
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Interactive Correction and Recommendation
for Computer Language Learning and

Training
Claus Pahl, Member, IEEE, and Claire Kenny

Abstract—Active learning and training is a particularly effective form of education. In various domains, skills are equally
important to knowledge. We present an automated learning and skills training system for a database programming environment
that promotes procedural knowledge acquisition and skills training. The system provides meaningful, knowledge-level feedback
such as correction of student solutions and personalised guidance through recommendations. Specifically, we address
automated synchronous feedback and recommendations based on personalised performance assessment. At the core of the
tutoring system is a pattern-based error classification and correction component that analyses student input in order to provide
immediate feedback and in order to diagnose student weaknesses and suggest further study material. A syntax-driven approach
based on grammars and syntax trees provides the solution for a semantic analysis technique. Syntax tree abstractions and
comparison techniques based on equivalence rules and pattern matching are specific approaches.

Index Terms— Artificial Intelligence - Applications and Expert Knowledge-Intensive Systems [I.2.1], Data Structures [E.1],
Education [J.1.b], Programming languages [D.3], Query languages [H.2.3.e].

—————————— ——————————

1 INTRODUCTION

HE delivery of feedback is an integral part of learning
processes. Feedback should be relevant, precise and
understandable. The level a student reaches when

learning is often proportional to the student’s engage-
ment with a teacher or an activity. In computer-aided
learning and training, feedback is of central importance in
particular if a human tutor is not always available [15].

We present an automated, computer-based tutoring
system that supports a skills training environment for the
database language SQL.
 In particular, it provides feedback for the student that

is meangingful and of a contextually high quality.
The system allows a knowledge- or skills-level inter-
action with the content through programming activ-
ity and synchronous contextual feedback [27].

 An automated tutoring process allows students to
individually tailor their learning environment by de-
fining feedback preferences and choosing their own
learning paths through the course curriculum.

The student benefits from a system that is always
available and that analyses and corrects a submission and
offers feedback and personalised guidance and recom-
mendations based on the analysis results.

Formally defined languages are particularly suitable to
be supported by automated tutoring systems. Computer
languages such as many specification, modeling and pro-
gramming languages fall into this category. SQL is in this

context a language of medium complexity. SQL is a suit-
able topic to explore these issues, but they apply equally
to other computer-processable languages, ranging from
textual to graphical languages [17].

Our primary objective is to investigate an integrated
approach to correction, domain-specific feedback and
personalised guidance features. At the core of this ap-
proach is a correction technique that allows personalised
domain-specific feedback and guidance.
 We develop techniques to analyse the SQL select

statement in order to identify problems that a typical
student might encounter while trying to solve SQL
programming problems. These errors are categorised
according to a multi-dimensional error classification
scheme.

 We determine adaptivity techniques for use in a
knowledge-based feedback system for correction and
recommendations.

We introduce the underlying data structures and
analysis techniques for correction and personalized rec-
ommendation. A pattern-based error classification and
correction component analyses student input in order to
provide immediate feedback. This technique can also be
used to diagnose student weaknesses and recommend
further study material. A syntax-driven approach based
on grammars and syntax trees provides the solution for a
semantic analysis technique. Syntax tree abstractions are
the central data structures that represent student answers
(in terms of SQL) to a given set of problems. Two central
comparison, correction, and diagnosis techniques are in-
troduced:

xxxx-xxxx/0x/$xx.00 © 200x IEEE

 equivalence rules on syntax trees to determine se-
mantical equivalence of solutions,

T

————————————————
• C. Pahl is with Dublin City University, Dublin 9, Ireland. E-mail:

cpahl@computing.dcu.ie.
• C. Kenny is with Dublin City University, Dublin 9, Ireland. E-mail:

ckenny@computing.dcu.ie.

Manuscript received (insert date of submission if desired).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DCU Online Research Access Service

https://core.ac.uk/display/11310062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

 pattern matching to localize and classify errors.
In our presentation, we focus on data representation

and data processing aspects. Architectural issues are only
sketched.

We start by introducing the pedagogical framework in
Section 2. Section 3 outlines the information and system
architecture. In Section 4, we present our correction
solution as a local, immediate form of feedback. In Section
5, we then address recommendation as global, summative
form of feedback. In Section 6, we discuss potential and
weaknesses and also a range of related systems, before
ending with some conclusions.

Fig. 1. IDLE - SQL Tutor (Screenshot)

2 FRAMEWORK
The application that provides the context of our
investigation is an automated SQL tutor, which is part of
the Interactive Database Learning Environment IDLE. We
present an IDLE overview and its pedagogical principles
in this Section.

mmunication.

8]:

server).

y).

ching.

nts and

raging the student to

d offering meaningful feedback and

rning, whereby the learner is placed in a real-
wo

 concrete objects) and

2.1 SQL Learning and Training
IDLE is the Interactive Database Learning Environment,
an online support system for a database course that is in
use since 1999 [25]. Database programming and querying
is a core skill for computer scientists and engineers.

Computer-supported formal computer language
learning and training is the IDLE objective. A central
success factor is knowledge-level interaction, i.e.
interactions between student and system in terms of
concepts and objects that have a meaning in the subject
domain [26]. In this case, database objects and SQL
language expressions and statements are at the core of the
student-system co

An intelligent tutoring system supports the SQL
programming features through online exercises [1
 It provides a range of SQL programming problems,

each addressing specific language constructs.
 It corrects student answers (which are submitted

electronically through a Web-based system) and
executes them (using an attached database

 It gives recommendations at the end of each lesson
(consisting of a range of suitable problems based on
identified weaknesses).

A screenshot of a submission that gives a limited level
of feedback is shown in Fig. 1 (feedback level are
determined based on user preference and a pedagogical
strateg

2.2 Apprenticeships and Scaffolding
Stephenson [31] argues that experience is the foundation
of and the stimulus for learning. Learning is primarily
developed through activity.

Skills training involves higher levels of activity and in-
teraction than typical acquisition of declarative knowl-
edge. A student trains by practising a task. An appren-
ticeship as a type of student is concerned with procedural
knowledge acquisition and skills training. Traditional
apprenticeship is a form of teaching and learning that has
been used successfully throughout the ages, primarily for
practical tasks. Apprenticeship is a three-step process

involving a master and an apprentice. Initially, the master
demonstrates the completion of the stages of a task while
the apprentice observes. Then, apprentice works at the
task while the master observes and offers advice. The ap-
prentice practises in a controlled environment. Finally,
the apprentice eventually achieves competency and self-
reliance.

Apprenticeships can be realized as a blend of
scaffolding, fading and coa
 Scaffolding is a temporary support while completing

a task or activity. The key idea behind scaffolding is
to provide a student with timely support at an
appropriate level. Collins et al. [12] refer to
scaffolding as being a set of limited hi
feedback.
Ideally, scaffolding will be faded, meaning it will be
removed gradually, thus encou
work in a self-reliant manner.
Coaching is the process of overseeing the student’s
learning [12], [13]. It involves formulating the course
of work the learner should take, providing timely
scaffolding at the appropriate level and fading it
accordingly, an
encouragement.

Cognitive apprenticeship moves the traditional
apprenticeship into the classroom and the cognitive
domain [12]. A major principle of cognitive
apprenticeship is collaboration and conversation with a
master [33]. Cognitive apprenticeship uses the idea of
situated lea

rld environment [13].
The virtual apprenticeship model [23] applies

cognitive apprenticeship to the Web context, and is
therefore a suitable concept for Web-based learning. This
model uses scaffolding and activity-based learning to
allow the student to construct knowledge, practise skills
and gain experience in an online environment. The
construction of artefacts (such as software, but also other
digital artifacts or representations of
a realistic or even authentic setting are vital [16].

2.3 Intelligent Tutoring and Pattern Matching
An Intelligent Tutoring System (ITS) is a computer-based

AUTHOR ET AL.: TITLE 3

instructional system with models of instructional content
that specify what to teach, along with teaching strategies
that specify how to teach [22]. ITSs have been shown to be
highly effective [5], although ITS in the past have often
been restrictive, limiting the student’s control of the learn-
ing experience [8]. A traditional ITS has four distinct

 el, contains

ecisions about the

 of communication

 actions that indicate
whether the student understands an activity.

es provide the
ues.

 that capture the formal aspects of
co

ctions to enable

dent performance within the exercises

nt feedback in the form of
ion.

component. The SQL tutor itself is a componentized sys-

t.

e.

ching approach.

ation.

 computer systems. We
pr

 distinguish three facets of computer languages
here [2]:

components [6]:
The expert model, or domain mod
knowledge of the domain or subject area [11].
The student model holds information about the
student (personal details, learning preferences), along
with a representation of the knowledge s/he holds.
The pedagogical model determines when and how to
instruct the student. It makes d
topic, the problem, and feedback.
The interface acts as the means
between the student and the ITS.

Pattern matching or pattern recognition [22] is a
method that can be used in ITS to define ideal solutions
or ideal learning paths. For instance, it can be used as a
means of correcting student work. CAPIT’s student
modeller [19], for instance, is a pattern matcher that takes
a student solution to a problem and determines which
constraints are violated. Pattern matching can also be
used to ascertain a higher level of student understanding.
The Tactical Action Officer TAO [32] applies pattern-
matching rules to detect sequences of

3 INFORMATION AND SYSTEM ARCHITECTURE
The information and system architectur
foundations for the feedback techniq

3.1 Information Architecture
We propose a language-driven approach to e-learning.
Languages and their representations in terms of gram-
mars and syntax trees provide the data and knowledge
structures of the approach. Correction and recommenda-
tion techniques provide feedback for the student based on
these data structures

ntent knowledge.
A two-layered model is at the core of the approach:

the content (or domain) model captures language
expressions, which are defined by a grammar, in
terms of syntax trees and their abstra
analyses and personalised feedback,
the student model is a meta-model capturing
feedback preferences chosen by the student and
observed stu
given by the system.

The representation of content knowledge as structured
data in the form of syntax trees is the crucial aspect that
enables knowledge-level interactions between student
and system and intellige
correction and recommendat

3.2 System Architecture
IDLE is a larger system of which the SQL tutor is only one

tem comprising of:
 an interface that provides the student with a lesson

consisting of a range of individual SQL programming
problems,

 a student component that manages the student
model, i.e. which keeps preferences up-to-date and
which tracks the student performance in the system,

 a correction component that receives a student
answer for a particular problem and that semantically
analyses the answer in order to provide meaningful
feedback,

 a guidance and recommendation component which,
based on an assessment of student weaknesses
provides recommendations for further study for the
studen

The architecture will be illustrated in more detail in the
two central technical Sections 4 and 5 (see Figs. 2 and 5,
respectively).

4 CONTENT AND LANGUAGE
A computer language is at the core of our learning
scenarios, i.e. formal language representations in terms of
grammars and tree-based structures form the core content
data and knowledge structure used in facilitating the
language learning and training experienc

We present basic language representation principles
before introducing the database language SQL as a
learning and training subject. We discuss learning
problems and student answers and provide a syntax-
driven technique to correct answers based on ideal
solutions using a pattern-mat

4.1 Classification and Correction Architecture
While we do not investigate the tutoring system from a

software architecture perspective, we look at the
architecture first to outline and structure information and
processing components and their interactions to set the
scene for the data and knowledge aspects of feedback
gener

The correction architecture is presented in Fig. 2. In
terms of standard ITS components from Section 2.3, the
student model and the interface are directly represented,
the expert model is spread over problem repository and
ideal solution repository and the rules embedded in the
correction component. The pedagogical model is
implemented partly by the correction component (which
localized and categorized errors) and partly by the
recommendation component (which we discuss in Section
5).

4.2 Language Representation
The computer languages we consider here as the subject
of learning and training are computer-processable,
formally defined languages for the specification,
modeling or implementation of

ovide some general background here.
We can

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Fig. 3. Simplified SQL Grammar (Excerpt)

Fig. 2. Correction Architecture

query_spec
: SELECT selection table_exp

selection
: column_ref_commalist

table_exp
: from_clause opt_where_clause

from_clause
: FROM table_ref_commalist

where_clause
: WHERE search_condition

Classification
&

Correction

Ideal
SolutionsProblems Student

Model

Interface

Problem
Answer Feedback

Performance

Preferences

Learner

Classification
&

Correction

Ideal
SolutionsProblems Student

Model

Interface

Problem
Answer Feedback

Performance

Preferences

Learner

 Syntax refers to the lexical and structural aspects.
Based on a vocabulary of keywords and user-defined
elements, sentences in the language can be formu-
lated. The construction of these sentences is governed
by a grammar.

 Semantics refers to the meaning of elements and
sentences of a language. This is often done
mathematically or by mapping onto other notations.

ssion.

tations of grammatically correct sentences.

ntroduced here.

rs.

orm.

sing.

 Pragmatics refers to the use of the language. It
captures general rules and guidelines that, for
instance, improve the readability of a sentence or the
quality on an expre

Abstract and concrete syntax are distinguished.
Concrete syntax is concerned with the actual
representation as it is provided by the user, i.e. with
keywords and other lexical concerns such as the
construction of identifiers. Concrete syntax validation is
usually supported by language processors such as syntax
checkers, compilers or execution tools [2]. We ignore this
aspect. We are concerned here with abstract syntax,
which can be defined in terms of grammars, i.e.
production rules that, if applied, lead to grammatically
correct sentences. Abstract syntax trees are
represen

Abstract syntax trees (ASTs) as representations of
language expressions shift the focus from lexical concerns
to structural notational ones [2], [3]. In some cases, further
abstractions of an AST can take place to facilitate the
application of specific analyses or transformations. For
instance, grouping of tree elements and their classification
can take place – an aspect that we use later on to remove
irrelevant detail for the correction technique.

4.3 Language – Problems and Error Classification
Our focus is language semantics and its comprehension.
Although syntax and pragmatics are important, we
provide a semantics-specific solution to error
classification. SQL-specific language aspects, based on
Section 4.2, shall be i

The select statement is a fundamental SQL statement,
used to query and extract information from a database
[1], [26]. It can be made up of six clauses, but we focus
here on the three central ones – SELECT, FROM, WHERE
– whereas the others are dealt with in [17]. A simplified
grammar of a few higher-level production rules is pre-
sented in Fig. 3. These three clauses map to input ele-
ments (FROM), a condition that is the extraction filter
(WHERE), and an output description (SELECT). An ex-
ample is:

 SELECT colour
 FROM parts
 WHERE weight > 10 and city = “Paris”.

A list of database table names can be provided in the

FROM clause. The SELECT clause can contain a list of
column names of tables named in the from-list, possibly
combined with aggregation operators such as minimum
or average. The qualification in the WHERE clause is a
condition or filter constraint based on logical and
comparison operato

We distinguish here two different notational elements
in SQL that are of relevance for the error classification in
the correction technique:
 Elements – objects and functions. SQL refers to a

number of different data objects, mainly based on the
Relational Algebra as SQL’s mathematical
foundation. This includes objects such as tables and
attributes. We also add functional elements to this
category, such as aggregate functions or comparison
operators. These elements are part of the database
object platf

 Clauses. SQL has a fixed syntactical structure based
on the SELECT … FROM … WHERE template with
in total six clauses. Each of the clauses focuses on a
specific step in query processing. The FROM clause
defined the input tables, SELECT constructs the
output and WHERE defines filtering and selection
conditions. These elements are part of computational
query proces

These dimensions are motivated by the experience and

AUTHOR ET AL.: TITLE 5

observations of educators based on their experience in
teaching SQL and the common difficulties that they have
encountered. This classification helps to categorise and
localize common learner errors and problems by distin-
guishing object and computational aspects.

Our tutor is a problem-based learning and training
environment. A number of data query problems are
provided in a repository; each problem typically
addresses a specific SQL language aspect. An entry in the
problem repository contains the following information:

1,

ld be:

te element.

select

heuristics-based prioritisation of errors

propose the

d on an educator’s judgement and

 m, the educator defines an

and semantics, and shall
th

application of fomalised

orrect

matching

 classifying and explaining errors.
ed

ly on the educator’s

 syntactical representation from the educator.

syn
erro

carried out.
al

mparison of
sy

T

Fig. 4. Simplified Abstract Syntax Tree (SAST)

query

select from where

fct att att table b-expr l-op b-expr

distinct colour city p att c-op lit and att c-op lit

city <> “Paris” weight > 10

query

select from where

fct att att table b-expr l-op b-expr

distinct colour city p att c-op lit and att c-op lit

city <> “Paris” weight > 10

 the problem itself, formulated as a natural language
sentence, which is going to be made available to
students, see Fig.

 problem metadata including a problem focus, which
is expressed in terms of SQL elements and clauses
(this characterization reflects the educator’s defined
learning goal for a problem).

An example for the language aspect categorisation
shall illustrate the two aspect dimensions. Consider a
table s that captures information about suppliers of parts.
 Question: Get the numbers and names of all

suppliers. An (incorrect) student answer cou

 SELECT sno, name FROM s

The diagnosis would recognize this statement as
incorrect because the student has tried to select the
attribute “name”. We assume that the correct
attribute is “sname”. This can be identified as
primarily a function-specific error in the select clause,
i.e. the output of the statement is affected through an
attribu

 Question: Get the maximum status of suppliers in
Paris. An (incorrect) student answer could be:

 SELECT min(status) FROM s WHERE city = ‘Paris’

In this case, the student has selected the minimum
status instead of the maximum status. Here, the
system identifies a primarily element-specific
semantic error due to the misuse of the aggregate
function “min” on element “status” in the
clause.

The language aspect dimensions are the core
mechanism to locate and categorize student errors. The
identification of the primary error is based on heuristics
defined by database educators. The different categories of
errors should be identified by the tutor when a student
has made more that one mistake. The number and
ordering of displayed errors depends on the student’s
preferences and a
by the instructor.

4.4 Language – Solutions and Errors
The previous two examples have clarified the
requirements for a correction approach. We
following set-up based on problems and solutions:

Problems: an empirical problem determination and
definition is base
experience [28].

Solutions: for each proble
ideal solution.

Our focus is on semantics and the correction of
semantic errors in SQL statements. Database management
systems usually provide feedback on syntax. Pragmatic
aspects of language use require the student’s
comprehension of syntax

erefore be neglected in this investigation.
We propose to use the ideal solutions to identify

student errors. This general idea stems from intelligent
tutoring systems. In its
languages, two techniques are required:

a notion of semantic equivalence on answer
representations (syntax trees) to identify c
answers that do not syntactically equal to the ideal
solution
a matching technique on syntax trees that compares
student answer and ideal solution by
structural patterns in the two syntax tree
representations to identify correct and erroneous
elements.

An error categorization scheme, based on elements
and clauses, allows
Since multiple errors are always possible, a weight
categorization based empirical
experience is needed.

4.5 Pattern-based Correction
At the core of our approach is a syntax-driven analysis
technique to identify and correct semantic student errors.
Although semantics is the issue, we require only an ideal
solution in
A comparison of ideal solution and student answer on a

tax level is the central correction activity for semantic
r [2].

 The ideal solution (syntactic representation) acts as a
semantic solution for the problem where one
syntactic example denotes the semantics.

 Semantics-based equivalence and matching rules
enhance the ideal solution and allow the semantic
error detection and correction to be

The principle idea is to match student answer and ide
solution using syntactical patterns in the co

ntax trees of both query expressions.

4.5.1 Answer and Solution Representation
he data representation structures that capture content

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

kno

ere the BNF

tations of concrete sentences in a language

ration. Here, we introduce a

W
AST

E ⊆ N × N where one

 l in

replaced by their equivalence classes to
EAST that

 correct query (this

utili
an i
 he correction component splits the query

neous items and operators. Some simple

 of
truc-

ion
an

antically correct or
calization and

der to provide

 statements can usually be syntactically modified

incl

 able names in the FROM

refixes/aliases in all clauses
hese are some of the most common rules. These are

for wing
example for the first rule ORD-1

 ((select, att1, att2) , ([select,att1] ; [select,att2]))

for
in ESAST based on the nodes . We use

a semicolon to express ordering of subtrees.
ivalence rule

is defined as follows

(t fixed_table_ref)

_ref.ID = prefixed_table_ref.ID and

 wh

 suitable

 unique is a predicate that flags if the identifier

r, more complex semantic equivalences exist
etween SQL queries. A typical example is the

 query. For
instance, the following

wledge are based on:
Language grammars to define the notation through
which learner and system interact. H
grammar for ISO/IEC 9075 Database Language SQL
standard forms the basis [1], which we have
simplified in our prototype implementation.
Abstract syntax trees (ASTs) are tree-based
represen
defined through the grammar production rules [2],
[3]. ASTs abstract from concrete syntax aspects such
as keywords.
Simplified abstract syntax trees (SASTs) are a form of
syntax trees that we introduce here to provide a
further level of abstraction. For instance, literals of
different types are not distinguished for our
correction, but which are typically distinguished in
ASTs for code gene
generalized class Literal for string and numerical
literals. SAST filter out information that is not
required for the correctness analysis.
e define the syntax trees AST and SAST and also the

 and SAST construction process as follows:
 a syntax tree is defined as an acyclic graph ST =

(N,E,R) with nodes N and edges
vertex R ∈ N singled out as the root of the tree,
root R = ‘query’ to represent an SQL query according
to the SQL grammar,
the AST = (NAST,EAST,R) is defined as usua
compiler construction, e.g. by removing all keyword
nodes (e.g. SELECT, FROM, WHERE in Fig. 2) from
N and all edges from E that include these nodes,
the SAST = (NSAST,ESAST,R) is defined by merging
nodes into equivalence classes (e.g. string_literal and
numerical_literal are merged into literal); such nodes
from NAST are
form NSAST; accordingly, all edges from
include these nodes are replaced by equivalence
classes to form ESAST.

4.5.2 Answer Processing ad Pattern Matching
In the SQL tutor, answers to problems are processed as
follows. Student answers are submitted to the tutoring
system via the interface and are processed by the
correction component. A syntactically
is ascertained by an associated database server that is

zed to carry out the syntax check) is matched against
deal solution for possible semantic errors.
A parser in t
into segments based on the clauses. The parser also
partitions the ideal solution from the ideal solution
repository.
Having been split into segments, the student answer
and the ideal solution are normalised for easier
matching. This step consists of removing an
extraneous elements and standardising certain
miscella
equivalence rules (see below in Section 4.5.3) are
already applied at this stage to minimize the
complexity at later processing stages.

Our correction approach uses a pattern matching tech-

nique. Abstracting student answers and ideal solutions in
two steps – abstracting from concrete syntax (AST) and
from irrelevant information (SAST) – provides the basis
the comparison. A pattern matching on the SAST s
ture acts as a similarity measure between ideal solut

d student answer. A two-step procedure is applied:
1. semantic equality determination (Section 4.5.3),
2. semantic inequality determination (Section 4.5.4).

Both error determination (sem
incorrect) in Step 1 and error lo
categorisation in Step 2 are dealt with in or
immediate, meaningful feedback to the student.

4.5.3 Semantic Equality Determination
A number of equivalence rules define semantical equality
as SQL
without changing their semantics. The rules define an
equivalence relation ≈ ⊆ SAST × SAST. These rules

ude:
 ORD-1: reordering of attributes in the SELECT clause

ORD-2: reordering of t
clause
ORD-3: reordering of Boolean expressions in the
WHERE clause
EQU-1: equivalence of comparison operators in the
WHERE clause

 OPT-1: optional use of p
T
mulated formally as indicated by the follo

≈
 ((select, att1, att2) , ([select,att2] ; [select,att1]))

 nodes select, att1 and att2 from NSAST and

corresponding edges

For the last rule OPT-1, a conditional equ

 (able_ref), ()) ≈ ((pre

 if table

unique(table_ref.ID)

ere
table_ref and prefixed_table_ref are
nodes
the postfix ID is an attribute of the node that
denotes the concrete table identifier

is uniquely applied in the sentence under
consideration

The sample, formalized rules are rather simple rules.

Howeve
b
equivalence of a nested and a non-nested

AUTHOR ET AL.: TITLE 7

 SELECT colour FROM p WHERE pno in (

 ≈

.pno

 be captured by an
plex one:

 N1 = (table_ref_list1, nested_in(c),

≈
N2 = (table_ref_list3, equality(t1.c, t2.c)) ,

 E2

 if

table_ref_list1 ⊆ table_ref_list3 and
able_ref_list2 ⊆ table_ref_list3 and

list2 = table_ref_list3

 where

 lumn name

s to the equality
comparison operator for tables t1, t2 ∈

tes the idea of pattern matching. The macros
nes

 is a range of other equivalences, essentially
ba

t present all rules here that define semantic
eq

plication of these rules on a comparison of two

are syntactically different from the ideal solution to be

stra

rison

lower level) than reordering of Boolean

 SQL clauses, e.g. to ‘select’,

as IdealSolution* the equivalence class
 }. All answers
re considered

ality Determination

the
assu
app

ST cannot be matched with the
cor

nce rule, then an error has been located and
the co r can

entified.
A node err) contains an

and

 error(s) within the syntactical structure:
the

f an error to the
relevant semantic construct – which is the parent
no

An er
follows

(err) =

IDEAL)
ErrorType(Parent(err)) otherwise

 (based on error categories for

emp
be i e distinguish overall two

 SELECT pno FROM sp)

 SELECT colour FROM p,sp WHERE p.pno = sp

are equivalent queries. This can also
equivalence rules, although a more com

 (
 table_exp(c), table_ref_list2) ,
 E1 = (…))

 (
 = (…))

t
table_ref_list1 ∩ table_ref_

c is a co
 nested_in(c) is a macro-style abbreviation that

refers to the SQL IN-operator applied to
column c

 equality(t1.c, t2.c) is a macro-style
abbreviation that refer

table_ref_list3
 table_ref and table_exp are expressions

according to the SQL grammar

As we can see, the two SASTs (N1,E1,R1) and
(N2,E2,R2) are incompletely specified and some macro
abbreviations have been included to shorten the
construction. Rules can get complex as a consequence of
the language definition. This example, however,
illustra

ted_in and equality, for instance, stand for two patterns
that semantically correspond to each other. For this
presentation, we have made these patterns explicit by
providing names for them.

There
sed on the availability of additional operator that

simplify expressions or accommodate particular styles.
The JOIN … USING construct for the FROM clause is an
example.

We canno
uivalences for SQL queries. The quantity and the

complexity (of some) of the rules create an accuracy
problem from the implementation perspective, which we
discuss in Section 6.

The ap
SASTs allows semantically correct student answers that

identified. The rule application follows the following
tegy:
the ideal solution SAST is the starting point of the

compa
 rules are applied bottom-up to the SASTs, e.g. the

comparison operator equivalence is applied earlier
(at a
expressions
most rules are specific to
‘from’ or ‘where’, which means that rules are applied
locally

 a simple rule preferences list defines the remaining
rule application ordering

We define
IdealSolution* = { SAST | SAST ≈ SASTIDEAL

represented as a SAST ∈ IdealSolution* a
correct. The previous rule application strategy determines
semantic correctness.

4.5.4 Semantic Inequ
If the application of all equivalence rules does not solve

correction problem, then a semantic error can be
med for the student answer. A pattern matching

roach shall serve to
locate the error(s) within the SAST: if a subtree of the
answer SA

responding ideal solution SAST based on the
equivale

rresponding position in the student answe
be id

∈ N for SAST = (N,E,R
error, if

∃ n ∈ SASTIDEAL . Context(err) = Context(n)

err ∈ Nodes(SASTIDEAL)
where

 Context represents the parents of a node up
to the root,

 Nodes projects onto the nodes of a tree.
classify the

 abstraction and expression classification in the
SAST allows the association o

de in the SAST.
ror occurring in a construct is determined as

using function ErrorType:

ErrorType
Parent(err) if Parent(err) ∈ Nodes(SAST

 where

 Parent represents the parent of a node.

Since multiple errors are possible, an error weighting
and ranking technique is required. Error categories and
associated weights
structure and object dimensions) are determined (usually

irically) based on the educator’s experience and can
ndividually configured. W

forms of feedback:
correction: immediate feedback that can comprise
error location, error explanation, hints and par-

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

tial/full correct solutions,
 recommendation: accumulative feedback that can

ast performance and
tudies (in the form of

tant benefits of computer-enhanced learning [14].
Fe

t’s overall performance.
om the interaction

sideration of student model and

ent are given in
a s

s personalization.

 In terms of ITS
components (see Section 2.3), the pedagogy component is

ere –

In o
we
com
 determined by the student

er a period of time.

tics and pragmatics. In the

sche tudent is applied. A
odel records errors

made by a st
 the prob e – a

 fication in terms of

ies record individual errors and their
categories to determine the student’s strengths and

 information can be used to recommend

rrection feature provides interactive synchronous

lear of

pref

 quality,

eveal the solution, but aims to help the student to
 reflect

S rrection feedback
are:

comprise a diagnosis of p
recommendations for future s
selected exercises).

5 LEARNER AND INTERACTION
The correction technique provides immediate,
synchronous feedback to learners for their submissions to
the SQL tutoring system. Learning and training are,
however, continuous processes over a number of
individual interactions. Supporting the student
individually through observation and personalised
feedback and recommendation is one of the most
impor

edback can be global or local [18], which we address
through synchronous local feedback as part of corrections
and global guidance and recommendations based on the
studen

We revisit correction, but fr
perspective under con
feedback generation, and we introduce the
recommendation feature.

5.1 Personalisation
Individual problems in the SQL environm

uggested order. While personalization often addresses
the navigation infrastructure (e.g. path selection) between
these problems, our personalization focus is on content-
based interaction in the form of feedback.

Students can, if desired, choose feedback levels the for
correction and recommendation features. However, the
system also provides a personalised feedback that consid-
ers the subject competency of the student. Feedback levels
are ncreased if the student has difficulties; feedback is
faded out, if the student becomes self-reliant and compe-
tent. The system automatically provide
Although this can be overruled, the majority of students

use the recommended automated feedback levels.

5.2 Recommendation Architecture
The recommendation architecture is presented in Fig. 5.
Again, it serves to outline and structure the main
functionality and interactions.

Fig. 5. Recommendation Architecture

Recommendation

Problems Student
Model

Interface

Selected Problems

Performance
Preferences

Learner

Recommendation

Problems Student
Model

Interface

Selected Problems

Performance
Preferences

Learner

the predominant functionality provider h
implemented by the recommendation component. This
component accesses student and expert model.

5.3 Learner Model – Profiling and Diagnosis
rder to provide a personalized learning experience,
propose a learner model with two central

ponents:
preferences
herself/himself – we only consider a simplified range
of aspects in this investigation that are specific to the
proposed feedback in terms of correction and
recommendation.
performance determined through observation of the
student’s interaction – essentially the degree of
correctness and the types of errors a student has
made ov

The preferences determine the quality and quantity of
correction and recommendations. Students can choose
from a number of predefined feedback and
recommendation levels.

The performance diagnosis captures errors made in the
categories syntax, seman
semantics category, which we focus on here, a facetted

ma of errors made by a s
performance entry in the learner m

udent. It consists of
lem that the student has tried to solv

reference to the problem base
an error classi

o clauses as the computational perspective
o elements as the object perspective

 the number of occurrences for each problem/error
combination

These entr

weaknesses. This
further study material to a student or to allow grading the
overall performance.

5.4 Correction
The co
feedback. The aim is to support formative and immediate

ner assessment. We distinguish a number
predefined feedback levels that are part of the learner

erences:
essentially, the quantity of feedback is determined
where more feedback also means a better
the standard setting provides hints, i.e. does not
r
reassess her/his answer. Hints are weighted to
the different severities of individual errors.
ome of the individual levels for co

AUTHOR ET AL.: TITLE 9

 Level 1: one SQL clause hint (highest weight)
Level 2: one SQL clause hint (highest weight) and one

 ts and all SQL element

levant

F

 ou need to include the following element:

SQL element hint (highest weight)
Level 3: all SQL clause hin
hints

 Level 4: further hints and links to re
background material are added.
or our example from the previous section, for each

level the following hints are added for levels 2 to 4:
Level 2: there was an error in the select clause and
there was an error with an attribute that was selected.
Level 3: there was an error in the where clause; there
was an error with a symbol that was used.
Level 4: y
“colour … <> …” and try the following links – 1 – 2 –
3 - that provide background material for this type of
problem.

The standard setting provides only one type of
feedback – hints. Hint levels are determined only based
on the preferences. In addition, the tutoring system
supports scaffolding, i.e. a student support feature that
aims at guiding the student towards sufficient self-

tice. The

to partial and then full solutions. Over time, the
feedback is reduced – called

ory – in order to achieve self-

Th

t with
su

es a number of exercises of the same

T
follo

ce

, i.e. presentation based on preferences and

T is based on the

 : grouping of errors by error category, i.e. for

 alculation of number of errors per error

f errors made (errors in simple problems
result in lower grades than errors in difficult

nd averaged out over all

 number of errors

y that match the clause/error pairs of errors

n feedback, the student can choose
endation

d

3: all SQL clause/element diagnosis (graded) +

F e could be given by

g symbols.

nor problems with

reliance and expertise to solve problems in prac
scaffolding uses three types of feedback in a strategy that
extends the preferences model:

hints are as usual advice to correct an error,
 partial solutions reveal critical elements of a solution,
 full solutions reveal the ideal solution.

These types are applied in a staged strategy. Initially
only hints are given. If errors kept being made, the system
switches
quality and quantity of
fading in scaffolding the
reliance.

5.5 Recommendation
e recommendation feature provides interactive

guidance over longer learning and training periods. Its
aim is summative and accumulative learner assessment.

The recommendation feature provides a studen
ggestions for further study. In case of this SQL tutor,

the system propos
kind as the ones the correction feature is based on.

he recommendation determination is based on the
wing factors:

 diagnosis-based, i.e. personalized considering
individual student weaknesses extracted from the
performance model,

 accumulated, i.e. based on weighted and ranked
learner assessments considering the performan
data from the student model,

 filtered
scaffolding principles (recommendation strategy).
he recommendation algorithm

following steps:
Step 1
each clause/element error pair
Step 2: c
category
Step 3: ranking of errors by number of errors per

category
Step 4: grading of overall performance based on the
weight for each problem and the number and
severity o

problems) – summarized a
problems attempted.

 (Σ ----------------------) / number of problems

 problem weight

 An error indicator is calculated – the higher the
value, the more/severe errors have been made. The
result is then normalized to a scale 0 … 100.
Step 5: for each error type, ordered by number of
errors), problems are retrieved from the problem
repositor
made. A cut-off point to limit the number of
recommended problems can be defined as part of this
level scheme

As for correctio
between a number of predefined recomm
feedback levels that provide increasing amount an
quality of recommendations.

Level 1: one SQL clause/element diagnosis
Level 2: all SQL clause/element diagnosis (graded)

 Level
menu of relevant further problems to practise
or instance, the following advic

the tutor:
Level 1: your greatest amount of errors involves the
WHERE clause, usin

 Level 2: you are having major problems with the
WHERE clause; you are having mi
the SELECT clause.

 Level 3: try the following questions here (follow the
link to further selected problems).

The virtual apprenticeship model, which we
incorporated in this recommendation approach, assumes
that the student takes a degree of responsibility for
her/his learning experience. Therefore, recommendation

as that the student should revisit or pay
n to.

ning and training system

students who learn a computer language. A number of
t:

 rection and the diagnosis be used to

oach be transferred to other computer

only suggests are
particular attentio

6 DISCUSSION
We have introduced feedback techniques for correction
and recommendation for a lear
that provides immediate and accumulative feedback to

questions arise in this contex
 what are the difficulties of implementing such a

system?
 is the system effective?

can the cor
support other tasks such as grading?

 can the appr
languages?

We also discuss some related work in this section.

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

6.1 Accuracy
Accuracy is the crucial property of a correction system –
whether it is used for feedback only or for grading. The
degree of accuracy can be hampered by two factors in a
syntax-driven approach such as ours. These factors relate

4.5.4

lly different can affect accuracy negatively.

ifferent error

 simpler than some
pr

or problem from the implementation

resu

ation of the rules correct

y – in our case the bottom-up strategy to apply
eq

roach that allows addressing
rrors as

luation of student behaviour in the
sy

 scheduled lab sessions, which demonstrates its
ip

ce and ultimately
att

d constant, the relevant exam results
ha

as
tra

or
gr

to the two main activies decribed in Sections 4.5.3 and
:
Correctness determination. The possibility of having
semantically equivalent solutions that are
syntactica
A complete set of equivalence rules need to be
defined and applied.
Error classification. The complexity of the language
itself can affect accuracy: while correctness itself can
still be easy to deal with, the quality of d
categories can be difficult to address in a weighting
and ranking system for multiple errors.

In our experience with SQL, accuracy has been difficult
to achieve in practice. The SQL query language is here of
medium complexity – more complex than some
diagrammatic notations, but much

ogramming languages that integrate different
computational paradigms and mechanisms.

In our case, dealing with semantic equivalence has
been a maj
perspective. Two problems have arisen that concern the

lts of Section 4.5.3:
 the completeness of the set of equivalence rules: are

all possible equivalences covered?
the correctness of the rule application
implementation: is the applic
in that the tutor implementation detects exactly those
equivalences defined by the rules?

While both questions can theoretically be answered
positively, we have not carried out full proofs for either
question. A comparison with similar systems, such as the
SQL-Tutor from the University of Canterbury [18] that
uses a constraint base, shows that these rules or constraint
bases are usually incrementally developed using an
empirical approach. A validation of the application
strateg

uivalence rules to a syntax tree – is equally usually
done empirically.

Most ITS, such as the SQL tutor by the University of
Canterbury [19,21], use heuristics-based approaches.
Query optimization in the SQL context [10] – or any other
technique to determine the equivalence of language
expressions – could provide an alternative solution. While
in terms of accuracy, at least equally good results can be
achieved, ITS need an app
specific cases explicitly, such as common e
observed by an instructor [9].

6.2 Implementation and Evaluation

6.2.1 Context and Evaluation Method
We have implemented the described SQL tutor and it has
been used the first time in the academic year 2004/05 as
part of an undergraduate introduction to databases with
about 100 students per year. Student attainment and stu-

dent opinion are two central success criteria for learning
support tools. An eva

stems can also add valuable information in terms of
system effectiveness.

We used a hybrid evaluation method based on
traditional surveys and a new form of data mining.
General information about student behaviour and usage
of the system can be determined through web usage
mining, which we have used to validate and complement
the results of both the attainment evaluation and student
survey. Although this evaluation often shows examples of
just-in-time learning, we observed that this type of
learning behaviour is complemented by long-term and
pre-emptive use. The majority of usage occurred outside
of the
value as a self-study tool following the apprenticesh
philosophy.

6.2.2 Evaluation Results and Discussion
Student attainment is a central metric to determine the
success of an e-learning system. However, the motivation,
organization and usage of the system by the students are
factors that determine acceptan

ainment [24]. We used the hybrid evaluation method to
analyse student opinion and behaviour.

Student attainment is one of the factors that determine
the effectiveness and success of the tutor. We did improve
the online support system IDLE for the database module
over many years regularly and have achieved an
examination mark increase by 2% annually through
improvements (excluding the SQL tutor introduction).
While during the introduction of our tutoring system, all
other factors remaine

ve increased by 5.4% on the previous year, which is a
significant improvement.

Student opinion is another crucial success criterion.
Over 90% agreed, some strongly, that the tutoring system
was a useful teaching and learning tool in its own right.
The majority of students agreed or strongly agreed that
the system is easy to use in general. Survey answers
demonstrates that students accept virtual tutorials as
equally suitable and effective as traditional tutorials. We
have asked the students about their preference of delivery
mode with respect to performance in exams. The opinion
is split. This result shows the acceptance of virtual
tutorials – virtual tutorials are at least as good

ditional ones – as a means to support one of the
students’ major objectives – good coursework and exam
performance.

The feedback and personalised guidance features are
seen as an important part of the tutoring system. Our
survey results imply that the idea of providing both
feedback and guidance has its merits. One critical aspect,
however, is worth noting. Unintended higher levels of
inaccuracy of the initial prototype have led to a more
critical evaluation by students. Accuracy is the crucial
property of the correction feature, even if it is not used f

ading. Accuracy strongly affects the acceptance to the
approach and the tool. Students who have encountered
these inaccuracies felt discouraged to trust the system.

AUTHOR ET AL.: TITLE 11

Students were asked to rate a number of statements
about the SQL tutor. Students indicated that the most
important aspect of the system is its focus on active skill-
oriented learning rather than a passive lecture-based
approach. The second most important aspect is that the

ble and enables self-paced
wise only have been possible

sibly the application that seems
na

or grading depends essentially on the accuracy

I
dist
 lar: the system distinguishes only

 provide a

dents could be given full marks
in

f accuracy that is
y of the educator as mechanical

cular since its automated nature

tic languages as well as more complex
pr

s as the notation. In a
sim

xpression are,
of

query
uery languages or bismilarity for
 is beneficial to the implementation

S) architecture.

and
in t
arch

her than correcting it. The system’s

urrent implementation, only the

 re-iterates our discussion of

onsis-
ten

system is always availa
learning, which would other
during supervised lab times.

6.3 Further Applications
Automated grading is pos

tural. Whether a system such as the proposed one can
be used f
of the correction feature.

n general, two grading approaches can be
inguished:
coarse-granu
between correct and incorrect. This eliminates the
complexity of error weighting and categorization of
multiple errors.
fine-grained: the system attempts to
similarity measure based on an error weighting. This
combines the complexity of correctness
determination with the one from error classification.

Grading could be implemented by linking a severity
level to errors and linking an importance level to
elements in the clause. Stu

itially, which are decreased in varying amounts by the
correction model based on the severity of errors and the
absence of vital elements.

Our experience shows that even minor inaccuracies in
the correction can lead to acceptance problems, which we
have experienced with our first prototype. However, we
believe that through incremental improvements, a
correction system can reach a degree o
similar to the accurac
processing, in parti
removes other, human-typical inaccuracy reasons [29].

6.4 Transferability
Our aim was to present a generic approach that can be
applied to other computer languages. This can potentially
include diagramma

ogramming languages. We outline prerequisites and
identify possible difficulties. We illustrate the potential
using an example.

While, as our discussion of accuracy shows, the
transfer of the approach to complex programming,
specification or modeling languages might require some
implementation effort to achieve at least acceptance (and
might initially rule out reliable grading), languages of
similar or smaller complexity can be addressed from a
practical point of view. Within the database context, we
have started to explore the application of these principles
to Entity-Relationship diagram

ilar way, problems and ideal solutions can be
prepared and equivalence rules defined by an instructor
and/or a knowledge engineer.

Formally, a language representation in terms of
grammars, abstract and simplified abstract syntax trees

and semantic equivalence rules based on the grammar are
the only prerequisite. Suitably formulated grammars that
allow the effective parsing of a language e

course, required. Once a language is mapped onto this
infrastructure, our approach can be applied, only limited
by the scalability of the accuracy problem.

In general, research on notions of equivalence in the
language under consideration – such as
optimization for q
process languages –
work as it can provide the formal foundations of
correction.

6.5 Related Work
Our system enables activity-based learning and training
based on an intelligent tutoring system (IT
We introduce three systems that provide personalisation

 feedback for SQL tutoring. These systems are similar
heir aims and interfaces, but they each have differing
itectures and methods of correction.
SQLator [30] corrects a student submission by
equating it with the corresponding English question –
the authors describe this as evaluating the student
submission rat
equivalence engine judges if the SQL answer of the
student correctly corresponds to the given English
question, without actually executing the query at
correction stage.
Acharya [4] uses a three-step process – pre-
processing, atom processing and truth table
processing – to correct the student’s answer. It is
similar to our in that it is syntax-driven. The Acharya
process assumes that the sets of literal atoms in two
language expressions are the same. The process fails
if one of the expressions is made up of more atoms
than the other. This can actually result in accuracy
problems. In its c
where clause is analysed. The truth table technique to
determine semantic equivalence is specific to the
where clause, i.e. other techniques would be required
to address other SQL clauses.
SQL-Tutor [21] uses constraint-based reasoning to
correct answers submitted by the student. The
constraints, which are stored in a constraint base,
deal with syntax errors as well as semantic errors, as
the student’s proposed solution is not actually
executed. The system checks each submitted query
for relevant constraints that might have been
violated. This method of correction can yield a high
level of accuracy, depending on the extent of the
constraint base – which
accuracy and the effort needed to achieve it. In order
to provide for the large range of possible errors, a
large constraints based has been developed
incrementally over a significant period of time.

 Brass and Goldberg [7] have developed a related ap-
proach to correcting SQL queries based on a correction
tool that gives feedback on general queries without an
ideal solution using heuristics about the general c

cy of the query. While this would provide a useful

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

complement to a training or development environment

feed
T

and

 allowing academic

 ya provides feedback in the form of error flag-

indica-

es-
tion for the student to attempt. The reasons for this sys-

n are, however, not made explicit to
ur guidance component and the stu-

dback is a classic and central example of scaf-
fol

r.

plem
based on two knowledge and data representation tech-

underlying

 their abstractions as data structures

O re was to introduce techniques

 omputer

rred to similar learning and training area where
co

ows that sufficient
ac

ted to some extent by providing a useful
system that greatly improves accessibility and availabil-

 guidance complements immediate cor-

in

REF
[1] Hull and V. Vianu. ʺFoundations of Databasesʺ.

[2]
ools” (2nd Edition). Addison‐

[3]

cessing. 1983.

n and E. Haugsjaa. “Applications of AI in edu‐

[7]

[9]

for databases, it does not provide an adequate degree of
back in an automated tutoring setting.
he first three systems offer some form of scaffolding
 feedback to the student.
SQLator’s automatic feedback consists of an error flag
signaling the correctness of a student answer. Asyn-
chronous feedback is offered by
staff to email or post messages to address submis-
sions. A synchronous hint-based feedback system,
which we consider essential for automated tutoring,
is proposed as an extension [30].
Achar
ging and hints. Hints are comprised of text and links.
Only one hint is displayed at a time. The system does
not offer guidance based on the student’s perform-
ance.
SQL-Tutor provides advanced feedback, offering
both hints and partial solutions. There are five levels
of feedback ranging from a simple correctness
tion to offering the complete solution. Feedback is in
text form only; relevant links to background material
that would put errors into context are not offered.
There are no accumulative recommendations.

Both Acharya and SQL-Tutor suggest the next qu

tem recommendatio
the student as in o
dent is not given a choice of recommended questions.

7 CONCLUSIONS
Automated tutoring has become an accepted method of
instruction. Students reach a higher level of understand-
ing when being actively engaged in learning and training
processes. Our automated tutoring system provides a
realistic training environment for database programming.
Automated tutoring is time and location independent.
While generally a beneficial characteristic, scaffolding is
here a necessary feature for automated tutoring in this
context. Fee

ding. Correcting, providing feedback, presenting rec-
ommended questions, etc. is part of the scaffolding
needed for knowledge-level interactions between student
and tuto

We have demonstrated that this scaffolding can be im-
ented for computer language learning and training

niques:
language grammars as the structuring principle that
defines the learning content and its
knowledge,

 syntax trees and
that capture problem-based knowledge that is com-
municated between student and system.
ne of our objectives he

and to demonstrate:
the potential of advanced tutoring for a c
language based on a pattern matching approach to
automated correction,

 the benefits of integrated feedback and personalised
guidance based on pattern-based correction.

Course subjects focusing on computer languages lend
themselves to automated tutoring as their structure
makes them easy to analyse. The student can make sub-
missions to a tutoring system and receive results auto-
matically corrected result. The presented correction ap-
proach using grammar-based pattern matching can be
transfe

mputer-processable languages, both textual and dia-
grammatic, can be processed automatically based on
techniques derived from an explicitly formulated gram-
mar.

Some difficulties need to be addressed in the imple-
mentation of automated tutoring systems. A system’s
accuracy and the student’s trust level, which is affected
by accuracy, are important for its success. Designing and
implementing a flawless correction method is, however, a
challenge. However, our experience sh

curacy can be achieved for a language of the complexity
of SQL in order to make automated tutoring acceptable
for students as a learning support tool and for educators
to even consider it to support grading.

A note on the human and automated tutors shall con-
clude this investigation. An automated system can never
fully replace human tutoring in terms of quality. This can
only be allevia

ity. Personalised
rection and feedback – and should be present in any tu-
tor g system.

ERENCES
S. Abiteboul, R.
Addison‐Wesley. 1994.
A.V. Aho, M.S. Lam, R. Sethi and J.D. Ullman. “Compilers:
Principles, Techniques, and T
Wesley. 2007.
A.V. Aho, J.D. Ullman and J.E. Hopcroft. “Data Structures and
Algorithms”. Addison‐Wesley, Series in Computer Science and
Information Pro

[4] S. Bhagat, L. Bhagat, J. Kavalan and M. Sasikumar. Acharya:
“An intelligent tutoring environment for learning SQL”. Pro‐
ceedings of Vidyakash 2002 – International Conference on Online
Learning. 2002.
J. Beck, M. Ster[5]
cation”. ACM Crossroads, The Student Journal of the associa‐
tion for Computing Machinery, 3 (1). 1996.

[6] T. Boyle. “Design for multimedia learning”. Prentice Hall
Europe. 1997.
S. Brass and C. Goldberg. “Semantic errors in SQL queries: A
complete list”. Journal of Systems and Software 79:630‐644. 2006.

[8] P. Brusilovsky. “Adaptive Hypermedia: From Intelligent Tu‐
toring Systems to Web‐based education”. Proceedings of 5th In‐
ternational Conference on Intelligent Tutoring Systems, ITS 2000.
Springer Verlag. pp. 1‐7. 2000.
P. Brusilovsky, J. Knapp, and J. Gamper. "Supporting teachers as
content authors in intelligent educational systems". International
Journal of Knowledge and Learning, 2 (3/4), 191-215. 2006.

[10] S. Chaudhuri. “An overview of query optimization in rela‐
tional systems”. Proceedings of the Seventeenth ACM Symposium

AUTHOR ET AL.: TITLE 13

on Principles of Database Systems PODSʹ98. ACM, pp. 34‐43.
1998.
C.‐Y. Chou, T.‐W. Chan an[11] d C.‐J. Lin. “Redefining the learning

[12] “Cognitive apprenticeship and instructional tech‐

[13]
can Educator, Winter edi‐

[14]

Technology Enhanced Learning, EC‐TEL 2006,

[15]
nol‐

[16] R. Oliver. “An instructional design frame‐

[17]
n City University, School of

[18]

e Education SIGCSE Symposium

[19]
Learning in Intelligent Tutoring Sys‐

[20] . “Local and global feedback”. Proceed‐

[21] t Tutors for

[22]
l of Artificial

[23]

[24]

[25] enny. “Supporting active database

04.

[27] enscroft, K. Tait and I. Hughes. “Beyond the media:

[28] factors studies of database query languages: a

[29]
tudies 27,

pp. 555–570. 1987.

workbench. Proceedings of Intl. Conference

[31]

nce
(I/ITSEC‐2000). 2000.

earning and the International Journal of

ject development and reuse. Claire has re-

 her M.Sc. by research on a topic in intelligent tutor-
ing systems. She has been involved in the development of content
and supporting infrastructure for technology-enhanced active learn-
ing for several years.

companion: the past, present, and future of educational
agents”. Computers & Education, 40 (3), pp. 255‐26. 2002.
A. Collins.
nology”. Technical Report No. 6899. BBN Labs Inc., Cam‐
bridge, MA, USA. 1998.
A. Collins, J.S. Brown and A. Holum. “Cognitive Apprentice‐
ship: Making thinking visible”. Ameri
tion. 1991.
P. De Bra, D. Smits and N. Stash. ʺCreating and Delivering
Adaptive Courses with AHA!ʺ. Proceedings of the first European
Conference on
Springer LNCS 4227, pp. 21‐33. 2006.
D. Heaney and C. Daly. “Mass production of individual feed‐
back”. Proceedings of Intl. Conference on Innovation and Tech
ogy in Computer Science Education ITiCSE’04. ACM Press. pp.
117‐121. 2004.
J. Herrington and
work for authentic learning environments”. Educational Tech‐
nology Research and Development, 48 (3), pp. 23‐48. 2000.
C. Kenny. “Automated Tutoring for a Database Skills Training
Environment”. M.Sc. Thesis. Dubli
Computing. 2006.
C. Kenny and C. Pahl. “Automated tutoring for a database
skills training environment”. Proceedings of ACM Special Inter‐
est Group on Computer Scienc
2005. ACM Press. pp. 58‐62. 2005.
M. Mathews and A. Mitrovic. ʺInvestigating the Effectiveness
of Problem Templates on
temsʺ. Proc. 13th Int. Conf. Artificial Intelligence in Education
AIED 2007, pp. 611‐613. 2007.
E. Melis and C. Ullrich
ings of AIED2003, 11th International Conference in Artificial Intel‐
ligence in Education. 2003.
A. Mitrovic, B. Martin and P. Suraweera, ʺIntelligen
All: The Constraint‐Based Approachʺ. IEEE Intelligent Systems,
22(4), pp. 38‐45. 2007.
T. Murray. “Authoring Intelligent Tutoring Systems: An
analysis of the state of the art”. International Journa
Intelligence in Education, 10, pp. 98‐129. 1999.
S. Murray, J. Ryan and C. Pahl. “A tool‐mediated Cognitive
Apprenticeship approach for a computer engineering course”.
Proceedings of International Conference on Advanced Learning
Technologies ICALT2003. IEEE Press. pp. 2‐6. 2003.
C. Pahl. “Behaviour analysis for Web-mediated active learning”.
International Journal of Web-Based Learning and Teaching Tech-
nologies 1(3), pp. 45-55. 2007.
C. Pahl, R. Barrett and C. K
learning and training through interactive multimedia”. Pro‐
ceedings of the 9th Annual Conference on Innovation and Technol‐
ogy in Computer Science Education ITiCSE’04, ACM Press. 20

[26] R. Ramakrishnan and J. Gehrke. “Database management sys‐
tems”. McGraw Hill. 2003.
A. Rav
Knowledge level interaction and guided integration for CBL
systems”. Computers in Education, 30 (1/2), pp. 49‐56. 1998.
P. Reisner. ʺHuman
survey and assessmentʺ. ACM Computing Surveys 13, pp. 13–31.
1981.
A. Rizzo, S. Bagnara and M. Visciola. ʺHuman error detection
processesʺ. International Journal of Man–Machine S

[30] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin. SQLator – an
online SQL learning
on Innovation and Technology in Computer Science Education
ITiCSE’04, June 2004. pp. 223‐227. ACM Press. 2004.
J. Stephenson (Ed.). “Teaching and learning online”. Kogan
Page. London. 2001.

[32] R.H. Stottler and M. Vinkavich. “Tactical Action Officer Intel‐
ligent Tutoring System (TAO ITS)”. Proceedings of the 2000 In‐
terservice/Industry Training, Simulation and Education Confere

[33] K. Winnips. “Scaffolding‐by‐design as a model for online
learner support”. Ph.D. thesis, Faculty of Educational Science
and Technology, University of Twente, Netherlands. 2001.

Claus Pahl (M.Sc., Ph.D.) is a Senior Lecturer and the leader of the
Web and Software Engineering research group at Dublin City Uni-
versity, which focuses on Web technologies and e-learning applica-
tions in particular. Claus has published more than 150 papers includ-
ing a wide range of journal articles, book chapters, and conference
contributions on e-learning. He is on the editorial board of the Inter-

ational Journal on E-Ln
Technology-Enhanced Learning and is a regular reviewer for journals
and conferences in the area of software, Web, and learning tech-
nologies and their applications. He is a member of the IEEE and the
IEEE Computer Society.

Claire Kenny (B.Sc., M.Sc.) is a Research Assistant at Dublin City
University, currently involved in an EU-supported learning technology

roject on learning obp
cently completed

	1 Introduction
	2 Framework
	2.1 SQL Learning and Training
	2.2 Apprenticeships and Scaffolding
	2.3 Intelligent Tutoring and Pattern Matching

	3 Information and System Architecture
	3.1 Information Architecture
	3.2 System Architecture

	4 Content and Language
	4.1 Classification and Correction Architecture
	4.2 Language Representation
	4.3 Language – Problems and Error Classification
	4.4 Language – Solutions and Errors
	4.5 Pattern-based Correction
	4.5.1 Answer and Solution Representation
	4.5.2 Answer Processing ad Pattern Matching
	4.5.3 Semantic Equality Determination
	4.5.4 Semantic Inequality Determination

	5 Learner and Interaction
	5.1 Personalisation
	5.2 Recommendation Architecture
	5.3 Learner Model – Profiling and Diagnosis
	5.4 Correction
	5.5 Recommendation

	6 Discussion
	6.1 Accuracy
	6.2 Implementation and Evaluation
	6.2.1 Context and Evaluation Method
	6.2.2 Evaluation Results and Discussion

	6.3 Further Applications
	6.4 Transferability
	6.5 Related Work

	7 Conclusions

