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Abstract  

System combination has been applied successfully to various machine translation tasks in 

recent years. As is known, the hypothesis alignment method is a critical factor for the 

translation quality of system combination. To date, many effective hypothesis alignment 

metrics have been proposed and applied to the system combination, such as TER, HMM, 

ITER, IHMM, and SSCI. In addition, Minimum Bayes-risk (MBR) decoding and confusion 

networks (CN) have become state-of-the-art techniques in system combination. In this paper, 

we examine different hypothesis alignment approaches and investigate how much the 

hypothesis alignment results impact on system combination, and finally present a three-pass 

system combination strategy that can combine hypothesis alignment results derived from 

multiple alignment metrics to generate a better translation. Firstly, these different alignment 

metrics are carried out to align the backbone and hypotheses, and the individual CNs are 

built corresponding to each set of alignment results; then we construct a ‘super network’ by 

merging the multiple metric-based CNs to generate a consensus output. Finally a modified 

MBR network approach is employed to find the best overall translation. Our proposed 

strategy outperforms the best single confusion network as well as the best single system in 

our experiments on the NIST Chinese-to-English test set and the WMT2009 

English-to-French system combination shared test set. 
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system combination; three-pass system combination; hypothesis alignment; MBR decoder; 

confusion network; super network. 

 

1 Introduction 

 

In the past several years, multiple system combination has been shown to be helpful in 

improving translation quality. Recently, confusion network-based (CN-based) networks in 

(Bangalore et al., 2001; Matusov et al., 2006; Sim et al., 2007; Rosti et al., 2007a; He et al., 

2008), have become the state-of-the-art methodology to implement the combination strategy. 

A CN is essentially a directed acyclic graph which is built by a set of translation hypotheses 

against a reference or “backbone”. Each arc between two nodes in the CN denotes a word or 
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token, possibly a null item, with an associated posterior probability. Generally, like the 

translation decoding process in phrase-based statistical machine translation (PB-SMT), the 

CN decoding process also uses a log-linear model (Och and Ney, 2002), which combines a 

set of different features to search for the best path or an N-best list by dynamic programming 

algorithms. 

 Typically, the dominant CN is constructed on the word level by a state-of-the-art 

framework. Firstly, a minimum Bayes-risk (MBR) decoder (Kumar and Byrne, 2004) is 

utilised to choose the backbone from a merged set of hypotheses, and then the remaining 

hypotheses are aligned against the backbone by a specific alignment approach. Currently, 

most research in system combination has focussed on the hypothesis alignment due to its 

significant influence on combination quality. A TER-based (Snover et al., 2006) system 

combination strategy was first introduced in (Sim et al., 2007). More recently, many 

hypothesis alignment metrics have been proposed and successfully applied in system 

combination, such as IHMM (He et al., 2008) and ITG (Karakos et al., 2008). In all these 

papers, the proposed alignment method outperformed the TER-based baseline system. 

 A multiple CN or ‘super network’ framework was first proposed in (Rosti et al., 2007b), 

where the final CN was comprised of all individual system CNs—all constructed based on 

the same alignment metric, namely TER—as the backbone. In this method, the MBR decoder 

was not used so that the risk of selecting a poorly performing backbone was lessened. 

However, the potential problem is that from an engineering viewpoint the complexity 

increases where there are a lot of individual system results. A consensus network MBR 

(ConMBR) approach employs an MBR decoding to select the best one with the minimum 

cost from the original single system outputs compared to the consensus output (Sim et al., 

2007). In this paper, we present a revised, extended idea proposed first in (Du and Way, 

2009c) that employs the MBR, super network and a modified ConMBR to construct a 

three-pass system combination framework which can effectively combine different 

hypothesis alignment results and easily be extended to more alignment metrics. We 

demonstrate using two language pairs that such a framework is consistently effective when a 

number of different hypothesis alignment methods are combined. 

 The remainder of this paper is organised as follows. In section 2, we examine the impact 

of different hypothesis alignment methods on the performance of CN system combination. In 

section 3, we summarize four commonly used hypothesis alignment metrics in our 

combination task: TER, HMM, IHMM and SSCI (Du et al., 2009b), which have different 

working mechanisms and represent the metrics currently most preferred in system 

combination tasks. Section 4 introduces the modified ConMBR (mConMBR) decoding. 

Then, Section 5 describes the implementation details of our proposed three-pass combination 

strategy which can combine multiple different hypothesis alignment metrics. The 

experiments conducted on NIST Chinese-to-English and WMT2009 English-to-French data 

are reported in Sections 6 and 7. Section 8 concludes and gives avenues for future work. 

2 The Impact of Hypothesis Alignment on the Confusion Network 

The process of hypothesis alignment is similar to the word alignment between source and 

target languages in PB-SMT (Och and Ney, 2003). The differences are firstly that the source 

and target sides are the same language, and secondly, the word alignment types are limited to 

1-to-1, 1-to- null and null-to-1. Currently, the CN has two crucial characteristics: (i) it is a 

word-level graph; and (ii) a monotone decoding process is selected. Therefore, hypothesis 

alignment plays a vital role in the CN because the backbone sentence decides the skeleton 

and word order of the consensus output. 
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E3: prices have increased by 1 480 forints on average  .

E1:   prices    have     risen           by   1   480    forints   on   average   .

E2:   prices      @      increased    @   1   480    forints   on   average    .

E3:   prices    have     increased   by   1   480    forints   on   average    . 

(c) Normalise hypothesis alignment and construct confusion network

E1: prices        have risen by        1      480    forints     on average . 

E2: prices increased   480      1      forints   on average    . 

E3: prices have    increased  by  1       480   forints on average   . 

(a) Hypotheses Set

E1: prices have risen by 1 480 forints on average  . 

E2: prices increased  480  1 forints on average .

E1: prices have risen by 1 480 forints on average . 

(b) backbone-hypothesis alignment

 
Figure 1. Normalise hypothesis alignment and construct confusion network 

 

 Figure 1 gives an overall view of the main steps involved in CN-based system 

combination, including how to align the hypotheses, carry out the word re-ordering as well as 

construct the CN. In Figure 1(a), hypotheses from different MT systems are merged to form a 

new N-best list, from which the backbone is selected using the MBR decoder. The most 

frequently used loss functions in MBR are TER and BLEU (Papineni et al., 2002). Then, as 

illustrated in Figure 1(b), assuming E1 to be the selected backbone under some loss function, 

the remaining hypotheses are aligned against E1 by carrying out a specific alignment metric 

as described in Section 3. The symbol @ denotes a null word. Note that there are only three 

types of word alignment in system combination, namely, 1-to-1, 1-to-null and null-to-1 in 

terms of bidirectional alignment. Depending on the particular method of word alignment, 

word reordering is carried out and a CN is constructed based on the reordered hypotheses as 

Figure 1 (c) shows. Finally, sets of local and global features are integrated into a log-linear 

model to decode the CN. 

 The most challenging problem for CN decoding is the phenomenon of 

“non-grammatical” phrases, which are mainly caused by the arbitrary word reordering and 

decoding strategy inside the CN. There might be several arcs between any two adjacent 

nodes. Each arc indicates an alternative word or null. The aim of the search process is to 

produce a sequence with the best overall score, while at each position, the selected word is 

mainly decided by methods such as voting, confidence scores, or relative probability of the 

candidates. Thus there may be no direct grammatical relationship between any adjacent 

words in the voting decision, as there is no guarantee that consecutive words in the output 

consensus translation come from the same CN. Although nowadays most MT research 

introduces some syntax-like features into the CN (such as a language model, for instance), it 

still cannot avoid producing “non-grammatical” output. However, a high-quality hypothesis 

alignment can reduce this kind of influence to some extent, since the more accurately the 

words are aligned, the less noise is produced. 

 When we examine the impact of hypothesis alignment on the CN, two key issues should 

be studied. The first one is that of word order: how does the word order impact on the 
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skeleton of the consensus output? The second one is the hypothesis alignment accuracy: how 

does the hypothesis alignment influence the word sequence of the consensus output? 

 To study the first issue, considering that the word order of CN is decided by the backbone, 

we performed a set of experiments to compare the influence on consensus output of selecting 

different backbones for our CN. Table 1 shows the comparison results. We use the WMT09 

English-to-French system combination shared task as the evaluation data set, including 2525 

sentences and 16 1-best systems. TER is used as the default hypothesis alignment metric. The 

results are reported in TER, case-sensitive BLEU, NIST (Doddington, 2002) and METEOR 

(MTR) (Banerjee and Lavie, 2005). 

 

Backbone TER BLEU NIST MTR 

Oracle 52.58 33.84 8.04 23.95 

Worst Single 69.19 14.73 5.57 12.40 

Best Single 59.21 25.43 6.99 18.97 

MBR 58.05 26.54 7.12 19.81 

Worst-CN 59.16 23.53 7.04 17.63 

Best-CN 57.03 26.73 7.29 19.84 

MBR-CN 56.84 27.56 7.33 20.33 

Table 1.  The influence of backbone choice on CN 

 
 The Worst-CN, Best-CN and MBR-CN are the outputs of the CNs using the worst single, 

best single and MBR result as the backbone, respectively. We can see that (i) MBR is better 

than the best single system; and (ii) the MBR-CN obtains the best performance in terms of 

the four automatic evaluation metrics. The better the word order in the backbone is, the better 

the translation performance is. 

 By using the same backbone but different hypothesis alignment methods, we compare 

the results to address the second issue. Correctly aligning synonyms to each other is a 

challenging issue. For instance, in Figure 1 (b), “risen” in E1 and “increased” in E2 and E3 

express the same meaning with different morphologies. Of course, a simple ‘exact match’ 

algorithm is incapable of dealing with this issue. In this experiment, three dominant types of 

hypothesis alignment metrics are used, namely TER, HMM and IHMM. The data set we used 

is still the WMT09 English-to-French system combination shared task. TER aligns the words 

based on the exact match principle; HMM uses the same principle as the word alignment 

model in (Vogel et al., 1996), while IHMM uses two similarity models and one distortion 

model to perform the alignment. Table 2 shows the results for these three metrics. 

 

Alignment TER BLEU NIST MTR 

TER 56.84 27.56 7.33 20.33 

IHMM 56.83 27.27 7.24 20.27 

HMM 56.56 27.64 7.38 20.52 

Table 2.  The influence of alignment metrics on CN 

 
 In this experiment, the three CNs are built on the MBR-based backbone, and decoded 

using the same features and weights. We can see that in this task, the HMM approach 

outperforms the other two methods across all four metrics. When we manually examine the 

alignment result, the HMM method has a higher word alignment accuracy and produces a 

lower non-grammatical error rate. 
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3 Summary of Four Hypothesis Alignment Metrics 

Hypothesis alignment is essentially an optimization problem on word alignment. The 

objective function is to search for the best path of word alignment links between the source 

sentence F and the target sentence E.   

 In this section, we will discuss four hypothesis alignment metrics commonly used in our 

system combination framework. 

3.1 TER 

The TER (translation error rate) metric measures the ratio of the number of edit operations 

between the hypothesis E
’
 and the reference Eb to the total number of words in the Eb. Here 

the backbone Eb is assumed as the reference. The allowable edits include insertions (Ins), 

deletions (Del), substitutions (Sub) and phrase shifts (Shft). The TER of E
’
 compared to Eb is 

computed as in Equation (1): 

%100),'( ×
+++

=
b

b
N

ShftSubDelIns
EETER                                          (1) 

where Nb is the total number of words in Eb. The difference between TER and classical Edit 

Distance (or WER) (Levenshtein, 1966) is the sequence shift operation, which allows phrasal 

shifts in the output to be captured. 

 TER was originally developed as a translation quality evaluation metric, rather than an 

alignment metric per se. Additionally, the working mechanism is also different from the 

traditional word alignment principle which uses a probabilistic model. However, the editing 

process still can be regarded as a word alignment process and the objective is to find an 

optimal or sub-optimal (if the search gets stuck at a local optimum) path. The Shft edit is 

carried out by a greedy algorithm and restricted by three constraints: 1) The shifted words 

must exactly match the reference words in the destination position. 2) The word sequence of 

the hypothesis in the original position and the corresponding reference words must not 

exactly match. 3) The word sequence of the reference that corresponds to the destination 

position must be misaligned before the shift (Snover et al., 2006). 

3.2 HMM 

The HMM-based hypothesis alignment model was presented in (Matusov et al., 2006). The 

idea is to consider alignment between the backbone sentence and the hypothesis sentence as a 

hidden variable in the conditional probability Pr(E’|Eb). Given the backbone sentence Eb = 

{e1 ,…, eI } and the hypothesis sentence E’ = {e1’,…, eJ’}, which are both the same language, 

the alignment A between Eb and E’ is defined as in Equation (2): 

∑=
A

brbr EAEPEEP )|,'()|'(                                                                 (2) 

where }1;1:),{( IiJjijA ≤≤≤≤⊆ , i and j represent the word position in Eb and E’ 

respectively. Hence, the alignment issue is to seek the optimum alignment Â such that: 

)',|(maxargˆ
11
JI

A

eeAPA =                                                                        (3) 

 For the HMM-based model, equation (2) can be represented as in (4): 

∑∏ ⋅= −
J

j

a

J

ajjj
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)]|'(),|([)|'(

1

111                                    (4) 
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where ),|( 1 Iaap jj − is the alignment probability and )|'( ij eep is the translation probability. 

 The model parameters are trained iteratively using the GIZA++ toolkit (Och and Ney, 

2003) which utilises the maximum likelihood estimation (MLE). Training is performed in the 

directions bEE →' and 'EEb → . The final alignment can be determined using cost matrices 

(Matusov et al., 2006) or by symmetrising, the so-called ‘refined’ method (Och and Ney, 

2003). 

3.3 IHMM 

The IHMM-based (Indirect Hidden Markov) hypothesis alignment model was proposed in 

(He et al., 2008) and provides a different way to estimate the synonym matching and word 

ordering compared to the regular HMM method. In this approach, the parameters of the 

alignment model are estimated indirectly from a variety of functions, which use an 

interpolated similarity model simp to compute the translation probability )|'( ij eep  and a 

distance-based distortion model dp  to obtain the alignment probability ),|( 1 Iaap jj − . 

Therefore, the IHMM model can be written as in (5): 

∑∏ ⋅= −
J

j

a

J

ajsimjjd
IJ

r eepIaapeeP

1

)]|'(),|([)|'(

1

111                           (5) 

 The similarity model is a linear interpolation model derived based on both semantic 

similarity semp  and surface similarity surp , as in (6): 

)|'()1()|'()|'( ijsurijsemij eepeepeep ⋅−+⋅= αα                               (6) 

where semp is calculated via the bidirectional lexical probabilities between the foreign words 

and the target words, and surp is obtained using the longest matched prefix (LMP) algorithm 

to measure the string similarity. α is the smoothing factor. 

 The distortion model estimates the first-order dependencies of word ordering, which 

assumes that the alignment probabilities ),|( 1 Iaap jj − depend only on the jump distance 

)'( ii −  (Vogel et al., 1996), as in (7): 

∑∑
==

−

−
=

−

=
I

l

I

l

ilc

iic

ilc

dc
iip

11
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)'|(                                                        (7) 

where }64:'{ ≤≤−−= diid indicates the distortion parameter. 

3.4 Source-Side Context Informed Hypothesis Alignment (SSCI) 

The SSCI-based hypothesis alignment model was presented in (Du et al., 2009b). The basic 

idea behind our SSCI method is to employ the source-side word alignment links and 

source-side phrase span information to heuristically carry out the hypothesis alignment. As to 

the source–target word alignment task, the aim of hypothesis alignment is to obtain the best 

word alignment links between the hypothesis and the backbone. Intuitively, this task has 

been performed in the process of training GIZA++ (Och and Ney, 2003), extracting the 

phrases and decoding. However, this kind of alignment information is subsequently 

abandoned during the translation decoding phase. SSCI is intended to keep the source-side 

word alignment information and utilise it in the hypothesis alignment phase. 
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 There are three steps for SSCI to align the backbone and other hypotheses. Firstly, in the 

translation decoding stage, the spans of translated source-side phrases are kept as the hidden 

word alignment information. Secondly, the phrase table is retrieved to acquire the word 

alignment links between the source and target phrases. Finally, by mapping the word 

alignment links between the backbone and the hypothesis based on the same span of a source 

phrase, associated with a normalisation model, hypothesis alignment and CN building can be 

performed efficiently. This approach does not need any complicated estimation algorithm, 

nor does it require additional training data or any other resources. 

 In the mapping step, assuming 1E  is the selected backbone bE and 'E  is the hypothesis, 

},...,{ 1 kffF = is used as a source-side word (or minimum span), },...,{ 1 kb AA=Λ as the set 

of word alignments between F and the counterpart of bE , and }',...,'{' 1 kAA=Λ as the set of 

word alignments between F and the corresponding part of 'E . iA and iA' are represented as a 

set of alignment pairs )0(||},...,{, ≥≥ lmeef mli  and )0(||}',...,'{, ≥≥ pqeef qpi  

respectively, which indicates that each source-side word if could be aligned to multiple 

target words or a null word. Mapping bΛ  and 'Λ to the word alignment between bE and 'E  

can be achieved as in equations (8) and (9): 

}',...,'{' 11 kkb AAAA ∩∩=Λ∩Λ                                                           (8) 

iiii EEAA '
~

,
~

' =∩                                                                                   (9) 

where iE
~

 is a set of words in bE , and iE '
~

is the set of words in 'E , both of which are aligned 

to if . 

 The normalisation model is described as follows: given a backbone I
e1 consisting of 

I words Iee ,...,1  and a hypothesis Je 1' consisting of J words Jee ',...,'1 , 'EEA → denotes the 

backbone-to-hypothesis word alignment ),...,,...,( 11 Ii
I

aaaa = between I
e1 and J

e 1' . Since the 

similarity model primarily normalises the 1-to-N alignments, 'EEA → can be represented as a 

set of pairs jjj eEa ',' = denoting a link between one single hypothesis word je' and several 

backbone words }1;,...,||{ ≥≥≥=== mnInmijaE ij . If the word je' is aligned to a null 

word, the set jE  is empty. Given this notation, we modify equation (6) (equation (2) in (He et 

al., 2008)) as in (10): 

)|'()1()|'()|'( ijsimijlexij eepeepeep ⋅−+⋅= αα  

)}|'({maxˆ
,...,

ij
nmi

eepa
=

=                                                                                (10) 

where lexp and simp denote the lexical alignment probability and the similarity between the 

backbone word ie and hypothesis word je' respectively. α is the interpolation factor, and â  is 

the best 1-to-1 link in the set of 1-to-N alignments. 

 After bidirectional normalisation has been applied, the intersection rule is employed to 

acquire the 1-to-1, 1-to-null and null-to-1 links. 
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4 Modified Consensus Network MBR Decoding 

In order to retain the coherent phrases in the original translations (Sim et al., 2007), it is 

sometimes better to retain sentence-level consensus rather than creating a new word-level 

consensus which may distort the fluency of the translation. This approach is defined as 

ConMBR. Firstly, the consensus network decoding is performed to obtain the combination 

result Econ. Then, the hypothesis in the original translations which has the minimum risk loss 

with respect to Econ is chosen as the consensus output, as in (11): 

)|(),'(minargˆ

'

FEPEELE con
E

conMBR ⋅=                                                 (11) 

where ),'( conEEL is the loss function under a specific evaluation metric. )|( FEP is the 

posterior probability, usually set to a uniform distribution. Alternatively, it can be trained as a 

system weight via normalisation. 

 However, given the Oracle scores in Table 1, we believe that some of the original 

sentences are better than some of the newly generated consensus sentences. Accordingly, we 

merge the combination results from the different CNs with the original translations and then 

use the MBR decoder to again search for the best result. We thus define this method as a 

modified form of ConMBR (mConMBR). 

 NIST BLEU-4 (Papineni et al., 2002) is used as the loss function in mConMBR, which is 

computed as in (12): 

∑
=

⋅−=

−=

4

1

),'()),'(log
4

1
exp(1

),'(1),'(

n

n

BLEU

EEEEp

EEBLEUEEL

γ
                           (12) 

where ),'( EEpn is the precision of n-grams in the hypothesis 'E given the reference E . 

]1,0[∈γ is a brevity penalty. 

 Therefore, our mConMBR can be rewritten as in (13): 

)|(),'(minargˆ

'

FEPEELE
E

mconMBR ⋅=                                                  (13) 

Here we set the posterior probability )|( FEP to be a uniform distribution. 

5 Three-pass System Combination Strategy 

5.1 Motivation 

In recent years, many hypothesis alignment metrics have been proposed using different ways 

to solve the word alignment issue. The idea of multiple CNs was presented in (Rosti et al., 

2007b), where TER is used as the only alignment metric. Considering that the different 

hypothesis alignment links could bring different combination results, we intend to combine 

multiple alignment metrics to try to improve translation quality. There are two crucial 

contributions in our proposed method: (i) we are trying to use the diverse alignment results 

derived from different hypothesis alignment metrics in a unified combination framework; 

and (ii) we integrate the super network and mConMBR to combine these alignment metrics 

and fully make use of the translation results to improve the final quality.  
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5.2 Description of Algorithm 

At sentence level, the different hypothesis alignments could produce different alignment 

results. As an illustration, in Figure 2(a) Eb is the backbone selected via MBR decoding, and 

E1 and E2 are the original hypotheses from different MT systems. Figures 2(b)–(e) show part 

of the alignment results performed by TER, HMM, IHMM and SSCI respectively. The 

alignment links generated by IHMM and SSCI are the same in this example. We can see that 

the word “America” is misaligned to the word “blood” by TER in Figure 2(b), while it is 

correctly aligned to “American” by HMM in Figure 2(c), by IHMM in Figure 2(d), and by 

SSCI in Figure 2(e). It is hard to automatically recognize and evaluate which alignment is 

better.  

 

 
 

Figure 2. Hypothesis set and the word alignments performed by different metrics 
 

 In order to make full use of the different alignment results and increase the diversity of 

the search process, we try to combine them in a super network. An example joint network 

with the priors for each metric and with votes for each arc is shown in Figure 3. According to 

the word alignment performed by a specific metric, an individual CN can be built with the 

voting or posterior probability on each arc as shown in Figure 3. 

 In Figure 3, the super network is constructed by integrating the TER-, HMM-, IHMM- 

and SSCI-based individual CNs with prior probabilities on the Chinese-to-English 

translation sentence. At present, the prior probability is manually estimated in light of the 

performance of each single network. eps in Figure 3 is ε  that indicates the null arc. In our 

implementation of the four hypothesis alignment methods, SSCI and HMM outperform the 

other two metrics, and the TER CN is slightly better than the IHMM CN when BLEU score is 

the MT evaluation function. Accordingly, we set the weights for the four single networks to 

0.3, 0.3, 0.25 and 0.15 respectively for the Chinese-to-English task. As for the 
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English-to-French task, since the hypotheses in the WMT2009 shared task data do not 

include the source-to-target word alignment information, we just use the TER, HMM and 

IHMM alignment methods to build a super network, in which the weights are 0.3, 0.5 and 0.2 

respectively. Of course, all these weights could be tuned automatically, and we leave for 

future work an empirical investigation of how these settings might compare to the manually 

imposed weights. All the individual CNs are connected to a single start node S of ε arcs 

which contain the prior probabilities. Meanwhile, the CNs are ended by a link of the ε arc to 

a common end node E. The final arcs have a probability of 1. 

 

T
E
R

ep
s
(0
.2
5)

eps
(1)

eps
(0.3)

S
S
C
I ep

s
(1
)

 
 

Figure 3. Hypothesis alignment-based multiple confusion networks with prior and 

posterior probabilities 
 

 The construction of the three-pass combination framework may be summarized as 

follows: 

 Pass 1: Specific Metric-based Single Network: 

1. Merge all the hypotheses from the single MT systems into a new N-best list Ns; 

2. Utilise the standard MBR decoder to select one hypothesis from the Ns as the backbone; 

3. Perform the word alignment between the backbone and the other hypotheses via the TER, 

HMM, IHMM and SSCI metrics respectively; 

4. Carry out word reordering (for all metrics bar TER, which performs reordering in the 

process of scoring) based on the appropriate word alignments to build CNs of CNter, 

CNhmm, CNihmm and CNssci; 

5. Decode the single networks and export the consensus outputs separately. 

 

 Pass 2: Super Network: 

1) Referring to the 5th step in Pass 1, we train CNter, CNhmm, CNihmm and CNssci via a 

development set (devset) to obtain the weights of each metric-based network, and then 

estimate the prior probability for each network; 

2) Connect the single networks by a start node and an end node to form a multiple 

hypothesis alignment-based CN; 

3) Decode the super network and generate a consensus output. 
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 Pass 3: mConMBR: 

1) Combine the Ns with the results from CNter, CNhmm, CNihmm and CNssci as well as the result 

from the super network to build a new N-best list Ncon; 

2) Use mConMBR decoding to search for the best final result from Ncon. 

6 Experimental Settings 

In this section, we introduce the experimental settings for evaluating and comparing our 

three-pass alignment-based framework on two different language pairs, namely 

English-to-French (E2F) and Chinese-to-English (C2E), in order to measure the 

effectiveness of our methods. There are two reasons for selecting these two language pairs: (i) 

one direction is translated out of English and the other direction is translated to English, so 

we can examine the effects of different directions on system combination strategies; and (ii) 

English and French are similar languages to some extent, while Chinese and English are very 

different, both with respect to word order and orthography, so we can investigate the 

influences of different languages on our proposed combination strategy. 

 In these two tasks, all the results are reported in terms of BLEU, NIST and METEOR 

scores. The parameters and weights in the combination process are also optimized with 

respect to the BLEU score. 

6.1 English-to-French Task 

In this task, we use the English-to-French data sets in the WMT2009 system combination 

shared task1 as the devset and the test set. In this direction, the devset contains 502 sentences 

and the test set 2525 sentences. All the sets are from the News domain and have just a single 

reference translation per source sentence. 

 There are 16 individual MT systems in this task, each of which have a 1-best and N-best 

list. To save computation effort, we just use the total 1-best results to carry out our 

experiments. 

6.2 Chinese-to-English Task 

We trained 5 MT systems to obtain a set of translations. All the MT systems are phrase-based 

engines, so in order to produce different results with less correlation, we had to train some 

diverse translation models. 

 Diversity has a significant influence on the performance of system combination 

(Macherey and Och, 2007). Although there are many different types of MT systems, if the 

training data for these systems are the same, there will be a significant correlation between 

the results. Thus, this would potentially decrease the system combination performance. In 

order to increase the diversity, we sample the training data to train a number of translation 

models. Furthermore, we can adjust parameters such as the distortion limit or use different 

devsets to reduce any such correlation. 

 5 sub-training data sets are randomly sampled from a large database of examples, each of 

which contains 400K sentence pairs, including the HK, ISI parallel data, UN and other news 

data. 

 The devset used for translation system parameter training is the NIST MT05 test set 

which contains 1082 sentences; the devset used for system combination parameter tuning 

(including MBR decoding tuning, CN tuning) is the NIST MT06 test set which contains 1664 

                                                      
1 http://www.statmt.org/wmt09/system-combination-task.html 
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sentences. The test set is the NIST MT08 “current” test set which has 1357 sentences from 

two different domains, namely newswire and web-data genres. All the dev and test sets have 

4 reference translations per source sentence. 

6.3 System Components 

The two language pairs employ the same basic combination framework: the MBR decoder is 

used to select a potential best hypothesis as the backbone; the CN decoding with 5 

features—two language models (one small (from Europarl and Giga data, amounting to 

about 88 million tokens for English), and one large: 240 million tokens for English, from 

Europarl, News and News Commentary sources), word posterior probability, null word 

penalty and word penalty—is utilised to build a network and search for the best consensus 

(Du et al., 2009a). The word alignments between the backbone and the hypothesis are 

performed by TER, HMM, IHMM and SSCI metrics respectively. 

7 Experimental Results and Analysis 

7.1 Chinese-to-English Translation 

Table 3 first shows the performance of the best and the worst single systems as well as the 

Oracle result in terms of the BLEU score. In this task, the SSCI-based method achieved the 

best performance in these four individual CNs. The consensus outputs from the Super_CN 

demonstrate a significant improvement by 2.84% BLEU, 4.57% NIST and 0.92% METEOR 

compared to the SSCI-based single network, while the mConMBR (which is the final 

output of the three-pass framework) system did even better, with relative improvements of 

4.86% BLEU, 6.32% NIST, and 1.38% METEOR. Moreover, the mConMBR also 

significantly outperforms the Super_CN, by 1.97% BLEU, 1.67% NIST, and 0.46% 

METEOR. 

 

System BLEU NIST MTR 

Oracle 26.67 7.93 44.95 

Worst Single 17.33 6.59 39.82 

Best Single 21.64 6.94 42.95 

TER-based 22.47 7.36 43.11 

IHMM-based 22.45 7.34 43.20 

HMM-based 23.10 7.37 43.27 

SSCI-based 23.25 7.44 43.35 

Super_CN 23.91 7.78 43.75 

mConMBR 24.38 7.91 43.95 

 

Table 3.  Results on Chinese-to-English test set 

7.2 English-to-French Translation 

In Table 4, the HMM-based method obtained the best performance among the TER-based, 

IHMM-based and HMM-based networks on the English-to-French language pair. The 

consensus outputs from the Super_CN obtain a significant improvement by 2.93% BLEU, 

4.61% NIST, and 1.61% METEOR compared to the best individual CN system, the 

HMM-based CN. Again, the mConMBR does even better, by 4.96% BLEU, 7.59% NIST, 
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3.46% METEOR, which are statistically significantly better than the results for Super_CN, 

by 1.97% BLEU, 3.66% NIST, and 1.82% METEOR. 

 

System BLEU NIST MTR 

Oracle 33.84 8.04 23.95 

Worst Single 14.73 5.57 12.40 

Best Single 25.43 6.99 18.97 

TER-based 27.56 7.33 20.33 

IHMM-based 27.27 7.24 20.27 

HMM-based 27.64 7.38 20.52 

Super_CN 28.45 7.66 20.85 

mConMBR 29.01 7.94 21.23 

 

Table 4.  Results on English-to-Chinese test set 

 

 From these experiments on two language pairs, the results show that (i) both the multiple 

networks and the mConMBR combination strategy are effective in improving translation 

quality; and (ii) combining more resources such as in our mConMBR set-up has the 

capability of improving performance. 

7.3 Analysis 

From the comparative results conducted on English-to-French and Chinese-to-English, we 

can see that the multiple-pass combination strategy achieved a significant improvement 

compared to the individual CN and the best single system. 

 Different hypothesis alignment metrics can bring different alignment results, which will 

increase diversity in the search process. Although this might increase the risk of 

misalignment errors, we can see from the close performance of the multiple individual CNs 

that this would not impact seriously on translation quality. On the other hand, it can provide 

more potentially correct candidates for the decoder to determine a final path. By combining 

different hypothesis alignment results we can construct a multiple word lattice network, 

which can intrinsically make full use of the context information provided. Regarding the 

mConMBR method, since the CN is built on the word level, some new sentences can be 

generated and some new syntactic structures may be brought into the MBR decoding module. 

For these reasons, the three-pass strategy based on both the super network and the 

mConMBR are demonstrated to be effective in our experiments. 

8 Conclusions and Future Work 

In this paper, we investigated four hypothesis alignment metrics used in system combination. 

Based on these metrics, we presented a unified three-pass framework to combine and utilise 

the alignment results so as to obtain improved translation performance. We first run the word 

alignment between the backbone and the hypothesis using the different hypothesis alignment 

approaches and build the individual CNs according to their respective alignment links, then 

connect these individual networks with a common start node and a end node to form a super 

network. Finally, a modified ConMBR is carried out to search for the best final translation 

from the Ncon list. Experiments are conducted on Chinese-to-English and English-to-French, 

and the experimental results clearly demonstrate the effectiveness of our proposed method. 
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 As for future work, firstly we plan to automatically evaluate the alignment quality of 

different hypothesis alignment metrics. Secondly, we plan to examine how the differences 

between the hypothesis alignment metrics impact on the accuracy of the super network. We 

also intend to integrate more alignment metrics into the networks and verify our current 

findings on other language pairs and translation domains. 
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