
Formalising Dynamic Composition and

Evolution in Java Systems

Claus Pahl

Dublin City University� School of Computer Applications
Dublin �� Ireland

cpahl�compapp�dcu�ie

Abstract� A variety of Java constructs involve an idea of time� dy�
namic establishment and closure of connections or the composition and
customisation of components� In order to guarantee reliability and main�
tainability in dynamic evolving systems� we will take a process�oriented
view on composition and interaction� This will be supported by a contract
concept to formalise matching of suitable service provider and requestor�

� Introduction

A common problem in complex dependable systems is to ensure that a method
that is called actually provides the expected functionality� Forming a contract
between service provider and service requestor can constrain the invocation of
remote or unknown methods� In particular since dynamic loading of classes is
possible in Java� respective means to control the use of services should be in
place� This also applies to the assembly of beans � Java�s component approach �
since interaction is the composition principle� Contracts describe an agreement
between service provider and client that can be checked statically or dynamically�

These compositions � objects interacting via RMI or beans using each others
services � are compositions in space� Various approaches exist to describe this
concept� e�g� ��� �� �	� However� several Java composition constructs also involve
a notion of time� Classes can be loaded dynamically� Beans can be assembled
and customised at deployment time� RMI incorporates the concept of a lease � a
contract between objects that can expire and that can be renewed� A contract�
based composition framework is su
cient for static systems� but systems do
evolve over time� Requirements change and force contracts to be renegotiated�

This problem shall be addressed by embedding a concept of contracts into
a model of change� We shall formulate a process�oriented model of composition
based on the ��calculus ��	 serving as a coherent semantical foundation for the
variety of Java constructs involving a notion of time� Determining and reasoning
about the impact of dynamic composition and change is of major importance
to achieve reliability and maintainability for evolving systems� We use widely
accepted formalisms for the speci�cation of services� matching of services� and
contracts� We use the pre� and postcondition technique� embedded into a dy�
namic logic �
� �� �	� to specify services and contracts ��� �� ��	� This forms the
foundation for a matching construct based on re�nement ���� ��	�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


� Dynamic Composition and Evolution

Two main features of Java are portability and mobility of code� Objects can
be passed around and loaded dynamically� In particular in combination with
dynamic composition and customisation of components� this can a�ect the reli�
ability of a system� Java beans are components that can interact with another�
Beans can be customised at deployment time� RMI is the underlying distribution
mechanism for beans� Enterprise Java Beans are beans for a server�side environ�
ments� which are created� con�gured and executed within containers that handle
all interaction between the bean and its environment� The communication es�
tablishment using RMI could be constrained by contracts� A new feature for
the RMI API is a lease� A lease is a mutual agreement between two objects for
a period of time� These objects can negotiate and establish contracts for the
use of resources� These contracts � leases � can expire� be cancelled� and can be
renewed� The formulation of a process model for contracts and composition is
therefore an adequate approach�

The ��calculus ��	 shall be used to model the process of establishing contracts
and connections between components� The ��calculus o�ers means to specify
communication between agents in a distributed environment� Both objects com�
municating through RMI and beans using services of other beans are agents in
this sense� Modelling the process of change using a process calculus is justi�ed by
a similarity between mobility and evolution� Mobility in the ��calculus is de�ned
as a change of neighbourhood� i�e�� a change of the links that an agent has with
its environment� In the same way evolution might require changes in connec�
tions between interacting objects or between beans� Here� the interconnection
between agents shall be constrained� Requirements of a client� expressed using
pre� and postconditions� need to be satis�ed by a service provider� Matching is
the determination of the satisfaction of a required service� The ��calculus pro�
vides a theory of process equivalence � bisimilarity � based on observable process
behaviour� Pre� and postconditions are additional properties and their matching
needs to be supported by another theory� the re�nement calculus� Our objective
is to adapt the ��calculus ���� ��	 in order to capture the establishment and
release of contracts and connectors in evolving systems� We aim at a coherent
formal basis for the variety of Java constructs with a notion of time�

� Contracts

Interfaces describe entry points to a component� Speci�cations of these entry
points can be used to form contracts between a server component and a client
component� We assume that a client component �any object or bean� needs
services of a server component� Two channel types are needed for data �code�
events� etc�� and services� data and serv� respectively� A service channel realises
the invocation of a remote method� A sorting discipline will ensure proper use
of the channels� We need to choose a suitable provider candidate�

Choose sChcCi�cC�x��CjOffer sC�y��yh�i�P �� CjP ���



An initial output sChcCi of a channel name cC on channel sC by the client
is received sC�y� and answered yh�i with an empty token by a suitable service
provider P � creating a private contract channel cC for further use� Input and
output actions can be successfully matched and� therefore� the agents � composed
in parallel � transfer to the next state CjP � We have annotated the basic actions
in order to illustrate their context�

A requested and a provided method have to be matched based on their
speci�cations to form a contract� The matching construct is re�nement� The
provider needs to satisfy the needs of the requestor� i�e�� a provided method n
should re�ne v the requirements of m �in terms of pre� and postconditions��

m v n
�
� pre�m� � pre�n� � post�n� � post�m� ���

Matching � the next step � is formalised by the Match�rule

Req cChmi�C �jProv cC�n��P �
mvn
��

m�serv

�C �jP �� ���

and constrained by the sorting constraint m � serv and the re�nement m v n�
The following step establishes a �private� connection m � the Establish�rule�

Estb cChm�Di�C ��jEstb cC�n� d��P ��
mvn
��
m�serv

priv m � iC �C ��jP ��fm�ng� ���

where D is a deployment descriptor object� These rules can model contracts
between client and server using RMI or between beans assembled to larger com�
ponents� Other rules include for instance closing or re�negotiating a contract�

In order to formalise the constraint language within the dynamic framework�
we need to see objects as entities with internal structure� e�g�� in the style of
labelled transition systems� We follow the hidden algebra approach ��
	 to de�
�ne semantical structures for the re�nement calculus� which is embedded into
dynamic logic � and not predicate transformers ���	� We do not describe this in
detail here� since our focus shall be on the dynamic calculus� e�g� ��	�

� Connectors

Connectors form an interconnection between two objects� They occur in two
forms in Java� Firstly� as a remote computation� i�e�� a service channel is used to
invoke a remote method� Secondly� as a local computation� i�e�� a data channel is
used to load the class which contains the code to be executed� Connectors are an
abstraction to capture remote and mobile code� Beans� for instance� communicate
with their environment using event handling� Other beans can register with a
bean and will be noti�ed in case an event occurs�

EvReg mhselfi�C �jEvReg m�obj��P � �� priv r�rC� �C �jP �� �
�

This establishes a reply�channel r of type rC for event noti�cations�

EvNot rheObji�C �jEvNot r�eObj��P � �� C �jP � ���



As a result of an event� a noti�ed client might request server methods� The
interaction between the client C and server P

Write mhai�C ���jRead m�x��P ��� ��
m�serv

C ���jP ��� ���

can happen if permitted by the sorting rules� Further rules are necessary to
describe the concurrent interaction of one component with several others� A rule
allowing to reply to a service request can also be introduced�

� Determination and Management of Change

Based on our formal framework for change and evolution in Java� we outline how
this framework can be expanded into concepts to determine e�ects of change and
to manage evolving systems� Both speci�cations of service requests and available
services might change due to changes in the overall requirements or the envi�
ronment� Changes in one component might force changes in other components
� change is propagated� A problem impacting change is that resources can be
shared� This includes sharing server functionality� Changes in shared server im�
plementations �e�g� EJBs� have� therefore� a high impact on other components�

A framework based on matching and internal correctness conditions can help
to determine the e�ects of change ��	� This framework is de�ned based on the
dynamic logic semantics used to embed pre� and postconditions�Matching is used
to determine the e�ect of change to contracts� Internal component correctness

relations form a measure for the e�ect of contract changes on a component
implementation� Relations can be de�ned between import and body� or between
body and export of a component� The relations can be de�ned using constructs
such as model classes and relations between them�

An improvement might be achieved by adding glue�code between a changed
server and a client in order to repair some of the change e�ects�

� Conclusions

We have presented a formal model which captures concepts of dynamics and
change in Java systems� It gives formal semantics to Java constructs with a
notion of time� such as dynamic loading of classes� RMI interconnections and
leases� and bean assembly� customisation and interaction� The key characteristics
is a process�oriented view� into which a contract�concept for service matching
is integrated� Our framework can be used to reason about system properties�
e�g�� to reason about change and e�ects on consistency� i�e�� the determination
of e�ects and preservation of consistency� in order to increase reliability and
maintainability� It can provide the foundations for a formal development method�

The pre� and postcondition technique is only one possible �but very popular�
form of expressing contracts� Other forms� for example including more than
pure functional abstraction� can be considered in the future� Another important
future aspect is the inclusion of our formal framework into a development tool�
Examples for these environments are ESC Java ���	 and the KeY�tools ���	�



References

��� S� Cimato and P� Ciancarini� A formal approach to the speci�cation of java com�
ponents� In B� Jacobs� G� T� Leavens� P� M	uller� and A� Poetzsch�He
ter� editors�
Formal Techniques for Java Programs� Tech� Rep� ���� University of Hagen� �����

��� G�T� Leavens and M� Sitamaran� Foundations of Component�Based Systems�
Cambridge University Press� �


�

��� C� Pahl� Modal Logics for Reasoning about Object�based Component Compo�
sition� In Proc� �rd Irish Workshop on Formal Methods� July ����� Maynooth�

Ireland� BCS� eWiC series� �


� �to appear��
��� R� Milner� Communicating and Mobile Systems� the ��Calculus� Cambridge Uni�

versity Press� �����
��� Dexter Kozen and Jerzy Tiuryn� Logics of programs� In J� van Leeuwen� edi�

tor� Handbook of Theoretical Computer Science� Vol� B� pages ������
� Elsevier
Science Publishers� ���
�

��� A� Poetzsch�He
ter and P� M	uller� A programming logic for sequential logic�
In S�D� Swierstra� editor� Proc� ESOP��� European Symposium on Programming

Languages and Systems� Springer�Verlag� �����
��� B� Beckert� A dynamic logic for java card� In S� Drossopoulou� S� Eisenbach�

B� Jacobs� G� T� Leavens� P� M	uller� and A� Poetzsch�He
ter� editors� Formal

Techniques for Java Programs� Technical Report ���� Fernuniversit	at Hagen� �


�
��� J�B� Warmer and A�G� Kleppe� The Object Constraint Language � Precise Mod�

eling With UML� Addison�Wesley� �����
��� L�F� Andrade and J�L� Fiadero� Interconnecting Objects via Contracts� In

R� France and B� Rumpe� editors� Proceedings �nd Int� Conference UML��� �

The Uni	ed Modeling Language� Springer Verlag� LNCS ����� �����
��
� G�T� Leavens and A�L� Baker� Enhancing the Pre� and Postcondition Technique

for More Expressive Speci�cations� In R� France and B� Rumpe� editors� Pro�
ceedings �nd Int� Conference UML��� � The Uni	ed Modeling Language� Springer
Verlag� LNCS ����� �����

���� R�J�R� Back and J� von Wright� The Re	nement Calculus� A Systemtic Introduc�

tion� Springer�Verlag� �����
���� M� B	uchi and E� Sekerinski� Formal Methods for Component Software� The Re�

�nement Calculus Perspective� In Proceedings �nd International Workshop on

Component�Oriented Programming WCOP ��
� Turku Center for Computer Sci�
ence� General Publication No������ Turku University� Finland� �����

���� C� Pahl� Components� Contracts and Connectors for the Uni�ed Modelling Lan�
guage� In Proc� Symposium Formal Methods Europe ����� Berlin� Germany�
Springer�Verlag� LNCS�Series� �

��

���� M� Lumpe� F� Achermann� and O� Nierstrasz� A Formal Language for Compo�
sition� In G�T� Leavens and M� Sitamaran� editors� Foundations of Component�

Based Systems� Cambridge University Press� �


�
���� J� Goguen and G� Malcolm� A Hidden Agenda� Theoretical Computer Science�

�


� Special Issue on Algebraic Engineering �
���� D�L� Detlefs� K�R�M� Leino� G� Nelson� and J�B� Saxe� Extended static checking�

Research report ���� Compaq Systems Research Center� �����
���� W� Ahrendt� T� Baar� B� Beckert� M� Giese� E� Habermalz� R� H	ahnle� W� Menzel�

and P� H� Schmitt� The key approach� Integrating object�oriented design and
formal veri�cation� Technical report �


��� University of Karlsruhe� Department
of Computer Science� �


�



Background and Expectations
Background

My research background lies essentially in software engineering� in particular
foundations and formal aspects of software engineering� Main areas of interest
during the last years have been state�based speci�cation and implementation
�in an algebraic style� using modal logics as the speci�cation framework�� and
module and component languages� Recently� I have been looking at formal ap�
proaches for components and component composition� My interest has always
been lying in integrating and bridging speci�cation�design and implementation�

I have been involved in several national �Germany� Ireland� and international
�EU� projects focusing on language semantics� design and implementation� Re�
search topics have been� among others� set�theoretic programming and modular
language semantics� The former involved the implementation of concepts of set
theory in a programming language� The latter has focused on providing formal
semantics or semantical concepts for the modular de�nition of programming and
speci�cation language� e�g�� allowing languages �and their speci�cations� to be
integrated or interfaced�

Java is a language that I am using in some of my courses� The experience
of using Java in larger student projects shows the need of a clear understanding
of fundamental concepts� I have been using Java in team�oriented projects that
were supposed to implement e�Commerce systems� The development of software
in distributed and heterogenous environments �such as e�Commerce systems� by
teams of programmers shows the need for a component concept for Java� This is
not only for educational purposes� but this teaching experience clearly motivates
and supports my current research focus�

This paper can be seen as a contribution to an e�ort of building up a re�
search group with a focus on component�based software engineering� My aim is
to bring researchers from local universities �the greater Dublin area� together�
Other researchers here have been working on subject�oriented design and im�
plementation� or have an interest in concepts and technologies for components
in heterogeneous environments� Initial funding is available� In the future this
group shall address composition concepts and in particular the e�ect of change
on component composition� Applications of results to Java are envisaged�
Expectations

My expectations in relation to the workshop would lie in the discussion of
research ideas related to component�based software development in the Java
context� and� if possible� to establish contacts to other researchers�

In general� the de�nition of strategic research directions in this and related
areas would be of importance� In particular the problem of integrating and inter�
facing speci�cation and implememtation should be addressed at the workshop� A
straightforward combination could be to focus in OCL as the integrative means
for UML and Java�

A second personal aspect is the issue of integrating the ideas presented in
the paper into a suitable development environment� Discussions at the workshop
could clarify this issue�


