
Semi-Automatic Distribution Pattern Modeling
of Web Service Compositions using Semantics

Ronan Barrett
School of Computing

Dublin City University
Dublin 9, Ireland

rbarrett@computing.dcu.ie

Claus Pahl
School of Computing

Dublin City University
Dublin 9, Ireland

cpahl@computing.dcu.ie

Abstract

Enterprise systems are frequently built by combining a
number of discrete Web services together, a process termed
composition. There are a number of architectural configu-
rations or distribution patterns, which express how a com-
posed system is to be deployed. Previously, we presented
a Model Driven Architecture using UML 2.0, which took
existing service interfaces as its input and generated an ex-
ecutable Web service composition, guided by a distribution
pattern model. In this paper, we propose using Web service
semantic descriptions in addition to Web service interfaces,
to assist in the semi-automatic generation of the distribu-
tion pattern model. Web services described using semantic
languages, such as OWL-S, can be automatically assessed
for compatibility and their input and output messages can
be mapped to each other.

1. Introduction

Enterprise systems are often built by combining a num-
ber of Web services together to realise some novel func-
tionality. This practice of combining Web services together
is termed composition. Web service composition is often
ad-hoc, where no architectural models are drawn, and con-
siderable low level coding effort is required for realisation.

Model Driven Architecture (MDA) is an emerging ap-
proach for building software [5]. In MDA, the model is the
primary software artifact, and is used to generate the pro-
gram code. Rich, well specified, high level models, often
defined in the Unified Modeling Language (UML), allow
for the auto-generation of a fully executable system based
entirely on the model [4]. Web service compositions can be
modeled, using an MDA based approach, from a number of
aspects. In [13], service and workflow modeling aspects of
Web service compositions are investigated. Service model-

ing considers interfaces and their operations, while work-
flow modeling considers control and data flows from one
Web service to another. Our previous work [1], introduced
an additional aspect, distribution pattern modeling, which
expresses how the composed system is to be deployed us-
ing UML. Two well known distribution patterns are cen-
tralised and decentralised. Distribution patterns address a
considerable shortcoming of fixed centralised coordination
identified by Siren et al. [14].

In this paper we introduce the use of Web service se-
mantics to assist in the generation of a distribution pattern
model. This approach assumes that all the Web services
to be composed, are semantically annotated using OWL-
S, and have already been discovered by a system. These
semantics enable the automated matchmaking and subse-
quent sequencing of the order in which the pre-selected
Web services will be composed. They also enable the au-
tomatic integration of inputs and outputs for each Web ser-
vice. This automation effort, using semantics, reduces the
manual modeling workload of the system architect.

The paper is structured as follows: section two provides
background material on our approach and the technologies
underlying it; section three introduces our modeling and
transformation technique; section four investigates our tool
implementation; section five presents related work; finally,
section six considers future work and concludes the paper.

2. Background

Ontologies are often used to define the vocabulary of
a domain. These definitions must be sharable, interoper-
able and standards compliant to enable the expression of
machine interpretable semantics. Creating an ontology is
analogous to domain modeling, where the different dis-
crete components that make up a system are investigated.
The Web Ontology Language (OWL), is a language for
capturing the conceptual data of a domain and their inter-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


relationships, for use in the description of resources [11].
This technology enables the semantic description of Web re-
sources such as Web pages and Web services. Semantic de-
scriptions enable unambiguous, computer interpretable doc-
umentation of resources. OWL-S is an ontology based on
OWL which is used for defining the properties and capabil-
ities of Web services [10].

Distribution patterns express, using models, how a com-
posed system is to be assembled and subsequently de-
ployed. In MDA terms, distribution pattern models are
a form of platform-independent model (PIM), as the pat-
terns are not tied to any specific implementation technol-
ogy. These patterns are considered compositional chore-
ographies, where only the message flow between services is
modeled. As such, a choreography can express how a sys-
tem would be deployed. The workflow logic between these
services are not modeled here, as there are many approaches
to modeling the branch flows of such services [3, 6].

There are three pattern categories, core patterns, auxil-
iary patterns and complex patterns. Core patterns are the
fundamental distribution patterns, most commonly encoun-
tered in Web service compositions. Auxiliary patterns are
distribution patterns which by themselves cannot facilitate
Web service compositions, and are often used in conjunc-
tion with core patterns to create complex patterns. Finally,
complex patterns combine two or more core or auxiliary
patterns. Complex patterns often resolve fundamental prob-
lems evident within core patterns. The patterns, organised
by category, are listed below.

• Core patterns

– Centralised Dedicated-Hub

– Centralised Shared-Hub

– Decentralised Dedicated-Peer

– Decentralised Shared-Peer

• Auxiliary patterns

– Ring

• Complex patterns

– Hierarchical

– Ring + Centralised

– Centralised + Decentralised

– Ring + Decentralised

UML & UML Profiles: Distribution patterns are mod-
eled using a UML activity diagram in association with our
novel distribution pattern UML profile, DPLProfile. UML
is a standards based graphical language for the modeling of

software systems [12]. Activity diagrams illustrate the se-
quential flow of actions within a system, capturing actions
and their results [4].

These diagrams consist of actions, which are the ba-
sic unit of behaviour within an activity, and control flows,
which illustrate the transitions through the system. Activ-
ity partitions, also known as swim lanes, are often used to
group actions together. Rich models, such as those neces-
sary for modeling distribution patterns, can make use of a
particular type of UML action to model Web service oper-
ations defined in a WSDL interface. These actions, called
CallBehaviorActions, model process invocations along with
the flow of control through the system, using ControlFlow
connectors. CallBehaviorActions have an additional mod-
eling constructs called pins. There are two types of pins,
InputPins and OutputPins, which map directly to the parts
of the WSDL message parts going into and out of a WSDL
operation. ObjectFlow connectors are used to connect pins
together. Figure 1 illustrates the use of an activity dia-
gram used to model the decentralised distribution pattern.
The UML pins and associated connectors have been omit-
ted from the diagram for clarity.

Decentralised

Peer Peer Peer Peer

UML Actions

UML Control Flows

UML Partitions

Figure 1. Decentralised distribution pattern

UML profiles are a standard extension mechanism of
UML [5]. Profiles define stereotypes and tagged values that
extend a number of UML constructs. Each time one of these
derived constructs is used in a model it may have attributes
assigned to its tagged values. Our distribution pattern pro-
file, called DPLProfile, is outlined in detail in [2].

3. Modeling and Transformation Technique

Our semi-automated distribution pattern modeling and
subsequent executable system generation, comprises four
steps, each is illustrated in Figure 2.

Step 1 - From Interface To Model: The first step in-
volves taking a number of Web service interfaces, WSDL
documents, as input to a generator. These interfaces rep-



WSDL

UML 2.0 Model

UML 2.0
Model

Step # 1 Step # 2

Actor

Distribution Pattern

Step # 4

Generator Definition

Executable System

Generator

UML 2.0
Model

UML 2.0
Model

Step # 3

Semantic Matching

Engine

UML 2.0
Model

OWL-S

Executable
System

Figure 2. Overview of modeling approach

resent the services which are to be composed. These in-
terfaces are transformed automatically, using the UML 2.0
model generator, into a UML 2.0 activity diagram. Finally,
our novel distribution pattern profile, DPLProfile, is auto-
matically applied to the model by the generator. The soft-
ware architect does not need to manipulate the model in any
way at this step. The output from the UML 2.0 generator
can be seen in Figure 3. The figure illustrates that the DPL-
Profile, UML profile, has been applied to the model.

CoreBanking

getAccoutName getRiskAssessment getCreditCard

RiskManagement CreditCard

<<DPLParticipant>> <<DPLParticipant>> <<DPLParticipant>>

Figure 3. Output from the model generator

Step 2 - Distribution Pattern Definition: The UML
model produced in step 1, requires additional modeling.
The architect must select a distribution pattern and then as-
sign appropriate values for the tagged values of the distribu-
tion pattern profile, which was applied automatically to the
model in the previous step. The complete list of tagged val-
ues are outlined in [2]. Values that must be assigned include
Web service namespaces, participant roles, choice of collab-
oration language and distribution pattern type. Previously
at this step, the architect had to connect CallBehaviorAc-
tions to one another, and also connect up UML InputPins
and OutputPins together. However, this requirement is now
negated by the use of semantics to automate the connections
in the following step.

Step 3 - Semantic Matching and Integration: We as-
sume all of the Web services to be composed, are seman-
tically annotated using OWL-S. The semantic documents

for each service are passed to the semantic matching en-
gine for processing. Each service must have an atomic pro-
cess model describing, using an ontology, the message input
and output parts. OWL-S atomic process models are analo-
gous to WSDL operations. These semantic descriptions en-
able the automated sequencing of actions and connection of
CallBehaviorActions to one another, in our distribution pat-
tern model, using UML ControlFlow connectors. Services
are matched together based on their level of compatibility.
Each service is checked against every other participant ser-
vice to assess if their process models are compatible. Com-
patibility here is defined as one participant having output
message part(s) which match the input message part(s) re-
quirements of another participant. If a sufficiently similar
match is found, a UML ControlFlow connector is created
between the two compatible services in the model. Sub-
sequently the inputs and output parts of these matched ser-
vices can be mapped. This integration results in the connec-
tion of UML InputPins and OutputPins in the model, using
UML ObjectFlows connectors, so data can flow through the
composition. In some cases, additional pins may be added
automatically to the output of CallBehaviorActions, to meet
data input requirements of other services. Existing services
are wrapped to support the new connections. Without se-
mantic annotation this entire step would have to be com-
pleted manually by the software architect. At this stage the
model is complete and fully expresses the distribution pat-
tern selected by the software architect. Sample output from
the matching engine can be seen in Figure 4.

CoreBanking

getAccoutName getRiskAssessment getCreditCard

RiskManagement CreditCard

<<DPLParticipant>> <<DPLParticipant>> <<DPLParticipant>>

<<DPLMessage>>
accoutNumber

<<DPLMessage>><<DPLMessage>>

<<DPLMessage>><<DPLMessage>>

<<DPLMessage>>

<<DPLMessage>><<DPLMessage>>

getCreditCardReturnisRisk

accoutNamegetRiskAssessmentReturn

accountName

accoutNamegetAccountNameReturn

Figure 4. Semantic matching engine output

Step 4 - Model to Executable System: The executable
system generator takes the finished model and generates all
the interaction logic required to realise the distribution pat-
tern. Interaction logic documents describe the message flow
between the participants in the distribution pattern as well
as input and output variable mappings. The generator also
creates interfaces which expose the new interaction logic
processing capability as a wrapper to the existing Web ser-
vice functionality of the participant. A deployment descrip-
tor document describing each participants is also created.
Once deployed, these documents will realise the Web ser-
vice composition, driven by the distribution pattern mod-
eled by the software architect, see [2] for more details.



4. Implementation

TOPMAN (TOPology MANager) is our solution for dis-
tribution pattern modeling using UML 2.0 and subsequent
Web service composition generation. The tool implementa-
tion is illustrated in Figure 5.

UML 2.0 Model 
Generator

WSDL
Model as XMI
Profile as XMI

Manipulate

Actor

WS-BPEL(s)
WSDL(s)

Executable System
 Generator

XSLT/DOM

XSLT/DOM

RSA

UML2

OWL-S

Semantic Matching
Engine

JENA

Model as XMI
Profile as XMI

Figure 5. Overview of TOPMAN tool

A non-semantically enabled version of our tool is de-
scribed in [2]. The only modification made to the tool here
is the use of the Jena semantic web framework to assist in
the generation of the distribution model. The tool assesses
the compatibility of the participant Web services input and
output messages, based on their OWL-S atomic process
models [8].

5. Related Work

Using semantics to assist in the composition of Web ser-
vices is considered by Siren et al. [14]. Here semantically
annotated services can be combined, semi-automatically
based on their input and other non-functional requirements.
Two additional systems devised by Timm et al. and Grønmo
et al. use MDA based techniques to assist in the creation of
ontologies for semantically enriching services which are to
be composed [7, 9]. However, these systems do not con-
sider the distribution pattern of the resultant composition,
resulting in a fixed centralised distribution pattern.

6. Conclusion

Mechanisms to assist in the generation of Web service-
based compositions are desirable. We have combined exist-
ing techniques based on architectural modeling and pattern-
based development, with the emerging areas of MDA and
semantic descriptions. Our contribution is the novel appli-
cation of semantics to distribution pattern modeling. Web

services described using semantic languages, such as OWL-
S, can be automatically assessed for compatibility, and their
input and output messages can be mapped to each other.
Semantics enable the semi-automatic generation of a distri-
bution pattern model, which is subsequently used to guide
the generation of an executable system.

7. Acknowledgments

The authors would like to thank the Irish Research Coun-
cil for Science, Engineering and Technology IRCSET.

References

[1] R. Barrett and C. Pahl. Semi-Automatic Distribution Pattern
Modeling of Web Service Compositions using Semantics.
In Proc. Tenth IEEE International EDOC Conference, Hong
Kong, China, October 2006.

[2] R. Barrett, C. Pahl, L. Patcas, and J. Murphy. Model Driven
Distribution Pattern Design for Dynamic Web Service Com-
positions. In Proc. Sixth International Conference on Web
Engineering, Palo Alto, California, July 2006.

[3] D. Skogan and R. Grønmo and I. Solheim. Web service
composition in uml. In Proc. 8th International IEEE Enter-
prise Distributed Object Computing Conference, pages 47–
57, Monterey, California, September 2004.

[4] H. E. Eriksson, M. Penker, B. Lyons, and D. Fado. UML 2
Toolkit. Wiley, 2003.

[5] D. S. Frankel. Model Driven Architecture: Applying MDA
to Enterprise Computing. Wiley, 2004.

[6] T. Gardner. UML Modeling of Automated Business Pro-
cesses with a mapping to BPEL4WS. In Proc. First Eu-
ropean Workshop on Object Orientation and Web Service
(EOOWS), Darmstadt, Germany, July 2003.

[7] R. Grønmo and M. Jaeger. Model-driven semantic web ser-
vice composition. In Proc. 12th Asia-Pacific Software Engi-
neering Conference (APSEC 2005), Taipei, Taiwan, 2005.

[8] Jena. A semantic web framework for java, 2006.
[9] J.T.E. Timm and G.C. Gannod. A model-driven approach

for specifying semantic web services. In Proc. International
Conference on Web Services, Orlando, Florida, USA, 2005.

[10] D. Martin, M. Burstein, O. Lassila, M. Paolucci, T. Payne,
and S. McIlraith. Describing Web Services using OWL-S
and WSDL. DAML-S Coalition working document., 2003.

[11] D. McGuinness and F. van Harmelen. OWL Web Ontol-
ogy Language Overview. W3C Recommendation 10 Febru-
ary 2004., 2004.

[12] OMG. Unified Modeling Language (UML), version 2.0.
Technical report, OMG, 2003.

[13] R. Grønmo and I. Solheim. Towards modeling web service
composition in uml. In Proc. 2nd International Workshop
on Web Services: Modeling, Architecture and Infrastructure
(WSMAI-2004), pages 72–86, Porto, Portugal, April 2004.

[14] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic compo-
sition of web services using semantic descriptions. In Proc.
Workshop on Web Services: Modeling, Architecture and In-
frastructure (WSMAI), pages 17–24, Angers, France, 2003.


