
An Ontology-based Framework for
Semantic Grid Service Composition

Claus Pahl

Dublin City University, School of Computing
Dublin 9, Ireland

Claus.Pahl@dcu.ie

Abstract. The Semantic Grid aims at enhancing Grid architectures by
knowledge engineering techniques. The service notion is central in this
approach. Service-level agreements, called contracts, are formed to define
the service usage conditions. Ontology technology can form the frame-
work to capture semantical conditions for contracts. Often, applications
of Grid services involve a combination of several services. We present
an ontology-based framework for service composition for the Semantic
Grid. We take a process-oriented view of services, achieving an intrinsic
representation of services and their composition in an ontology.

Keywords: Semantic Grid, Service composition, Ontology, Service processes.

1 Introduction

Knowledge is expected to become more central in Grid architectures [1, 2]. The
Semantic Grid aims at enhancing Grid architectures by knowledge engineering
techniques. Semantic Web ontologies can support this endeavour [3, 4].

The service notion is central in this approach. We view Grid architectures as
sets of services [1, 5–7]. Services are provided to Grid users. Service-level agree-
ments, called contracts, define the service usage conditions. Ontology technology
can form a marketplace framework to capture semantical conditions for contracts
in a common, shared format. Grid service applications are often complex. Ser-
vices need to be composed to achieve a complex goal. Two aspects characterise
our approach. Firstly, services shall be considered as processes – services can be
viewed from an external perspective as interacting agents in a distributed Grid
environment [8]. Secondly, a composition language based on this process view
can enable service interoperability for the Grid.

Our aim here is to develop a Semantic Web-based Grid service ontology that
acts as service composition framework. An ontology framework can enable knowl-
edge representation for the Grid, for instance for the representation of service
contract agreements between provider and user of services. We will introduce a
composition language integrated with a knowledge representation framework.

Reasoning about service descriptions and service matching to identify suit-
able services in marketplace and to define consistent service compositions is an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


important activity. We will present here a services development ontology that
provides matching support [9]. Ontologies are knowledge representation frame-
works defining concepts of a domain and their properties; they provide the vo-
cabulary and facilities to reason about these. Ontologies provide a shared and
agreed knowledge infrastructure. Two types of ontologies are important for the
Grid services context. Application domain ontologies describe the domain of
the grid software under development. Software ontologies describe the service
entities and aspects of the development and deployment life cycle.

Formality in the Semantic Web framework facilitates machine understanding
and automated reasoning – automation is essential for the future Grid. The
ontology language OWL is equivalent to a very expressive description logic [10],
which provides well-defined semantics and reasoning systems. It has already been
applied to Grids [2].

The need to create a shared understanding for an application domain is long
recognised. Client, user, and developer of a software system need to agree on
concepts for the domain and their properties. However, with the emergence of
distributed software development such as Grids and service-oriented architec-
tures also the need to create a shared understanding of software entities and
development processes arises.

We introduce the background including Grid architectures, services, and on-
tologies in Section 2. In Section 3, we define a simple ontology language for
Semantic Grid service description. The description of composed services is sub-
sect of Section 4. In Section 5, we address matching of service processes. We
discuss the wider context of semantic services for the Grid and related work in
Section 6. We end with some conclusions.

2 Semantic Grid Services and Architectures

2.1 Grid Architectures

Grid technology aims at supporting sharing and coordinated use of resources
in dynamic, distributed virtual organisations [5]. In the Open Grid Service Ar-
chitecture [5], a Grid service is defined as a Web service that provides a set of
well-defined interfaces and that follows specific conventions. Aspects that are
Grid-specific in the Web services context are:

– statefulness – services often encapsulate a hidden state,
– dynamic assembly and transient character,
– upgradeability – due to the dynamic nature, change management is essential.

Grids can be described as layered architectures with three conceptual layers [1]:

– Data and computation: This layer deals with the allocation, scheduling, and
execution of computational resources.

– Information: This layer deals with representation, storage, access, sharing,
and maintenance of information, i.e. data associated with its semantics.



– Knowledge: This layer deals with the acquisition, usage, retrieval, publica-
tion, and maintenance of knowledge, i.e. information capturing goals, prob-
lems, and decisions.

We will demonstrate that ontologies not only support the information and knowl-
edge layer, but that ontologies can also help to integrate the computational
aspects of the lower data and computation layer.

It is important to note that our ontological framework is not specific to any of
the layers or specific services. We will introduce an abstract framework suitable
for the composition of any services – no matter on which layer.

2.2 A Basic Services Model and Service-related Activities

The composition of Grid services to address complex goals and to form higher-
level applications requires a service model that captures the essential charac-
teristics of services for this context. Descriptions, contracts, and compositions
determine the requirements for such a service model [11]:

– Explicit export and import interfaces. In particular explicit and formal import
interfaces make services more context independent. Only the properties of
required and provided services are specified.

– Contractual (semantic) description of services. In addition to syntactical
information such as service signatures, the abstract specification of behaviour
(a contract) is a necessity for reusable services.

– Service protocol. An interaction protocol describes the ordering of service
activations that a user of a service has to follow in order to use the service
in a meaningful and consistent way.

Our aim is to capture composition in form of processes – expressions that
describe business processes and workflows through ordering dependencies and
invocations of services. The consistency of a process would depend on individual
service descriptions based on the service model.

Three development activities are essential in this context – which we will
address in the subsequent three sections:

– Description. An ontology language will allow us to describe individual ser-
vices in a Semantic Web-compatible framework.

– Composition. An extension of the ontology will allow composition of services
to higher-level services to be expressed.

– Matching. Inference capabilities of the ontological framework will be used to
reason about matching between provided and required service processes.

The activities are essential parts of the lifecyle of a Grid service [1].

2.3 Ontology Technology

Ontologies are means of knowledge representation, defining so-called shared con-
ceptualisations. Ontologies are frameworks for terminological definitions that can



Service DocumentStorageServer

provided services
crtDoc(id:ID)

rtrDoc(id:ID):Doc

updDoc(id:ID,upd:Doc)

delDoc(id:ID)

contract information
updDoc(id:ID,upd:Doc)

preCond wellFormed(upd)

postCond rtrDoc(id)=upd ∧ wellFormed(upd)

service interaction protocol
crtDoc;!(rtrDoc+updDoc);delDoc

Fig. 1. A Sample Application: a Document Storage Service.

be used to organise and classify concepts in a domain. Combined with a symbolic
logic, we obtain a framework for specification, classification, and reasoning in an
application domain. Terminological logics such as description logics [10] are an
example of symbolic logics.

The Semantic Web is an initiative for the Web that builts up on ontology
technology [3]. XML is the syntactical format. RDF – the Resource Description
Framework – is a triple-based formalism (subject, property, object) to describe
entities. OWL – the Web Ontology Language – provides additional logic-based
reasoning based on RDF.

We will use Semantic Web-based ontology concepts to formalise and axioma-
tise Grid service processes, i.e. to make statements about services and to reason
about them. We will base our ontology on Description logic [10]. Description
logic, which is used to define OWL, is based on concept and role descriptions.
Concepts represent classes of objects; roles represent relationships between con-
cepts; and individuals are named objects. Concept descriptions are based on
primitive logical combinators (negation, conjunction) and hyprid combinators
(universal and existential quantification). Expressions of a description logic are
interpreted through sets (concepts) and relations (roles).

Description logic is particularly interesting for the software development con-
text due to a correspondence between description logics and modal logic [12, 13].
This will allows us to embed modal reasoning about processes in a description
logic context – achieving an intrinsic specification of processes.

2.4 An Example

An example shall illustrate our service ontology – see Fig. 1. It describes a
document storage and access service. The service is an example for a data and
computational layer Grid service. The DocumentStorageServer service allows
users to create, retrieve, update, and delete documents.



– An empty document can be created using crtDoc. The service rtrDoc re-
trieves a document, but does not change the state of the server component,
whereas the update service updDoc updates a stored document without re-
turning a value. Documents can also be deleted.

– We have illustrated contract-related information by specifying one of the
operations by pre- and postcondition. If documents are XML-documents,
these can be well-formed (correct tag nesting) or valid (well-formed and
conform to a schema definition).

– The interaction protocol defines an ordering constraint that has to be obeyed
if the service is to be used.

A service user might need the following services to assemble a higher-level service:

create(id:ID), retrieve(id:ID):Doc, and update(id:ID,upd:Doc)

The user might require create;!(retrieve+update) to implement a goal or
business process. The create service is expected to be executed first, followed
by a repeated invocation of either retrieve or update.

3 Description of Semantic Grid Services

Dynamic assembly and management of Grid services rely on a high degree of
automation. Semantical information about services can support automation. Se-
mantics equally support upgradeability. Backward compatibility is required for
Grid Service architectures. A semantical framework can capture explicit con-
straints to maintain integrity during change management.

3.1 An Ontology for Service Description

The starting point in defining an ontology is to decide what the basic ontology
elements – concepts and roles – represent. An intuitive idea would be to represent
services as concepts. Our key idea, however, is that the ontology formalises a
software system and its specification, see Fig. 2.

– Concepts – circles in the diagram – shall represent static Grid system de-
scriptions such as invariants and/or other syntactical and semantical aspects.
Importantly, systems are dynamic, i.e. the descriptions of properties are in-
herently based on an underlying notion of state and state change.

– Roles – rectangles in the diagram – shall represent two different kinds of re-
lations. Transitional roles represent accessibility relations, i.e. they represent
processes resulting in state changes. Descriptional roles represent properties
in a given state, i.e. static relations.

A language based on these constructs introduces a general terminological frame-
work. Central here is the notion of states that capture properties of a system
and a service. We will focus on functional properties here; non-functional aspects
could be integrated as invariant (inv, see Fig. 2) properties1.
1 Ontological frameworks for semantic Web services such as OWL-S [9] provide this

type of support.



Service

Cond

Sign inv Sign

Cond

postpre

outSign

postCond

inSign

preCond

servDescrservName

LiteralLiteral

 ...

Fig. 2. Semantic Grid Services Ontology

3.2 A Basic Ontology Language – Syntax

We develop a description logic to define our service description, composition,
and matching ontology. A description logic consists of three types of entities.
Individuals can be thought of as constants, concepts as unary predicates, and
roles as binary predicates.

Concepts are the central entities. They can represent anything from concrete
objects of the real world to abstract ideas. Constructors are part of ontology lan-
guages that allow more complex concepts (and roles) to be constructed. Classical
constructors include conjunction and negation. Hybrid constructors are based on
a concept and a role – we present these in a description logic notation.

– Concepts are collections or classes of objects with the same properties.
Concepts are interpreted by sets of objects.

– Roles are relations between concepts.
– Individuals are named objects.
– Concept descriptions are formed according to the following rules: A is an

atomic concept, and if C and D are concepts, then so are ¬C and C u D.
Combinators such as C tD or C → D are defined as usual.

Roles allow us to describe a concept through its relationship to other concepts.
Two basic forms of role applications are important for our context. These will be
made available in form of concept descriptions. Value restriction and existential
quantification extend the set of concept descriptions.

– A value restriction ∀R.C restricts the value of role R to elements that
satisfy concept C.

– An existential quantification ∃R.C requires the existence of a role value.

Quantified roles can be composed. Since ∀R2.C is a concept description, the
expression ∀R1.∀R2.C is also a concept description.

The constructor ∀R.C is interpreted as either an accessibility relation R to a
new state C for transitional roles such as update, or as a property R satisfying
a constraint C for descriptional roles such as postCond.



3.3 A Basic Ontology Language – Interpretation

We interpret concepts and roles in Kripke transition systems [13]. Kripke tran-
sition systems are semantical structures used to interpret modal logics that are
also suitable to interpret description logics [10]. A Kripke transition system
(KTS) M = (S,L, T , I) consists of a set of states S, a set of role labels L, a
transition relation T ⊆ S × L × S, and an interpretation I.

We use Kripke transition systems to facilitate the transitional character of
service-based Grid systems. Concepts are interpreted as states. Transitional roles
are interpreted as accessibility relations. The set S interprets the state domains
pre, post, and inv – see Fig. 2. We can extend the set S of states by several
auxiliary domains such as Cond, Sign or Literal or other aspects that cap-
ture contract-specific properties. Cond represents conditions or formulas, Sign
denotes a domain of service signatures and Literal denotes string literals.

For a given Kripke transition system M with interpretation I, we define the
model-based semantics of concept descriptions2:

(¬A)I = S\AI

(C uD)I = CI ∩DI

(∀R.C)I = {a ∈ S|∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ S|∃b.(a, b) ∈ RI ∧ b ∈ CI}

Expressive role constructs are essential for our application. We distinguish

– transitional roles RT that represent component services: (RT )I ⊆ S × S.
They are interpreted as accessibility relations on states.

– descriptional roles RD that are used to describe properties of services
dependant on the state: (RD)I ⊆ S ×D for some auxiliary domain D. These
are interpreted as relations between states and property domains.

Some predefined roles, e.g. the identity role id interpreted as {(x, x)|x ∈ S},
shall be introduced. The predefined descriptional roles are defined as follows:

preCondI ⊆ preI × CondI postCondI ⊆ postI × CondI

inSignI ⊆ preI × SignI outSignI ⊆ postI × SignI

servNameI ⊆ invI × LiteralI servDescrI ⊆ invI × LiteralI

Note, that these descriptional roles are part of the wider ontology framework –
for the remainder of the paper, we will concentrate on transitional roles.

4 Composition of Grid Services

Composition of services to higher-level services becomes a central activity in
distributed computational environments, if reuse and sharing is an objective
[14]. We introduce a notion of service processes for two reasons:
2 The semantics of description logics is usually given by interpretation in models.

However, it can also be defined by translation into first-order logic [10]. Concepts C
can be thought of as unary predicates C(x). Roles R can be thought of as binary
relations R(x, y). Then, ∀R.C corresponds to ∀x.R(y, x) → C(x).



– Provider side: Services are sets of operations. An ordering of these operations,
specified through an interaction protocol, is often necessary to guarantee
a coherent usage of the service. Grid services are often stateful. Lifecycle
constraints do often apply, e.g. a create-operation might need to be invoked
before any other functionality can be used.

– Client side: Service usage is not restricted to request-response interactions.
Service usage can be based on a composition of individual services or ser-
vice operations to complex higher-level processes to satisfy user needs. Grid
service architectures are often based on a factory service that might cre-
ate multiple service instances and combine these to a higher-level service. A
process-style description can define higher-level services.

Providing a framework that represents these service processes is required.

4.1 Service Process Expressions

An ontology supporting service composition requires an extension of basic de-
scription logics by composite roles that can represent service processes [10]. These
are necessary to express interaction protocols for a single service and to define
composed higher-level services.

The following role constructors shall be introduced for service process
composition:

– Q ;R sequential composition with (Q ;R)I = {(a, c) ∈ SI ×SI |∃b.(a, b) ∈
QI ∧ (b, c) ∈ RI}; often we use ◦ instead of ; for functional composition

– !R iteration with !RI =
⋃

i≥1(R
I)i, i.e. the transitive closure of RI

– Q + R non-deterministic choice with (Q + R)I = QI ∪RI

Each service process is assumed to be sequential; concurrently executed services
are, however, possible. This language, which defines role expressions, is a regular
language. This property might be useful if finite state machine or automata-
based approaches for analysis are used. Two additional constructs:

– Often, we want to express the sequential composition of functional roles. A
role chain R1 ◦ . . .◦Rn is a sequential composition of functional roles (roles
that are interpreted by functions).

– A(R1, . . . , Rn) is an abstraction refering to a composite role A based on
the roles R1, . . . , Rn.

Expressions constructed from role names and role constructors are composite
roles. For example, the value restriction

∀ create;!(retrieve+update) . postState

is based on the composite role create;!(retrieve+update).
Axioms in this description logic allow us to reason about service behaviour.

Questions concerning the consistency and role composition with respect to be-
haviour protocols can be addressed. For instance [13]

∀R ;S.C ⇔ ∀R.∀S.C and ∀R + S.C ⇔ ∀R.C t ∀S.C



are two axioms that describe logical properties of the two role combinators se-
quence (;) and choice (+). The equivalence

∀R.C uD ⇔ ∀R.C u ∀R.D

is a pure logical axiom that describes a property of the u-combinator.
A special form of a role constructor are quantified constructors:

– The role expression ∃(u1, . . . , un).P is an existential predicate restric-
tion, if P is an n-ary predicate of a concrete domain – concepts can only be
unary – and u1, . . . , un are role chains.

– Analogously, we define a universal predicate restriction ∀(u1, . . . , un).P .

For example, ∃(x, y).equal expresses that there are role values (sometimes called
role fillers) for the two roles x and y that are equal. The expression ∀(x, y).equal
requires all role values to be equal.

4.2 Names and Parameterisation

The ontology language that we have defined by introducing role constructors for
service composition is not yet complete. We can formulate process expressions
in terms of service names, but we cannot refer to data and we cannot express
service parameters, cf. Section 2.1.

In ontology languages, individuals are introduced in form of assertions. For
instance, Doc(D) says that individual D is a document Doc and length(D,100)
says that the length of D is 100.

– An individual x with C(x) is interpreted by xI ∈ S with xI ∈ CI ⊆ S.
– The set constructor, written {a1, . . . , an} introduces the individual names

a1, . . . , an.
– The role filler R : a is defined by (R : a)I = {b ∈ S|(b, aI) ∈ RI}, i.e. the

set of objects that have a as a filler for R.

This allows us to introduce individuals on the level of concepts and roles. The
fills constructor R : a for a role stands for all objects that have a as a filler of
role R.

The essential difference between classical description logic and our variant
here is that we need names to occur in role and concept descriptions. A descrip-
tion logic expression ∀create.valid usually means that valid is a concept, or
predicate, that can be applied to some individual object; it can be thought of as
∀create(x).valid(x) for an individual x. If roles are services, then x should not
represent a concrete individual, but rather a name or a variable. For instance
the creation service create has a parameter id. Our objective is to introduce
names into the description language. We extend the language defined earlier on
by parameterised roles.

– We denote a name n by a role nN , defined by nI
N = {(nI , nI)}.



– A parameterised role is a transitional (functional) role R applied to a
name nN , i.e. R ◦ nN .

The name definition nN is derived from the role filler and the identity role
definition, i.e. (nN )I(nI) = (id : n)I .

With names and parameters our Grid service composition language is now
complete. We can define process expressions consisting of services that achieve
some defined goals. We can now express a parameterised role

∀create ◦ idN .post

for our example document storage and access services, defined by

{x|∀y.(x, y) ∈ (create ◦ idN )I → y ∈ postI}

which is equal to {idI |y ∈ postI}, where y is a postState element that could be
further described by roles such as y = ∀postCond.post u ∀outSign.out. With
names and role composition parameterised role chains can be expressed:

∀ update ◦(idN , docN ); postCond . equal(retrieve(id),doc)

The expression ∀ retrieve ◦ (idN ) ◦ outSign.(Doc) is another example3.
The tractability of reasoning about descriptions is a central issue for descrip-

tion logic. The richness of our description logic has some negative implications
for the complexity of reasoning. However, some aspects help to reduce the com-
plexity. We can restrict roles to functional roles. Another beneficial factor is that
for composite roles negation is not required. The defined language is therefore
decidable, i.e. the satisfiability problem is decidable. It is based on the language
ALC introduced in [10]. It introduces additionally name and parameterisation
constructs based on functional roles, avoiding negation – which preserves the
decidability in our extension.

5 Matching of Semantic Grid Service Processes

Dynamic assembly of services, for instance to higher-level services, is a cen-
tral feature of Grid service architectures. The virtualisation of services through
the Web Services Framework enables composition; specific semantic support for
matching is, however, desirable.

The activities that we are concerned with are service description, composition
and matching. Central reasoning constructs of description logics to support these
are equivalence and subsumption. In this section, we look at service matching
based on interaction protocols and how it relates to subsumption reasoning.

3 We often drop the N -annotation if it is clear that a name is under consideration.



5.1 Subsumption

Subsumption is the central inference construct in description logics [10]. Sub-
sumption is the subclass relationship. It is often used to describe classification
hierarchies. Axioms based on subsumption and equivalence are introduced into
description logics to reason about concept and role descriptions.

– Concepts: subconcept C1 v C2, concept equality C1 ≡ C2,
– Roles: subrole R1 v R2, role equality R1 ≡ R2,
– Individuals: individual equality {x} ≡ {y}.

The semantics of these axioms is defined based on set inclusion of interpreta-
tions for the subsumption v and equality for equivalence for ≡. Therefore,
A ≡ B iff A v B u B v A is a consequence of the axiom definitions. Sub-
sumption is not implication. Structural subsumption (subclass) is weaker than
logical subsumption (implication). Subsumption is defined by subset inclusions
for concepts and roles:

– A subsumption C1 v C2 between two concepts C1 and C2 is defined
through set inclusion for the interpretations CI

1 ⊆ CI
2 .

– A subsumption R1 v R2 between two roles R1 and R2 holds, if RI
1 ⊆ RI

2.

We can embed these axioms into the reasoning framework. For instance C1uC2 v
C1 or C2 → C1 implies C2 v C1 holds for concepts C1 and C2. We can
use subsumption to reason about matching of two service process descriptions
(defined as transitional roles).

5.2 Matching of Service Process Descriptions

A notion of consistency of composite roles that define interaction protocols or
higher-level services through process expressions relates to the underlying ser-
vice properties, which could be based on semantical contract-related properties.
Often, states or state transitions are constrained through invariants and pre-
and postconditions4.

A concept description ∀P (R1, . . . , Rn).C with composite transitional role
P is reachable if {(a, b) ∈ P I |∃b.b ∈ CI} is not empty. A composite role
P (R1, . . . , Rn) is consistent, if the last state is reachable.

For instance, in the presence of pre- and postconditions, a composite transi-
tional role P is consistent if the following (sufficient) conditions are satisfied:

– for each sequence R;S in P : ∀postCond.postR v ∀preCond.preS

– for each iteration !R in P : ∀postCond.postR v ∀preCond.preR

– for each choice R + S in P : ∀preCond.preR u ∀preCond.preS and
∀postCond.postR u ∀postCond.postS

4 Even though we do not fully formalise a framework for pre- and postconditions, we
consider these to be of importance for the Semantic Grid [1, 2]. Consequently, we
prepare our ontology for future extensions in this direction; see also Section 6.



We can now define consistent services processes. A service process is a consis-
tent composite role expression P (R1, . . . , Rn) constructed from transitional role
names R1, . . . , Rn and connectors ; , ! , and +5 . The specification of service
processes describes the ordering of observable activities of the service process
that implements the process expression.

A protocol transition graph G = (N,E) for composite transitional roles
is a graph that represents all possible process executions. A transition graph
G = (N,E) can be constructed inductively over the syntactical structure of
a composite role expression. This transition graph can be related to Kripke
transition systems in which we interpret expressions: N ⊆ S is a subset of
states; E ⊆ R is a subset of relations for a KTS M with states S and roles R.

The next step is to define matching of consistent service processes. The match-
ing approach here serves two purposes:

– Does an existing process that realises some goal matches some given require-
ments? Can this process be selected from a repository?

– What is the relation between two given process expressions? Can one be
considered as a refinement of an other?

Process calculi suggest simulations and bisimulations as constructs to address
the subsumption and equivalence of service processes [15]. We will use a notion
of simulation between processes to define service process matching.

– A provider service process P (S1, . . . , Sk) simulates a requested service pro-
cess R(T1, . . . , Tl), if there exists a homomorphism µ from the transition
graph of R to the transition graph of P , i.e. if for each Rg

Ti−→Rh there is a

Pk
Sj−→Pl such that Rg = µ(Pk) and Rh = µ(Pl).

– We say that a provided service process P (S1, . . . , Sk) matches a requested
service process R(T1, . . . , Tl), if P (S1, . . . , Sk) simulates R(T1, . . . , Tl).

The form of this definition originates from the simulation definition of the π-
calculus [15]. The provider needs to be able to simulate the request, i.e. needs
to meet the expected behaviour of the requested process. The problem with this
definition is that it involves a semantical structure. We can, however, construct
a transition graph based on the syntactical representation.

In our document service example, the provider might require the interaction
protocol crtDoc;!(rtrDoc+updDoc);delDoc and the requestor might formulate
a higher-level service create;!(retrieve+update). Assuming that the opera-
tion pairs crtDoc/create, rtrDoc/retrieve, and updDoc/update match based
on their contract-relevant descriptions, we can see that the provider matches (i.e.
simulates) the required server interaction protocols. delDoc is not requested.

We can expect service process matching not to be the same as subsumption.
Subsumption on roles is input/output-oriented, whereas the simulation needs to
consider internal states of the composite role execution. For each request in a

5 We often drop service parameters in expressions if only the ordering is relevant.



process expression, there needs to be a corresponding provided service. However,
matching is a sufficient condition for subsumption.

If service process P (S1, . . . , Sk) simulates service process R(T1, . . . , Tl), then
R v P . If P (S1, . . . , Sk) simulates R(T1, . . . , Tl), then for each (a, b) ∈ RI there
is a pair (a, b) ∈ P I . Therefore, RI ⊆ P I , and consequently R v P follow.

6 Semantics – the Wider Picture

Supporting the Semantic Grid [1, 2] is one of your key objectives. In this section,
we will briefly address wider implications of semantics in the Grid context. We
will also discuss related work in this context.

6.1 The Semantic Web

The Semantic Web initiative [4] bases the formulation of ontologies on two Web
technologies for content description: XML and RDF/RDF Schema. RDF Schema
is an ontology language providing classes and properties, range and domain no-
tions, and a sub/superclass relationship. Web ontologies can be defined in OWL
– an ontology language whose primitives are based on XML and RDF/RDF
Schema, which provides a much richer set of description primitives. OWL can
be defined in terms of description logics. However, OWL uses a different termi-
nology; corresponding notions are class/concept or property/role.

With the current wide acceptance of the Web and the potential of the Se-
mantic Web as an ontology framework, the combination of Semantic Web and
Grids to the Semantic Grid [1] is the obvious choice. We have developed our
ontology within this context.

6.2 Semantic Service Contracts

Service level agreements are called contracts. We have already mentioned pre-
and postconditions as possible, behaviourally oriented properties that form part
of a contract between service provider and service user. For instance, our match-
ing notion depends on a consistency notion capturing these types of descriptions.

We could add pre/postcondition specifications to our basic ontology language
– as indicated in Fig. 2, see [16] for details. Then, the formula

∀update◦(id,doc).∀postCond.equal(retrieve(id),doc)

in our description logic corresponds to

[update(id,doc)][postCond] retrieve(id)=doc

in a dynamic (modal) logic. Schild [12] points out that some description logics are
notational variants of modal logics. This correspondence allows us to integrate
modal axioms and inference rules about processes into description logics.



6.3 Semantic Services Ontologies

Some effort has already been made to exploit ontology technology for the soft-
ware domain [9, 17], mainly for the Web Services Framework [18]. Composition-
ality has, however, often not been at the centre of these investigations.

OWL-S [9] (aka DAML-S) is an OWL ontology for describing properties and
capabilities of Web services. OWL-S represents services as concepts. Knowledge
about a service is divided into two parts. A service profile is a class that describes
what a service requires and what it provides, i.e. external properties. A service
model is a class that describes workflows and possible execution paths of a
service, i.e. properties that concern the implementation. OWL-S provides to
some extend what we aim at for Semantic Grid services. However, our reasoning
and ontology support is not possible in OWL-S, since services are modelled as
concepts and not rules in the OWL-S ontology. Only considering services as roles
makes modal reasoning about process behaviour possible.

7 Conclusions

Grids are services-based infrastructures. In order to make full use of this infras-
tructure, services need to be composable. Users of a Grid infrastructure need to
be able to compose services, i.e. define processes that specify the execution of a
composed higher-level service process based on a number of individual services.
These processes implement more comprehensive goals and business processes.
We have defined a service composition language for Grid services.

Our aim is to support the Semantic Grid – knowledge and semantics are
expected to be of importance in the future. Consequently, we have embedded
our service composition language into a process-oriented ontological framework
that allows the intrinsic description of and reasoning about Semantic Grid ser-
vices. This ontological framework enables the integration with other semantical
aspects, e.g. property descriptions that are relevant for contract formulations in
Grid marketplaces. With Grid service technology moving towards Web services,
in particular semantic Web service techniques can provide solutions.

We have focused our investigation on an abstract service composition frame-
work, neglecting detailed explorations of different types of concrete services of
the individual Grid architecture layers. Addressing these different service types
is an issue that we will look at in the future. Equally important is the further
study of a variety of Grid application domains. So far, we have combined a case
study with experience in other service-oriented architectures.

References

1. D. De Roure, N. Jennings, and N. Shadbolt. The Semantic Grid: A Future e-
Science Infrastructure. International Journal of Concurrency and Computation:
Practice and Experience, 2003.



2. H. Tangmunarunkit, S. Decker, and C. Kesselman. Ontology-Based Resource
Matching in the Grid - The Grid Meets the Semantic Web. In D. Fensel, K.P.
Sycara, and J. Mylopoulos, editors, Proc. International Semantic Web Conference
ISWC’2003, pages 706–737. Springer-Verlag, LNCS 2870, 2003.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5), May 2001.

4. W3C Semantic Web Activity. Semantic Web Activity Statement, 2002.
http://www.w3.org/sw.

5. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology
of the Grid: Open Grid Services Architecture for Distribution Sys-
tems Integration. In Proceedings GGF4 Conference, February 2002.
http://www.globus.og/research/papers/ogsa.pdf, 2002.

6. F. Bonnassieux, R. Harakaly, and P. Primet. Automatic Services Discovery, Mon-
itoring and Visualisation of Grid Environments: The MapCenter Approach. In
Proc. European Across Grids Conference 2003, pages 222–229. Springer-Verlag,
LNCS 2970, 2004.

7. W. Poompatanapong and B. Piyatamrong. A Web Service Approach to Grid
Information Service. In Proc. Int. Conference in Web Services ICWS’2003. 2003.

8. N. Jennings. An Agent-based Approach for Building Complex Software Systems.
Communications of the ACM, 44(4), 2001.

9. DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

10. F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

11. C. Pahl. Components, Contracts and Connectors for the Unified Modelling Lan-
guage. In Proc. Symposium Formal Methods Europe 2001, Berlin, Germany.
Springer-Verlag, LNCS-Series, 2001.

12. K. Schild. A Correspondence Theory for Terminological Logics: Preliminary Re-
port. In Proc. 12th Int. Joint Conference on Artificial Intelligence. 1991.

13. Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 789–840. Elsevier, 1990.

14. V. Issamy and C. Kloukinas. Automating the Composition of Middleware Con-
figurations. In 15th International Conference on Automated Software Engineering
ASE’00. IEEE, 2000.

15. D. Sangiorgi and D. Walker. The π-calculus - A Theory of Mobile Processes.
Cambridge University Press, 2001.

16. C. Pahl. An Ontology for Software Component Matching. In Proc. Fundamental
Approaches to Software Engineering FASE’2003. Springer-Verlag, LNCS Series,
2003.

17. A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Semantic Configuration
Web Services in the CAWICOMS Project. In I. Horrocks and J. Hendler, editors,
Proc. First International Semantic Web Conference ISWC 2002, LNCS 2342, pages
279–291. Springer-Verlag, 2002.

18. World Wide Web Consortium. Web Services Framework. http://www.w3.org/
2002/ws, 2003.


