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Title of Thesis: Investigation into Coatings Produced from Nano Particle 

Blended Feedstock for Rotating Equipment Repair Applications 

Name of Student: Albara B. Al-Askandarani   Student Number: 57127361 

ABSTRACT 

Coating of carbon steel with conventional and nano particle blended feedstock material is 

considered in relation to repair applications of rotating equipment. Gas Metal Arc 

Welding (GMAW) and Wire Arc Spray (WAS) processes are used to produce the 

coatings on carbon steel workpieces. The wire arc sprayed workpieces are heat treated at 

temperature similar to the operating temperature of hot-path components of power gas 

turbines. The microstructure and metallurgy of the workpieces are examined using the 

Scanning Electron Microscope (SEM), Optical Microscope, Energy Dispersive 

Spectroscopy (EDS), X-ray Diffraction (XRD). The indentation tests are carried out to 

assess the microhardness variation across the coatings. In the case of coatings produced 

by GMAW, it is found that fine structures are formed in the coating due to the presence 

of nano particles and they resulted in increased microhardness of the coatings. In the case 

of the wire arc sprayed workpieces, the formation of dimples like structure at the surface 

increases the surface roughness of the coatings. In addition, the microhardness of the 

resulting coating is significantly higher than that of the base material. The heat treatment 

does not alter the microstructure and microhardness of the coatings significantly. 
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Chapter 1 – Introduction 
 

With the worlds' increasing demand for energy, utilizing advanced 

technologies that enable increased operational and maintenance 

efficiency at various energy producing and processing facilities becomes 

essential. Rotating equipment, for instance, is a fertile area to utilize latest 

technologies especially during the repair stage. Advanced surface 

treatments and coatings enable the repair of rotating equipment's critical 

parts at a reduced cost. Not only that, but also minimizing failure 

reoccurrence, enabling operation under more severe conditions and 

enhancing the efficiency are examples of the benefits of utilizing such 

technologies. 

1.1 Nano Technology in Relation to Repair Applications 

In recent years, nano technology gained popularity amongst scientists, 

researchers and manufacturers due to the extraordinary results that can be 

achieved by controlling the material structure at the nano (atomic) scale. 

The term nano technology was first introduced to literature by Professor 

Norio Taniguchi of Tokyo Science University in 1974, who defined it as: 

"'Nano technology' mainly consists of the processing of, separation, 
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consolidation, and deformation of materials by one atom or by one 

molecule." [1]. Ever since, scientists and researchers were able to achieve 

materials of unique properties. Combined with the new highly advanced 

microscopic and fabrication devices that can precisely view and control 

matter at an atomic scale, nano technology has been rapidly developing. 

The desired nano materials are produced by bottom-up, and top-down 

approaches.  In the bottom-up approaches, nano scale components are 

arranged to form complex assemblies. These approaches are achievable 

by utilizing various methods including molecular self-assembly and 

chemical synthesis. On the other hand, in the top-down approaches, larger 

devices are used to direct the assembly of smaller devices. The processes 

used in the top-down approaches include atomic force microscope, 

nanolithography and focused ion beams. 

Since nano technology is used as a tool to complement, develop and 

advance different applications, surface treatments and coatings have 

greatly benefited from this technology. A coating is a relatively thin layer 

of material that is applied to cover a substrate. Coatings are utilized for a 

variety of reasons. One of the most common industrial needs for coatings 

is to improve the surface properties of a substrate. The improved 

properties include wear resistance, corrosion resistance and thermal 
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conductivity/insulation [2]. Furthermore, cost saving by applying 

advanced surface treatments and coatings during design and repair stages 

of rotating equipment, for instance, has been proven valid. For example, 

the use of expensive high strength materials and super alloys can be 

mitigated or omitted by using low grade materials that are coated with a 

layer of material, which is compatible with the media and service. 

Depending upon the coating process, coating material and desired 

function, the coating properties differ. In the majority of applications, the 

most important coating process properties include thickness, porosity, 

adhesion, deposition rate and surface finish. Based on the desired coating 

properties, the optimum coating process may be selected. 

One way of combining the emerging technologies with the existing 

rotating equipment repair processes is the use of nanotechnology 

developed materials in thermal spray and weld overlay in rotating 

equipment repair. Both processes have been extensively used for the 

refurbishment of rotating equipment components for decades. Each 

refurbishment process has its advantages and disadvantages and is 

selected based on the specific application and required properties. 
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1.2 Thermal Spray Technology 

Several thermal spray processes have been in existence since the early 

1900's. Some processes are capable of producing coatings from a large 

variety of materials and are able to produce coatings with optimum 

properties, but are costly to acquire and apply. On the other hand, other 

thermal spray processes have limitations, but are affordable to acquire 

and apply. Wire arc spray, for example, is one form of thermal spray that 

is commonly used in rotating equipment repair facilities due to its 

affordability and desirable produced coating properties. Generally, 

thermal spray processes are divided into two main categories, based on 

the source of heat that melts the coating material: Combustion and arc 

spray. 

In combustion thermal spray processes, fuel combustion is used to 

provide temperatures that are elevated enough to melt the coating 

feedstock material. The most common types of fuel used in these 

processes are propane, kerosene and acetylene. The proper combustion 

air/fuel ratio can be achieved by setting the proper air or oxygen flow and 

pressure as well as the fuel flow and pressure. By using the combustion as 

a heat source, it is possible to produce coatings from a variety of 

materials including polymers and metals. The coating material could be 
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either in the wire or powder form. High Velocity Oxy-Fuel, flame spray 

and metalizing are common thermal spray processes that use combustion 

as a heat source. 

Arc spray, on the other hand, works by a different principle. Instead of 

combusting fuel, electric discharge arc is used to directly or indirectly 

melt the coating material. For example, in plasma arc spray, an electric 

arc is used to indirectly melt the coating material by creating a plasma 

flame. The plasma flame is achieved by ionizing an inert gas such as 

argon, nitrogen, helium or hydrogen. The inert gas temperature must be 

increased to elevated levels, to reach the ionization state of the gas. As a 

result, an electric arc, which has a temperature in excess of 5,000 K, is 

used and maintained along with the constant flow of the inert gas to 

maintain the plasma flame. Using plasma as a heat source, it is possible to 

thermally spray a wide range of materials that is not limited to polymers 

and metals only, but also extended to high melting temperature materials 

such as ceramics. The coating material is generally in the powder form. 

Another example of arc spray coating is wire arc spray, which is 

examined in this study. Electric discharge arc is used to directly melt the 

coating material. As illustrated in Figure 1.1 [3], the coating process 

consists of two consumable coating wires of identical or different 
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materials that are continuously fed into a gun. With one of the wires 

having a positive electric polarity and the other having a negative electric 

polarity, an electric arc is formed between the two wires to complete the 

electric circuit. The electric arc rapidly raises the temperature of both 

wires and melts them. The molten material is then projected onto the 

substrate by compressed air or gas. The coating wire material is limited to 

electrically conductive materials. However, it is possible to add non-

electrically conductive materials, such as carbides, in the core of hollow 

metallic wires to achieve the desired properties. In this work, for instance, 

hollow wires that are filled with carbides and nano particles were 

examined. Some of the main advantages of using wire arc spray include 

cost effectiveness, fast deposition rates, and minimal heat transfer to the 

substrate. 

 

Figure 1.1. Schematic of Wire Arc Spray System [3]. 
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1.3 Welding Overlay Coating 

Similar to thermal spray, metal overlay coatings can be achieved by a 

variety of welding processes. Each welding process has its advantages 

and disadvantages regarding the deposited material and the effects on the 

substrate material. Welding is the process of joining workpieces together 

by localized fusion. This is achievable by heating the fusion area to 

melting temperatures [4]. Pressure and filler material may or may not be 

used. On the other hand, coatings produced by welding processes are 

achieved by fusing filler material with the top surface material of the 

workpiece. 

Analogous to the thermal spray classifications, welding processes are 

classified by the energy or heat source. Some welding processes date 

back to ancient times and other processes are newly developed. For 

example, forge welding is an ancient welding process. The reason behind 

its existence since centuries ago is the fact that the heat required to forge 

weld is typically 50 to 90 percent of the workpiece melting temperature. 

The rest of the energy required to forge weld is gained from the forging 

or hammering process. On the contrary, laser welding is a welding 

process that emerged during recent years and it is a process that is still 

developing. The term "LASER" stands for Light Amplification by 
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Stimulated Emission of Radiation [5]. Several laser sources exist and are 

selected based on the application. Furthermore, precise control of the 

laser properties could be finely adjusted to weld, or produce coatings of 

desired properties. An example of coating using the laser welding process 

is laser metal deposition. 

From the ancient to the most sophisticated welding processes, the 

majority of the processes are still in existence today. Some material 

properties can only be achieved by the primitive welding process, while 

other applications require state of the art emerging welding technologies. 

For example, in industrial manufacturing and refurbishment, an efficient, 

easy to use and reliable high deposition rate welding process is generally 

preferred. As such, gas metal arc welding is a welding process that 

matches most of the industrial needs. The welding process takes place by 

one of several metal transfer modes. The main metal transfer modes are 

short circuiting, globular mode and spray. GMAW equipment consists of 

a power supply, electrode wire feed unit, electrode wire and shielding gas 

(Figure 1.2) [6]. The power settings can be adjusted based on the 

substrate material type and thickness as well as the desired metal transfer 

mode. Furthermore, the electrode wire material selection, when 

considering weld overlay and coating by GMAW, is very critical to 
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achieve the required properties. Also, advanced research and 

development in that area is essential. Another advantage of GMAW is the 

fact that the settings could be adjusted to increase the productivity and 

production rates, or to achieve higher quality welds and coatings with 

minimized heat affected zones, weld dilution, and minimized distortion to 

the workpiece. 

 

Figure 1.2. Gas Metal Arc Welding System [6]. 

1.4 Maintenance of Rotating Equipment and its Importance 

Rotating equipment in the energy industry, such as gas turbines, steam 

turbines, compressors, pumps and electric motors often operate under 

severe environments. The materials within rotating equipment are often 
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subjected to elevated temperatures, high erosion rates, cyclic loadings, 

wear and other material deteriorating conditions. As such, research and 

development and application of newly emerging and advanced 

technologies in the field of surface treatment have enabled increasing the 

efficiency, reliability and productivity of such machinery. 

For example, the efficiency of gas turbines (Figure 1.3) [7] is directly 

related to the combustion process. Theoretically, a stoichiometric fuel/air 

ratio yields optimum combustion efficiency, since all fuel molecules are 

combusted. Not only enhanced efficiency is achieved by stoichiometric 

fuel/air ratio, but also toxic emissions are minimized, which is favorable 

for the environment. Other advantages include increased temperature, 

which can be utilized in cogeneration and heat recovery cycles, in an 

effort to enhance the thermodynamic efficiency. On the other hand, 

increased temperatures will also result in rapid deterioration of the 

materials that are directly exposed to combustion including combustion 

baskets, transition pieces and turbine inlet vanes. 

The combustion components of gas turbines are often inspected in 

intervals, based on the size of gas turbine, material quality and 

operational performance. During each combustion inspection, the gas 

turbine must be put out of service to conduct the inspection and testing to 
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ensure the integrity of the components. As a result, there is production 

loss associated with carrying the combustion inspection. Furthermore, the 

disassembly, inspection, testing, repair and re-assembly add to the overall 

maintenance costs. As a result, increasing the intervals between the 

inspections saves cost on the longer run and is desirable. 

 

Figure 1.3. Cross-section of a combustion gas turbine [7]. 

One of the methods that can be utilized to allow operating gas turbines at 

higher combustion temperatures as well as increasing the intervals 

between inspections is the use of advanced coatings and surface 

treatments. Various gas turbine manufacturers offer standard combustion 

parts and enhanced life combustion parts, which are coated with 

manufacturer patented materials. Also, the enhanced life parts often cost 

more than the double of the cost regular parts. 
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1.5 Testing and Development of Coatings Related to Rotating 
Equipment Repair 

To be able to properly assess the performance of coatings onto substrates, 

it is important to test, inspect and measure the properties of coating. 

Depending on the intended use of the coating, the proper testing and 

properties measurements vary. In this particular work, the examined 

coating is intended to be used in hot path parts of gas turbines, which 

undergo high temperatures. Consequently, the main material deterioration 

factor is the high temperature. This could be simulated by heat treating 

the coated workpieces to similar temperatures and closely examining the 

morphology and micrography of the coated material. 

Coating of metallic surfaces via welding deposition and wire arc spray 

finds wide applications in parts repair.  This is because of the practicality, 

low cost and the capability of achieving improved metallurgical and 

mechanical properties.  However, the coating material is expected to be 

similar or identical to the base material to avoid the mismatch in terms of 

metallurgical and mechanical properties.  

1.6 Project Objectives and Thesis Outline 

The development of nanotechnology enables to reinforce and/or improve 

the metallurgical and mechanical properties of the deposited layer. 
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Moreover, depending upon the nano particles blended in the wire material 

and processing parameters, the properties of the resulting coating change.  

In this work, coating of carbon steel using the nano structured wire 

material is carried out and metallurgical and morphological changes in 

the resulting coating are examined. The coating is produced by different 

processes, which are the gas metal arc welding and the wire arc spray. 

Both coatings, by gas metal arc welding and arc spray, are produced 

using the wire material, which is blended with nano particles. By adding 

nano particles, the properties of the deposited material are expected to be 

enhanced. Consequently, investigation of the resulting coating properties 

becomes essential. The objective of the present study is to investigate the 

metallurgical and morphological changes in the coatings produced by arc 

spraying and gas metal arc welding processes using the conventional and 

nano structured wires. 

The thesis consists of five chapters. The first chapter introduces 

nanotechnology, thermal spray, welding and the importance of 

maintenance of gas turbines. The second chapter is a literature survey that 

summarizes the findings and conclusions of other literature with regards 

to application of coatings and materials that contain nano particles. The 

survey covered several different topics regarding nano structured coatings 
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including Characterization and mechanical properties, wear and 

tribological properties, effects of heat treatment, comparison between 

properties of microstructured and nano structured coatings and the effects 

of coating process parameters. Chapter three of the thesis is about the 

equipment used for the experiment. Furthermore, it discusses the 

workpiece preparation, weld deposition and thermal spray process 

parameters, procedures and considerations pertaining to the experiment. 

The morphological and metallurgical tests using microscopy, EDS, SEM 

and XRD will be elaborated as well. In addition, hardness testing using 

Vickers indentation test of thermally sprayed workpiece will also 

included in this chapter. In chapter four, results of the experimental work 

are discussed. Furthermore, the effect of heat treatment and comparison 

between conventional coatings and coatings containing nano particles are 

included in the chapter. Finally, chapter five presents the conclusions and 

suggested future work related to the subject. 
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Chapter 2 – Literature Review 
 

2.0 Introduction 

The following presents the studies reported in the open literature with 

regards to properties and metallurgical characteristics of nano structured 

coatings. Furthermore, the influences of the coating process parameters 

and heat treatment on the properties of the coatings produced are 

included. Other studies in the open literature compared the 

microstructured and nano structured coatings and evaluated them 

accordingly. 

The latest up to date published work and advancements are included in 

the literature survey, which are categorized under the relevant sub-

headings. 

2.1 Characterization and Mechanical Properties of Nano Structured 
Coatings 

The characteristics of nano particles and their effects on the formation of 

structures in air plasma spraying of WC-17Co coating were investigated 

by Chen et al. [8]. Nano structured coating was developed during the 

plasma spraying process while using the 2-5 nm size coating sub-

particles. Acting as crystallization nuclei, the sub-particles resulted in 
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finer grains during the plasma spray process, which was desirable to form 

nano structures in the coating. The original coating material contained 

particles in the size ranging 50-500 nm and sub-particles in the size range 

of 2-5 nm. The nano structured coating resulted in improved micro-

hardness, fracture toughness and bonding strength. 

Thermal spray feedstock characteristics directly influenced the resulting 

coatings. Kim et al. [9] studied the influence of the feedstock 

characteristics on the resulting HVOF WC-Co coatings. By examining 

the morphology of the existing nano structured WC-Co commercial 

feedstock for HVOF coating, it was found that the feedstock powders had 

irregular shapes with a large amount of pores. The excessive melting of 

different particles took place because of the large surface to volume ratio. 

By developing densely packed spherical shaped nano structured feedstock 

powders with low porosity, the resulted coating had improved properties, 

including density, microhardness and wear resistance. 

Zhu et al. [10] examined the deposition characterization of nano 

structured WC-Co coatings. It was found that the produced coatings 

mainly consisted of structures that contained WC grains similar to that of 

the primary powder, with mean particle size of 35 nm. On the other hand, 

different particle sizes were found, as a result of the non-uniform 
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temperature distribution within the plasma flame. Furthermore, the 

temperature in the center of the plasma flame was higher, 15000 oC, when 

compared with temperature towards the edges, 1000 oC. In addition, WC 

grains with 10 nm size were formed as a result of melting. Other regions 

consisted of completely amorphous phase because of complete melting of 

the WC-Co powders. Also, grain growth of some WC grains to 100 nm 

was observed in addition to the grains that went through recrystallization, 

which resulted in strip and square shaped structures with sizes up to 500 

nm. 

The microstructural characteristics of cold-sprayed nano structured WC-

Co coatings were examined by Lima et al. [11]. SEM and microscopy of 

the coating cross-section revealed that dense and low porosity coatings 

were produced without cracks. In addition, since cold-spray is a solid 

state process, the coating was produced by densification of the feedstock 

powder upon supersonic velocity impact of the particles, rather than 

melting. The densification was also confirmed by comparing the 

microhardness of the feedstock powder and produced coatings, which 

have increased 30 times during the coating process. Phase composition of 

the coating via XRD revealed that only a crystalline phase WC and some 

Co were present. However, no other phases were present, which 
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confirmed that no degradation of the particles took place. Also, 

compressive residual stresses were developed during the coating process, 

not because of high temperature, but because of a shot-peening effect as a 

result of the particles impact against the substrate at supersonic velocities. 

Interfacial mechanical properties of plasma-sprayed Al2O3-13wt%TiO2 

nanocrystalline and conventional coatings were examined by Bansal et al. 

[12]. They used rockwell indentation method to assess the interfacial 

toughness. It was found that the nanocrystalline coating was superior to 

the conventional coating. Microstructural examination of the interface 

between the substrate and coating revealed that the conventional coating 

consisted of fully molten splats. On the other hand, the nanocrystalline 

coating exhibited a bimodal microstructure consisting of fully molten 

splats as well as partially molten splats. The fully molten interface of both 

the conventional and nanocrytalline coating had cracks prior to 

mechanical testing. On the other hand, a crack free interface with better 

adhesion was observed in the partially molten splats interface in the 

nanocrystalline coating due to the presence of TiO2-rich amorphous 

phase. 

Zeng et al. [13] compared the mechanical properties and metallurgical 

characteristics of different sizes of nano structured alumina plasma 
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sprayed coatings. Three feedstock powders were incorporated A, T and F 

with F powder having the smallest grain size. XRD analysis of the 

feedstock powders pre and post plasma spray indicated that change in 

phase composition took place as a result of the coating process. 

Furthermore, SEM images revealed that the coatings produced by A and 

T coatings consisted of porous splats that were poorly adhered to each 

others. On the other hand, the F coating was dense, smooth and consisted 

of a polished-like surface structure. Also, the F coating, which had the 

smallest grain size, resulted in improved mechanical properties. The 

microhardness of F coating was considerably high and the surface 

roughness average was significantly low in comparison with coatings A 

and T. 

Kim et al. [14] examined the properties of superhard nano WC-12%Co 

coating by cold spray deposition. It was found that the cold spray 

deposition process prevented the degradation and decomposition of WC 

as opposed to other coating processes such as high velocity oxy-fuel. 

Furthermore, the nano sized WC particles in the feedstock powder 

maintained the same size after being deposited. Also, the produced 

coatings had low porosity and very high hardness value of 2050 HV. 
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2.2 Wear and Tribological Properties of Nano Structured Coatings 

Comparison between the wear properties of nano and microcrystalline 

TiC-Ni-based thermal spray coatings using the vacuum plasma spray 

(VPS) and high velocity oxy-fuel (HVOF) was carried out by Qi et al. 

[15]. HVOF coatings exhibited lower wear resistance than VPS coating, 

when the same feedstock nano and microcrystalline powder was used. 

This was vastly due to the weakening of cohesion among the splats as a 

result of the oxide species in the HVOF coatings. Furthermore, the 

nanocrystalline HVOF coatings showed lower wear resistance than the 

microcrystalline HVOF coatings because of the increased concentration 

in the oxide zones. On the other hand, nanocrystalline VPS coatings 

under tough wear conditions had superior wear resistance in comparison 

with microcrystalline VPS coatings. Also, nanocrystalline VPS coatings 

kept smooth worn surfaces in comparison with microcrystalline VPS 

coatings, which was desirable in different applications for maintaining 

clearances between parts that were required in the industry. 

The wear and friction properties of Vacuum Plasma Sprayed nano 

structured and conventional WC-Co coatings against alumina under dry 

friction conditions were investigated by Zhu et al. [16]. Under the same 

load conditions, the nano structured coating exhibited improved 
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tribological properties in comparison with conventional coating including 

lower friction and higher wear resistance. The improvement in the nano 

structured coating was attributed to the increased hardness and fracture 

toughness. Also, the nano structured coatings resulted in fine WC grains 

in comparison with the conventional coatings, which resulted in larger 

WC grains. The finer WC grains did not directly improve the wear 

resistance; rather this was attributed to the overall increased hardness of 

the material. 

Wear behavior of high velocity suspension flame sprayed Al2O3 

produced using micron- and nano sized powder suspensions were 

examined by Bolelli et al. [17]. Using the micron-sized powder, the 

produced coatings had significantly higher density and hardness as well 

as lower roughness in comparison with the coatings that were produced 

using the nano sized powders. The superiority of the coating produced 

using the micron-sized powder was because of the well-flattened lamellae 

of similar size that were homogeneously distributed. On the other hand, 

the coating produced using the nano sized powders had significantly 

higher porosity and poor mechanical properties. 

Roy et al. [18] comparatively evaluated the friction behavior at ambient 

temperatures of thermally sprayed Cr3C2-25(Ni20Cr) coatings of 
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conventional and nano crystalline grains. The coefficient of friction of the 

nano crystalline coating was 20-30% lower than that of the conventional 

coating. The reduction in the coefficient of friction in the nanocrystalline 

coating was mainly attributed to the fact that it had 40% lower surface 

roughness and 20% higher hardness. Additionally, the material loss of the 

nanocrystalline coating during wear testing occurred by delamination. On 

the other hand, the material loss in the conventional coating occurred by 

breaking-out of the particles as a result of the soft matrix. 

Chen et al. [19] examined the tribological properties of nano structured 

zirconia coatings deposited by plasma spraying. In order to properly 

assess the influence of the nanostructure, conventional and 

nanostructured coatings were produced and examined. Microstructural 

examination revealed that the nanostructured coating possessed higher 

microhardness and density and lower porosity level in comparison with 

the conventional coating. Also, tribological testing using block-on-ring 

arrangement yielded that the nanostructured coating possessed lower 

coefficient of friction in comparison with the conventional coating. Both 

coatings experienced an increase in the coefficient of friction as the 

sliding distance increased. Furthermore, the friction coefficient of both 

coatings linearly decreased with increasing load. Wear testing under light 
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load of 20 N resulted in abrasive wear of both coatings as a result of 

brittleness under low load. However, under high load conditions of 80 N, 

each coating exhibited different wear mechanisms. The nanostructured 

coating underwent plastic deformation under high load and formed 

smooth worn surface. Also, as a result of fatigue fracture, microcracks 

parallel to the sliding direction existed. On the other hand, the 

conventional coating wear mechanism was characterized as discontinuous 

wear tracks, which was an indication that the degree of plastic 

deformation of the conventional coating was less than that of the 

nanostructured coating. The superiority of the tribological properties of 

the nanostructured coating was a result of the preferable microstructure. 

Since the nanostructured coating consisted of smaller particles, the 

feedstock was more effectively melted resulting in enhanced cohesion 

among the coating splats, which in turn improved the wear resistance and 

microhardness. On the contrary, the increased size and level of porosity 

in the conventional coatings acted as stress concentration points, which 

resulted in lower wear resistance and inferior tribological properties. 
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2.3 Effects of Heat Treatment on Nanostructured Coatings 

Park et al. [20] examined the mechanical properties and microstructure 

evolution of the nanostructured WC-Co coatings fabricated by detonation 

gun spraying with post heat treatment process. Two different spray 

parameters were used to produce the workpiece. The workpiece were, 

then, heat treated in an Ar environment at temperatures up to 900 oC. 

Using Vickers indentation testing, it was evident that the heat treatment 

up to 900 oC increased the microhardness due to the presence of η-

carbides. On the other hand, an increase in fracture toughness and wear 

resistance was achieved by heat treatment up to 800 oC, but it decreased 

after heat treatment at 900 oC. The decrease of fracture toughness and 

wear resistance at temperatures above 800 oC was due to the growth of 

carbides by several hundred nanometers. 

Wang et al. [21] examined the thermal shock behavior of nanoconstructed 

and conventional Al2O3/13 wt% TiO2 coatings applied by plasma 

spraying. Three types of coatings were produced: one produced from 

conventional commercially available powder and the other two types 

were derived from the nanoconstructed agglomerated feedstock powders. 

Compared with the conventional coating, the nanoconstructed coatings 

had improved bonding strength and microhardness. In addition, thermal 
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shock resistance was much higher in the nanoconstructed coatings, which 

was related to the unique microstructure consisting of three-dimensional 

net or skeleton-like structure. 

Lima and Marple [22] examined the properties and effects of 

nanoconstructed yttria stabilized zirconia (YSZ) thermal barrier coatings 

engineered to counteract sintering effects. Since YSZ was used as thermal 

barrier coatings in the hot section of gas turbines, heat treatment of the 

workpiece at 1400 oC for 1, 5 and 20 hours was carried out. It was 

noticed that the nanoconstructed coating had bimodal distribution in the 

micro structure as a result of the previously molten and resolidified YSZ 

particles as well as the previously semi-molten porous nano YSZ 

agglomerates embedded in the coating during the spray process. As a 

result of higher surface area in the nanoconstructed coatings and different 

sintering rates, it was found that the porosity level increased after 20 

hours of heat treatment at 1400 oC to be 3.5 times the porosity level of the 

conventional coating. The different sintering rates and porosity level in 

the nanoconstructed coating prevented the increase of elastic modulus 

and thermal diffusivity over the time when subjected to elevated 

temperatures. 
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Rabizadeh et al. [23] investigated the effects of heat treatment on the 

properties of Nickle Phosphorus (Ni-P) electroless nano-coatings. When 

the heat treatment was carried at 200 oC, it was noticed that the hardness 

decreased as a result of hydrogen embrittlement and internal stress 

relieving. However, increasing the temperature of heat treatment to the 

range of 200 oC - 600 oC yielded significantly higher hardness values. 

Precipitation of nickel phosphides (Ni3P) was anticipated to be the major 

factor for the increase in hardness. Furthermore, the corrosion resistance 

increased with heat treatment of the workpiece at 600 °C. 

Yu et al. [24] examined the thermal stability of nanostructured 13 wt% 

Al2O3-8 wt% Y2O3-ZrO2 thermal barrier coatings. The coatings were 

produced using air plasma spray onto stainless steel substrates. It was 

found that the increased annealing treatment time from 25 to 300 h 

resulted in increased ZrO2 grain size from 63 to 120 nm. Furthermore, 

the presence of nano-sized Al2O3 formed intragrannular structure that 

constrained the grain boundaried of ZrO2 and inhibited its growth. In 

addition, sintering at 1100 °C for 300 h resulted in reduced porosity as a 

result of the grain growth and precipitation of Al2O3. 

Kim et al. [25] examined the effects of post-spraying heat treatment on 

wear resistance of WC-Co nanocomposite coatings. The coatings were 
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produced using the high velocity oxy-fuel thermal spray process. 

Consequently, heat treatment was carried out at temperatures in the range 

of 400 – 1000 °C. Prior to heat treatment, XRD results indicated that the 

coating mainly consisted of WC and W2C. Heat treatment in the range of 

400 – 600 °C did not result in phase transformation and did not influence 

the wear resistance. On the other hand, heat treatment in the range of 600 

– 800 °C resulted in phase transformation from WC and W2C to η -

carbides such as (W,Co)12C and (W,Co)6C. Furthermore, the wear 

resistance increased by 45% and the microhardness increased as well. On 

the contrary, heat treatment at 1000 °C resulted in complete 

transformation of WC to η-carbides and metallic W. Also, the coating 

surface experienced significant cracking as a result of the elevated 

temperature. 

The effects of heat treatment of thermal barrier coatings were investigated 

by Wang et al. [26]. The yttria stabilized zirconia (YSZ) (8% Y2O3 

partially stabilized zirconia) coatings were produced using air plasma 

spray. Following the coating process, heat treatment was carried out at 

temperatures ranging 600-1150 °C for periods ranging 15-300 h. An 

increase of grain size from 57 to 88 nm was observed as the annealing 

temperature increased. Also, the grain size increased from 57 to 188 nm 
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when the annealing time was increased. Furthermore, a low activation 

energy was observed in the study. The existence of micro pores and the 

grain-rotation-induced grain coalescence mechanism were the reasons 

behind the low activation energy. 

2.4 Comparison Between Properties of Microstructured and Nano 
Structured Coatings 

Cho et al. [27] conducted a study on HVOF coatings of micron and nano 

WC-Co powders. It was concluded that both the micron and the nano 

WC-Co had high hardness, which was desirable in sliding machinery 

applications. Furthermore, the nano sized powders yielded lower hardness 

than the micron sized powders, as a result of the increased decomposition 

of WC to W2C, due to the larger specific surface area. On the other hand, 

the increased decomposition of WC in the coating produced by the nano 

sized powder resulted in lower friction coefficient. In addition, the 

decomposed graphite in the nano sized powder reacted with oxygen and 

formed carbonic oxide gasses that resulted in increased porosity in the 

coating, when compared with the coating that was produced using the 

micron sized powder. 

Conventional air plasma spray and high velocity oxy-fuel titania (TiO2) 

coatings as well as nanostructured HVOF TiO2 coatings were examined 
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by Lima and Marple [28]. The nanostructured HVOF coating possessed 

60% lower volume loss in the abrasion test and 65% increased bond 

strength when compared with the conventional coatings produced by air 

plasma spray and high velocity oxy-fuel. The improvement of the 

nanostructued HVOF coatings compared to the conventional APS 

coatings was a result of the lower porosity as well as the distribution of 

agglomerated nano particles. Even though all coatings exhibited similar 

hardness values, the nanostructured HVOF coating had the highest crack 

propagation resistance. The dense isotropic-like structure with randomly 

dispersed zones acted like crack arrestors by branching or blunting the 

crack tips, which increased the crack propagation resistance. 

The fatigue and mechanical properties of nanostructured and 

conventional titania (TiO2) thermal spray coatings were examined by 

Ibrahim et al. [29]. The low-carbon steel workpiece that were coated with 

nanostructured titania exhibited fatigue strength that was significantly 

higher than that of the workpiece coated with conventional titania. The 

presence of semi-molten nanostructured TiO2 particles acting as crack 

arrestors was anticipated to be the reason behind the superior crack 

propagation resistance in the nanostructured coatings. Furthermore, the 
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fatigue life of the nanostructured coating was enhanced, due to the 

increased crack propagation resistance. 

The microstructures and properties of thermal barrier coatings produced 

by plasma spray of nanostructured zirconia have been examined and 

compared with the conventional thermal barrier coatings by Tong et al. 

[30]. The plasma sprayed nanostructured Zirconica thermal barrier 

coating had  improved combined strength and thermal shock resistance 

compared to the conventional thermal barrier coatings of magnesia and 

yttria stabilized zirconia. The improvement was because of the formation 

of close packed structure, small cavities and laminar structures. In 

addition, the nanostructured coating exhibited oxidation resistance higher 

than that of ceramic surfaces. 

A comparison of the thermal shock behavior between plasma-sprayed 

nanostructured and conventional zirconia thermal barrier coatings has 

been conducted by Chun-bo et al. [31]. The thermal shock resistance of 

nanoconstructed thermal barrier coatings was superior to that of the 

conventional coatings. Furthermore, the thermal shock life of the 

nanoconstructed coatings decreased as the test temperature increased. 

Both TBCs, nanostructured and conventional, failed by spalling at the 

coating interface as a result of the thermal shock testing. The constituent 
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phases of the as sprayed TBCs produced by the nanostructured and 

conventional feedstock remained the same without phase transformation 

after thermal shock testing. 

2.5 Effects of Coating Process Parameters of Nanostructured 
Coatings 

Thermal spray coatings directly depend on the spray parameters and 

feedstock material. However, in several cases, the resulting coatings do 

not match the theoretically expected results, due to particle disintegration 

during the spray process. As a result, Fogarassy et al. [32] examined the 

agglomerated nanostructured particles disintegration during plasma 

thermal spraying process. Numerical analysis, calculations and finite 

element analysis were performed to determine the thermal field velocity 

distribution in the plasma jet. It was found that particles with 100 µm 

diameter that were close to the axis of the plasma jet exploded before 

complete melting by 0.3 ms. Furthermore, particles projected within 5o of 

the plasma jet axis disintegrated by exploding before impacting the 

substrate. On the other hand, Since the quality of the coatings depended 

on the deposited layers morphology, utilizing nanoconstructed feedstock 

preserved the nanostructure of the deposited coatings, which maintained 

the desired quality. 



  

32 

When certain thermal spray coating properties, such as maintaining 

nanostructures, are desirable, different variables must be considered. One 

of the variables, which was examined by Lau et al. [33], is the particle 

behavior during high velocity oxy-fuel thermal spray. Flake shaped 

agglomerates were produced via mechanical milling in methanol and 

liquid nitrogen environments. It was found that the particle velocity 

profile was dependent upon the particle thickness. Furthermore, the 

thickness of the particles was a function of the milling media. In that 

case, methanol milled particles were more efficient in comparison with 

cryomilled agglomerates which had 75% larger thickness. 

The influence of particle temperature and velocity on the microstructure 

and mechanical behavior of high velocity oxy-fuel (HVOF)-sprayed 

nanostructured titania coatings have been assessed by Gaona et al.[34]. 

To properly assess their influence, several particle temperatures and 

velocities were employed. It was observed that the particles temperatures 

and velocities linearly increased as the propylene flow rate was increased. 

Furthermore, the highest temperatures and velocities were achieved at the 

richest air/fuel ratio condition. Also, the coatings produced using the 

highest temperature and velocity exhibited isotropic-like structure with 

decreased porosity level. In addition, using the Almen strips, it was 
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evident that the residual stresses were higher in the coatings produced 

with higher particle temperature and velocity. The increased stress was a 

result of the increased peening effect due to the increased velocity. Also, 

the stress level increased with increased temperature as a result of greater 

particle shrinkage upon solidification on the substrate during the coating 

process. Other effects of the increased particle velocity and temperature 

included increased presence of anatase structure, same as feedstock, due 

to semi melting the particles, which in turn enhanced the coating bond 

strength. Also, the increased particle temperature resulted in enhanced 

intersplat contact, increasing the cohesive strength and the microhardness. 

The effects of plasma spray parameters on the microstructure and 

properties of nanostructured coatings were investigated by Shaw et al. 

[35]. It was found that the effect of the spray parameters on the 

nanostructured coatings was similar to that on the microctructured 

coatings. All spray parameters had effect on the produced coatings, 

however, the most influential parameter was the ratio of electrical power 

to the primary argon gas flow rate (I.V/Ar). Depending on the I.V/Ar, 

different spray temperatures were achieved, which resulted in different 

coating phases. In addition, changing the ratio of electrical power to the 
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primary argon gas flow rate greatly influenced the hardness and wear 

resistance, as a consequence of the different coating densities. 

Lima et al. [36] from the State University of New York evaluated the 

microhardness and elastic modulus of thermally sprayed nanostructured 

zirconia coatings. By selecting three different power levels, two argon 

flow rates and two spray distances, a relationship between microhardness, 

elastic modulus and surface roughness with certain trend was noticed. 

Smoother coatings exhibited increased microhardness and elastic 

modulus and vice versa for all spray parameters. Higher degree of splat 

flattening was correlated with the decrease in surface roughness. The 

increased flattening resulted in increased contact between the splats, 

which in turn enhanced the coating cohesion. Consequently, the 

microhardness and elastic modulus increased with the enhanced coating 

cohesion. With such relationship between the roughness, microhardness, 

and elastic modulus, a surface profilometer could be used to assess the 

microstructural properties of the coatings in-situ. 

Marple et al. [37] examined the effects of fuel type on the HVOF WC-

12Co cermet coatings. Kerosene, hydrogen and propylene were used as 

gun fuel to produce the coatings.  The highest particle jet temperature was 

achieved using propylene as fuel and the lowest was achieved using 
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kerosene. On the other hand, for a given temperature, the highest particle 

velocity was achieved using kerosene fuel and the lowest velocity was 

achieved using propylene fuel. Efficiency assessment yielded that the 

most efficient thermal spray process was achieved when hydrogen was 

used as fuel. It was observed that the increased particle temperatures and 

velocities yielded coatings with increased hardness and lower porosity. 

Degradation of the carbide phase by formation of W phase was observed 

in coatings produced by the different fuels. However, the higher 

temperature and lower velocity characteristics of using propylene as fuel 

resulted in the highest carbide degradation. 

2.6 Summary of Literature Review 

Microhardness, wear resistance, shock resistance, surface roughness, and 

porosity levels of nanostructured coatings were considered as critical 

properties, which are affected by the feedstock material characteristics 

and process parameters. The literature studies, that were presented in the 

past, have greatly contributed to the development of nanostructured 

coatings, in an effort to achieve optimum properties. Furthermore, several 

studies included the effects of post coating heat treatment to simulate the 

influence of elevated temperature environments, such as combustion 

components of gas turbines. The main focus of the studies presented in 
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the open literature is to assess the properties of thermally sprayed 

coatings and the influence of process parameters and heat treatment on 

the resulting coating characteristics. However, no comprehensive study is 

found in the open literature to introduce comparative evaluation of the 

influence of nanoparticles, when added to the feedstock of thermal spray 

and welding coating processes. Furthermore, some studies in the open 

literature show contradicting results regarding the influence of 

nanoparticles on the microstructural, mechanical and tribological 

properties. This issue is addressed in the thesis work through examining 

the influence of nanoparticles in thermal spray and welding feedstock on 

the metallurgical properties of the resulting coatings. 
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Chapter 3 – Experimental Equipment & Procedures 
 

3.0 Introduction 

Experiments were conducted to examine the metallurgical properties of 

coatings onto carbon steel (AISI-1020) which were produced from 

conventional feedstock and feedstock that was blended with nano 

particles. The experiments include workpiece preparation, gas metal arc 

welding overlay coatings, wire arc spray coatings, heat treatment, and 

measurement of hardness. 

3.1 Specimen Design 

The majority of rotating equipment components at Saudi Aramco and 

other oil producing companies, which suffer from wear, erosion, and 

deterioration as a result of operating at elevated temperatures are made of 

low grade carbon steel, such as AISI-1020. Other rotating equipment 

components, which are made of high strength materials and superalloys, 

are typically designed to withstand the harsh service environments. 

Therefore, they do not require advanced surface treatment or surface 

enhancements. As a result, both workpiece groups for gas metal arc 

welding overlay coating as well as wire arc spray are made of AISI-1020 

carbon steel. Furthermore, heat treatment of the wire arc sprayed 
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workpiece is considered to simulate the effects of high temperature on the 

coating microstructure and properties. 

3.2 Gas Metal Arc Welding 

The welding overlay coating consumable materials and process details 

are as follows. 

3.2.1 Gas Metal Arc Welding Feedstock 

Two welding feedstocks were utilized, conventional GMAW feedstock, 

and nano-structured GMAW feedstock. 

3.2.1.1 Conventional GMAW Feedstock 

Conventional electrode wire is used to build up material similar to that of 

the substrate. The solid wire is copper plated to prolong the wire life and 

to enhance the electrical conductivity for maintaining stable arc during 

application. The elemental composition of wire material is given in Table 

3.1. 

Table 3.1. Chemical composition of conventional wire material [wt.-%]. 

C Si Mn P S Cu Fe 

0.11 0.53 1.15 0.011 0.012 0.14 Balance 
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3.2.1.2 Nano-structured GMAW Feedstock 

Welding consumables EnDOtec continuous electrodes are compatible 

with most conventional, constant voltage power sources [38]. The 

nanostructured wire (DO*390N) is ideal for maintenance and repair 

applications or batch manufacturing where highest integrity welding, 

efficiency and productivity are required. It provides outstanding abrasion 

and erosion resistance performance like tungsten carbide without using 

scarce exotic elements. The elemental composition of wire material is 

given in Table 3.2. 

Table 3.2. Chemical composition of nano-structured wire material [wt.-
%]. 

C Si Mn Cr Mo Nb W B Fe 

1.34 0.46 0.22 15.43 3.71 4.18 7.84 4.18 Balance 

 

The slag-free deposit contains a high volume fraction of ultra-hard, 

complex borocarbides uniformly distributed within an iron alloy matrix. 

The unique nanoscale type microstructure ensures exceptional 

performance against wear by severe abrasion & erosion retaining elevated 

bulk hardness properties to 750°C. Weld deposit exhibits stress relieving 

microfissures, smooth ripple-free weld surface contour, grindable, 

slightly magnetic deposit, low coefficient of friction without lubrication 
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and unique peripheral arc characteristics. Low heat input for minimal 

dilution ensures best possible weld layer properties and maximized weld 

metal recovery [38]. 

3.2.2 Gas Metal Arc Welding Process 

To deposit the nanostructured wire, feed arc welding equipment was used 

in accordance with the American National Standards for Arc Welding 

Equipment (ANS/IEC 60974-2009). Models with programmable, pulsed 

arc, metal transfer modes offer optimal performance. The welding was 

achieved using the electrode at an angle of 70-80°. This provided clean, 

spatter-free, high profile weld deposits. To achieve sufficient weld 

deposition at the surface of the workpiece, the multi-passes of welding 

were carried out while the initially deposited weld was still hot. The 

shielding gas mixture was used during the deposition (97.5% Ar and 

2.5% CO2). Welding parameters are given in Table 3.3. 

Table 3.3. Welding parameters. 

Wire Diameter (mm) Voltage (V) Current (A) 

1.6 23-34 170-300 
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3.3 Wire Arc Plasma Spray 

The wire arc plasma spray process and consumables are the following 

3.3.1 Wire Arc Plasma Spray Consumables 

Similar to the coatings produced by GMAW, two consumable wire 

materials were incorporated; conventional and nano-structured wire 

feedstock materials. 

3.3.1.1 Conventional Wire Arc Plasma Spray Feedstock 

The conventional wire material used for wire arc spray, TAFA 95MXC, 

is specifically made to be used for this process. It is intended to produce 

hard coatings that are corrosion and abrasion resistant, while maintaining 

acceptable coating elasticity. Coating thickness of 0.010 inches to 0.060 

inches is achievable using this wire material. The elemental composition 

of the consumable wire is given in Table 3.4. 

Table 3.4. Chemical composition of conventional wire material [wt.-%].  

Si Cr Mn B Fe 

1.6 29.0 1.65 3.75 Balance 
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3.3.1.2  Nano Structured Wire Arc Plasma Spray Consumables 

Commercially available TAFA 140MXC nano-structured arc spray wire 

is utilized to produce coated workpiece. Consisting of nanocrystalline and 

amorphous phases, the resulting coatings are expected to possess unique 

properties. High hardness, wear and corrosion resistance as well as low 

porosity are expected coating properties based on the wire element 

composition shown in Table 3.5. 

Table 3.5. Chemical composition of nano-structured wire material [wt.-
%]. 

Cr B Mo W Mn C Nb Si Fe 

<25 <5 <6 <15 <3 <4 <12 <2 Balance 

 

3.3.2 Wire Arc Plasma Spray Process 

Wire arc plasma spray offers desirable characteristics over other coating 

or overlay processes such as gas metal arc welding. The improved 

characteristics include fast deposition rate, easiness of operation, 

consistency of results and minimal heat affect to the substrate material. A 

total of fourteen workpiece were produced; seven workpiece of different 

coating thicknesses using the conventional wire material and seven 

workpieces of different coating thicknesses using the nano-structured 
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wire material. The spray parameters, shown in Table 3.6, were fixed for 

all of the workpieces. However, the number of passes is varied to produce 

different coating thicknesses. 

Table 3.6. Wire arc plasma spray parameters.  

Voltage
(V) 

Head 
Pressure 

(psi) 

Step Size 
(in) 

Current 
(A) 

Primary 
(psi) 

Second  
(psi) 

S.O. 
(in) 

33 45 8.8 150 67 67 4 

 

3.4 SEM, EDS and Optical Microscope 

Cross-section and surface photomicrographs of the workpieces were 

obtained using JEOL JDX-3530 LV scanning electron microscope 

(SEM). With resolution of 3.0 mm, magnification of x5 to 300,000 and 

accelerating voltage of 03 to 30 kV, the desired SEM results could be 

accurately achieved. On the other hand, the elemental analysis was 

carried out using energy dispersive spectroscopy (EDS). Figure 3.1 is a 

picture of the SEM equipment. 
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Figure 3.1. Scanning Electron Microscope model JEOL JDX 3530 LV. 

Surface micrographs and microscopic observations were conducted using 

an optical microscope that was manufactured by Olympus. The Olympus 

BX 60 optical microscope is combined with a digital microscope camera 

(DMC) manufactured by Polaroid. Five magnification levels of 50X, 

100X, 200X, 500X and 1000X are achievable using the Olympus 

microscope. In order to switch between the magnification levels, the 

microscope has a revolving nosepiece, which contains five lenses that 

correspond to the magnification level. 

3.5 X-ray Diffraction (XRD) 

Mo-Kα radiation is used through Bruker D8 Advance unit for XRD 

analysis with typical settings of 40 kV and 30 mA. Because of the 

penetration depth Mo-Kα radiation into the coating, in the range of 10 – 
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20 µm,the residual stresses measured using XRD provided data regarding 

the surface region of the workpieces. Table 3.7 and figure 3.2 illustrate 

the specifications and show a picture of the XRD machine respectively. 

Table 3.7. XRD machine Specifications. 

Model AXS D8 Bruker Inc 

Sample 
Positioning & 
Rotation 

Goniometer; Eulerian Cradle; Theta-Theta, Theta-
2Theta 

X-Ray Source & 
Optics 

Collimeter or slits to reduce angular divergence of 
the incident beam 

Performance 
Specifications 

2-Theta Angular Range (degree) 110 to 168 

Peak Count Rate (cps) 2.00E6 

Max Sample Dia (mm) 600 

Computer based interface and display; Other 
digital or analog interface display; Ability to 
process and analyze the diffraction data 

 

Figure 3.2. X-ray Diffraction model Beuker D8 Advance. 
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3.6 Indentation Tests 

An Indentation Hardness Tester manufactured by BUEHLER Com, 

Figure 3.3, was utilized to perform the tests. Optical microscopy was 

performed to visualize the cracks around the indentation mark, which was 

formed using 20 N load level. Indentation tests at the coatings, coatings-

substrate interface and at the substrate were performed at 20 different 

locations to properly and accurately assess the properties. 

 

Figure 3.3. Indentation Hardness Tester manufactured by BUEHLER Com. 
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3.7 Heat Treatment 

All the workpieces produced by wire arc spray were heat treated using a 

synchronous atmospheric heat treatment oven. The heat treatment was 

carried out at 800 °C for five hours, then the samples were left to cool at 

ambient temperature, without forced convection or quenching. In general, 

some components of rotating equipment, such as gas turbines, operate at 

around 800 °C. To resemble such conditions, the heat treatment 

temperature was selected as 800 °C. Also, treatment time of five hours 

ensures that the effects of that temperature, if any, take place. 
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Chapter 4 – Results and Discussions 
 

4.1 Coating Produced by Deposition of Nano Particles Blended Wires 

Coating of carbon steel surface with welding deposition pertinent to 

repair applications is carried out. Two welding wires are used to deposit 

the coating material onto the base material surface through electrical arc 

welding method. Optical microscopy and SEM are carried out for 

microstructural analysis. 

Figure (4.1) shows optical micrographs of top surface of the workpiece. It 

is evident that no surface crack due to thermal effects is observed.  In 

addition, no cavitation and voids are formed due to excessive heating 

during the multi-passes deposition. The melt tracks reveal that the 

overlapping ratio is about 90%, which provides a continuous melt 

deposition at the surface. However, the melt tracks are set slightly apart 

during the deposition process. This provides smooth deposition without 

irregular surface texturing while avoiding excessive temperature rise 

during the deposition process. The nominal thickness of the coating layer 

is in the order of 5 mm, which is usually the case for the repair 

applications. The oxide formation at the surface is evident through the 

coloration of the coating. This is also revealed from the EDS analysis as 



  

49 

shown in Figure (4.2). The oxide formation is associated with the initial 

oxidation of the workpiece surface prior to the deposition process. In this 

case, during the deposition process, oxygen may release from the 

workpiece at high temperature and undergoes an exothermic reaction at 

the melt surface. Since the amount of oxygen is less, the degree of 

oxidation is also less at the surface, i.e. no loose debris is observed during 

and after the process. 

         

     Surface           Cross-section 

Figure 4.1. Optical micrographs of coating surface and cross-section. 
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Figure 4.2. EDS line scan for elemental composition of coating. 

Figure (4.3) shows SEM micrographs for the cross-sections of both 

coatings produced by conventional (micrographs (a), (b) and (c)) and the 

nano-particle blended electrodes (micrographs (d), (e) and (f)). It is 

evident from SEM micrographs that there is no discontinuity in terms of 

cavitations at the interface between the coating and the base material. 

This is true for coatings produced by nano-structured and standard 

electrodes.  In addition, no microcracks due to high temperature gradients 

in the vicinity of the interface are observed.  This shows that the coating 

rate is not significantly high causing the excessive thermal stresses in this 

region. However, the microstructure developed in the coating is 

completely different than that of the base material. This is particularly 

true for nano-particle blended coating.  In this case, the nano-particles 



  

51 

remain almost undissolved in the metallic matrix. In some regions, small 

grains are observed where the nano-particles are concentrated. This may 

occur during the deposition process, in which case, some of nano-

particles, such as WC remains in solid phase and these particles may 

agglomerate locally. It should be noted that nano-structured zones act as 

crack arrests [39]. The crack tends to propagate through the coatings 

weakest link and cracks propagating and reaching these well-embedded 

regions tend to be arrested by the nano-structured zones. 
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(a) Conventional Wire (SEM)        (d) Nano-structured wire(SEM) 

            

   (b) Conventional Wire (SEM)     (e) Nano-structured wire (SEM) 

            

 (c) Conventional Wire (Optical)    (f) Nano-structured wire (Optical) 

Figure 4.3. SEM and optical micrographs of conventional and nano-
structured coating cross-sections. 

50µm 50µm 
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Figure (4.4 micrographs (a) and (b)) shows close view for the cross-

sections of the nano-structured coatings. The structure involves small 

grains and crystalline materials. In this case nano-particle interacts with 

the grain boundary to reduce the energy of the boundary particle system 

and restrains the boundary movement [39]. Moreover, during the grain 

growth the area for the nano-particles is reduced. This results in 

enhancement of nano-particles concentration locally in the metal matrix. 

This is true for nano-particles having high melting temperatures. 

Moreover, the presence of conventional nano-particles in the matrix can 

prevent grain growth through slowing down the growth kinetics via 

reducing the boundary free energy or the grain boundary mobility. 

Moreover, the clustered nano-particles act as inclusion in the matrix 

suppressing the grain growth nearby until the particles dissolve or 

become mobile in the molten state of the matrix. The nano-structures, 

composing of nano-particles, generate large number of internal interfaces 

in the liquid matrix causing the formation of small grains. This occurs 

locally while resulting in randomly distributed fine grains in the structure. 
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(a)            (b) 

Figure 4.4. SEM micrographs of cross-sectional views of nano-structured 
coating.   

Table 4.1 shows microhardness measurement results while figure 4.5 

shows the indentation marks at the surface. Microhardness measurements 

reveal that hardness of the coating increased as compared to the base 

material, which is carbon steel. The increase in the hardness is because of 

the melting and resolidification processes during the coating deposition. 

In this case, fine grain structures are responsible for increase in hardness. 

In the case of nano-structured electrode, microhardness increases 

significantly in the coating.  In this case, the hardness ratio of coating to 

base material is about 5.5. This is because of the fine grain structured 

formed in the coating due to presence of the nano-particles. 

Consequently, grain refinement and compact structured due to nano-

particles concentration at grain boundaries are responsible for increased 

hardness in the coating.  In the case of interface between the coating and 
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the base material, hardness gradually decreases in the coating towards the 

interface while it increases towards the interface in the base material. This 

indicates that the variation in the coating due to differences in the thermal 

conductivities of coating and the base material is responsible for this 

behavior. Moreover, it is evident from the optical picture of the 

indentation marks that the crack does not form around the marks. This 

indicates that the coating is still ductile despite the hardness is high. 

Table 4.1. Microhardness of the coating and the base material. 

 Nano-structured 
Coating 

Standard 
Coating 

Base Material 

Microhardness 
(HV) 

950 450 130 

 

 

Figure 4.5. Optical micrograph of cross-sectional view of nano-structured 
coating and indentation marks. 

Coating 

Indentation 

Workpiece 
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4.2 Wire arc sprayed nanostructured coatings 

Arc spraying of the nanostructured wire onto carbon steel surface is 

carried out. The morphological and microstructural changes in the 

resulting coatings are examined. The study is extended to include the heat 

treatment of the coating. In addition, hardness of the coating prior to and 

after the heat treatment is measured. 

Figure (4.6) shows SEM micrographs of the top surfaces of the wire arc 

spray coating prior to heat treatment (micrographs (a) and (b)) and post 

heat treatment (micrographs (c) and (d)). It is evident that the surface is 

free from the large cavities and cracks, provided that the hilly 

morphology due to dimples results in high surface roughness.  
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 (a) (b) 

Prior to Heat Treatment 

 

 

 

 

 

 

 

  

 

 (c) (d) 

After Heat Treatment 

 

Figure 4.6. SEM micrographs of top surface of arc sprayed coating prior 
and after the heat treatment process. 
 

This can also be seen from the surface texture profile, which is shown in 

figure (4.7). It can be observed that the surface roughness is in the order 

of 15 µm, which is considerably high as compared to other coating 

methods [40]. However, no loose or partially loose particles are found at 

the coating surface. The closed examination of the surface texture reveals 

Holes 

Dense Structure 

Cracks 
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that the formation of the peaks, resembling hilly appearance, is due to 

accumulation of semi-molten particles produced during the spraying 

process. 

 

Figure 4.7. Surface roughness of the arc sprayed coating. 

 

The morphology of the surface does not change after the heat treatment 

process. In addition, no cracks are observed at the surface due to the 

temperature gradient formed in the surface region during the cooling 

period. The close examination of the SEM micrograph indicates the 

presence of sub-micron particles in the surface region. This is attributed 

to the nano- particles in the wire material, despite the fact that the 

percentage of nano-particles is small in the wire material (11 %). 

Consequently, agglomeration of the nano-particles indicate that the 

sprayed particles are in liquid state, provided that high melting 

temperature of WC remains in the solid phase in the sprayed particles. 
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Since the nano particles contain WC, they appear as the sub-micron fine 

grains in the surface region. However, due to high temperature 

involvement during the spraying process, some of the carbides undergo 

the oxidation reaction in the surface region. In this case, WC reduces to 

W2C and a carbonic gas is formed [41]. This can also be seen from XRD 

diffractograms, which is shown in Figure (4.8). This results in micro-

sized holes or cavities at the surface. This situation is observed from SEM 

micrograph. The presence of the dense layer around the micro cavities 

reveals the presence of carbides in this region. 
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Figure 4.8. XRD Diffratogram for coating prior and after heat treatment. 
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Figure (4.9) shows SEM micrograph of cross-sections of coating and the 

base material prior to heat treatment (micrographs (a) and (b)) and after 

the heat treatment process (micrographs (c) and (d)). It is evident that arc 

spraying produced almost uniform coating at the workpiece surface. No 

clear lamellar structure is observed unlike the other coating techniques. 

The continuous line of separation is evident at the coating interface for 

heat treated and untreated workpieces. This is attributed to the thermal 

expansion of the base material and the coatings at different rates. 

Consequently, this develops extended cavity formation across the 

interface at the end of the cooling cycle. In the surface region, particles 

oxided appear as dark inclusions in the coating. This is particularly true in 

the vicinity of the surface. It should be noted that oxidation causes the 

particles size and mass to increase; therefore, small voids are formed in 

the vicinity of the oxided particles. 
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  (a)  (b) 

Cross-section of Coating Prior to Heat Treatment 

 (c) (d) 

Cross-section of Coating After Heat Treatment 

Figure 4.9. SEM micrographs of cross-section of the workpieces prior to 
and after heat treatment. 

The formation of oxides in the liquid melt can cause heterogeneous 

nucleation sites. Once the nucleation starts, crystallization is fast and 

under cooling during the crystallization causes formation of phases, 

which are several orders of magnitude larger than the nano-particles. This 

situation is observed in the surface region of the coating. Moreover, the 

presence of semi-molten particles during the spraying causes small 

Interface 
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cavities in the coating, provided inter-connected small cavities or pores is 

not observed. The close examination of the SEM micrographs reveals that 

the nano-scaled particles remain as nano-sized with the presence of grain 

coarsening. This is associated with the very stable phase boundaries, 

which, in turn, results in the structures maintaining their sizes after the 

exposure to the heat treatment process. It should be noted that the tensile 

stress developed due to thermal expansion in the surface region during 

the heat treatment process causes coating failure from the local 

delamination and spalling.  However, this situation is not observed in the 

coating, particularly in the coating base material interface. SEM 

micrographs also show that small grains are formed in the region where 

the un-dissolved nano-particles are concentrated. In this case, structures 

comprising of undissolved nano-particles generate large number of 

internal interfaces in the liquid matrix resulting in the development of the 

small grains. Table 4.2 gives the EDS results across the cross-section of 

arc coating prior to heat treatment in areas defined in Figure (4.10). 
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Table 4.2. EDS results across the cross-section of the workpiece.  

Spectrum O Al Cr Fe W 

   Spectrum 1 23.39 17.67 11.13 Balance 2.16 

Spectrum 2 0.00 0.00 30.63 Balance 0.00 

Spectrum 3 35.06 1.60 2.42 Balance 0.00 

Spectrum 4 7.87 3.34 13.82 Balance 4.67 

Spectrum 5 2.80 0.57 18.03 Balance 7.21 

Spectrum 6 6.02 1.18 16.26 Balance 10.23

Spectrum 7 16.16 2.88 14.24 Balance 5.53 

Spectrum 8 7.74 0.84 16.33 Balance 8.14 

Spectrum 9 0.00 0.00 0.00 Balance 0.00 

 Spectrum 10 2.72 0.00 0.00 Balance 0.00 

 
 

 

Figure 4.10. SEM micrograph for the cross-section showing EDS 
spectrums. 
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Table 4.3 gives microhardness results at the surface and at the cross-

section of the coating prior and after the heat treatment process while 

Figure (4.11) shows the indentation marks in the coating and the base 

material, which is carbon steel. The microhardness attains high values at 

the surface as well as at the coating cross-section. This is associated with 

the fine grains and presence of fine structures comprising of nano-

particles. Moreover, the microhardness remains almost the same after the 

heat treatment process indicating the microstructural stability prior and 

after the heat treatment process. The hardness ratio of the coating to base 

material hardness is in the order of 4 times. This indicates the grain 

refinement and compact structures, which are responsible for the 

increased hardness. The optical image of the indentation marks reveals 

that no cracks are formed around the edges of the plastically deformed 

marks. Consequently, the residual stress level is low in the coating 

circumventing the crack formation under the applied indentation load. 

Table 4.3. Microhardness results for the base material, arc sprayed prior 
and after the heat treatment process. 

Base Material Hardness (HV) 210 

Coating Hardness Prior to Heat Treatment (HV) 1100 

Coating Hardness After Heat Treatment (HV) 800 
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Figure 4.11. Indentation marks on the cross-section of the workpiece. 
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Chapter 5 – Conclusions and suggestions for future 
work 
 

5.1 Coating Produced by Deposition of Nanoparticles Blended Wires 

Welding deposition on to carbon steel sheet is considered for repair 

applications.  The coating is realized using two types of wires, namely 

standard and nano-structured wires.  The metallurgical changes and 

microhardness variation in the resulting coatings are examined.  It is 

found that the coating was free from microcracks and voids.  The 

presence of nano-particles in the coating suppresses the growth of grains 

during the solidification process.  Consequently, dense structures with 

fine grains are resulted in the coating.  In addition, the regions with high 

concentration of nano-particles act as crack arresting centers.  Therefore, 

high stress levels developed in the cooling cycle may not result in cracks 

due to the presence of nano-sized particles in the coating.  Nano-particles 

concentrated in some regions in the coatings; however, the concentrated 

regions are randomly distributed.  This, in turn, results in large number of 

interfaces in the liquid matrix while suppressing the grain growth in this 

region.  The microhardness tests reveal that microhardness of coating 

increases substantially for coating deposited using the nano-structured 
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wires.  This is because of the grain refinement in the coating.  The 

variation in the thermal properties across the coating base material 

interface causes variation in the hardness in this region.  In this case, 

microhardness reduces towards the interface for nano-structured coating 

while microhardness increases towards the interface for the base material. 

5.2 Wire Arc Sprayed Nanostructured Coatings 

The coating through arc spraying of nano-structured wires is produced 

onto the carbon steel substrate. The morphological and microstructural 

changes in the coating is investigated using SEM and optical microscope. 

The influence of heat treatment on the morphology, microstructure , and 

microhardness of the coating is examined. It is found that no large 

cavities and cracks are observed at the surface of the coating. However, 

the formation of dimples like textures at surface increases significantly 

the surface roughness of the coating. The occurrence of the lahigh surface 

roughness is attributed to the presence of semi-molten particles during the 

spraying process. The compact structures existing of nano sized particles 

are observed at the surface as well as in the coating. This is related to the 

presence of the carbide particles in the coating. Heat treatment does not 

notably modify the coating structure. However, the formation of locally 

oxided particles in the surface region is evident. This appears as black 



  

68 

inclusions in the surface region. Moreover, the presence of oxided 

particles causes partial delamination of the coating in the surface region. 

Oxidation of the molten or solid particles (such as carbides) during the 

spraying process results in the formation of the carbonic gases. This 

causes the formation of the small holes at the coating surface. The dense 

structure around these holes indicates the presence of the carbide particles 

in this region. The agglomeration of nano-sized particles in the coating 

suppresses the formation of large grains. Consequently, fine grains are 

formed in the region where the partially dissolved carbide particles are 

present. The microhardness of the coating attains significantly higher 

values as compared to the base material. This is attributed to the fine 

grains and the presence of compact structures consisting of nano-sized 

particles. Microhardness does not alter after the heat treatment process. 

However, the thermal expansion of coating and the base material at 

different rates causes elongated cavities across the coating-base material 

interface. 
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Suggestions for Future Work 

In the present work, metallic coatings produced from feedstock materials 

that were blended with nano particles were examined. The coatings were 

produced using GMAW and wire arc spray processes onto carbon steel 

AISI-1020 substrates. SEM, EDS, XRD, microscopy and microhardness 

tests were performed. The testing and examination results indicated that 

the presence of nanoparticles increased the coatings hardness and 

suppressed the initiation and propagation of cracks. However, other 

material properties and the influence of the process parameters on erosion 

and wear resistance of the resulting coatings were not investigated. 

Consequently, the following studies can be recommended for the future 

work: 

• Investigate the influence of coating thickness on coating properties. 

Since coatings with different thicknesses are produced, it is 

anticipated that there may be a relation between the coating thickness 

and material properties such as wear and corrosion resistance. 

• Simulate the coating processes using numerical models. This will 

provide better understanding regarding the temperature distribution in 

the coating during the coating process. The theoretical model can be 

used to fine tune the process parameters to achieve optimum coating 

properties for the desired applications. 
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• Conduct Jet impingement tests. In this case, erosive environments of 

some rotating equipment such as pumps could be simulated to assess 

the material performance in such environments. 

• Examine the wear properties of the coatings produced under different 

loads and at different conditions such as wet/dry ambients. The 

influence of size of the nano particles on the wear properties can be 

evaluated as well. 

• Assess the corrosion behavior of the coatings produced, since the nano 

particles influenced the coatings structure such as increased 

compactness and reduced porosity. 
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