
Automatic Business Process Pattern Matching for Enterprise Services Design

Veronica Gacitua-Decar and Claus Pahl
Lero, School of Computing - Dublin City University

Glasnevin, Dublin 9, Ireland
vgacitua|cpahl@computing.dcu.ie

Abstract

Designing the adequate scope and granularity of ser-
vices is critical for their effective reuse. Patterns at business
process level are abstractions of common and reusable de-
signs to operate businesses. Business Process (BP) patterns
can capture expert process design knowledge and greatly
benefit the design of new enterprise services by guiding the
definition of their scope and granularity. Identifying pat-
tern instances in real and large documented business pro-
cesses is a challenging task, requiring the analysis of the
structure, semantics and behaviour associated to process
descriptions. In this paper1 we present a solution to identify
BP patterns based on a graph matching mechanism. Struc-
tural and semantics aspects, including natural language
processing, are addressed. The approach moves one step
further to increase automation during the design of process-
centric enterprise services. We demonstrate the approach,
discuss its limitations, novelty and practical benefits by us-
ing a case study based on the National Revenue Agency case
at SOPOSE08.

1 Introduction

Reuse of services is one of the main sources attributed
to reduction of architecture complexity and costs savings in
service oriented solutions [7]. Process-centric services is a
kind of service supporting the automation of business op-
erations while allowing the integration of enterprise appli-
cations in a process centric manner. Defining the adequate
scope and granularity of process centric services is a key
factor to potentiate their reuse within and across organiza-
tions [14]. Reference models and associated patterns serve
as blueprints defining common and reusable designs in spe-
cific business domains. For instance, eTOM 2 and EBPP3

are two examples providing a reference model and associ-
ated patterns describing recommended process designs in

1Extended version at www.computing.dcu.ie/∼vgacitua/WR/WR-06.09.pdf
2Available at www.tmforum.org (Best Practices & Standards)
3Available at www.nacha.org

the telecommunication and electronic commerce domains.
Standard processes described by RosettaNet4 are another
example defining patterns of trading in a global supply
chain. Moreover, major software companies such as IBM,
SAP and ORACLE, among others, provide their enterprise
clients with industry focused reference models and patterns
to guide the implementation of software solutions.

Considering that BP patterns are frequently used and ac-
cepted business process designs (often associated to a par-
ticular industry domain), it makes sense to reuse this do-
main expert knowledge as guidelines to design new enter-
prise services. New services would benefit from the BP pat-
terns’ acceptance across the industry domain, increasing the
chances of being reused in future developments. However,
the complexity and size of real processes makes difficult
the identification (matching) of BP patterns. The time ex-
pended during the analysis can be high and errors can be
frequent. Moreover, BP patterns - as independent abstrac-
tions of specific process models - might not be exactly repli-
cated in an actual process. Rather, partial, inexact and often
less abstract BP pattern instances take place [10].

A number of contributions in the context of architec-
ture recovery and querying and comparison of process de-
scriptions, e.g. [2], [3], have addressed similar challenges.
Architecture recovery solutions have centered on structural
matching of design patterns on software systems models.
The exclusive focus on structural concerns makes these ap-
proaches not fully adaptable to the BP pattern matching
context. Solutions for querying and comparing processes
have partially addressed semantic and behavioral aspects of
the BP pattern matching problem. However, processes com-
parison and querying are often done at a same level of ab-
straction and do not allow multiple instantiation detection.

In this paper we address the challenge of automatically
matching BP patterns in BP models. The proposal aims to
promote the successful experience of using design patterns
for software development to the context of business pro-
cess and service centric oriented systems development. Im-
proved service and design knowledge reuse are the goals.

4Available at www.rosettanet.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Challenges are numerous, however in this work we focus
on proposing a solution dealing with structural and seman-
tic aspects of the BP pattern matching problem. The pa-
per is organised as follows. In Section 2 we introduce the
concepts of abstraction and similarity to explain the rela-
tion between BP patterns and concrete BP models. We also
introduce the necessary notation and formalisation to repre-
sent BP models and BP patterns as BP graphs. BP graphs
are used as abstract representation of process descriptions
and they are the input for our proposed BP pattern match-
ing technique. Section 3 describes a case study based on
the National Revenue Agency case defined at SOPOSE08.
The case is used to demonstrate our approach by means of
running examples through the paper. The proposed BP pat-
tern matching technique is explained in two parts, Section
4 focused on vertex similarity in BP graphs and Section 5
on how structural matching is combined with vertex match-
ing. Related work and conclusions are presented in Section
6 and Section 7, respectively.

2 Business Process Patterns and Models

Similar to design patterns in software development, a
business process pattern describes a design solution to an
operational business problem. The BP pattern provides a
common vocabulary and the means to reuse the business
process design solution as a building block for more com-
plex processes.

2.1 Abstraction and BP Patterns

A system can be abstracted by deliberately omitting
some details. The choice of the details to omit is made by
considering both the intended application of the abstraction
and also its users [16]. Generalisation and aggregation are
two types of abstraction. They are useful to explain the re-
lation between a BP model and a BP pattern. Aggregation
refers to an abstraction in which a relationship between ele-
ments is regarded as a higher level element. Generalisation
refers to an abstraction in which a set of similar elements is
regarded as a generic element [16].

BP Pattern. A BP pattern refers to an aggregation ab-
straction in which a relationship between generic BP ele-
ments and BP connectors is regarded as a higher level BP el-
ement. The latter is named BP pattern configuration. Gen-
eralisations of BP elements and BP connectors from a BP
model are called BP pattern roles and BP pattern connec-
tors, respectively. Fig. 1 illustrates the relations between
a BP pattern and a BP model. Generalisation is defined
in terms of similarity. Thus, a BP pattern role (BP pattern
connector) defines a set of similar BP elements (BP connec-
tors). These BP elements have the same attributes described
by the BP pattern role. Similarity between BP elements is

Figure 1. BP pattern and BP model elements.

described in Section 4. It compares attributes describing
vertices from BP graphs. The necessary notation for rep-
resenting BP models, BP patterns and their instances as BP
graphs is introduced in the next section.

2.2 Business Processes Models and Pat-
terns as BP Graphs

Graphs emerge as a natural representation for process-
centric models [5].Graphs can capture both, structure and
behavior, and allow abstractions such as BP patterns to
be related to process-centric models. Types and labels in
graphs can capture the abstract syntax of process mod-
elling languages and the concrete descriptions of process
elements, often expressed in natural language.

2.2.1 Graph-based BP model

Let M = (VM,EM,TVM ,ATVM
) be the graph representing a

BP model. M is a finite, undirected, connected, typed and
attributed graph. BP model elements and BP connectors
are represented by vertices in VM . Edges in EM represent
connectivity between vertices in VM .

A mapping function TVM : VM → TVM provides types to
vertices in VM . The set of types TVM is defined by a clas-
sification of BP model elements and it is frequently related
to the BP modelling language constructs used to describe
the business process. Vertices in VM can have attributes de-
scribing it. The function ATVM

: TVM → AVM is a mapping
function providing attribute vector templates for each type
of vertex in TVM . They define what attributes describe a par-
ticular type of vertex. The amount of attributes is not re-
stricted, and attributes might also be typed. By composing
ATVM

and TVM (ATVM
◦TVM : VM → AVM) we can obtain the

attribute vector~u describing a particular vertex u∈VM . Fre-
quently, a label (name) is a shared attribute among all types
of vertices. The label can describe the meaning of the BP
element (or BP connector) represented by the vertex, often
expressed in natural language. The set of labels for vertices
in VM is denoted by LVM . The label of a vertex u ∈VM is de-

2

noted by `(u), where the mapping function `(·) is the short
for ATVM

◦TVM (·) projected on the label attribute. In a sim-
plified case where ~u has one dimension and it is the vertex
label, then~u = `(u) and M becomes a labelled graph instead
an attributed graph.

2.2.2 Graph-based BP pattern configuration

Let P = (VP,EP,TVP ,ATVP
) be the graph representing a BP

pattern configuration. P is a finite, undirected, connected,
typed and attributed graph. BP pattern roles and BP pat-
tern connectors are represented by vertices in P. Edges in
P represent connectivity among BP pattern roles and con-
nectors. BP roles and connectors play a central role in de-
scribing a BP pattern and consequently both are considered
vertices in VP. Analogous to types and attribute vectors for
M (a BP model), the mapping function TVP : VP→ TVP pro-
vides types to vertices in P. TVP defines the set of types of
BP pattern roles and BP pattern connectors. The function
ATVP

: TVP → AVP is the mapping function providing an at-
tribute vector template for each type of vertex in TVP . The
composed function ATVP

◦ TVP : VP → AVP provides the at-
tribute vector~v for each vertex v ∈VP according to its type.
A particular ~v contains the values of the attributes describ-
ing the vertex v. The set of labels LVP provide names to BP
pattern roles and connectors, often using natural language.
Each label (name) is denoted by `(v), with v ∈VP.

2.2.3 Graph-based BP pattern instance

A BP pattern instance Pi is a subgraph in M such that, (1)
vertices in Pi ⊆M maintain a generalisation relation to ver-
tices from the BP pattern configuration P; (2) there exist an
edge preserving vertex mapping ϕ : Pi → P that fulfills the
properties of a locally surjective homomorphism (see next
section for more details). Note that several BP pattern in-
stances in M can exist and, for a single instance Pi, several
vertices in Pi can play the role of one vertex in P.

2.3 Locally Constrained Homomorphisms

A graph homomorphism is an edge preserving vertex map-
ping between two graphs. For a vertex u in a graph G =
(VG,EG), the set of all vertices adjacent to u are called
the neighbourhood of u. It is denoted by NG(u), with
NG(u) = {v|(u,v) = (v,u) ∈ EG}.

Locally constrained graph homomorphisms are a spe-
cial kind of homomorphisms where the image of a ver-
tex’s neighbourhood in a source graph is contained in the
neighbourhood of the vertex’s image in the target graph [8],
i.e. f (NG(u)) ⊆ NH(f (u)) holds for every vertex u ∈ VG
whenever f : VG → VH is a homomorphism from G to H.
For graphs G and H, three kind of homomorphic mappings
are locally bijective, injective or surjective homomorphisms

Figure 2. Best practices documentation as
BP pattern configurations.

[8]. Locally surjective graph homomorphisms can capture
the structural relations between a BP pattern configuration
and its associated instances in a BP model [10].

3 Case Study

In this section we introduce a case study based on the
National Revenue Agency case defined at SOPOSE085. We
use this case as a running example through the paper.

The National Revenue Agency (NRA) is a governmen-
tal revenue collection agency which has grown significantly
in size and complexity. During its growth, the agency has
faced many operational challenges that have triggered ra-
tionalization efforts to standardise on emergent process-
centric best practices and to reduce operational complexi-
ties. The agency has decided to initiate a project to support
the spreading and implementation of best practices across
the institution. Process-centric best practices are docu-
mented as BP patterns and they define an ideal case for pro-
cesses implementation. BP patterns would lead the defini-
tion of new reusable software services. If possible, services
would be implemented by exposing functionality of existing
software support. The identification of BP pattern instances
in the actual NRA’s processes and their associated legacy
applications is the starting point of the rationalization ef-
fort. The effort attempts to eliminate redundant legacy ap-
plications and to enable best practices automation through
software services implementation.

Fig. 2 illustrates an example of recommended best prac-
tices documented as BP pattern configurations. They are
described using the BPMN 1.1 notation [1] and they in-
volve the Validate Form, Process Financial Form and Pro-
cess Non-Financial Form processes. A letter v and number
next to each BP pattern role is used as reference through
examples in the paper. They are not part of the modelling

5http://www.dsl.uow.edu.au/sopose/content/files/main/SOPOSE-CaseStudy.pdf

3

notation. Consider that the processes from Fig. 3 are the
actual NRA’s processes. Processes are described using the
BPMN 1.1 notation [1]. A referential letter u and num-
ber next to each BP element are used to facilitate expla-
nations through the paper. These references are not part
of the BPMN 1.1 notation. This simplified example at-
tempts to illustrate the complexity of processes in organ-
isations. They often involve numerous activities and par-
ticipants. The greater the number, the more susceptible to
errors and increasingly time consuming the analysis tasks
became.

4 Vertex Similarity in BP Graphs

Preservation of the structural constraints defined by a BP
pattern is one of the aspects that need to be satisfied dur-
ing the matching of process pattern instances on concrete
process models. The latter is captured in our approach by
a locally surjective graph homomorphism [10] and it is ex-
plained in details in Section 5. However, vertices from a
BP pattern maintain an abstraction relation (generalisation)
with vertices from its instances. This section describes this
generalisation relation in terms of similarity between at-
tributes of BP pattern vertices and attributes of its instances’
vertices.

Let P =(VP,EP,TVP ,ATVP
) be a BP pattern configuration,

M = (VM,EM,TVM ,ATVM
) a BP model and Pi a subgraph of

M representing an instance of P in M. We say that a BP
pattern role v∈VP generalise the set Iv⊆VM if the similarity
between attributes describing each vertex in Iv and attributes
describing the BP pattern role v is greater than a threshold
~ζv. This threshold vector is defined within the BP pattern
documentation and it is specific to each BP pattern role v
from P. The vector~ζ defines the thresholds for all vertices
(BP pattern roles) in VP. The rest of this section explains
how similarity between BP graph vertices is calculated.

4.1 Similarity-Based Attribute Vector

Similarity between two BP graph vertices u and v, the
former from a BP pattern configuration P and the latter from
a BP model M, is calculated by comparing their attribute
vectors~u and~v. The comparison only concern the attributes
describing v. Other attributes in ~u are deliberately omitted
since they do not concern the BP pattern configuration P.
The choice of the attributes describing a BP pattern is made
by considering both its intended application and also its po-
tential users. We assume the existence of a common set of
attributes describing vertices from P and M to make possi-
ble the comparison (similarity calculation).

Similarity between the attribute vectors ~u and~v is calcu-
lated based on the formulation of the weighted Minkowski
distance [4] as,

sim(~u,~v) = 1− (|δi ·dis(~ui,~vi)|p)1/p
,1≤ i≤ |~v| (1)

dis(~ui,~vi) is the normalised dissimilarity between ~u and
~v in the attribute i. Values of dissimilarity range between
0 and 1, with 0 representing equality. Dissimilarity can
become a distance measure, if distance is possible to cal-
culate. According to the nature of each attribute, different
measures of dissimilarity (or distance) can be considered.
δi is a weighting factor to emphasize or deemphasize the
ith attribute value. We assume attributes are independent. p
determines the measure’s norm. For p = 2, vertex similarity
becomes a measure based on the Euclidean distance.

4.2 Label Similarity

One of the most common attributes of BP graph vertices
is their labels. Often, labels are sentences in natural lan-
guage. Few approaches, for instance [2], have considered
BP element labels as part of the comparison of BP models.
In order to determine if the label of a BP model element
refers to a label of a BP pattern role, we calculate their sim-
ilarity based on the sentence similarity measure described
in [12]. This measure is convenient in our context since the
elements required to evaluate the measure are dynamically
generated using only the information from the words con-
tained in the two labels. The measure considers the seman-
tic similarity among words in the two sentences (labels),
which is derived from a Lexical Knowledge Base (LKB)
and a corpus, and the word order on the sentence mean-
ing. LKBs are frequently organised as a hierarchy of words
defining concepts (for example, WordNet6 or other more
specific LKBs targeting particular business domains). Se-
mantic similarity between words is calculated based on the
length of the path connecting the words in the hierarchy and
their depth in it. By observing the direction (from bottom
to top) of the path connecting two words in the hierarchy,
it is possible to discriminate between abstraction or refine-
ment of concepts. The latter can be used as indication that
a vertex label is an abstraction of another vertex label.

We have simplified the explanation of vertex label sim-
ilarity calculation by avoiding word disambiguation (it re-
quires the analysis of the context where the word appears),
abbreviations expansion and acronyms replacement.

4.2.1 Label Similarity Measure

Similarity between the vertex labels `(u) and `(v), where u
is a vertex from a BP model graph M and v is a vertex from
a BP pattern configuration P, is derived from the weighted
sum of similarities between their associated lexical seman-
tic vectors and word order vectors,

simlabel(`(u), `(v)) = ρ · sim(~w(u),~w(v))
+(1−ρ) · sim(~o(u),~o(v)) (2)

6Available at http://wordnet.princeton.edu/

4

Figure 3. Hypothetical NRA’s processes.

The lexical semantic vectors ~w(u) and ~w(v) represent quan-
tifiable values regarding the meaning of words in u and v’s
labels. The values are based on information from a lexical
knowledge base and corpus. ~o(u) and ~o(v) represent quan-
tifiable values regarding the words’ order in the sentences. ρ

determines the relative contributions of the lexical semantic
vector similarity and the word order vector similarity mea-
sures. If syntax is less relevant, according to [12], a value
between 0.5 and 1 should be assigned to ρ.

4.2.2 Similarity Between Lexical Semantic Vectors

Similarity between the lexical semantic vectors ~w(u) and
~w(v) is defined as the cosine coefficient between them,

sim(~w(u),~w(v)) =
~w(u) ·~w(v)
‖~w(u)‖‖~w(v)‖

(3)

~w(u) and ~w(v) are vectors with m entries. m is the number
of words in a joint word set W containing all the different
words from the two labels `(u) and `(v), hence m = |W |.
Each ith-entry ~wi(u) with i = 1, ...,m is derived from evalu-
ating the similarity between the word from the ith-entry in
the joint word set W , annotated wi(u), and the most similar
word from the label `(u), annotated w̃i(u). In turn, the value
obtained from the word’s comparison is weighted by the in-
dividual information content of the two compared words,

~wi(u) = simW (w̃i(u),wi(u)) · I(w̃i(u)) · I(wi(u)) (4)

I(wi(u)) and I(w̃i(u)) refer to the information content of
the words referred by wi(u) and w̃i(u). The information
content of a word is derived from its probability (relative
frequency) in a corpus. In order to obtain the value of an en-
try in (4), we need to calculate the similarity between two
words (simW). We use the word similarity measure from
[11]. This measure is a function of the path length connect-
ing the two words in the lexical knowledge base and the
depth of their common subsumer. The latter helps to differ-
entiate the similarity between a pair of words referring to
more abstract concepts against the similarity between a pair
of words referring to more concrete concepts.

4.2.3 Similarity Between Word Order Vectors

Similarity between two word order vectors ~o(u) and ~o(v)
associated to the labels `(u) and `(v) is derived from their
normalized difference,

sim(~o(u),~o(v)) = 1− ‖~o(u)−~o(v)‖
‖~o(u)+~o(v)‖

(5)

~o(u) and ~o(v) are obtained from the order in which the
words in `(u) and `(v) appear. The order is established
based on a joint word order vector ~O. ~O defines an order
for words in the joint word set W used in (3) and (4).
If a word in `(u) is in ~O, the entry associated with that
word in ~o(u) is its index in ~O. If the word is not in ~O,
then two possible entries can be assigned. One is the
index of the most similar word in ~O (only if the similarity

5

between the compared words is greater than a threshold
σO); otherwise, a value equal to zero is assigned to the entry.

Example 1. Consider the vertex label `(v3): Update Client
Register from the BP pattern configuration in Fig. 2, and
the vertex labels `(u25): Update Client Register Docu-
ment, `(u38): Update Customer Register and `(u52): Up-
date Client Register from Fig. 3. We want to calcu-
late the similarity between `(v3) and the mentioned labels
`(u25), `(u38) and `(u52). The associated joint word sets
are W(v3,u25) = {Update Client Register Document},
W(v3,u38) = {Update Client Register Customer},
W(v3,u52) = {Update Client Register}

The lexical semantic vectors associated to each joint
word set are shown below.
W(v3,u25): ~w(v3) = [1 1 1 0], ~w(u25) = [1 1 1 1]
W(v3,u38): ~w(v3) = [1 1 1 0.8182], ~w(u38) = [1 0.8182 1 1]
W(v3,u52): ~w(v3) = [1 1 1], ~w(u52) = [1 1 1]
In order to calculate these values, we used the Word-
Net::Similarity service7 to obtain the path length between
the compared words and depth of the common subsumer,
and replace those in 5.

Word order vectors were obtained as the following exam-
ple. Consider the joint word set W(v3,u38) = {Update Client
Register Customer} and its associated joint word order vec-
tor ~O(v3,u38) = [1 2 3 4]. The word order vector for v3 is
~o(v3) = [1 2 3 2]. The first three entries in ~o(v3) relates to
words in `(v3), the last entry (associated to the word Cus-
tomer) is not in `(v3), but the most similar word is Client,
and consequently the last entry in ~o(v3) is the index of
Client in ~O. Analogously for u38, ~o(u38) = [1 4 3 4]. After
calculating the lexical semantic vector similarities and word
order vector similarities, we calculated the label similarity
between `(v3) from the BP pattern (Validate Form) in Fig.
2 and each of the ’matched’ labels associated with vertices
in the BP model from Fig. 3 according to (2). We have
considered ρ = 0.85, following the experimental findings in
[12]. Thus, simlabel(`(v3), `(u25)) = 0.8154,
simlabel(`(v3), `(u38)) = 0.9523, and
simlabel(`(v3), `(u25)) = 1.0000.

5 BP Pattern Matching

This section describes the main steps of our technique for
matching BP pattern instances in BP models. The technique
is based on an algorithm that combines structural graph
matching with vertex type and vertex attributes similarities
calculation.

Consider M = (VM,EM,TVM ,ATVM
) be the graph repre-

senting a BP model and P = (VP,EP,TVP ,ATVP
) be the graph

representing a BP pattern configuration. In order to match
instances of P in M, firstly, vertices types and attributes

7Available at http://wn-similarity.sourceforge.net/

vectors from both BP graphs are compared and matched.
Successful individual matches start an expansion stage in
a breadth first search manner until obtaining the final BP
pattern instances of P in M. After that, a final stage would
check if the found BP pattern instances behave as the BP
pattern configuration P indicates. This last stage is not de-
scribed in this paper, but we mentioned here to remind the
reader that the behavioral aspect is also important during the
BP pattern matching process.

5.1 Main Stages of BP Pattern Matching

The main stages of our proposed BP pattern matching
technique are depicted in Fig. 4. It is based on our pre-
vious algorithm for structural pattern matching [10], here
augmented with type and attribute vertex matching.
Stage 1. The algorithm starts comparing vertices types in
VM against vertices types in VP. The set Ftype(VM) is ob-
tained at the end of this stage and it contains all the vertices
in VM which have the same or more refined types than types
vertices in VP.
Stage 2. In this stage the algorithm only processes vertices
from the set Ftype(VM). It measures the similarity between
each attribute vector ~u ∈ AFtype(VM) from the BP model and
each attribute vector~v ∈ AVP from the BP pattern, such that
types of ~u and~v were previously matched. The result is the
set Fattr(Ftype(VM)). This set contains vertices in VM whose
types were matched with types vertices in VP and their as-
sociated attribute vectors maintain a generalisation relation
with vertices in VP.
Stage 3. If the similarity between the attribute vectors~u and
~v as defined in (1) surpass the threshold defined by ~ζv (see
Section 4), the vertex u is kept within the set of individual
temporal BP pattern instances and it is renamed as tPu, re-
ferring to a subgraph in M which is a temporal match of P
centered in u. ~ζv indicates (quantitatively) how similar a BP
pattern role v and its instances should be. Similarity is cal-
culated only for the attributes describing the pattern. Other
attributes describing BP pattern role instances are omitted.
At this moment, the set T Pu constitutes the set of individual
tPu that the algorithm will continue processing.
Stage 4. During this stage, each temporal match tPu
constituted by one vertex is expanded with all its neigh-
bors which also are in T Pu and satisfies gen(NT Pu(tPu)) =
NP(gen(tPu)). The latter condition refers to a Locally Sur-
jective Graph Homomorphism - LSGH, and it should be
satisfied (at least partially) between the subgraph formed
by tPu and its neighbours, and the graph P. A partial LSGH
indicates that not all vertices in VP have been mapped by
gen. This partial mapping is incrementally completed while
the algorithm expands the initial temporal matches in T Pu.
Final matches that can not be further expanded can also be
partial (not complete). The reader can review about exact,

6

Figure 4. Main steps of BP pattern matching.

partial and inexact matching in [10].
Each of the following repetitions at this stage incorporate

new neighbours to each tPu. After the first iteration, most
tPu would not be constituted by a single vertex anymore. It-
eration by iteration temporal BP pattern matches (tPu) are
expanded in M. The algorithm terminates when no more
expansion steps can be done, i.e. it is not possible to estab-
lish more connections between vertices in T Pu according to
constraints imposed by a LSGH from tPu to P.

The results of this stage are: (1) a set of subgraphs
{Pu}, where each subgraph Pu in {Pu} is a product of the
expansion of one tPu in T Pu; (2) an individual score matrix
Scmatching(Pu) providing information about a particular
instance Pu of P; and (3) a global score matrix Scmatching
associated to M describing the level of instantiation of P
in M. Note that several exact or partial instances of P in
M might exist. If different pattern instances share edges
in M, we say that there are overlaps of the pattern P in
M. The algorithm identifies the connected subgraphs in M
containing overlaps as one single subgraph.

Example 2. Consider the BP pattern configuration from
Fig. 2 (Best practices for Validate Form and Process Form).
We are interested in knowing where these BP patterns are
instantiated on the NRA’s processes from Fig. 3. Using
the mechanism explained in Section 5.1 we start matching
vertices from the BP pattern graphs in Fig. 2 against ver-
tices from the BP model graph in 3. In this example we
only considers the label attribute when calculating the sim-
ilarity between attribute vectors, i.e we only calculate the

vertex label similarity as in (2). All vertices from the BP
model graph whose label similarity values to labels from
vertices in the BP pattern graphs are greater than a threshold
~ζ (0.75 for each entry in this example) are considered initial
BP pattern matches. Elements in the BP Model highlighted
in light grey and dark grey are initial matched vertices (See
Fig. 3). Subsequent iterations expanded the unitary matches
by adding all BP elements (vertices and edges) such that
structural relations from the BP patterns and the BP model
satisfied a locally surjective homomorphism.

An ideal case for a match is an exact match. For ex-
ample, the BP pattern instance in Fig. 3 encompassing the
vertices u51 to u55 and their respective edges (highlighted in
dark grey colour) is an exact match of the BP pattern Pro-
cess Form from Fig. 2. Instead, the rest of highlighted ver-
tices correspond to partial and sequentially overlapped in-
stances of the Validate Form and Process Form BP patterns.
The vertex u12; the subgraph formed by u25, u26 and their
connection; and u38 are partial matches of Process Form
(all of them in dark grey colour). These partial matches are
sequentially overlapped with partial instances of Validate
Form. If we allow inexact matches as defined in [10], a sin-
gle match could include intermediate elements that do not
change the intention of the BP pattern. For example, all ele-
ments in light grey colour from Fig. 3 and the intermediate
elements u13 to u17, u30 to u32, u42 to u44, u49 and edges
connecting them would form an inexact match (inexact BP
pattern instance) of Validate Form.

6 Related Work

Recent contributions providing solutions to compare and
query business process models [2],[3],[15] expose the po-
tential and some problems regarding the implementation of
an automated BP pattern matching mechanism. BPMN-Q
[2] and BP-QL [3] are two approaches for querying process-
centric models. Resembling keyword-based queries in a
search engine, queries in BPMN-Q and BP-QL are formu-
lated as graphically represented processes. While BPMN-
Q considers semantic processing of process element labels,
BP-QL focused on simulated behaviour. Unfortunately,
both approaches uses a trace-simulation notion when com-
paring processes. This could lead to performance problems
when a query is processed on a large and complex process
model with numerous branching conditions. We have tried
to avoid this problem by exploring the target process model
in a breadth first search manner instead of using a depth first
search strategy.

In [15], the authors provide a solution to check confor-
mance of a process model and an event log. Control flow
semantics and observed behavior are the main aspects anal-
ysed. Semantics associated with activities’ descriptions or
passing data is not considered.

7

Matching BP patterns for recommending the scope and
granularity of services follows a top-down approach for de-
signing services. SOA modelling frameworks and traceabil-
ity support, such as [17] and [9], provide a medium to en-
hance service design based on BP pattern matching with
analysis of existing software support. Traceability in this
context refers to trace links relating BP models to enter-
prise IT architecture documentation. Several BP pattern in-
stances relating to a single candidate service might be traced
to redundant software support. This information is critical
during (existing software) rationalisation efforts and SOA
migration. Moreover, different BP pattern instances can in-
dicate service variation points. The latter can complement
approaches focused on variation-oriented mechanisms such
as [13]. If BP patterns are used to define best practices
or process regulations, a derived advantage is that the new
pattern-based services would be closer to comply with reg-
ulatory constraints and to adhere to standards [6].

7 Conclusion

Following the successful experience of using design pat-
terns as a medium to reuse proven and accepted solutions
to develop software, we have proposed to extend this idea
to BP patterns and their use during the development of
process-centric service-based systems. BP patterns promote
the reuse of expert design knowledge. An automatic mech-
anism to match BP pattern instances in process models can
save time and reduce involuntary human errors during the
design of BP pattern-based enterprise services.

In this paper we have presented a solution for automatic
BP pattern matching. BP patterns and BP models are repre-
sented as graphs. Graph vertices represent process elements
and their connectivity. The BP pattern matching solution is
a graph based algorithm enhanced with type and attribute
vertex matching - highly focused on semantics. A measure
to calculate vertex attribute similarity is the base to distin-
guish BP pattern role instances. We have used through the
paper a case based on the NRA’s case study proposed at
SOPOSE08 to explain our approach.

After BP patterns are matched, we expect that the iden-
tified BP pattern instances behave as their associated pat-
tern definition. We are currently working on defining an ap-
propriate and efficient manner to perform this verification.
Moreover, an appropriate evaluation considering the judg-
ment of people involved in process- and service- modelling
tasks is being prepared.

Process centric development of enterprise services bring
to the table numerous challenges. We have addressed some
aspects related to process abstraction and structural and se-
mantic analysis of processes. Our objective is to promote
automation and process design reuse by means of BP pat-
terns. We believe that automation and reuse are two impor-

tant concepts to develop enterprise service-based systems of
improved quality.

References

[1] Business process modeling notation (BPMN) version 1.1.
OMG, 2008.

[2] A. Awad, A. Polyvyanyy, and M. Weske. Semantic query-
ing of business process models. In EDOC’08, pages 85–94.
IEEE, 2008.

[3] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Query-
ing business processes with BP-QL. Information Systems,
33(6):477–507, 2008.

[4] S.-H. Cha. Comprehensive survey on distance/similarity
measures between probability density functions. Int. J. MM-
MAS, 1(4):300–307, 2007.

[5] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, ed-
itors. Handbook of Graph Grammars and Computing by
Graph Transformation, vol. 2. World Scientific, 1999.

[6] M. El Kharbili, A. de Medeiros, S. Stein, and W. M. van der
Aalst. Business process compliance checking: Current state
and future challenges. In MobIs’08, volume 141 of LNI,
pages 107–113. GI, 2008.

[7] T. Erl. Service-oriented architecture: Concepts, Technology,
and Design. Prentice Hall, 2004.

[8] J. Fiala and J. Kratochvil. Locally constrained graph
homomorphisms–structure, complexity, and applications.
Computer Science Review, 2(2):97–111, 2008.

[9] V. Gacitua-Decar and C. Pahl. Service architecture design
for e-businesses: A pattern-based approach. In EC-WEB’08,
volume 5183 of LNCS, pages 41–50. Springer, 2008.

[10] V. Gacitua-Decar and C. Pahl. Towards reuse of business
processes patterns to design services. In W. Binder and
S. Dustdar, editors, Emerging Web Services Technology, vol-
ume III. Birkhauser Basel, 2009 (to appear).

[11] Y. Li, Z. A. Bandar, and D. McLean. An approach for mea-
suring semantic similarity between words using multiple in-
formation sources. IEEE Trans. on KDE, 15(4):871–882,
2003.

[12] Y. Li, D. McLean, Z. A. Bandar, J. D. O’Shea, and K. Crock-
ett. Sentence similarity based on semantic nets and corpus
statistics. IEEE Trans. on KDE, 18(8):1138–1150, 2006.

[13] N. C. Narendra, K. Ponnalagu, B. Srivastava, and G. S. Ba-
navar. Variation-oriented engineering (VOE): Enhancing
reusability of soa-based solutions. In SCC’08, volume 1,
pages 257–264. IEEE, 2008.

[14] M. P. Papazoglou and W. J. van den Heuvel. Service-
oriented design and development methodology. IJWET,
2:412 – 442, 2006.

[15] A. Rozinat and W. van der Aalst. Conformance checking
of processes based on monitoring real behavior. Inf. Syst.,
33(1):64–95, 2008.

[16] J. M. Smith and D. C. P. Smith. Database abstractions: ag-
gregation and generalization. TODS, 2(2):105–133, 1977.

[17] L. J. Zhang, N. Zhou, Y. M. Chee, A. Jalaldeen, K. Pon-
nalagu, R. R. Sindhgatta, A. Arsanjani, and F. Bernardini.
SOMA-ME: a platform for the model-driven design of soa
solutions. IBM Syst. J., 47(3):397–413, 2008.

8

	Introduction
	Business Process Patterns and Models
	Abstraction and BP Patterns
	Business Processes Models and Patterns as BP Graphs
	Graph-based BP model
	Graph-based BP pattern configuration
	Graph-based BP pattern instance

	Locally Constrained Homomorphisms

	Case Study
	Vertex Similarity in BP Graphs
	Similarity-Based Attribute Vector
	Label Similarity
	Label Similarity Measure
	Similarity Between Lexical Semantic Vectors
	Similarity Between Word Order Vectors

	BP Pattern Matching
	Main Stages of BP Pattern Matching

	Related Work
	Conclusion

