
Towards a Component Composition and

Interaction Architecture for the Web

Claus Pahl and David Ward

School of Computer Applications
Dublin City University

Dublin 9
Ireland

Abstract. The Web is currently undergoing a change from a document-
to a services-centered environment. This shift can be seen as a �rst step
towards a component-centered environment. We shall explore require-
ments for a Web component architecture based on the Web services
framework, which has been promoted recently. A description language,
protocols, and repository and directory services are the key elements. We
will motivate an underlying conceptual model for these aspects captur-
ing their foundations. We will identify two key features for a component
architecture { a two-layered architecture and semantic descriptions of
components { that makes it di�erent from a services environment.

1 Introduction

The Web has evolved since its birth in the early 1990s. Originally designed as
a publishing framework that allows users to make their documents available as
hypertext documents and access other user's documents using a protocol that
allows the transfer of hypertext document, it has evolved into a more dynamic
and interactive environment. It is now used for purposes that were not intended
at the beginning. The Web has become a bidirectional in terms of data transfer.
In these days, a major evolution step is in progress, moving the Web from a
document-centered environment to an application- or services-centered environ-
ment. Instead of accessing data, a user would be provided with the possibility to
access services. This process should also enable application-to-application usage
of the Web infrastructure. These attempts are focussed on individual services.
The success of component technology [1] in recent years makes it worth while
looking at component composition and interaction in a Web environment.

The focus of current research and development in Web technologies is on ser-
vices { usually summarised by the termWeb services [2]. We will explore here the
use of the Web as an architecture for component composition and interaction.
Instead of providing single services, several services are grouped into compo-
nents encapsulating an internal state. In addition to providing services via an
export interface, components also have an explicit import interface stating the
services required by a component in order to work according to their speci�ca-
tions. Most approaches to component description suggest additional semantical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


information to describe services. Contractual information in form of pre- and
postconditions is a classical choice here. Requested and provided services have
to be matched if components are composed to larger systems. Conformance rules
describe the constraints governing the component matching. A second activity
besides matching is the interaction between client and service provider. The ac-
tivation of a component service is the same as for individual services, except that
a component state might change.

The increased complexity of components for the Web { we will use the term
Web components { with import and export interfaces and matching raises the
question of an architecture for a Web components framework. Essentially, a dis-
tributed computing model for Web components is sought. The suggested archi-
tecture for Web services [2] consists of a services activation protocol, a services
description language and a directory facility. If the Web services framework were
to be extended to a Web components framework, we would need language sup-
port for semantical description in component interfaces, a protocol extended
to two phases consisting of matching and interaction, and a set of services for
lookup, matching, analyses, communication, etc. This paper aims at raising some
issues in the development and standardisation of an architecture for Web com-
ponents, and assessing the suitability of Web services and concepts from other
frameworks such as CORBA for object technologies [3]. The ultimate aim is the
development of a component composition architecture.

The extension from Web Services to Web Components has already been in-
vestigated in [4]. We carry their work further. We clarify the idea of a layered
architecture, reecting that composition of components consists of two phases:
matching { sometimes called linking { and interaction. Technologies such as
COM are concerned with interaction; module systems are concerned with link-
ing. This idea is also advocated by the Cell-project [5] and in [6] { two approaches
to components and the Internet. Another issue not considered in su�cient depth
is the semantic description of Web components, which impacts the two-layered
architecture and which has implications for possible services in such an envi-
ronment. We will focus on synchronous interaction and put an emphasis on the
description of components and matching between components. We will discuss
some concepts and services supporting these issues, aiming at a clari�cation of
critical issues.

We present principles of the Web services framework in Section 2. Then, we
work out the shortcomings of this framework for Web component technology in
Section 3. Section 4 describes key concepts for a formal model that can underlie
a Web component architecture. This Web component architecture is then ad-
dressed in Section 5. Our focus is on the description language here. We end with
related work and some conclusions.

2 Web Services { a Short Introduction

The purpose of the Web services framework is to move the Web from a document-
centered environment to a service-centered environment. It aims to enable the

2



application-to-application use of the Web { the Web has so far been an environ-
ment used essentially by humans. Web technologies { languages and protocols {
are used to provide a remote procedure call mechanism. The protocol shall be
based on XML-messaging in order to achieve maximal interoperability.

Single services without semantical information can be described by the Web
Services Description Language WSDL. A Web service description consists of
�ve sections. An abstract, protocol-independent part consists of type, data and
operation descriptions. The operation part { called `portType' { describes the
operations that implement the service functionality in terms of its typed input
and output parameters. These parameters are described in a data part { called
`message'. Types for the messages can be de�ned in a separate `types' section.
The binding to a speci�c protocol is one of the two sections of the concrete part of
the service description. It describes how a service is activated using the protocol
under consideration. This section is called `binding'. The �nal section is called
`service', and links the service to a particular location where the service can be
found. The protocol used then determines the format to be used to activate a
Web service.

The infrastructure for Web service activation and reply is given by the SOAP
protocol { which might inuence the standardisation of the XML Protocol [7].
SOAP { the Simple Object Access Protocol { is an XML-based protocol for service
invocations and replies. It is designed to support remote activations of services
speci�ed using the WSDL. Discovery of services is supported by a directory
framework UDDI { Universal Description, Discovery and Integration. UDDI acts
as a marketplace for components.

3 Web Services { an Analysis

3.1 Services and Components

We have already pointed out some di�erences between services and components
in the introduction. This discussion shall now be continued in detail. The fol-
lowing issues distinguish components from services in general { without looking
at the Web environment in particular.

Import and export interfaces: Apart from services that are made available
by components, component interfaces also describe services that are re-
quested to ful�ll the component's duties.

Semantic information: Services are described syntactically and semantically.
The semantical description of services could be based on the design-by-
contract approach [8]. An axiomatic description using the pre- and post-
condition technique is possible.

Matching: Conformance between a requesting client and a service provider
component { the provider matches the client requirements { needs to be
considered. We can express notions of conformance through a type system.
Type equivalence and subtypes can formalise conformance. A formulas-as-
types approach for axiomatic semantic descriptions could be applied.

3



Dynamic con�guration: A notion of connection needs to be introduced. When
two components are composed, a private connection between client and
server time needs to be created. Matching might or might not involve an
agent or a composition broker. Connections between a service provider and
a client can persist. The client can use the connection multiple times. Com-
ponents might change their state as a consequence of service interactions.
In evolving systems the spatial structure of component connections changes
constantly due to new compositions and recon�gurations of single compo-
nents (replacements) or systems of components.

Life cycle: Components need to be matched before any interaction can happen
between the components, i.e. a protocol needs to be obeyed. Essentially, this
is a two-phased protocol consisting of matching and interaction, but it needs
to be extended if dynamic recon�gurations are considered.

3.2 Suitability of the Web Services Framework

The Web Services framework shall now be discussed in the light of the previous
summary of component characteristics. We focus on descriptions of components
here. We address the elements of Web services descriptions in WSDL.

Types: This element is based on a generic framework { the XML Schema lan-
guage. Higher order connection types need to be introduced in order to
capture the dynamic con�guration of the spatial composition structure.

Messages: Messages can be of a connection type, reecting that connection
themselves need to be transported in order to create and change private
connections between two components.

Port types: Port types need to be distinguished into in- and out-ports, and into
matching and interaction ports. The latter types relate to the phase/layer,
the former describe whether a service is part of an im- or export interface.

Binding: Several bindings for one service need to be introduced, such as match-
ing binding and interaction binding.

Services: No change is needed compared to Web services.

An essential question, that has not been answered so far, is where the protocol or
life cycle description has to be accommodated. Possibilities include the port types
and the binding section. The Web services connections are once-o� activations,
whereas component connections can persist and might be used multiple times.

A major di�erence between the current Web services model and the dis-
tributed computing model for components that is sought, is that composition
in the Web services framework is not ad-hoc. A component framework needs
to cater for dynamic compositions. For components a process of agreement, e.g.
based on contracts, is needed.

4 Web Component Architecture { Foundations

We shall now outline the elements of a conceptual model for Web components
{ essentially a requirements speci�cation for such a model including formalisms
such as type systems and transition systems.

4



4.1 Elements of a Core Model

Ports are abstract access points to component services. Port descriptions are
part of interfaces. Port types can reect various properties { e.g. the port polar-
ity or orientation (input or output), the role (is the port involved in matching
components or in the interaction of components), or the transport capacity. Port
types can be used to express structural and behavioural constraints. A protocol
endpoint (e.g. SOAP endpoint) is actually a family of ports with di�erent roles.

The type system and in particular subtypes can play a major role. Subtypes
can determine what a suitable match for a service request might be. The classical
de�nition of a subtype [9] { an instance of a subtype can always be used in any
context in which an instance of a supertype was expected { can formulate the
essence of consistent matching.

The composition architecture is layered. We can distinguish a matching layer
and an interaction layer. Connections for interactions are established after suc-
cessful matching. These connections are needed for service activation and service
reply. The connections can be private connections between components that per-
sist for some period of time. This architecture is a reection of the component
life cycle. The component life cycle { matching before interaction { needs to be
formalised by a composition protocol. This a�ects each component in isolation,
but also the composition of components. Protocol constraints can be expressed
by appropriate transition rules.

4.2 Advanced Concepts

Since we consider the Internet as the basic infrastructure for a Web component
framework, some advanced aspects not covered in the core model come to mind
immediately. These are distribution, mobility and security. The Internet is a
distributed networking environment. Issues of distributed locations have to be
addressed. Java is an example of an Internet programming platform that features
mobile computation in form of applets. Security is certainly an issue in an open
and distributed environment such as the Internet.

Another issue { not speci�c to the Internet, but very important { is evolution.
Changing environments and requirements impact any kind of software system.
We have already addressed dynamic recon�gurations in component systems.

4.3 Suitable Frameworks

A formally de�ned conceptual model for Web components is essential if analysis
and reasoning services based on semantic descriptions shall be provided. Type
systems and a notion of state-based transitions are crucial. Suitable frameworks
for the formulation of this model are for instance process calculi with typing,
mobility, security, etc { e.g. the �-calculus [10] or the Ambient calculus [11].

5



5 Web Component Architecture

An architecture for Web components should consist of:

{ a description language: semantic component description
{ a matching and interaction protocol: 2-phase (or 2-layered) composition
{ a set of services: discovery, matching, con�guration, replacement, interaction

Such an architecture would describe a component middleware platform. A for-
mal model describing these languages, protocols and services has been suggested
in Section 4. Description languages and protocols omit details about how com-
ponents are discovered, how they are stored and made available. This can be
supported by special services, such as a broker service. However, we shall ad-
dress the essential element { the description language { only. A number of service
will depend on the semantic formalism made available through the description
language. Several supporting protocols might exist (cf. CORBA protocols GIOP
and IIOP).

5.1 Web Component Description Language

Based on the conceptual model, a language for the description of Web com-
ponents needs to be de�ned, called a Web Components Description Language
(WCDL). We will motivate this language by a schematic example { a full de�-
nition is beyond the scope of this paper { following the structure of the WSDL.
Types { data types, port types, connection types { shall not be presented ex-
plicitly here. Important is the support of a subtype notion. Two messages shall
be de�ned { a data item and a connection .

<message name="InData">

<part name="body" element="dataType"/> </message>

<message name="InConnection">

<part name="body" element="connectionType"/> </message>

Port types de�ne the services based on these messages.

<portType name="service">

<operation-contract name="servOp"

precondition="..." postcondition="..." signature="..." >

<input message="..." type="connection"/>

</operation>

<operation-connection name="servOp">

<input message="..." type="data"/>

<input message="..." type="connection"/>

<output message="..." type="data"/>

</operation>

</portType>

The usage of these operations is expressed in form of a component life cycle { here
a client requesting a service and then interacting with the service repeatedly:

6



<sequence>

<request name="servOp" precondition="..." ... />

<repeat>

<sequence>

<invoke name="servOp"> ... </invoke>

<receive name="servOp"> ... </receive>

</sequence>

</repeat>

</sequence>

The remaining sections of WSDL concern the concrete part, i.e. the protocol
binding and association of the location. The binding part for WCDL needs to
separate matching binding and interaction binding. The latter needs to address
activation and reply. The service part addresses the location of the service. This
part is not di�erent from the WSDL.

5.2 Implementation

In order to study the feasibility of the concepts and ideas presented here, we have
started implementing a prototype based on a central broker service [12]. This
broker prototype is implemented on a standard Web-based 3-tiered architecture
with a matching server and an interaction server. The matching server works
based on a component repository, which contains only component interfaces {
component executables themselves are located elsewhere. XML-based messag-
ing is used to communicate matching- and interaction-related data. The broker
includes an interface for matching to be used by a component system developer.

6 Related Work

Architectural frameworks exist for distributed object interaction { examples
are CORBA or COM/DCOM [3]. We have in particular considered ideas from
CORBA in our motivation of an architecture for distributed component inter-
action. CORBA-features such as method invocation, stubs/skeletons, services,
and protocols have their correspondence in component technology.

The second kind of framework suitable for the Web components, that is
discussed here, are Web services [2] { see previous sections for details. In [4],
a component model underlying the Web services platform is identi�ed. It is
admitted that strenghtening the component aspects will greatly improve the
platform. We have tried here to point out the shortcomings of that platform.

Some groups have already implemented component systems for the Internet.
Among those are the Cell-project [5] and the ComponentXchange [6]. The former
implements a two-layered system for component composition. The latter focusses
on the matching activities { there called trading.

7



7 Conclusions

A framework for components on the Web requires more advanced features than
the Web services framework or distibuted computing models for objects can de-
liver. Two aspects essentially make the di�erence. Firstly, matching (or linking)
and interaction need to be separated, resulting in a two-layered architecture.
Secondly, the presence of semantic descriptions increases the complexity, but
also o�ers new opportunities that need to be supported by appropriate services.

We have suggested the development of a formal model that captures these
concepts. A type system can formalise semantic descriptions and respective
matching concepts. A protocol or transition system needs to formalise the sepa-
ration of matching and interaction and the other life cycle constraints that apply.
This formal model can form the basis of a Web component architecture.

The formulation of the underlying model or the de�nition of a Web compo-
nent architecture is certainly beyond the scope of this paper. Our objective has
only been to motivate their development and to point out essential concepts.

References

[1] G.T. Leavens and M. Sitamaran. Foundations of Component-Based Systems.
Cambridge University Press, 2000.

[2] V. Vasudevan. A Web Services Primer, 2001.
http://www.xml.com/pub/a/2001/04/04/webservices.

[3] OMG. CORBA: Common Object Request Broker: Architecture and Speci�cation,
Revision 2.2. http://www.corba.org.

[4] F. Curbera, N. Mukhi, and S. Weerawarana. On the Emer-
gence of a Web Services Component Model. In Proceedings 6th

Int. Workshop on Component-Oriented Programming WCOP2001.
http://research.microsoft.com/users/cszypers/events/, 2001.

[5] R. Rinat and S.F. Smith. The Cell Project: Component Technology for the In-
ternet. In Proceedings 6th Int. Workshop on Component-Oriented Programming

WCOP2001. http://research.microsoft.com/users/cszypers/events/, 2001.
[6] V. Sriram, A. Kumar, D. Gupta, and P. Jalote. ComponentXchange: A Software

Component Marketplace on the Internet. In Proceedings 10th Int. Conference

on the World-Wide Web WWW10. International World-Wide Web Conference
Consortium IW3C2, 2001.

[7] W3C World Wide Web Consortium. Extensible Markup Language (XML), 2001.
http://www.w3.org/XML.

[8] Bertrand Meyer. Applying Design by Contract. Computer, pages 40{51, October
1992.

[9] P. Wegner. Concepts and Paradigms of Object-Oriented Programming. ACM

OOPS Messenger, pages 8{87, 1990.
[10] D. Sangiorgi and D. Walker. The �-calculus - A Theory of Mobile Processes.

Cambridge University Press, 2001.
[11] L. Cardelli and A.D. Gordon. Mobile Ambients. In Proceedings FoSSaCS'98,

pages 140{155. Springer Verlag, 1998.
[12] D. Ward. Implementation of a Component Broker, 2001. Internal Project Report,

School of Computer Applications, Dublin City University.

8


