View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DCU Online Research Access Service

Formalising Dynamic Composition and
Evolution in Java Systems

Claus Pahl

Dublin City University, School of Computer Applications
Dublin 9, Ireland
cpahl@compapp.dcu.ie

Abstract. A variety of Java constructs involve an idea of time: dy-
namic establishment and closure of connections or the composition and
customisation of components. In order to guarantee reliability and main-
tainability in dynamic evolving systems, we will take a process-oriented
view on composition and interaction. This will be supported by a contract
concept to formalise matching of suitable service provider and requestor.

1 Introduction

A common problem in complex dependable systems is to ensure that a method
that is called actually provides the expected functionality. Forming a contract
between service provider and service requestor can constrain the invocation of
remote or unknown methods. In particular since dynamic loading of classes is
possible in Java, respective means to control the use of services should be in
place. This also applies to the assembly of beans — Java’s component approach —
since interaction is the composition principle. Contracts describe an agreement,
between service provider and client that can be checked statically or dynamically.

These compositions - objects interacting via RMI or beans using each others
services - are compositions in space. Various approaches exist to describe this
concept, e.g. [1, 2, 3]. However, several Java composition constructs also involve
a notion of time. Classes can be loaded dynamically. Beans can be assembled
and customised at deployment time. RMI incorporates the concept of a lease - a
contract between objects that can expire and that can be renewed. A contract-
based composition framework is sufficient for static systems, but systems do
evolve over time. Requirements change and force contracts to be renegotiated.

This problem shall be addressed by embedding a concept of contracts into
a model of change. We shall formulate a process-oriented model of composition
based on the w-calculus [4] serving as a coherent semantical foundation for the
variety of Java constructs involving a notion of time. Determining and reasoning
about the impact of dynamic composition and change is of major importance
to achieve reliability and maintainability for evolving systems. We use widely
accepted formalisms for the specification of services, matching of services, and
contracts. We use the pre- and postcondition technique, embedded into a dy-
namic logic [5, 6, 7], to specify services and contracts [8, 9, 10]. This forms the
foundation for a matching construct based on refinement [11, 12].

https://core.ac.uk/display/11309991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Dynamic Composition and Evolution

Two main features of Java are portability and mobility of code. Objects can
be passed around and loaded dynamically. In particular in combination with
dynamic composition and customisation of components, this can affect the reli-
ability of a system. Java beans are components that can interact with another.
Beans can be customised at deployment time. RMI is the underlying distribution
mechanism for beans. Enterprise Java Beans are beans for a server-side environ-
ments, which are created, configured and executed within containers that handle
all interaction between the bean and its environment. The communication es-
tablishment using RMI could be constrained by contracts. A new feature for
the RMI API is a lease. A lease is a mutual agreement between two objects for
a period of time. These objects can negotiate and establish contracts for the
use of resources. These contracts - leases - can expire, be cancelled, and can be
renewed. The formulation of a process model for contracts and composition is
therefore an adequate approach.

The w-calculus [4] shall be used to model the process of establishing contracts
and connections between components. The m-calculus offers means to specify
communication between agents in a distributed environment. Both objects com-
municating through RMI and beans using services of other beans are agents in
this sense. Modelling the process of change using a process calculus is justified by
a similarity between mobility and evolution. Mobility in the 7-calculus is defined
as a change of neighbourhood, i.e., a change of the links that an agent has with
its environment. In the same way evolution might require changes in connec-
tions between interacting objects or between beans. Here, the interconnection
between agents shall be constrained. Requirements of a client, expressed using
pre- and postconditions, need to be satisfied by a service provider. Matching is
the determination of the satisfaction of a required service. The m-calculus pro-
vides a theory of process equivalence - bisimilarity - based on observable process
behaviour. Pre- and postconditions are additional properties and their matching
needs to be supported by another theory: the refinement calculus. Our objective
is to adapt the m-calculus [13, 14] in order to capture the establishment and
release of contracts and connectors in evolving systems. We aim at a coherent
formal basis for the variety of Java constructs with a notion of time.

3 Contracts

Interfaces describe entry points to a component. Specifications of these entry
points can be used to form contracts between a server component and a client
component. We assume that a client component (any object or bean) needs
services of a server component. Two channel types are needed for data (code,
events, etc.) and services, data and serv, respectively. A service channel realises
the invocation of a remote method. A sorting discipline will ensure proper use
of the channels. We need to choose a suitable provider candidate:

CuooSsE sC/(cC).cC(x).C|OFFER sC(y).5(e).P — C|P (1)

An initial output sC{cC) of a channel name ¢C on channel sC by the client
is received sC(y) and answered g{e) with an empty token by a suitable service
provider P, creating a private contract channel ¢C for further use. Input and
output actions can be successfully matched and, therefore, the agents - composed
in parallel - transfer to the next state C|P. We have annotated the basic actions
in order to illustrate their context.

A requested and a provided method have to be matched based on their
specifications to form a contract. The matching construct is refinement. The
provider needs to satisfy the needs of the requestor, i.e., a provided method n
should refine C the requirements of m (in terms of pre- and postconditions):

mCn 2 pre(m) — pre(n) A post(n) — post(m) (2)
Matching - the next step - is formalised by the MATCH-rule

REQ cC(m).C"|[PrOV cC(n).P' "5 (C'|P") (3)
m:serv
and constrained by the sorting constraint m : serv and the refinement m C n.

The following step establishes a (private) connection m - the ESTABLISH-rule:

EsTB ¢C(m, D).C"|ESTB cC(n,d).P" m%v PRIV m:iC (C"|P"{"/n}) (4)
where D is a deployment descriptor object. These rules can model contracts
between client and server using RMI or between beans assembled to larger com-
ponents. Other rules include for instance closing or re-negotiating a contract.

In order to formalise the constraint language within the dynamic framework,
we need to see objects as entities with internal structure, e.g., in the style of
labelled transition systems. We follow the hidden algebra approach [15] to de-
fine semantical structures for the refinement calculus, which is embedded into
dynamic logic — and not predicate transformers [11]. We do not describe this in
detail here, since our focus shall be on the dynamic calculus, e.g. [3].

4 Connectors

Connectors form an interconnection between two objects. They occur in two
forms in Java. Firstly, as a remote computation, i.e., a service channel is used to
invoke a remote method. Secondly, as a local computation, i.e., a data channel is
used to load the class which contains the code to be executed. Connectors are an
abstraction to capture remote and mobile code. Beans, for instance, communicate
with their environment using event handling. Other beans can register with a
bean and will be notified in case an event occurs.

EvREG m(self).C'|EVREG m(obj).P' — PRIV rirC. (C'|P’) (5)
This establishes a reply-channel r of type rC for event notifications.

EvNot 7(eObj).C'|[EVNOT r(eObj).P' — C'|P’ (6)

As a result of an event, a notified client might request server methods. The
interaction between the client C' and server P
WRITE mi{a).C"""|READ m(z).P"" — C"'|P" (7)
m:serv
can happen if permitted by the sorting rules. Further rules are necessary to
describe the concurrent interaction of one component with several others. A rule
allowing to reply to a service request can also be introduced.

5 Determination and Management of Change

Based on our formal framework for change and evolution in Java, we outline how
this framework can be expanded into concepts to determine effects of change and
to manage evolving systems. Both specifications of service requests and available
services might change due to changes in the overall requirements or the envi-
ronment. Changes in one component might force changes in other components
- change is propagated. A problem impacting change is that resources can be
shared. This includes sharing server functionality. Changes in shared server im-
plementations (e.g. EJBs) have, therefore, a high impact on other components.

A framework based on matching and internal correctness conditions can help
to determine the effects of change [3]. This framework is defined based on the
dynamic logic semantics used to embed pre- and postconditions. Matching is used
to determine the effect of change to contracts. Internal component correctness
relations form a measure for the effect of contract changes on a component
implementation. Relations can be defined between import and body, or between
body and export of a component. The relations can be defined using constructs
such as model classes and relations between them.

An improvement might be achieved by adding glue-code between a changed
server and a client in order to repair some of the change effects.

6 Conclusions

We have presented a formal model which captures concepts of dynamics and
change in Java systems. It gives formal semantics to Java constructs with a
notion of time, such as dynamic loading of classes, RMI interconnections and
leases, and bean assembly, customisation and interaction. The key characteristics
is a process-oriented view, into which a contract-concept for service matching
is integrated. Our framework can be used to reason about system properties,
e.g., to reason about change and effects on consistency, i.e., the determination
of effects and preservation of consistency, in order to increase reliability and
maintainability. It can provide the foundations for a formal development method.
The pre- and postcondition technique is only one possible (but very popular)
form of expressing contracts. Other forms, for example including more than
pure functional abstraction, can be considered in the future. Another important
future aspect is the inclusion of our formal framework into a development tool.
Examples for these environments are ESC Java [16] and the KeY-tools [17].

References

[1]

[2]
[3]

[4]
[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

S. Cimato and P. Ciancarini. A formal approach to the specification of java com-
ponents. In B. Jacobs, G. T. Leavens, P. Miiller, and A. Poetzsch-Heffter, editors,
Formal Techniques for Java Programs. Tech. Rep. 251, University of Hagen, 1999.
G.T. Leavens and M. Sitamaran. Foundations of Component-Based Systems.
Cambridge University Press, 2000.

C. Pahl. Modal Logics for Reasoning about Object-based Component Compo-
sition. In Proc. 4rd Irish Workshop on Formal Methods, July 2000, Maynooth,
Ireland. BCS, eWiC series, 2000. (to appear).

R. Milner. Communicating and Mobile Systems: the m-Calculus. Cambridge Uni-
versity Press, 1999.

Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, Vol. B, pages 789-840. Elsevier
Science Publishers, 1990.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential logic.
In S.D. Swierstra, editor, Proc. ESOP’99 European Symposium on Programming
Languages and Systems. Springer-Verlag, 1999.

B. Beckert. A dynamic logic for java card. In S. Drossopoulou, S. Eisenbach,
B. Jacobs, G. T. Leavens, P. Miiller, and A. Poetzsch-Heffter, editors, Formal
Techniques for Java Programs. Technical Report 269, Fernuniversitat Hagen, 2000.
J.B. Warmer and A.G. Kleppe. The Object Constraint Language : Precise Mod-
eling With UML. Addison-Wesley, 1998.

L.F. Andrade and J.L. Fiadero. Interconnecting Objects via Contracts. In
R. France and B. Rumpe, editors, Proceedings 2nd Int. Conference UML’99 -
The Unified Modeling Language. Springer Verlag, LNCS 1723, 1999.

G.T. Leavens and A.L. Baker. Enhancing the Pre- and Postcondition Technique
for More Expressive Specifications. In R. France and B. Rumpe, editors, Pro-
ceedings 2nd Int. Conference UML’99 - The Unified Modeling Language. Springer
Verlag, LNCS 1723, 1999.

R.J.R. Back and J. von Wright. The Refinement Calculus: A Systemtic Introduc-
tion. Springer-Verlag, 1998.

M. Biichi and E. Sekerinski. Formal Methods for Component Software: The Re-
finement Calculus Perspective. In Proceedings 2nd International Workshop on
Component-Oriented Programming WCOP ’97. Turku Center for Computer Sci-
ence, General Publication No.5-97, Turku University, Finland, 1997.

C. Pahl. Components, Contracts and Connectors for the Unified Modelling Lan-
guage. In Proc. Symposium Formal Methods Europe 2001, Berlin, Germany.
Springer-Verlag, LNCS-Series, 2001.

M. Lumpe, F. Achermann, and O. Nierstrasz. A Formal Language for Compo-
sition. In G.T. Leavens and M. Sitamaran, editors, Foundations of Component-
Based Systems. Cambridge University Press, 2000.

J. Goguen and G. Malcolm. A Hidden Agenda. Theoretical Computer Science,
2000. Special Issue on Algebraic Engineering .

D.L. Detlefs, K.R.M. Leino, G. Nelson, and J.B. Saxe. Extended static checking.
Research report 159, Compaq Systems Research Center, 1998.

W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hahnle, W. Menzel,
and P. H. Schmitt. The key approach: Integrating object-oriented design and
formal verification. Technical report 2000/4, University of Karlsruhe, Department
of Computer Science, 2000.

Background and Expectations
Background

My research background lies essentially in software engineering, in particular
foundations and formal aspects of software engineering. Main areas of interest
during the last years have been state-based specification and implementation
(in an algebraic style, using modal logics as the specification framework), and
module and component languages. Recently, I have been looking at formal ap-
proaches for components and component composition. My interest has always
been lying in integrating and bridging specification/design and implementation.

I have been involved in several national (Germany, Ireland) and international
(EU) projects focusing on language semantics, design and implementation. Re-
search topics have been, among others, set-theoretic programming and modular
language semantics. The former involved the implementation of concepts of set
theory in a programming language. The latter has focused on providing formal
semantics or semantical concepts for the modular definition of programming and
specification language, e.g., allowing languages (and their specifications) to be
integrated or interfaced.

Java is a language that I am using in some of my courses. The experience
of using Java in larger student projects shows the need of a clear understanding
of fundamental concepts. I have been using Java in team-oriented projects that
were supposed to implement e-Commerce systems. The development of software
in distributed and heterogenous environments (such as e-Commerce systems) by
teams of programmers shows the need for a component concept for Java. This is
not only for educational purposes, but this teaching experience clearly motivates
and supports my current research focus.

This paper can be seen as a contribution to an effort of building up a re-
search group with a focus on component-based software engineering. My aim is
to bring researchers from local universities (the greater Dublin area) together.
Other researchers here have been working on subject-oriented design and im-
plementation, or have an interest in concepts and technologies for components
in heterogeneous environments. Initial funding is available. In the future this
group shall address composition concepts and in particular the effect of change
on component composition. Applications of results to Java are envisaged.
Expectations

My expectations in relation to the workshop would lie in the discussion of
research ideas related to component-based software development in the Java
context, and, if possible, to establish contacts to other researchers.

In general, the definition of strategic research directions in this and related
areas would be of importance. In particular the problem of integrating and inter-
facing specification and implememtation should be addressed at the workshop. A
straightforward combination could be to focus in OCL as the integrative means
for UML and Java.

A second personal aspect is the issue of integrating the ideas presented in
the paper into a suitable development environment. Discussions at the workshop
could clarify this issue.

