
Analysing Security Properties using Re�nement

Claus Pahl

School of Computer Applications
Dublin City University

Dublin 9, Ireland
eMail: cpahl@compapp.dcu.ie
fax: ++353 +1 700 5442

Abstract. Security properties are essential in open and distributed en-
vironments with high dependability requirements. An approach to de-
velopment and analysis of safety- and security-critical systems based on
re�nement as the central concept can o�er an integrated solution. We
analyse the Online Certi�cate Status Protocol (OCSP), showing how to
use re�nement as an interference analysis tool for secure communication
protocols and intruders.

1 Motivation

Dependable systems require a high level of safety and security. Security is be-
coming increasingly important since more and more systems are deployed in
open distributed and networked environments, and are therefore subject to ex-
ternal threads. Security is concerned with aspects such as con�dentiality { the
prevention of disclosure of information to unauthorised users {, integrity { the
prevention of unauthorised modi�cation of information {, and authentication {
the proven establishment of the identity of another agent in a distributed system.

Several methods have been suggested for the development and analysis of
protocols in distributed and networked systems [1, 2, 3, 4]. We present an in-
tegrated framework based on re�nement as the key concept for development
and analysis. We use the Online Certi�cate Status Protocol (OCSP) as our case
study. OCSP [5] is an information acquisition protocol used in public key infras-
tructures (PKI), i.e., systems that manage cryptographic keys in security-critical
environments. Its main purpose is to check the revocation status of a certi�cate
(the key concept to guarantee authentication in networked systems).

2 The Notation

The Command Language. A protocol consists of several communicating agents.
Each of these agents has the capacity to perform a set of basic actions, such as
sending or receiving messages:

{ snd(R;M1; : : : ;Mn) is the send-action. R denotes the receiver; the elements
M1 to Mn form the message content.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

{ rcv(S; x1; : : : ; xn) is the receive-action. S denotes the sender; x1 to xn are
names that will be substituted by the actual message elements.

All identi�ers, such as the messages, are names. The basic actions can be com-
bined by a set of classical combinators: sequential composition a1; a2, non-
deterministic choice a1+a2, parallel composition a1ja2, and iteration a�. A pro-
tocol is usually described as a parallel composition of agents. Agents composed
in parallel can interact if a send and a receive operation match { determined by
matching sender/receiver IDs and the length of the message list.

OCSP is a request/response protocol. It provides a generic message envelope
for a variety of services. A set of standardised request/response-types exist. One
of these is ORS (Online Revocation Status) providing information about the
revocation status of a certi�cate. Requests contain the elements service ID, a
certi�cate (the certi�cate to be checked), and an optional signature (the client
signs the message). The response contains a response status (successful, mal-
FormedRequest, etc.), a certi�cate status (good, revoked, unknown), and an
optional signature (the server signs the message). A protocol P between client
C and server S is de�ned as the parallel composition P � CjS with:

C := sndC(S; serv; cert; sig); rcvC(S; respStat; certStat; sig)
S := rcvS(C; serv; cert; sig); sndS(C; respStat; certStat; sig)

The Speci�cation Language. The command language is embedded into a speci�-
cation language based on modal logic [6] { a logic with a notion of state suitable
for the description of reactive systems. We derive our variant from the modal �-
calculus [7] { a branching time temporal logic. Actions are explicit in this logic.
Besides the usual logical combinators, two modal combinators are provided:

{ [a]� is based on the box- or always operator, describing that if a terminates
it does so in a state satisfying �.

{ hai� is based on the diamond- or eventually operator, describing that a can
terminate in a state satisfying �.

The syntax for formulas is � ::= truejfalsej�j�1^�2j�1^�2j : : : j[a]�jhai� where
� 2 P is a predicate. Names can be compared for equality. Additionally, a set
of security predicates are provided:

{ The predicate KnowsA(X) describes that an agent A 'knows' about an item
X , i.e., A has access to X either by creating it or by having received it.

{ The predicate unModA(X) is true if A has received an item X that has not
been modi�ed during transmission, i.e., is unmodi�ed.

{ AuthA(B) expresses that an agent A has authenticated another agent B.

A formula � ! [a] or � ! hai with precondition � and postcondition

shall be called a contract for a.
The semantic structures in which this logic is interpreted are Kripke transi-

tion systems { a combination of Kripke structures and labelled transition systems
[6, 8]. A Kripke transition system (KTS) is a quadrupleM = (S;Act;!; I) with

2

a set of states S, a set of actions Act, a transition relation! � S�Act�S, and
an interpretation I . The structureM shall be de�ned over a set of predicates P .
The elements in the sets Act and P shall be indexed by agents.

We interpret closed formulas � as subsets of S whose states make � true.
We de�ne [[true]]� := S and [[false]]� := ;; standard logical combinators are
de�ned as usual. Predicates � 2 P are de�ned via environments � : P ! PS,
i.e. [[�]]� := �(�).

[[[a]�]]� := fs j for all t holds (s; a; t) 2!g
[[hai�]]� := fs j exists t such that (s; a; t) 2!g

We use this language to specify security properties. Server S needs to au-
thenticate client C { we assume additional signing and verifying actions.

[rcvS(C; serv; cert; sig)] KnowsS(K
pub
C)! vrfS(K

pub
C ; sig)

S validates C's signature sig using C's public key. This shall be abbreviated
by the predicate AuthS(C). The OCSP de�nition states a success criterion: the
client needs to accept a server response only if C authenticates S and S replies
with respect to the request certi�cate.

[sndC(S; serv; cert); rcvC (S; rStat; cert
0; cStat)] cert = cert0 ^ AuthC(S)

Other properties could be speci�ed, e.g. an explicit exclusion of a replay attack,
or properties related to the availability of data.

3 Interference Analysis using Re�nement

We de�ne a re�nement relation for actions based on the notion of contracts. Let
Ca1 � �! [a1] �

0 and Ca2 � ! [a2]
0 be contracts.

Ca1 is re�ned by Ca2 , or Ca1 v Ca2 , if �! ^ 0 ! �0 1:

This follows classical de�nitions [9, 10] { here in a di�erent semantical framework.
A central idea of our approach to security analysis of protocols is explicit

intruder modelling. The intruder is added to the protocol speci�cation through
re�nement. The original protocol speci�cation P is the ideal protocol. It states
expected security properties. In a re�nement P v P jI the intruder I is added
using parallel composition P jI . Either these properties are preserved or are vi-
olated. In the latter case, we have found a security aw. In the former case,
P v P jI holds, i.e., the intruder cannot interfere with the protocol. The proto-
col can be analysed by systematically varying the intruder behaviour. We look
at di�erent security aspects separately.

Theorem 1. Re�nements AjB v AjBjI are guaranteed if the constraints given

by the re�nement laws { see Figure 1 { are satis�ed.

1 Additionally, we need to exclude some trivial cases such as Ca2 � true! [a2] false,
which result in proper re�nements, but would also constitute a security problem.

3

Con�dentiality AjB v AjBjI if Conf(AjBjI)! Conf(AjB) with

Conf(AjB) = KnowsA(X1; : : : ; Xk) ^KnowsB(Y1; : : : ; Ym)
Conf(AjBjI) = KnowsA(X

0

1; : : : ; X
0

k0) ^KnowsB(Y
0

1 ; : : : ; Y
0

m0) ^KnowsI(Z
0

1; : : : ; Z
0

n0)

Integrity AjB v AjBjI if Int(AjBjI)! Int(AjB) with

Int(AjB) = unModA(X1; : : : ; Xk) ^ unModB(Y1; : : : ; Ym)
Int(AjBjI) = unModA(X1; : : : ; Xk) ^ unModB(Y1; : : : ; Ym)

Authentication AjB v AjBjI if Authenticate(AjBjI)! Authenticate(AjB) with

Authenticate(AjB) = AuthA(X1; : : : ; Xk) ^AuthB(Y1; : : : ; Ym)
Authenticate(AjBjI) = AuthA(X1; : : : ; Xk) ^AuthB(Y1; : : : ; Ym) ^AuthI(Z1; : : : ; Zn)

Fig. 1. Re�nement Laws for Security Properties

We need axiomatisations { called laws { for the basic actions. Con�dentiality
laws shall be addressed �rst. An agent knows about an item by either creating
it or receiving it. The agent remembers it after executing an action.

KnowsA(X)! [sndA(B;X)] KnowsA(X)

The interaction between agents is de�ned in terms of the Knows-predicate:

KnowsA(M)! [sndA(B;M)jrcvB(A; x)] KnowsB(M)

which is our de�nition of the reaction between two agents. The message M
replaces the input variable x for agent B.

An integrity law is [sndA(B;M)jrcvB(A; x)jI]KnowsB(M)! unModB(M).
Authentication laws can also be formulated.

4 Protocol Analysis

Intruder models such as the Dolev-Yao model assign certain capabilities to an in-
truder. With a reduced set of actions, we could assume that the intruder capabil-
ity is to non-deterministically iterate receive- and send-actions, i.e., (rcvI (X;M)+
sndI(Y;N))�. Varying the intruder behaviour allows us to analyse di�erent forms
of attacks. An example is the man-in-the-middle attack. If a client does not sign
a message, the intruder I can act as the client and communicate with the server:

sndI(S; serv; cert)

After this :AuthS(C) holds, which violates the authentication property:

[rcvS(C; serv; cert)] AuthS(C)

Our analysis tool is re�nement, i.e., we need to check whether CjS v CjSjI
holds. We get CjS 6v CjSjI since the authentication AuthS(C) was required.
Signatures should be used, which would also help us to guarantee integrity.

4

Another attack type is the replay attack: the intruder I plays the role of the
server and replays previously sent messages to the current client:

rcvI (S;M); rcvI (C;M
0); sndI (C;M)

assuming thatM andM 0 are messages about the same certi�cate. This behaviour
again matches the general intruder capacity. The remedy is to include nonces {
randomly created values { which is not required by the OCSP de�nition.

The aws that can be detected with our approach have been described in the
literature. However, a formal account does not exist.

5 Concluding Remarks

An important aspect is tool support for this form of analysis. We have based our
semantic framework on the modal �-calculus [7] to be able to consider model
checking [8]. A model, i.e., a Kripke transition system, M = (S;Act;!; I) over
a set of predicates P can be constructed for a particular purpose, e.g. the con�-
dentiality analysis. Another direction that could be pursued is testing. Aichernig
[11] addresses test case generation based on re�nement and abstraction.

References

[1] N.A. Durgin and J.C. Mitchell. Analysis of Security Protocols. In M. Broy and
R. Steinbruggen, editors, Calculational System Design, pages 369{395. IOS Press,
1999.

[2] L.C. Paulson. Proving Properties of Security Protocols by Induction. In 10th

IEEE Computer Security Foundations Workshop, pages 70{83. 1997.
[3] R. Focardi, A. Ghelli, and R. Gorrieri. Using non interference for the analysis

of security protocols. In H. Orman and C. Meadows, editors, DIMACS Work-

shop on Design and Formal Veri�cation of Security Protocols. DIMACS, Rutgers
University, 1997. http://dimacs.rutgers.edu/Workshops/Security.

[4] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: the spi Cal-
culus. Information and Computation, 148:1{70, 1999.

[5] IETF Internet Engineering Task Force Network Working Group. Online Certi�-
cate Status Protocol - OCSP, 2001. http://www.ietf.org/rfc/rfc2560.txt.

[6] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, Vol. B, pages 789{840. Elsevier
Science Publishers, 1990.

[7] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-

ence, 27:333{354, 1983.
[8] M. M�uller-Olm, D. Schmidt, and B. Ste�en. Model Checking { a Tutorial Intro-

duction. In Proc. 6th Static Analysis Symposium. Springer-Verlag, LNCS 1694,
1999.

[9] R.J.R. Back and J. von Wright. The Re�nement Calculus: A Systematic Intro-

duction. Springer-Verlag, 1998.
[10] C. Morgan. Programming from Speci�cations 2e. Addison-Wesley, 1994.
[11] B.K. Aichernig. Test-case calculation through abstraction. In J.N. Oliveira and

P. Zave, editors, Proc. FME'2001 Symposium Formal Methods Europe. Springer-
Verlag, LNCS Series No. 2021, 2001.

5

