
� � � � � � � � � �
� ��l���������� � �

A Formal Composition and Interaction Model
for a Web Component Platform

Claus Pahl �

School of Computer Applications

Dublin City University

Dublin� Ireland

Abstract

A framework for components on the Web needs a formal model that captures essen�
tial concepts such as contractual information and service matching� We propose a
typed ��calculus�based model for Web components that formalises an extension of
the currently discussed Web Services framework� We address in particular activities
in the stages of a component life cycle � such as matching� commitment� connection
and interaction � that are part of the process that a component is involved in�

� Introduction

The Web is evolving from a document�centred environment to a service�
centred environment� The purpose of the Web Services framework � is to
establish a distributed computing model for services on the Web� Web tech�
nologies including languages and protocols are used to provide a remote pro�
cedure call mechanism� The protocol shall be based on XML�messaging in
order to achieve maximal interoperability�

We propose to extend Web Services to a formally de�ned Web components
framework� Several framework and models exist that suggest an extension of
the proposed Web services framework �����		�	
�	��� but so far the formal as�
pects have been neglected� Service requests and service provision and their
matching are integral aspects of component technology� Semantic description
of services through contractual information is a necessity� A formal model
for Web components based on a typed ��calculus �	�� shall be discussed that
provides clear semantics and that allows to support analysis and design tools�

� Email�cpahl�computing�dcu�ie
� We base our discussion of Web services on the WSDL de�nition �W�C note� ����	� SOAP
version �
�� and UDDI version �
�


c�����

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Pahl

This work is based on two previous papers� In �	� we have presented ba�
sics of our formal framework� In �		� we have discussed requirements for a
formally de�ned Web component framework� This work applies and extends
results from both sources� The main novelty of our work is the consideration
of Web component life cycles � important to describe business processes� inter�
actions and work�ow aspects� So far� this is a major limitation in component
frameworks� Only a few papers have addressed this problem theoretically ����

We outline a Web component architecture in Section 
� The description
of services and aspects of a type system formalising them is dealt with in
Section �� Matching and interaction are key activities � their semantics in
form of operational process descriptions is investigated in Section �� Another
key element in a Web component framework is a protocol capturing the various
activities� see Section �� We end with related work and some conclusions�

� Web Component Architecture

An architecture for Web components should consist of a description language
for semantic component descriptions� a matching and interaction protocol im�
plementing 
�phase �or 
�layered� composition� and a set of services includ�
ing discovery� matching� con�guration� and interaction� Such an architecture
would describe a Web�based component middleware platform� Description
languages and protocols omit details about how components are discovered�
how they are stored and made available� This can be supported by special
services� such as a broker service� A number of services will depend on the
semantic formalism made available through the description language�

The composition architecture shall be layered� We distinguish a matching
layer and an interaction layer� Connections for interactions are established
after successful matching� These connections are needed for service activation
and service reply� This architecture is a re�ection of the component life cycle�
The component life cycle � matching before interaction � needs to be formalised
by a composition protocol� This a�ects each component in isolation� but also
the composition of components� Protocol constraints can be expressed by
appropriate transition rules�

The type system and in particular subtypes can play a major role� Subtypes
can determine what a suitable match for a service request might be� The
classical de�nition of a subtype �	�� � an instance of a subtype can always be
used in any context in which an instance of a supertype was expected � can
formulate the essence of consistent matching between component services�

Ports are abstract access points to component services� Port descriptions
are part of component interfaces� Port types can re�ect various properties�
e�g� the port orientation �input or output�� the role �is the port involved in
matching components or in the interaction of components�� or the transport
capacity� Port types can be used to express structural and behavioural con�
straints� A protocol endpoint is actually a family of ports with di�erent roles�






Pahl

� Description of Services

��� Description Languages

Web services without semantical information can be described by the Web
Services Description Language WSDL� A Web service description consists of
�ve sections in two parts�

� An abstract protocol�independent part consists of type� data and operation
descriptions� The operation part� called �portType�� describes operations
that implement the service functionality in terms of its typed input and
output parameters� These parameters are described in a data part� called
�message�� Types for the messages can be de�ned in a �types� section�

� The �binding� to a speci�c protocol is one of the two sections of the concrete
part of the service description� It describes how a service is activated using
the protocol under consideration� The �nal section is called �service�� it
links the service to a particular location where the service can be found�
The protocol determines the format to be used to activate a Web service�

Single services could be grouped into components� We suggest a Web Com�
ponents Speci�cation Language �WCSL�� We will motivate this language by
a schematic example following the structure of the WSDL� The purpose of
WCSL is similar to WSDL� except that we expect automation to play an im�
portant role in the processing of WCSL descriptions� Formal semantics will
be given based on a typed ��calculus variant� Components are syntactically
characterised by an interface with service signatures� separated into import
and export elements� The type system will capture the semantical properties
of Web services and components�

��	 Data Elements and their Types

The entities in a Web composition system are data elements� ports and com�
ponents� Data elements are characterised by the usual value domains as types�
WSDL suggests the following notation for these elements� allowing basic and
structured types to be de�ned�

�element name��dataType��

�complexType�

�all� �element name��aNumber� type��int��� ��all�

��complexType�

��element�

Basic and complex data types shall be assumed� but not explicitly speci�ed�
We also assume a connector type representing connections between ports�

Data elements and connectors can be assembled into messages� Two sam�
ple messages shall be de�ned � containing a data item and a connection�

�message name��InData��

�



Pahl

T ��� B Basic type

j L Link type

j Sig�T � � � �� T � L� Signature

j Prd�T � Predicate

L ��� P C Port and channel type

P ��� � �Req j Pro j Inv j Exe j Rec j Rep� Port type

C ��� Ctr�T � T � T � Contract

j CAc�T � � � �� T � L� Connector activation

j CRe�T � Connector reply

Fig� �� Type Language Syntax�

�part name��body� element��dataType��� ��message�

�message name��serv�I��

�part name��body� element��connectorType��� ��message�

��� Type Language Syntax

The type system plays a key role in our composition and interaction model�
A typing context � is a �nite set of bindings � mappings from names to types�
Three types of judgments shall be used�

� � x � T name x has type T

� � S � T type S is subtype of T

� � P expression P is well�typed

The type language syntax is de�ned in Figure 	� The constructorsCtr� CAc�
and CRe are the link�type constructors� Their purpose is to classify chan�
nels based on the data that is transferred along them� We leave the set of
basic value types unspeci�ed� We assume that there is at least one basic type
B� The XML Schema framework ��� provides the setting to de�ne basic and
structured types for Web services and Web components� Sig and Prd are
standard constructors for service signatures and predicates� the other type
constructors are speci�c to the component context�

��
 Ports and their Types

The most important entities are the ports� which represent services� Port
types de�ne the services based on input and output messages� We extend the

�



Pahl

WSDL port type speci�cation by contractual information�

�portType name��serv��

�operationContract name��serv�C� precon��pre� postcon��post��

�input message��serv�I� �� ��operationContract�

�operationConnector name��serv�I��

�input message��InData� ��

�output message��OutData� ��

�reply message��serv�R� �� ��operationConnector�

��portType�

Each port serv is essentially a family of ports serv � �servC � servI � servR��
The �rst port servC is the contract port� representing an abstract interface de�
scribed by a signature� a precondition and a postcondition� servI and servR
are connector ports � servI handles the service invocation and input and servR
handles the service output� servI is the connector activation �or interaction�
port� The port servR carries the reply from the service invocation� We dis�
tinguish a port type and a channel type for each port�

� Port types describe the functionality of a port within the component �e�g�
contract or connector port� and its orientation �in� or out�port�� Port types
are referred to by Tp�serv� or serv �p t for port serv� e�g� Tp�servC� � Req

and Tp�serv
�
C� � Pro are requestor and provider ports� Each port has also

an orientation� called the polarity� Contract and connector activation ports
are output ports ���� � the port can only send� and the reply port is an
input port ���� � the port can only receive� for the service client�

� Channel types for a port serv � �servC � servI� servR� describe the ex�
pected capacity� i�e� what kind of entities can be transported� servC �C
Ctr�Sig�T�� � � �� Tn��CRe�T ���Prd�pre��Prd�post�� for contract ports�
servI �C CAc�T�� � � � � Tn��CRe�T �� for connector ports� and servR �C
CRe�T � for reply ports� Channel types constrain the composition and
interaction between components� Contract ports can transport connectors�
which are characterised by a contract type� Connectors provide the connec�
tion between components to invoke a service� Channel types t are denoted
by Tc�serv� or serv �c t for port serv�

A contract consists of a service signature� a pre� and a postcondition�
Connectors when transferred on channels have to satisfy a contract type� On
connector activation ports� data values and a reply channel can be transferred�
on connector reply ports only data can be transferred� The key criteria for
matching� i�e� the successful connection of two components through a connec�
tor� are contracts �this will be explained in Section ��� Opposite orientations
also have to match in a successful composition of component ports� The signa�
ture for a remote method execution is� Sig�T�� � � � � Tn�CRe�T ��� This re�ects
the fact that parameters are passed� and possibly a result has to be transferred
back on a channel with a di�erent capacity T � Pre� and postconditions are
formed using the predicate type constructor Prd�

�



Pahl

� Semantics of Matching and Interaction

The concrete part of WSDL concerns the protocol binding and association
of the location for Web services� preparing for service activation� The infras�
tructure for Web service activation and reply can be provided by the SOAP
protocol � � SOAP � the Simple Object Access Protocol � is an XML�based pro�
tocol for service invocations and replies designed to support remote activations
of services speci�ed in WSDL� The discovery of services is supported by a di�
rectory framework UDDI � Universal Description� Discovery and Integration�
UDDI acts as a marketplace for services or components�

Matching of services and the interaction between services and components
are the key activities� The introduction of semantic service descriptions re�
quires to pay more attention to the problem of matching required and pro�
vided services before a connections is established and components interact�
The binding part of our suggested WCSL needs to separate matching binding
and interaction binding� The latter needs to address activation and reply�


�� Subtypes and Matching

Subtyping S � T shall be used to de�ne matching of services and components�
A subtype concept goes beyond the basic and structured types provided by the
WSDL types section� A subtype relation between ports determines whether
two ports that represent services match� Channel types of contract ports are
contracts consisting of a service signature� a precondition and a postcondi�
tion� For a service request mC �c Ctr�Sig�Pre�Post� and a provided service
nC �c Ctr�Sig��Pre��Post��� we say that nC matches mC � or nC � mC � if
Sig � Sig� � Pre � Pre� � Post� � Post � � This is the combination of two
classical re�nement relations �weaken the precondition and strengthen the
postcondition� from the Re�nement Calculus �	����

The semantics of the type system can be de�ned by typing rules for ba�
sic types� type constructors� subtypes and process expressions � see Figure 
�
Typing rules for the type constructors �contract� connector� signature� pred�
icate� are omitted� except for the one for contracts� I�Ctr� If s� p� and p�
are of type signature� predicate� and predicate� respectively� then the contract
Ctr�s� p�� p�� is of type Ctr�Sig�T�� � � � � Tn�CRe�T ���Prd�F���Prd�F����
Two structural rules contribute to the de�nition of the subtype relation � as
a preorder� the re�exivity rule S�Refl and the transitivity rule S�Trans�

�S�Refl�
S �� T

� � S � T
�S�Trans�

� � S � T � � T � U

� � S � U

The subtyping rules for signatures and predicates are S�Sig and S�Prd� The
names Cond� Pre� Post� Sig and their primed variants are type variables� A

� SOAP might in�uence the standardisation of the XML Protocol �� currently in progress

� Variants providing more �exibility� e
g
 signature inclusion� can certainly be considered


�



Pahl

�I�Ctr�
� � s �c Sig�T�� � � �� Tn�CRe�T �� � � p� �c Prd�F�� � � p� �c Prd�F��

� � Ctr�s� p�� p�� �c Ctr�Sig�T�� � � �� Tn�CRe�T ���Prd�F���Prd�F���

�S�Sig�
� � T �

� � T� � � � � � T �
k � Tk � � CRe�T � � CRe�T ��

� � Sig�T �
�� � � � � T

�
n�CRe�T

��� � Sig�T�� � � � � Tn�CRe�T ��

�S�Prd�
Cond�� Cond

� � Prd�Cond�� � Prd�Cond�

�S�Ctr�
� � Pre � Pre� � � Post� � Post � � Sig� � Sig

� � Ctr�Sig��Pre��Post�� � Ctr�Sig�Pre�Post�

�S�CAc�
� � T �

� � T� � � � � � T �
k � Tk � � CRe�T � � CRe�T ��

� � CAc�T �
�� � � � � T

�
k�CRe�T

��� � CAc�T�� � � � � Tk�CRe�T ��

�S�CRe�
� � T � � T

� � CRe�T �� � CRe�T �

Fig� �� Typing rules�

condition is subtype of another if it implies it� Cond � Cond� if Cond �
Cond�� A contract forms a subtype of another if its precondition is weakened
and its postcondition is strengthened� see S�Ctr� The port orientation also has
to be considered� We assume that ports do not change their orientation� For
connector activations we expect subtype relations for the value types to hold�
see S�CAc� This de�nition is� similar to the signature subtypes� contravariant
on the reply channel� A connector reply channel is a subtype of another if the
value types that can be carried form a subtype� see S�CRe� Subtypes for the
value kind shall be neglected for the rest of the paper�


�	 Component Composition

The development of a notation describing the process of component compo�
sition based on matching and interaction is the next step� We use a typed
��calculus to de�ne Web component matching and interaction behaviour�

The syntax of composition expressions P involving action pre�xes �i is�

P ��� �m P j P�jP� j �P j �i�I �i�Pi j 

Restriction �m P means that m is only visible in P � Summation �i�Pi means
that one action pre�x �i is chosen and the process transfers to state Pi� Itera�
tion �P means that the process is executed an arbitrary number of times� We
also need abstractions� i�e� de�ning equations of the form A�a� � PA

� � This

� Even though the polyadic ��calculus is intended to be used� we often use the monadic
variant here in order to keep the notation simple


�



Pahl

follows the presentation of the ��calculus in ����

The basic element describing activity in the ��calculus are actions �	���
Actions are combined to process expressions� Actions are expressed as pre�xes
� to the process expressions� � ��� Ptype xhyi j Ptype x�y� j � � Actions
can be divided into output actions xhyi �the name y is sent along channel port
x�� input x�y� �i�e� y is received along x�� and a silent non�observable action � �
We have annotated the action pre�xes � by port types Ptype� which explain
the role of the port with respect to component life cycle activities such as
service request or service invocation�

� ��� Req mChmIi � Request

Pro nC�nI� � Provide

Inv mIha�� � � � al� mRi � Invoke

Exe nI�x�� � � � � xk� nR� � Execute

Rep nRhbi � Reply

Res mR�y� � Result

The operational semantics of the notation� in particular the two main forms
of composition matching and interaction� shall now be discussed�


�� Matching and Connection

Matching and connector establishment are two di�erent activities in the Web
services framework� We can distinguish

�i� a commitment phase where both components try to form a contract� or�
more technically� try to work out and agree on the necessary channel
capacity for interaction� UDDI provides the basic infrastructure�

�ii� a connector establishment phase� or connection phase� where an interac�
tion channel �a connector� is established for later interaction� i�e� activa�
tion of remote services� SOAP is the communication infrastructure�

We will formalise these activities in form of transition rules�

A key feature in a Web component framework is an agent or broker to
match and to prepare the connection of services� UDDI is a service that allows
providers to publish their services and requestors to enquire about suitable
services� UDDI provides two APIs� the Inquiry API and the Publisher�s API�
in order to automate the process of matching required and provided services�
Services can be grouped into a UDDI business�service structure� a container
for services resembling a component� We suggest to extend this feature to
components including contractual descriptions� Two services match if their
contract types form a subtype relationship� A subtype relationship can result
in a commitment� which is a prerequisite for the establishment of a connection�

�



Pahl

For a composition expression mChmIi�CjnC�nI��P we can say that both
processes commit themselves to a communication along the channel between
ports mC and nC � if their contracts match� The contract rule �T�Ctr�
formalising the process of matching and commitment is de�ned as follows�

Req mC�chmIi�C
mC�chmI i
�� �chmIi�C Pro nC�nI��P

nC�nI�
�� �nI��P

Req mC�chmIi�C�M�jPro nC�nI��P�M�
�
�� �nI��P!�chmIi�C

h tnC� tmC

The annotations Req and Pro denote port types� i�e� mC �p Req and nC �p
Pro� Here� the port types match� Req is the complement of Pro and the
polarities are opposite� We write T �mC� 	 T �nC� in this case� The matching
is also guarded by the channel type constraint Tc�nC� � Tc�mC��

The contract rule di�ers from the original ��calculus reaction rule which
requires channel names to be the same ���	��� We only require a subtype rela�
tionship between ports� Type systems for the ��calculus usually constrain data
that is sent� here we constrain reaction� i�e� the interaction between agents�
The receiver can accept an input based on the type� not the name� The con�
tract rule cannot be translated into the match�rule found in some ��calculus
variants� The contract rule is� however� similar to transition rules describing
reaction that are based on bounded output x�z� where z is introduced as a
bound variable forming a restricted channel �	��� We have chosen to introduce
a fresh variable c instead�

Service descriptions that have been matched using UDDI features can re�
sult in connected and interacting components� Each service description de�
scribes the interface of the service and how to connect to it� A binding tem�
plate contains the information to actually invoke the service� In order to sup�
port connector establishment after commitment� UDDI speci�cations include
an XML schema for SOAP messages�

The commitment of two matching services mC and nC leaves two residues�
hmIi�C is called concretion and �nI��P is called abstraction� see �	�� ���� A
restricted concretion �chmi�C can be introduced� Concretion and abstraction
together result in a reaction� expressed by a construct that we call connector
establishment � � �nI��P!�chmIi�C

def

� �c�fc�mIgCjfc�nIgP � 	 which shall be
abbreviated by a binding C�P � The connection yields a proper process
describing the establishment of a connector c� The binding C�P introduces
the connector c� a fresh variable free in C and P � The connector c is a private
�restricted� channel� The concrete part of a WSDL speci�cation describes
bindings � information necessary for connector establishments�

�binding name��portSOAPbinding� type��port��

�soap�binding style��document� transport��������

�operation name��port��

� Usually called application in the literature� see �� Chapter ��
�

� The substitution fb�agP means that b replaces a in P 


�



Pahl

�soap�operation soapAction��http���www� �� �com����serv���

�input� �soap�body use��literal� �� ��input�

�output� �soap�body use��literal� �� ��output�

��operation�

��binding�

Our connector establishment implements the UDDI invocation model where
a binding template is cached by the service user and used at a later stage to
invoke the remote service�


�
 Interaction

UDDI� and WSDL�bindings provide basic connector descriptions� The actual
implementation of binding and interaction �connector activation and reply� is
realised using e�g� SOAP� Here is the SOAP connector activiation � part of a
SOAP envelope � for service serv with input data and reply channel�

�soap�operation soapAction��http���www� �� �com����serv���

�soap	env�body�

�port service��http���www� �� �com����serv��

�InData� a ��InData�

�Reply� m�R ��Reply�

��port�

��soap	env�body�

We assume that a private channel � the connector representing the SOAP
connection serv � has been established between client and provider� Such a
channel is used if a client requesting mI is to invoke a service nI at the server
side� Parameter data a � ta with ta � tx and a reply channel mR � tmR

are sent
to the provider in form of messages�

Inv mIha�mRi�C
mIha�mRi
�� C Exe nI�x� nR��P

nI�x�nR�
�� P

Inv mIha�mRi�C �M�jExe nI�x� nR��P �M�
�
��C�fa�xgP

h tnI � tmI

is the connector activation rule �T�CAc�� Types tmI
and tnI represent con�

nector activation types CAc�t�� � � �� tm�CRe�t�� andCAc�t
�
�� � � �� t

�
n�CRe�t

����
respectively� The reply channel is a private channel between the two compo�
nents that replaces mR and nR� Type equality �or a subtype relation� for mI

and nI is not required if we can guarantee that the connector types satisfy the
contract types and that the contract matching has been successfully executed�
A protocol� speci�ed in form of a component life cycle� can guarantee this�

Finally� the connector reply rule �T�CRe� gives semantics to a SOAP
reply�

Res mR�y��C
mR�y�
�� C Rep nRhbi�P

nRhbi
�� P

Res mR�y��C �M�jRep nRhbi�P �M�
�
��fb�ygC�P

h tnR � tmR

	



Pahl

We assume tb � ty� Here� b is the result of the internal computation triggered
by the activation of P � We have decided to formulate the reply in a separate
rule� and not to address the creation of a private reply channel replacing mR

and nR within the connector activiation rule� The typing constraint that Res�
and Rep�ports have to match is more explicit in this form�


� Type Safety

Type safety concerns the relation between the type system and the operational
semantics� The operational semantics is de�ned in a transitional form� spec�
i�ed by rules such as contract matching and connector establishment� Type
safety comprises two issues� Firstly� evaluation should not fail in well�typed
programs � we will introduce a notion of well�typedness shortly� Secondly�
transitions should preserve typing� The judgment � � C denotes the well�
typedness of composition expression C�

We need to de�ne a notion of satisfaction before we can de�ne well�
typedness� A connector type satis�es a contract type if the signatures cor�
respond and� if the precondition holds� the execution of the service attached
to the connector port establishes the postcondition� Connector type TI �
CAc�T�� � � � � Tn� CRe�T �� satis�es contract type TC � Ctr�Sig� Pre� Post��
or TI j� TC � if for a service port p the connector port pI satis�es the follow�
ing constraints� Sig�T�� � � � � Tn�CRe�T �� � Sig and� if Pre holds� then the
execution of pI � if it terminates� establishes Post� We assume an analogous
de�nition of satisfaction between data types and connector reply types and
their connector activation types�

We can now de�ne well�typedness of simple actions �W�Act��

� � � Req mChmIi if Tc�mI� j� Tc�mC�� otherwise Req mChmIi fails�

� � � Pro nC�nI� if Tc�nI� j� Tc�nC�� otherwise Pro nC�nI� fails�

� ��InvmIha�mRi if type�a��Tc�mR�j�Tc�mI�� otherwise InvmIha�mRi fails�

� ��Exe nI�y� nR� if type�y�� Tc�nR� j�Tc�nI�� otherwise Exe nI�y� nR� fails�

The execution of an action fails� if data sent along the channel does not sat�
isfy the channel constraint� A reaction fails if both participating actions
are well�typed� but the type constraint is not satis�ed� If Req mChmIi
and Pro nC�nI� are well�typed� but do not satisfy the subtype constraint
Tc�nC� � Tc�mC�� then Req mChmIijPro nC�nI� fails� Thewell�typedness
of parallel compositions is de�ned by rule �W�ParComp��

� � Req mChmIi � � Pro nC�nI� � � Tc�nC� � Tc�mC�

� � Req mChmIijPro nC�nI�

Well�typedness guarantees correct composition and interaction behaviour ac�
cording to the speci�cations given through the type system�

Based on these constructions� we can obtain the following safety properties�
presented here without proof�

		



Pahl

�i� Substitution lemma� if � � C and � � x � T� v � T � then � � fv�xgC�

�ii� Evaluation cannot fail in well�typed programs� if � � C then the execu�
tion of C does not fail�

�iii� Transition preserves typing� if � � C� and C� � C� then � � C��

� A Component Composition and Interaction Protocol

In the previous sections� we have seen several stages in the life cycle of a com�
ponent such as service matching� connector establishment� or service invoca�
tion� The full life cycle of clients� providers� and systems consisting of both
clients and providers can be speci�ed in a standard form� This standard form
formalises a component composition and interaction protocol� The behaviour
of components is a key element in the description of Web services� However�
a corresponding construct does not exist for the Web services platform�

Clients are parameterised by a list of required services� Requests have to be
satis�ed before any interaction can happen� Once a connection is established�
a service can be used several times� All service requests need to be satis�ed �
expressed by the parallel composition of the individual ports�

Ci�m�� � � � � ml�
def

� Req m�
Chm

�
Ii���Inv m�

Iha
�� m�

Ri�Res m
�
R�y

���� j � � � j

Req ml
Chm

l
Ii���Inv ml

Iha
l� ml

Ri�Res m
l
R�y

l���

Service providers need to be replicated in order to deal with several clients at
the same time� Otherwise their behaviour is the dual to that of clients�

P �n�� � � � � nk�
def

� �� Pro n�
C�n

�
I����Exe n�

I�y
�� n�

R��Rep n�
Rhbi�� � � � � �

Pro nkC�n
k
I ����Exe nkI �y

k� nkR��Rep nkRhbi�� �

A provider does not need to engage in interactions with all its ports� which is
modelled by using the choice operator instead of the parallel composition�

Clients and a server are composed in parallel to form a composed system�

CS
def

� C��m�� � � � � � m�m�
� j � � � j Cj�mj� � � � �mjmj

� j P �n�� � � � � nk�

A component can be both client and provider� i�e� can import and export
services�

CS
def

� �Req m�
Chm

�
Ii�j � � � jReq ml

Chm
l
Ii���

�� �� Inv m�
Ih��i�Rec m�

R����� � � � �� Inv ml
Ih��i�Rec ml

R����� �

� P �n�� � � � � nl� �

The requirements have to be satis�ed� i�e� connectors have to be established�

	




Pahl

before any service can be provided� A service that is provided and actually
invoked can then trigger the invocation of imported services�

The usage of the operations could be expressed in our WCSL in form of
a component life cycle � here a client requesting a service and subsequently
interacting with the service repeatedly�

�sequence�

�request name��serv�C� precon��pre� postcon��post� ��

�repeat�

�sequence�

�invoke name��serv�I�� ��� ��invoke�

�receive name��serv�R�� ��� ��receive�

��sequence�

��repeat�

��sequence�

The semantics of this protocol client expression is

C�serv�
def

� Req servChservIi� �� Inv servIha� servRi�Res servR�y�� �

which satis�es the client standard form Ci that has been presented above�

� Related Work

A formally de�ned computing model for Web components is essential if anal�
ysis and reasoning services based on semantic descriptions shall be provided�
Suitable frameworks for the formulation of this model are process calculi with
typing� mobility� security� etc�� e�g� the ��calculus �	�� or the Ambient calculus
�
�� In �	�� we have presented a formal framework for component composi�
tion based on a typed ��calculus� which satis�es the requirements outlined
above� Typed process models to formalise interaction between components�
or objects� have also been used elsewhere� Nierstrasz ��� develops a formal
type�theoretic framework for objects� Objects are characerised as regular pro�
cesses that interact with each other� A two�layered type system distinguishes
services types �contracts� and regular types �protocols�� Two subtype notions
� based on services types and regular types � de�ne a notion of satis�ability
between client and provider� Nierstrasz emphasises the orthogonality of the
two di�erent forms of types�

Some frameworks for advanced services architectures on the Web are al�
ready proposed� In ���� a component model underlying the Web services �	��
platform is identi�ed� It is admitted that strenghtening the component aspects
will greatly improve the platform� Fensel and Bussler ��� present a platform
for Web�based service� called Web Services Modelling Framework �WSMF��
The development of the framework focussing on the integration of semantic
Web technology is in progress � a formal semantics does currently not exist�
The issue of composed Web services is addressed in ���� Business processes

	�



Pahl

and interactions are the two types of processes that result in the composition
of services� Service provider and requester are considered as in our approach�
However� these approaches have not included proper components�

Some groups have addressed Web component broker systems� Among those
are the Cell�project �	
� and the ComponentXchange �	��� The former imple�
ments a two�layered system for component composition� The latter focusses
on matching activities � there called trading� In �		� we have brie�y described
our own attempts to implement a component broker�

� Conclusions

Web Services� which provide a remote procedure call �RPC� environment�
should be seen as a �rst step towards a component middleware platform for
the Web� Component technology for the Web� however� requires a rigorous
underlying model� Our typed ��calculus�based operational semantics provides
the foundation for various necessary features of Web component middleware
� we have� for instance� discussed replacement issues in �		��

We have identi�ed and formalised matching� commitment� connection and
interaction as core services of component middleware� Their embedding into
a component life cycle framework is essential� Component technology em�
phasises reuse and maintenance in the context of change and evolution� The
��calculus is an ideal formal framework to develop a life cycle�based approach
to describe the process a component might be involved in� We have used the
standard ��calculus� However� aspects such as internal mobility � the use of
private names in a communication � suggests to consider other calculus forms�
The private and the localised ��calculus �	�� shall be investigated in search
for a more suitable foundation in the future�

This presentation motivates a component middleware platform for the
Web� Questions relating to particular services such as those o�ered by the
CORBA platform for object�based middleware still need to be answered� We
have addressed aspects relating to trading and life cycle services� however�
others such as security or transactions still need to be looked at�

The ultimate goal of this research is a framework for the development
and management of Web components� This would require modi�cations to
the current Web services model� Work on the DAML�S services descriptions
indicates the direction� In contrast to recent work on DAML�S� our work
could provide a formal foundation� An integration of contracts is an essential
element of these modi�cations� The notion of contracts� however� needs to be
extended from request�response type interaction to more complex interaction
patterns�

References

	�



Pahl

��	 R�J�R� Back and J� von Wright� The Re�nement Calculus� A Systematic

Introduction� Springer�Verlag� �

��

��	 L� Cardelli and A�D� Gordon� Mobile Ambients� In Proceedings FoSSaCS����
pages ������� Springer Verlag� �

��

��	 W�C World Wide Web Consortium� Extensible Markup Language �XML��
��� http���www�w��org�XML�

��	 F� Curbera� N� Mukhi� and S� Weerawarana� On the Emergence of a Web
Services Component
Model� In Proceedings �th Int	 Workshop on Component
Oriented Programming

WCOP���� http���research�microsoft�com�users�cszypers�events�� ���

��	 D� Fensel and C� Bussler� The Web Services Modeling Framework� Technical
report� Vrije Universiteit Amsterdam� ���

��	 F� Leymann� Web Services Flow Language �WSFL ���� ��� http���www�
��ibm�com�software�solutions�webservices�pdf�WSFL�pdf�

��	 R� Milner� Communicating and Mobile Systems� the �
Calculus� Cambridge
University Press� �


�

��	 C� Morgan� Programming from Speci�cations �e� Addison�Wesley� �

��

�
	 Oscar Nierstrasz� Regular types for active objects� In Proceedings OOPSLA

���� ACM SIGPLAN Notices� pages ����� October �

��

��	 C� Pahl� A Pi�Calculus based Framework for the Composition and Replacement
of Components� In Proc	 OOPSLA Workshop on Speci�cation and Veri�cation

of Component
Based Systems� ���

���	 C� Pahl and D� Ward� Towards a Component Composition and Interaction
Architecture for the Web� In Proc	 ETAPS Workshop on Software Composition

SC����� Elsevier� ENTCS Series� ���

���	 R� Rinat and S�F� Smith� The Cell Project� Component Technology for
the Internet� In Proceedings �th Int	 Workshop on Component
Oriented

Programming WCOP����
http���research�microsoft�com�users�cszypers�events�� ���

���	 D� Sangiorgi and D� Walker� The �
calculus 
 A Theory of Mobile Processes�
Cambridge University Press� ���

���	 V� Sriram� A� Kumar� D� Gupta� and P� Jalote� ComponentXchange� A Software
Component Marketplace on the Internet� In Proceedings �th Int	 Conference

on the World
Wide Web WWW�� International World�Wide Web Conference
Consortium IW�C�� ���

���	 V� Vasudevan� A Web Services Primer� ���
http���www�xml�com�pub�a��������webservices�

���	 P� Wegner� Concepts and Paradigms of Object�Oriented Programming� ACM
OOPS Messenger� pages ����� �

�

	�


