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Abstract—Active learning and training is a particularly effective form of education. In various domains, skills are equally 
important to knowledge. We present an automated learning and skills training system for a database programming environment 
that promotes procedural knowledge acquisition and skills training. The system provides meaningful, knowledge-level feedback 
such as correction of student solutions and personalised guidance through recommendations. Specifically, we address 
automated synchronous feedback and recommendations based on personalised performance assessment. At the core of the 
tutoring system is a pattern-based error classification and correction component that analyses student input in order to provide 
immediate feedback and in order to diagnose student weaknesses and suggest further study material. A syntax-driven approach 
based on grammars and syntax trees provides the solution for a semantic analysis technique. Syntax tree abstractions and 
comparison techniques based on equivalence rules and pattern matching are specific approaches. 

Index Terms— Artificial Intelligence - Applications and Expert Knowledge-Intensive Systems [I.2.1], Data Structures [E.1], 
Education [J.1.b], Programming languages [D.3], Query languages [H.2.3.e].  
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1 INTRODUCTION

HE delivery of feedback is an integral part of learning 
processes. Feedback should be relevant, precise and 
understandable. The level a student reaches when 

learning is often proportional to the student’s engage-
ment with a teacher or an activity. In computer-aided 
learning and training, feedback is of central importance in 
particular if a human tutor is not always available [15]. 

We present an automated, computer-based tutoring 
system that supports a skills training environment for the 
database language SQL. 
 In particular, it provides feedback for the student that 

is meangingful and of a contextually high quality. 
The system allows a knowledge- or skills-level inter-
action with the content through programming activ-
ity and synchronous contextual feedback [27]. 

 An automated tutoring process allows students to 
individually tailor their learning environment by de-
fining feedback preferences and choosing their own 
learning paths through the course curriculum.  

The student benefits from a system that is always 
available and that analyses and corrects a submission and 
offers feedback and personalised guidance and recom-
mendations based on the analysis results. 

Formally defined languages are particularly suitable to 
be supported by automated tutoring systems. Computer 
languages such as many specification, modeling and pro-
gramming languages fall into this category. SQL is in this 

context a language of medium complexity. SQL is a suit-
able topic to explore these issues, but they apply equally 
to other computer-processable languages, ranging from 
textual to graphical languages [17]. 

Our primary objective is to investigate an integrated 
approach to correction, domain-specific feedback and 
personalised guidance features. At the core of this ap-
proach is a correction technique that allows personalised 
domain-specific feedback and guidance.  
 We develop techniques to analyse the SQL select 

statement in order to identify problems that a typical 
student might encounter while trying to solve SQL 
programming problems. These errors are categorised 
according to a multi-dimensional error classification 
scheme.   

 We determine adaptivity techniques for use in a 
knowledge-based feedback system for correction and 
recommendations.  

We introduce the underlying data structures and 
analysis techniques for correction and personalized rec-
ommendation. A pattern-based error classification and 
correction component analyses student input in order to 
provide immediate feedback. This technique can also be 
used to diagnose student weaknesses and recommend 
further study material. A syntax-driven approach based 
on grammars and syntax trees provides the solution for a 
semantic analysis technique. Syntax tree abstractions are 
the central data structures that represent student answers 
(in terms of SQL) to a given set of problems. Two central 
comparison, correction, and diagnosis techniques are in-
troduced: 
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 equivalence rules on syntax trees to determine se-
mantical equivalence of solutions, 

T
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 pattern matching to localize and classify errors. 
In our presentation, we focus on data representation 

and data processing aspects. Architectural issues are only 
sketched. 

We start by introducing the pedagogical framework in 
Section 2. Section 3 outlines the information and system 
architecture. In Section 4, we present our correction 
solution as a local, immediate form of feedback. In Section 
5, we then address recommendation as global, summative 
form of feedback. In Section 6, we discuss potential and 
weaknesses and also a range of related systems, before 
ending with some conclusions.  

 

 

 

 

 

 

 

Fig. 1. IDLE - SQL Tutor (Screenshot) 

2 FRAMEWORK 
The application that provides the context of our 
investigation is an automated SQL tutor, which is part of 
the Interactive Database Learning Environment IDLE. We 
present an IDLE overview and its pedagogical principles 
in this Section. 
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2.1 SQL Learning and Training  
IDLE is the Interactive Database Learning Environment, 
an online support system for a database course that is in 
use since 1999 [25]. Database programming and querying 
is a core skill for computer scientists and engineers.  

Computer-supported formal computer language 
learning and training is the IDLE objective. A central 
success factor is knowledge-level interaction, i.e. 
interactions between student and system in terms of 
concepts and objects that have a meaning in the subject 
domain [26]. In this case, database objects and SQL 
language expressions and statements are at the core of the 
student-system co

An intelligent tutoring system supports the SQL 
programming features through online exercises [1
 It provides a range of SQL programming problems, 

each addressing specific language constructs.  
 It corrects student answers (which are submitted 

electronically through a Web-based system) and 
executes them (using an attached database 

 It gives recommendations at the end of each lesson 
(consisting of a range of suitable problems based on 
identified weaknesses). 

A screenshot of a submission that gives a limited level 
of feedback is shown in Fig. 1 (feedback level are 
determined based on user preference and a pedagogical 
strateg

2.2 Apprenticeships and Scaffolding 
Stephenson [31] argues that experience is the foundation 
of and the stimulus for learning. Learning is primarily 
developed through activity.  

Skills training involves higher levels of activity and in-
teraction than typical acquisition of declarative knowl-
edge. A student trains by practising a task. An appren-
ticeship as a type of student is concerned with procedural 
knowledge acquisition and skills training. Traditional 
apprenticeship is a form of teaching and learning that has 
been used successfully throughout the ages, primarily for 
practical tasks. Apprenticeship is a three-step process 

involving a master and an apprentice. Initially, the master 
demonstrates the completion of the stages of a task while 
the apprentice observes. Then, apprentice works at the 
task while the master observes and offers advice. The ap-
prentice practises in a controlled environment. Finally, 
the apprentice eventually achieves competency and self-
reliance.  

Apprenticeships can be realized as a blend of 
scaffolding, fading and coa
 Scaffolding is a temporary support while completing 

a task or activity. The key idea behind scaffolding is 
to provide a student with timely support at an 
appropriate level. Collins et al. [12] refer to 
scaffolding as being a set of limited hi
feedback.  
Ideally, scaffolding will be faded, meaning it will be 
removed gradually, thus encou
work in a self-reliant manner.  
Coaching is the process of overseeing the student’s 
learning [12], [13]. It involves formulating the course 
of work the learner should take, providing timely 
scaffolding at the appropriate level and fading it 
accordingly, an
encouragement.  

Cognitive apprenticeship moves the traditional 
apprenticeship into the classroom and the cognitive 
domain [12]. A major principle of cognitive 
apprenticeship is collaboration and conversation with a 
master [33]. Cognitive apprenticeship uses the idea of 
situated lea

rld environment [13].  
The virtual apprenticeship model [23] applies 

cognitive apprenticeship to the Web context, and is 
therefore a suitable concept for Web-based learning. This 
model uses scaffolding and activity-based learning to 
allow the student to construct knowledge, practise skills 
and gain experience in an online environment. The 
construction of artefacts (such as software, but also other 
digital artifacts or representations of
a realistic or even authentic setting are vital [16]. 

2.3 Intelligent Tutoring and Pattern Matching 
An Intelligent Tutoring System (ITS) is a computer-based 
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instructional system with models of instructional content 
that specify what to teach, along with teaching strategies 
that specify how to teach [22]. ITSs have been shown to be 
highly effective [5], although ITS in the past have often 
been restrictive, limiting the student’s control of the learn-
ing experience [8]. A traditional ITS has four distinct 
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 computer systems. We 
pr

 distinguish three facets of computer languages 
here [2]: 

components [6]:  
The expert model, or domain mod
knowledge of the domain or subject area [11].  
The student model holds information about the 
student (personal details, learning preferences), along
with a representation of the knowledge s/he holds.  
The pedagogical model determines when and how to 
instruct the student. It makes d
topic, the problem, and feedback. 
The interface acts as the means
between the student and the ITS. 

Pattern matching or pattern recognition [22] is a 
method that can be used in ITS to define ideal solutions 
or ideal learning paths. For instance, it can be used as a 
means of correcting student work. CAPIT’s student 
modeller [19], for instance, is a pattern matcher that takes 
a student solution to a problem and determines which 
constraints are violated. Pattern matching can also be 
used to ascertain a higher level of student understanding. 
The Tactical Action Officer TAO [32] applies pattern-
matching rules to detect sequences of

3 INFORMATION AND SYSTEM ARCHITECTURE 
The information and system architectur
foundations for the feedback techniq

3.1 Information Architecture 
We propose a language-driven approach to e-learning. 
Languages and their representations in terms of gram-
mars and syntax trees provide the data and knowledge 
structures of the approach. Correction and recommenda-
tion techniques provide feedback for the student based on 
these data structures

ntent knowledge. 
A two-layered model is at the core of the approach: 

the content (or domain) model captures language 
expressions, which are defined by a grammar, in 
terms of syntax trees and their abstra
analyses and personalised feedback, 
the student model is a meta-model capturing 
feedback preferences chosen by the student and 
observed stu
given by the system. 

The representation of content knowledge as structured 
data in the form of syntax trees is the crucial aspect that 
enables knowledge-level interactions between student 
and system and intellige
correction and recommendat

3.2 System Architecture 
IDLE is a larger system of which the SQL tutor is only one 

tem comprising of: 
 an interface that provides the student with a lesson 

consisting of a range of individual SQL programming 
problems, 

 a student component that manages the student 
model, i.e. which keeps preferences up-to-date and 
which tracks the student performance in the system, 

 a correction component that receives a student 
answer for a particular problem and that semantically 
analyses the answer in order to provide meaningful 
feedback, 

 a guidance and recommendation component which, 
based on an assessment of student weaknesses 
provides recommendations for further study for the 
studen

The architecture will be illustrated in more detail in the 
two central technical Sections 4 and 5 (see Figs. 2 and 5, 
respectively). 

4 CONTENT AND LANGUAGE 
A computer language is at the core of our learning 
scenarios, i.e. formal language representations in terms of 
grammars and tree-based structures form the core content 
data and knowledge structure used in facilitating the 
language learning and training experienc

We present basic language representation principles 
before introducing the database language SQL as a 
learning and training subject. We discuss learning 
problems and student answers and provide a syntax-
driven technique to correct answers based on ideal 
solutions using a pattern-mat

4.1 Classification and Correction Architecture 
While we do not investigate the tutoring system from a 

software architecture perspective, we look at the 
architecture first to outline and structure information and 
processing components and their interactions to set the 
scene for the data and knowledge aspects of feedback 
gener

The correction architecture is presented in Fig. 2. In 
terms of standard ITS components from Section 2.3, the 
student model and the interface are directly represented, 
the expert model is spread over problem repository and 
ideal solution repository and the rules embedded in the 
correction component. The pedagogical model is 
implemented partly by the correction component (which 
localized and categorized errors) and partly by the 
recommendation component (which we discuss in Section 
5). 

4.2 Language Representation 
The computer languages we consider here as the subject 
of learning and training are computer-processable, 
formally defined languages for the specification, 
modeling or implementation of

ovide some general background here.  
We can
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Fig. 3. Simplified SQL Grammar (Excerpt) 

 

 

 

 

 

 

 

 

 

Fig. 2. Correction Architecture  
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 Syntax refers to the lexical and structural aspects. 
Based on a vocabulary of keywords and user-defined 
elements, sentences in the language can be formu-
lated. The construction of these sentences is governed 
by a grammar.  

 Semantics refers to the meaning of elements and 
sentences of a language. This is often done 
mathematically or by mapping onto other notations. 

ssion. 

tations of grammatically correct sentences. 

ntroduced here. 

rs.  

orm. 

sing. 

 Pragmatics refers to the use of the language. It 
captures general rules and guidelines that, for 
instance, improve the readability of a sentence or the 
quality on an expre

Abstract and concrete syntax are distinguished. 
Concrete syntax is concerned with the actual 
representation as it is provided by the user, i.e. with 
keywords and other lexical concerns such as the 
construction of identifiers. Concrete syntax validation is 
usually supported by language processors such as syntax 
checkers, compilers or execution tools [2]. We ignore this 
aspect. We are concerned here with abstract syntax, 
which can be defined in terms of grammars, i.e. 
production rules that, if applied, lead to grammatically 
correct sentences. Abstract syntax trees are 
represen

Abstract syntax trees (ASTs) as representations of 
language expressions shift the focus from lexical concerns 
to structural notational ones [2], [3]. In some cases, further 
abstractions of an AST can take place to facilitate the 
application of specific analyses or transformations. For 
instance, grouping of tree elements and their classification 
can take place – an aspect that we use later on to remove 
irrelevant detail for the correction technique. 

4.3 Language – Problems and Error Classification 
Our focus is language semantics and its comprehension. 
Although syntax and pragmatics are important, we 
provide a semantics-specific solution to error 
classification. SQL-specific language aspects, based on 
Section 4.2, shall be i

The select statement is a fundamental SQL statement, 
used to query and extract information from a database 
[1], [26]. It can be made up of six clauses, but we focus 
here on the three central ones – SELECT, FROM, WHERE 
– whereas the others are dealt with in [17]. A simplified 
grammar of a few higher-level production rules is pre-
sented in Fig. 3. These three clauses map to input ele-
ments (FROM), a condition that is the extraction filter 
(WHERE), and an output description (SELECT). An ex-
ample is: 

 
   SELECT colour  
   FROM parts  
   WHERE  weight > 10 and city = “Paris”. 
 
A list of database table names can be provided in the 

FROM clause. The SELECT clause can contain a list of 
column names of tables named in the from-list, possibly 
combined with aggregation operators such as minimum 
or average. The qualification in the WHERE clause is a 
condition or filter constraint based on logical and 
comparison operato

We distinguish here two different notational elements 
in SQL that are of relevance for the error classification in 
the correction technique: 
 Elements – objects and functions. SQL refers to a 

number of different data objects, mainly based on the 
Relational Algebra as SQL’s mathematical 
foundation. This includes objects such as tables and 
attributes. We also add functional elements to this 
category, such as aggregate functions or comparison 
operators. These elements are part of the database 
object platf

 Clauses. SQL has a fixed syntactical structure based 
on the SELECT … FROM … WHERE template with 
in total six clauses. Each of the clauses focuses on a 
specific step in query processing. The FROM clause 
defined the input tables, SELECT constructs the 
output and WHERE defines filtering and selection 
conditions. These elements are part of computational 
query proces

These dimensions are motivated by the experience and 
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observations of educators based on their experience in 
teaching SQL and the common difficulties that they have 
encountered. This classification helps to categorise and 
localize common learner errors and problems by distin-
guishing object and computational aspects. 

Our tutor is a problem-based learning and training 
environment. A number of data query problems are 
provided in a repository; each problem typically 
addresses a specific SQL language aspect. An entry in the 
problem repository contains the following information: 
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Fig. 4. Simplified Abstract Syntax Tree (SAST)  

query

select            from                           where

fct     att     att     table        b-expr          l-op        b-expr 

distinct colour city       p       att c-op    lit      and    att  c-op  lit

city <> “Paris”      weight  >   10

query

select            from                           where

fct     att     att     table        b-expr          l-op        b-expr 

distinct colour city       p       att c-op    lit      and    att  c-op  lit

city <> “Paris”      weight  >   10

 the problem itself, formulated as a natural language 
sentence, which is going to be made available to 
students, see Fig. 

 problem metadata including a problem focus, which 
is expressed in terms of SQL elements and clauses 
(this characterization reflects the educator’s defined 
learning goal for a problem). 

An example for the language aspect categorisation 
shall illustrate the two aspect dimensions. Consider a 
table s that captures information about suppliers of parts.
 Question: Get the numbers and names of all 

suppliers. An (incorrect) student answer cou
 
                              SELECT sno, name FROM s  
 

The diagnosis would recognize this statement as 
incorrect because the student has tried to select the 
attribute “name”. We assume that the correct 
attribute is “sname”. This can be identified as 
primarily a function-specific error in the select clause, 
i.e. the output of the statement is affected through an 
attribu

 Question: Get the maximum status of suppliers in 
Paris. An (incorrect) student answer could be: 

 
          SELECT min(status) FROM s WHERE city = ‘Paris’ 
 

In this case, the student has selected the minimum 
status instead of the maximum status. Here, the 
system identifies a primarily element-specific 
semantic error due to the misuse of the aggregate 
function “min” on element “status” in the 
clause. 

The language aspect dimensions are the core 
mechanism to locate and categorize student errors. The 
identification of the primary error is based on heuristics 
defined by database educators. The different categories of 
errors should be identified by the tutor when a student 
has made more that one mistake. The number and 
ordering of displayed errors depends on the student’s 
preferences and a 
by the instructor. 

4.4 Language – Solutions and Errors 
The previous two examples have clarified the 
requirements for a correction approach. We 
following set-up based on problems and solutions: 

Problems: an empirical problem determination and 
definition is base
experience [28]. 

Solutions: for each proble
ideal solution. 

Our focus is on semantics and the correction of 
semantic errors in SQL statements. Database management 
systems usually provide feedback on syntax. Pragmatic 
aspects of language use require the student’s 
comprehension of syntax 

erefore be neglected in this investigation. 
We propose to use the ideal solutions to identify 

student errors. This general idea stems from intelligent 
tutoring systems. In its 
languages, two techniques are required: 

a notion of semantic equivalence on answer 
representations (syntax trees) to identify c
answers that do not syntactically equal to the ideal 
solution 
a matching technique on syntax trees that compares 
student answer and ideal solution by 
structural patterns in the two syntax tree 
representations to identify correct and erroneous 
elements. 

An error categorization scheme, based on elements 
and clauses, allows
Since multiple errors are always possible, a weight
categorization based empirical
experience is needed. 

4.5 Pattern-based Correction 
At the core of our approach is a syntax-driven analysis 
technique to identify and correct semantic student errors. 
Although semantics is the issue, we require only an ideal 
solution in
A comparison of ideal solution and student answer on a 

tax level is the central correction activity for semantic 
r [2].  

 The ideal solution (syntactic representation) acts as a 
semantic solution for the problem where one 
syntactic example denotes the semantics. 

 Semantics-based equivalence and matching rules 
enhance the ideal solution and allow the semantic 
error detection and correction to be 

The principle idea is to match student answer and ide
solution using syntactical patterns in the co

ntax trees of both query expressions. 

4.5.1 Answer and Solution Representation 
he data representation structures that capture content 
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refixes/aliases in all clauses 
hese are some of the most common rules. These are 

for wing 
example for the first rule ORD-1 

  ( (select, att1, att2) , ( [select,att1] ; [select,att2] ) ) 

for
in ESAST based on the nodes . We use 

a semicolon to express ordering of subtrees. 
ivalence rule 

is defined as follows 

(t fixed_table_ref)    

_ref.ID = prefixed_table_ref.ID     and  
     
 
    wh

 suitable 

 
  

 unique is a predicate that flags if the identifier 

r, more complex semantic equivalences exist 
etween SQL queries. A typical example is the 

 query. For 
instance, the following 

wledge are based on: 
Language grammars to define the notation through 
which learner and system interact. H
grammar for ISO/IEC 9075 Database Language SQL 
standard forms the basis [1], which we have 
simplified in our prototype implementation. 
Abstract syntax trees (ASTs) are tree-based 
represen
defined through the grammar production rules [2], 
[3]. ASTs abstract from concrete syntax aspects such 
as keywords.  
Simplified abstract syntax trees (SASTs) are a form of 
syntax trees that we introduce here to provide a 
further level of abstraction. For instance, literals of 
different types are not distinguished for our 
correction, but which are typically distinguished in 
ASTs for code gene
generalized class Literal for string and numerical 
literals. SAST filter out information that is not 
required for the correctness analysis. 
e define the syntax trees AST and SAST and also the 

 and SAST construction process as follows: 
 a syntax tree is defined as an acyclic graph ST = 

(N,E,R) with nodes N and edges 
vertex R ∈ N singled out as the root of the tree, 
root R = ‘query’ to represent an SQL query according 
to the SQL grammar, 
the AST = (NAST,EAST,R) is defined as usua
compiler construction, e.g. by removing all keyword 
nodes (e.g. SELECT, FROM, WHERE in Fig. 2) from 
N and all edges from E that include these nodes, 
the SAST = (NSAST,ESAST,R) is defined by merging 
nodes into equivalence classes (e.g. string_literal and 
numerical_literal are merged into literal); such nodes 
from NAST are 
form NSAST; accordingly, all edges from 
include these nodes are replaced by equivalence
classes to form ESAST. 

4.5.2 Answer Processing ad Pattern Matching 
In the SQL tutor, answers to problems are processed as 
follows. Student answers are submitted to the tutoring 
system via the interface and are processed by the 
correction component. A syntactically
is ascertained by an associated database server that is 

zed to carry out the syntax check) is matched against 
deal solution for possible semantic errors. 
A parser in t
into segments based on the clauses. The parser also 
partitions the ideal solution from the ideal solution 
repository.  
Having been split into segments, the student answer 
and the ideal solution are normalised for easier 
matching. This step consists of removing an 
extraneous elements and standardising certain 
miscella
equivalence rules (see below in Section 4.5.3) are 
already applied at this stage to minimize the 
complexity at later processing stages. 

Our correction approach uses a pattern matching tech-

nique. Abstracting student answers and ideal solutions in 
two steps – abstracting from concrete syntax (AST) and 
from irrelevant information (SAST) – provides the basis
the comparison. A pattern matching on the SAST s
ture acts as a similarity measure between ideal solut

d student answer. A two-step procedure is applied: 
1. semantic equality determination (Section 4.5.3), 
2. semantic inequality determination (Section 4.5.4). 

Both error determination (sem
incorrect) in Step 1 and error lo
categorisation in Step 2 are dealt with in or
immediate, meaningful feedback to the student. 

4.5.3 Semantic Equality Determination 
A number of equivalence rules define semantical equality 
as SQL
without changing their semantics. The rules define an 
equivalence relation ≈ ⊆ SAST × SAST. These rules 

ude: 
 ORD-1: reordering of attributes in the SELECT clause 

ORD-2: reordering of t
clause 
ORD-3: reordering of Boolean expressions in the
WHERE clause 
EQU-1: equivalence of comparison operators in the 
WHERE clause 

 OPT-1: optional use of p
T
mulated formally as indicated by the follo

 
  
≈ 
    ( (select, att1, att2) , ( [select,att2] ; [select,att1] ) ) 
 
 nodes select, att1 and att2 from NSAST and 

corresponding edges 

For the last rule OPT-1, a conditional equ

 
    ( able_ref), () )  ≈  ( (pre
 
    if  table

unique(table_ref.ID) 

ere 
table_ref and prefixed_table_ref are 
nodes  
the postfix ID is an attribute of the node that 
denotes the concrete table identifier

is uniquely applied in the sentence under 
consideration 

 
The sample, formalized rules are rather simple rules. 

Howeve
b
equivalence of a nested and a non-nested
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     SELECT colour FROM p WHERE pno in ( 
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 N1 = (table_ref_list1, nested_in(c),  
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      E2  
 
   if 
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list2 = table_ref_list3 
    
   where 
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ba

t present all rules here that define semantic 
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lower level) than reordering of Boolean 
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An er
follows 

 
(err) =  

IDEAL) 
ErrorType(Parent(err))   otherwise 

 (based on error categories for 
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be i e distinguish overall two 

 

     SELECT pno FROM sp ) 
 

 
     SELECT colour FROM p,sp WHERE p.pno = sp

are equivalent queries. This can also
equivalence rules, although a more com
 
     (
                  table_exp(c), table_ref_list2) ,   
       E1  = ( …) ) 
  
     ( 
  = ( …) ) 

 
t
table_ref_list1 ∩ table_ref_

c  is a co
 nested_in(c) is a macro-style abbreviation that 

refers to the SQL IN-operator applied to 
column c 

 equality(t1.c, t2.c) is a macro-style 
abbreviation that refer

table_ref_list3 
 table_ref and table_exp are expressions 

according to the SQL grammar 
 

As we can see, the two SASTs (N1,E1,R1) and 
(N2,E2,R2) are incompletely specified and some macro 
abbreviations have been included to shorten the 
construction. Rules can get complex as a consequence of 
the language definition. This example, however, 
illustra

ted_in and equality, for instance, stand for two patterns 
that semantically correspond to each other. For this 
presentation, we have made these patterns explicit by 
providing names for them. 

There
sed on the availability of additional operator that 

simplify expressions or accommodate particular styles. 
The JOIN … USING construct for the FROM clause is an 
example.  

We canno
uivalences for SQL queries. The quantity and the 

complexity (of some) of the rules create an accuracy 
problem from the implementation perspective, which we 
discuss in Section 6. 

The ap
SASTs allows semantically correct student answers that 

identified. The rule application follows the following 
tegy: 
the ideal solution SAST is the starting point of the 

compa
 rules are applied bottom-up to the SASTs, e.g. the 

comparison operator equivalence is applied earlier  
(at a 
expressions 
most rules are specific to 
‘from’ or ‘where’, which means that rules are applied 
locally 

 a simple rule preferences list defines the remaining 
rule application ordering 

We define 
IdealSolution* = { SAST | SAST ≈ SASTIDEAL

represented as a SAST ∈ IdealSolution* a
correct. The previous rule application strategy determines 
semantic correctness. 

4.5.4 Semantic Inequ
If the application of all equivalence rules does not solve 

correction problem, then a semantic error can be 
med for the student answer. A pattern matching 

roach shall serve to 
locate the error(s) within the SAST: if a subtree of the 
answer SA

responding ideal solution SAST based on the 
equivale

rresponding position in the student answe
be id

∈ N for SAST = (N,E,R
error, if

∃ n ∈ SASTIDEAL . Context(err) = Context(n) 

err ∈ Nodes(SASTIDEAL) 
where 

 Context represents the parents of a node up 
to the root, 

 Nodes projects onto the nodes of a tree. 
classify the

 abstraction and expression classification in the 
SAST allows the association o

de in the SAST. 
ror occurring in a construct is determined as 

using function ErrorType: 

ErrorType
Parent(err)    if Parent(err) ∈ Nodes(SAST

 
     where 

 Parent represents the parent of a node. 
 

Since multiple errors are possible, an error weighting 
and ranking technique is required. Error categories and 
associated weights
structure and object dimensions) are determined (usually 

irically) based on the educator’s experience and can 
ndividually configured. W

forms of feedback: 
correction: immediate feedback that can comprise 
error location, error explanation, hints and par-
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tial/full correct solutions, 
 recommendation: accumulative feedback that can 

ast performance and 
tudies (in the form of 

tant benefits of computer-enhanced learning [14]. 
Fe

t’s overall performance. 
om the interaction 

sideration of student model and 

ent are given in 
a s

s personalization. 

 In terms of ITS 
components (see Section 2.3), the pedagogy component is 

ere – 

In o
we 
com
 determined by the student 

 

er a period of time. 

tics and pragmatics. In the 

sche tudent is applied. A 
odel records errors 

made by a st
 the prob e – a 

 fication in terms of 

ies record individual errors and their 
categories to determine the student’s strengths and 

 information can be used to recommend 

rrection feature provides interactive synchronous 

lear of 

pref
 

 quality, 
 

eveal the solution, but aims to help the student to 
 reflect 

S rrection feedback 
are: 

comprise a diagnosis of p
recommendations for future s
selected exercises). 

5 LEARNER AND INTERACTION 
The correction technique provides immediate, 
synchronous feedback to learners for their submissions to 
the SQL tutoring system. Learning and training are, 
however, continuous processes over a number of 
individual interactions. Supporting the student 
individually through observation and personalised 
feedback and recommendation is one of the most 
impor

edback can be global or local [18], which we address 
through synchronous local feedback as part of corrections 
and global guidance and recommendations based on the 
studen

We revisit correction, but fr
perspective under con
feedback generation, and we introduce the 
recommendation feature. 

5.1 Personalisation 
Individual problems in the SQL environm

uggested order. While personalization often addresses 
the navigation infrastructure (e.g. path selection) between 
these problems, our personalization focus is on content-
based interaction in the form of feedback. 

Students can, if desired, choose feedback levels the for 
correction and recommendation features. However, the 
system also provides a personalised feedback that consid-
ers the subject competency of the student. Feedback levels 
are ncreased if the student has difficulties; feedback is 
faded out, if the student becomes self-reliant and compe-
tent. The system automatically provide
Although this can be overruled, the majority of students 

use the recommended automated feedback levels. 

5.2 Recommendation Architecture 
The recommendation architecture is presented in Fig. 5. 
Again, it serves to outline and structure the main 
functionality and interactions.

 

 

 

 

 

 

 

 

 

Fig. 5. Recommendation Architecture  

Recommendation

Problems Student
Model

Interface

Selected Problems

Performance 
Preferences

Learner

Recommendation

Problems Student
Model

Interface

Selected Problems

Performance 
Preferences

Learner

the predominant functionality provider h
implemented by the recommendation component. This 
component accesses student and expert model. 

5.3 Learner Model – Profiling and Diagnosis 
rder to provide a personalized learning experience, 
propose a learner model with two central 

ponents: 
preferences 
herself/himself – we only consider a simplified range 
of aspects in this investigation that are specific to the 
proposed feedback in terms of correction and 
recommendation. 
performance determined through observation of the 
student’s interaction – essentially the degree of 
correctness and the types of errors a student has 
made ov

The preferences determine the quality and quantity of 
correction and recommendations. Students can choose 
from a number of predefined feedback and 
recommendation levels. 

The performance diagnosis captures errors made in the 
categories syntax, seman
semantics category, which we focus on here, a facetted 

ma of errors made by a s
performance entry in the learner m

udent. It consists of 
lem that the student has tried to solv

reference to the problem base 
an error classi

o clauses as the computational perspective 
o elements as the object perspective 

 the number of occurrences for each problem/error 
combination 

These entr

weaknesses. This
further study material to a student or to allow grading the 
overall performance. 

5.4 Correction 
The co
feedback. The aim is to support formative and immediate 

ner assessment. We distinguish a number 
predefined feedback levels that are part of the learner 

erences: 
essentially, the quantity of feedback is determined 
where more feedback also means a better
the standard setting provides hints, i.e. does not 
r
reassess her/his answer. Hints are weighted to
the different severities of individual errors. 
ome of the individual levels for co

 



AUTHOR ET AL.:  TITLE 9 

 Level 1: one SQL clause hint (highest weight) 
Level  2: one SQL clause hint (highest weight) and one 

 ts and all SQL element 

levant 

F

  

 

 ou need to include the following element: 

SQL element hint (highest weight) 
Level 3: all SQL clause hin
hints 

 Level 4: further hints and links to re
background material are added.  
or our example from the previous section, for each 

level the following hints are added for levels 2 to 4: 
Level 2: there was an error in the select clause and
there was an error with an attribute that was selected. 
Level 3: there was an error in the where clause; there 
was an error with a symbol that was used. 
Level 4: y
“colour … <> …”  and try the following links – 1 – 2 – 
3 - that provide background material for this type of 
problem. 

The standard setting provides only one type of 
feedback – hints. Hint levels are determined only based 
on the preferences. In addition, the tutoring system 
supports scaffolding, i.e. a student support feature that 
aims at guiding the student towards sufficient self-

tice. The 

 

to partial and then full solutions. Over time, the 
feedback is reduced – called 

ory – in order to achieve self-

Th

t with 
su

es a number of exercises of the same 

T
follo

ce 

, i.e. presentation based on preferences and 

T  is based on the 

 : grouping of errors by error category, i.e. for 

 alculation of number of errors per error 

 

 

f errors made (errors in simple problems 
result in lower grades than errors in difficult 

nd averaged out over all 

                         number of errors  

        
 

 

y that match the clause/error pairs of errors 

n feedback, the student can choose 
endation 

d 

 
 

3: all SQL clause/element diagnosis (graded) + 

F e could be given by 

 
g symbols. 

nor problems with 

reliance and expertise to solve problems in prac
scaffolding uses three types of feedback in a strategy that 
extends the preferences model: 

hints are as usual advice to correct an error, 
 partial solutions reveal critical elements of a solution, 
 full solutions reveal the ideal solution. 

These types are applied in a staged strategy. Initially 
only hints are given. If errors kept being made, the system 
switches 
quality and quantity of 
fading in scaffolding the
reliance. 

5.5 Recommendation 
e recommendation feature provides interactive 

guidance over longer learning and training periods. Its 
aim is summative and accumulative learner assessment. 

The recommendation feature provides a studen
ggestions for further study. In case of this SQL tutor, 

the system propos
kind as the ones the correction feature is based on.  

he recommendation determination is based on the 
wing factors: 

 diagnosis-based, i.e. personalized considering 
individual student weaknesses extracted from the 
performance model, 

 accumulated, i.e. based on weighted and ranked 
learner assessments considering the performan
data from the student model, 

 filtered
scaffolding principles (recommendation strategy). 
he recommendation algorithm

following steps: 
Step 1
each clause/element error pair 
Step 2: c
category 
Step 3: ranking of errors by number of errors per 

category 
Step 4: grading of overall performance based on the 
weight for each problem and the number and 
severity o

problems) – summarized a
problems attempted. 

 
  
             ( Σ    ----------------------  )  / number of problems 

                    problem weight 

 An error indicator is calculated – the higher the 
value, the more/severe errors have been made. The 
result is then normalized to a scale 0 … 100. 
Step 5: for each error type, ordered by number of 
errors), problems are retrieved from the problem 
repositor
made. A cut-off point to limit the number of 
recommended problems can be defined as part of this 
level scheme 

As for correctio
between a number of predefined recomm
feedback levels that provide increasing amount an
quality of recommendations.  

Level 1: one SQL clause/element diagnosis 
Level 2: all SQL clause/element diagnosis (graded)  

 Level 
menu of relevant further problems to practise 
or instance, the following advic

the tutor: 
Level 1: your greatest amount of errors involves the 
WHERE clause, usin

 Level 2: you are having major problems with the 
WHERE clause; you are having mi
the SELECT clause. 

 Level 3:  try the following questions here (follow the 
link to further selected problems). 

The virtual apprenticeship model, which we 
incorporated in this recommendation approach, assumes 
that the student takes a degree of responsibility for 
her/his learning experience. Therefore, recommendation 

as that the student should revisit or pay 
n to. 

ning and training system 

students who learn a computer language. A number of 
t:  

 rection and the diagnosis be used to 

oach be transferred to other computer 

only suggests are
particular attentio

6 DISCUSSION 
We have introduced feedback techniques for correction 
and recommendation for a lear
that provides immediate and accumulative feedback to 

questions arise in this contex
 what are the difficulties of implementing such a 

system? 
 is the system effective? 

can the cor
support other tasks such as grading? 

 can the appr
languages? 

We also discuss some related work in this section. 
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6.1 Accuracy 
Accuracy is the crucial property of a correction system – 
whether it is used for feedback only or for grading. The 
degree of accuracy can be hampered by two factors in a 
syntax-driven approach such as ours. These factors relate 

4.5.4
 

lly different can affect accuracy negatively. 

 

ifferent error 

 simpler than some 
pr

or problem from the implementation 

resu

 
ation of the rules correct 

y – in our case the bottom-up strategy to apply 
eq

roach that allows addressing 
rrors as 

luation of student behaviour in the 
sy

 scheduled lab sessions, which demonstrates its 
ip 

ce and ultimately 
att

d constant, the relevant exam results 
ha

as 
tra

or 
gr

to the two main activies decribed in Sections 4.5.3 and 
: 
Correctness determination. The possibility of having 
semantically equivalent solutions that are 
syntactica
A complete set of equivalence rules need to be 
defined and applied.  
Error classification. The complexity of the language 
itself can affect accuracy: while correctness itself can 
still be easy to deal with, the quality of d
categories can be difficult to address in a weighting 
and ranking system for multiple errors. 

In our experience with SQL, accuracy has been difficult 
to achieve in practice. The SQL query language is here of 
medium complexity – more complex than some 
diagrammatic notations, but much

ogramming languages that integrate different 
computational paradigms and mechanisms. 

In our case, dealing with semantic equivalence has 
been a maj
perspective. Two problems have arisen that concern the 

lts of Section 4.5.3: 
 the completeness of the set of equivalence rules: are 

all possible equivalences covered? 
the correctness of the rule application 
implementation: is the applic
in that the tutor implementation detects exactly those 
equivalences defined by the rules?  

While both questions can theoretically be answered 
positively, we have not carried out full proofs for either 
question. A comparison with similar systems, such as the 
SQL-Tutor from the University of Canterbury [18] that 
uses a constraint base, shows that these rules or constraint 
bases are usually incrementally developed using an 
empirical approach. A validation of the application 
strateg

uivalence rules to a syntax tree – is equally usually 
done empirically. 

Most ITS, such as the SQL tutor by the University of 
Canterbury [19,21], use heuristics-based approaches. 
Query optimization in the SQL context [10] – or any other 
technique to determine the equivalence of language 
expressions – could provide an alternative solution. While 
in terms of accuracy, at least equally good results can be 
achieved, ITS need an app
specific cases explicitly, such as common e
observed by an instructor [9]. 

6.2 Implementation and Evaluation 

6.2.1 Context and Evaluation Method  
We have implemented the described SQL tutor and it has 
been used the first time in the academic year 2004/05 as 
part of an undergraduate introduction to databases with 
about 100 students per year. Student attainment and stu-

dent opinion are two central success criteria for learning 
support tools. An eva

stems can also add valuable information in terms of 
system effectiveness. 

We used a hybrid evaluation method based on 
traditional surveys and a new form of data mining. 
General information about student behaviour and usage 
of the system can be determined through web usage 
mining, which we have used to validate and complement 
the results of both the attainment evaluation and student 
survey. Although this evaluation often shows examples of 
just-in-time learning, we observed that this type of 
learning behaviour is complemented by long-term and 
pre-emptive use. The majority of usage occurred outside 
of the
value as a self-study tool following the apprenticesh
philosophy. 

6.2.2 Evaluation Results and Discussion  
Student attainment is a central metric to determine the 
success of an e-learning system. However, the motivation, 
organization and usage of the system by the students are 
factors that determine acceptan

ainment [24]. We used the hybrid evaluation method to 
analyse student opinion and behaviour. 

Student attainment is one of the factors that determine 
the effectiveness and success of the tutor. We did improve 
the online support system IDLE for the database module 
over many years regularly and have achieved an 
examination mark increase by 2% annually through 
improvements (excluding the SQL tutor introduction). 
While during the introduction of our tutoring system, all 
other factors remaine

ve increased by 5.4% on the previous year, which is a 
significant improvement.  

Student opinion is another crucial success criterion. 
Over 90% agreed, some strongly, that the tutoring system 
was a useful teaching and learning tool in its own right. 
The majority of students agreed or strongly agreed that 
the system is easy to use in general. Survey answers 
demonstrates that students accept virtual tutorials as 
equally suitable and effective as traditional tutorials. We 
have asked the students about their preference of delivery 
mode with respect to performance in exams. The opinion 
is split. This result shows the acceptance of virtual 
tutorials – virtual tutorials are at least as good 

ditional ones – as a means to support one of the 
students’ major objectives – good coursework and exam 
performance. 

The feedback and personalised guidance features are 
seen as an important part of the tutoring system. Our 
survey results imply that the idea of providing both 
feedback and guidance has its merits. One critical aspect, 
however, is worth noting. Unintended higher levels of 
inaccuracy of the initial prototype have led to a more 
critical evaluation by students. Accuracy is the crucial 
property of the correction feature, even if it is not used f

ading. Accuracy strongly affects the acceptance to the 
approach and the tool. Students who have encountered 
these inaccuracies felt discouraged to trust the system. 
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Students were asked to rate a number of statements 
about the SQL tutor. Students indicated that the most 
important aspect of the system is its focus on active skill-
oriented learning rather than a passive lecture-based 
approach. The second most important aspect is that the 

ble and enables self-paced 
wise only have been possible 

sibly the application that seems 
na

or grading depends essentially on the accuracy 

I
dist
 lar: the system distinguishes only 

 provide a 

dents could be given full marks 
in

f accuracy that is 
y of the educator as mechanical 

cular since its automated nature 

tic languages as well as more complex 
pr

s as the notation. In a 
sim

xpression are, 
of 

query 
uery languages or bismilarity for 
 is beneficial to the implementation 

S) architecture. 

and
in t
arch
 

her than correcting it. The system’s 

 

urrent implementation, only the 

 

 re-iterates our discussion of 

onsis-
ten

system is always availa
learning, which would other
during supervised lab times. 

6.3 Further Applications 
Automated grading is pos

tural. Whether a system such as the proposed one can 
be used f
of the correction feature.  

n general, two grading approaches can be 
inguished: 
coarse-granu
between correct and incorrect. This eliminates the 
complexity of error weighting and categorization of 
multiple errors. 
fine-grained: the system attempts to 
similarity measure based on an error weighting. This 
combines the complexity of correctness 
determination with the one from error classification. 

Grading could be implemented by linking a severity 
level to errors and linking an importance level to 
elements in the clause. Stu

itially, which are decreased in varying amounts by the 
correction model based on the severity of errors and the 
absence of vital elements. 

Our experience shows that even minor inaccuracies in 
the correction can lead to acceptance problems, which we 
have experienced with our first prototype. However, we 
believe that through incremental improvements, a 
correction system can reach a degree o
similar to the accurac
processing, in parti
removes other, human-typical inaccuracy reasons [29]. 

6.4 Transferability 
Our aim was to present a generic approach that can be 
applied to other computer languages. This can potentially 
include diagramma

ogramming languages. We outline prerequisites and 
identify possible difficulties. We illustrate the potential 
using an example. 

While, as our discussion of accuracy shows, the 
transfer of the approach to complex programming, 
specification or modeling languages might require some 
implementation effort to achieve at least acceptance (and 
might initially rule out reliable grading), languages of 
similar or smaller complexity can be addressed from a 
practical point of view. Within the database context, we 
have started to explore the application of these principles 
to Entity-Relationship diagram

ilar way, problems and ideal solutions can be 
prepared and equivalence rules defined by an instructor 
and/or a knowledge engineer. 

Formally, a language representation in terms of 
grammars, abstract and simplified abstract syntax trees 

and semantic equivalence rules based on the grammar are 
the only prerequisite. Suitably formulated grammars that 
allow the effective parsing of a language e

course, required. Once a language is mapped onto this 
infrastructure, our approach can be applied, only limited 
by the scalability of the accuracy problem. 

In general, research on notions of equivalence in the 
language under consideration – such as 
optimization for q
process languages –
work as it can provide the formal foundations of 
correction. 

6.5 Related Work 
Our system enables activity-based learning and training 
based on an intelligent tutoring system (IT
We introduce three systems that provide personalisation 

 feedback for SQL tutoring. These systems are similar 
heir aims and interfaces, but they each have differing 
itectures and methods of correction.  
SQLator [30] corrects a student submission by 
equating it with the corresponding English question – 
the authors describe this as evaluating the student 
submission rat
equivalence engine judges if the SQL answer of the 
student correctly corresponds to the given English 
question, without actually executing the query at 
correction stage.  
Acharya [4] uses a three-step process – pre-
processing, atom processing and truth table 
processing – to correct the student’s answer. It is 
similar to our in that it is syntax-driven. The Acharya 
process assumes that the sets of literal atoms in two 
language expressions are the same. The process fails 
if one of the expressions is made up of more atoms 
than the other. This can actually result in accuracy 
problems. In its c
where clause is analysed. The truth table technique to 
determine semantic equivalence is specific to the 
where clause, i.e. other techniques would be required 
to address other SQL clauses. 
SQL-Tutor [21] uses constraint-based reasoning to 
correct answers submitted by the student. The 
constraints, which are stored in a constraint base, 
deal with syntax errors as well as semantic errors, as 
the student’s proposed solution is not actually 
executed. The system checks each submitted query 
for relevant constraints that might have been 
violated. This method of correction can yield a high 
level of accuracy, depending on the extent of the 
constraint base – which
accuracy and the effort needed to achieve it. In order 
to provide for the large range of possible errors, a 
large constraints based has been developed 
incrementally over a significant period of time. 

 Brass and Goldberg [7] have developed a related ap-
proach to correcting SQL queries based on a correction 
tool that gives feedback on general queries without an 
ideal solution using heuristics about the general c

cy of the query. While this would provide a useful 
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complement to a training or development environment 

feed
T

and
 

 allowing academic 

 ya provides feedback in the form of error flag-

 

indica-

es-
tion for the student to attempt. The reasons for this sys-

n are, however, not made explicit to 
ur guidance component and the stu-

dback is a classic and central example of scaf-
fol

r.  

plem
based on two knowledge and data representation tech-

 
underlying 

 their abstractions as data structures 

O re was to introduce techniques 

 omputer 

rred to similar learning and training area where 
co

ows that sufficient 
ac

ted to some extent by providing a useful 
system that greatly improves accessibility and availabil-

 guidance complements immediate cor-

in
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for databases, it does not provide an adequate degree of 
back in an automated tutoring setting. 
he first three systems offer some form of scaffolding 
 feedback to the student. 
SQLator’s automatic feedback consists of an error flag 
signaling the correctness of a student answer. Asyn-
chronous feedback is offered by
staff to email or post messages to address submis-
sions. A synchronous hint-based feedback system, 
which we consider essential for automated tutoring, 
is proposed as an extension [30]. 
Achar
ging and hints. Hints are comprised of text and links. 
Only one hint is displayed at a time. The system does 
not offer guidance based on the student’s perform-
ance. 
SQL-Tutor provides advanced feedback, offering 
both hints and partial solutions. There are five levels 
of feedback ranging from a simple correctness 
tion to offering the complete solution. Feedback is in 
text form only; relevant links to background material 
that would put errors into context are not offered. 
There are no accumulative recommendations. 

Both Acharya and SQL-Tutor suggest the next qu

tem recommendatio
the student as in o
dent is not given a choice of recommended questions. 

7 CONCLUSIONS 
Automated tutoring has become an accepted method of 
instruction. Students reach a higher level of understand-
ing when being actively engaged in learning and training 
processes. Our automated tutoring system provides a 
realistic training environment for database programming. 
Automated tutoring is time and location independent. 
While generally a beneficial characteristic, scaffolding is 
here a necessary feature for automated tutoring in this 
context. Fee

ding. Correcting, providing feedback, presenting rec-
ommended questions, etc. is part of the scaffolding 
needed for knowledge-level interactions between student 
and tuto

We have demonstrated that this scaffolding can be im-
ented for computer language learning and training 

niques: 
language grammars as the structuring principle that 
defines the learning content and its 
knowledge, 

 syntax trees and
that capture problem-based knowledge that is com-
municated between student and system. 
ne of our objectives he

and to demonstrate: 
the potential of advanced tutoring for a c
language based on a pattern matching approach to 
automated correction, 

 the benefits of integrated feedback and personalised 
guidance based on pattern-based correction. 

Course subjects focusing on computer languages lend 
themselves to automated tutoring as their structure 
makes them easy to analyse. The student can make sub-
missions to a tutoring system and receive results auto-
matically corrected result. The presented correction ap-
proach using grammar-based pattern matching can be 
transfe

mputer-processable languages, both textual and dia-
grammatic, can be processed automatically based on 
techniques derived from an explicitly formulated gram-
mar.  

Some difficulties need to be addressed in the imple-
mentation of automated tutoring systems. A system’s 
accuracy and the student’s trust level, which is affected 
by accuracy, are important for its success. Designing and 
implementing a flawless correction method is, however, a 
challenge. However, our experience sh

curacy can be achieved for a language of the complexity 
of SQL in order to make automated tutoring acceptable 
for students as a learning support tool and for educators 
to even consider it to support grading. 

A note on the human and automated tutors shall con-
clude this investigation. An automated system can never 
fully replace human tutoring in terms of quality. This can 
only be allevia

ity. Personalised
rection and feedback – and should be present in any tu-
tor g system. 
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