
WLFM 2005 Preliminary Version

A Semantical Framework for the Orchestration
and Choreography of Web Services

Claus Pahl and Yaoling Zhu 1

School of Computing
Dublin City University

Dublin 9, Ireland

Abstract

Web Services are software services that can be advertised by providers and invoked
by customers using Web technologies. This concept is currently carried further to
address the composition of individual services through orchestration and choreog-
raphy to services processes that communicate and interact with each other. We
propose an ontology framework for these Web service processes that provides tech-
niques for their description, matching, and composition. A description logic-based
knowledge representation and reasoning framework provides the foundations. We
will base this ontological framework on an operational model of service process
behaviour and composition.

Key words: Web services, choreography, orchestration, process
model, ontologies.

1 Introduction

Service-oriented architectures (SOAs) provide an architectural paradigm for
software development [1]. Systems can be organised in terms of services –
units of software that provide functionality ’as is’ to users. Functionality
descriptions and other properties and quality attributes such as security or
performance and usage-oriented information such as invocation protocols and
locations are advertised by providers and can be looked up by potential users.

The Web Services Framework (WSF) is such an SOA [2]. The WSF pro-
vides an SOA infrastructure consisting of a description language (WSDL), an
invocation protocol (SOAP), and a repository for descriptions (UDDI) based
on standard Internet and Web technologies such as XML.

While the first generation of the WSF has focussed on the use of services
’as is’, the next needs to address service composition to enable larger software

1 Email: cpahl@computing.dcu.ie

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pahl and Zhu

systems to be assembled based on services as the basic unit [3,4]. Composi-
tion of services to processes is here the paradigm of composition. Two forms
– orchestration and choreography – have recently been discussed in the WSF
community as techniques for service composition and collaboration [5]. These
two reflect the perspective of business processes modelled and executed (or-
chestration) and of systems as interacting processes (choreography).

So far, the WSF is focused more on invocation than development. UDDI
supports potential users in locating suitable services; how these services are
integrated into existing software systems and how these services can be com-
posed to larger systems is, however, not sufficiently addressed. The state-of-
the-art comprises languages for orchestration and choreography, such as WS-
BPEL4 or WS-CDL [5]. The basis of these languages are workflow and mes-
sage exchanges, and aspects of interaction processes and patterns. Principles
of component-based software development CBSD [6] are not yet integrated.

We will therefore focus here on using the WSF platform as an infrastructure
for service-based software systems development. The overall aim is to support
(service-based) software development on and for the Web. Formal methods
are proven to be successful for the development of safety-critical, dependable
software systems. Formal models allow a higher degree of understanding of
principles and mechanisms of the context, but also particular properties of
the application. A formal model of orchestration and choreography and a
description notation are therefore our central objectives.

An important requirement arises if in particular the Web-based develop-
ment of service-based systems is to be realised. The Semantic Web paradigm
needs to be embraced in order to support the SOA principle of distributed
development involving different organisations. The semantic Web provides a
shared knowledge representation framework and platform, based on ontolo-
gies at the core. Ontologies can capture properties of services; they can also
support composition description and reasoning. Our objective here are:

• We clarify the notions of orchestration and choreography. To this end, we
will provide a formal model for service process composition in Section 3.

• We provide an ontological framework for service process composition that
supports the CBSD objective of reuse in Section 4. This framework will be
based on the semantical definition of service process composition.

2 Development of Composite Service Processes

2.1 Web-based Service Development

A service is made up of a coherent set of operations provided at a certain
location. The service provider makes an abstract service interface description
available that can be used by potential service users to locate and invoke the
service. Services are often used ’as is’ in single request-response interactions,
but more and more the composition of services to processes is important.

2

Pahl and Zhu

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

 Service Service

Ontology

 requires provides

 & match

assembly the Web

Client Provider

discover

interaction

Fig. 1. The Web as a Service-oriented Development and Deployment Platform.

Reuse is a central software engineering principle. Existing services can be
reused to form business or workflow processes. The principle of architectural
composition here is process assembly.

The discovery and invocation infrastructure – a registry or marketplace
where potential users can search for services and an invocation protocol –
with the services and their clients form a service-oriented architecture. Lan-
guages for description and composition and protocols are central elements of
this architecture. Fig. 1 illustrates this infrastructure for the WSF. Software
development for service-oriented architectures is a two-step process. Discovery
is based on abstract computation descriptions (and other software properties),
formalised based on ontologies. Assembly is about composition of services to
processes. Ontologies to represent knowledge about services is essential for
the Web as a development platform. Usage complements a basic service life
cycle. It is about communication and process interactions between services.

2.2 Service Process Composition – Orchestration and Choreography

The WSF provides a platform to invoke services on a ’usage as is’-basis. Real
value, however, will be added if services can be connected [5]. Supporting and
implementing business processes within the WSF through composed services
is the requirement. Orchestration and choreography are two forms of service
composition and collaboration that are currently discussed.

• Orchestration refers to a composed business process that may use both
internal and external Web services to fulfill its task. The business process
is controlled by one of the agents in the system. The process is described at
the message level, i.e. in terms of message exchanges and execution order.

• Choreography addresses the interactions that implement the collaboration
between services. Multiple agents are considered where each agent describes
its own part in the interaction.

Orchestration and choreography address different perspectives. Orchestration
is focused on the internal behaviour of a business process. Choreography is
focused on the external perspective, looking at process interaction. These

3

Pahl and Zhu

Service AccountProcess

operation importLogin (no:int,user:string) : bool

importBalance (no:int) : real

importLodgement (no:int,sum:real) : void

importTransfer (no:int,dest:int,sum:real) : void

importLogout (no:int) : void

process Login; !(Balance+Lodgement+Transfer);Logout

Service BankAccount

operation exportBalance (no:int) : real

exportLodgement (no:int,sum:real) : void

exportTransfer (no:int,dest:int,sum:real) : void

importCheckAcc (dest:int) : bool

process !(Balance+Logdement+(Transfer;CheckAcc))

Service AccountRegistry

operation exportCheckAcc (no:int) : bool

process !CheckAcc

Service LoginServer

operation exportLogin (no:int,user:string) : bool

exportLogout (no:int) : void

process !(Login+Logout)

Fig. 2. Bank Account Processes and Services.

perspectives are the essential aspects of an SOA. We will capture these in a
process model (orchestration) and an interaction model (choreography).

2.3 A Bank Account Example

An online banking example shall illustrate our service process framework.
Login;!(Balance+Lodgement+Transfer);Logout is a process expression de-
scribing an interaction process of an online banking user starting with a login,
then repeatedly executing balance enquiries, lodgements or money transfer,
before loggin out. In Fig. 2, four services are described in a pseudo-code
notation. Each of these services implements a process internally (orchestra-
tion). The interactions resulting from the service invocations (import, over-
lined, e.g. Balance) and service provision (export, normal, e.g. Login) are the
result of service choreography. For instance, AccountProcess is a client of
BankAccount and LoginServer; BankAccount is a client of AccountRegistry.

3 Services and Processes – a Formal Operational Model

Description and composition are central design activities. In this section, we
develop a formal model and an abstract language that form an operational
framework for both activities. We formalise orchestration and choreography

4

Pahl and Zhu

and develop a semantical framework that defines and supports composition
activities. This operational semantical framework serves to capture require-
ments and form an underlying layer for the ontological framework.

3.1 Orchestration and Choreography Description

3.1.1 Orchestration.

We can derive the following core requirements for an orchestration notation
from languages such as WS-BPEL [5]:

• basic elements: message-based actions in two forms – invocations for exter-
nal services and receive/reply actions if the service is available to others,

• process language: sequence, choice, iteration, and concurrency are the ser-
vice/process combinators,

• abstraction and export interface: a process can be provided as a Web service,

• state and data: variables and parameters to actions are needed.

The focus of orchestration is illustrated in Fig. 3. The business process itself
and the Web services that implement the process are separated. This keeps
the process logic apart from its implementation. The process is executed by
an orchestration engine which invokes the respective services.

We capture the foundations of orchestration in form of a process model
focussing on service composition. A process description is about control flow
and the determination of the execution order. We will start with abstract
actions to concentrate on control flow first – data aspects and also interactions
will be added later. A process description can serve different purposes:

• to define a business process in terms of actions and control flow,

• to describe the external, observable interaction pattern that a service can
engage in a composed system (if the process is made available as a service).

Our process model is based on the principles and notation of the π-calculus.

Service process expressions, or processes are inductivley formed based
on a basic process names, named process expressions, and the combinators se-
quence ; , parallel composition | , non-deterministic choice + , and iteration
! . A named process expression P (s1, . . . , sk) is defined by a service pro-
cess expression on based services s1, . . . , sk and the combinators. The process
definition is recursive. Based on basic processes (which are Web services),
composite services can be defined, i.e. expressions such as P = s1; s2; Q can
be used. We also use the notation P

s1;s2−→ Q to emphasise the transitional
character of processes.

Example 3.1 Login; !(Balance+Lodgement+Transfer); Logout is a busi-
ness process for an online bank account.

This orchestration example ignores the import/export classification of pro-
cess elements necessary for choreography.

5

Pahl and Zhu

invoke

return

receive

reply

Orchestration

provider
(exported service)

client
(use of provided service)

service

Choreography

providerclient

Fig. 3. Principles of Orchestraction and Choreography.

We now add data by refining the notion of actions. For service s and
data item x, s(x) is the receive action, s〈x〉 is the reply action, and
let y = s〈x〉 in P is the invoke action. Receive and reply actions are
needed to faciliate service provision. Invoke is needed to use other services.
The invocation provides a scope for the returned result y of the interaction.

3.1.2 Choreography.

Similar to our orchestration discussion, we note the main requirements for a
choreography description notation [5]:

• basic activities: request/response action for local activities, invoke to call
external services,

• structured activities: loop, sequence, choice, and concurrency,

• infrastructure: channels/connections between ports that represent services.

The focus of choreography is observable interaction behaviour, not execution,
see Fig. 3. The orchestration model is a process model with its focus on control
flow and execution order. The choreography model is an interaction model
about process interaction, i.e. synchronisation and data exchange. Essential
in modelling process interaction is to add data flow between processes.

Web services are connected through a network. The network endpoints
that represent services are called ports – service names will act as port names.
Services (and their ports) can be receivers and senders of data, i.e. read from or
write to communication channels set up between the ports. Assume a service
port s and a data item x. Then, s(x) is the receive action and s〈x〉 is the
send action. Note, that in contrast to orchestration, we have abstracted here
from the difference between provider actions (receive/reply) and client actions
(invoke). The expression Balance〈acc〉; Balance(bal) asks service Balance

for the current balance of account acc and then receives the balance bal.

An interaction is the activation of a remote service. Two forms shall be
provided. Assume a process expression P .

6

Pahl and Zhu

• request-response: for each service s in P a write-read sequence s〈x〉; s(y)
where y is the returned result from an external service.

• execute-reply: for each service s in P a read-write sequence s(x); s〈f(x)〉
where f is some internal service functionality.

These interactions are the basic building blocks of the process life cycle. Input
services names in a process expression need to be bound to a concrete service
that can execute the service functionality. Finding suitable services that match
each individual service requirements and managing the connections is part of
the interaction model and its matching and connection support.

So far, the concurrent composition of processes A|B does not allow inter-
actions. A transition rule (called reaction rule in the π-calculus) can capture
interaction and describe the data flow in these interactions – see details in
below. A shared channel can be created that forms a connection between two
agents. Usually, the port names act as channel names (e.g. the π-calculus
requires matching port names to establish a connection; we will loosen this
constraint later on). Choreography is often about fixed connections. Pro-
cess calculi, however, also cater for connections that are created dynamically.
Using the π-calculus’ scope extrusion, dynamic architectures can be modelled.

3.2 Composition Support

Descriptions are needed to publish services in repositories or to capture re-
quirements for these services. We will provide a simple development and
deployment model for services in form of a life cycle model, before addressing
techniques needed for individual activities in that lifecycle.

3.2.1 Life Cycle and Activities.

Description and matching are design activities. Essential is, however, the sup-
port of the full process life cycle. Binding individual service names to existing
services, i.e. composing a process instance and executing this instance are as
important as description and matching. The foundations of these aspects are
given in form of a choreography or interaction model that describes bindings,
connections, and interactions between services.

Each service s is a family of ports sC , sI , sR that address the needs of the
different life cycle stages. Port sC is a contract port, representing an interface
that captures abstract properties. sI and sR are connector ports for interaction
– sI handles service invocation and input and sR handles the service reply. We
express the service life cycle in an annotated process notation

Req sC〈sI〉; !(Inv sI〈a, sR〉; Res sR(y))

for the requestor with annotations for requesting, invoking, and result. Dual

7

Pahl and Zhu

to the requestor view there is a provider view

Pro sC(sI); !(Exe sI(a, sR); Rep sR〈f(a)〉)

with annotations for providing, executing and replying.

In the requestor view, Req sC〈sI〉 is an annotated output action of service
s. A process can request Req a service using contract port sC . Connector
port references sI and sR are subsequently sent for further interactions.

If matching between a requestor port type and a provider port type is
successful, then the requestor and the provider process can be composed, i.e.
a requestor can interact with the provided service repeatedly. The requestor
would invoke Inv the service at port sI and receive a result Res at port sR.

3.2.2 Matching.

Matching is central in composition. An existing service that is reused and
integrated, for instance into a business process, must match the requirements
in order to allow the business process to fulfill its task.

• Import process patterns describe how a process expects to use other services.

• Export process patterns describe how provided services have to be used.

These are elements of an orchestrated business process. Orchestration ele-
ments are more relevant to matching than choreography aspects such as in-
teraction, which is more deployment-oriented.

The specification of processes describes the ordering of observable activi-
ties. We use a simulation notion to define process matching. The requested
process is the import process pattern that the client expects the provider to
support. A provider process P matches (or simulates) a requested process
R if there exists a binary relation S over the set of processes such that if when-
ever RSP and R

m−→R′ then there exists P ′ such that P
n−→P ′ and R′SP ′.

This definition originates from the simulation definition of the π-calculus [7].
The provider needs to be able to simulate a request, i.e. needs to meet the
request pattern of the client. Dynamic binding of concrete services to the
process names is possible. This definition is about potential interaction.

Example 3.2 A provided service process !(Balance+Lodgement+Transfer)
matches the expected support of process !(Bal+Ldg). If the pairs Balance/Bal
and Lodgement/Ldg match (e.g. equal signatures), then the provider matches
(simulates) the requested process.

3.2.3 Connection and Interaction.

Composition consists of two activities: matching and connection. Successful
matching can result in a connection between service ports. From the per-
spective of a business process, concrete services are connected to the abstract
business process elements.

8

Pahl and Zhu

So far, we have been looking at matching of abstract process descriptions.
We now focus on the computational side of compositions. The connection of
matching services shall now be formalised using an operational semantics.

In the composition process we can distinguish a contract phase where both
process instances try to form a contract based on abstract descriptions. The
connection phase establishes a connector channel for interaction between the
services. We will capture contract and connector establishment in form of
transition rules. This formalises the connection of provider and client in the
WSF – a virtual link between URIs that are used by the SOAP protocol.

For a parallel composition mC〈mI〉.C|nC(nI).P of a client business process
element and a provider service, both processes commit themselves to a com-
munication along a (virtual) channel between ports mC and nC . A contract
rule formalises the process of matching and commitment 2 :

Req mC〈mI〉; C mC〈mI〉−→ C Pro nC(nI); P
nC(nI)−→ P

Req mC〈mI〉; C+M1|Pro nC(nI); P +M2
τ−→ C�P

〈 sign(nC)=sign(mC)

Arrows denote state transitions of processes, either through observable actions
x〈y〉 and x(y) or through internal, non-observable interactions τ . We define a
composition C�P as νc({c/mI}C|{c/nI}P) 3 , i.e. a parallel composition where
a private channel c, the connector, replaces the port names.

Example 3.3 The user requires a service (annotation Req) through port

BalanceC Req
def
= Req BalanceC〈BalanceI〉; Req′ and the server provides a

service (annotation Pro) through port BalC Pro
def
= Pro BalC(BalI); Pro

′.

A connector is created if a client requesting mI invokes a service nI at the
server side, described by the connector rule:

Inv mI〈a, mR〉; C mI〈a,mR〉−→ C Exe nI(x, nR); P
nI(x,nR)−→ P

Inv mI〈a, mR〉; C + M1|Exe nI(x, nR); P + M2
τ−→C�{a/x}P 〈

sign(nI)=

sign(mI)

Parameter data a and a reply channel mR are sent to the provider. Parameter
a replaces x in P .

Example 3.4 The composition of Pro’ and Req’ creates a connector that

allows the client with Req′ def
= Inv BalanceI〈acc〉; Req′′ to use a service, e.g.

Bal, provided by the server Pro′ def
= Exe BalI(no); Pro

′′. The requestor in-
vokes (Inv) a service through interaction port BalanceI , which will trigger the
execution (Exe) of BalI with parameter acc by the server.

2 This rule differs from the π-calculus reaction rule which requires channel names to be the
same [7]. We only require equality of signatures. Type systems for the π-calculus usually
constrain data that is sent; we constrain interaction between agents.
3 The substitution {b/a}P means that b replaces a in P .

9

Pahl and Zhu

4 Services and Processes – an Ontological Framework

Supporting service development is ideally supported through ontology tech-
nology for shared representation of knowledge – here service descriptions. We
illustrate how description and composition of services processes can be repre-
sented in a description logic that underlies a Web ontology language.

4.1 Ontologies for Web Services and Processes

The formal model (see Section 3) goes beyond what we need for the ontologi-
cal framework to support the development of service-based software systems.
Ontologies are needed to support composition through matching of patterns
and processes, i.e. port orientation and other interaction and choreography as-
pects are not relevant since they address the deployment infrastructure. The
ontological framework therefore abstracts the underlying formal operational
model, which defines the development and deployment infrastructure. We will
develop the ontological framework in terms of a description logic [8].

Description logic as the underlying logic of the Semantic Web is particu-
larly interesting for the software engineering context due to a correspondence
between description logic and dynamic logic (a modal logic of programs) [9].
This correspondence is based on a similarity between quantified constructors
(expressing quantified relations between concepts) and modal constructors
(expressing safety and liveness properties of programs).

4.2 A Basic Process Ontology

Ontologies are formal frameworks that provide knowledge description and rea-
soning techniques. The starting point in defining an ontology is to decide what
the basic ontology elements (concepts and roles) represent. Here, the ontology
shall formalise process-based, i.e. state-transition based software systems.

• Concepts are classes of objects with the same properties. Individuals
are named objects. Concepts represent software system properties in this
context. Systems are dynamic. Descriptions of properties are inherently
based on underlying notions of state and state change.

• Roles in general are relations between concepts. Here, they shall represent
two different kinds of relations. Transitional roles represent service oper-
ations in form of accessibility relations on states, i.e. they represent services
resulting in state changes. Descriptional roles represent properties of a
state such as invariant descriptions like service name and description or pre-
and postconditions (if they are part of the description format).

• Constructors allow more complex concepts to be constructed in form of
concept descriptions. Classical constructors include conjunction � and
negation ¬. Hybrid constructors are based on a concept and a role. The
constructor ∀R.C – called value restriction – is interpreted based on either

10

Pahl and Zhu

operationSign

inv

Signpostpre outSigninSign

servDescrservName

LiteralLiteral
...

Fig. 4. Service Process Ontology

an accessibility relation R to a new state C for transitional roles, or on a
property R satisfying a constraint C for descriptional roles. The dual ∃R.C
is called existential quantification.

In Fig. 4, the service process ontology is shown. A state is an abstract
concept that is described in terms of elements of auxilary domains through
descriptional roles such as invariant and mutable state properties (formal
conditions, textual descriptions, etc.). The two essential state concepts are
pre and post, which denote abstract pre- and post-states for service process
transitions (not to be confused with pre- and postconditions). For example,
∀outSign.int specifies a post-state by associating an output signature int.

Throughout this paper, we use a description logic notation, e.g. for a given
concept pre, we could constrain input signatures, ∀inSign.(int,int). This
notation is equivalent to a triple expression (pre,insign,(int,int)), which
would be used in RDF (on which OWL is based).

4.3 Orchestration and Choreography

We introduced the representation of basic services in a description logic-based
ontology. An ontology that captures service processes and their composition,
however, requires an extension of classical description logics [8]. So far, roles
– that represent service operations – are atomic. We define the combina-
tors ’;’ , ’!’ , ’|’ and ’+’ as role constructors for sequential composition,
transitive closure (iteration), intersection (parallel composition without inter-
action), and union (non-deterministic choice) of service processes, respectively.
We also use ◦ for sequential composition to emphasise the functional charac-
ter of roles. Role constructors allow us to integrate process description and
composition into an ontology framework. The description logic expression
∀ !(Balance+Lodgement+Transfer).post describes a process.

Axioms and inference rules allow us to capture activity-related properties
in the logic, e.g. in order to reason about matching. For example, ∀R.∀S.C ⇔
∀R ; S.C is an axiom that describes the conversion between logical operators
and role expression combinators.

We need to integrate data and process parameters into the logic. We
introduce data in form of names. Names stand for individual data elements.

• We denote a name n by a role nN , interpreted by an identity relation
{(nI , nI)} for the interpretation nI of n.

• An operation R is a parameterised role RI ⊆ D × S × S for domain D
11

Pahl and Zhu

of a name and states S.

• A parameterised role R applied to a name nN , represented here as an iden-
tity relation, i.e. R ◦ nN , forms a transitional role, i.e. R ◦ nN ⊆ S × S 4 .

Example 4.1 Given a transitional role Login and a descriptional role outSign,
the expression ∀ Login◦(idN,pwdN).∀outSign. bool means that by executing
Login ◦(idN,pwdN) a state is reached that is described by a boolean result
value. The term Login ◦(idN,pwdN) is a composite role expression in which
the identifiers idN and pwdN are constant roles (names).

Earlier on, we distinguished the orientation of ports, i.e. we had different
input and output actions, s(x) and s〈x〉, respectively. These are important for
the interactions with actual providers of services. Since matching of processes
is here only concerned with control flow patterns, we ignore this distinction
here, i.e. the composite role s ◦ x abstracts both s(x) and s〈x〉. Interaction
does not need to be modelled ontologically.

4.4 Composition Support

4.4.1 Matching.

Subsumption is the central inference technique in description logic. The sub-
sumption C1 � C2 of concepts is the subset-relationship of the corresponding
object classes. Equally, we define subsumption for roles R1 � R2. We define
service process matching in the expected way. A process P (n1, .., nk) matches
a process R(m1, ..,ml), if P (n1, .., nk) simulates R(m1, ..,ml). Subsumption on
roles, however, is input/output-oriented, whereas the simulation needs to con-
sider internal states of the composite role execution. For each request in a
process, there needs to be a corresponding provided service. Although not
the same, matching is a sufficient condition for subsumption. If the process
expression P (n1, . . . , nk) simulates the process R(m1, . . . , ml), then R � P .
Matching can be ontologically supported by constructive axioms [10].

4.4.2 Connection and Interaction.

We have formulated the operational semantics of interaction in form of process
calculus-style contract and connector rules. In terms of the ontology, services
were so far described as transitional roles and we considered system states
that describe service (and process) properties such as pre- and post-states to
define transitional process behaviour.

We formalise composition and interaction in the ontology framework through
inference rules. In order to address interaction, we need to look at a special
kind of a parallel composition transition. This transition is based on the
synchronisation of concurrent services through data exchange. We can char-
acterise properties of interactions between two services, here a reformulation

4 We drop the N -postfix when it is clear from the context that a name is referred to.

12

Pahl and Zhu

of the contract rule without annotations and matching constraints,

mC〈mI〉; pmC

mC〈mI〉−→ pmC
nC(nI); pnC

nC(nI)−→pnC

mC〈mI〉; pnC
+M1|nC(nI); pnC

+M2
τ−→ pmC

�pnC

in terms of the ontology language by an inference rule:

∀ mC ◦mI . postmC
∀nC ◦ nI . postnC

∀ mC ◦mI |nC ◦ nI . postmC
�postnC

This rule for parallel composition complements other constructor-specific ax-
ioms and rules that we can derive from dynamic logic and process calculi such
as the axiom ∀p; q.C ≡ ∀p.∀q.C for the sequence. These axioms and inference
rules form an application-specific extension of description logic that allow us
to infer more properties about service processes and their interactions.

5 Related Work

Composition of services is an active area of research [3,4,11]. In particular the
need to address semantics in the context of composition has been recognised.
In [3], an ontological framework for service composition is presented based on
OWL-S (a rich services ontology, formerly known as DAML-S) as the under-
lying service ontology [13]. Their application area is the Grid services context
and knowledge-based advice systems. OWL-S is different from our ontological
framework in its process model. OWL-S represents services as concepts in the
ontology, not as transitions. Therefore, the bridge to dynamic logics cannot be
exploited in the way we proposed. Another OWL-S based approach is taken
in [4]. Here, the logical side is strengthened. OWL-S descriptions are con-
verted in linear logic and an architecture based on a logic-based planner and a
semantic reasoner are proposed. The ultimate aim, as in our description-logic
based approach, is the exploitation of logic reasoning for service composition.

Our approach differs from the discussed OWL-S-based approaches and
other service ontologies such as WSMO [12] in that the ontological model
captures services and processes in a more intrinisc way. OWL-S and WSMO
address a wider range of properties, which suggests an integration of these
approaches with our composition framework. We have aimed at reflecting
the current discussion on orchestration and choreography in our technical and
ontological models here.

Semantic Web services are a subject that our approach needs to be related
to. OWL-S [13] and WSMO [12] are examples of ontological frameworks that
support matching of semantically described services. Both focus on the seman-
tical description of services including abstract descriptions, quality-of-service
aspects, and functional abstractions such as pre- and postconditions.

We can use pre- and postconditions as abstractions for ports, enabling the
design-by-contract approach [14]. Dynamic logic is a suitable logical frame-

13

Pahl and Zhu

work that subsumes pre- and postcondition specification [15]. The connec-
tion between description logic and dynamic logic allows us to integrate these
contracts easily into our framework. Similar to signatures, we can associate
(descriptive) pre- and postcondition roles to pre- and poststates, respectively.

Two service operations described by pre- and postconditions and repre-
sented by contract ports nC and mC match, if the requestor’s precondition is
weakened and the postcondition strengthened [15,16]. Again, we would need
to integrate reasoning about services matching with subsumption. Subsump-
tion is interpreted as a subset relationship on sets of states that satisfy pre- or
post-state descriptions. We present a matching inference rule for transitional
roles. We define the matching rule

∀preCond.preP � ∀P.∀postState.postP
∀preCond.preR � ∀P.∀postState.postR

〈preP � preR,

postR � postP

for transitional roles P and R. This form of matching implies subsumption,
but is not the same: if service P matches R, then P � R.

6 Conclusions

Organising software systems as service-oriented architectures is a new archi-
tectural paradigm. The Web Services Framework is currently the most im-
portant platform supporting this paradigm. In order to make the paradigm
more successful as a software development approach, the focus on deployment,
invocation, and reply has to shift towards more re-use and composition.

Service reuse is one of our objectives; process assembly of reusable services
is the principle of architectural composition in this context. What is needed is
a component-style composition framework for services – in particular an onto-
logical framework to make it work as a development approach for distributed
and shared platforms such as the Web. We have developed a formal frame-
work based on ontologies (and underlying logics) and process-based service
composition, applicable to the Semantic Web and Web Services platforms.

We have looked at core aspects of such a framework here – a complete and
formal treatment was beyond the scope of this paper. One of the lessons we
have learned is that a comprehensive formal framework for service-oriented
architectures is needed to address predictable assembly, reuse, maintenance,
and change and evolution management. We consider our contribution part of
a methodology for service-based software development and deployment.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts,
Architectures and Applications. Springer-Verlag, 2004.

14

Pahl and Zhu

[2] W3C – The World Wide Web Consortium. Web Services Framework.
http://www.w3.org/2002/ws, 2004. (visited 08/04/2005).

[3] L. Chen, N. Shadbolt, C.A. Goble, F. Tao, S.J. Cox, C. Puleston, and
P.R. Smart. Towards a Knowledge-Based Approach to Semantic Service
Composition. In D. Fensel, K.P. Sycara, and J. Mylopoulos, editors,
International Semantic Web Conference ISWC’03. Springer LNCS 2870, 2003.

[4] J. Rao, P. Küngas, and M. Matskin. Logic-Based Web Services Composition:
From Service Description to Process Model. In International Conference on
Web Services ICWS 2004, pages 446–453. IEEE Press, 2004.

[5] C. Peltz. Web Service orchestration and choreography: a look at WSCI and
BPEL4WS. Web Services Journal, 3(7), 2003.

[6] C. Szyperski. Component Software: Beyond Object-Oriented Programming –
2nd Ed. Addison-Wesley, 2002.

[7] D. Sangiorgi and D. Walker. The π-calculus – A Theory of Mobile Processes.
Cambridge University Press, 2001.

[8] F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2003.

[9] K. Schild. A Correspondence Theory for Terminological Logics: Preliminary
Report. In Proc. 12th Int. Joint Conference on Artificial Intelligence. 1991.

[10] C. Pahl. An Ontology for Software Component Matching. In M. Pezzè, editor,
Proc. Fundamental Approaches to Software Engineering FASE’2003, pages 6–
21. Springer-Verlag, LNCS 2621, 2003.

[11] R. Zhang, I.B. Arpinar, and B. Aleman-Meza. Automatic Composition of
Semantic Web Services. In Proc. International Conference in Web Services
ICWS’2003. 2003.

[12] R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison
of WSMO and OWL-S. In L.-J. Zhang and M. Jeckle, editors, European
Conference on Web Services ECOWS 2004, pages 254–269. Springer-Verlag.
LNCS 3250, 2004.

[13] DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

[14] Bertrand Meyer. Applying Design by Contract. Computer, pages 40–51,
October 1992.

[15] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B. Elsevier, 1990.

[16] A. Moorman Zaremski and J.M. Wing. Specification Matching of Software
Components. ACM Trans. on Software Eng. and Meth., 6(4):333–369, 1997.

15

