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Abstract. Service-Oriented Architecture is a promising architectural approach to
solve the integration problem originated by business process integration and au-
tomation requirements. The identification of the adequate services for the service
architecture solution is a critical issue. Architecture abstractions, such as patterns,
can capture design knowledge and allow the reuse of successful applied designs.
The continual rise of abstraction in software engineering approaches have been a
central driver of this work, placing the notion of patterns at business domain level.
In this paper we propose a set pattern-based techniques for service identification.
Graph-based pattern matching and pattern discovery are proposed to recommend
the scope and granularity of services on process-centric description models. Match-
ing of generalised patterns and hierarchical matching are discussed.

1 Introduction

Nowadays, evermore organizations are taking advantage of consolidating relations with
service provider companies in order to improve competitiveness. This involves the merg-
ing of internal processes from provided and provider companies into inter-organisational
processes shaped by a business chain value [1]. At technical level, business process inte-
gration creates an Enterprise Application Integration (EAI) problem.

Service-Oriented Architecture (SOA) is a promising architectural approach to solve
the EAI problem. The definition of the services that will be the building blocks of the
architecture solution is a critical issue. Abstraction is a principle that can address this
challenge. Architecture abstractions like patterns and styles can capture design knowl-
edge and allow the reuse of successfully applied designs and improve the quality of
software [2]. Abstraction in software engineering approaches is a central driver; at the
business level the reuse of successfully business designs is equally important.

Service identification is a central activity during the design of service architecture
solutions. It involves the analysis of business models and their relation with the exist-
ing software support [3]. Existing software support might be implemented as services,
or most frequently, as legacy applications. Thus, service identification might involve the
discovery of existent services, adaptation of those services, or the definition of new services.
Regarding service discovery -ideally- service requesters can find completely compati-
ble services. However, in some practical scenarios, services that partially fulfill a request
might also be of interest. A black box view of services is not sufficient, and consider-
ing structural and behavioural information beyond the signatures and effects of services
can support a more flexible service discovery. Reuse of services within the limits of one

 

 

 



organisation and its partners, providers and clients in close cooperation can be potenti-
ated by planning in advance the services that will be available. In this manner, reuse of
services is emphasised at design time - before implementation. This is specially relevant
for large organisations where overlapping functionality offered by different services can
rapidly grow, overshadowing the benefits of service reuse.

A number of contributions have addressed the problem of service identification.
High level guidelines for the design of new services such as in [3] are useful, however
they lacks of formality and techniques promoting automation that can be finally ma-
terialised as tool support. More specific approaches for service discovery, for example,
based on matching of process-centric service descriptions such as in [4],[5],[6] goes in
the line of automating the service discovery process. Architecture abstractions in the
form of patterns has been exploited at technical level to improve the quality of software
[2]. Less explored is the use of patterns at business level and their subsequent refine-
ment to more technical levels. In this paper we present a set of pattern-based techniques
and algorithms that focus on the identification of boundaries on process-centric models
that recommend the scope and granularity of new services. Note that service discovery
has not directly addressed here, however the proposed algorithms and related concepts
could contribute to graph-based techniques for exact and partial service matching such
as for example the work in [7].

– The definition of new business-centric services is addressed by means of structural
matching between process patterns and process models. Hierarchical matching allows
incremental levels of abstraction of process-centric matched patterns. Controlled vo-
cabulary of business domains is considered by the matching of generalised patterns.
Partial pattern matching provides flexibility to the proposed techniques.

– The other technique presented here, exploits the fundamental principle of reuse in
software design. The intuitive idea is to find frequent process substructures -named
utility patterns- within large process models. Process steps related with discovered
utility patterns might be supported by existing software components, which can be
rationalised, and subsequently encapsulated as reusable technical-centric services.

The remainder of this paper is organised as follows. Section 2 introduces a graph-
based representation of process models and its relation with process patterns. Section
3 describes the different aspects of the process pattern matching problem and our pro-
posed solutions. Section 4 describes our initial proposal for finding utility patterns in
process models. Section 5 provides a preliminary evaluation of the proposed exact and
partial pattern matching techniques. Finally, in sections 6 and 7 a review of the related
work and conclusions are provided.

2 Graph-based representation of Business Process Models and
Business Process Patterns

Graphs emerge as a natural representation of process-centric models [8],[9]. Graphs can
capture both structure and behaviour, and allow abstractions such as patterns to be re-
lated to process-centric models .

 

 

 



Fig. 1. Process model annotated with BPMN and a related graph-based representation.

2.1 Structural Representation of Business Process Models as Graphs

In the context of this paper we use graphs to represent the structure of process models
and process patterns. Graph vertices represent process elements such as activities, con-
trol flow elements, and so on. Graph edges represent the connectivity between process
elements. Section 8 (annex) provides an introductory background on graphs and related
notation that is used in this section and referred to the rest of the paper.

Graph-based business process model. Let the graph PM = (VPM,EPM, `VPM , `EPM ) be a fi-
nite, connected, directed, labelled graph representing a business process model. VPM is
the set of vertices representing process elements and EPM is the set of edges represent-
ing connectivity between process elements. The function `VPM : VPM→ LVPM is the function
providing labels to vertices of PM, and `EPM : EPM→ LEPM is the function providing labels
to edges of PM. LVPM and LEPM are the sets of labels for vertices and edges, respectively.

Note that in this paper connectivity between process elements is simplified by consid-
ering only the sequence flows between activities since we focus on structural matching
of patterns on process. A more complete approach could capture on edges: inputs, out-
puts, pre and post conditions regarding execution of activities. The Fig. 1 provides an
example of a intuitive graph-based representation of a business process model anno-
tated with a well-known process modelling notation, i.e. Business Process Modelling
Notation1 (BPMN). An appropriate mapping function maps descriptions of process ele-
ments with graph labels. Note that similar graph-based models can represent executable
processes described for instance in the standard WS-BPEL language2.

2.2 Structural Representation of Business Process Patterns as Graphs

Business Process (BP) patterns are essentially common connectivity patterns in process
models. BP patterns can be operator-oriented, e.g. a multi-choice pattern that allows the
selection of a number of options instead of an exclusive selection based on the basic
choice operator. These kind of process patterns are know in the literature as workflow
patterns [10]. Other category of BP patterns consists of application context-oriented and

1 Available from http://www.bpmn.org/Documents/BPMN 1-1 Specification.pdf
2 Available from http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

 

 

 



often more complex patterns derived from and specific to the business context. These
kind of BP patterns can represent well-known process building blocks in reference mod-
els, abstracting a set of connected activities required to reach some business goal [11].
Application context-oriented business process patterns can be reused as previously im-
plemented and successful designs and provide an integrated vision of processes among
different participants. For instance, in Fig. 1 the Use-AccessBankAccSystem process has at
its core, in gray colored vertices, a common set of account usage activities that can be
represented in the form of a application-context oriented process pattern.

Beyond the previous types of BP patterns, a third category represent frequent process
connectivity structures that are not specific to a business domain, but relates to some
standard technology solution, for instance a typical authentication and authorisation
processes to access a system. We named this patterns as utility patterns, borrowing the
name from the definition of utility services in [3]. In the rest of the paper we will refer to
application context-oriented business process patterns only as patterns. Workflow patterns are
not addressed here. Utility patterns are the focus of section 4.

Graph-based business process pattern. Let the graph PP = (VPP,EPP, `VPP , `EPP) be the fi-
nite, connected, directed, labelled graph representing a business process pattern model.
Elements of VPP represent process pattern roles and elements in EPP represent connec-
tivity between pattern roles. Note that the graph-based representation for business pat-
terns, utility patterns and business processes is structurally the same.

2.3 Instantiation of Process Patterns in Process Models

Process patterns have been described in the same way as process models. Now, we dis-
cuss the relation between process patterns and process models. In particular, we are
interested in the abstraction that patterns represent for process models and concretely,
in the notion of instantiation of process patterns in process models. Pattern Instantiation
in a concrete model indicates that the structural relations described in the pattern hold
in the model. The structural preserving relations that graph homomorphisms represent
help us to capture the notion of pattern instantiation. In particular, instantiation of a BP
pattern in a process model can be captured by the definition of a locally surjective graph
homomorphism [12] between a subgraph PMS of the graph process model PM and the pat-
tern graph PP, i.e. PMS

S→ PP. Surjection allows that several process elements (vertices
of PM) play the role of one pattern element (vertex of PP). Moreover, model elements
can belong to more than one pattern when considering this approach. Note that we have
used the notation from the previous section and the Annex. We will continue using this
notation along the paper.

3 Process Pattern Matching

We have discussed in Section 1 the potential that discovering instances of patterns in
concrete models can provide to the definition of new services. Matching a pattern in
a concrete model involves the identification of instances of that pattern in the concrete
model. In this manner, the pattern matching problem can be referred as the detection of a

 

 

 



graph homomorphism between the graph representing a concrete model and the graph
representing the pattern.

3.1 Exact, Inexact and Partial Pattern Matching

In realistic scenarios where an exact match of a pattern is unlikely, partial and inexact
matching become relevant. Inexact pattern matching provides good, but not exact solu-
tions to the matching problem. In this case, pattern instances can incorporate additional
elements not described in the pattern, nevertheless they must not affect the structural
properties of the pattern. Partial pattern matches identify exact but incomplete matches
of patterns. Partial instances of patterns might exist due to a modification or evolution
of a previously instantiated pattern. However, when patterns have not previously con-
sidered as part of the design, partial matches indicate an opportunity to improve the
design through incorporating the whole pattern. Partial and inexact matches are also im-
portant due to the fact that process models and their implementations as services might
be highly similar but not exactly the same from organisation to organisation and to iden-
tify commonalities can save costs and encourage reuse.

In order to formalise and later on implement our proposed techniques as concrete
tool support we will define exact, partial and inexact pattern matching in terms of the
graphs representing processes and patterns and their structural relations. Formalisation
can provide guaranties of correctness and improve the confidence on tools.

Exact Pattern Matching. A exact pattern match of a specific pattern PP in an arbitrary
process model PM refers to the detection of PMS

S→ PP with PMS ⊆ PM. The mapping
function ϕ defines an individual instantiation of the pattern PP in the process model PM
with ϕ : VPMS→VPP satisfying that for all u∈VPMS : ϕ(NPMS(u)) = NPP(ϕ(u)) and with map-
ping λS : LVPMS

→ LVPP
a bijective function indicating a semantic correspondence between

the labels of two mapped vertices.

Partial pattern matching. Partial matches restrict the matching problem allowing in-
complete matches. Incomplete pattern matches maps elements from PM to a reduced
number of elements considered in the original codomain (VPP). In this manner, the orig-
inal function ϕ defined by the exact matching case is now restricted to the function
ϕPART IAL : VPMS∗ →VPPPART IAL satisfying that for all u ∈VPMS∗ :
ϕPART IAL(NPMS∗ (u)) = NPPPART IAL(ϕPART IAL(u)) with PPPART IAL ⊆ PP and PMS∗ ⊆ PMS.

Inexact pattern matching. Inexact pattern matching relaxes the definition of neighbor-
hood in the Annex (Section 8) by a set N∗PMS

(u) allowing other vertices not only in the
neighborhood of a vertex u (NPMS(u)) but also in the path between u and v with ϕ(u)
adjacent with ϕ(v) and ϕ : VPMS →VPP.

Algorithm for Exact and Partial Matching. We propose an algorithm for exact and par-
tial process pattern matching. The pseudo-code of the proposed algorithm is described
in ALGORITHM 1 (uEP-PMA). The algorithm starts matching each vertex in VPP with
vertices in VPM such that the labels in LVPP are semantically correspondent with labels in

 

 

 



Fig. 2. Matching expansion steps. One exact match and two partial matches are found.

LVPM . Semantic correspondence in uEP-PMA refers to a one to one (bijective) mapping λ

between a subset in LVPM of giving labels to matched vertices in VPM and labels in LVPP .
Each initial match is considered a temporal pattern matching defining a temporal sub-
graph in PM that we denote as tPM. Subsequently, tPM is expanded until all its neighbors
that hold a structural relation defined by ϕ or at least ϕPART IAL are added.

Fig. 2 illustrates the expansion steps. The algorithm terminates when no more expan-
sion steps can be done. The result is a score vector. Each vertex in PM has a score that
indicates the number of vertices of the matched pattern to which it belongs.

ALGORITHM 1: uEP-PMA - undirected Exact and Partial - Pattern Matching Algorithm.

Input: Target Graph (PM), Pattern Graph (PP)
Output: Score Vector (score).

1 : For each vertex m in VPM do
2 : For each vertex p in VPP do
3 : If λ◦ `VPM (m) = `VPP(p) == true then
4 : tPM(m)← initial temporal match centred in vertex m ∈ PM
5 : score← 1 (score for vertices in tPM(m))
6 : end if
7 : end for
8 : end for
9 : Do while ExpansionCondition == true

10 : For each vertex i ∈ tPM(m) do
11 : If `−1

VPP
◦λ◦ `VPM (NtPM(m)(i)) = NPP(`−1

VPP
◦λ◦ `VPM (i)) && NtPM(m)(i) /∈ tPM(m) then

12 : Expand tPM(m) with NtPM(m)(i)
13 : score← score + 1
14 : ExpansionCondition← true
15 : Else if ExpansionCondition← false end else if
16 : end if
17 : end for
18 : end do while

Note that several exact or partial instances of PP in PM might exist. If different pat-
tern instances share edges in PM, we say that there are overlaps of the pattern PP in PM.
The uEP-PMA algorithm identifies the connected subgraphs in PM containing overlaps

 

 

 



as a one single subgraph PMO. The score of the vertices in the overlap is the number of
vertices in PMO. Additionally, in order to consider the directionality of the graphs repre-
senting concrete models and patterns the uEP-PMA algorithm can also be performed on
the undirected version of PM and PP. In this manner, matches not only considers vertices,
but also arcs.

According to [13], for a connected simple graph H, the problem of detecting a lo-
cally surjective homomorphism between an arbitrary graph and H is solvable in poly-
nomial time if and only if H has at most two vertices. In all other cases the problem is
NP-complete. The complexity of the latter problem, which is directly related with the
pattern matching problem, made us aware of performance issues. In Section 5 we show
a preliminary evaluation where instances of specific graph patterns are identified on ar-
bitrary random graphs. The results show that the time required to solve the problem is
quadratic in relation to the size of the random graphs and it has a small constant that con-
veniently modulates the response time for small and medium size graphs. Scalability, in
terms of processing several patterns over one or more target graphs, could be addressed
by implementing a refined version of the algorithms to allow parallel processing of each
pattern to be matched on a target model.

3.2 Matching of Generalised Patterns

Consideration of restricted vocabulary for different vertical business domains can add
additional benefits for the practical use of BP pattern matching solutions. There are cases
where descriptions of process elements (or pattern elements) have the same syntax, but
different semantic and vice versa. Moreover, processes and patterns might be described
with different structures, while they behave in the same way. Regarding the vocabulary
used to describe process and pattern elements, we have extended the uEP-PMA algo-
rithm with the uG-PMA algorithm allowing semantic correspondence beyond the one
to one mapping (λ) previously considered. The structure of the algorithm remains rela-
tively invariant, but the functions `VPM , `VPP and λ are modified. In this case, the two `(·)
functions are mapping vertices from PM to labels that are organised in a tree-like struc-
tured taxonomy. The labels in the taxonomy refer to concepts from a particular business
domain. In this manner, generalised patterns are considered as families of patterns where
the parent pattern contains the roots of tree-structured taxonomies for business concepts.
Child patterns contains one or more child concepts connected to root concepts in the hi-
erarchy defined by the taxonomy. Note that using the uG-PMA algorithm requires the
existence of an implemented taxonomy from where the algorithm can search for seman-
tically correspondent terms.

3.3 Hierarchical Pattern Matching

In the previous sections we have addressed the exact and partial matching problem on
flat process models (and patterns). However, processes and patterns are commonly com-
posed by more fine-grained process-centric structures. In this section we outline a solu-
tion to the problem of pattern matching considering different levels of abstraction.

 

 

 



Fig. 3. Hierarchical pattern matching.

Algorithm for hierarchical pattern matching. The pseudo code of the proposed algo-
rithm named uH-PMA is described in ALGORITHM 2. The algorithm starts matching
at a certain level of granularity on a target model PM different patterns PPj from a set
of patterns setPP. The index j identifies an specific pattern in setPP. Subsequently, PM is
transformed to an abstracted representation PMi where i represent a particular level of
abstraction. Subsequently, subgraphs of PMi that have been matched with any PPj are
replaced by vertices p j of type pattern3 in the graph one level of abstraction up (PMi+1).
Thus, the complexity of a matched subgraph is hidden in a pattern vertex p j. Note that
representative labels are assigned to pattern vertices. Once the target model is abstracted
with pattern vertices from matched patterns at a specific level of abstraction, other pat-
terns at a higher level might appear. In this way, the abstraction process can be per-
formed iteratively, abstracting a process graph PMi into a process graph PMi+1 which is
one level of abstraction up, and so on. The algorithm terminates when no more matches
are found or when the process graph has only one vertex.

The Fig. 3 illustrates the idea of hierarchical pattern matching making use of the
process model from Fig. 1. The Fig. 3 shows two patterns: BankAccUsage and Access-
UseSystem that are consecutively matched in two different levels of abstraction. The
pattern BankAccUsage describes a set of common bank account usage activities and the
pattern Access-UseSystem represents a typical -simplified- set of steps to access a generic
system. Note that BankAccUsage is focused on the banking industry, however the Access-
UseSystem pattern can be valid across different industries since it has a technology-
oriented and business-agnostic nature [11]. The first match involves a mapping from el-
ements in the process model Access-UseBankAccSystem to elements in the BankAccUsage
pattern. The resultant abstracted process model is subsequently matched with the Access-
UseSystem pattern. In this case, checking semantic correspondence is enhanced by using

3 Typed graphs are graphs that holds a complete mapping to a set of types. Mappings for typed
graphs can consider vertices and edges. The mapping function considered for pattern vertices
is a global surjective function from the set of graph vertices to the set of types.

 

 

 



a taxonomy for business concepts. The result of the hierarchical pattern matching pro-
cess is a single vertex referring to the access and use of a system.

Note that we have not addressed the problem of overlaps yet. How to abstract two
matches that share vertices and edges in the target model? Our basic representation of
processes and patterns as graphs restricts the possibility of representing two overlapped
matched patterns as two different pattern vertices. One idea that we will explore is the
representation of matched patterns as hyperedges of a hypergraph. The vertices of the
hypergraph are the same vertices of the graph representing the process model.

ALGORITHM 2: uH-PMA - undirected Hierarchical - Pattern Matching Algorithm.

Input: Target Graph (PM), Set setPP of n pattern graphs (setPP = {PP1, ...,PPn})
Output: scoreMatrix4.

1 : Do while IterationCondition&&change == true
2 : For each pattern PPj ∈ setPP do
3 : uEP-PMA(PMi,PPj) (or uG-PMA if generalised pattern matching is desired)
4 : If score(u) = |VPPj |with u ∈ PMi

S j
&& exact match == true then

5 : PMi
S j
← p j

5 : change← true
5 : If |VPMi |<= 1 then
5 : IterationCondition← false
5 : end if
6 : end if
6 : Else if
6 : change← false
6 : i← i+1
7 : end for
8 : end do while

4 Discovering Frequent Utility Patterns in Process Models

Previous sections described techniques for identifying services based on the matching of
known application context-oriented process patterns in process models. In this section
we are interested in discovering frequently occurring substructures on large scale busi-
ness process models. Process steps might be supported by existing software components
and identifying reoccurring connected process steps provide a medium to define poten-
tial reusable software components as encapsulated services. The idea is to exploit the
basic principle of reuse in SOA. Finding frequent -not necessarily known- utility patterns
in large process models can help to the definition of reusable technical-centric services.

There are two distinct problem formulations for frequent pattern discovery in graphs:
graph-transaction setting and single-graph setting [14]. The latter refers to the discovery
of subgraphs that occur multiple times in a single input graph. The other refers to the

4 scoreMatrix is a matrix where each element is a score vector derived from algorithm uEP-PMA.
Rows in scoreMatrix refer to the level of granularity i of the model PM and the columns refer to
the different matched patterns PPj ∈ setPP.

 

 

 



discovery of subgraphs that occur frequently across a set of small graphs. We present an
algorithm focused on single-graph setting scenario for pattern discovery in graphs.

Algorithm for Pattern Discovery. The algorithm attempts to find frequent -exact and
partial- occurrences of subgraphs in a single input graph PM. A discovered frequent
subgraph -utility pattern- is an induced subgraph PPU homomorphic with all occur-
rences of a frequent subgraph of PM. Homomorphism detection in the proposed algo-
rithm (named uEP-FPDA) relies on the pattern matching algorithm uEP-PMA described
in Section 3.1. The pseudo code of uEP-FPDA is described in ALGORITHM 3.

ALGORITHM 3: uEP-FPDA - undirected Exact and Partial - Frequent Pattern Discovery Algorithm.

Input: Target Graph - undirected version (uPM), Threshold (T h), number of expansion steps (k)
Output: score, FreqM

1 : For each vertex u in uPM do
2 : PPpivot(u,1)← u
3 : seeds(u,1)←uEP-PMA(PM,PPpivot(u,1))
4 : score(u,1)← seeds(u,1)
5 : For eachi in seeds(u,1) do
6 : If score(u,1)(i)/|PPpivot(u,1)|>= T h then
7 : cnt(u,1)← cnt(u,1) +1
8 : end if
9 : end for

10 : FreqM(u,1)← cnt(u,1)/|PPpivot(u,1)|
11 : If k >= 1 do
12 : For j : 2→ k
13 : PPpivot(u, j)← expand(PPpivot(u, j−1))
14 : seeds(u, j)←uEP-PMA(PM,PPpivot(u, j))
15 : score(u, j)← seeds(u, j)
16 : For each i in seeds(u, j) do
17 : If score(1)(u, j)/|PPpivot(u, j)|>= T h then
18 : cnt(u, j)← cnt(u, j) +1
19 : end if
20 : end for
21 : FreqM(u, j)← cnt(u, j)/|PPpivot(u, j)|
22 : end for
23 : end if
24 : end for

The size of the induced subgraphs and a parameter that relaxes the way of count-
ing the frequency of occurrences of induced subgraphs are parameterised in k and T h,
respectively. The constant k refers to the amount of times that an initial arbitrary sub-
graph in PM will be expanded and compared with other subgraphs in PM to check for
homomorphisms. T h refers to a threshold for the ratio between the number of vertices
of two non exact occurrences of PPU . If T h is equal to one, the frequent occurrences of
subgraphs in PM must to be isomorphic between them. The output of uEP-FPDA are
two matrices score and FreqM. In the matrix score rows represent each vertex u in PM
and columns the results for different size of pattern. If u belongs to a highly frequent

 

 

 



Fig. 4. Average response time of uEP-PMA on arbitrary random graphs for different pat-
tern structures (left side) and different pattern sizes (right side).

subgraph in PM of size j then score(u, j) will be also high. FreqM is a matrix with |VPM|
rows and k columns, where each cell indicates the frequency of a discovered pattern
centred the vertex indicated by the row and with size indicated by k.

The uEP-FPDA algorithm starts defining an arbitrary vertex u from the target graph
PM as the first temporal pattern (pivot pattern or PPpivot(u,1)) and matching PPpivot(u,1)
with the rest of the target graph. The matrices score and FreqM are initialised with the re-
sults of the matching for the initial pattern of size 1. The next steps are repeated for each
vertex in PM. The subgraph PPpivot(u,1) is expanded with its neighbors, together with
expanding each of the vertices in PM whose were matched with the initial PPpivot(u,1).
These first matched vertices are called seeds(u,1). The algorithm continues the expansion
of PPpivot while checking if there exist an homomorphism between the expanded PPpivot

and subgraphs in PM. The counting for measuring the frequency of the matched sub-
graphs -expanded seeds- depends on the satisfaction of the threshold T h parameter. The
expansion process continues until k times or no more homomorphisms are detected.
The results contained in score and FreqM indicates the set of induced subgraphs PPU

-discovered utility patterns- centred in the initial seeds and the PPpivot .
Based on the results obtained in the preliminary evaluation (Section 5) indicating the

quadratic complexity order of uEP-PMA, it is expected that for uEP-FPDA the complex-
ity order grown up to O(kV 3), where V the size of the problem in term of the number of
vertices and k the number of times the temporal patterns in uEP-FPDA is expanded.

5 Evaluation

We have performed a preliminary evaluation for the exact and partial matching algo-
rithm (uEP-PMA). The experiments consider seven specific patterns over arbitrary ran-
dom graphs with approximate sizes of 60, 450, 1300, 1800, 3200 and 5000 vertices. The
experiments were run in a Intel machine 2 GHz and 2GB RAM on WinXP-SP3. Labels in
patterns and random graphs can be of three different types: A, B or C. The used patterns
are a four close-walk of 2, 3, 4 and 6 vertices; two line-like patterns of 3 and 4 vertices
and a star-like pattern with 4 vertices.

 

 

 



Fig. 5. Average response time of uEP-PMA algorithm on arbitrary random graphs for
matching a star-like pattern, a line-like pattern and a pattern with a close-walk structure.

The Fig. 4-left side shows the average response time of uEP-PMA for the matching
of three patterns with different structures and the same number of vertices on arbitrary
random graphs. The line-like pattern requires less time in comparison with the star-like
and close-walk patterns, providing an indication that the structure of the matched pat-
terns influence the response time. The right side of the Fig. 4 shows the average response
time of uEP-PMA on arbitrary random graphs for a same pattern and different number
of vertices. The number of vertices of the pattern also influence the time response. In
order to visualise the trend of the time response more clearly, we divided the time that
the algorithm requires to compute a solution by the ratio between the number of vertices
in the random graph (target graph) and the number of vertices in the pattern. The Fig.
5 - left side shows the trend of the normalised response time for all the different pat-
terns considered in the experiment. The right side of the Fig. 5 illustrates the trend of the
normalised time response for two patterns with different number of vertices. The trend
lines in the two graphics of the Fig. 4 indicate that the time to solve the problem increase
quadratically with the number of vertices on the target graph. The constant 6−7 suggest
advantageous performance characteristics regarding the response time of the algorithm
for small and medium size graphs.

6 Related work

Matching of process-centric descriptions is an activity in the context of service discov-
ery and modelling of new services are activities. Patterns provide a notion of abstraction
in models, and they can play a role in the reuse of previously implemented designs.
A number of papers have proposed graph-based approaches for matching of processes
and patterns. In [5] a technique for partial matches on behavioral models is presented.
The proposal provides measures of semantic distance between resultant matches and
user requirements. Several issues regarding complexity of the proposed algorithm are
reported to be improved. However, the experimental results indicate a response time of
approximately thirty seconds for a target graph of fifty vertices, which can be prohibitive
for large processes. In [15] a method to measure distance between process definitions of

 

 

 



web services is presented. The method relies on a distance measure of normalised ma-
trices representing graph-based process models. The proposed normalised matrices lack
of flexibility in relation with chosen data structure. Optimisations on the computation of
the normalised matrices, e.g. considering a more efficient data structure such as sparse
matrices, is not mentioned. In [7] various types of structural matches for BPEL processes
supporting dynamic binding of services are defined. BPEL processes are modelled as
process trees where each tree node is an interaction. Activities which are not interac-
tions are abstracted into internal steps and can not be matched. Duplicate interaction
activities are not allowed in the tree. Plugin matching is presented as an approach based
on a process simulation notion, however such as the authors indicate, the proposal re-
quires further semantic analysis to decide if a process can replace other after a matching.
In [6] the authors propose a measurement to compare two process models based on
their observed behavior. Observed behavior is restricted to logs of process executions.
Mining techniques are only applied over sequences of process steps rather than graphs
representing process models. In [16] an best-effort method to exact and partial pattern
matching is presented. The results of a matching process are presented to users ordered
according to a proposed goodness measurement. The proposed method finds partial sub-
graphs in time linear on the size of the target graph. However, the pattern queries are
limited in size and structure, and attributes or labels on edges are not considered. Nei-
ther overlaps nor hierarchical matching are considered.

7 Conclusion

In this paper we have discussed the benefits, the considerations and some possible so-
lutions for a pattern-based approach for service identification. In its core, the approach
uses a set of graph-based pattern matching algorithms. We discussed some considera-
tions for exact, inexact, partial, generalised and hierarchical pattern matching. We pro-
vided a solution for exact and partial matching (uEP-PMA algorithm). We extend uEP-
PMA by adding hierarchical pattern matching with the uH-PMA algorithm, and out-
lined a proposal for matching of generalised patterns (uG-PMA.). A solution for dis-
covering frequent pattern in graphs (uEP-FPDA) was proposed. The solution attempts
to discover utility patterns, which could provide a recommendation for designing new
reusable technical-centered services.

Our initial motivation for this work was based on the potential benefits that pattern
matching and pattern discovery techniques could provide to business analysts and ar-
chitects during the definition of new services based on the analysis of process-centric
models. Process models could be annotated with matches of process patterns and pre-
sented to the designers on standard modelling tools. This investigation assume the avail-
ability of process models or process-centric service descriptions and related patterns. The
availability of process documentation - and with a unique type of process description-
might be thought as quite difficult to find in real cases. However, we believe that busi-
ness and architectural documentation in the form of process-centric models is becoming
more and more relevant in the context of service architecture implementations. Models
documenting real case scenarios are complex, numerous and often large. Thus, our pro-
posal attempts to support designers by automating some of the steps during the analysis

 

 

 



and design activities of business process models and process-centric service architec-
tures descriptions.

We believe that architecture abstractions, such as patterns, are a powerful concept
that can be exploited to improve the design of new services and pattern matching tech-
niques can help with the discovery of already implemented services. Further work re-
garding performance and scalability of our proposed algorithms is in development. We
plan investigate their applicability to dynamic service composition.
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8 Annex: Graphs

This annex is based on Nešetřil, Fiala and Hell’s work [17],[13], [12].
A graph G is a set VG of vertices together with a set EG of edges, where each edge is a
two-element set of vertices. If VG is finite, the graph G is called a finite graph. If the graph
has orientation, it is called directed graph, and each edge is called an arc. An arc can have
one of the two orientations (u,v) or (v,u) with u,v ∈ VG. If loops on vertices are allowed,
then edges consist of only one vertex, written (u,u) with u∈VG. A sequence of vertices of
a graph G, such that the consecutive pairs are adjacent, is called a walk in G. If all vertices
in a walk are distinct, then it is called a path. A graph G is called a connected graph if for
every pair of vertices u,v ∈VG there exists a finite path starting in u and ending in v. For
a vertex u in a graph G, the set of all vertices adjacent to u are called the neighborhood
of u and is denoted by NG(u), with NG(u) = {v|(u,v) ∈ EG}. Consequently, a vertex v is a
neighbor of u if u and v are adjacent. A graph G is a subgraph of H if VG⊆VH and EG⊆EH .

Homomorphisms. Graph homomorphisms are edge preserving vertex mapping between
two graphs. A graph homomorphism from G to H denoted by G→ H is a vertex mapping
f : VG→VH satisfying ( f (u), f (v)) ∈ EH for any edge (u,v) ∈ EG. According to [13], when-
ever a homomorphism G→ H is hold, then the image of the neighborhood of a vertex
from the source graph VG is contained in the neighborhood of the image of that vertex
in the target graph VH , i.e. f (NG(u)) ⊆ NH( f (u)) for all u ∈ VG. Composition of two ho-
momorphisms f : F → G and g : G→ H is another homomorphism g ◦ f : F → H. If a
homomorphism f : G→ H is an one-to-one mapping and f−1 is also a homomorphism,
then f is called an isomorphism. In such a case is said that G and H are isomorphic and
it is denoted by G' H. An isomorphism f : G→ G is called an automorphism of G, and
the set of all automorphisms of G is denoted by AUT (G). Using the latter notation, for
graphs G and H three kind of homomorphic mapping are defined as:
• G B→ H if there exist a locally bijective homomorphism f : VG → VH that satisfies for all
u ∈VG : u ∈VG : f (NG(u)) = NH( f (u)) and | f (NG(u))|= |NG(u)|.
• G I→ H if there exist a locally injective homomorphism f : VG → VH that satisfies for all
u ∈VG : | f (NG(u))|= |NG(u)|.
• G S→ H if there exist a locally surjective homomorphism f : VG → VH that satisfies for all
u ∈VG : f (NG(u)) = NH( f (u)).
Note that for the mappings above, locally bijective homomorphism is both locally in-
jective and surjective. The mappings are also known in the literature as (full) covering
projections (bijective), or as partial covering projections (injective), or as role assignments
(surjective). Additionally, any locally surjective homomorphism f from a graph G to a
connected graph H is globally surjective, and any locally injective homomorphism f
from a connected graph G to a forest H is globally injective [12].

Labelled Graphs. The graph G = (VG,EG, `VG , `EG) is a graph where the vertices in VG

and edges in EG have labels. The functions assigning labels to vertices and edges are
surjective homomorphisms `VG : VG → LVG and `EG : EG → LEG for all the vertices in VG

and the edges in EG, respectively. LVG and LEG are the sets of vertex labels and edge
labels, respectively. Note that surjection allow the existence of a same label in LVG (LEG )
for several vertices(edges).

 

 

 


	Towards Pattern-Based Service Identification
	Veronica Gacitua-Decar and Claus Pahl
	Introduction
	Graph-based representation of Business Process Models and Business Process Patterns
	Structural Representation of Business Process Models as Graphs
	Structural Representation of Business Process Patterns as Graphs
	Instantiation of Process Patterns in Process Models

	Process Pattern Matching
	Exact, Inexact and Partial Pattern Matching
	Matching of Generalised Patterns
	Hierarchical Pattern Matching

	Discovering Frequent Utility Patterns in Process Models
	Evaluation
	Related work
	Conclusion
	Annex: Graphs



