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Abstract. In a magnetorheological (MR) fluid, the rheological properties can 

be changed in a controlled way, the changes being reversible and dependent 

on the strength of a magnetic field. The fluids have potentially beneficial 

applications when placed in various geometrical arrangements. The squeeze 

mode is a geometric arrangement where two flat parallel solid surfaces, 

facing each other, are pushed towards each other by an external force, 

operating at right angles to the surfaces. The liquid initially in the gap 

between them is free to move away from this increasingly small gap, and it 

does so by flowing parallel to the surfaces, and collecting in a region where 

it is no longer in the gap between them. The performance of an MR fluid in 

compression (squeeze) mode has been studied with the magnetic field being 

generated by a coil carrying different magnitudes of DC electrical current. A 

test rig was designed to perform this operation with the flat surfaces being 

horizontal and being pushed together in a vertical direction and the liquid 

being forced to move in all directions in a horizontal plane. The rig operated 

by decreasing the size of the gap at a constant rate. For each trial the current 

in the coil was kept constant and the instantaneous compressive force was 

recorded. When plotting compressive stress against compressive strain for 

each trial, the slope of the curve was found to be larger in general when the 

current was larger. This was an expected result; however the behaviour is 

more complicated than this. For a significant range of values of the 

compressive strain, the slope falls to zero, so that the compressive stress 

shows no increase during this period, while the compressive strain continues 
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to increase. The details of this behaviour are strongly dependent on the initial 

size of the gap.  

 

1. Introduction  

A magnetorheological (MR) fluid is a suspension of micron-sized magnetically soft 

particles in a carrier liquid, which exhibits dramatic changes in rheological properties. The 

change from a solid-like state to a free-flowing liquid state is reversible and depends on the 

presence of a magnetic field. Under the influence of a magnetic field these particles arrange 

themselves to form very strong chains of “fluxes” (Hagenbuchle and Liu 1997), with a pole 

of one particle being attracted to the opposite pole of another particle. Once aligned in this 

manner, the particles are restrained from moving away from their respective flux lines and 

act as a barrier preventing the flow of the carrier fluid.   

Potential applications of MR fluids have been suggested especially applications in 

automotive industry where benefits could be achieved in parts such as clutches, brakes, 

dampers and actuators (Jolly et al 1999, Huang et al 2002, Yoo and Wereley 2002). Most of 

the researchers assume a geometrical arrangement referred to as shear mode in their design 

but they found that the magnitudes of the stress in systems with shear mode geometry are 

too low to be of value in the potential applications listed above. However, the geometrical 

arrangement designated squeeze mode can produce compression and tensile stresses which 

are much higher and this has generated new interest in this approach. The values of 

compressive stress are similar to those reported in experimental studies using 

electrorheological (ER) fluids (Lukkarinen and Kaski 1998, Monkman 1995, Tian et al 

2002a). Tian et al (2002b) have investigated the stepwise compression of fluids containing 

zeolites and silicones in squeeze mode. They also studied the compression starting with 

different initial gap sizes and under different applied electrical potentials (Tian et al 2003). 
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Despite the fact that MR fluids have been investigated repeatably with the squeeze mode 

geometry, many of the studies dealt with controlling vibration for rotor systems. Forte et al 

(2004), Ahn et al (2004) and Carmignani et al (2006) developed an MR squeeze film 

damper system for rotor applications. Wang et al (2005) investigated the dynamic 

performance of this system and subsequently (Wang et al 2006) analyzed the mechanical 

properties of the film and the unbalanced response characteristics of the MR squeeze film in 

the damper-rigid rotor system. However, a thorough study of the stress-strain characteristics 

in compression of MR fluids in squeeze mode is still not complete. This paper presents an 

experimental investigation of the performance of an MR fluid in squeeze mode under 

different applied currents and starting with different gap sizes. 

 

2. Design of magnetic circuit 

The main objective of the magnetic circuit design is to produce the correct magnetic flux 

density across the MR fluid. A length of cooper wire with a resistance of 29 ohms was 

wound around a cylinder, forming 2750 turns, in order to generate a magnetic field. The 

magnetic behaviour of the equipment was analysed using a Finite Element Method 

Magnetics (FEMM) software package (Meeker 2006). The magnetic properties of the non-

magnetic materials were assumed to be linear whereas the properties of magnetic materials 

such as low carbon steel were assumed to follow the B-H curves given in the software 

package. An MR fluid of type MRF-241ES (water-based) produced by the Lord 

Corporation was tested in these experiments. The typical magnetic properties for this 

material are shown in figure 1.  

An axial symmetric model was selected in the FEMM software package. The magnetic flux 

density distribution within the fluid is shown in figure 2. The following parameters were 

used to specify the geometry of the coil; inner diameter = 60 mm, outer diameter = 92 mm, 

and width = 100 mm. These parameters limit the area in which the copper wire can be 
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wound. The current density was limited to 4 Amm
-2

 in connection with the appropriate wire 

diameter. 

 
 

Figure 1. Magnetic induction curve for MRF-241ES (Lord 2007). 

 

 

 
 

Figure 2. Flux density B, which is about 0.7 Tesla is distributed evenly inside the MR fluid when a 

of 1.6 Amps current flow through the coil, and the gap size is set to 2 mm. Two-dimensional flux 

lines seemed to penetrate the MR fluid and aligned to the compression direction. 

 

3. Experiment 

A schematic diagram of the experimental set-up, similar to that used for studying ER fluid 

by Tian et al (2003) is as shown in figure 3. The diameter of the vessel used to contain the 

MR fluid is a little larger than the diameter of the upper cylinder, so that the gap region 
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remains flooded by the MR fluid throughout the compression. The compression of the MR 

fluid was carried out by lowering the upper cylinder towards the bottom of the vessel 

containing the fluid using a computer-controlled movement. Two sets of experimental trials 

have been carried out. In the first set, the gap size was set initially to 2 mm and different 

current values (0.4, 0.8, 1.2 and 1.6 Amps) were maintained throughout the compression 

trial. Then, the upper cylinder was lowered at a speed of 0.5 mm/min, which can be 

considered as quasi-static loading and the load was recorded continuously. The same 

procedure was carried out in the set of experimental trials, except that the initial gap size 

between the upper cylinder and the bottom of the vessel was set to 1 mm.  

A DC Magnetometer (gauss-meter) supplied by AlphaLab Inc. was used to validate the 

results of the FEMM software package for the magnetic field strength generated by the coil. 

Figure 4 shows the magnitude of the magnetic field strength (Oersted) for both the 

measured and the simulated results at an initial gap size of 2 mm.  

 
 

Figure 3. The bottom of the upper cylinder and the bottom of the vessel containing the MR fluid 

are two parallel surfaces. Measured amount of fluid was sandwiched between these two parallel 

surfaces, so that the fluid was compressed in a direction normal to these surfaces when the upper 

cylinder moved towards the bottom of the vessel containing the fluid. All experiments were 

performed in a displacement control mode. 
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Figure 4. Values of the magnetic field strength obtained by direct measurement and simulation are 

in good agreement. The magnetic field strength increased when the applied current increased. 

 

4. Results and discussion 

The relationship between the compressive stress and the compressive strain under different 

applied currents is depicted in figures 5(a) and 5(b). The compressive stress increases with 

increasing compressive strain.  

Applying Kirchhoff’s law for magnetic circuits, the number of turns N (in a rail) and 

applied current I determine the magnitude of the magnetic field strength H. 

∫= dlHNI .       (1) 

In this equation, length l refers to the total length of the whole magnetic circuit and must 

include the length of the lower cylinder around which the coil is wound. Therefore, for the 

same number of turns, a higher electrical current or a small gap size will result in a great 

magnetic field strength.  

In view of this one might have expected that the compressive stress can be influenced by 

the applied magnetic field strength but in fact higher values of compressive stresses are 

required when the initial gap size is set to 2 mm in comparison to the situation when the 

initial gap size of 1 mm has been set as shown in figure 6. This result emphasizes that the 
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compressive stress of MR fluid is strongly affected by the initial gap size which is similar 

to that reported by Tian et al (2003).  

In another observation, for a constant compressive speed at 0.5 mm/min, the value of the 

compressive stress increases as the gap closes (figure 7). The curves show greater values of 

compressive stress as at the gap between the two cylinders become smaller. However, all 

the curves show the same values of compressive stress at the beginning of compression 

until the instantaneous gap size has been reached nearly 1.8 mm. Then, the curves show a 

variation according to the current.  

 
(a) 

 

 
(b) 

Figure 5. Compressive stress versus compressive strain under different applied currents for (a) 1 

mm of the initial gap size and (b) 2 mm of the initial gap size. 
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Figure 6. Comparison between two different initial gap sizes (1 and 2 mm) under various applied 

currents during the process of compression. 

 

 
 

Figure 7. Gap width distances as a function of compressive stress at different applied currents 

ranging from 0.4 to 1.6 Amps. 

 

The process of compression of the MR fluid always shows the same three regions. All the 

curves of compressive stress versus compressive strain show similar characteristics despite 

the fact that the applied current ranged between 0.4 to 1.6 Amps and, the initial gap size 

varied between 1 and 2 mm. Figure 8 shows the results for the process of compression at a 

larger scale. In the first region, the compressive stress increased gradually with the increase 

of the compressive strain until it reached nearly 25 kPa and 31 kPa for initial gap size of 1 
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and 2 mm, respectively. Then, there is a plateau within the compressive stress remaining 

constant while the strain increased to values of about 16% (h0 = 1 mm) and 8% (h0 = 2 

mm). This phenomenon has not been reported by any previous researchers. In the final 

region, some aspects of the compressive stress began to increase again with further 

increased values of the compressive strain. The regions can be explained by assuming that 

there is relative movement between the particles and the carrier liquid in the MR fluid.  

 
Figure 8. A larger scale of compressive stress versus compressive strain; at the beginning of the 

compression process when the applied current and initial gap size were set to 1.2 and 1.6 Amps, and 

1 and 2 mm, respectively. 

 

Accordingly, by increasing the initial gap size, more particles are consumed inside the MR 

fluid. Even though the volume percent of particles is the same, the required compressive 

stress is distinctive. Therefore, the amount of particles is one of the factors that can affect 

the performance of the MR fluid. During the compression, the volume fraction of particle 

will increase because the liquid is assumed to be expelled from the MR fluid. Magnetic 

properties of the MR fluid will change as a result of this change in its composition. 

Consequently, the magnetic properties depend on the volume fraction of the particles in 

MR fluid. An assumption is made, which is supported by other researchers. It is that the 

magnetic properties of MR fluid can be increased by increasing the volume fraction (Simon 

et al 2001, Jolly et al 1999). Considering the average weight (w) percent particle is 85% 
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with density (ρ) 3.86 g/cc (Lord 2007), and the average weight (w) of carrier fluid (water-

based) is 15% with density (ρ) 1 g/cc. Therefore, the volume percent for particle is given 

by:  

% Volume of particle = 
[ ]
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particles

ww

w

ρρ

ρ

//

/

+
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For instant, for 2 mm initial gap distance, the volume percent of particle is 59.54 %. At a 

displacement of 0.2 mm in initial gap distance, the volume fraction of particles will become 

66.16%. As the volume fraction increases, the magnetic field strength also increases which 

is described elsewhere by Jolly et al (1996). However, the process of expelling the liquid 

will continue until the process reaches the steady state. Higher magnetic field tends to 

retain more carrier liquid in the system as a MR fluid. In the prior experimental studies 

carried by Dang et al (2000) revealed that an increase in yield stress of 10-30 volume % Fe 

based fluids with increasing volume fraction. According to Jolly et al (1996), they 

illustrated that the saturation of iron particle is linearly proportional to the bulk saturation 

which saturates at 2.1 Tesla. For example, at certain value of magnetic intensity, if 

magnetic density for 59.54% volume of particle is 1.6 Tesla, so the magnetic density for 

66.16% volume of particle is about (66.16/59.14) x 1.6 = 1.79 Tesla. Therefore, by using 

this illustration, the magnetic properties of the tested MR fluid will increase when the 

volume fraction increases as shown in figure 9. On other hand, even though under a 

constant applied current, the magnetic field strength will increase as the gap closes because 

of the increase in volume percent of particle.  
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Figure 9. Magnetic induction curves of MR fluid for two different iron volume percents.  

 

As further force is applied (third region); more deformation force is required to overcome 

the friction generated from the sliding between solid particles, and also to overcome the 

restriction of the solid particle movement due to the spatial constraint imposed by the 

surrounding particles. Most of the liquid expelled and the material became a solid-like 

material. The dry friction between the particles may greatly influence the static yield stress 

(Martin et al 1999). The applied stress represents the resistance of particles along magnetic 

flux direction under compression. Reducing the initial gap size between the two cylinders 

or increasing the applied current can increase the instantaneous magnetic field. The degree 

of deformation resistance is a function of the applied magnetic field strength. Once the 

magnetic field is applied, the particles of MR fluids are polarized and strongly interact with 

each other to form regular chains and columns along the field direction. These particle 

chains aggregated to form columns and to form even larger columns. Applying a pressure 

can extensively strengthen the stress. Comparable with compression in ER fluids, the 

mechanical property of MR fluid is determined by the chain/column strength and the 

deformation of the chains/columns under compression. These descriptive statements about 
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chain strength under compression of MR fluid are credible but a great deal to describe the 

column size effects still yet to be studied. 

 

5. Conclusion 

The stress-strain relationships were obtained by applying the compression test on water-

based MR fluid. The compression process of MR fluid under different applied currents and 

initial gap sizes were presented. The experimental results revealed that the increase of 

compressive stress is subjected to the increase in compressive strain, where higher values 

can be achieved at higher currents. Furthermore, the compressive stress over compressive 

strain is greatly affected by the initial gap size. The amount of particles occupied inside the 

fluid can influence the compressive stress. For both initial gap sizes, the curves of 

compressive stress over compressive strain are derived, where the higher the initial gap 

size, the larger the compressive stress is. The curve is divided into three regions in order to 

describe the whole stress-strain relationship. For certain initial gap size, almost the same 

values are obtained at the first and second regions. Furthermore, the distance of 

compressive strain in the second region is dependent on the initial gap size. During the 

compression, in the second region, the compressive stress of MR fluid experienced a 

plateau progress nearly at 30 kPa before proceeding to increase drastically. This 

phenomenon might be explained by the contribution of expelling process and the influence 

of the magnetic field strength. Hence, the compressive stress is not affected by the applied 

current. However, the curves showed a large variation in the third region as the applied 

current increased.  
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