree based on the Cast3LB functional labels. We have compiled an f-structure equation look-up

table which assigns default f-structure equations triggered by each Cast3LB functional label. For example,

the default entry for theSUJ label is↑SUBJ=↓. Table 3 gives the complete set of default annotations. Next,

the head of each local subtree of depth one is found followingthe head lexicalisation rules we have compiled.

For example, theprep daughter of ansp node is its head and is assigned the f-structure equation↑=↓. In the

third step, the annotation algorithm deals specifically with coordination as this phenomenon is not covered

by the left-right generalisations for other constructions. Figure 4 provides an example of coordination in

the Cast3LB Treebank. The.co suffix on thegrup.nom node label indicates that the node is mother of

two or more coordinatedgrup.nom nodes. The coordinating conjunction (cc) is annotated as the head of

the coordinated noun phrase and the coordinated elements are annotated as elements of the noun phrase’s

conjunct set. In a final step, the annotation algorithm movestop-down left-to-right through each tree and any

unannotated nodes in each local subtree of depth one are assigned f-structure equations using the left-right

context principles constructed by examining the subset of most frequent treebank rules mentioned above.

For example, ansn node to the right of the head of a prepositional phrase (sp) is annotated as the object

of the prepositional phrase (↑OBJ=↓). The f-structure equations are then automatically collected and passed

to a constraint solver which produces an f-structure. The annotated tree and resulting f-structure for the

tree in Figure 1 is shown in Figure 5. The tense, number and gender information as well as root forms are

derived from the lexical macros. At present we produce “proto” f-structures (with unresolved long distance

dependencies) rather than “proper” f-structures as the Cast3LB does not contain trace information.

2.3 Evaluation of the Annotation Algorithm

We first evaluated the coverage of the annotation algorithm on the entire Cast3LB Treebank. The results

are presented in Table 4. 96.04% of the sentences receive onecovering and connected f-structure. Ideally,

we wish to generate just one f-structure per sentence. A number of sentences (102) receive more than one

f-structure fragment. This is due to cases where the algorithm cannot establish a relationship between all

elements in the treebank sentence and leaves nodes unannotated. There are also a small number of sentences

(36) which do not receive any f-structure. These are a resultof feature clashes in the annotated trees, which

are caused by inconsistent annotation.

We also evaluate the quality of the annotation against a manually constructed gold standard of 100 f-
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Left-Right Context Rules

Figure 3: Architecture of Spanish Annotation Algorithm

SUJ ↑SUBJ=↓

CD ↑OBJ=↓

CI ↑OBJ THETA=↓

ATR ↑XCOMP=↓

CPRED ↑XCOMP=↓

CAG ↑OBLAG=↓

CREG ↑OBL=↓

CC ↓∈(↑ADJ)

ET ↓∈(↑ADJ)

MOD ↓∈(↑ADJ)

NEG ↓∈(↑ADJ)

PASS ↑PASSIVE=+

IMPERS ↑IMPERSONAL=+

VOC ↓∈(↑ADJ)

Table 3: Functional tag triggered default annotations usedin the Cast3LB Treebank



sn

↑=↓

espec

(↑SPEC DET)=↓

da0fp0

↑=↓

las

the

grup.nom.co

↑=↓

grup.nom

↓∈(↑CONJ)

ncfp000

↑=↓

subidas

ascents

coord

↑=↓

cc

↑=↓

y

and

grup.nom

↓∈(↑CONJ)

ncfp000

↑=↓

bajadas

descents

Figure 4: Coordination example from Cast3LB with automatically generated f-structure equations

F-Structures Trees % Trees

0 36 1.03

1 3347 96.04

2 96 2.75

3 5 0.14

4 1 0.03

Table 4: Coverage and Fragmentation results of Spanish f-structure annotation algorithm

.
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Figure 5: Automatically-annotated tree and f-structure for the example in Figure 1



Precision Recall F-Score

All GFs 98.40 93.56 95.92

Preds Only 97.90 92.31 95.02

Table 5: Evaluation of the automatically produced f-structures against the 100 gold-standard f-structures

structures. For our parsing experiments we set aside approximately 10% of the treebank (336 sentences) for

testing purposes. This test set is selected randomly from the various text genres which make up the treebank.

We extracted 100 sentences at random from the test set, to develop our gold standard. The f-structures

from the original Cast3LB trees for these sentences generated by the automatic annotation algorithm were

manually corrected and converted into dependency format. We use the triples encoding and evaluation

software of Crouchet al. (2002). Table 5 shows that currently the automatic annotation algorithm achieves

an f-score of 95.92% for all grammatical functions and 95.02% for preds only. In both cases, precision is

about 5% higher than recall. Table 6 shows a more detailed analysis of how well the automatic f-structure

annotation algorithm performs for each function in the all grammatical functions evaluation. The algorithm

performs well on most features, e.g. theOBJ f-score is 94% and that forSUBJ is 92%. At present, we score

worst on theOBLAG feature (the agent in a passive construction). There are only four occurrences of this

feature in the gold standard. We expect this along with all the other figures to improve as the annotation

algorithm is further refined.

3 Parsing Experiments

To parse raw text into f-structures, we use thepipeline andintegrated parsing architectures of Cahillet al.

(2004), illustrated in Figure 6. For the pipeline model, we first extract a PCFG from the Cast3LB treebank

excluding the 336 test sentences. Cast3LB functional tags are retained in the grammar extraction. We use

Helmut Schmid’s BitPar parser (Schmid, 2004) to parse new text with the grammar, using Viterbi pruning

to obtain the most probable parse. The resulting parse treesare then automatically annotated using the

annotation method described above. The f-structure equations are collected from the trees and passed to

the constraint solver which produces an f-structure for each sentence. For the integrated model, we first

automatically annotate the Cast3LB treebank with f-structure equations. We then read off a grammar from

the annotated treebank, resulting in anannotatedPCFG (A-PCFG) for Spanish. We again use BitPar to

parse new text with this grammar producing annotated trees.Again the f-structure equations are collected

from the parse trees and passed to the constraint solver to produce f-structures. We also transformed each

grammar using a parent transformation (Johnson, 1999) to give us a P-PCFG and a PA-PCFG.

In addition, we extend Dan Bikel’s multilingual, parallel-processing statistical parsing engine (Bikel,



DEPENDENCY PRECISION RECALL F-SCORE

ADJUNCT 608/618 = 98 608/648 = 94 96

AUX 22/22 = 100 22/25 = 88 94

CASE 12/12 = 100 12/17 = 71 83

COMP 21/22 = 95 21/23 = 91 93

CONJ 185/190 = 97 185/196 = 94 96

DET 326/328 = 99 326/342 = 95 97

FORM 56/57 = 98 56/59 = 95 97

GEN 914/920 = 99 914/954 = 96 98

IMPERSONAL 3/3 = 100 3/3 = 100 100

NUM 1115/1130 = 99 1115/1174 = 95 97

OBJ 429/444 = 97 429/464 = 92 94

OBJ THETA 17/17 = 100 17/19 = 89 94

OBL 13/14 = 93 13/15 = 87 90

OBLAG 2/3 = 67 2/4 = 50 57

PART 4/4 = 100 4/5 = 80 89

PARTICIPLE 27/27 = 100 27/30 = 90 95

PASSIVE 11/11 = 100 11/12 = 92 96

PERS 189/196 = 96 189/207 = 91 94

REFLEX 17/17 = 100 17/18 = 94 97

RELMOD 34/34 = 100 34/36 = 94 97

SUBJ 255/258 = 99 255/294 = 87 92

SUBORD 50/50 = 100 50/54 = 93 96

SUBORD FORM 50/50 = 100 50/54 = 93 96

TENSE 183/187 = 98 183/196 = 93 96

XCOMP 62/66 = 94 62/73 = 85 89

Table 6: Breakdown of all grammatical functions annotationalgorithm evaluation results by dependency
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Figure 6: Pipeline (Red) and Integrated (Green) Parsing Architectures

2002) to include a language package for Spanish. Implemented in Java, the parsing engine is a history-based

parser emulating Collins’ Model 2 (Collins, 1997). The language package is a collection of Java classes

that are extensions of several of the abstract classes whichprovide the description of data and methods

specific to a particular language and treebank annotation style. Aside from creating the Spanish classes,

we added a data file specifying the head rules specific to the Spanish Cast3LB treebank to be read by the

HeadFinder class. With this extension, we trained the parser on the training set of the treebank retaining

Cast3LB functional tags and parsed the test set with the grammar. Following the pipeline model, we then

automatically annotated the resulting parse trees, collected the f-structure equations and passed them to the

constraint solver to produce f-structures.

As previously noted, the Cast3LB preterminals are very fine-grained, encoding extensive morphological

detail in addition to POS information. For example, the tagvaip3s0 denotes a verb (v) which is an

auxiliary (a), used indicatively (i) in the present tense (p), and is third person (3) singular (s). In total there

are 327 preterminal types in the treebank. This level of fine-grainedness together with our relatively small

training set causes a data sparseness issue for parsing new text. With such a large number of POS tags, it

is inevitable that certain tags appear in the test set which have not been seen in a similar context in training

with adverse effects on coverage.3 To deal with this issue, initially we masked the morphological detail in

the preterminals thereby conflating them to more generic POStags.

3.1 Initial Results

We then parsed the 336 raw test sentences with the four grammars using BitPar and the retrained and

extended Bikel parsing engine. The results are shown in Table 7. We evaluated the quality of the trees

produced by the parsers usingevalb and measured how many of the 336 sentences produce one covering

3If BitPar encounters a sentence in the test set containing a previously unseen tag, it will crash at that point.



PCFG A-PCFG P-PCFG PA-PCFG Bikel

Parses (out of 336) 334 330 305 264 328

Labelled F-Score 79.01 78.89 78.78 78.44 79.19

Unlabelled F-Score 82.64 82.45 82.61 81.86 82.28

Fragmentation (336 F-Structures) 96.11 93.64 85.90 71.21 88.41

All GFs F-Score (100 F-Structures) 59.70 57.99 55.75 46.93 60.13

Preds-Only F-Score (100 F-Structures)69.38 68.01 66.02 55.88 72.11

Table 7: Initial Parsing Results

and connected f-structure. The PCFG performs best in terms of coverage and fragmentation with over 96%

of sentences being assigned one covering and connected f-structure. Coverage drops for the A-PCFG with

fragmentation of 93.64%. This trend continues when parent transformations are added (71.21% for PA-

PCFG). This may be attributed to data sparseness problems. The PA-PCFG rules are very information-rich

and it is possible that constructions encountered in testing will not have been seen during training. As

before, we evaluated the automatically produced f-structures qualitatively against the manually constructed

gold standard using the evaluation software of Crouchet al. (2002). The results of this evaluation reveal

a problem with the use of preterminal conflation to avoid datasparseness problems in parsing. Usually an

all-grammatical-functions evaluation is less rigid than apreds-only evaluation as the features with atomic

values (such as person, number and gender) are typically associated with the correct localpred even if the

pred is attached incorrectly in global f-structure. In the case of these experiments however, the grammars

score very poorly (as low as 46.93% for the PA-PCFG) in the all-grammatical-functions evaluation. By

conflating the preterminal tags we discard the morphological information required by the lexical macros in

the f-structure annotation algorithm to project this information to the level of f-structure.

3.2 Final Results

In order to optimise both coverage and f-structure quality we refined our morphological masking process to

include a subsequent unmasking step so as to correctly trigger the lexical macros. The masking-unmasking

process works as follows. The trees in the treebank are transformed in two ways: the lemmas are removed

leaving behind the surface forms of the words and the preterminal tags are conflated to more general POS

tags. The masked information is not disposed of but stored ina tab delimited data file in the following

format: full preterminal tag, surface form of word, lemma. For example:vaip3s0 ha haber. The

grammars are extracted from the pre-processed morphologically masked trees and used to parse new text

as before. The trees produced by the parser then go through a new post-processing unmasking stage. The

lemma information is re-inserted and the conflated tags are expanded. Next the lexical macros are triggered



PCFG A-PCFG P-PCFG PA-PCFG Bikel

Parses (out of 336) 334 330 305 264 328

Labelled F-Score 79.01 78.89 78.78 78.44 79.19

Unlabelled F-Score 82.64 82.45 82.61 81.86 82.28

Fragmentation (336 F-Structures) 96.11 93.64 85.90 71.21 88.41

All GFs F-Score (100 F-Structures) 79.53 77.76 74.00 62.01 79.85

Preds-Only F-Score (100 F-Structures)69.41 68.01 66.02 55.88 73.20

Table 8: Final Parsing Results

by the now fully unmasked POS tags and all f-structure equations are sent to the constraint solver as before.

The f-structures produced now contain morphological information. The results are shown in Table 8. As

expected, theevalb and fragmentation results are unchanged. When compared to initial f-structure results

in Table 7, the improvement in the all-grammatical-functions due to this extra step is clear: between 15%

and 20% for all of the grammars. There are also slight improvements for the preds-only scores of the PCFG

and Bikel. The extended Bikel parsing engine performs best overall: all-grammtical-functions (79.85%) and

preds only (73.20%). The PCFG, A-PCFG and P-PCFG produce f-structures of roughly similar quality. The

results reported for the PA-PCFG are considerably lower. There is a general trend that the more fine-grained

the grammar, the worse the coverage with PA-PCFG achieving only 71.21% fragmentation. This reflects

data-sparseness problems due to the comparatively small data set. In contrast to English (Johnson, 1999),

for Spanish the parent transformation has an adverse effecton parse quality.

4 Lexical Extraction

The method for automatically inducing semantic forms of O’Donovanet al. (2004) is highly suited to mul-

tilingual lexical extraction as it works on the level of the more language independent f-structure rather than

the more language dependent c-structure. We can apply the extraction algorithm originally developed for

English as is to the set of f-structures automatically generated from the Cast3LB in order to induce lexical

resources for Spanish. We automatically extract 4090 semantic forms. As for English, we associate condi-

tional probabilities with the extracted frames, differentiate between active and passive frames, parameterise

frames with obliques for specific prepositions and optionally include details of syntactic category. Unlike

English, the Spanish frames do not yet reflect long-distancedependencies. Of these extracted frames, 3136

are for 1401 verbal lemmas, i.e. 2.4 semantic forms per verb.The verbal semantic forms display all 98

of the frame types extracted. Table 9 provides an overview ofthe main extraction results broken down by

category.



Semantic Form Types Lemmas Frame Types

Total 4090 2322 98

Verbal 3136 1401 98

Nominal 432 432 3

Adverbial 26 24 4

Adjectival 496 474 20

Table 9: Spanish semantic forms broken down by category

Semantic Form Frequency

ser([subj,xcomp]) 1202

estar([subj,xcomp]) 208

tener([subj,obj]) 206

poder([subj,xcomp]) 135

haber([obj]) 109

Table 10: The most frequently occurring semantic forms extracted from Cast3LB

Table 10 shows the most frequently-occurring semantic forms extracted from the Cast3LB Treebank.

The most frequent frame for the verbhaber(auxiliary ‘have’) ishaber[obj] due to the Spanish construc-

tion with a invariant form of this verb (hay) meaning ‘there is’ or ‘there are’ which never occurs with an

overt subject. Table 11 shows the attested semantic forms for the verbver (‘see’) with their associated con-

ditional probabilities. Note that as for English, the passive frame is marked withp. The passive is realised

in three ways in Spanish. The verb ‘to be’ (ser) is combined with a past participle in a manner similar to the

English construction. Consider Figure 1 where the stringha sido exigidocan be translated word for word to

the English ‘has been demanded’. The annotation algorithm uses left-right context information to annotate

sidowith the f-structure equation↑PASSIVE=+ which is exploited by the lexical extraction algorithm at f-

structure level. A reflexive construction may also be used toexpress the passive. For example, ...se registŕo

un descenso... (‘... a descent was registered...’) whereun descensois the surface subject of the normally

transitiveregistrar. In Cast3LB the pronominal constituent (se) is tagged as amorfema.verbal and has

an additional functional tag -PASS which is used by the annotation algorithm to assign the↑PASSIVE=+

f-structure equation. Finally, the Spanish passive may be realised using the third person plural of the verb

to be passivised with an empty subject. In this case the verb used passively will not be marked as such

because it does not display the movement typically associated with the passive and is essentially an active

construction with an empty subject.



Semantic Form Conditional Probability

ver([subj,obj]) 0.468

ver([subj]) 0.290

ver([subj,comp]) 0.121

ver([subj],p) 0.072

Table 11: Automatically extracted lexical entries forver (see) with associated conditional probabilities

5 Conclusions and Future Work

We have shown how the methodology for automatically annotating the Penn-II Treebank with LFG f-

structure equations for the purpose of extracting grammatical and lexical resources can be adapted to Span-

ish. The methodology has also been successfully migrated toGerman and Chinese. Our methodology

constitutes a novel approach to deep multilingual constraint-based grammar and lexical acquisition based

on treebank resources and automatic f-structure annotation algorithms. As treebanks become available for

a growing number of languages, we expect this method can deliver robust, wide-coverage multilingual re-

sources with a substantial reduction in development cost. The multilingual work presented here is very

much proof of concept. Just three months of development effort have been invested to induce the resources

and further work is required to integrate long-distance dependency resolution and to refine the grammar and

lexicon extraction.

We developed and applied an automatic f-structure annotation algorithm to the treebank and measured

its coverage as well as the quality of the annotations. Over 96% of the trees in the treebank receive one cov-

ering and connected f-structure. When evaluated against a gold standard of 100 hand-crafted f-structures,

the algorithm scores over 95% for preds-only and all-grammatical-functions. We extract four different

PCFGs from the treebank and use them to parse 336 sentences set aside for testing. We also extend and

retrain Bikel’s (2002) statistical parsing engine with a Spanish language package to parse the test set. The

retrained Bikel parser integrated into the pipeline model performs best against the gold standard, achieving a

preds-only f-score of 73.20% against the gold standard. We extract 4090 semantic forms from the annotated

treebank using the same methodology applied to the Penn-II Treebank. Long-distance dependency resolu-

tion, refinement and extension of the annotation algorithm,grammar and lexicon extraction as well as the

evaluation of the lexical resources remain as future work.
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