
An Architecture for Autonomic Web Service
Process Planning

Colm Moore and Ming Xue Wang and Claus Pahl

Dublin City University, School of Computing, Dublin 9, Ireland
christopher.moore4@mail.dcu.ie, [mwang|cpahl]@computing.dcu.ie

Abstract. Web service composition is a technology that has received
considerable attention in the last number of years. Languages and tools to
aid in the process of creating composite web services have been received
specific attention. Web service composition is the process of linking sin-
gle web services together in order to accomplish more complex tasks.
One area of web service composition that has not received as much at-
tention is the area of dynamic error handling and re-planning, enabling
autonomic composition. Given a repository of service descriptions and a
task to complete, it is possible for AI planners to automatically create a
plan that will achieve this goal. If however a service in the plan is un-
available or erroneous the plan will fail. Motivated by this problem, this
paper suggests autonomous re-planning as a means to overcome dynamic
problems. Our solution involves automatically recovering from faults and
creating a context-dependent alternate plan.

1 Introduction

The Semantic Web is an emerging technology that creates some opportunities
in the field of Web services. Automatic composition of semantically described
services is an example. Sequencing services together to accomplish more complex
tasks can create difficulties when automated at runtime. AI planners can provide
a solution in the form of a plan (often a sequence of Web services required to solve
the problem at hand). Once these plans have been made, composite web services
can be generated and invoked. However, what will happen if a service becomes
unavailable or is not functioning properly? As a solution to this problem, we
suggest an execution, monitoring and re-planning architecture.

A second component is the service process generation, which creates an ex-
ecutable process from an abstract plan. The component must convert the plan
into an executable process. Using this information, a composite Web service is
constructed that can communicate with the services in the plan and execute
them in order. This service process needs to be deployed on a Web server and
then invoked by the execution component.

If an expected result is returned it means that a Web service has executed
without problems. If, however, the fault handling mechanisms indicate an error
has occurred, other action must be taken. The third and central component is a
monitoring and analysis that detects execution problems and analyses possible

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310170?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

remedies. Re-planning results in a new plan that contains alternate Web services
that can also accomplish the same task. It is necessary for our program to get
an alternate plan from the planner and start the execution process again.

A number of papers discuss the automation of service composition. McIl-
raith and Son [6] use the AI planner Golog [5]. Golog is a logic programming
language based on the Situation Calculus, build on top of Prolog. Other plan-
ners, like hierarchical task network planners such as SHOP2, are based on the
situation calculus. When composing Web services, high level generic planning
templates (subplans) and complex goal can be represented by Golog. While these
approaches can provide acceptable plans, this technology needs to be adapted
to a dynamic environment. We have already identified two components of an
architecture – process conversion and process monitoring and analysis – that
can accomplish this integration.

An outline of the entire autonomic planning process follows in the Section
2 and introduce service composition, planners and process execution. Section 3
details the autonomous process planning. In Section 4, we introduce the overall
system architecture, which is subsequently discussed in detail in terms of plan
execution (Section 5) and monitoring and replanning (Section 6). We end with
a discussion and some conclusions.

2 Dynamic Composition and Planning

In order to derive from Web service description an executable composite Web
service automatically at runtime, a number of steps and transitions are required.
Two central activities are plan generation based on abstract goals and service
descriptions and plan conversion for execution through an execution engine.

2.1 Service Composition and Process Planning

A crucial step is to create a plan from service descriptions. AI planners are tools
that are used to determine a plan, which is composed of a series of actions, an
initial state, a goal state and a set of possible actions. SHOP2 is a Hierarchi-
cal Task Network (HTN) planner. In HTN planners, each state of the world is
represented as a set of atoms with actions corresponding to deterministic state
changes [7]. The planning domain is represented by operators (tasks) and meth-
ods. The methods decompose a set of complex tasks into subtasks. The plan
is a sequence of these tasks. In the case of Web service composition, services
are represented as operations. Inputs and outputs of services are represented as
preconditions and postconditions joined with other semantic information. The
plan is a sequence to execute the services in order to achieve the predefined goal.

The first requirement is to define a goal or overall task that is required.
The goal is the desired outcome from the system once it has finished executing.
This goal will usually require a series of Web services executions and, most
likely, a number of message transactions. For a simple example, the purchase
of a book would require first the lookup of stock to make sure the book is

available and then the credit transaction. The Web service information gathered
will be automatically translated into an AI planner interpretable language from a
knowledge-based language such as OWL-S or WSMO [1]. The converted file then
contains service information (input/output, pre-/postconditions of operations).
The plan is initially not in an executable format. WS-BPEL is a language that
allows for the composition and invocation of Web services. WS-BPEL engines are
composite service executors. WS-BPEL connects to WSDL directly and provides
error handing mechanisms.

Problems can occur during the execution of these processes. Web services are
often not reliable, which affects both the composition and execution activities.
Web service can become unavailable for many reasons. If this happens between
discovery and invocation, the goal becomes unachievable. Using error handling
and re-planning it is possible to recover from problems.

2.2 Web Service Composition

Web services are platform-independent Internet-accessible software components
[10]. WSDL files describe the service and how to connect and interact with it.
Web service composition is the linking of Web services to perform some new
complex task. WS-BPEL (Business Process Execution Language) is an orches-
tration language used to define business processes based on Web services. It
controls message passing and execution of the process. The message handling in
WS-BPEL refers to WSDL to define how the incoming and outgoing messages
are handled. WS-BPEL defines how the services can be scheduled and organized
into an executable process that provides an integrated service [8]. WSDL files
are defined as ”partnerLinks” where their role in relation to the WS-BPEL file
is determined.

3 Autonomous Service Process Planning

The purpose of this investigation is to address dynamic re-planning in Web
service composition. This involves using the outlined technologies to actually
build a system dynamically and automatically. This system must be capable of
creating plans, converting them to a usable language and then executing them.
In addition, the system must detect and handle errors from faulty Web services
and then automatically create a new alternate plan. The context of the system
determines the quality and consequence of errors.

3.1 Service Description

We use a book search feature as our running example. Four OWL-S files describ-
ing four basic services define the service repository used here. There is service
to find information on a book given a title, two alternative services that find the
price of the book from an ISBN number and a service that converts the price
from one currency to another. The goal of the problem is to get a price for a

generated
plans

generated
plans

WS-BPEL
process

WS-BPEL
process

service
descriptions

service
descriptions

planning
problem
planning
problem

analyse
annotate
select

convert
annotation:
- successful
- context

category
- faulty
process
element

annotation:
- successful
- context

category
- faulty
process
element

context/fault
categories:
- network
- security
- language
- semantics

context/fault
categories:
- network
- security
- language
- semantics

Fig. 1. Information Architecture

book in a given currency from the title of the book. We assume the four services
as the result of a discovery activity.

<rdf:RDF xml:base="BookFinder.owl">

<owl:Ontology rdf:about=""> ... </owl:Ontology>

<!-- Service, Profile, and Process descriptions -->

<process:AtomicProcess rdf:ID="BookFinderProcess">

<service:describes rdf:resource="#BookFinder"/>

<process:hasInput rdf:resource="#BookName"/>

<process:hasOutput rdf:resource="#BookInfo"/>

</process:AtomicProcess>

<process:Input rdf:ID="BookName">

<process:parameterType rdf:datatype="..">string</process:parameterType>

<rdfs:label>Book Name</rdfs:label>

</process:Input>

<process:Output rdf:ID="BookInfo">

<process:parameterType rdf:datatype="..">Book</process:parameterType>

<rdfs:label>Book Info</rdfs:label>

</process:Output>

<!-- Grounding description -->

</rdf:RDF>

3.2 Planning

A planner generates an execution plan based on a given planning domain and
planning problem, see Fig. 1. In SHOP2, the planning domain is established
by a set of operators and methods. The input and output of the services are
represented as preconditions and postconditions, respectively. For example, the
book lookup service requires a book title to function; for the operator this would
have a precondition that requires a BookName element to be accessible.

SHOP2 operator definitions consist of different parts: preconditions, which
guards the operator execution. A delete list for negative postconditions and a
add list for positive postconditions.

(:operator (!BookFinderService)

((BookName ?bookName)) ; preconditions

() ; negative postconditions

((BookInfo bookInfo))) ; positive postconditions

This SHOP2 interpretable code shows the BookFinder operator. The pre-
condition is that there is a book name available. There is nothing in its delete
list and its add list contains BookInfo (information about the book). Once the
operation is executed, the process will have the variable BookInfo available.

In addition to operators, planning methods define how composite tasks are
decomposed. A simple method includes a precondition and the subtasks that
need to be accomplished in order to accomplish the composite task.

(:method (GetBookPrice)

((BookInfo ?bookInfo) (Currency ?currency))

((!BookFinderService) (!AmazonPriceService) (!CurrencyConverterService))

If preconditions are satisfied, the method decomposes GetBookPrice into sub-
tasks, composed of BookFinderService, AmazonPriceService and CurrencyCon-
verterService. A second GetBookPrice method has a different ShopPriceService.

3.3 Goals and Plan Creation

In addition to the operator and method input files, a planning problem file is
created that represents the goal of the plan. When the Java version of SHOP2
executes, it takes the two files and converts them to Java, which can subsequently
be executed to attain the plan. As there are alternate services available that
can implement identical functionality as defined in the methods, there can be
multiple plans. In the example GetBookPrice, when book name and a desired
currency format is available in the initial state, SHOP2 returns two separate and
both equally valid plans for the book price conversion goal:

Plan 1: BookFinderService; AmazonPriceService; CurrencyConverterService;

Plan 2: BookFinderService; BNPriceService; CurrencyConverterService;

SHOP2 can create an indexed list of plans. Multiple plan generation is a
central feature since it allows different alternative plans to be executed in case
of failure without the need to re-start the planning itself. Plan 2 above is such an
alternative. Differences between plans can be noted and future selection can be
based on this. We create an index to a plan repository to enable efficient access.

4 An Execution, Monitoring and Planning Architecture

A monitoring system with two components is the backbone, see Fig. 2:

– The first component is an autonomous plan execution component. Its aims
are: conversion of abstract plans into executable service processes, pre-execution
preparation of the execution environment including service description and
deployment files, but also context fault-handling determination in addition
to plan conversion, execution of the process using a service process engine.

Monitor

AI PlannerAI Planner

Plan ExecutionPlan Execution Plan AnalysisPlan Analysis

WS-BPEL
Engine

WS-BPEL
Engine

converted
process

fault
messages

plan
requestplans

Fig. 2. System Architecture

– The second component is the context-dependent replanning component. Its
objectives are: monitoring of process execution and fault capture, analysis
of faults that have occurred during execution and determination of remedies
(includes use of alternate existing plans or restart of planning process).

The necessary infrastructure consists of an execution engine at the core. The
WS-BPEL execution engine that is used in this project is ActiveBPEL. It is an
open source project written in Java. In terms of choice, the two most popular
open source engines are Apaches ODE and ActiveBPEL. In terms of perfor-
mance, the Apache engine has the advantage. ActiveBPEL however, provides
excellent support for its engine, including many online guides and an actively
monitored forum. In terms of the infrastructure, additionally Ant scripts add
files to ActiveBPEL deployment folder. To simplify the integration of the plan-
ner into the architecture, the use of the Java version of SHOP2 called JSHOP2
is used instead of the Lisp version. The planner creates Java files to represent
the problem/goal and the service description data.

5 Autonomous Plan Execution

5.1 Plan Conversion

Plan conversion involves two activities: conversion of the SHOP2 generated plan
to a WS-BPEL representation and provision of input WSDL services and WS-
BPEL deployment files for the BPEL engine. As part of the actual conversion of
the plan into an executable process in WS-BPEL, a number of files need to be
created. These are the WSDL files of the Web services that the plan requests to
be invoked, the WSDL file of the generated WS-BPEL process and a number of
deployment files, which are created by the WS-BPEL deployment tool.

5.2 Plan Execution

Plan execution – the second subcomponent – involves two activities: execution of
WS-BPEL code and input OWL-S to XML parsing, which is done on the fly. As

the sample data originates from a number of OWL-S files, it is necessary to search
through these to determine the location of the WSDL files which are needed for
the WS-BPEL process, as WS-BPEL does not refer to OWL-S directly. This
is done through XML parsing. Once the location is found, the WSDL file is
analyzed and relevant information is selected. Information such as the how to
connect, what message formats are needed, the names of services and others
details are vital for the correct invocation of a service by the WS-BPEL process.

Creating the WS-BPEL file and its ”partnerlink” WSDL file is done automat-
ically. WS-BPEL files contain a number of sections which each have a particular
role, sections such as partnerLinks, variables, faultHandlers and flow. These sec-
tions are made up individually and added to the file as they are required. Each
section containing a template for standard layout in a section with relevant infor-
mation simple is inserted as required. Information about Web service invocations
is taken from the relevant WSDL file.

Here is a brief structural outline of the WS-BPEL specification:

<process>

<partnerLinks>

<partnerLink name="BookFinder"

partnerLinkType="print:FinderLink"

partnerRole="BookFinderProcess"/> ...

</partnerLinks>

<variables>

<variable name="BookName" ... /> ...

</variables>

<flow>

<invoke> partnerLink="BookFinder"

operation="find" inputVariable="BookName" </invoke>

<invoke> partnerLink="BookPriceCalc" ... </invoke>

<invoke> partnerLink="PriceConvert" ... </invoke>

</flow>

<process>

Once WS-BPEL is created, it is deployed. Using the ActiveBPEL execution
engine, deployment involves using Apache’s Ant. This causes the files to be added
to the ActiveBPEL’s deployment folder and then deployed once it is noticed.

The deployed WS-BPEL service can be invoked from a manager component.
Values are passed to the service; in our example the values would be the name
of the book and information about the currencies needed. Once this invocation
is made, the WS-BPEL process begins to execute its Web service references.

6 Monitoring and Context-dependent Replanning

6.1 Fault Handling

A vital element of WS-BPEL is fault handling. This is important due to the
possibility if failure, but essential to our context to achieve autonomy. Fault

handlers can be defined in WS-BPEL to handle the exceptions thrown when a
process is executing. Adding handlers to the invocations of Web services allows us
to catch a fault when it arises. When a fault occurs and fault handlers have been
defined, we use handlers to determine remedies in order to achieve the overall
execution goal. Technically, a reply message indicating the fault is send by the
handler (part of the execution engine) to the monitor (a separate component).

6.2 Context

In order to structure the failure handling aspect, possible failures are organised
into context categories. The context notion refers here to execution environment
factors that might impact the execution (and result in failure).

Context constraint violations need to be analysed and solutions determined.
We distinguish for this implementation a number of (not necessarily exhaustive)
context constraint violation categories:

– non-responsiveness of services: the service invoked does not respond
– security: a desired level of security cannot be achieved
– performance: the requested service cannot deliver efficiently enough

6.3 Analysis

The analysis component determines the actions to be taken from a failure in
order to achieve the overall goal. It carries out the following steps:

– analysis of context constraint violation: an initial configuration can indicate
whether violations of constraints are acceptable,

– a short planning cycle is necessary if violations are not acceptable: the anal-
ysis component detects previously generated plans (using the plan index)
that can be tried as a remedy.

– a full planning cycle is necessary if violations are not acceptable and previ-
ously generated plans are not suitable (or not available): an invocation of
the planner with the original goal is necessary.

Clearly crucial here is the decision whether a a time-consuming replanning (and
possible service discovery) is necessary or whether an existing alternative plan
can be used. This decision is context- and state-dependent. We annotate the
indexed plan repository as follows: successful plan completion rate (probabil-
ity of successful execution), fault type and associated context category, fault-
generating plan/process elements. The plan annotation actually allows sets of
fault type / process elements as a plan execution can cause different faults.

By distinguishing short- and full-cycle replanning, we achieve an improve-
ment of planning performance; repeated generation of unsuccessful plans is
avoided. The plan repository is updated (annotated unsuccessful ones) In the
future, we aim to improve the annotation and analysis of unsuccessful plans. We
plan to implement a learning technique that reliably allows to determine plans
with a high degree of success from a plan repository. Clustering of faults/context
categories and fault-causing elements is at the core of this endeavour. Our ob-
servation so far is that the success probability depends on the context category.

6.4 Implementation

Our WS-BPEL process has a number of fault handlers defined – corresponding to
the context categories under consideration. In the case of an inaccessible service
for instance, an error will occur. At this point the fault handlers take over.
An automatic reply is sent to the monitor. If this message is a fault message
and it indicates a non-responsive service the analysis component is called. It
knows the plans that have already been produced and which of those have been
(unsuccessfully) executed. It takes the next plan from the AI planner.

7 Discussion and Related Work

The solution that we implemented through our prototype indicates that an au-
tonomic composition approach is feasible. Some concerns have, however, arisen.

A challenge that we encountered was the correctness of the conversion of
a Web service composition plan into an actual working service process. Plans
are abstract instructions, whereas WS-BPEL is executable process language with
binding and deployment information. Information gathered, interpreted and con-
verted to the correct format. This would include creating the WSDL files (from
an OWL file) and extracting the data from these files to define a process that
complies with the plan specification.

We have already discussed that performance is crucial and that we have
provided a solution that targets plan reuse without replanning whenever possible.
Improvements in this respects are, however, still possible. We mentioned an
intelligent, context-dependent plan selection feature as a promising direction.
We have focussed on communications-specific fault categories in our context
definition. A range of other context aspects such as language, semantic context,
a full range of quality criteria, etc. can be considered.

Many planning tools have been integrated into autonomic composition ar-
chitectures. In [6], Golog is used as the planning component. In [7], with SHOP2
the same planner that we used is proposed based on OWL-S semantic Web ser-
vice descriptions. [9] applied planning using a model checking approach. The
plan generation is done by exploring the state space of the semantic model. In
a recent hybrid AI planner [3], different planning techniques are combined. The
major focus of these activities is discovery and service composition. However,
they are lack fault-tolerance, which in distributed service infrastructures is a
necessity for reliable implementations.

Many researches are looking into self-healing mechanisms [4] for service com-
position to achieve dependable systems. The self-healing approach focuses on
monitoring and recovery activities for overcoming faulty behaviours of service
oriented system. In [2], a self-healing composition strategy is defined, which in-
cludes assertion-based monitoring, event-based monitoring, history-based mon-
itoring, recovery through a retry-failure service, recovery through a substitute-
failure service, and recovery by restructuring plans. [11] presents an enhanced
BPEL engine for self-healing. The engine is extended by planning, monitoring,

diagnosis and recovery modules. However, none of these activities provides a
complete architecture solution for autonomic service composition.

8 Conclusions

In this paper, the problem of dynamic Web service composition and execution
failure and error handling and re-planning has been addressed. The causes of this
problem and the effects have been discussed. An architecture for autonomic, i.e.
dynamic and automated service composition has been discussed.

One of the crucial characteristics of autonomic composition is a self-healing
ability of the dynamically deployed composition system. It needs to deal with
execution faults of a very different nature. We have proposed a context-based
fault handling strategies that efficiently determines remedies in terms of reuse
of plans or AI-based replanning and subsequent plan conversion. As indicated,
our aim is to extend the current system by considering more context categories
and to make the decision processes more efficient and reliable.

References

1. OWL-S Coalition. OWL-S 1.1. http://www.daml.org/services/owl-s/1.1, 2003.
2. S. Guinea. Self-healing web service compositions. 27th International Conference

on Software Engineering, 2005.
3. M. Klusch and A. Gerber. Semantic web service composition planning with owls-

xplan. 1st Int. AAAI Fall Symposium on Agents and the Semantic Web, 2005.
4. P. Koopman. Elements of the self-healing system problem space. Workshop on

Software Architectures for Dependable Systems, 2003.
5. H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R.B. Scherl. Golog: A

logic programming language for dynamic domains. Journal of Logic Programming,
31:59–83, 1997.

6. S. McIlraith and T. Son. Adapting golog for composition of semantic web ser-
vices. Eighth International Conference on Knowledge Representation and Reason-
ing (KR2002), pages 482–493, 2002.

7. D. Nau, T. C. Au, O. Ilghami, U. Kuter, W. J. Murdock, D. Wu, and F. Yaman.
Shop2: An htn planning system. Journal of Artificial Intelligence Research, 20:379–
404, December 2003.

8. L. Padgham and W. Liu. Internet collaboration and service composition as a loose
form of teamwork. Journal of Network and Computer Applications, 30(3):1116–
1135, 2007.

9. M. Pistore, P. Bertoli, E. Cusenza, A. Marconi, and P. Traverso. Ws-gen: A tool for
the automated composition of semantic web services. 3rd International Semantic
Web Conference, 2004.

10. B. Srivastava and J. Koehler. Web service composition - current solutions and
open problems. ICAPS’2003 Workshop on Planning for Web Services, 2003.

11. S. Subramanian. On the enhancement of bpel engines for self-healing composite
web services. IEEE Symp. on Applications and the Internet, pages 33–39, 2008.

