-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by DCU Online Research Access Service

Analysing Security Properties using Refinement

Claus Pahl

School of Computer Applications
Dublin City University
Dublin 9, Ireland
eMail: cpahl@compapp.dcu.ie
fax: ++353 +1 700 5442

Abstract. Security properties are essential in open and distributed en-
vironments with high dependability requirements. An approach to de-
velopment and analysis of safety- and security-critical systems based on
refinement as the central concept can offer an integrated solution. We
analyse the Online Certificate Status Protocol (OCSP), showing how to
use refinement as an interference analysis tool for secure communication
protocols and intruders.

1 DMotivation

Dependable systems require a high level of safety and security. Security is be-
coming increasingly important since more and more systems are deployed in
open distributed and networked environments, and are therefore subject to ex-
ternal threads. Security is concerned with aspects such as confidentiality — the
prevention of disclosure of information to unauthorised users —, integrity — the
prevention of unauthorised modification of information —, and authentication —
the proven establishment of the identity of another agent in a distributed system.

Several methods have been suggested for the development and analysis of
protocols in distributed and networked systems [1, 2, 3, 4]. We present an in-
tegrated framework based on refinement as the key concept for development
and analysis. We use the Online Certificate Status Protocol (OCSP) as our case
study. OCSP [5] is an information acquisition protocol used in public key infras-
tructures (PKI), i.e., systems that manage cryptographic keys in security-critical
environments. Its main purpose is to check the revocation status of a certificate
(the key concept to guarantee authentication in networked systems).

2 The Notation

The Command Language. A protocol consists of several communicating agents.
Each of these agents has the capacity to perform a set of basic actions, such as
sending or receiving messages:

— snd(R, My, ..., M,) is the send-action. R denotes the receiver; the elements
M; to M, form the message content.

https://core.ac.uk/display/11309993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

— rev(S,x1, ..., Ty) is the receive-action. S denotes the sender; z; to x, are
names that will be substituted by the actual message elements.

All identifiers, such as the messages, are names. The basic actions can be com-
bined by a set of classical combinators: sequential composition ai;as, non-
deterministic choice a; + a2, parallel composition a; |as, and iteration a*. A pro-
tocol is usually described as a parallel composition of agents. Agents composed
in parallel can interact if a send and a receive operation match — determined by
matching sender/receiver IDs and the length of the message list.

OCSP is a request /response protocol. It provides a generic message envelope
for a variety of services. A set of standardised request/response-types exist. One
of these is ORS (Online Revocation Status) providing information about the
revocation status of a certificate. Requests contain the elements service ID, a
certificate (the certificate to be checked), and an optional signature (the client
signs the message). The response contains a response status (successful, mal-
FormedRequest, etc.), a certificate status (good, revoked, unknown), and an
optional signature (the server signs the message). A protocol P between client
C and server S is defined as the parallel composition P = C|S with:

C := sndc (S, serv, cert, sig); reve (S, respStat, certStat, sig)
S :=revg(C, serv, cert, sig); snds(C, respStat, certStat, sig)

The Specification Language. The command language is embedded into a specifi-
cation language based on modal logic [6] — a logic with a notion of state suitable
for the description of reactive systems. We derive our variant from the modal p-
calculus [7] — a branching time temporal logic. Actions are explicit in this logic.
Besides the usual logical combinators, two modal combinators are provided:

— [a]# is based on the box- or always operator, describing that if a terminates
it does so in a state satisfying ¢.

— {(a)¢ is based on the diamond- or eventually operator, describing that a can
terminate in a state satisfying ¢.

The syntax for formulas is ¢ ::= true| false|a|pi Ada|d1 Ag2] . .. |[a]¢|(a)¢ where
a € P is a predicate. Names can be compared for equality. Additionally, a set
of security predicates are provided:

— The predicate Knows4(X) describes that an agent A ’knows’ about an item
X, i.e., A has access to X either by creating it or by having received it.

— The predicate unMod 4(X) is true if A has received an item X that has not
been modified during transmission, i.e., is unmodified.

— Autha(B) expresses that an agent A has authenticated another agent B.

A formula ¢ — [a] ¥ or ¢ — (a) ¥ with precondition ¢ and postcondition)
shall be called a contract for a.

The semantic structures in which this logic is interpreted are Kripke transi-
tion systems — a combination of Kripke structures and labelled transition systems
[6, 8]. A Kripke transition system (KTS) is a quadruple M = (S, Act, —, I) with

a set of states S, a set of actions Act, a transition relation — C S x Act x S, and
an interpretation I. The structure M shall be defined over a set of predicates P.
The elements in the sets Act and P shall be indexed by agents.

We interpret closed formulas ¢ as subsets of S whose states make ¢ true.
We define [true], := S and [false], := 0; standard logical combinators are
defined as usual. Predicates @ € P are defined via environments p : P — PS,

ie. [a], = p(a).

[[alé], = {s | for all ¢ holds (s,a,t) € =}
[(a}d], := {s | exists ¢t such that (s,a,t) € =}

We use this language to specify security properties. Server S needs to au-
thenticate client C' — we assume additional signing and verifying actions.

[revs (C, serv, cert, sig)] Knowss(KE") — vrfg(K2", sig)

S validates C’s signature sig using C’s public key. This shall be abbreviated
by the predicate Authg(C). The OCSP definition states a success criterion: the
client needs to accept a server response only if C' authenticates S and S replies
with respect to the request certificate.

[sndc (S, serv, cert); reve (S, rStat, cert', cStat)] cert = cert’ A Authe(S)

Other properties could be specified, e.g. an explicit exclusion of a replay attack,
or properties related to the availability of data.

3 Interference Analysis using Refinement

We define a refinement relation for actions based on the notion of contracts. Let
Co, = ¢ = [a1] ¢' and C,, = 1) — [az2] ¢’ be contracts.

C,, is refined by C,, ,0r Coy T C,, ,if ¢ =AY — @' L.

This follows classical definitions [9, 10] — here in a different semantical framework.

A central idea of our approach to security analysis of protocols is explicit
intruder modelling. The intruder is added to the protocol specification through
refinement. The original protocol specification P is the ideal protocol. It states
expected security properties. In a refinement P C P|I the intruder [is added
using parallel composition P|I. Either these properties are preserved or are vi-
olated. In the latter case, we have found a security flaw. In the former case,
P C P|I holds, i.e., the intruder cannot interfere with the protocol. The proto-
col can be analysed by systematically varying the intruder behaviour. We look
at different security aspects separately.

Theorem 1. Refinements A|B C A|B|I are guaranteed if the constraints given
by the refinement laws — see Figure 1 — are satisfied.

! Additionally, we need to exclude some trivial cases such as Cu, = true — [as] false,
which result in proper refinements, but would also constitute a security problem.

Confidentiality A|B C A|B|I if Conf(A|B|I) — Conf(A|B) with
Conf(A|B) = Knowsa(Xy,...,Xr) A Knowsp(Y1,...,Yn)
Conf(A|B|I) = Knowsa(X1,...,X,) A Knowsg(Y1,...,Y,.,) A Knows(Z1,...,2Z)
Integrity A|B C A|B|I if Int(A|B|I) — Int(A|B) with

Int(A|B) =wunModa(Xi,...,Xr) AunModp(Y1,...,Ym)

Int(A|B|I) = unModa(Xy,...,Xt) AunModp(Y1,...,Ym)
Authentication A|B C A|B|I if Authenticate(A|B|I) — Authenticate(A|B) with

Authenticate(A|B) = Autha(X1,...,Xp) A Authp(Y1,...,Yn)
Authenticate(A|B|I) = Autha (X, ..., Xk) A Authg(Y1,...,Yn) A Authi(Z,,. .., Zy)

Fig. 1. Refinement Laws for Security Properties

We need axiomatisations — called laws — for the basic actions. Confidentiality
laws shall be addressed first. An agent knows about an item by either creating
it or receiving it. The agent remembers it after executing an action.

Knowss(X) = [snda(B, X)] Knowss(X)
The interaction between agents is defined in terms of the Knows-predicate:
Knows (M) — [snda(B, M)|rcvg(A, x)] Knowsg(M)

which is our definition of the reaction between two agents. The message M
replaces the input variable z for agent B.

An integrity law is [snda (B, M)|rcvg (A, z)|I] Knowsg(M) — unModp(M).
Authentication laws can also be formulated.

4 Protocol Analysis

Intruder models such as the Dolev-Yao model assign certain capabilities to an in-
truder. With a reduced set of actions, we could assume that the intruder capabil-
ity is to non-deterministically iterate receive- and send-actions, i.e., (revr (X, M)+
sndr(Y, N))*. Varying the intruder behaviour allows us to analyse different forms
of attacks. An example is the man-in-the-middle attack. If a client does not sign
a message, the intruder I can act as the client and communicate with the server:

sndr (S, serv, cert)
After this —Authg(C) holds, which violates the authentication property:
[revs(C, serv, cert)] Authg(C)

Our analysis tool is refinement, i.e., we need to check whether C|S C C|S|I
holds. We get C|S Z C|S|I since the authentication Auths(C) was required.
Signatures should be used, which would also help us to guarantee integrity.

Another attack type is the replay attack: the intruder I plays the role of the
server and replays previously sent messages to the current client:

revr (S, M);revr(Cy, M'); sndy(C, M)

assuming that M and M' are messages about the same certificate. This behaviour
again matches the general intruder capacity. The remedy is to include nonces —
randomly created values — which is not required by the OCSP definition.

The flaws that can be detected with our approach have been described in the
literature. However, a formal account does not exist.

5 Concluding Remarks

An important aspect is tool support for this form of analysis. We have based our
semantic framework on the modal p-calculus [7] to be able to consider model
checking [8]. A model, i.e., a Kripke transition system, M = (S, Act, —, I) over
a set, of predicates P can be constructed for a particular purpose, e.g. the confi-
dentiality analysis. Another direction that could be pursued is testing. Aichernig
[11] addresses test case generation based on refinement and abstraction.

References

[1] N.A. Durgin and J.C. Mitchell. Analysis of Security Protocols. In M. Broy and
R. Steinbruggen, editors, Calculational System Design, pages 369-395. IOS Press,
1999.

[2] L.C. Paulson. Proving Properties of Security Protocols by Induction. In 10th
IEEE Computer Security Foundations Workshop, pages 70-83. 1997.

[3] R. Focardi, A. Ghelli, and R. Gorrieri. Using non interference for the analysis
of security protocols. In H. Orman and C. Meadows, editors, DIMACS Work-
shop on Design and Formal Verification of Security Protocols. DIMACS, Rutgers
University, 1997. http://dimacs.rutgers.edu/Workshops/Security.

[4] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: the spi Cal-
culus. Information and Computation, 148:1-70, 1999.

[5] IETF Internet Engineering Task Force Network Working Group. Online Certifi-
cate Status Protocol - OCSP, 2001. http://www.ietf.org/rfc/rfc2560.txt.

[6] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, Vol. B, pages 789-840. Elsevier
Science Publishers, 1990.

[7] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27:333-354, 1983.

[8] M. Miiller-Olm, D. Schmidt, and B. Steffen. Model Checking — a Tutorial Intro-
duction. In Proc. 6th Static Analysis Symposium. Springer-Verlag, LNCS 1694,
1999.

[9] R.J.R. Back and J. von Wright. The Refinement Calculus: A Systematic Intro-
duction. Springer-Verlag, 1998.

[10] C. Morgan. Programming from Specifications 2e. Addison-Wesley, 1994.

[11] B.K. Aichernig. Test-case calculation through abstraction. In J.N. Oliveira and
P. Zave, editors, Proc. FME’2001 Symposium Formal Methods Europe. Springer-
Verlag, LNCS Series No. 2021, 2001.

