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AbstratStatistial Mahine Translation (SMT) via deep syntati transfer employs a three-stage arhiteture, (i) parse soure language (SL) input, (ii) transfer SL deep syn-tati struture to the target language (TL), and (iii) generate a TL translation.The deep syntati transfer arhiteture ahieves a high level of language pair inde-pendene ompared to other Mahine Translation (MT) approahes, as translationis arried out at the more language independent deep syntati representation. TLword order an be generated independently of SL word order and therefore no re-ordering model between soure and target words is required. In addition, wordsin dependeny relations are adjaent in the deep syntati struture, allowing theextration of more general transfer rules, ompared to other rules/phrases extratedfrom the surfae form orpus, as suh words are often distant in surfae form strings,as well as allowing the use of a TL deep syntax language model, whih models adeeper notion of �ueny than a string-based language model and may lead to bet-ter lexial hoie. The deep syntati representation also ontains words in lemmaform with morpho-syntati information, and this enables new in�etions of lem-mas not observed in bilingual training data, that are out of overage for other SMTapproahes, to fall within overage of deep syntati transfer.In this thesis, we adapt existing methods already suessful in Phrase-BasedSMT (PB-SMT) to deep syntati transfer as well as presenting new methods ofour own. We present a new de�nition for onsistent deep syntax transfer rules,inspired by the de�nition for a onsistent phrase in PB-SMT, and we extrat allrules onsistent with the node alignment, as smaller rules provide high overage ofunseen data, while larger rules provide more �uent ombinations of TL words. Sinelarge numbers of onsistent transfer rules exist per sentene pair, we also provide ane�ient method of extrating rules as well as an e�ient method of storing them.We also present a deep syntax translation model, as in other SMT approahes, weuse a log-linear ombination of features funtions, and inlude a translation modelomputed from relative frequenies of transfer rules, lexial weighting, as well asa deep syntax language model and string-based language model. In addition, wedesribe methods of arrying out transfer deoding, the searh for TL deep syntatistrutures, and how we e�iently integrate a deep syntax trigram language model todeoding, as well as methods of translating morpho-syntati information separatelyfrom lemmas, using an adaptation of Fatored Models.Finally, we inlude an experimental evaluation, in whih we ompare MT outputfor di�erent on�gurations of our SMT via deep syntati transfer system. We inves-tigate various methods of word alignment, methods of translating morpho-syntatiinformation, limits on transfer rule size, di�erent beam sizes during transfer deod-ing, generating from di�erent sized lists of TL deoder output strutures, as wellas deterministi versus non-deterministi generation. We also inlude an evaluationof the deep syntax language model in isolation to the MT system and ompare itto a string-based language model. Finally, we ompare the performane and typesof translations our system produes with a state-of-the-art phrase-based statistialiii



mahine translation system and although the deep syntax system in general ur-rently under-performs, it does ahieve state-of-the-art performane for translationof a spei� syntati onstrution, the ompound noun, and for translations withinoverage of the TL preision grammar used for generation.We provide the software for transfer rule extration, as well as the transfer de-oder, as open soure tools to assist future researh.
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Chapter 1
Introdution

1



1.1 Natural Language ProessingEarly reords provide evidene that humans have been analyzing language sineas early as the 2nd millennium B.C. The following extrat from the Old BabyloniaGrammatial Texts shows that translation motivated some of the earliest researhinto the siene of language (Gragg, 1995):Sumerian Akkadian English Glossen-na alik 'go!'ga-en lullik 'may I go!'hee-en lillik 'may he go!'an-du illak 'he goes'an-du-un allak 'I go'an-du-un tallak 'you go'Today, although we no longer eth our analysis onto a stone tablet, but are morelikely to type it on a keyboard or write a program to extrat it from some ele-tronially stored text, not all that muh has hanged in 4,000 or so years. Naturallanguage still fasinates people and probably always will do. Everyone from allwalks of life at some stage thinks about language and question how and why we uselanguage the way we do. Language sientists have managed to provide answers tosome but not all of these questions. Natural language engineering/proessing (NLP)in partiular an provide some insight into how language works (Uszkoreit, 2009).Something that puzzles people that do not know muh about NLP is why NLPis di�ult at all. They expet a omputer to be smarter than they are themselvesand annot understand why something they �nd so ridiulously simple ould bedi�ult for a omputer. The reason they believe this, besides over-estimating theabilities of a omputer, is that they underestimate their own intelligene. Theinherent tendeny to only ompare things that are relatively similar to eah other,auses people to take for granted their amazingly intelligent ability to ommuniatethrough language. They believe speaking or writing with presriptively grammatial2



language is a sign of intelligene. However, how human beings use natural languageto ommuniate at all is the signi�antly intelligent part. Fousing on somethinglike presriptive grammar, in the grand sheme of things, is like worrying aboutgetting the �ag straight when you've already made it to the moon.Most NLP tasks are not easily solved beause language itself is so omplex, andNLP provides an exellent test for the degree to whih language sientists really un-derstand their topi. Like with any puzzle, solving it provides pretty good evidenethat you really understand it.1.2 Mahine TranslationOne popular NLP hallenge is Mahine Translation (MT), suessfully automatingthe proess of translation from one natural language to another. What fasinatedBabylonians about language is partly what makes MT so fasinating: the diversityof language. By omparing text translated into another language, we an gain agreat deal of insight into how language in general works, and as a test for the degreeto whih language sientists really understand language, the task of MT is probablythe best test of all. To produe a mahine that an translate between any pair oflanguages in the world has to be both one of the most interesting hallenging tasksin NLP.1.3 Deep Syntax and Mahine TranslationEssentially, MT systems need to aomplish two things: translate the SL words intothe TL and produe these words in the orret order for the TL (Koehn, 2009).Approahes to MT use di�erent levels of linguisti analysis for translation and di-vide the tasks involved in the translation of words and word order between analysisand generation (AG) omponents and a transfer (T) omponent, as shown in Fig-ure 1.1. The shallowest approah translates a SL surfae form sentene diretly3



Figure 1.1: Translation Pyramid4



into the TL, assigning the tasks of translating both words and word order to thetransfer omponent, as in Phrase-Based Statistial Mahine Translation (PB-SMT)for example. At a slightly deeper level of analysis, suh as Phrase-Based FatoredModels, transfer involves translating the lemma form, morpho-syntati informationand word order to the TL. Deep syntati analysis goes a level deeper and transfernow involves translating SL syntati representations suh as dependeny relations,lemmas and morpho-syntati information to the TL. Even deeper again we have se-manti analysis, with transfer translating between SL and TL ontext and meaningrepresentations, relations, roles and (possibly) morpho-syntati information. Fi-nally, an interlingual analysis assigns the entire translation task to the analysis andgeneration omponents, with no transfer required, sine the representation itself isentirely language independent.Although inreasing the depth of analysis an potentially derease the di�ultyof translation, there is a trade-o� as a deeper analysis inreases the di�ulty ofanalysis and generation. In addition, when we divide the task of translation intoseparate omponents in a pipeline arhiteture, we need to onsider how well eahstep in the pipeline �ts together. The output of the parser used for analysis mustbe the input expeted by the transfer deoder, and likewise the transfer deoderoutput must provide good input for generation. In addition, the use of parsers andgenerators to a deep level of analysis an also restrit the number of translationhypotheses reahed by the searh. For example, if generation is only possible on thesentene level, as opposed to the word level, signi�antly more pruning of translationoptions may be neessary.In theory, a deep syntati analysis provides a good level of linguisti analysis formahine translation, for several reasons. Firstly, ahieving the orret word orderin the TL is one of the biggest hallenges in MT and trying to devise a languagepair independent way of reordering words between the soure and target language isextremely di�ult (Koehn, 2009; Crego and Habash, 2008; Crego and Marino, 2007;Dreyer et al., 2007; Chen et al., 2006; Costa-jussa and Fonollosa, 2006; Crego and5



Marino, 2006). The rules that govern word order in a single language are alreadyvery omplex, and oming up with a way of orretly translating the word orderfor any language pair is extremely di�ult. If deep syntax is used as the level ofanalysis for MT, generation of TL word order an be arried out independently ofSL word order. Other favourable properties of deep syntati transfer inlude:
• Morpho-syntati information for soure and target sentenes is present indeep syntati representations, so Fatored Models (Koehn and Hoang, 2007)an be used to provide statistially riher translation models and overage ofin�etions of lemmas not observed in bilingual training data.
• The deep syntati representation enodes dependeny relations between words,whih an help to produe more general rules/phrases for translation, as suhwords are often distant in the string, as well as enabling the integration of aTL deep syntax language model, that models a deeper notion of �ueny thana string-based model.
• The availability of SL morpho-syntati information an improve the trans-lation from morphologially poor languages into morphologially riher lan-guages (Avramidis and Koehn, 2008) and an potentially improve translationof spei� forms of verbs that ause di�ulty for other approahes, suh asfor example gerund verbs (Aranberri-Monasterio and O'Brien, 2009), as suhinformation is expliitely present in the deep syntati representation.
• The number of nodes in a deep syntati representation is in general less thanthe number of words in the sentene, avoiding some of the omplexity problemsenountered by shallow-syntax based approahes (Deneefe and Knight., 2009;Deneefe et al., 2007; Charniak et al., 2003).
• Non-terminals are allowed in transfer rules to map piees of SL struture to theorret position in the TL but in a muh more onstrained way than in, forexample, Phrase-Based Hierarhial Models (Chiang, 2007b,a) avoiding the6



severe pruning neessary for deoding in suh parsing-based approahes (Liet al., 2009; Chiang, 2007b,a).
• Deoding an be arried out via a top-down appliation of ontiguous transferrules, so there are no gaps between TL words, eliminating the need for sophisti-ated heuristi language modeling tehniques as in Hierarhial Phrase-BasedModels (Chiang, 2007b).Some pratial hallenges still need to be overome before state-of-the-art per-formane an be ahieved with SMT via deep syntax, however. One hallenge isparser overage: depending on the parsing tehnologies used, overage of long sen-tenes an be very low, resulting in a muh smaller sized bilingual orpus used fortraining in omparison with other approahes. A similar hallenge ours for gener-ator overage: tehnologies for generation from deep syntati strutures are usuallytested on gold-standard input, and even with adaptation to allow more robust gen-eration, generator overage an still be low. Possibly the most signi�ant hallenge,however, is onstruting good quality TL strutures. For a single TL deep syntatistruture, the number of possible ombinations of lemmas, dependeny relations andmorpho-syntati information, is very high and automatially �nding a single goodombination is extremely hallenging. Sine we are restrited to sentene level gen-eration, we are fored to severely prune translation options prior to generation andthis greatly inreases the likelihood of many good translations never being generated.1.4 Researh Questions & MotivationsThe main researh questions and motivation for the work inluded in this thesis areas follows:
• investigate the main hallenges of using deep syntax for transfer in mahinetranslation,
• apply mahine learning methods: develop methods of fully automati training,7



• use a language pair independent approah,
• use a linguisti theory independent approah (in the sense that the approahan be easily applied to another theory of deep syntax),
• apply Phrase-Based SMT methods to deep syntati transfer,
• develop e�ient methods of training and deoding,
• make as many of the tools as possible open soure to aid future researh,
• investigate e�ets of system parameters on translation quality,
• provide an empirial omparison of deep syntati transfer and Phrase-BasedSMT.1.5 Thesis StrutureWe begin in Chapter 2, with the important bakground information for the the-sis, suh as the theory of deep syntax we use, LFG f-strutures and the LFGparser/generator we use for experiments. In addition, we desribe important meth-ods in PB-SMT, in partiular those we apply to deep syntax. We also ritiallyreview related work, providing detail about how our own approah uses similar ordi�erent methods.In Chapter 3, we desribe the deep syntax transfer rules we use in our MT systemand a method of automatially extrating them from parsed bilingual orpora. Weextrat large numbers of transfer rules that eah ontain a lot of information. Weprovide a method for e�iently extrating and then storing large numbers of transferrules.In Chapter 4, we desribe our translation model, a log-linear ombination offeature funtions inluding deoding features, suh as a translation model omputedfrom relative frequenies of extrated transfer rules, as well as a deep syntax language8



model. We also ombine post-generation features in our model, suh as a string-based language model and a grammatiality feature using information produed bythe TL preision grammar about the grammatiality of an output translation.In Chapter 5, we desribe how transfer deoding is arried out via a heuristisearh using the translation model desribed in Chapter 4 to rank translation hy-potheses. We inlude detail of how we e�iently integrate a deep syntax trigramlanguage model into deoding as well as how we use an adaptation of FatoredModels (Koehn and Hoang, 2007) to translate morpho-syntati information.In Chapter 6 we provide a detailed evaluation of several on�gurations of ourSMT via deep syntati transfer system. We investigate the e�ets of di�erentmethods of word alignment, di�erent methods of translating morpho-syntati in-formation and di�erent limits on transfer rules size, in addition to di�erent transferdeoder beam sizes, generating from di�erent sized transfer deoder output lists, aswell as investigating deterministi versus non-deterministi generation. We restritour evaluation to a limited sentene length (5-15 words) for German to Englishtranslation mainly due to urrent parser and generator overage and robustness lim-its. In addition, we inlude a omparison with state-of-the-art PB-SMT that showsalthough overall our system under-performs, that for the translation of a spei�syntati onstrution, the ompound noun, our system ahieves state-of-the-artperformane. In addition, we show that the system ahieves state-of-the-art per-formane for translations within overage of the TL preision grammar used forgeneration. We also provide an evaluation of the deep syntax language model inde-pendently of the MT system, whih we believe has the potential to improve lexialhoie if integrated into Phrase-Based SMT systems, and ompare it to a string-based language model. Finally, in Chapter 7, we provide some onlusions andpossibilities for future work.1.5.1 Thesis ContributionsThe main ontributions of this thesis are as follows:9



• a new de�nition for onsistent deep syntax transfer rules;
• a new method of automatially word/node aligning deep syntati strutures;
• a new method of extrating and storing deep syntax transfer rules (providedas open soure software);
• a de�nition for deep syntax language modeling;
• e�ient methods of inorporating deep syntax language modeling into transferdeoding (provided as open soure software);
• a new method of translating morpho-syntati information for SMT;
• a detailed experimental investigation into the e�ets of using di�erent on�g-urations in SMT via deep syntati transfer.
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Chapter 2
Deep Syntax and Phrase-Based SMT
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2.1 IntrodutionThis thesis investigates applying standard methods of PB-SMT to deep syntatitransfer. This hapter desribes the bakground to this approah and previouswork in the area. Firstly, we outline the linguisti theory underlying the deepsyntati representations we use as the intermediate representation for transfer, theLFG f-struture, as well as the tools used to automatially (i) parse text to thisrepresentation and (ii) generate text from this representation. Following that, wepresent a detailed desription of PB-SMT, before �nally desribing relevant previouswork that ombine SMT tehniques and deep syntati transfer.2.2 Lexial Funtional GrammarLFG (Kaplan and Bresnan, 1982; Kaplan, 1995; Bresnan, 2001; Dalrymple, 2001) is adeep uni�ation or onstraint-based grammar formalism that minimally de�nes twolevels of syntati representation: onstituent struture (-struture) and funtionalstruture (f-struture). LFGs for partiular languages are spei�ed by means of agrammar and lexion. Figure 2.1 shows example LFG grammar rules and lexialentries, as well as, the -struture and f-struture for the English sentene �John lovesMary�. The -struture of a sentene enodes the string and its assoiated phrasestruture tree, while the f-struture enodes the orresponding prediate-argument(or dependeny) struture as an attribute value matrix. For a given sentene, afuntional projetion, φ, maps eah node in the -struture to a f-struture, shownin Figure 2.1 as arrows from eah -struture node to a loal f-struture.A LFG grammar onsists of ontext free grammar rules with added onstraints,for example in Figure 2.1 the grammar rule for S expands to a NP with onstraint
(↑ SUBJ) =↓ and VP with onstraint ↑=↓. A LFG lexion onsists of lexial entrieseah of whih ontains the surfae form word with its pre-terminal symbol and a setof onstraints, for example the lexial entry for John has the pre-terminal ategoryNP and onstraints (↑ PRED) =`John', (↑ NUM) =sg, (↑ PERS) =3 and (↑ GEND)12



=mas. The notation used for speifying grammar and lexion onstraints inludesthe metavariables ↓ and ↑. The metavariable ↓ denotes the φ-image (e�etively thef-struture) of the -struture node to whih the onstraint is attahed, whereas ↑denotes the φ-image (the f-struture) of the mother node in the -struture of the-struture node to whih the onstraint is attahed. For example, in the grammarrule for VP in Figure 2.1, the onstraint attahed to the V, ↑=↓, means the motherof V (i.e. VP) has the same f-struture as V and the onstraint on the NP of thesame grammar rule, (↑ OBJ) =↓, means the objet of the f-struture of the motherof NP (i.e. the objet of the f-struture of VP) is the f-struture of NP.Parsing a sentene to f-struture involves the uni�ation of onstraints attahedto the grammar rules that are used to parse the sentene and onstraints attahedto the lexial entries of the words in the sentene. For example, in Figure 2.1 theonstraint on the lexial entry for loves, (↑ SUBJ PERS)=3, and the onstraint onthe lexial entry for John, (↑ PERS) =3, unify with eah other e�etively enforingsubjet-verb agreement.One a sentene is parsed, its f-struture is likely to ontain several f-struturesnested within eah other. The term loal f-struture is used when referring to in-dividual f-strutures ontained within the (outermost) f-struture, inlusive of the(outermost) f-struture itself. The attributes of a loal f-struture, that were de�nedby the onstraints of the grammar and lexion suh as SUBJ, OBJ, TENSE et.,form an unordered set, eah attribute having exatly one value and being eitheromplex, i.e. its value is another f-struture, or atomi, i.e. it has an atomi value.The omplex attributes of the loal f-strutures enode the underlying abstrat syn-tati funtions between eah prediate of the sentene and its arguments, suh asSUBJ, OBJ, COMP (omplement), XCOMP (x-omplement) and OBL (oblique),whereas atomi attributes enode other information that play a role in the funtionalsyntax, suh as PERS, GEND, NUM, CASE and TENSE. An f-struture an alsoontain the ADJ (adjunt) funtion, the value of whih is a set of f-strutures. ThePRED (prediate) attribute of a loal f-struture has a semanti value, a referene13



to an entry ontaining the lexial semantis of the item and onsisting of the lemmaform of the word and a list of the grammatial funtions of its arguments. The termpreds-only f-struture is used to refer to an f-struture without its atomi featuresand values, i.e in a preds-only f-struture eah loal f-struture only ontains thePRED feature and value and the omplex features and values. Figure 2.2 shows thepreds-only f-struture of English sentene �John loves Mary�.2.2.1 XLEIn our work to date, we have used the Xerox Linguisti Environment (XLE) parseengine and generator (Maxwell and Kaplan, 1993, 1996; Kaplan and Maxwell, 1996;Kaplan et al., 2002) for LFG parsing and generation. XLE uses a number of ompo-nents to arry out parsing and generation inluding an LFG grammar, LFG lexion,a tokenizer and a �nite state morphologial analyser. Figure 2.3 shows the order inwhih these omponents are applied when text is parsed with XLE. For generationthe same omponents are applied in reverse order to an input f-struture.XLE produes all possible parses aording to the grammar and lexion for asentene in a paked representation. If the single most probable parse is required,XLE inludes a searh algorithm for searhing for the best parse aording to astohasti disambiguation model, see for example Forst (2007) for German parsedisambiguation and Riezler et al. (2002); Kaplan et al. (2004) for English parsedisambiguation. The disambiguation model is de�ned as a log-linear ombinationof over 1000 feature funtions omprising information about -struture, f-strutureand lexial elements. Dynami programming is used for e�ient searh for themost probable parse from the paked parse representation. A threshold limit on theamount of work done when evaluating the features funtions is used to limit thetime spent searhing a parse forest. If the threshold is reahed, no more featurevalues are omputed and the most probable parse is simply seleted using the set offeatures that have been evaluated thus far.For generation, for a single f-struture there often exists more than one possi-14



LFG Grammar Rules Lexial EntriesS → NP VP
(↑ SUBJ) =↓ ↑=↓VP → V NP

↑=↓ (↑ OBJ) =↓

John NP (↑ PRED) =`John'
(↑ NUM) =sg
(↑ PERS) =3
(↑ GEND) =masloves V (↑ PRED)=`love〈SUBJ,OBJ〉'
(↑ TENSE)=present
(↑ SUBJ PERS)=3
(↑ SUBJ NUM)=sgMary NP (↑ PRED)=`Mary'
(↑ NUM)=sg
(↑ PERS)=3
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Figure 2.1: LFG grammar rules and lexial entries with C-strutureand F-struture for the English sentene �John lovesMary.�
15



























PRED `love〈SUBJ,OBJ〉'SUBJ [PRED `John']OBJ [PRED `Mary']






















Figure 2.2: Preds-only f-struture for English sentene �John lovesMary.�
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ble surfae form realisation. XLE inludes an option to generate the surfae formsentenes of an f-struture in a paked representation or to simply enumerate them.The paked representation XLE uses however for generation is not e�ient or om-pat enough in most ases to provide any real advantage over enumerating sentenesseparately when omputing language model sores for sentenes, suh as, for exam-ple, the e�ient forest strutures of Langkilde (2000) used for statistial generation,in whih alternate phrases are represented as paked sets of trees failitating moree�ient statistial ranking. For grammatial f-strutures (f-strutures that do notause onstraint lashes during generation) the number of possible outputs is usu-ally manageable, so the enumeration option an be used without slowing down theoverall system signi�antly. However, when input strutures are ungrammatial, thenumber of generated surfae form sentenes an be in the millions, and lak of ane�ient method of soring suh numbers of sentenes is prohibitive. Due to timeonstraints, we leave the integration of more sophistiated methods of generation tofuture work, however. XLE has three options for generation, longest : deterministi-ally produing the longest string for the input struture aording to the grammar,shortest, produing the shortest string, and allstrings, produing all possible stringsfor the input TL struture aording to the grammar. We refer to these options ask-options, and investigate the e�et on MT output of using alternate k-options laterin our evaluation in Chapter 6.2.2.2 Statistial LFG Parsing and Generation ResouresStatistial LFG parsing resoures are available for English1, German2, Chinese3 andSpanish4. A probabilisti ontext free grammar parser (Petrov et al., 2006; Charniakand Johnson, 2005; Klein and Manning, 2003b,a) is �rst used to parse raw text to1(Cahill et al., 2008; Chrupala and van Genabith, 2007; Chrupala et al., 2007; O'Donovan, 2006;Cahill et al., 2005; Judge et al., 2005; O'Donovan et al., 2005b,a; Cahill et al., 2004; Cahill, 2004;Burke et al., 2004a; O'Donovan et al., 2004; Cahill et al., 2002a,b)2(Rehbein, 2009; O'Donovan, 2006)3(Guo, 2009; Guo et al., 2007b,a; O'Donovan, 2006; Burke et al., 2004b)4(Chrupala, 2008; Chrupala and van Genabith, 2006; O'Donovan, 2006)17



Penn Treebank (Marus et al., 1994, 1993) style phrase-struture trees, before anannotation algorithm is applied to the trees to produe f-strutures. Compared tothe XLE style f-strutures, the statistial resoures produe less �ne-grained anal-yses that ontain fewer atomi features/morpho-syntati information. Statistialresoures for generation have also been developed for English (Cahill and van Gen-abith, 2006; Hogan et al., 2007) and Chinese (Guo, 2009; Guo et al., 2008a,b).In Graham et al. (2007), we ompared the performane of these parsing and gen-eration resoures for English with XLE, by regenerating English Europarl sentenesand e�etively �nding the upper bound imposed on a transfer based MT systemthat employs the partiular parsing/generation tehnologies. Results showed thestatistial resoures ahieve a higher upper bound for unrestrited sentene length(XLE: 47.85% BLEU; statistial resoures: 57.16% BLEU), and onversely XLEahieves a higher upper bound for short sentenes (XLE: 74.31% BLEU; statistialresoures: 69.68% BLEU).2.3 Phrase-Based Statistial Mahine TranslationGiven the availability of a large bitext orpus of any language pair, a StatistialMahine Translation (Brown et al., 1988, 1990) (SMT) system automatially learnshow to translate unseen text from one language to another. SMT literature followsthe onvention of desribing the soure language as the foreign language and thetarget language as English, we follow this onvention also. In SMT, a translationmodel is omputed from the training orpus and when given an unseen foreignsentene, f, as input to the system, the model is used to estimate the probabilityof eah andidate translation e given f, with the ultimate goal of �nding the bestEnglish translation, ê, for f:
ê = argmaxep(e|f) (2.1)
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SMT systems use language models to model �uent target language text. The noisy-hannel model (Shannon, 1948), borrowed from speeh reognition, applies BayesRule to p(e|f) to produe Equation 2.2 motivating the use of a language model.
argmaxep(e|f) = argmaxe

p(f |e)p(e)

p(f)
(2.2)Sine p(f) is a onstant for all e it is redundant in omputing argmaxep(e|f) andan be dropped from Equation 2.2 to obtain Equation 2.3.

argmaxep(e|f) = argmaxep(f |e)p(e) (2.3)The noisy hannel model also motivates the use of the reverse translation diretionmodel. Besides the language model and reverse translation diretion model, state-of-the-art SMT systems use several other omponents to ompute p(e|f). Equation2.4 shows how p(e|f) an be de�ned as a log-linear ombination of several featurefuntions(Oh and Ney., 2002).
p(e|f) = exp

n
∑

i=1

λihi(e, f) (2.4)2.3.1 Translation ModelIn PB-SMT the translation of a foreign sentene, f, into an English sentene, e, ismodeled by breaking down the translation of the sentene into the translation of aset of phrases:
p(f̄ I

1 |ē
I
1) =

I
∏

i=1

φ(f̄i|ēi)To ompute φ(f̄ |ē), the bitext orpus is automatially word-aligned before all phrasesonsistent with the word alignment are extrated. The Maximum Likelihood Esti-mation (MLE) for φ(f̄ |ē) is omputed using Equation 2.5.
φ(f̄ |ē) =

count(ē, f̄)
∑

f̄i
count(ē, f̄i)

(2.5)19



This is arried out for both language diretions, so that the diret translation dire-tion translation model and reverse translation diretion translation model an beused as features.2.3.2 Lexial WeightingLexial weighting is used as a bak-o� to the translation model as it provides riherstatistis and more reliable probability estimates. The lexial translation probabilityof a phrase pair is omputed using the alignment between the words in the phrasepair. The lexial translation probability of a phrase, ē, given the phrase f̄ andalignment a, is estimated as follows:
lex(ē|f̄ , a) =

length(ē)
∏

i=1

1

|{j|(i, j) ∈ a}|

∑

∀(i,j)∈a

w(ei|fj)Like the translation model, lexial weighting an be modeled in both language di-retions.2.3.3 Language ModelNgram language models are used in PB-SMT to help produe �uent output. Equa-tion 2.6 shows how the probability of a sequene of English words an be omputedby ombining the probability of eah word, wi, in the sequene given the preedingsequene of i− 1 words.
P (w1, ..., wm) =

m
∏

i=1

P (wi|w1, ..., wi−1) (2.6)Although language models are omputed using a large training orpus, statistis forlong histories of words are unreliable due to data sparseness (Koehn, 2009), andtherefore the Markov assumption is applied to Equation 2.6, whih simpli�es theprobability of a sequene of words by using a limited history length when alulatingthe probability of eah word. Equation 4.3 shows how an ngram language modelomputes the probability of the ith word by the probability of observing it preeeded20



by its n-1 preeding words.
P (w1, ..., wm) =

m
∏

i=1

P (wi|wi−n−1, wi−n−2, ..., wi−1) (2.7)Language models are evaluated using the perplexity measure. Equation 2.8 showsthe de�nition of perplexity whih is based on the ross-entropy of the languagemodel. The de�nition of ross-entropy of a language model is shown in Equation2.9.
PP = 2H(pLM ) (2.8)

H(pLM) = −
1

m

m
∑

i=1

logpLM(wi|wi−n−1, ..., wi−1) (2.9)2.3.4 Word and Phrase PenaltyThe language model is biased towards shorter output, sine adding a word to asentene introdues an extra ngram and therefore inluding it redues the overallprobability of the sentene. A word penalty feature is used in order to allow a systemto ounter-balane the e�ets of this bias towards shorter output.In a similar way, a phrase penalty is used to allow the system to bias towardsusing short or long phrases. Longer phrases might be more reliable than shorterones beause longer phrases ensure that the sequene of words in the English side ofthe phrase is �uent, sine it was previously observed in the training data, omparedto a sequene of words onstruted from several short phrases (Koehn, 2009).2.3.5 Lexialized ReorderingThe word aligned training orpus is used to model reordering for eah phrase pairusing information about how the phrase pair that preedes it in the English textmoved with respet to its position in the foreign text. The following three types ofreordering are allowed in the lexialized reordering model (Koehn, 2009):
• monotone: if the immediately preeding phrase in the English text orresponds21



to the immediately preeding phrase in the foreign text;
• swap: if the immediately preeding preeding phrase in the English text or-responds to the immediate subsequent phrase in the foreign text;
• disontinuous: if the immediately preeding phrase in the English text neitherorresponds to the immediately preeding phrase nor the immediate subse-quent phrase in the foreign text.Equation 2.10 de�nes how the lexial reordering model is omputed using MLE.

po(orientation|f̄ , ē) =
count(orientation, f̄ , ē)

∑

o count(o, f̄ , ē
(2.10)The simpliity of the reordering model in PB-SMT hints at the di�ulty of thetask. The rules that govern what is onsidered a grammatial sequene of words(or grammatial sentene) an di�er dramatially from one language to the next.Even within a single language, the words of a grammatial sentene an often bereordered to form other grammatial sentenes retaining the original meaning.In PB-SMT, all possible ways of reordering words/phrases between a languagepair are divided into three di�erent types. Monotone translation and swap are thetwo main types and any other type of reordering is lassi�ed as disontinuous. Lotsof di�erent types of reordering may be legitimate between the words/phrases of twotranslations, but only monotone and swap are given their own type in PB-SMT,leaving no distintion between all other types of reordering.A major advantage of the statistial MT approah is language pair independene.Coming up with a reliable way of modeling the reordering of words between a spei�pair of languages is a di�ult task in itself, but de�ning a language pair independentmethod of reordering is even more hallenging. The problem is that translatingbetween di�erent pairs of languages will involve di�erent types of reordering, but alanguage pair independent model for reordering must be able to learn what types ofreordering happen for any language pair and when they an be applied.22



A favourable property of SMT via deep syntati transfer is that no reorderingmodel between the soure and target language is neessary, sine translation happensbetween deep syntati strutures and not surfae form sentenes, TL word order isgenerated independently of SL word order.2.3.6 Word AlignmentIn SMT, the alignment funtion a : j → i is used to speify orrespondenes betweena word ej of an English sentene e = (e1, ...ele) with a word fi of a foreign sentenef = (f1, ..., flf ). The speial NULL token is inluded as an extra word in the foreignsentene to provide output to the alignment funtion for English words that have noorresponding foreign words in the translation. Expetation Maximization (EM) isapplied to the IBM Models (Brown et al., 1990, 1993) for automati word alignmenton a sentene-aligned bitext orpus and the Viterbi (most probable) alignment isused as input to phrase extration. The Expetation Maximization Algorithm is asfollows (Koehn, 2009):1. Initialize the model.2. Apply the model to the data.3. Learn the model from the data.4. Iterate Steps 2 and 3 until onvergene.The IBM Models inrease in omplexity by adding phenomena that our betweentranslations of two languages that are inreasingly omplex to model (Koehn, 2009):
• IBM Model 1: lexial translation;
• IBM Model 2: adds absolute alignment model;
• IBM Model 3: adds fertility model;
• IBM Model 4: adds relative alignment model;23



• IBM Model 5: �xes de�ieny.Often between translations of two languages, not only one-to-one alignment o-urs, but also one-to-many, for example �Hausfrau� and �house wife�, many-to-one,for example �stieg um� and �hanged�, and many-to-many, for example �Groÿbritan-nien und Nordirland� and �United Kingdom�. Sine the alignment funtion takesin an English word position and returns a foreign word position, when word align-ment is run in the foreign-English diretion, one foreign word an be aligned withmultiple English words, i.e. the one-to-many alignment of �Hausfrau� and �housewife� is possible, as multiple English words are allowed to have the same outputfrom the alignment funtion. For example, the output ould inlude an alignmentbetween both �house� and �Hausfrau� and �wife� and �Hausfrau�. However, multipleforeign words annot be aligned to a single English word, so running word align-ment in the foreign-to-English diretion annot output both an alignment between�hanged� and �stieg� and �hanged� and �um�. In order to apture suh many-to-onetypes of alignment, automati word alignment is run in the reverse translation dire-tion also. The alignment for the diret translation diretion an then be ombinedwith the alignment for the reverse translation diretion. In addition, by ombiningthe bidiretional word alignment it's possible to attain many-to-many alignments.The most ommonly used method of ombining the bidiretional word alignment(a.k.a. symmetrization) is the grow-diag-�nal algorithm (Koehn et al., 2003) thatstarts with the intersetion and iteratively adds additional alignment points thatneighbour other alignment points and unaligned words.2.3.7 Phrase ExtrationAll phrases onsistent with the word alignment are extrated. The de�nition of aonsistent phrase (Oh et al., 1999; Koehn et al., 2003) is as follows:De�nition 1. A phrase pair (f̄ , ē) is onsistent with an alignment, A, if all words
f1, ..., fn in f̄ that have alignment points in A, have these with words e1, ..., en in ē24



and vie versa:
(f̄ , ē) onsistent with A ⇔

∀ei ∈ ē : (ei, fj) ∈ A ⇒ fj ∈ f̄and ∀fj ∈ f̄ : (ei, fj) ∈ A ⇒ ei ∈ ēand ∃ei ∈ ē, fj ∈ f̄ : (ei, fj) ∈ A

2.3.8 DeodingDeoding a foreign sentene involves a searh for the best translation aording tothe model. The translation proess is arried out in sequene from left to right forthe English output text, with reordering enabled by allowing the input phrases andtheir translations to have a di�erent order.Hypothesis ReombinationAs translation hypotheses (partial translations) are built (from left to right in theoutput sequene) their probability is omputed. During the searh for the besttranslation aording to the model, ertain translation hypotheses will be enoun-tered that annot possibly form part of the highest soring ompleted translation.For e�ieny these translation hypotheses are dropped from the searh. For ex-ample, if multiple translation hypotheses that over the same part of the foreignsentene and produe the same English translation (but were produed by di�erentsets of phrases) are enountered they are reombined by dropping the lower soringhypotheses. In addition, if for multiple translation hypotheses the last n-1 wordsof the English output are the same (when an ngram language model is used), thelower soring hypotheses an be dropped from the searh. Hypothesis reombinationmakes the searh more e�ient by legitimately eliminating hypotheses (throughoutthe searh) that annot form part of the highest soring translation aording to themodel (Koehn, 2009). 25



Heuristi SearhSine the number of possible translations for an input sentene is exponential in sen-tene length, an exhaustive soring of all translations is not possible, and thereforea heuristi searh method is used. Translation hypotheses are organised into staksduring the searh so that when the number of hypotheses gets too large, similarhypotheses (stored in the same stak) an be ompared with one another, and hy-potheses that are less probable an be pruned from the searh (Koehn, 2009). Eahhypothesis stak ontains translation hypotheses that were onstruted by trans-lating a spei� number of foreign words. Two types of pruning ommonly usedare: histogram pruning and threshold pruning. For histogram pruning, a maximumnumber of hypotheses are kept in a stak, so that when this limit is exeeded lowersoring hypotheses are pruned away. Threshold pruning uses a �xed threshold, α,by whih a translation hypothesis is allowed to be worse than the best hypothesis inthe stak. If a translation hypothesis has a probability α times lower than the besttranslation it will be pruned away (Koehn, 2009).Reordering LimitIn order to redue the omputational omplexity of deoding when any reorderingis allowed, when translating phrases out of sequene a reordering limit is imposed,where a maximum of d words may be skipped in the foreign sentene (Koehn, 2009).Future Cost EstimationFuture ost estimation is used in deoding to try to minimise the hane of a lowersoring hypothesis being pruned beause its sore is not really omparable withthe other hypotheses in its stak. For example, if hypothesis1 was produed bytranslating the same number of foreign words as hypothesis2, it's possible that itwill have a lower probability simply beause the foreign words hypothesis1 translatedare di�erent from the foreign words translated in hypothesis2. In order to level upthe playing �eld a bit, for suh ases, a future ost estimate is used that takes into26



aount an estimate of the likely ost of translating the rest of the foreign input foreah translation hypothesis (Koehn, 2009).2.4 Existing Deep Syntax Transfer-based MahineTranslation SystemsIn this setion, we ritially review previous work that uses deep syntax as the inter-mediate representation for transfer in SMT (Riezler and Maxwell, 2006; Bojar and�mejrek, 2007; Bojar and Haji£, 2008; Bojar, 2009). Riezler and Maxwell (2006) usethe LFG f-struture as the intermediate representation in a transfer-based MT sys-tem that, like our own approah, applies standard methods of PB-SMT to deep syn-tati transfer. Bojar and Haji£ (2008), on the other hand, apply the SynhronousTree Substitution Grammar (STSG) formalism of Haji£ et al. (2002); Eisner (2003);�mejrek (2006) to deep syntati transfer MT and use the Tetogrammatial layer(T-layer) of Funtional Generative Desription (Sgall et al., 1986) (FGD), a la-belled ordered dependeny struture, as the intermediate representation for trans-fer. We ontinue with a desription of eah important omponent used by Riezlerand Maxwell (2006) and Bojar and Haji£ (2008), and provide motivation for ourown approah. In addition, where relevant we inlude a omparison of the approahpresented in Menezes and Rihardson (2001).2.4.1 Transfer Rule ExtrationMenezes and Rihardson (2001) arry out transfer rule extration from deep syn-tax parsed bilingual orpora using a ombination of manually and automatiallyonstruted bilingual ditionaries and an alignment grammar that establishes analignment between nodes before extrating transfer rules. Nodes belonging to aspei� part of speeh, suh as noun or verb are allowed to form boundaries of rules.
27



Riezler and Maxwell (2006), on the other hand, automatially align nodes usingGiza++, using the surfae form bitext orpus as input, symmetrizing with grow-diag-�nal and mapping the output onto the deep syntati strutures, before man-ually identifying systemati errors and automatially orreting them. They thenextrat an initial set of transfer rules onstrained by the alignment between nodesand ompute possible ontiguous ombinations of rules, with a maximum numberof 3 primitive rules being used to form a new rule. In addition, a small number ofhand-written transfer rules are used.Bojar and Haji£ (2008) automatially align nodes by �rstly lemmatizing eahside of the orpus and inputting this to Giza++ and use grow-diag-�nal for sym-metrization. Transfer rules are extrated with an upper limit of at most 2 lexializednodes.In our own approah, we arry out word alignment fully automatially and ex-trat all rules onsistent with the node alignment, in order to ahieve high overageof unseen data provided by inluding smaller rules, and to produe TL struturesthat ontain �uent ombinations of words, provided by larger rules that inlude moreontext. We also do not use any manually onstruted transfer rules. The transferdeoder we use is trained fully automatially, as we are interested in learning howto translate for any language pair. We provide an ritial review of the two ruleextration methods losest to our approah, Riezler and Maxwell (2006) and Bojarand Haji£ (2008).LFG F-struture Transfer RulesRiezler and Maxwell (2006) automatially extrat deep syntax transfer rules froma LFG parsed bilingual orpus and use these rules in the transfer step of a parse-transfer-generate pipeline. For rule extration, they automatially word align thesurfae form bitext orpus in both language diretions using Giza and symmetrizethe word alignment using the grow-diag-�nal algorithm (desribed in Setion 2.3.6).They then map the resulting word alignment onto the f-strutures resulting in eah28
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Figure 2.4: Word-aligned example f-struture pair taken from Rie-zler and Maxwell (2006)loal f-struture for both languages being aligned to between zero and many loalf-strutures. Figure 2.4 shows an example aligned f-struture pair for the German-English sentene pair: �Ih bin zutiefst dankbar dafür.� - �I have a deep appreiationfor that.�. They then extrat all possible rules that omply with Contiguity Con-straints 1 and 2:Contiguity Constraint 1. Soure and target f-strutures are eah onneted.Contiguity Constraint 2. F-strutures in the transfer soure an only be alignedwith f-strutures in the transfer target and vie-versa.Applying Contiguity Constraints 1 and 2 to the example f-struture pair shown inFigure 2.4 results in the set of primitive transfer rules shown in Figure 2.5. Transferrules an ontain variables, Xi, in either side used for mapping arguments in theSL to their orret position in the TL f-struture during translation. Riezler andMaxwell (2006) impose a limit of at most three primitive rules ombining to form aomplex rule to redue the worst-ase number of rules extrated from exponentialto quadrati. Figure 2.6 shows a omplex rule formed from two primitive rules ofFigure 2.5.The Contiguity Constraints de�ned in Riezler and Maxwell (2006) are a goodstarting point for transfer rule extration, however, an analysis of the transfer rulesit produes for di�erent sentene pairs provides motivation for providing a newde�nition for rule extration. 29
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[PRED deep]X0





















(d) [PRED dafür]
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PRED forOBJ [PRED that]Figure 2.5: Primitive transfer rules produed by applying ContiguityConstraints 1 and 2 of Riezler and Maxwell (2006) to f-struture in Figure 2.4









PRED seinSUBJ [PRED ih]XCOMP X0
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PRED haveSUBJ [PRED I]OBJ X0







Figure 2.6: Complex Transfer of Riezler and Maxwell (2006) on-struted from primitive transfer rules in Figure 2.5(a)and 2.5(b)
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The Contiguity Constraints are based on the de�nition of a onsistent phrase inPB-SMT (desribed in Setion 2.3.7). However, the Contiguity Constraints di�erfrom the PB-SMT onsistent phrase de�nition, in that they do not ensure that atransfer rule ontains at least one aligned pair of nodes (in PB-SMT this orrespondsto the part of De�nition 1 of a onsistent phrase that states that a onsistent phraseinludes at least one alignment point). This part of the de�nition of a onsistentphrase in PB-SMT ensures a onsistent phrase annot be empty on either side andthat unaligned words in soure and target do not form phrases on their own. Forexample, Figure 2.7 shows the f-strutures for the sentene pair �Der Mitarbeiter desMonats hat Marie ja gern.� - �The employee of the month likes Marie.� ontainingunaligned words haben, ja and of. Applying the Contiguity Constraints to this f-struture pair results in a set of primitive transfer rules whih inludes, for example,the two transfer rules shown in Figure 2.8, where the LHS of the transfer rule isempty, and Figure 2.9, where a pair of unaligned words in soure and target form anerroneous transfer rule. Allowing transfer rules with an empty LHS is undesirable,beause any suh rule an be applied to any SL struture and would result in thepossibility of adding any unaligned word of the target side of the orpus to alltranslations. Other deep syntax approahes that allow empty-sided transfer rulesinlude Buh-Kromann (2007).Another problem with the Contiguity Constraints is that they do not onstrainthe introdution of variables to transfer rules and subsequently allow transfer rulesthat ontain singleton variables. A singleton variable is a variable that appears inone side of a transfer rule but not the other. For example, for the f-struture pair inFigure 2.7 the transfer rule in Figure 2.10 whih ontains the singleton variables X0and X2 is allowed by the Contiguity Constraints. A transfer rule with a singletonvariable in the LHS will produe a fragmented TL struture, in the RHS will produea missing argument in the TL struture.Although the Contiguity Constraints of Riezler and Maxwell (2006) are su�ientfor apturing some types of translational divergene that an exist between the f-31
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Figure 2.7: Example f-struture pair with unaligned loal f-strutures for the sentene pair �Der Mitarbeiter desMonats hat Marie ja gern.�. and �The employee of themonth likes Marie.�
{} →

[PRED of]Figure 2.8: Transfer rule with empty LHS extrated from f-struturepair of Figure 2.7 that omplies with Contiguity Con-straints 1 and 2 of Riezler and Maxwell (2006)strutures of a sentene pair, like in the argument swithing example shown in Figure2.4, when head-swithing ours aross an f-struture pair, some erroneous transferrules are allowed. For example, the f-struture pair shown in Figure 2.7 ontainsan example of head-swithing: the loal German f-struture with prediate Mariehas haben as its head, whereas the orresponding loal English f-struture Mariehas like as its head, and haben 6= like. From this example, the transfer rule shownin Figure 2.11 results. This transfer rule does not e�etively transfer the SL loalf-struture to the orret position in the TL struture.This analysis motivates us to provide a new de�nition for onsistent transferrules, desribed later in Setion 3.3.2.FGD T-Layer Transfer RulesBojar and Haji£ (2008) use the term treelet pair to desribe transfer rules and de�nea treelet pair, t1:2, as a tuple (t1, t2, m) where:32



[PRED ja] →

[PRED of]Figure 2.9: Example erroneous transfer rule extrated from f-struture pair of Figure 2.7 that omplies with Conti-guity Constraints 1 and 2 of Riezler and Maxwell (2006)
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Figure 2.10: Example transfer rule ontaining singleton variables ex-trated from f-struture pair of Figure 2.7 that om-plies with Contiguity Constraints 1 and 2 of Riezlerand Maxwell (2006)
[PRED gern] →















PRED likeSUBJ X0OBJ X1













Figure 2.11: Example erroneous transfer rule extrated from f-struture pair of Figure 2.7 that omplies with Contigu-ity Constraints 1 and 2 of Riezler and Maxwell (2006)
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• t1 and t2 are soure and target language treelets, respetively;
• m is a one-to-one mapping between frontier nodes in t1 and t2.Given a set of states, Q, and a set of word labels, L, a treelet, t, is de�ned as a tuple

(V, V i, E, q, l, s) where
• q ∈ Q is the root state of the treelet;
• V is a set of nodes;
• V i is a non-empty set of internal nodes, suh that V i ⊆ V ;
• V f is a set of frontier nodes, suh that V f = V \ V i;
• E ⊆ V i × V is a set of direted edges forming a direted ayli graph;
• l: V i → L, where L is a set of labels;
• s: V f → Q.A synhronous derivation δ = {t01:2, t

1
1:2, ..., t

k
1:2} onstruts a pair of dependenytrees, (T1, T2), by

• attahing treelet pairs t01:2,...,tk1:2 at orresponding frontier nodes;
• ensuring that the root states of the attahed treelet pairs mathes the frontierstates of the orresponding frontier nodes.In order to diretly ompare the deep syntax transfer rules of Riezler and Maxwell(2006) and Bojar and Haji£ (2008), onsider the following example German to En-glish translations of Johannes mag Marie (John likes Mary) and Marie mag Jo-hannes (Mary likes John). Figures 2.12(a), 2.12(b) and 2.12() show Riezler andMaxwell (2006) transfer rules for translating the German words mögen, Johannesand Marie into English, Figures 2.12(d), 2.12(e) and 2.12(f) show STSG rules fortranslating the same German words and Figures 2.12(g) and 2.12(h) show the deepsyntax strutures for the German sentenes Johannes mag Marie and Marie mag34



Figure 2.12: Riezler and Maxwell (2006) and STSG Deep SyntaxTransfer Rules Comparison
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Johannes and their translations. Eah STSG rule has a single start node and 0-to-many frontier nodes. Both start nodes and frontier nodes eah have a state andwhen two rules are used to translate two adjoining piees of SL struture, the frontierstate and start state where the rules join are required to unify with eah other. Forexample, when the STSG rules of Figures 2.12(d), 2.12(e) and 2.12(f) are used totranslate the German struture shown in Figure 2.12(g), for Johannes mag Marie,the respetive frontier states of rule 2.12(d) (SUBJ and OBJ) must math the startstates of the adjoining rules 2.12(e) (SUBJ) and 2.12(f) (OBJ). For example, sinerule 2.12(d) has frontier node SUBJ0 with state SUBJ , the start state of the rule2.12(e) used to translate Johannes must also be SUBJ .The onstraint on frontier nodes and start nodes mathing one another is notused in Riezler and Maxwell (2006). Constraining the use of rules via states, as isdone in STSGs, means that the rules annot be used in as many ases for unseenstrutures. For example, when translating the German struture shown in Figure2.12(h) for Marie mag Johannes the STSG rules of Figures 2.12(d), 2.12(e) and2.12(f) are not su�ient to translate the struture sine the state labels of rules2.12(f) (OBJ) and 2.12(e) (SUBJ) do not math the respetive frontier states ofrule 2.12(d) (SUBJ and OBJ), whereas the less onstrained rules shown in Figures2.12(a), 2.12(b) and 2.12() are su�ient for translating the same struture.5In STSG, orresponding pairs of frontier nodes in the soure and target side of atransfer rule are not required to have mathing states and this enables the rules toapture ertain translational divergene phenomena between deep syntax strutures,suh as argument-swithing. For example, Figure 2.13(a) shows an example trainingpair that ontains argument-swithing. Figure 2.13() shows a STSG rule that or-retly transfers the arguments by swithing the subjet and objet when translatingthe verb gefallen to like. Figure 2.13(b) shows the equivalent rule of Riezler andMaxwell (2006) whih an also transfer the divergent struture orretly.Bojar and Haji£ (2008) only allow rules that have a one-to-one mapping between5Bojar and Haji£ (2008) investigate e�ets of relaxing this STSG onstraint.36



Figure 2.13: Example rules of Riezler and Maxwell (2006) and STSGboth apturing argument-swithing
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Figure 2.14: Erroneous STSG rules aused by head-swithingfrontier nodes, thus eliminating rules that ontain singleton variables, unlike Riezlerand Maxwell (2006). In addition, in ontrast to Riezler and Maxwell (2006), Bojarand Haji£ (2008) add the onstraint that a rule must ontain at least one internalnode, thus eliminating rules with one side empty.Bojar and Haji£ (2008) state that their method of extrating STSG rules shouldonly be applied to struture pairs that have a ertain degree of isomorphism. Forexample, Figure 2.14(a) shows two possible strutures where translational equivalentnodes are labelled a and a′, in whih head-swithing takes plae aross the pair ofstrutures for node b, b′, c and c′. The erroneous transfer rules shown in Figures2.14(b) and 2.14() would result aording to the de�nition in Bojar and Haji£(2008), if suh a struture is found in training.This analysis of previous work for automati extration of deep syntax transferrules motivates a new de�nition for onsistent transfer rules we provide later inSetion 3.3.2. Our de�nition an be applied to both isomorphi and non-isomorphideep syntax struture pairs without produing erroneous rules and disallows empty-sided rules. In addition, our method follows the approah of Riezler and Maxwell(2006) and does not onstrain the use of rules during translation via frontier states.38



2.4.2 Translation ModelsBoth Riezler and Maxwell (2006) and Bojar and Haji£ (2008) use a log-linear om-bination of feature funtions as their translation model. The features used by bothRiezler and Maxwell (2006) and Bojar and Haji£ (2008) are as follows:
• deep syntax translation model (both language diretions);
• deep syntax language model;
• deep syntax phrase penalty: the number of transfer rules used to onstrutthe target struture;
• deep syntax word penalty: the number of nodes in the target struture;
• surfae form language model.Additional features used in Riezler and Maxwell (2006) are:
• deep syntax lexial weighting (both language diretions);
• the number of transfer rules with frequeny 1;
• the number of default transfer rules;6
• number of onstituent movements during generation based on the originalorder of the head prediates of the onstituents;
• number of generation repairs;
• number of words in the generated string;Additional feature used in Bojar and Haji£ (2008) is:
• STSG synhronous derivation probability model.The following is a list of the features we adopt from Riezler and Maxwell (2006)and Bojar and Haji£ (2008) in our own approah and the motivation for doing so:6A default transfer rule transfers a SL word as itself.39



• deep syntax translation model (both language diretions): this is essentiallythe translation model of PB-SMT applied to deep syntax;
• deep syntax language model: to help produe �uent ombinations of words inTL strutures;
• deep syntax phrase penalty: used for reasons similar to the motivation forusing a phrase penalty in PB-SMT, so that larger rules an be preferred whihhelps produe �uent ombinations of words in TL strutures;
• deep syntax word penalty: to ounter-balane the bias of the deep syntaxlanguage model toward smaller output strutures;
• deep syntax lexial weighting: as a bak-o� to the translation model as itprovides a riher model and better statistial estimates;
• surfae form language model: to model �ueny in the surfae form string aftergeneration;Besides these, we also use some additional features and these are disussed in detailin Chapter 4.Deep Syntax Language ModelsSome of the features used in Bojar and Haji£ (2008) and Riezler and Maxwell (2006)are applied during deoding (when the TL deep syntati struture is onstruted)and some later after generation of the TL string. The features used during deodinghave most in�uene over the �nal output. The deoding features in�uene what partof the immense searh spae is reahed by the heuristi searh and subsequently theydetermine the ontent of the n-best list of TL strutures. If an important featureis not used during deoding, like the language model for example, this is likely toresult in early elimination of good TL output strutures. Bojar and Haji£ (2008) usea deep syntax language model during deoding, while Riezler and Maxwell (2006)only apply their deep syntax language model after deoding on the n-best target40



Deep Syntax Struture Prediates Strings<s > <s > <s > <s >jog jog jog joghe on he on on<\s > day <\s > day dayold rainy old rainy<\s > <\s > <\s > <\s >Figure 2.15: Example deep syntax struture for �He jogs on oldrainy days.� where strings of prediates from root tofrontier auses inorret ngram ountslanguage strutures. The approah of Bojar and Haji£ (2008), using a languagemodeling during deoding, is preferable as this feature helps guide what part ofthe searh spae is reahed and in�uenes the quality of the n-best TL strutures.If �ueny is not taken into aount during the searh it is left to hane that then-best list of TL strutures will ontain any strutures that are �uent ombinationsof words.In addition, the method presented in Riezler and Maxwell (2006) for omput-ing the deep syntax language model probability will produe an inorret result forertain strutures. Riezler and Maxwell (2006) use �the log probability of stringsof prediates from root to frontier of target f-struture, estimated from prediatetrigrams in English f-strutures� to ompute the deep syntax language model prob-ability for TL strutures. For strutures ontaining some unary branhing followedby branhing of arity greater than one, the language model probability will be in-orret. Figure 2.15 shows the deep syntax struture for the English sentene �Hejogs on old rainy days.� that ontains unary branhing for the node sequene jog-on-day. If the language model probability is omputed by simply ombining theprobability of the individual strings of prediates from root to frontier of the deepsyntax struture, then, for example, p(day|jog on) will be inluded twie and theoverall probability estimate will be inorret.41



For deep syntax language modeling, our own approah follows the approah ofBojar and Haji£ (2008) and uses a deep syntax language model during deoding,but we inlude more ontext in our model by using a trigram deep syntax languagemodel as opposed to the bigram model of Bojar and Haji£ (2008). In addition, whenomputing the deep syntax language model during training and when estimatingthe probability of TL strutures during deoding, we ensure that no ngrams aredupliated, as in Riezler and Maxwell (2006), to avoid misalulating deep syntaxlanguage model probability estimates for some TL strutures. We further desribehow we arry out deep syntax language modeling in Setion 4.5.2.5 Other Syntax-Based SMT ApproahesIn our disussion, we fous on related work that uses deep syntax in SMT. A greatdeal of work has been arried out using other kinds of syntati formalisms for MTalso. For example, Galley et al. (2004) use a theory that gives formal semantis toword level alignments to introdue an algorithm that derives the minimal set of syn-tatially motivated transformation rules that explain human translation data, whileChiang (2007a) de�nes a hierarhial phrase-based mahine translation model thatahieves sophistiated reordering by allowing sub-phrases ontained within largerphrases to be replae by a non-terminal in the soure and target language. Zollmannand Venugopal (2006), on the other hand, use hart parse deoding that operates onphrase tables augmented with TL syntati ategories. They parse the TL side ofthe bilingual orpus with a phrase struture grammar and align them with phrasetable latties for orresponding soure sentenes. They use tehniques to augmentand generalize the phrase table by aligning SL phrases with TL syntati ategoriesto produe a synhronous bilingual grammar. Costs are assigned to the synhronousontext free grammar using a log-linear model with weights optimized via MERT,and the following features: lexial weights, relative frequenies of rules, number ofrule appliations, number of TL words, rule type �ags as well as a rareness and42



unbalanedness penalty. Liu et al. (2006) use a syntax-based Tree-to-string Align-ment Template (TAT) model that is automatially extrated from aligned parallelorpora that has been parsed on the soure side, while Maru et al. (2006) de�ne amahine translation model that uses syntati�ed target language phrases.2.6 ConlusionThis hapter introdued the relevant theories behind our approah, suh as LFG andPB-SMT, and also provided a disussion of previous researh into ombining deepsyntax and SMT tehniques. The hapter provided a detailed analysis of Riezlerand Maxwell (2006) and Bojar and Haji£ (2008) omparing how the two piees ofwork use similar or di�erent tehniques and what parts we adopt in our own workand our motivation for doing so. The hapters that follow desribe in detail how weombine tehniques from PB-SMT with deep syntax.
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Chapter 3
Deep Syntax Transfer Rules
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3.1 IntrodutionIn this hapter, we desribe a method of automatially extrating transfer rulesfrom deep syntax parsed bitext orpora. A deep syntax transfer rule translates asnippet of SL deep syntati struture into a orresponding TL struture snippet.Our approah aims to extrat appropriate transfer rules from both isomorphi andnon-isomorphi strutures. We provide a de�nition of onsisteny for extratingdeep syntax transfer rules that ahieves this in a similar way to the method usedto extrat phrases in PB-SMT, by �rstly establishing an alignment between nodesbefore extrating all rules onsistent with this alignment. Sine our de�nition ofonsisteny allows up to an exponential number of rules to be extrated per trainingpair we also provide e�ient methods of extrating and storing large numbers ofrules.3.2 Deep Syntax Transfer RulesAs in Riezler and Maxwell (2006), the transfer rules in our own work are omposedof a LHS and RHS snippet of deep syntati struture.1 Eah side of a transferrule is made up of at least one lexialized node and zero or more non-lexializednodes. Lexialized nodes are labeled with their prediate value and a set of atomifeature-value pairs, whereas non-lexialized nodes are indexed variables, Xi, usedfor transferring the arguments of a SL lexialized node to the orret position in theTL struture. The dependeny relations between the nodes of the deep syntatistruture are present as labels on the ars of the dependeny graph. Figure 3.1shows an example German to English transfer rule, extrated from deep syntatistrutures for the sentene pair �Er kommt gut voran.� and �He is progressingniely.�, in whih the LHS ontains a single lexialized node with prediate value(voran)kommen with two arguments, a subjet (X0) and an adjunt (X1) and the1Sine we use the underlying graph struture of deep syntati strutures to hypothesize transferrules, we illustrate eah side of a rule as a graph as opposed to AVMs, as in Riezler and Maxwell(2006). 45



RHS onsists of a single lexialized node with prediate value progress and a subjet(X0) and objet (X1) argument. This rule transfers between isomorphi piees of SLand TL struture, sine the labeled graph struture and variables are idential inboth sides of the rule. Figure 3.1(b), on the other hand, aptures a non-isomorphiorrespondene, extrated from the deep syntati strutures of the sentene pair�Wir halten das für gut.� and �That is good.�, in whih the translation involves adegree of paraphrasing. The LHS of the rule has German prediate halten as its rootwith three arguments, a subjet, the lexialized node with prediate pro (representinga pronoun), an objet (X0) and an xomplement-prediate, the lexialized node withprediate für and objet X1. The RHS of the rule has be as its root with twoarguments, a subjet (X0) and an xomplement (X1).3.3 Transfer Rule ExtrationThe �rst step in transfer rule extration is to automatially align the nodes of eahpair of deep syntati strutures in the training orpus. Any method of automatinode alignment an be used. Here, we provide motivation for and desribe onemethod of automatially aligning the nodes of deep syntati strutures.3.3.1 Automati Node-Level Alignment of Deep SyntatiStruturesSine our main interest is to build a system that automatially learns how to trans-late from one language to another for any language pair, we arry out node-levelalignment fully automatially (Bojar, 2009), unlike other approahes that use bilin-gual ditionaries for translating lexial items (Carl, 2007), or approahes that arryout automati word alignment, before manually deteting systemati errors andautomatially orreting them (Riezler and Maxwell, 2006).Figure 3.2 shows how Riezler and Maxwell (2006) arry out automati alignmentof the nodes of the deep syntati strutures in the bitext training orpus by �rstly46



Figure 3.1: Example transfer rules: extrated from sentene pairs(a) �Er kommt gut voran.� and �He is progressingniely.� and (b) �Wir halten das für gut.� and �Thatis good.�
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running Giza++ (Oh et al., 1999) on the surfae form bitext orpus to produe analignment between surfae form words, then parsing eah side of the orpus beforeapplying the surfae form word alignment to the nodes of the deep syntati stru-tures.2 Carrying out word alignment on the surfae form bitext orpus, however,does not take full advantage of the more language independent representation ofthe training data, i.e. the deep syntati strutures. In addition, previous workon German to English word alignment has shown that word alignment performaneis improved when in�etional morphology is normalized (Corston-Oliver and Gam-mon, 2004). Instead of arrying out word alignment on the surfae form orpus,in our own approah, we run automati word alignment on a version of the bitextorpus that is reonstruted from the deep syntax parsed training orpus.Figure 3.3 shows a step-by-step illustration of how we reonstrut the bitext.The original surfae form bitext, shown in Figure 3.3(a), is �rstly parsed, Figure3.3(b), then the prediate value of eah node in the struture pair is extrated,Figure 3.3(), with prediates ordered in eah sentene aording to a depth-�rsttraversal of the deep syntati struture.3 For example, the order of the prediatesin the reonstruted orpus of the German struture in Figure 3.3(b) is verlierenhersteller kannen öl die shlüssel ihre. The reonstruted bitext is then input toGiza++ (Oh et al., 1999) and automati word alignment is run in both languagediretions. The output is then input to Moses (Koehn et al., 2007) to omputethe symmetrization of the bidiretional alignment, Figure 3.3(d). For example, theintersetion of the bidiretional word alignment an be used, as it yields a reliableone-to-one alignment between nodes. Finally, the alignment is applied to the deep2Note that in our examples from LFG ontaining the de�nite artile, for example the de�niteartile belonging to Hersteller in Figure 3.2(), all instanes of the de�nite artile are representedby the prediate die.3In order for the depth-�rst traversal not to loop if a struture ontains instanes of reentranyor argument sharing we temporarily ignore these dependenies when reonstruting the orpusfrom the strutures. In addition, although loal f-strutures are unordered, in the Prolog-enodedf-strutures produed by the parser loal f-strutures are ordered in a systemati way, for example,for transitive verbs, the onstraint that spei�es that a word has a subjet will appear before theonstraint for its objet. We take advantage of this and use the order of the arguments produedby the parser when doing the depth-�rst traversal for word-alignment.48



Figure 3.2: Automati Alignment of Deep Syntati StruturesNodes in Riezler and Maxwell (2006)49



syntati strutures, Figure 3.3(e).The advantages of arrying out alignment on the deep syntax orpus as opposedto the surfae form orpus are as follows; (i) auxiliary verbs are not present in thedeep syntax orpus and sine we do not need to align them, inluding them inthe input to automati alignment unneessarily inreases the number of words thatmust be automatially aligned, (ii) the words in the deep syntax bitext are in lemmaform and sine this is a more general representation than the surfae form it shouldhelp with data-sparseness problems, (iii) German ompound nouns are resolved totheir omponent nouns in the deep syntax orpus, whih should orrespond betterto English words. In Chapter 6 we arry out an experimental omparison betweenthese two methods of alignment.3.3.2 Consistent Transfer RulesAs in Phrase-Based SMT, where a word alignment for eah example sentene pairis �rst established before all phrases onsistent with the word alignment are ex-trated (Oh et al., 1999; Koehn et al., 2003), we extrat all transfer rules that areonsistent with the node alignment. For eah deep syntax training pair, the ruleextration algorithm uses the underlying graph struture, as well as an alignmentbetween nodes of the struture pair, to extrat all transfer rules onsistent with thenode alignment.We de�ne a onsistent transfer rule using a simpli�ation of the atual trainingdeep syntati strutures and temporarily onsider them as tree strutures by ignor-ing (i) ars that ause yles in the graph and (ii) ars that share an end node withanother ar. For example, if the subjet of node A is also the subjet of node B,one of these ars is ignored temporarily. This is done by labeling the nodes using aninreasing index in depth �rst order.4 Then ars with an end node label less thantheir start node are ignored.Consistent Rule De�nition 1. Given an alignment, A, between nodes in depen-4Labeling is arried out by the parser. 50



Figure 3.3: Automati Alignment of Deep Syntati StruturesNodes 51



deny pair (F,E), (f, e) is a rule onsisting of nodes (Nf , Ne), rooted at (rf , re),with desendents (Df , De) of rf and re in F and E respetively, if
Nf = rf ∪Df

∧

Ne = re ∪De

∧

∀fi ∈ Nf : (fi, ej) ∈ A → ej ∈ Ne

∧

∀ej ∈ Ne : (fi, ej) ∈ A → fi ∈ Nf

∧

∃ej ∈ Ne : (rf , ej) ∈ A

∧

∃fi ∈ Nf : (fi, re) ∈ A

Consistent Rule De�nition 2. For any rule (f, e) in dependeny pair (F,E)rooted at (rf , re) onsisting of nodes Nf and Ne, where (s, t) is also a rule in (F,E)rooted at (rs, rt) onsisting of nodes Ns and Nt where rs 6= rf , rt 6= re, if rs ∈ Nfand rt ∈ Ne then there is a rule (a, b) rooted at (rf , re) with nodes rs and rt replaedby variable xk, where k is an index unique to the transfer rule, onsisting of nodes:
Na : (Nf\Ns) ∪ xk

Nb : (Ne\Nt) ∪ xkDe�nition 1 applied to a deep syntati struture pair produes a set of ini-tial rules ontaining no variables by identifying pairs of spanning subtrees withinthe pair of strutures that orrespond to one another aording to the alignmentbetween nodes. Figure 3.4 shows a node-aligned pair of deep syntati struturesfor the sentene pair �Der Herr des Hauses hat die Mehrheit bei der Abstimmungbekommen� - �The boss of the house reeived a majority vote�, with aligned nodeslabeled by the same index number. 5 Figure 3.5 shows all pairs of spanning subtreesfor the strutures that form rules aording to De�nition 1 and Figure 3.6 showsthe initial set of transfer rules identi�ed by applying De�nition 1 to the deep syn-tati struture pair of Figure 3.4. For example, the pair of spanning subtrees5In the example, aligned nodes of the deep syntati struture pair are in a one-to-one alignmentbut many-to-one and one-to-many alignment is also possible52



Figure 3.4: Example node-aligned deep syntati struture pair forsentenes �Der Herr des Hauses hat die Mehrheit bei derAbstimmung bekommen� - �The boss of the house reeiveda majority vote� with pairs of aligned nodes labeled bymathing id numbers.

Figure 3.5: All spanning subtrees identi�ed by De�nition 1, illus-trated as linked trapezoids, for deep syntati struturepair of Figure 3.4 53



Figure 3.6: Initial set of transfer rules identi�ed by De�nition 1 fordeep syntati struture pair in Figure 3.4
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Figure 3.7: Potential transfer rule from deep syntati strutures inFigure 3.4 eliminated by onstraint of De�nition 1 inwhih root nodes in eah side of transfer rules are eahaligned nodesontaining nodes Mehrheit and die in German and majority in English form a ruleaording to De�nition 1, where both spanning subtrees ontain the same alignmentpoints. There is no rule produed by De�nition 1 rooted at nodes Abstimmung andvote beause the spanning subtrees rooted at this pair of nodes do not ontain thesame set of alignment points, i.e. the following part of De�nition 1 is not true forthe spanning subtree due to the alignment between nodes Mehrheit and majorityviolating ∀ej ∈ Ne : (fi, ej) ∈ A → fi ∈ Nf .The onstraints inluded in De�nition 1, enforing eah root node of the spanningsubtrees that form a rule to eah be an aligned node, disallow an unaligned node tobe the root node of an initial rule and subsequently ause eah unaligned node inthe training pair to remain always adjoined to its head. Figure 3.7 shows a potentialtransfer rule that ontains the same set of aligned nodes but is ruled out by thisonstraint, due to the root node of the English struture of being an unalignednode. Sine of is unaligned, it will only be part of a rule also ontaining its headin the English struture boss. This onstraint also eliminates rules with one emptyside and erroneous rules that transfer any unaligned node in the soure strutureto any unaligned node in the target struture, whih is undesirable for reasons wedesribed in Setion 2.4.1.The onstraint on root nodes of transfer rules eah being an aligned node doesnot mean that pairs of root nodes must align with eah other, however. This al-55



Figure 3.8: Deep syntati struture pair for sentenes �Johnshwimmt gern.� and �John likes to swim.� where head-swithing ours between shwimmen and gern in Ger-man and like and swim in English, aligned nodes arelabeled with the same id numberlows De�nition 1 to still yield appropriate rules when head-swithing ours withina pair of strutures. For example, Figure 3.8 shows the deep syntati struturesfor the sentene pair �John shwimmt gern.� and �John likes to swim.� in whihhead-swithing ours between shwimmen and gern in German and like and swimin English. The spanning subtrees rooted at shwimmen and like form a rule byDe�nition 1 sine the spanning subtrees rooted at eah node ontain the same align-ment points and shwimmen and like are eah aligned nodes (even though they arenot aligned to eah other).De�nition 2 yields additional transfer rules by allowing a rule that is nestedwithin a larger rule to be replaed by a single variable, Xi, in the LHS and RHS.Sine the initial set of rules produed by De�nition 1 are orresponding spanningsubtrees, we an legitimately replae any pair of subtrees with a variable. As weshowed in Setion 2.4.1, the alternate method of introduing variables to transferrules used in Riezler and Maxwell (2006) and Bojar and Haji£ (2008) that allowsany pair of aligned nodes to be replaed by a variable produes erroneous transferrules when head-swithing or other kinds of non-isomorphism exists between a pair56



Figure 3.9: All transfer rules rooted at node pair Herr and boss forstrutures of Figure 3.4of strutures. Figure 3.9 shows all transfer rules for the deep syntati struturesof Figure 3.4 rooted at the nodes Herr and boss produed by De�nition 1 andDe�nition 2.ComplexityOur motivation for extrating all rules onsistent with the node alignment is similarto that of PB-SMT, where all phrases onsistent with the word alignment are ex-trated: smaller rules help to ahieve high overage of unseen data (i.e. unseen SLdeep syntati strutures) and larger rules provide �uent ombinations of TL words.The number of transfer rules produed by our de�nition for a rule onsistent with57



the node alignment is onstrained by both the number of aligned nodes in the deepsyntati struture pair and the level of isomorphism between the two strutures. Ingeneral, the more isomorphi the pair of strutures and the more nodes aligned thehigher the number of rules. In the worst ase, when we have isomorphi strutures,the number of rules is exponential in the number of aligned nodes. Even though upto an exponential number of rules is produed by our de�nitions of onsisteny, weprovide an algorithm for extrating all rules onsistent with the node alignment thatis O(a2log a) in omputational omplexity, where a is the number of aligned nodes.We also provide a method of storing all onsistent rules in a linear size data stru-ture. In the following setion we desribe the method we use to e�iently extratand store large numbers of transfer rules.3.4 Paked Transfer RulesDeep syntati strutures an be stored as a set of onstraints with eah node ofthe struture labeled by an index number. Figures 3.10(a) and 3.10(b) show twoexample LFG f-strutures for the sentene pair �Sprahen spiegeln die Vielfalt derEuropäishen Union wider� and �Languages re�et the diversity of the EuropeanUnion� displayed as AVMs and graph strutures, respetively, and Figure 3.10()shows the pair enoded as two sets of onstraints.6Deep syntax transfer rules an be enoded in a similar way by enoding eahside of the rule as a set of onstraints, but instead of labeling the nodes with indexnumbers, eah pair of aligned nodes is labeled with a variable, Xi. Figure 3.12 showsthe transfer rule in Figure 3.11(f) enoded as two sets of onstraints.For eah training pair of deep syntati strutures there an exist up to an ex-ponential number of onsistent transfer rules. Our method of paking transfer rulestakes advantage of the fat that multiple rules extrated from the same deep syn-tati struture pair will have onstraints in ommon. For example, Figure 3.11(a)6Atomi features are not shown. 58



Figure 3.10: (a) LFG f-strutures for the sentene pair �Sprahenspiegeln die Vielfalt der Europäishen Union wider.�and �Languages re�et the diversity of the EuropeanUnion� as (a) AVMs, (b) graph strutures and () on-straints.
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Figure 3.11: Example Transfer Rules: A subset of the transfer rulesautomatially extrated from training f-struture pairshown in Figure 3.10.60



pred(X1,spiegeln) pred(X1,reflet)subj(X1,X2) → subj(X1,X2)obj(X1,X3) obj(X1,X3)Figure 3.12: Example onstraint-based enoding for transfer rule ofFigure 3.11(f)pred(X1,`spiegeln')subj(X1,X2)obj(X1,X3)topi(X1,X2)prt-form(X1,wider)pred(X2,`Sprahe')pred(X3,`Vielfalt')det(X3,X4)adj-gen(X3,X5)pred(X4,`die')pred(X5,`Union')det(X5,X6)adjunt(X5,X7)pred(X7,`europäish')pred(X6,`die')
→

pred(X1,`reflet')subj(X1,X2)obj(X1,X3)pred(X2,`language')pred(X3,`diversity')det(X3,X4)adjunt(X3,X8)pred(X4,`the')pred(X8,`of')obj(X8,X5)pred(X5,`European Union')det(X5,X6)pred(X6,`the')Figure 3.13: Constraints enoding transfer rule of Figure 3.11(a)shows a transfer rule that maps the entire SL struture to the entire TL stru-ture and Figure 3.13 shows the onstraints that enode the rule.7 Every other ruleextrated from the same deep syntati struture pair will onsist of a subset ofthis set of onstraints and storing eah subsequent rule separately will therefore in-volve dupliating the onstraints already reorded for this rule. Sine the numberof transfer rules that an be extrated from a given deep syntati struture pair isexponential in the number of aligned nodes, storing transfer rules by enumeratingeah rule separately is ine�ient. All onsistent transfer rules an be paked intoa single struture in whih eah onstraint of the training pair of strutures is onlyreorded one reduing the amount of spae required from exponential to linear inthe number of nodes.7Atomi feature onstraints are not shown.
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3.4.1 Paked Transfer Rule Data StrutureThe paked transfer rule data struture stores all rules onsistent with the nodealignment that are extrated from the same training deep syntati struture pairin a single struture. We adopt a method of enoding, ontextualized onstraints,used in LFG parsing to improve the e�ieny of proessing disjuntive onstraintsof a grammar, that simplify the enoding of grammatial possibilities by allowingdisjuntive statements as onstraints (Maxwell and Kaplan, 1991). For example, thefollowing disjuntive onstraint, taken fromMaxwell and Kaplan (1991), enodes thefat that the value of the atomi feature ase for the German word die an be eithernominative or ausative:ase( die, nom) ∨ ase( die, a)When a sentene, to whih this rule of the grammar applies, is parsed the pakedf-struture representation will enode the two possibilities for the word die as on-textualized onstraints with an additional statement that signi�es an exlusive dis-juntive relation between the onstraints labeled by the ontext variables. Forexample, Figure 3.14 shows the onstraints for the German word die where theontext variables, A2 and A3, label the two alternate onstraints for ase withthe relation between the two onstraints enoded by hoie([A2,A3℄,1). To ex-trat a single f-struture from the paked representation a binary value is assignedto these ontext variables, where 1 signi�es that the onstraint labeled by theontext variable is inluded in the extrated f-struture and 0 signi�es the on-trary, that the onstraint is not inluded in the extrated f-struture, and thepresene of hoie([A2,A3℄,1) restrits the possible ombinations of values to
{A2 = 1, A3 = 0} and {A2 = 0, A3 = 1}.In a similar way, we use ontextualized onstraints to enode all transfer rulesextrated from the same training struture pair by de�ning a ontext for a pakedrule that determines under what irumstanes eah onstraint is inluded or ex-luded from a given transfer rule. The entire set of SL onstraints forms the LHS of62



pred(A1,0,die)ase(A2,0,nom)ase(A3,0,a)hoie([A2,A3℄, 1)Figure 3.14: Contextualized onstraints in f-struture enoding thepossibility of ase having value nominative or a-usative for the German word �die�pred( A0,X1,`spiegeln')subj( A0,X1,X2)obj( A0,X1,X3)topi( A0,X1,X2)pred( A1,X2,`Sprahe')pred( A2,X3,`Vielfalt')det( A2,X3,X4)adj-gen(A2,X3,X5)pred( A3,X4,`die')pred( A4,X5,`Union')det( A4,X5,X6)adj( A4,X5,X7)pred( A5,X6,`die')pred( A4,X7,`europäish')
→

pred( A0,X1,`reflet')subj( A0,X1,X2)obj( A0,X1,X3)pred( A1,X2,`language')pred( A2,X3,`diversity')det( A2,X3,X4)adj-mem( A2,X3,X8)pred( A3,X4,`the')pred( A2,X8,`of')obj( A2,X8,X5)pred( A4,X5,`European Union')det( A4,X5,X6)pred( A5,X6,`the')Figure 3.15: Contextualized onstraints enoding all onsistenttransfer rules for deep syntati struture of Figure 3.16the paked rule, and the entire set of onstraints of the TL struture forms the RHS.For example, Figure 3.15 shows the onstraints that enode the paked transfer ruleof the deep syntati struture pair of Figure 3.10. Eah pair of nodes that formsthe root of a onsistent transfer rule is assigned a single unique ontext variable,
Ai, whih is used to label all the onstraints belonging to that node. For example,the nodes in bold typefae in Figure 3.16 are root nodes of onsistent transfer rulesand are assigned the ontext variables A0-A5. For a node that is not a rule root,its onstraints are assigned the ontext variable of the losest rule root above itin the struture. For example, the node europäish in Figure 3.16 is assigned theontext variable A4, the ontext variable of its head, sine it is not a rule root itself.Extrating a partiular transfer rule from the paked struture now simply involvesassigning the value 1 to the onstraints inluded in the rule and 0 to the onstraints63



Figure 3.16: Paked Transfer Rule with Context Variablesthat are exluded from the rule. Figure 3.17 shows one of the possible ombinationsof values for the set of ontext variables given to the onstraints of the paked ruleshown in Figure 3.16 and the rule that results by taking the onstraints labeled 1for this partiular ombination of boolean values.As desribed so far, enoded in the paked struture is a superset of the set ofonsistent transfer rules, as the paked struture also ontains disontiguous rulesdisallowed by De�nitions 1 and 2. We eliminate disontiguous rules by only allowingontext variables of ontiguous parts of the struture to be assigned the value 1.3.4.2 Transfer Rule Extration AlgorithmTransfer rule extration works by enoding all onsistent rules extrated from a pairof deep syntati strutures in the paked representation desribed in Setion 3.4.1.The main part of the algorithm deides whih pairs of nodes within the deep syn-tati struture pair form rule roots. One the rule roots have been determined, theentire set of SL and TL onstraints are then simply reorded with eah onstraintlabeled with a ontext variable, Ai, in addition to replaing the original struturenode labels with variables (Xi). The algorithm for hoosing the rule root nodes ofthe deep syntati struture pair is given in Figure 3.18. In our implementation, weuse some of Prolog's built-in features that are not available in other programminglanguages. Therefore, in order to keep the pseudo ode in Figure 3.18 as implemen-64



Figure 3.17: Paked transfer rule assignment of values to ontextvariables and resulting transfer rule
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tation independent as possible, when we use a Prolog spei� funtion or ontrolstruture we desribe it in pseudo ode as an equivalent funtion or ontrol stru-ture available in most programming languages. For example, Prolog has a built inindexing of terms, that uses the �rst argument of the term as a key to ahieve anO(log n) return time when searhing for that term in memory. We use this in ourProlog implementation but where we do so we desribe it in pseudo ode as a hashtable. The omplexity of the algorithm is O(a2log a) in the worst ase, where a isthe number of aligned node pairs.
3.5 Soure Language Bak-o� Transfer RulesWhen translating unseen data, words that are out of overage of the transfer rulesextrated from the bilingual training data are likely to be enountered. To handleout of overage words we use soure language bak-o� transfer rules. Figure 3.19shows an example German struture and Figure 3.20 shows an example rule fortranslating the (out of overage) German word signalisieren. A soure languagebak-o� transfer rule translates a single SL node to the target language as itself,so that during deoding full transfer rule overage of the SL dependeny graph anbe assumed. The arguments of the SL node are transferred to one of two possibleplaes in the TL struture. If the SL dependeny relation exists in at least oneparse of the TL side of the bitext orpus, it is assumed to be a valid dependenyrelation for the TL grammar and the dependeny relation is transferred as-is to theTL struture. If, on the other hand, the dependeny relation has never been seenin the TL orpus, we preserve the relation between the two nodes but label it withthe most frequent dependeny relation in the TL side of the orpus.
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Algorithm RuleRoots( List sl_nodes, List tl_nodes,HashTable <sl_node_id,alignment_id> sl_alignments,HashTable <tl_node_id,alignment_id> tl_alignments):# For eah aligned SL node reate a list# ontaining the alignment ids of its aligned desendents# Put lists in a Hash Tablesl_aligned_dess = new HashTable<list_of_aligned_dess,sl_node_id>foreah s ∈ Sif exists sl_alignments.get(s.node_id) thenlist = new empty listforeah d ∈ desendents(s)if exists sl_alignments.get( d.node_id) thena_id = sl_alignment.get( d.node_id)list.add( a_id)sl_aligned_dess.put( list, s)# Likewise for TL nodestl_aligned_dess = new HashTable<list_of_aligned_dess,tl_node_id>foreah t ∈ Tif exists tl_alignments.get(t.node_id) thenlist = new empty listforeah d ∈ desendents(t)if exists tl_alignments.get( d.node_id) thena_id = tl_alignment.get( d.node_id)list.add( a_id)tl_aligned_dess.put( list, t)# Find node pairs with mathing sets of aligned desendentsroots = new empty Listforeah key in keys( sl_aligned_des)if exists tl_aligned_dess.get( key)# A pair has been foundi = sl_aligned_dess.get( key)j = tl_aligned_dess.get( key)roots.add( i, j)return rootsFigure 3.18: Algorithm to hoose the rule roots in the SL and TLdeep syntati strutures
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Figure 3.19: Example German deep syntati struture for sentene�Im Beriht wird diese eindeutige Botshaft an denMarkt sehr deutlih signalisiert.�

Figure 3.20: Example soure language bak-o� transfer rule for Ger-man word signalisieren
68



3.6 ConlusionIn this hapter, we desribed a method of automatially extrating transfer rulesfrom pairs of deep syntati strutures, by automatially aligning the struturesat node level before extrating all rules onsistent with the node alignment. Weprovided a de�nition of onsisteny that avoids erroneous transfer rules allowed inprevious approahes and that do not rely on isomorphism between training pairsof strutures. In addition, we desribed e�ient methods of extrating and storinglarge numbers of rules. The transfer rule extration tool and soure ode were madeavailable in order to aid future researh (Graham and van Genabith, 2009). In thehapters that follow we desribe how the rules desribed in Setions 3.2, 3.3 and 3.4that are automatially extrated from the training orpus are used to ompute thetranslation model (Chapter 4) and how they are used to translate SL deep syntatistrutures into the TL during transfer deoding (Chapter 5).
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Chapter 4
Deep Syntax Translation Model
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4.1 IntrodutionIn this hapter, we desribe in detail our deep syntax translation model. In ourmodel, we use both deoding features, applied to TL hypothesis strutures as theyare onstruted during deoding, and post-generation features applied after genera-tion to the TL surfae form sentenes output by the generator. Deoding featuresinlude a translation model omputed from relative frequenies of transfer rules au-tomatially extrated from the training orpus, as well as a deep syntax languagemodel trained on monolingual TL data, among others. The post-generation featuresinlude a surfae form/string-based language model and a grammatiality featurethat uses information output by the generator about the grammatiality of generatedtranslations.4.2 Translation ModelAs in PB-SMT, a deep syntax translation model an be de�ned as a log-linearombination of several feature funtions:
p(e|f) = exp

n
∑

i=1

λihi(e, f)All but two of the feature funtions we use are applied to the deep syntati strutureduring deoding with two �nal feature funtions, the surfae form language modeland a grammatiality feature, both applied after deoding to generated strings.Weights are optimized on a development set using Minimum Error Rate Train-ing (Oh, 2003).4.3 Deep Syntax Translation ModelIn PB-SMT the translation of an input sentene into an output sentene is modeledby breaking down the translation of the sentene into the translation of a set ofphrases (Koehn et al., 2003). Similarly, for deep syntati transfer-based SMT, the71



transfer of the SL struture f into a TL struture e an be broken down into thetransfer of a set of rules {f̄ , ē}:
p(f̄ I

1 |ē
I
1) =

I
∏

i=1

φ(f̄i|ēi)We ompute all rules from the training orpus and estimate the translation proba-bility distribution by relative frequeny of extrated transfer rules:
φ(f̄ |ē) =

count(ē, f̄)
∑

f̄i
count(ē, f̄i)This is arried out in both the soure-to-target and target-to-soure language dire-tions.4.3.1 Counting RulesAll transfer rules onsistent with the word alignment are extrated yielding largenumbers of rules stored e�iently in a paked representation (Graham and vanGenabith, 2008). When ounting transfer rules to ompute the translation model,the question arises of how we should deal with atomi features and values withintransfer rules, i.e. should two transfer rules that ontain idential lexial items anddependeny relations but di�erent atomi feature values be treated as two instanesof the same rule or as two distint rules? When we ompute the translation modelwe ignore atomi features and their values, so two suh rules are treated as instanesof the same rule. Similar to Fatored Models (Koehn and Hoang, 2007), exludingatomi features/morphologial fators when omputing the translation model forlemmas results in a statistially riher model. Figure 4.1 shows four example transferrule tokens for translating the German word Katze to at that are all onsideredto be an instane of the same rule type. This deision is motivated by the largenumber of possible values of atomi features in transfer rules, O(vf), where f is thenumber of atomi features and v is the number of possible values for a feature. Averb in a LFG f-struture, for example, usually has the atomi features and possiblevalues shown in Figure 4.2. The number of possible ombinations of atomi feature72
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Figure 4.1: Example transfer rule token instanes of a single ruletype
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Atomi Feature Valuesverb-type aux, opular, main, modular, nonopular, prediative, raisingpassive +,-lause-type adv, ond, del, imp, in, nom, pol-int, rel, wh-inttense past, pres, futprogressive +, -perfet +, -mood imperative, indiative, subjuntive, suessiveFigure 4.2: Atomi features and values for verbs in LFGvalues for a verb in an LFG f-struture is therefore 6048 and a transfer rule thattranslates a German verb into an English verb has 60482 possible ombinations ofatomi feature values.It's worth mentioning how this relates to other SMT approahes. For argument'ssake, onsider the ase, where we (somehow) already know the lemmas, dependenyrelations and atomi features (but not their values) of the deep syntati strutureof a �uent and adequate translation and only need to assign the orret values tothe atomi features. The equivalent ase for Phrase-Based Fatored Models is whenit (somehow) already knows the orret TL lemmas and only needs to generate theorret surfae form in�etion for eah lemma. The task faing the deep syntax ap-proah is muh more di�ult, due to the far greater number of possible sets of atomivalues ompared to the number of possible surfae form in�etions. For example,the English verb overlook has four possible surfae form in�etions (overlook, over-looks, overlooking and overlooked), and 6048 possible sets of atomi feature values,a seletion of whih are shown in Figure 4.3. In addition, the problem of guessingthe orret ombination of TL atomi features is exaerbated by the fat that inSMT via deep syntati transfer, we are restrited to sentene-level generation, asopposed to the word-level generation of Phrase-Based Fatored Models, and thisimposes harsh limits on the number of translation options that an be generatedgreatly inreasing the possibility of early pruning of good translations.
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Example Tense Prog Perf Mood Pass Clause-typeJohn overlooks Mary. pres - - ind - delJohn overlooked Mary. past - - ind - delJohn will overlook Mary. fut - - ind - delJohn has overlooked Mary. pres - + ind - delJohn will have overlooked Mary. fut - + ind - delHas John overlooked Mary? pres - + ind - intWill John have overlooked Mary? fut - + ind - intJohn is overlooked. pres - - ind + delIs John overlooked? pres - - ind + intJohn will be overlooked. fut - - ind + delWill John be overlooked? fut - - ind + intJohn was overlooked. past - - ind + delWas John overlooked? past - - ind + intJohn has been overlooked. pres - + ind + delHas John been overlooked? pres - + ind + intJohn will have been overlooked. fut - + ind + delWill John have been overlooked? fut - + ind + intJohn was being overlooked. past + - ind + delWas John being overlooked? past + - ind + int... Figure 4.3: A seletion of atomi feature values and surfae formmorphologial in�etions for overlook4.4 Lexial WeightingIn PB-SMT, lexial weighting is used as a bak-o� to the translation model sine itprovides riher statistis and therefore more reliable probability estimates. Adaptingthis feature to deep syntax is straightforward. In PB-SMT the lexial translationprobability of a phrase pair is omputed based on the alignment between the wordsin the phrase pair. For deep syntati transfer, we ompute the lexial translationprobability instead using the alignment of lexial items in the LHS and RHS of atransfer rule. The lexial translation probability of a RHS, ē, given the LHS, f̄ andalignment a, is estimated as follows:
lex(ē|f̄ , a) =

length(ē)
∏

i=1

1

|{j|(i, j) ∈ a}|

∑

∀(i,j)∈a

w(ei|fj)We use lexial weighting in both language diretions.
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4.5 Language ModelThe overall system employs a language model at two di�erent stages; a trigramdependeny-based language model is used during transfer deoding to model �uenyof ombinations of words in TL deep syntati strutures as they are onstrutedand a string-based trigram language model is used after generation to model �uenyfor generated translations.4.5.1 Deep Syntax Language ModelIn PB-SMT, ngram language models are used to produe �uent translations, wherethe deoder output is a sequene of surfae form words. In deep syntati transfer,the output of the deoder is a deep syntati struture with words organized in theform of a graph instead of a linear sequene. A string-based language model annotbe used during transfer deoding beause no surfae form representation of the TLdeep syntati struture is available.It is still important, however, for the model to take TL �ueny into aount sothat the strutures it outputs ontain �uent ombinations of words. Figure 4.4 showspart of a deep syntati struture for a German sentene that ontains the phraseBewusstsein für Dringlihkeit. When translating into English, if, for example, threedi�erent transfer rules were used to translate eah of the German words and TL�ueny was not inluded in the model, the system would rank English Struture 1in Figure 4.4, sense for urgeny, higher than the more �uent English Struture 2,sense of urgeny sine the transfer rule für → for has a higher probability than für
→ of. If a deep syntax language model is used, however, the more �uent ombinationof words, sense of urgeny, should have a higher language model probability thanits less �uent ounterpart.In Setion 2.3.3 we desribed how a standard language model omputes theprobability of a sequene of English words by ombining the probability of eah
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German Struture English Struture 1 English Struture 2Bewusstsein sense sensefür for ofDringlihkeit urgeny urgenyFigure 4.4: German Deep Syntati Struture for Bewusstsein fürDringlihkeit and two possible translations into Englishsense for urgeny and sense of urgenyword, wi, in the sequene given the preeding sequene of i− 1 words.
p(w1, ...wl) =

l
∏

i=1

p(wi|w1, ..., wi−1) (4.1)In a similar way, we an ompute the probability of a deep syntati struture, d,with root node, wr, onsisting of l words, by ombining the probability of eah word,
wi, in the struture given the sequene of words linked to it via dependeny relationsfrom root word, wr, to word wm(i), where funtion m, maps the index of a non-rootword to the index of its head node within the struture:

p(d) =
l

∏

i=1

p(wi|wr, ..., wm(m(i))wm(i)) (4.2)Figure 4.5(a) shows an example of how Equation 4.1 an be used to ompute theprobability of the English sentene �I saw the red house� with a standard languagemodel and Figure 4.6(d) shows an example of how Equation 4.2 an be used toompute the probability of the deep syntati struture, shown in Figure 4.6(), forthe same sentene.In order to ombat data sparseness, we apply the Markov assumption, as is donein standard language modeling, and simplify the probability of a deep syntatistruture by only inluding a limited length of history when omputing the proba-77



String-based Language Model(a) p(I saw the red house) = p(I| <s>)
p(saw| <s> I)
p(the| <s> I saw)
p(red| <s> I saw the)
p(house| <s> I saw the red)
p(</s> | <s> I saw the red house)(b) p(I saw the red house) = p(I| <s>)
p(saw| <s> I)
p(the|I saw)
p(red|saw the)
p(house|the red)
p(</s> |red house)Deep Syntax Language Model

() d= <s>seeI house
</s> the red

</s> </s>

(d) p(d) = p(see| <s>)
p(I| <s> see)
p(</s> | <s> see I)
p(house| <s> see)
p(the| <s> see house)
p(</s> | <s> see house the)
p(red| <s> see house)
p(</s> | <s> see house red)(e) p(d) = p(see| <s>)
p(I| <s> see)
p(</s> | see I)
p(house| <s> see)
p(the| see house)
p(</s> | house the)
p(red| see house)
p(</s> | house red)Figure 4.5: Standard Language Model and Deep Syntax LanguageModel Example for �I saw the red house�
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bility of eah word in the struture. A trigram deep syntax language model ombinesthe probability of eah word in the struture given the head of the head of the wordand the head of the word in the struture:
p(d) =

l
∏

i=1

p(wi|wm(m(i)), wm(i)) (4.3)Figure 4.5(b) and 4.5(e) show examples of how the Markov assumption is appliedin a standard trigram language model and a deep syntax trigram language model,respetively.Additional Simpli�ation for Argument SharingArgument sharing an our within deep syntati strutures and in suh ases weuse a simpli�ation of the atual deep syntax graph struture by introduing therestrition that eah word in the struture may have a single head word (with theexeption of the root word whih has no head word), as this is required for the mfuntion, that maps the index of eah word to that of its head word. Figure 4.6shows an example of the underlying graph struture for the LFG f-struture for theEnglish sentene �The at likes to sleep� in whih the subjet of both like and sleepis at. When omputing the probability estimate of the struture we ignore the fatthat at is an argument of sleep.Dependeny RelationsIn our approah, we hose to omit dependeny relations from our language model.The motivation behind this was mainly to keep the approah as similar to standardPB-SMT as possible. However, sine a deep syntax arhiteture provides informationabout dependeny relations between TL words, it ould well prove advantageous toinlude these relations in a language model, so that more �uent ombinations oflexial items and dependeny relations an be ranked higher by the model than less�uent ones. Due to time onstraints, however, we leave further investigation into79



Figure 4.6: Example of struture simpli�ation for deep syntax lan-guage modeling when argument sharing oursthis topi as future work.4.6 Penalty FeaturesWe use a word penalty feature that adds a fator, w, for eah word in the targetlanguage struture in order to ounterat the bias of the deep syntax language modeltoward smaller output strutures.For similar reasons, we use a rule penalty feature. The translation model will, ingeneral, prefer smaller rules, sine they our more frequently in the training data,but sine larger rules are more likely to produe �uent ombinations of words weuse a feature that allows the system to take the number of rules used to onstrut atarget language struture into aount, so all other things being equal it an prefera hypothesis struture that was onstruted using fewer rules.In addition to this, the number of fragments in the TL struture are taken intoaount. The deoder an produe a fragmented target struture if it uses a transfer80



rule that was extrated from a training example pair in whih the TL trainingstruture was itself fragmented. We use a fragment penalty that adds a fator foreah fragment in the target struture so that translations generated from strutureswith more fragments an be dispre�ered, as they are likely to lead to ungrammatialtranslations.In addition, a penalty feature is used to allow the system to disprefer translationsprodued using soure language bak-o� transfer rules. As desribed in Setion 3.5,these bak-o� rules are used to translate out of overage words. We inlude a soure-language bak-o� rule penalty feature that introdues a fator for every rule of thistype used to produe a translation.4.7 Atomi Feature MathFor high overage of transfer rules on unseen data, the atomi features and valuesof a soure language struture are not required to math those of a transfer rule inorder for the rule to be used for translation. Figure 4.7 shows an example transferrule and soure language struture in whih there is a mismath between the valueof the atomi feature ase. We allow the rule to be used to translate the struture,but the fat that an atomi feature did not math is taken into aount so that (allelse being equal) translations produed by a rule with more atomi feature valuesmathing those of the SL struture an be preferred. There are two reasons we dothis.Firstly, when an atomi feature value of a rule does not math the soure stru-ture, the TL value of that feature is translated separately from the lemma (disussedin detail in Setion 5.5). For example, in Figure 4.7 sine the value of ase does notmath that of the transfer rule, the value of ase in the target struture is trans-lated separately from Handel. Translating feature values separately from lemmasinreases the likelihood of the target language output no longer being �uent, andsine the partiular ombination of lemmas and atomi feature values may not have81



Transfer RuleHandel → trade
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Figure 4.7: Atomi feature value mismath example when translat-ing �Handel� into Englishbeen observed in the TL training data.Seondly, atomi features and their values an sometimes be useful for guidingtranslation. All else being equal, the more atomi feature values of a rule thatmath the SL struture the more likely it is to produe an adequate translation.For example, Figure 4.8 shows two transfer rules that translate the German wordHaar �rstly as hair and seondly as strand. When Haar appears in the singularin German, the English word strand is a possible adequate translation, but whenHaar ours in the plural in German, strand is no longer an adequate translation forHaar, but rather hair is.1 By inluding a feature that takes the number of mathingatomi feature and values into aount, the system an prefer Transfer Rule 2 over1Das ist ein langes Haar = It's a long hair = It's a long strand ; Er shneidet die Haare = Heuts hair 6= He uts strands, as strands is not used in this ontext in English.82



Transfer Rule 1 (all else being equal) when translating the soure language struturein Figure 4.8.We de�ne the soure atomi value math feature funtion, s, where S is the setof atomi feature-value pairs in the soure language struture and R is the set ofatomi feature-value pairs of the set of transfer rules as:
s(S,R) =

|S ∩R|

|S|
(4.4)When mathing transfer rules to soure language struture we also need to takeinto aount the fat that there may be a di�erent number of atomi features inS as opposed to R. For example, the LFG grammars we urrently use for parsingprodue di�erent sets of atomi features for the same lemma in di�erent situations.For example, a verb may or may not have the atomi feature perfet depending onits value for the atomi feature tense. Sine we know in many ases |S| is not equalto |R|, we inlude an additional feature, that takes into aount the total numberof atomi features in the transfer rules. The rule atomi math feature funtion, r,is as follows:

r(S,R) =
|S ∩ R|

|R|
(4.5)4.8 Post-generation Features4.8.1 Surfae Form/String-based Language ModelAfter generation we apply a standard language model trained on the surfae formTL data to estimate the probability for eah generated string. The surfae formlanguage model is used as a feature in the overall model so that all else being equala translation with a higher surfae form language model probability an be preferred.
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Transfer Rule 1Haar → hair
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Transfer Rule 2Haar → strand
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Soure Language Struture TranslationsHaar → hair or strand(adequate) (inadequate)
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[...] [...]
Figure 4.8: Example of how atomi feature values an be used toguide translation
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4.8.2 Grammatiality FeatureXLE uses a preision grammar, a set of rules for parsing/generating grammatialsentenes and a bak-o� set of fragmented rules for robustness that allow ungram-matial sentenes (or sentenes outside the overage of the preision grammar) to beparsed/generated. The generator �rstly attempts to generate output for an inputf-struture using the preision grammar rules. If it fails, due to a lash of on-straints, for example if the ase of a noun is inorret or an argument of a verb ismissing, it reverts to the fragment grammar and generates the output marked asungrammatial. We use this marker as a binary feature in our model.4.9 ConlusionIn this hapter, we presented the model used by the system to rank hypothesistranslations. We desribed how we use a log-linear ombination of several featurefuntions, most of whih are applied to the deep syntati struture during transferdeoding, suh as deep syntax translation model and deep syntax language model,and two feature funtions (the string-based language model and grammatialityfeature) that are applied after generation to the surfae form output string. In thefollowing hapter we disuss how transfer deoding is arried out using the deodingfeatures we just desribed.
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Chapter 5
Transfer Deoding
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5.1 IntrodutionSMT via deep syntati transfer is omposed of three parts, (i) parsing to deep syn-tati struture, (ii) transfer from SL struture to TL struture and (iii) generationof TL sentene. This hapter is mainly onerned with step (ii): a searh for then-best TL deep syntati strutures by means of transfer deoding. Transfer deod-ing arries out the task of onstruting TL strutures by applying transfer rules tothe SL struture. The transfer deoder takes a single SL deep syntati strutureas input and applies the LHS of transfer rules to snippets of the SL struture. TheRHS of transfer rules are ombined to produe TL translation hypothesis strutures.In this hapter, we �rstly desribe the top-down appliation of transfer rules, andour riteria for admissibility of transfer rules to deoding, followed by the heuristisearh algorithm used to manage the large searh spae of TL strutures. Next, wegive details of how we integrate a deep syntax trigram language model into deod-ing, before �nally desribing how we translate atomi features using an adaptationof Fatored Models. The soure ode of the deoder developed as part of this thesiswas made available to assist the progress of future researh (Graham, 2010).5.2 Transfer Rule AppliationDeoding takes a single SL struture as input and involves a searh for the n-bestTL strutures. The deoding algorithm works by reating TL solutions via a top-down appliation of transfer rules to the SL struture beginning at the root. Whenthe LHS of a rule uni�es with the SL struture, the RHS produes a portion ofTL struture. Figure 5.1 shows an example appliation of three rules to the deepsyntati struture for the German sentene Die Katze shläft gern - The at likesto sleep shown in Figure 5.1(a). Figure 5.1(b) shows the �rst transfer rule appliedto the root node of the SL struture produing the TL struture portion shownin Figure 5.1(). Transfer rule variables map arguments in the SL struture tothe desired position when reating a TL solution. For example, variable X0 in87



Figure 5.1: Example top-down appliation of transfer rulesFigure 5.1(b) maps the subjet of shlafen to the subjet of like in the TL struturelabeled with id number 1 shown in Figure 5.1(). Next, Katze in the SL strutureis translated (Figures 5.1(d) and 5.1(e)), before �nally, die is translated (Figures5.1(f) and 5.1(g)).5.2.1 Transfer Rule Deoder Admissibility CriteriaThe LHS of transfer rules admitted to deoding are required to math a ontiguoussnippet of the SL preds-only struture, as this greatly redues the likelihood ofTL strutures being fragmented. For example, when translating an intransitiveinstane of a verb that an be both intransitive and transitive, suh as lesen (toread) in German for example, only transfer rules that have a subjet argument areadmitted to deoding, and similarly when translating a transitive instane, onlyrules ontaining lesen with both a subjet and objet are admitted. None of theatomi features or their values of a transfer rule are required to math that of the88



SL struture in order for a transfer rule to be used for deoding, but, as desribed inSetions 4.3.1 and 4.7 we inlude a feature based on the number of mathing atomifeatures in our model to allow the system to prefer solutions in whih more atomifeatures of the LHS of transfer rules math those of the SL struture.Reall, from Setion 4.3.1, mainly for data sparseness reasons, due to the largenumber of possible ombinations of atomi feature values in transfer rules, thatwhen we identify rule types for omputing the translation model, we do not use fulltransfer rule types, i.e. inluding atomi features, but rather preds-only transfer ruletypes, i.e. ignoring di�erenes in any atomi features and their values. In keepingwith this, for deoding, we only apply a single preds-only transfer rule type to the SLstruture. This is not only motivated by the fat that this was the assumption whenomputing the translation model, but also beause it greatly redues the deodersearh spae, and allows it to fous on important di�erenes in lexial hoie ratherthan minor di�erenes in values of atomi features. For example, Figure 5.2 showsthree full transfer rule types all with the same preds-only struture. Only a singlepreds-only transfer rule type from these three rules will be admitted to deoding forthe SL struture shown in Figure 5.1(a).1 Even for this simple example, admittingonly one of the three transfer rules to deoding redues the number of TL hypothesisstrutures by a fator of three, and sine the number of possible ombinations ofatomi features for a single preds-only rule type is very large (disussed in Setion4.3.1), the overall redution in searh spae is onsiderable, allowing the searh tofous on important di�erenes, suh as lexial hoie and dependeny relations, asopposed to di�erenes in atomi feature values. Note that sine we allow a fuzzymath of the kind desribed above between atomi features of transfer rules andSL strutures, using the preds-only transfer rule type does not redue overage ofunseen SL strutures.Of ourse, allowing a fuzzy math between atomi feature values of transfer rulesand SL strutures, will sometimes result in inadequate translations. We desribe our1The partiular instane of the rule that is seleted is an arbitrary hoie.89



Figure 5.2: Full transfer rule types (a), (b) and () with di�erentvalues for atomi features CLAUSE-TYPE and TENSE.90



solution to this in Setion 5.5.5.3 Beam SearhPartial translations (or translation hypotheses) are onstruted by applying trans-fer rules to the SL struture. While TL translations are onstruted, beam searhmanages the large searh spae by ranking translation hypotheses and pruning thesearh by dropping lower soring hypotheses. A number of staks are used to orga-nize translation hypotheses into groups of omparable hypotheses, aording to theportion of SL struture that has already been translated to produe eah hypothe-sis, i.e. hypothesis stak N stores TL translation hypotheses with N nodes overedin the SL struture. For example, Figure 5.3(a) shows the hypothesis staks fordeoding the deep syntati struture of Die Katze shläft gern ontaining 4 nodesand therefore requiring staks 1-4 for deoding.Transfer rules are indexed by root node so that they an be retrieved quikly totranslate SL struture nodes. For example, in Figure 5.3(a) the rules rooted at nodeKatze are stored together. Sine rules are applied top-down to the SL struture(see Setion 5.2) rules beginning at the root node of the SL struture are �rst usedto onstrut hypotheses. For example, in Figure 5.3(b) the rule that translates theroot node of the SL struture shlafen as doze is �rst used to onstrut a hypothesisand sine it overs one SL node it is stored in hypothesis stak 1. Figure 5.3()shows the next three hypotheses that are onstruted: snooze, sleep and like sleep.Hypotheses are ordered within eah stak aording to their sore, high-to-low frombottom-to-top. We urrently use histogram pruning. When a stak beomes full,lower soring solutions are pruned by being popped o� the top of the stak.For e�ieny, eah partial translation is only stored one in memory even thoughit may be part of several di�erent future hypotheses. For example, hypothesis stak2 in Figure 5.3(d) ontains four translations onstruted by expanding hypothesisdoze by four di�erent rules, eah translating the word Katze into a di�erent TL91



Figure 5.3: Beam Searh Deoding of Example German Deep Syn-tati Struture
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word. These new hypotheses are represented by a referene to the most reentlyapplied transfer rule (rules translating Katze) and a referene bak to the previoushypothesis.Figure 5.3(e) shows an example of how per single ompleted translation, thestruture for the lion likes to doze, is represented in the hypothesis staks and Figure5.3(f) shows all hypotheses represented when the deoder has ompleted translatinga single SL input struture. The m-best translated strutures an be retrieved fromthe �nal stak. Later in Chapter 6, we investigate the e�ets on MT output of usingdi�erent deoder beam sizes, in addition to generating from di�erent size deoderoutput m-best lists.5.4 E�ient Dependeny-based Language ModelingAlthough the searh spae is limited by beam searh, during deoding large numbersof TL hypothesis strutures need to be ranked. At eah expansion of a translationhypothesis (via joining of an existing hypothesis with a transfer rule) a languagemodel sore for the newly reated hypothesis needs to be omputed. Sine this isarried out very many times per single deoding run, it is vital that the method ofomputing this sore is highly e�ient.In our system, we pre-ompute a deep syntax language model sore for eahtransfer rule prior to beam searh. This sore is omputed only one for eah ruleeven though a single rule may be part of several translation hypotheses. Thenduring deoding, when a translation hypothesis is expanded by adding a new rule,the new hypothesis sore an be omputed quikly by ombining the sore of theold hypothesis, the rule sore and a sore omputed based on the probabilities ofngrams where the old hypothesis and rule join together. The probability of a TLhypothesis, hn, produed by ombining hypothesis hn−1 and rule r an be omputedas follows:
hyp_score(hn) = hyp_score(hn−1) ∗ join_score(hn−1, r) ∗ rule_score(r)93



Figure 5.4: E�ient Deep Syntax Language Modeling
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Sine hyp_score(hn−1) and rule_score(r) are already omputed, only join_sco-
re(hn−1, r) needs to be omputed to ompute hyp_score(hn).Figure 5.4 shows how the language model sores are e�iently omputed whendeoding the deep syntati struture for the German sentene �Die Werbung spiegeltdie Vielfalt der britishen Universität wider� (�The advertisement re�ets the diver-sity of the British university�). We begin with the German deep syntati struturegraph shown in Figure 5.4(a) with nodes labeled by id numbers. Figure 5.4(b) showsthe initial empty translation hypothesis that has probability 1.Figures 5.4(), 5.4(f) and 5.4(i) show example transfer rules that an be appliedto the German deep syntati struture. Deep syntax language model sores arepreomputed for eah rule (by identifying all trigrams within the RHS struture andomputing the produt of their individual probabilities); we all this the rule_score(see Figure 5.4(d) for RuleA, Figure 5.4(g) for RuleB and Figure 5.4(j) for RuleC).In addition, for eah rule, ngrams loated at the RHS root node and frontier nodesare reorded. For example, RuleB in Figure 5.4(g) has a single root node bigramadvertisement-the loated at node 2, and RuleA in Figure 5.4(d) has two frontierbigrams <s>-re�et and diversity-of loated at nodes 2 and 6, respetively. Thisinformation is used later when omputing the sore of joining a rule and a hypothesis.Figure 5.4(e) shows the translation hypothesis established by applying RuleA tothe German struture. The language model sore for the struture is omputed byombining the sore of the previous hypothesis (sine this is the �rst rule for thishypothesis, the previous hypothesis is the empty hypothesis and its sore is therefore1), the join sore (sine we are joining the rule with the empty hypothesis this soreis also 1) and the rule sore of RuleA (see Figure 5.4(d)).Figure 5.4(h) shows the translation hypothesis reated by expanding Hypothes-
is1 by RuleB. Sine this expansion involved adding a rule at node 2 in the TLstruture, the joining trigrams are derived by reating lists of words via all om-binations of the frontier bigrams belonging to Hypothesis1 labeled 2 and the rootbigrams of RuleB, also labeled 2 (see root ngrams in Figure 5.4(g)). For this exam-95



ple, this results in a single word sequene <s>-re�et-advertisement-the whih formstwo trigrams <s>-re�et-advertisement and re�et-advertisement-the. The sore for
Hypothesis2 is then omputed by ombining the hypothesis sore for Hypothesis1,this join sore and the preomputed rule sore for RuleB. Finally, RuleC is usedto expand Hypothesis2 to form the omplete TL struture shown in Figure 5.4(k).Figure 5.4(k) again inludes how we ombine the previous hypothesis sore, thejoin sore and the rule sore to ompute the deep syntax language model sore for
Hypothesis3.5.5 Translating Atomi FeaturesFatored Models (Koehn and Hoang, 2007) an be used to inorporate di�erentkinds of information into translation, suh as CCG supertags, for example, aidingreordering of words in the TL language (Birh et al., 2007), and employ riher sta-tistial translation models by translating lemmas separately from morphologial (ormorpho-syntati) information. Fatored Models also have the potential to inreaseoverage of unseen morphologial in�etions of words, sine analysis and generationomponents an be trained on monolingual data.We use an adaptation of Fatored Models (Koehn and Hoang, 2007) for translat-ing atomi features in our system. Using Fatored Models for deep syntati transferrequires some adaptation, however. When we ompute the translation model we notonly inlude lemmas but also dependeny relations between lemmas, as desribed inSetion 4.3.1. In addition, within our arhiteture generation must be arried outon the sentene level, as opposed to word level in Phrase-Based Fatored Models.Due to sentene-level generation, the ombinatorial explosion that an our whenombining TL lemmas and morpho-syntati information in Fatored Models is amuh more severe problem for deep sytati transfer, as a far higher proportion oftranslation options must be pruned. In the next setion, we use the terms SL fatorand TL fator, in plae of SL atomi feature and TL atomi feature, simply to be96



Mann → man / gentleman / husband / worker / fellow


















pers 3num singularase dativegend masulinesyn-n-type ommonommon-n-type ount 































num singular / pluralpers 1 / 2 / 3ase nominative / obliquesyn-n-type ommon / pronoun / properommon-n-type ount / gerund / mass / measure / partitive
Figure 5.5: Example of the ombinatorial explosion involved intranslating lemmas and morpho-syntati fators sepa-rately.onsistent with terminology in Koehn and Hoang (2007).Using Fatored Models allows us to use a statistially riher translation modelfor translating lemmas and dependeny relations, in addition to riher models fortranslating morpho-syntati information, and ahieving overage of in�etions oflemmas not seen in bilingual training. The ombinatorial of large numbers of transla-tion options and our restrition to sentene-level generation results in severe pruningof translation options prior to generation. To ombat the e�ets of this, we presentfator templates, a method of limiting the number of morpho-syntati fators thatare translated separately from lemmas that also provides an e�etive way of trans-lating idiosynrati translations. Our method ould potentially be used to improveidiosynrati translations in general for Fatored Models.5.5.1 Combinatorial ExplosionThe number of translation options for a SL word (or phrase) in Fatored Modelsis O(ef), where f is the number of SL fators (inluding the lemma) and e is thenumber of possible translations for a SL fator. For example, Figure 5.5 shows thelemma and morpho-syntati fators for the German word Mann and the possibletranslations into English. The total number of translation options in this simpleexample is 900. The task of guessing a single orret ombination out of this largenumber of possible ombinations an be hallenging.97



Sentene-level generation fores a large proportion of translation options to bepruned, and in fat in our system when we translate morpho-syntati informationseparately from lemmas we only onsider the single most probable translation foreah SL fator.2 Due to the large number of possible ombinations of TL lemmasand morpho-syntati information, ahieving a good ombination is hallenging, andwe use fator templates to help �nd good ombinations.5.5.2 Fator TemplatesA fator template an be envisaged as a blue-print for translating a SL phrase intothe TL. Eah template has a soure and target side ontaining the lemmatizedwords and an example set of morpho-syntati fators for eah soure and targetlemma. Figure 5.6(a) shows a fator template for the German-English phrase neuesHaus|||new house.3When translating a SL phrase, the target side of the fator template is used toprovide an initial set of translated TL morpho-syntati fators. The set of fatorsprovided by the template may not ontain the orret translation for all of the SLfators, and we use information in the soure side of the template to indiate whihfators may be inorret. Figure 5.6(b) shows how the input SL phrase neue Häuseris deomposed into its lemmas, neu and haus and morpho-syntati information.The SL fators of the input words are ompared with the SL template fators. Onlywhen a mismath ours between a template fator and an input fator, is a fatortranslated separately from its lemma. All target side fators in the template forwhih the orresponding SL fator mathed that of the SL input are used as TLoutput fators. In the example in Figure 5.6(b), all SL fators in template 5.6(a)math those of the template exept for number. Therefore, all TL template fatorsexluding number are used as the TL output fators for new house. The value ofnumber an then be translated separately from the rest of the translation.2We do generate the m-best TL strutures output by the deoder, however.3Morpho-syntati fators in the example are obtained from Lexial Funtional Grammar (LFG)f-strutures. 98



(a) Fator Templateneu haus → new house
[degree positivea-type attributive] 

















pers 3num sggend neutase nomsyn... ommonom... ount 

















[degree positivea-type attributive] 













pers 3num sgase nomsyn... ommonom... ount 











(b) Fatored SL Input Fatored TL Outputneu haus → new house
[degree positivea-type attributive] 

















pers 3num plgend neutase nomsyn... ommonom... ount 

















[degree positivea-type attributive] 













pers 3num ?ase nomsyn... ommonom... ount 













Figure 5.6: (a) Fator template for German-English lemmatizedphrase pair: neu haus|||new house, (b) Fatored SL in-put phrase for neue Häuser, mismathing features in thesoure input are in bold and fators translated separatelyfrom the lemma have `?' as a value in the English fa-tored phrase.
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5.5.3 Extrating Fator TemplatesFator templates are automatially extrated from the annotated bitext orpus andonly a single template is extrated for eah distint lemmatized transfer rule. Forexample, both of the following word sequenes ould exist in sentene pairs of thetraining data: (1) neues haus ist → new house is, (2) neue häuser sind→new housesare, and sine the transfer rules extrated from both will ontain the same lemmasand dependeny relations, only a single fator template is extrated along with asingle set of morpho-syntati fators belonging to either one of the SMT phrases.5.5.4 Avoiding the Combinatorial ExplosionFator templates redue the number of fators translated separately from eahlemma and in doing so, redue the overall number of translation options produedwhen ombining translated lemmas and fators. For instane, in the example shownin Figure 5.6(b), the number of translation options onsidered for the English phrasewith lemmas new house is 2 as opposed to the total possible 1620 (sine degree has3 possible values: omparative, positive, superlative; a-type 3 possible values: ad-verbial, attributive, prediative; person 3 values; number 2 values; ase 2 values;syn-n-type 3 values and ommon-n-type has 5 possible has values ).45.5.5 Idiosynrati TranslationsFatored Models an, in some ases, over-generalize and produe an inorret trans-lation that may not our with non-fatored Phrase-Based Models. Valid idiosyn-rati translations exist for words in di�erent language pairs and suh exeptionaltranslations an ause problems when the lemma is translated separately from itsmorpho-syntati information. A lassi example is when translating between twolanguages in whih a noun with the same meaning has a di�erent number in eah4Note that there is an even larger total number of translation options for neue Häuser. In theexample, we just inlude translation options for English lemmas new house100



language.5 For example, onsider the German phrase �die Polizei ist� in whih thenoun Polizei is in the singular and the orret English translation is �the polie are�in whih the translation of Polizei is the noun polie whih must be in the pluralin English. For Fatored Models, if the morpho-syntati fator number=singularof the German lemma Polizei is translated into English separately from the lemmaPolizei, there is a risk of over-generalizing and assigning a high probability to polie,number=singular in English, whih is inorret. For deep syntati transfer FatoredModels, this over-generalization problem is severe, sine generation operates on thesentene level, ompared to the word level in Phrase-Based Fatored Models. Sineso many translation options are pruned, it's very unlikely for a deep syntati trans-fer Fatored Model to produe the orret translation, the polie, number=plural ifnumber is translated separately from Polizei.Fator templates provide a solution to over-generalizing when translating lemmasseparately from their morpho-syntati information. Figure 5.7(a) shows a fatortemplate and Figure 5.7(b) shows how the template is applied to an input Germanstruture. Sine only the fator tense mismathes the soure side of the template,it is the only fator to be translated separately from the lemma and all other fa-tors, inluding idiosynrati number, are provided by the target side of the fatortemplate. This results in the idiosynrati translation of Die Polizei kommt (wherepolizei, number=singular) being translated orretly into English as The polie areoming (where polie, number=plural).5.5.6 Translating Mismathing FatorsAs desribed in Setion 5.5.2, fators in the SL input that mismath those of the fa-tor template are translated separately from the lemma. For translating mismathingfators in the word-aligned annotated orpus, we use a probability distribution om-puted from the relative frequenies of soure and target fators, p(ve|vf), where vf5The following example is borrowed from Philipp Koehn's Fatored Models tutorial at the ThirdMahine Translation Marathon, January 2009.101



(a) Fator Templatedie polizei kommen → the polie ome
[...] 









pers 3num sggend femase nom



















tense pastmood indpassive --type del [...] 





pers 3num plase nom























tense pastmood indpassive --type delperf -prog + 















(b) Fatored SL Input Fatored TL Outputdie polizei kommen → the polie ome
[...] 









pers 3num sggend femase nom



















tense presmood indpassive --type del  [...] 





pers 3num plase nom























tense ?mood indpassive --type delperf -prog + 

















Figure 5.7: Fator templates orretly handle exeptions to the rule:(a) fator template for the German-English lemmatizedphrase pair: die polizei kommen|||the polie ome, (b)fatored SL input phrase Die Polizei kommt orretlytranslates Polizei from singular in German into pluralin English, mismathing features in the soure input arein bold and fators translated separately from the lemmahave value `?'
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denotes a SL fator and ve is a target language fator.In addition, sine the dependeny relation between a TL word and its head is alsoavailable in TL strutures, this may be useful for translating the morpho-syntatifator ase.6 Therefore, we also ompute relative frequenies for ase onditioningon the dependeny relation between a word and its head, p(ve|de), where de denotesthe dependeny relation between a TL word and its head. Later in Setion 6.2.4,we investigate the e�ets on MT output of using fator templates as well as usingthese alternate probability distributions for translating morpho-syntati fators.5.6 ConlusionIn this hapter, we presented how SL deep syntati strutures are deoded to pro-due TL deep syntati strutures by applying transfer rules top-down to the SLstruture. Transfer rules are used to transfer snippets of SL struture to the TLwith variables providing information on the appropriate loation of eah translatedsnippet in the TL struture. We desribed how we arry out a heuristi searh forthe m-best TL deep syntati strutures and how we e�iently inorporate a deepsyntax language model. Finally, we desribed how we use an adaptation of Fa-tored Models and fator templates to translate SL atomi features to the TL. In thenext hapter, we provide an experimental evaluation of the system using di�erentresoures and variations of the methods desribed so far.

6Suggested by Philipp Koehn, Deember 2009.103



Chapter 6
Evaluation
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6.1 IntrodutionIn this hapter, we inlude an experimental evaluation of the system and its ompo-nents. In addition, we inlude an evaluation of the deep syntax language model inwhih we ompare ngram overage of our model to that of a standard string-basedlanguage model on a held-out test set.6.2 SMT via Deep Syntati Transfer ExperimentsWe provide a detailed evaluation of the system to investigate e�ets on MT per-formane of using (i) di�erent methods of word alignment, (ii) di�erent methods oftranslating atomi features, (iii) restriting the size of transfer rules used to translateSL strutures to the TL,1 (iv) di�erent beam sizes during deoding, (v) generatingdi�erent sized m-best TL deoder output struture lists, and (vi) di�erent k-optionsfor deterministi versus non-deterministi generation. In addition, we train a state-of-the-art PB-SMT system, Moses (Koehn et al., 2007), with the same training datato evaluate how far o� state-of-the-art performane the system urrently is, and alsoto investigate if our deep syntax SMT system produes the same kinds of transla-tions as a PB-SMT system, examining the translation of one syntati onstrutionin partiular, the ompound noun. We investigate for this partiular syntati on-strution, if our system ahieves state-of-the-art performane by providing a humanevaluation of the translation of the �rst 100 German ompound nouns in the testdata.6.2.1 TrainingGerman and English Europarl (Koehn, 2005) and Newswire sentenes length 5-15words were used as bilingual training data, and were parsed with XLE (Kaplan et al.,2002) and LFG Grammars (Kaplan et al., 2004; Riezler et al., 2002), resulting in1For example, if the limit is 2, only rules with a maximum of 2 nodes in the LHS and a maximumof 2 nodes in the RHS are used for transfer. 105



approximately 360K sentenes pairs and the single best parse for both soure andtarget was seleted.2 A deep syntax language model was trained on the LFG-parsedEnglish side of the Europarl orpus, approximately 1.26M English f-strutures, againusing only the single-best parse, and a trigram deep syntax language model wasomputed by extrating all unigram, bigram and trigrams from the f-struturesbefore running SRILM (Stolke, 2002). The surfae form language model, used aftergeneration, onsisted of the English side of the Europarl and again was omputedusing SRILM.Minimum Error Rate Training (MERT) (Oh, 2003) was arried out on 1000 de-velopment sentenes using Zmert (Zaidan, 2009), open soure tool, maximising forBLEU (Papineni et al., 2001, 2002). MERT was run separately for eah word align-ment method with the following settings: rule size limit = none, beam = 20, m =100, k-option = shortest, and due to amount of omputation time needed for runningMERT for the system, these weights were used for eah additional experiment.6.2.2 Evaluation MetrisSine MT system overage hanges with eah on�guration, before running auto-mati evaluation metris, empty strings produed by the system for sentenes thatare out of overage are replaed by their SL input sentene. In addition to stan-dard MT evaluation metris, suh as BLEU (Papineni et al., 2001, 2002) whihwe use as our main standard automati evalution metri, sine it is the mostwidely used metri in SMT, we use a method of evaluation adopted from LFGparser evaluation that ompares parser-produed f-strutures against gold-standardf-strutures. The method extrats triples that enode dependeny relations, suh assubjet(enhane,proposal) and objet(enhane,safety) for sentene The proposal willenhane the safety of feed for example, and triples enoding morpho-syntati infor-mation, for example ase(proposal,nominative) or tense(enhane,future), from eahparser produed f-struture and orresponding gold-standard f-struture, ounting2The same parsing resoures used in Riezler and Maxwell (2006).106



mathing triples to �nally ompute a single preision, reall and f-sore omputedover the triples of the entire test set. We evaluate the highest ranking TL deoderoutput f-struture with an adaptation of this method sine we do not have aess togold-standard f-strutures for the test set. Instead we use the next best thing, theparsed referene translations (similar to Owzarzak (2008); Owzarzak et al. (2008,2007b,,a)). This provides an evaluation that eliminates generator performane andgives a breakdown of results for individual dependeny relations and atomi fea-tures. Note, however, that this method of evaluation is somewhat harsh when usedfor the purpose of MT evaluation. Sine it was designed to evaluate parser output,it assumes orret lexial hoie, so, for example, if the MT system produes the or-ret tense but a di�erent lexial item for enhane, suh as tense(improve,future), thetriple is ounted as inorret, ignoring the fat that tense was in fat orret. Correttriples, in the evaluation, are those where the orret lexial hoie was made by thesystem and the orret dependeny relation (or morpho-syntati information) wasprodued.6.2.3 Experiment: Word AlignmentAn alignment between the nodes of the SL and TL deep syntati training stru-tures is required in order to automatially extrat transfer rules. In our evaluation,we investigate the following three methods of word (or node) alignment, all usingGiza++ (Oh et al., 1999) for alignment and Moses (Koehn et al., 2007) for sym-metrization:
• SF-GDF: input the surfae form bitext orpus to Giza++ and symmetrizewith grow-diag-�nal yielding many-to-many alignments between surfae formwords. Then map this alignment from eah word to its orresponding wordin the deep syntati struture. This yields up to a many-to-many alignmentbetween deep syntati struture nodes and was used in Riezler and Maxwell(2006).33It should be noted that we use an entirely di�erent method of transfer rule extration in our107



Word Align. Pts. RulesAlign. Total Ave. Total Ave.SF-GDF 4.5M 12.5 2.9M 8.1DS-GDF 4.1M 11.5 9.7M 27.1DS-INT 2.5M 6.9 13.9M 38.8Table 6.1: Statistis on number of transfer rules extrated for di�er-ent word alignment methods
• DS-INT (our main method of word alignment desribed in Setion 3.3.1):reonstrut a bitext orpus by extrating lemmas from the deep syntatitraining strutures, input the reonstruted bitext to Giza++, and use the in-tersetion of the bidiretional word alignment for symmetrization. This yieldsa one-to-one alignment between deep syntati struture nodes.
• DS-GDF: reonstrut a bitext orpus by extrating lemmas from deep synta-ti training strutures and input the reonstruted bitext to Giza++ (as inDS-INT), but use grow-diag-�nal for symmetrization yielding up to many-to-many alignments between deep syntati struture nodes.Eah method of word alignment was run on the training data yielding an align-ment between loal f-strutures within eah training f-struture pair. All transferrules onsistent with this alignment were extrated.ResultsTable 6.1 shows statistis for eah word alignment method and Table 6.2 showsautomati evaluation results. DS-INT by far ahieves the best result with a BLEUsore of 16.18%. Results drop sharply when the grow-diag-�nal algorithm is appliedto deep syntax word alignment (DS-GDF), with sores of 6.04% BLEU. The methodof word alignment that uses the surfae form bitext orpus for word alignment (SF-GDF) ahieves an extremely low sore of only 1.61% BLEU.evaluation, we do not orret word alignment and do not inlude hand-rafted transfer rules.
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Word Pre. Gram.Align. BLEU Preision Reall F-sore CoverageSF-GDF 1.61 % 15.83 % 5.46 % 8.12 % 1.77 %DS-GDF 6.04 % 29.13 % 28.17 % 28.64 % 7.98 %DS-INT 16.18 % 40.31 % 41.25 % 40.78 % 38.01 %Table 6.2: E�ets of using di�erent methods of word alignment.Note: rule size limit = none, beam = 100, m = 100,k = 1, k-option = shortestDisussionExperiment results show that the performane of the system an vary quite a bitdepending on how word alignment is arried out and this is aused by eah methodof word alignment onstraining transfer rule extration di�erently. In general, themore alignment points for a pair of f-strutures, the fewer transfer rules extrated.Table 6.2 shows DS-INT yields fewest alignment points (6.9 per sentene pair (psp))and subsequently most onsistent transfer rules (38.8 psp), while the extension ofthis method that uses grow-diag-�nal (DS-GDF) yields more alignment points (11.5psp) with fewer onsistent transfer rules (27.1 psp).It is not only the number of alignment points that e�ets the number of onsistenttransfer rules, but also the level of isomorphism between alignment points withinpairs of f-strutures in the training orpus. The less isomorphi a pair of f-struturesis with respet to the position of aligned nodes, the fewer onsistent rules. The e�etsof this an be seen when we ompare the number of onsistent rules produed byDS-GDF and SF-GDF, whih have a relatively similar number of alignment points,11.5 psp and 12.5 psp respetively, but yield very di�erent numbers of onsistenttransfer rules, 27.1 psp and 8.1 psp respetively. Carrying out word alignmenton the surfae form sentenes, as opposed to deep syntati strutures, yields amuh less isomorphi alignment between loal f-strutures and subsequently far feweronsistent transfer rules.In addition, the fat that eah method yields di�erent quality alignment pointsshould be taken into aount. The method of alignment based on the surfae form109



sentenes (SF-GDF) yields a lower quality alignment sine alignment is run on amore spei� representation, the surfae form words as opposed to lemmas in boththe deep syntax methods. This is observed in the preision and reall results for theomparison of the MT system produed f-strutures and parsed referene transla-tions (Table 6.2), as the SF-GDF, although yielding far fewer transfer rules, yieldslower quality transfer rules, sine its preision is lower, 15.83%, than both preisionsores for methods of word alignment run on the lemmatized training data, 29.13%for DS-GDF and 40.31% for DS-INT. Sine what we ultimately need is an alignmentbetween loal f-strutures and not surfae form words, alignment methods that workvia the surfae form sentenes unneessarily inrease data sparseness by using themore spei� surfae form of words instead of lemmas of loal f-strutures resultingin lower quality alignment.Symmetrization also e�ets the quality of alignment points. DS-INT yields amore reliable set of alignment points than DS-GDF, sine DS-INT only ontainsalignment points found when word alignment is run in both language diretions.For DS-GDF, the ombination of adding some low quality alignment points andinreasing the overall number of alignment points (and thereby over-onstrainingrule extration) results in lower quality translations.6.2.4 Experiment: Translating Atomi Features/Morpho-syn-tati FatorsIn this experiment, we investigate the di�erent methods of translating atomi fea-tures desribed in Setion 5.5. We try �ve di�erent on�gurations, keeping all otherresoures used for training and testing onstant: (i) plain fatored: all atomi fea-tures are translated separately from lemmas using p(ve|vf), (ii) fatored + asespeial: all atomi features exept ase are translated separately from lemmas using
p(ve|vf) and ase is translated separately from the lemma using p(ve|de), (iii) plaintemplates: the target side atomi features in the template of eah phrase is used as-is110



with no fatoring, e�etively disregarding SL input atomi features, (iv) templates+ mismathing fatored: templates are used to translate mathing atomi featuresand mismathing atomi features are translated using p(ve|vf), (v) templates + mis-mathing fatored + ase speial: templates are used to translate mathing atomifeatures and all mismathing atomi features exept for ase are translated using
p(ve|vf) and ase is translated using p(ve|de).Atomi Feature TranslationFor atomi feature translation, relative frequenies for orresponding atomi featureswere omputed from the word-aligned training orpus, and we inlude the probabilitydistribution of a seletion of atomi features in Table 6.3. For on�gurations (ii) and(iv), relative frequenies of ase given the dependeny relation of a word with itshead were omputed from the parsed TL side of the bitext orpus, and a seletionof the probability distributions are shown in Table 6.4.ResultsTable 6.5 shows BLEU sores for the MT system for eah method of translatingfators.4 The results show a low baseline for the plain fatored model, in whih allfators are translated separately from lemmas, with a BLEU sore of 6.23%. Usingthe dependeny relation between a word and its head to translate ase inreasesthe results slightly to 6.27% BLEU. When target side fators are taken diretlyfrom the fator templates, with no fators translated separately, this results in animprovement, inreasing the BLEU sore to 8.8%. The two methods that use fatortemplates to translate all mathing SL fators perform best, improving the BLEUsore substantially to 16.18% when all fators are translated with p(ve|vf), with anadditional improvement seen when the probability is onditioned on the dependenyrelation, p(ve|de), for translating ase, inreasing to 16.85% BLEU.Table 6.5 also shows preision, reall and f-sore results of translated triples4BLEU+t sores are BLEU with true asing.111



Morpho-syntati vf ve p(ve|vf)Fator 1 0.97PERSON 1 3 0.022 0.012 0.662 3 0.301 0.043 0.973 2 0.021 0.01present 0.61TENSE past past 0.38future 0.01present 0.88present past 0.06future 0.06singular singular 0.94NUMBER plural 0.06plural plural 0.86singular 0.14nominative nominative 0.85CASE oblique 0.15ausative oblique 0.89nominative 0.11dative oblique 0.88nominative 0.12genitive oblique 0.91nominative 0.09- - 0.96PASSIVE + 0.04+ + 0.74- 0.26indiative indiative 0.99subjuntive indiative 0.91MOOD subjuntive 0.08imperative indiative 0.58imperative 0.42Table 6.3: p(ve|vf) for a seletion of atomi features omputedfrom 360K node-aligned German-English LFG f-struturepairs, probabilities are rounded to 2 deimal plaes, fea-ture values with p(ve|vf) < 0.01 are omitted
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Dependeny Relation (de) Case (ve) P (ve|de)MODIFIER obl 1.00OBJECT obl 1.00THETA OBJECT obl 1.00OBLIQUE AGENT obl 1.00OBLIQUE obl 1.00OBLIQUE PARTICLE obl 1.00INTEROGATIVE PRONOUN obl 1.00TOPIC obl 1.00RELATIVISED TOPIC obl 1.00SUBJECT nom 0.99obl 0.01INTEROGATIVE FOCUS obl 0.98nom 0.02RELATIVE PRONOUN obl 0.97nom 0.03FRAGMENT nom 0.96obl 0.04X-COMPLEMENT nom 0.81obl 0.19Table 6.4: p(ve|de) omputed from 360K English LFG f-strutures,probabilities are rounded to 2 deimal plaes, feature val-ues with p(ve|de) < 0.01 are omitted
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Fator BLEU BLEU+t Pre. Reall F-sore Pre. Gram.Translation Coverageplain fatored 6.23 % 5.66 % 34 % 32 % 33 % 12.14 %fatored + 6.27 % 5.70 % 34 % 32 % 33 % 13.39 %ase speialplain 8.80 % 8.09 % 35 % 33 % 34 % 20.34 %templatestemplates + 16.18 % 15.20 % 40 % 41 % 41 % 38.01 %mismathingfatoredtemplates +mismathing 16.85 % 15.79 % 40 % 41 % 41 % 41.20 %fatored +ase speialTable 6.5: Automati evaluation results on 1755 held-out German-English sentene pairswhen ompared to those of the parsed referene translations. The results are inline with the BLEU sores of Table 6.5, with respet to the rank of eah method.For the Fatored Models with and without using templates, when we onditionthe probability used to translate the morpho-syntati fators on the dependenyrelation as opposed to the SL fator for ase, we see no inrease in f-sore, as thef-sore for both on�gurations without templates is 33% and for both on�gurationswith templates it is 41%. The improvement from the baseline plain fatored modelwhen ompared with the mismathing fator template methods is substantial, froman f-sore of 33% to 41%, an inrease of 8 perentage points absolute.Table 6.6 shows a break-down of translation results for individual morpho-syntatifators when ompared to those of parsed referene translations. The best resultfor translating eah morpho-syntati fator is ahieved using fator templates totranslate mathing fators only translating mismathing fators separately from thelemma. Although, BLEU sores improve when ase is translated using probabilityonditioned on the dependeny relation (16.85) as opposed to SL fator (16.18),between a word and its head, rather surprisingly we do not observe the same e�etin the f-sores for ase, as it remains at 46% for both on�gurations.114



Morph-syntatiFator Fatored TranslationMethod Preision Reall F-sorefatored 40 % 39 % 40 %fatored + ase speial 41 % 40 % 40 %CASE template 38 % 36 % 37 %template + mismathingfatored 45 % 48 % 46 %template + mismathingfatored + ase speial 45 % 47 % 46 %fatored 49 % 42 % 45 %PERSON template 50 % 43 % 46 %template + mismathingfatored 54 % 54 % 54 %fatored 38 % 31 % 34 %TENSE template 37 % 30 % 33 %template + mismathingfatored 39 % 33 % 36 %fatored 48 % 41 % 44 %NUMBER template 46 % 39 % 42 %template + mismathingfatored 53 % 53 % 53 %fatored 39 % 31 % 34 %PASSIVE template 40 % 32 % 35 %template + mismathingfatored 42 % 36 % 39 %fatored 42 % 34 % 38 %MOOD template 43 % 34 % 38 %template + mismathingfatored 45 % 38 % 41 %Table 6.6: Results of omparison of a seletion of automatiallytranslated morpho-syntati fators and referene trans-lation morpho-syntati fators
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DisussionResults show that using fator templates to deide whih fators to translate sepa-rately from lemmas improves mahine translation output signi�antly for our sys-tem. Aurately translating all fators separately from lemmas is di�ult due tothe very large number of possible ombinations of values and the fat that gener-ation in the MT system is arried out on the sentene level. Sine only 100 TLstrutures (m=100) are generated per TL sentene, a very high proportion of trans-lation options are pruned and using fator templates to translate fators that maththe soure input fators results in the pruning of a lower number of high qualitytranslation options and subsequently onsiderably higher BLEU, preision and re-all sores.Conditioning probabilities for translating ase using the TL dependeny relationof a word improves BLEU sore and this is aused by the relatively large inrease thisauses in the number of translations that now fall within overage of the preisiongrammar used for generation, as it inreases from 38.10% to 41.2%, an inrease ofover 3%, showing that using the TL dependeny relation of a word for translatingase is de�nitely worthwhile. As mentioned earlier, the improvement is not re�etedin the fsore for ase as reall in fat dereases (by 1%) when the dependenyrelation is used for translating ase and this is probably aused by the fat thatthe dependeny relations themselves are deided automatially by the MT system,so when we ompare them to the parsed referene fewer are orret beause thedependeny relation in the parsed referene translation is also di�erent. The dereasein reall should not be interpreted as a negative, as the important thing is notto math the ase of eah word to that of the parsed referene translation, butto produe the orret ase in eah individual TL struture, as this auses fewergeneration lashes.Examining the probability distributions omputed from the word-aligned orpusfor translating individual morpho-syntati fators reveals some interesting insightsinto how fators orrespond between the German and English words of the orpus116



(Table 6.3).5 The probability distribution for person shows that in the training data,only approximately 66% of nouns in the 2nd person in German are translated intoEnglish as the 2nd person, with 30% being translated as 3rd person and 4% beingtranslated as 1st person. Another surprising statisti is observed in the probabilitydistribution for tense, that 61% of verbs in the past tense are translated into thepresent tense in English, with a smaller portion translated as past, 38%, and aminimal amount as future (1%). However, it's worth mentioning that tense at thef-struture level of analysis in LFG is not simply divided notionally into past, presentand future. For example, the tense of the German verb gehen in Ih ging is analyzedas:
• tense past, mood indiative,and the orresponding verb in its English translation I went is given a similar analysisfor tense:
• tense past, progressive -, perfet -, mood indiative,but the alternate translation I have gone is analyzed as follows
• tense present, progressive -, perfet +, mood indiative.So, although notionally both English translations enode that the event was inthe past, syntatially only the former is in the past tense, and this phenomenonprobably aounts for muh of the divergene in tense observed in the probabilitydistribution.In addition, the probability distribution for number in Table 6.3 shows thata relatively large proportion of nouns that appear in the plural in German aretranslated into a singular noun in English, 14%. It's not surprising that the valuesfor ase between German and English do not orrespond well and even when aGerman noun is in the nominative, only 85% of the time is it translated into the5Note that these statistis are omputed from the automatially aligned bitext orpus, so themargin of error introdued by the (lower than gold-standard quality) alignment must be taken intoaount. 117



nominative ase in English. When translating the ase of a noun, the dependenyrelation between a word and its head is more informative than the soure languagease fator, as an be seen from Table 6.4, although sine we onstrut the TLstruture automatially via the translation of the SL struture, we need to takeinto aount that TL dependeny relations themselves may be inorret, but as wementioned earlier if high generator preision grammar overage is our priority a goodombination of TL dependeny relation and ase is more important than ahievingthe ase of the word in the referene translation.6.2.5 Experiment: Limiting Transfer Rule SizeIn this experiment, we investigate imposing a limit on the size of transfer rules usedfor transfer by the MT system. Transfer rules were �ltered by the maximum numberof nodes/words per LHS and RHS ranging from a limit of a maximum of 1 node perLHS and RHS to a maximum of 7 nodes.ResultsTable 6.7 shows the automati evaluation results for the MT system for eah rulesize limit. As the limit on the size of transfer rules inreases from a limit of 1node to a limit of 7, so does the BLEU sore, from 10.09% to 16.55%, with a slightderease when no limit is put on the size of transfer rules. The biggest inrease isseen when we ompare the results when the limit is inreased from 1 node (10.09%BLEU) to 2 nodes (14.94% BLEU), an inrease of over almost 5 perentage points.Preision, reall and f-sore in general inrease as we inrease the limit on rule size,for example, from an f-sore of 36.12% when the limit is 1 to 40.74% for a limit of7.DisussionIn general as we inlude large transfer rules, results improve due to larger parts of theSL deep syntati struture being translated together, resulting in the TL struture118



Max Rule Size BLEU BLEU+t Preision Reall F-sore1 10.09 % 9.30 % 38.67 % 33.89 % 36.12 %2 14.94 % 13.89 % 41.55 % 39.09 % 40.28 %3 15.85 % 14.83 % 41.50 % 39.93 % 40.70 %4 16.31 % 15.26 % 41.03 % 40.25 % 40.63 %5 16.14 % 15.15 % 40.75 % 40.50 % 40.62 %6 15.52 % 14.62 % 40.31 % 40.71 % 40.51 %7 16.55 % 15.51 % 40.46 % 41.03 % 40.74 %none 16.18 % 15.20 % 40.31 % 41.25 % 40.78 %Table 6.7: E�ets of limiting transfer rule size. Note: word align-ment = DS-INT, beam = 100, m = 100, k = 1, k-option= shortestbeing onstruted from large TL snippets of struture, whih already ontain �uentombinations of words. In addition, larger snippets of TL struture are more likelyto be grammatial and result in suessful generation. The minor derease observedwhen we hange from a limit of 7 to no limit on transfer rule size is probably due toa small number of erroneous transfer rules being eliminated when rule size is limited.6.2.6 Experiment: Transfer Deoder Beam SizeIn this experiment, we investigate the e�ets on MT output when the beam sizeof the deoder is inreased to di�erent sizes. In theory, inreasing the beam sizeould inrease the quality of MT output, as a higher number of possible solutionsare reahed by the searh.ResultsResults for eah beam size are shown in Table 6.8. Automati evaluation results showthat hanging the beam size does not have a dramati e�et on system performane.For all tested beam sizes, 1-400, the BLEU sore is around 13% with small variations.The f-sore doesn't hange dramatially either as it is approximately 41% for allbeam sizes.
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Beam Size BLEU BLEU+t Preision Reall F-sore1 12.76 % 11.78 % 40.61 % 41.19 % 40.90 %5 12.84 % 11.82 % 40.70 % 41.54 % 41.11 %10 13.03 % 11.97 % 40.79 % 41.43 % 41.11 %20 12.83 % 11.76 % 40.69 % 41.31 % 41.00 %50 12.69 % 11.66 % 40.35 % 41.18 % 41.00 %100 12.67 % 11.65 % 40.31 % 41.25 % 40.78 %200 12.67 % 11.62 % 40.24 % 40.99 % 40.61 %400 12.52 % 11.50 % 40.06 % 40.78 % 40.78 %Table 6.8: E�ets of inreasing the deoder beam size. Note: wordalignment = DS-INT, rule size limit = none, m = 1, k =1, k-option = shortestDisussionInreasing the beam size of the heuristi searh does not inrease the MT systemperformane. This indiates the possibility that the optimization using MERT andBLEU is not e�etively optimizing the weights used during transfer deoding. Apossible way to improve transfer deoder weight optimization would be to use anevaluation metri that operates diretly on deoder output, as opposed to BLEU,whih is applied to surfae-form sentenes generated from the deep syntati stru-tures. One suh method is to use the f-sore evaluation metri for MERT training,whih may provide a better set of weights for transfer deoding. Due to time on-straints, we leave this investigation to future work, however.6.2.7 Experiment: Generating from m-best Deoder TL Out-put StruturesIn this experiment, we investigate the e�ets on MT output quality of generatingfrom di�erent size deoder output lists. Inreasing the number of TL deoder outputstrutures that are generated from, dereases the number of translation options thatare pruned prior to generation, and this redues the likelihood of eliminating goodtranslations at this stage in the pipeline.
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m-best list size BLEU BLEU+t1 12.67 % 11.65 %10 15.24 % 14.17 %100 16.18 % 15.20 %1000 16.57 % 15.52 %Table 6.9: E�et of inreasing the size of the m-best deoder outputlists. Note: word alignment = DS-INT, rule size limit =none, beam = 100, k = 1, k-option = shortest. Preision= 40.31%, reall = 41.25%, f-sore = 40.78%ResultsTable 6.9 shows automati evaluation results for di�erent m-best list sizes.6 Resultsshow that inreasing the size of the m-best list of TL strutures produed by the de-oder, has quite a dramati e�et on system performane, with the largest inreasein results observed when we inrease the size of m from 1 (12.67% BLEU) to 10(15.34% BLEU), an inrease of almost 3 BLEU points absolute. Results inreaseagain when we inrease m to 100 (16.18% BLEU) and again to 1000 (16.57%). Weinlude BLEU sores for true asing, and, as expeted, for all on�gurations theBLEU sore is lower (by approximately 1 BLEU point absolute in eah on�gura-tion).DisussionInreasing the number of strutures generated (Table 6.9) has a relatively dramatie�et on the quality of MT output. When m is inreased from 1 to 10, an inrease ofalmost 3 BLEU points absolute is observed and sores inrease again when we moveto 100 strutures by almost 1 BLEU point. Inreasing the size ofm to 1000 results inan additional inrease of 0.39 BLEU points absolute, but a relatively severe trade-o�exists as the inrease in omputation time required for generation by inreasing mfrom 100 to 1000 is signi�ant, from approximately 2.33 to 26.75 pu minutes pertest sentene.6Preision, reall and f-sores are the same for eah on�guration, sine sores are omputed onthe highest ranking TL struture, whih is the same in eah on�guration.121



6.2.8 Experiment: Deterministi vs. Non-deterministi Gen-erationIn this experiment, we investigate the e�et on MT output quality of using deter-ministi versus non-deterministi generation. The deterministi k-options possiblewith XLE, shortest and longest, might in some ases selet the best output for aninput TL struture, but will inevitably ause some good translations to be prunedas the generator is fored to selet a single output translation for eah input TLstruture. Using non-deterministi generation, allows all possible strings to be gen-erated for eah input struture, eliminating the possibility of the generator pruninggood translations at this stage in the pipeline.7ResultsTable 6.10 shows automati evaluation results for deterministi versus non-deterministigeneration.8 The lowest result is seen for deterministi generation with k-optionlongest (15.55%), where the generator outputs the longest result, while seletingthe shortest generator output string for eah TL struture results in an inreaseto 16.18% BLEU, by almost 1 BLEU point. When non-deterministi generation isused and the generator produes all TL strings for the TL input struture the soreinreases again to 17.29% BLEU.DisussionAllowing non-deterministi generation (Table 6.10) results in a signi�ant inrease inBLEU sore. With respet to the trade-o� in additional omputation time requiredby non-deterministi generation, non-deterministi generation indeed is worthwhile,7It's important to remember that the size of the n-best list of translations that is ultimatelygenerated is m ∗ k, where m is the size of the deoder output list and k is the number of struturesgenerated from eah TL struture (the value of k is likely to hange from one struture to thenext), so deterministi generation redues the size on the n-best list of TL translations to m andnot 1, whih would be an easy mistake.8Preision, reall and f-sores are the same for eah method, sine these sores are omputedon the highest ranking TL struture before generation is arried out.122



k-option list size BLEU BLEU+tlongest 15.55 % 14.54 %shortest 16.18 % 15.20 %allstrings 17.29 % 16.13 %Table 6.10: Deterministi versus non-deterministi generation.Note: word alignment = DS-INT, rule size limit =none, beam = 100, m = 100. Preision = 40.31%, reall= 41.25% and f-sore = 40.78% for three on�gurations.sine the average time for generation is only inreased by half a pu minute per testsentene, from 2.33 (shortest) to 2.83 (allstrings) pu minutes.6.2.9 Experiment: Comparison with State-of-the-ArtIn this experiment, we ompare the performane of a state-of-the-art PB-SMT sys-tem, Moses (Koehn et al., 2007), with our deep syntax system. In our investigation,we examine if our system produes the same kinds of translations as the Phrase-Based system, fousing on one spei� syntati onstrution, the German Com-pound Noun (GCN), to observe if, for this partiular syntati onstrution, oursystem an ahieve state-of-the-art performane in a human evaluation of the �rst100 GCNs in the test data. A single human evaluator was used, who was presentedwith the orret English translation of the noun and the two system outputs in ablind test.9 The same data as in previous experiments was used for training andtesting of both systems. The deep syntax on�guration settings were as follows:word alignment = DS-INT, rule size limit = none, beam = 100, m = 100, k-option= allstrings.ResultsTable 6.11 ontains automati evaluation results for the Deep Syntax (DS) system(17.29% BLEU) ompared to the Phrase-Based (PB) system (30.7% BLEU) showingthe degree to whih our system urrently under-performs ompared to state-of-the-9Due to lak of resoures, the author ated as human evaluator.123



BLEU Corret GCNs Fuzzy GCNs Preision Grammar CoverageDS 17.29 % 56 % 25 % 38%PB 30.70 % 54 % 22 % n/aTable 6.11: Comparison with state-of-the-artBLEU HBLEU HNIST HTER HMETEOR Untrans. WordsDS 27.85 % 73.12 % 8.3602 20.74 % 82.80 % 2PB 32.69 % 70.80 % 8.1710 23.63 % 86.00 % 34Table 6.12: Preision grammar in-overage omparison with state-of-the-art. Note: H-BLEU = BLEU against 150 post-edited MT output referene translations.art.10 For GCNs, however, the deep syntax system performs at least as well as thePB system by translating 56 out of 100 GCNs orretly and 25% in a way that addssome orret meaning to the translation (fuzzy), while the PB system translates52% orretly and 22% as a fuzzy translation, in our human evaluation.Table 6.12 ontains results for the 38% of translations that were within over-age of the preision grammar used for generation, showing the PB system (32.69%BLEU) outperforming the deep syntax system (27.85% BLEU), by almost 5 BLEUpoints absolute. Due to the possibility of (ngram-based) BLEU unfairly biasing infavour of the PB system, we inlude results for human-targeted BLEU, NIST (Dod-dington, 2002), METEOR (Banerjee and Lavie, 2005) and TER (Snover et al., 2006,2005) automati evaluation metris using referene translations produed by post-editing the �rst 150 translations from eah MT system (Snover et al., 2006). Resultsfor this evaluation show that the DS system (73.12% BLEU) in fat outperforms thePB system (70.8%) by a little over 2 BLEU points absolute for translations withinoverage of the preision grammar used for generation. We also inlude the numberof untranslated words for the deep syntax system (2 words) and the PB system (34words), showing that for translations in-overage of the preision grammar, the deepsyntax system also ahieves higher overage of unseen data.10The unfair bias of ngram-based BLEU metri in favour of Moses should be noted, and isdisussed later. 124



DisussionAutomati evaluation results for the entire test set suggest that our system under-performs signi�antly in omparison with state-of-the-art (Table 6.11). However, theresults are unfairly biased in favour of the PB system, due to a ombination of theBLEU evaluation metri being ngram-based with legitimate syntati variations inthe DS system output. The di�erene in results is, however, too large to laim thatthis is entirely due to this bias. Table 6.14 shows a random seletion of translationsprodued by the DS system from the entire test set.Human evaluation of 100 GCNs shows that the DS system does in fat ahievestate-of-the-art performane for this partiular syntati onstrution, however. In-terestingly, the intersetion of the GCNs that the DS system translates orretly andthe PB system is quite small, with our system orretly translating 30% of thosenot translated orretly by Moses, and Moses orretly translating 23% of thosenot translated orretly by our system, suggesting the possibility of a hybrid MTsystem (similar to (Eisele et al., 2008; Chen et al., 2007; Eisele, 2005)) or that deepsyntax parsing ould be used to improve translation of GCNs for PB-SMT. Table6.13 shows a seletion of GCNs taken from the entire test set for the PB and DSsystems. The DS system ahieves overage of GCNs not observed in training datawhere omponent nouns were observed in training. For example, the GCN, Hafen-politik, was not observed in the German training data, but Hafen appears ombinedwith other nouns a total of approximately 80 times and politik also appears in theGerman training data approximately 3,400 times ombined with another noun. ThisGCN is translated orretly by the deep syntax system but not the PB system.For translations within overage of the preision grammar, i.e. where the trans-fer deoder manages to produe a ombination of lemmas, dependeny relationsand morpho-syntati information in TL strutures that do not lash with on-straints during TL generation, human-targeted evaluation results show the DS sys-tem ahieves state-of-the-art performane for these translations, in addition to ahiev-ing higher translation overage of unseen data, mainly due to its ability to learn how125



GCN PB Translation DS TranslationWiederaufnahme ResumptionTagesordnung agendaRehnungsführung aountsUnternehmensneugründungen ompany start-upsVorsihtsmassnahmen measures preautionary*Asien-Europa-Stiftung Asia Europe FoundationOsttimors East TimorASEM-Gesprähen ASEM talksHafenpolitik port poliyShwerpunkt EmphasisHauptsahe reason*Eigenkapital apital* invested apital*Arbeitsreht labour law* employment legislation*Küstenstaaten oastal statesSubsidiaritätsprinzip priniple of subsidiarity*Bewerberländer andidate ountries appliant ountries*Parlamentswahlen parliamentary eletions* general eletionsStandpunkt position* question*Ostsee BaltiÄnderungsantrag AmendmentDioxinskandal dioxin sare* dioxin sandalEinteilung lassi�ation* divisionFuttermittelsiherheit feed safetyFuttermittelkette feed hainFuttermitteln feed* means of feed*Gemeinshaftsebene Community level Community sale*Weltanshauung World view* world like mindedness*weltweit in the world* worldwide*Gemeinderatswahlen eletions loal*Rihtlinien diretives* diretive*Kernstük heart* lifeblood*Ausnahmemöglihkeiten opportunity for exeptions*Änderungsanträgen amendmentsÄnderungsanträge amendmentsVertragseinhaltung Treaty ompliane*Entshliessungsantrags resolution*Forshungsraum researh area period of Researh*Endkontrolle �nal*Gegenprüfung ounter examinationTable 6.13: German Compound Noun translations for the Phrase-Based SMT system and the deep syntax system, trans-lations evaluated as a fuzzy translation are marked withan asterisk 126



SRC: Dies kann niht hingenommen werden.REF: This is an unaeptable situation.DS: Not one that an allow ontinueSRC: Herr Präsident! Die Siherheit vershiedener Verkehrsarten steht ernsthaft aufdem Spiel.REF: Mr President, safety is a serious issue for various forms of transport.DS: Mr President. Die of di�erent forms of transport safety is at stake seriously.SRC: Das ist die politishe Position.REF: That is the politial position.DS: That is the politial position.SRC: Natürlih ist sih auh die türkishe Gesellshaft dieses Gegensatzes bewusst.REF: Turkish soiety obviously pereives this ontraditory attitude.DS: Of ourse ist sih the Turkish soiety also of this ontradition bewusstSRC: Solhe Gewalttätigkeit potenziert die Hassgefühle nur noh weiter.REF: That sort of violene only stirs up feelings of hatred.DS: This violation potenzieren only hate emotions furtherTable 6.14: Randomly seleted translations, original referene trans-lations provided (not human-targeted)to translate new unseen GCNs from GCNs in the training data that ontain om-ponent nouns, in addition to ahieving overage of in�etions of words not seen inbilingual training, sine we use Fatored Models (Koehn and Hoang, 2007). Ta-ble 6.15 shows a random seletion of translations for the PB and DS systems fortranslations in overage of the preision generation grammar and Table 6.16 showsGerman words that were not translated by the DS and PB systems for translationsin overage of the preision grammar.An examination of the kinds of sentenes that eah system translates better orworse than the other showed that, in general, the DS system translates the followingbetter than the PB system: ompound nouns, the passive voie, the DS system doesnot tend to leave out nouns or verbs whih are sometimes omitted by the PB system,does not omit determiners from nouns as often than the PB system, it produes more�uent verb forms e.g. �ontributes to ahieving this objetive� was produed by theDS system as opposed to �ontributes to ahieve this objetive� by the PB system.127



SRC: Auf Gesetzesebene gibt es allgemeine Texte, in denen Diskriminierungweltweit verurteilt wird.REF: Legally speaking, there are general texts ondemning disrim-ination everywhere.DS: General texts ondemning worldwide disrimination have been given toany legislative level.PB: There is general provisions on gesetzesebene where disrimination is on-demned in the world.SRC: Das soll sih hier ho�entlih niht wiederholen!REF: I hope we will not see a repeat performane here!DS: hopefully that should not be repeated.PB: I hope it will not repeat here!SRC: Der BSE-Skandal war das shlehteste, bekannteste Beispiel.REF: The BSE sandal was the worst and most notorious example.DS: The BSE sandal is the worst and most known ase.PB: The BSE sandal was the worst and most well-known example.SRC: In Erwartung von mehr Klarheit haben wir uns deshalb der Stimmeenthalten.REF: Pending further lari�ation, we therefore abstain from thevote.DS: Therefore I abstained in expetation of greater larity for.PB: In expetation of greater larity, we have therefore abstain from voting.SRC: Der Wiederaufbau Osttimors ist noh im Gange.REF: The rebuilding of East Timor is still an ongoing proess.DS: The reonstrution of East Timor is still taking plae.PB: The reonstrution osttimors is still in progress.SRC: Möhte sih jemand für diesen Antrag aussprehen?REF: Is there a speaker to support this request?DS: Does anyone wish to speak in support of this motion?PB: Does anyone wish to speak in favour of this request?SRC: Vielen Dank für diese Klarstellung, Herr Kommissar.REF: Thank you very muh for that lari�ation, Commissioner.DS: I would like to thank the Commissioner for that lari�ation.PB: Thank you for that lari�ation, Commissioner.SRC: In diesem Punkt sind wir einer Meinung.REF: On this point we are in agreement.DS: We will be agreement on point about this.PB: In this regard, we are in agreement.SRC: Gibt es Einwände?REF: Are there any omments?DS: Are there any objetions?PB: Are there any omments?SRC: Verhaltenskodex für Wa�enausfuhrenREF: Arms trade ode of ondutDS: Code of Condut on Arms ExportsPB: Code of ondut on arms exportsTable 6.15: Randomly seleted sample of translations in-overage ofpreision grammar, original referene translations pro-vided. 128



Phrase-Based System Deep Syntax Systeminterparlamentarisher liegenasien-europa-stiftung vorsihtshalberosttimorsinterparlamentarishereuropäerszulehntenspielzeugbombenerfahrenenkompetenzverteilungmarktpositionenttäushteselbstbewertunggegenwertkostengünstigesbleibendengeldverkehrsreformpläneeindämmungsmassnahmenregemauslandsdiplomatiekompetenzabgrenzungplanungssiherheitpapua-führerdominiertersuhtenneuzuteilungeu-lärmindizeszusatzsto�esklimafragevorsihtshalbersiherheitsspielraumun-�ühtlingshilfswerkgesamtgesellshaftlihenTable 6.16: German words not translated in translations within ov-erage of the TL generation preision grammar for thePhrase-Based and deep syntax systems
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Conversely, the DS system translates the following kinds of sentenes worse thanthe PB system: the DS system an sometimes hoose a in�uent verb-prepositionombination or in�uent ombinations of adverbs e.g. "addressed absolutely away"was produed by the DS system where the orret translation "raised" was produedby the PB system, the DS system an make a noun possessive when it should notbe e.g. �the fous's is ...�, the DS system more often produes the inorret tensefor a verb, and also an produe in�uent adjetives for nouns, e.g. �"expetations ..are large� as opposed to �expetations are high�.6.3 Deep Syntax Language Model ExperimentDeep syntax language models may not only be relevant to deep syntax transfer, butalso have the potential to be integrated into other kinds of SMT systems. String-based and deep syntax language models both estimate the probability of a senteneby ombining probabilities of individual words. For both types of model, the prob-ability of a word is estimated using the probability of it ourring in a partiularontext. A traditional string-based language model uses the loal ontext of eahword within the string, spei�ally its preeding n−1 words, whereas a deep syntaxlanguage model ignores loal ontext and instead uses as ontext the words that arelinked to it via dependeny relations, as desribed in Setion 4.5.1. Ideally, bothtypes of language model an be used in a single appliation to help produe outputthat is both �uent with respet to loal ombinations of words in the string and�uent with respet to ombinations of words within the deeper struture. In thenext setion we highlight the potential of deep syntax language models for SMTsystems in general followed by an experimental omparison of string-based and deepsyntax language models. This work is also desribed in detail in Graham and vanGenabith (2010).
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PRED billSPEC [POSS [PRED Obama]]MOD 



PRED areMOD [PRED health] 
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(b) <s>passtoday ongress bill
</s> </s> obama are

</s> health
</s>Figure 6.1: �Today ongress passed Obama's health are bill.�6.3.1 Deep Syntax and Lexial Choie in SMTCorret lexial hoie in mahine translation is extremely important and PB-SMTsystems rely on the language model to ensure that when two phrases are ombinedwith eah other, the model an rank more �uent ombinations of phrases higherthan those that are less �uent. Conditioning the probability of eah word on itsdeep ontext has the potential to provide a more meaningful ontext than the lo-al ontext within the string. Figure 6.1 shows the LFG f-struture for Englishsentene �Today ongress passed Obama's health are bill.� 11 Enoded within thef-struture is a direted graph and our language model uses a simpli�ed ayli un-labeled version of this graph shown in Figure 6.1(b) within the f-struture of Figure6.1(a). A omparison of the probabilities of individual words in the deep syntaxmodel and string-based language model in Figure 6.2 highlights how the DS modelmay provide information to improve lexial hoie for SMT systems. For instane,11Morpho-syntati information/ atomi features are omitted from the diagram.131



(a) Deep Syntax LM (b) Traditional LM
p(e) ≈ p( pass | <s>)∗ p(e) ≈ p( passed | today ongress )∗

p( today | <s> pass )∗ p( today | <s>)∗
p(</s> | pass today )∗
p( ongress | <s> pass )∗ p( ongress | <s> today )∗
p(</s> | pass ongress )∗
p( bill | <s> pass )∗ p( bill | health are )∗
p( obama | pass bill )∗ p( obama | ongress passed )∗
p(</s> | bill obama )∗
p( are | pass bill )∗ p( are | s health )∗
p( health | bill are )∗ p( health | ' s )∗
p(</s> | are health )

p( ' | passed Obama )∗
p( s | obama ' )∗
p( . | are bill )∗
p(</s> | bill . )Figure 6.2: Example Comparison of Deep Syntax and TraditionalLanguage Modelslet us onsider how the language model in a German to English SMT system isused to help rank the following two translations today ongress passed ... and todayonvention passed ... (the word Kongress in German an be translated into eitherongress or onvention in English). In the deep syntax model, the important om-peting probabilities are (i) p(congress|<s>pass) and (ii) p(convention|<s>pass),where (i) an be interpreted as the probability of the word ongress modifying passwhen pass is the head of the entire sentene and, similarly (ii) the probability ofthe word onvention modifying pass when pass is the head of the entire sentene.In the traditional string-based language model, the equivalent ompeting probabili-ties are (i) p(congress|<s>today), the probability of ongress following today whentoday is the start of the sentene and (ii) p(convention|<s>today), probability ofonvention following today when today is the start of the sentene, showing that thedeep syntax language model is able to use more meaningful ontext for good lexialhoie when estimating the probability of words ongress and onvention omparedto the string-based language model.In addition, the deep syntax language model will enounter less data sparseness132



problems for some words than a string-based language model. In many languageswords our that an legitimately be moved to di�erent positions within the stringwithout any hange to dependenies between words. For example, sentential ad-verbs in English, an legitimately hange position in a sentene, without a�etingthe underlying dependenies between words. The word today in �Today ongresspassed Obama's health are bill� an appear as �Congress passed Obama's healthare bill today� and �Congress today passed Obama's health are bill�. Any sentenein the training orpus in whih the word pass is modi�ed by today will result in abigram being ounted for the two words, in a bigram deep syntax language modelfor example, regardless of the position of today within eah sentene.In addition, some surfae form words suh as auxiliary verbs are not representedas prediates in the deep syntati struture. For lexial hoie, it's not reallythe hoie of auxiliary verbs that is most important, but rather the hoie of anappropriate lexial item for the main verb (that belongs to the auxiliary verb).Inluding a model that ignores auxiliary verbs ould aid better lexial hoie, byfousing on the hoie of a main verb without the e�ets of its auxiliary verb.For some words, however, the probability in the string-based language modelprovides as good if not better ontext than the deep syntax model, but only for thefew words that happen to be preeded by words that are important to its lexialhoie, showing that the deep syntax language model should not replae the string-based model. For example, the probability of bill in Figures 6.2(a) and 6.2(b) isomputed in the deep syntax model as p(bill| <s> pass) and in the standard modelusing p(bill|health care), and for this word the loal ontext seems to provide moreimportant information than the deeper ontext when it omes to lexial hoie. Thedeep model nevertheless adds some useful information, as it inludes the probabilityof bill being an argument of pass when pass is the head of a sentene.In string-based language modeling, the speial start symbol is added at thebeginning of a sentene so that the probability of the �rst word appearing as the�rst word of a sentene an be inluded when estimating the probability. With133



similar motivation, we add a start symbol to the deep syntati representation sothat the probability of the head of the sentene ourring as the head of a sentenean be inluded. For example, p(be| <s>) will have a high probability as the verbbe is the head of many sentenes of English, whereas p(colorless| <s>) will have alow probability sine it is unlikely to our as the head. We also add end symbols atthe leaf nodes in the struture to inlude the probability of these words appearingat that position in a struture. For instane, a noun followed by its determiner suhas p(</s> |attorney a) would have a high probability ompared to a onjuntionfollowed by a verb p(</s> |and be).6.3.2 EvaluationWe arry out an experimental evaluation to investigate the potential of the deepsyntax language model we desribe in this thesis independently of any mahinetranslation system. We train a 5-gram deep syntax language model on 7M English f-strutures, and evaluate it by omputing the perplexity and ngram overage statistison a held-out test set of parsed �uent English sentenes. In order to provide aninteresting omparison, we also train a traditional string-based 5-gram languagemodel on the same data and test it on the the same held-out test set of Englishsentenes. A deep syntax language model omes with the obvious disadvantage thatany data it is trained on must be in-overage of the parser, whereas a string-basedlanguage model an be trained on any available data of the appropriate language.Sine parser overage is not the fous of our work, we eliminate its e�ets from theevaluation by seleting the training and test data on the basis that they are in fatin-overage of the parser.6.3.3 Language Model TrainingOur training data onsists of English sentenes from the WMT09 monolingual train-ing orpus with sentene length range of 5-20 words that are in overage of the134



Corpus Tokens Ave. Tokens Voabper Sent.Strings 138.6M 19 345KLFG lemmas/prediates 118.4M 16 280KTable 6.17: Language model tokens for deep syntax and string-basedlanguage models for the same training data of 7.29Msentenes of Newswire textparsing resoures (Kaplan et al., 2004; Riezler et al., 2002) resulting in approxi-mately 7M sentenes. Preparation of training and test data for the string-basedlanguage model onsisted of tokenization and lower asing. Parsing was arried outwith XLE (Kaplan et al., 2002) and an English LFG grammar (Kaplan et al., 2004;Riezler et al., 2002). The parser produes a paked representation of all possibleparses aording to the LFG grammar and we selet only the single best parse forlanguage model training by means of a disambiguation model (Kaplan et al., 2004;Riezler et al., 2002). Ngrams were automatially extrated from the f-struturesand lowerased. SRILM (Stolke, 2002) was used to ompute both language mod-els. Table 6.17 shows statistis on the number of words and lemmas used to traineah model.6.3.4 TestingThe test set onsisted of 789 sentenes seleted from WMT09 additional develop-ment sets12 ontaining English Europarl text and again was seleted on the basisof sentenes being in-overage of the parsing resoures. SRILM (Stolke, 2002) wasused to ompute test set perplexity and ngram overage statistis for eah ordermodel.Sine the deep syntax language model adds end of sentene markers to leaf nodesin the strutures, the number of (so-alled) end of sentene markers in the test set forthe deep syntax model is muh higher than in the string-based model. We thereforealso ompute statistis for eah model when end of sentene markers are omitted12test2006.en and test2007.en 135



from both model training and testing.13 In addition, sine the vast majority ofpuntuation is not represented as prediates in LFG f-strutures, we also test thestring-based language model when puntuation has been removed.6.3.5 ResultsTable 6.18 shows perplexity sores and ngram overage statistis for eah order andtype of language model. Note that perplexity sores for the string-based and deepsyntax language models are not diretly omparable, beause although trained onthe same set of sentenes, the data is in a di�erent format for eah model, lemmasfor the deep syntax model and surfae form words for the string-based model, soeah model in fat has a di�erent voabulary. Ngram overage statistis provide abetter omparison.Unigram overage for all models is high as eah ahieves lose to 100% overageon the held-out test set. Bigram overage is highest for the deep syntax languagemodel when end of sentene eos markers are inluded (94.71%) with next highestoverage ahieved by the string-based model that also inludes eos markers (93.09%).When eos marker probabilities are omitted bigram overage goes down slightly to92.44% for the deep syntax model and to 92.83% for the string-based model, andwhen puntuation is also omitted from the string-based model, overage goes downagain to 91.57%.Trigram overage statistis for the test set maintain the same rank betweenmodels as in the bigram overage, from highest to lowest as follows: DS+eos at64.71%, SB+eos at 58.75%, SB-eos at 56.89%, DS-eos at 53.67%, SB-eos-pun at53.45%. For 4-gram and 5-gram overage a similar overage ranking is seen, butwith DS-eos (4gram at 17.17%, 5gram at 3.59%) and SB-eos-pun (4gram at 20.24%,5gram at 5.76%) swapping rank position.13When we inlude end of sentene marker probabilities we also inlude them for normalization,and omit them from normalization when their probabilities are omitted.
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1-gram 2-gram 3-gram 4-gram 5-gramov. ppl ov. ppl ov. ppl ov. ppl ov. pplSB-eos 99.61% 1045 92.83% 297 56.89% 251 23.32% 268 7.19% 279SB-eos-pun 99.58% 1357 91.57% 382 53.45% 327 20.24% 348 5.76% 360DS-eos 99.56% 1005 92.44% 422 53.67% 412 17.17% 446 3.59% 453SB +eos 99.63% 900 93.09% 227 58.75% 194 25.48% 207 8.35% 215DS +eos 99.70% 211 94.71% 77 64.71% 73 29.86% 78 8.75% 79Table 6.18: Ngram overage and perplexity (ppl) on held-out testset. Note: DS = deep syntax, SB string-based, eos =end of sentene markers6.3.6 DisussionNgram overage statistis for the DS-eos and SB-eos-pun models provide the fairestomparison, and the deep syntax model ahieves similar overage to the string-basedmodel, with the deep syntax model ahieving higher overage than the string-basedmodel for bigrams (+0.87%) and trigrams (+0.22%), marginally lower overageoverage of unigrams (-0.02%) and lower overage of 4-grams (-3.07%) and 5-grams(2.17%) ompared to the string-based model.Perplexity sores for the deep syntax model when probabilities of eos symbolsare inluded are low (79 for the 5gram model) and this is aused by eos markers inthe test set in general being assigned relatively high probabilities by the model, andsine several our per sentene, the perplexity inreases onsiderably when theirprobabilities are omitted (453 for the 5gram model).Tables 6.19 and 6.20 show the most frequently enountered trigrams in the testset for eah type of model. A omparison shows how di�erent the two models areand highlights the potential of the deep syntax language model to aid lexial hoiein SMT systems. Many of the most frequently ourring trigram probabilities for thedeep syntax model are for arguments of the main verb of the sentene, onditioned137



3-gram No. O. Prob.
<s> and be 42 0.1251
<s> be this 21 0.0110

<s> must we 19 0.0347
<s> would i 19 0.0414
<s> be in 17 0.0326

<s> be that 14 0.0122be debate the 13 0.0947
<s> be debate 13 0.0003
<s> an not 12 0.0348

<s> and president 11 0.0002
<s> would like 11 0.0136
<s> would be 11 0.0835
<s> be also 10 0.0075Table 6.19: Most frequent trigrams in test set for deep syntax modelon the main verb, and inluding suh probabilities in a translation model ouldimprove �ueny as information about whih words are in a dependeny relationtogether is expliitely inluded in the model. In addition, a frequent trigram in theheld-out data is <s> be also, where the word also is a sentential adverb modifyingbe. Trigrams for sentential adverbs are likely to be less e�eted by data sparsenessin the deep syntax model ompared to the string-based model whih ould resultin the deep syntax model improving �ueny with respet to ombinations of mainverbs and their modifying adverbs. The most frequent trigram in the deep syntaxtest set is <s> and be, in whih the head of the sentene is the onjuntion andwith argument be. In this type of syntati onstrution in English, it's often thease that the onjuntion and verb will be distant from eah other in the sentene,for example: Nobody was there exept the old lady and without thinking we quiklyleft. (where was and and are in a dependeny relation). Using a deep syntaxlanguage model ould therefore improve lexial hoie for suh words, sine they aretoo distant for a string-based model.
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3-gram No. O. Prob.mr president , 40 0.5385
<s> this is 25 0.1877by the european 20 0.0014the european union 18 0.1096
<s> it is 16 0.1815the european parliament 15 0.0252would like to 15 0.4944

<s> i would 15 0.0250
<s> that is 14 0.1094i would like 14 0.0335and gentlemen , 13 0.1005ladies and gentlemen 13 0.2834

<s> we must 12 0.0120should like to 12 0.1304i should like 11 0.0089, ladies and 11 0.5944, it is 10 0.1090Table 6.20: Most frequent trigrams in test set for string-based model6.4 ConlusionA detailed evaluation of an SMT via deep syntati transfer system was presented.Experimental results show that the deep syntax intersetion word alignment methodahieves by far the best results for the system, with larger rule size limits alsoimproving results. Varying the beam size does not have a dramati e�et on MTperformane, with a beam size as low as 10 being su�ient for the system. Inaddition, signi�ant gains an be made by inreasing the size of the m-best deoderoutput list to 100 and with non-deterministi generation. Compared to state-of-the-art PB-SMT the deep syntax system under-performs, but for sentenes in-overage ofthe preision grammar used for generation, state-of-the-art performane and higheroverage of unseen data is ahieved.We also presented a omparison of a deep syntax and traditional string-basedlanguage model. Results showed that the deep syntax language model ahievessimilar ngram overage to the string-based model on a held out test set. We high-lighted the potential of integrating suh a model into SMT systems for improving139



lexial hoie by using a deeper ontext for probabilities of words ompared to astring-based model.
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Chapter 7
Conlusions and Future Work
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This thesis presented an investigation into an approah to mahine translationthat integrates state-of-the-art PB-SMT tehniques into a deep syntati transferarhiteture. We desribed methods of automatially word/node aligning deep syn-tati strutures, as well as transfer rule extration. We developed a new de�nitionfor onsistent transfer rules, inspired by the de�nition of a onsistent phrase in PB-SMT (Koehn et al., 2003). Similar to phrase extration in PB-SMT we extratall transfer rules onsistent with the word/node alignment. Sine we allow non-terminals in transfer rules, this an result in large numbers of rules, and we providea new method of e�iently extrating and storing transfer rules, as well as releasingthe rule extration software as an open soure tool. Our experimental evaluationshowed that inluding larger transfer rules that ontain more ontext as well assmaller rules is indeed worthwhile as it results in substantially better MT output.The thesis also presented the design and implementation of a deep syntax trans-fer deoder, and we provide this tool to the wider researh ommunity as opensoure software to assist future researh. Our translation model, a log-linear ombi-nation of feature funtions, inludes a trigram deep syntax language model, whihis fully and e�iently integrated into deoding. We also desribed a new methodof translating morpho-syntati information, fator templates, used to deide whihmorpho-syntati fators to translate separately from lemmas in Fatored Models,whih signi�antly improves MT output for our system.We �nally presented a detailed evaluation of the mahine translation system,in whih we investigate the e�ets of using di�erent methods of word alignment,di�erent beam sizes during transfer deoding, generating from di�erent sized m-best deoder output lists, using deterministi versus non-deterministi generation,as well as omparing the urrent performane of the system with a state-of-the-art PB-SMT system. Results showed that although the deep syntax system doesnot ahieve state-of-the-art performane for the entire test set, for sentenes withinoverage of the preision grammar used for generation, state-of-the-art performaneis ahieved. In addition, a manual evaluation of the translation of German ompound142



Riezler & Bojar & GrahamMaxwell Haji (2010)(2006) (2008)Lemmatized Word Alignment ✗ X XDS Reordered Word Alignment ✗ ✗ XTrain Deoder Fully Automatially ✗ X XNon-isomorphism ✗ ✗ XLM during deoding ✗ X XFatored Models ✗ X XFator Templates ✗ ✗ XUnlimited Rule Size ✗ ✗ XTable 7.1: Summary of Contrasts with Related Worknouns, revealed the deep syntax system ahieves state-of-the-art performane forautomati translation of this partiular syntati onstrution on the entire test set.Finally, we provided a omparison of the deep syntax language model we use inour work with a traditional string-based language model, in order to highlight itspotential to improve lexial hoie in general in SMT systems. Table 7.1 provides asummary of the ontributions in respet to how they ompare to related researh.7.1 Researh Questions & MotivationsThis thesis investigated the researh questions detailed in Setion 1.4. The mainhallenges of using deep syntax for transfer in mahine translation was a main re-searh question. In our investigation, the most signi�ant hallenge identi�ed forthe MT approah was the hallenge of automatially onstruting TL deep synta-ti strutures that do not ause generation lashes and this remains a signi�anthallenge. The reason for this is due to the large number of possible ombinationsof TL lexial items, dependeny relations, and values of atomi features. We be-lieve an integration of the target language grammar rules used for generation intotransfer deoding ould greatly inrease the proportion of grammatial struturesprodued by the deoder. Due to time onstraints, we leave this for future work.An additional aim was to apply mahine learning methods to deep syntati trans-143



fer. The work stayed true to this aim as all of the methods of training that weredeveloped were fully automati. The methods desribed in this thesis ahieve ahigh level of language pair independene, sine none of the methods are spei�to any partiular language pair, in addition to the methods being linguisti theoryindependent (within the ontext of deep syntax), as all of the methods desribedhere an be applied to other theories of deep syntax with little to no adaptationrequired. We ahieved the aim of applying Phrase-Based SMT methods to deepsyntati transfer sine our rule extration method is very similar to the way inwhih phrases are extrated in PB-SMT, in addition to our translation model beinga log-linear ombination of feature funtions that inludes several features adoptedfrom PB-SMT.We also wished to develop e�ient methods of training and deoding, whihwas ahieved, as all of the methods developed are e�ient and an sale to largeorpora. As part of the work we have also made the two main tools open soureto aid future researh, the transfer deoder and the rule extration software. Inaddition, we investigated the e�ets of system parameters on translation qualityproviding insight into whih parameters are of greatest importane to translationquality. Finally, we provided an empirial omparison of deep syntati transfer andPhrase-Based SMT.7.2 Future WorkSMT via deep syntati transfer is an approah that does not have many theoretial�aws, as a system with this arhiteture an in theory translate ross-lingual lan-guage phenomena that ause signi�ant hallenges for other MT approahes, suhas long-distane dependenies between words, as well as ahieving a high level oflanguage pair independene as no reordering model is required. The main hal-lenges the approah is faed with are of a more pratial nature ompared to otherapproahes to MT. 144



For parsing and generation, higher parser overage of training data is needed sothat all available bilingual training data an be used. Similarly, inreased generatoroverage and robustness is also needed. We have shown that when TL struturesoutput by the deoder fall within overage of the preision grammar for generation,that the quality of the MT output is high. Ahieving a good ombination of TLlemmas, dependeny relations and morpho-syntati information, we believe, is themost signi�ant hallenge for this approah. The very large number of possibleombinations of lemmas, dependeny relations and morpho-syntati information ina single TL struture makes obtaining a ombination that does not ause lashes ingeneration extremely di�ult. In our evaluation, our system managed to ahieve nogeneration lashes for approximately 38% of the test set. A possible way to inreasethis would be to use information from the preision grammar and lexion duringtransfer deoding.Inreased parser and generator overage ould be ahieved by employing fullystatistial resoures, like those desribed in Setion 2.2.2. Suh statistial tehnolo-gies do not produe as �ne-grained an analysis as the preision grammar, however,and its di�ult to know what kind of e�et this will have on MT output. On the onehand, its possible that the oarser analysis omits atomi features that are importantfor translation resulting in a derease in performane. On the other hand, however,if atomi features are present in the hand-rafted grammar analysis that are not infat needed for translation, whih is quite possible, removing them from the analysisremoves the need for the system to aurately guess their values in the TL strutureand ould result in less generator lashes and fewer good translations being prunedprior to generation.Although a statistial generator is likely to inrease robustness of generation,there is also the possibility, however, that the high level of grammatiality ahievedwhen sentenes are within overage of the preision grammar will be lost. In addi-tion, sine these tehnologies are usually tested on gold-standard input, its likely thatsigni�ant modi�ation will be required before they an be used for lower quality145



input, suh as the transfer deoder output strutures.Other possibilities for future work inlude the development of better word align-ment methods. Our method of word alignment does not expliitely use some of theinformation present in deep syntati strutures, like the position of nodes in theunderlying graph struture. For example, its likely that within the SL struturenodes positioned lose to the root are aligned with similar positioned nodes in theTL struture, and our method does not expliitely use this kind of information. Inaddition, the grammatial funtion of a word may in some ases provide more usefulinformation than the lexial item and ould be taken advantage of for automatiword alignment. For example, a better way of aligning a determiner or adjuntmight be to omit it from the training data in a �rst-stage alignment, then use thealignment of its head to �nd the word its aligned to. In addition, the transfer de-oder ould be improved as it urrently does not inlude hypothesis reombinationor future ost estimation, whih ould potentially improve the searh.Some of the methods developed in this work ould be adapted to a PB-SMT ar-hiteture and potentially improve suh systems. The deep syntax language modelhas the potential to improve lexial hoie in a PB-SMT system if suessfully in-tegrated. In addition, it would be interesting to investigate if fator templates anbe used to improve PB-SMT. We showed how they signi�antly improve resultswithin a deep syntax transfer arhiteture, and although the arhitetures are verydi�erent espeially onsidering that the deep syntax arhiteture restrits us to us-ing sentene-level generation, as opposed to the word-level generation of FatoredPhrase-Based Models, they still ould potentially provide a kind of halfway housebetween standard PB-SMT and fully Fatored Models in addition to providing a wayof aurately translating idiosynrati translations. In addition, the deep analysis ofompound nouns provided by the deep syntax parser ould be taken advantage of inPB-SMT, for German at least. German training and test data ould be parsed thussplitting German ompound nouns into omponent nouns in a preproessing step.This ould add to a PB-SMT system the ability to learn unseen German ompound146



nouns from omponent nouns observed in the training data.
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