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Abstract

We presentan investigation into parsing
the PennChineseTreebankusing a Data-
Oriented Parsing (DOP) approach. DOP
comprisesan experience-basedapproachto
natural languageparsing. Most published
researchin the DOP framework usesPS-
treesas its representationschema. Draw-
backsof the DOP approachcentrearound
issuesof efficiency. We incorporaterecent
advancesin DOP parsingtechniquesinto a
novel DOP parserwhich generatesa com-
pactrepresentationof all subtreeswhichcan
bederivedfrom any full parsetree.

We compareour work to previous work
on parsingthePennChineseTreebank,and
provide both a quantitative and qualitative
evaluation. While our results in terms of
PrecisionandRecallareslightlybelow those
publishedin relatedresearch,our approach
requiresno manualencodingof headrules,
nor is a developmentphaseper se neces-
sary. We also note that certain construc-
tions which wereproblematicin this previ-
ous work can be handledcorrectly by our
DOP parser. Finally, we observe that the
‘DOP Hypothesis’is confirmedfor parsing
thePennChineseTreebank.

1 Intr oduction

We investigatethe parsingof the PennChineseTree-
bank(CTB) (Xue, 2004)usinga Data-OrientedPars-
ing (DOP: Bod, 1992; Bod, 1998; Bod et al., 2003)
approach. DOP comprisesan experience-basedap-
proachto naturallanguageparsing.Mostpublishedre-
searchin theDOPframework usesPS-treesasits rep-
resentationschema.Thesetreesarebrokendown into
subtrees,which are combinedtogetherto parsenew

sentences.Most criticism of theDOP-basedapproach
centresonquestionsof efficiency: in general,thenum-
ber of fragmentsprojectedfar exceedsthe number
of grammarrulesprojected,sostandardchart-parsing
techniquescannotdirectlybeappliedin aDOPparser.

More recently, however, advanceshave beenmade
which have led to considerableoptimisationsof DOP
models(Sima’an, 1999). Using similar techniques,
we have developeda novel DOP parserwhich opti-
misesfor top-down computationof the most proba-
ble parse rather than bottom-upcomputationof the
mostprobablederivation. Ourpreviouswork hasused
theEnglishcomponentof theXeroxHomeCentrecor-
pus,a collectionof 980 sentenceswhich weredrawn
from printermanualsandannotatedusingtheLexical-
FunctionalGrammarframework. Thesetreescanbe
fragmentedusingthe DOP decompositionoperations
to give in excessof 534billion fragments.In section
2, we reportonanovel, dynamicmethodthatwehave
developedwhich generatesa compactrepresentation
of all fragmentswhich canbe derived from a partic-
ular tree. This allows us to storeandaccessonly the
original treebanktrees,ratherthanexplicitly creating
the entirefragmentbase.Using this method,we can
efficiently retrieve only thosefragmentsdirectly use-
ful in analysingthegiveninputstring. In section2, we
alsodescribethetwo-phaseanalysisandMonte-Carlo
disambiguationcomponentsin ourparser.

The ChineseTreebankcomprises325 articles of
Xinhuanewswiretext in theareasof economics,poli-
ticsandculture.Thereare4185sentencesin total,and
approximately100,000words(about1/10 the sizeof
thePenn-IITreebank).Despitethefactthatourparser
was constructedfor English and for a different tree-
bank involving texts from different domains,we did
not have to make any adaptationsat all in order to
parsetheCTB. This is dueto thefactthatit is entirely
languageindependent,requiringonly thattrainingdata
be in the form of context-free phrase-structuretrees,
thusensuringtheflexibility of theDOPapproach.The
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relatedresearchthatwe describein section5 requires
the handcodingof a setof headrulesfor Chineseor
the developmentof a dependency parser, in addition
to which a specific ‘developmentphase’is required
on top of the normal training stage. In addition,and
importantly, our work on parsingthe ChineseTree-
bankshows that the ‘DOP Hypothesis’,which states
that parseaccuracy increasesas larger fragmentsare
includedin thefragmentbase,is confirmed.

In section4, we provide the resultsobtainedfrom
running our parserin a numberof experimentscar-
ried out on the CTB which we describein section3.
While our resultsarenot directly comparablewith the
previous researchon parsingtheCTB, given thatdif-
ferent splits into training and test dataare used,we
performslightly worsein termsof PrecisionandRe-
call comparedto therelatedwork. Nonetheless,given
thatpreviouswork onparsingtheCTB employsa rich
arsenalof extraresources,purelyin quantitativeterms,
we considerour resultsto beextremelypromising.In
section5, we provide a qualitative comparisonof our
resultswith this previous work, and show that cer-
tainconstructionswhichwereproblematicin thiswork
canbehandledcorrectlyby our DOPparser. Finally,
we concludeandprovide someavenuesfor furtherre-
search.

2 Data-Oriented Parsing

2.1 Theoretical Background

Data-orientedmodelsof language(e.g. Bod, 1992;
Bod 1998)arebasedon the assumptionthat humans
perceive and producelanguageby availing of previ-
ouslanguageexperiencesratherthanabstractgrammar
rules. Thesemodelsexploit large treebankscompris-
ing linguistic representationsof previously occurring
utterances.Analysesof new input sentencesarepro-
ducedby combiningfragmentsfrom thetreebank;the
mostprobableanalysisis determinedusingtherelative
frequenciesof thesefragments.

The tree fragmentsused in Tree-DOPare called
subtrees.Two decompositionoperatorsareusedin or-
derto producesubtreesfrom sentencerepresentations:

1. the root operator which takesany nodein a tree
to be the root of a subtreeanddeletesall nodes
exceptthis new root andall nodesdominatedby
it;

2. the frontier operator which selectsa (possibly
empty)setof nodesin thenewly createdsubtree,
excludingtheroot,anddeletesall subtreesdomi-
natedby thesenodes.

As an example, the completeset of DOP fragments
which canbederived from therepresentationof John
swimsis shown in Figure1.
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Figure 1: The completeTree-DOPmultiset of frag-
mentsfor thesentenceJohnswims.

Representationsfor new input areformedby com-
bining other fragmentsusing the compositionopera-
tor, namelyleftmost substitution,which ensuresthat
eachderivation in DOP is unique. The composition
of treest � andt� (t ��� t� ) is only possibleif the left-
mostfrontier nodeof t � andtheroot nodeof t� areof
the samecategory. The resultingtree is a copy of t �
wheret� hasbeensubstitutedat its leftmostnontermi-
nal frontiernode,asdemonstratedin Figure2.
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Figure2: TheDOPcompositionoperation

The probability of a derivation is the joint proba-
bility of choosingeachof thesubtreesinvolvedin that
derivation.Letting � e� bethenumberof timessubtreee
occursin thecorpusandr(e) betherootnodecategory
of e, theprobabilityassignedto e is
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The probability of a derivation is the productof the
probabilitiesof choosingeachof thesubtreesinvolved
in thatderivation.Thus,theprobabilityof aderivation
t �!� ... � t" is givenby:
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A parsetreecanpotentiallybegeneratedby many dif-
ferent derivations,eachof which hasits own proba-
bility of being generated.Therefore,the probability
of a parsetreeT is the sumof the probabilitiesof its
distinctderivations:�
	$,-
 � .0/ �1� * 23�14�5 �
	�67
 (3)



2.2 Implementation

The DOP approachrequiresthe projectionof a tree-
substitutiongrammar(i.e. a setof fragments)from a
given treebankratherthana context-free grammaras
usedin rule-basedparsing. However, in general,the
numberof fragmentsprojectedfar exceedsthe num-
berof grammarrulesprojected.This meansthat it is
not feasible,in termsof time andmemory, to directly
apply standardchart-parsingtechniquesin the devel-
opmentof aDOPsystem.

2.2.1 Fragmentation

The 980 treescontainedin the English sectionof
the HomeCentrecorpuscanbe generalisedto give in
excessof 534billion fragments.Evengeneratingonly
thosefragmentsof depth6 or lessresultsin over 4.5
million fragments. Clearly, generating,storing and
searchingthis numberof fragments,aswell asgath-
ering frequenciesof occurrencefor eachsubtree,is a
non-trivial task.

As outlined in Section2.1, tree fragmentsare ex-
tractedby firstly applying the root operationto each
original treebank tree, yielding intermediatefrag-
ments,andthenapplyingthefrontieroperationto each
of theseintermediatefragmentsin turn to generate
the completesetof fragments.As an alternative, we
have developeda dynamicmethodto generatea com-
pactrepresentationof all fragmentsthatcanbederived
from aparticulartree.

Compactrepresentationsarebuilt by firstly apply-
ing therootoperation,creatinganintermediatetreefor
eachnodein theoriginaltree.Then,ratherthanexplic-
itly applyingthefrontier operation,we associateeach
fragmentthatcanbegeneratedby applyingthefrontier
operationto intermediatetreeswith a uniquenumber.
In the examplein figure 3, the treeon the left repre-
sentingthe nounphrasethe manyields a total of six
fragments. In this instance,we associatethesefrag-
mentswith thenumbers1 – 6. Applicationof theroot
operationresultsin the creationof the threeinterme-
diatetreesto the right with root nodesNP, D andN.
Nodesin intermediatetreesare annotatedwith frag-
ment numberssuchthat the presenceof a particular
numberatany givennodein thetreeindicatesthatthis
nodeis alsopresentin therelevant fragment.Thean-
notationof the intermediatetreeswith root nodesD
andN in figure 3 is trivial becauseapplicationof the
frontier operationwill result in the extractionof only
onefragmentfrom each.Theannotationof the inter-
mediatetree with root NP is more complex as four
fragmentscan be extractedfrom it via frontier. If a
fragmentnumberis absentat a non-frontiernodebut
presentat its parentnodethen this indicatesthat, in
thatparticularfragment,thenodeis asubstitutionsite.
All possiblefragmentsof agiventreecanbegenerated

NP

D N

the man

:

NP 8 1,2,3,498 3,49 D N 8 2,49
the man

8 5 9 D

the

8 6 9 N

man

Figure3: Compactfragmentrepresentationfor thetree
representingtheNP theman.

by readingoff onefragmentat a time via thepresence
orabsenceof itsuniquefragmentnumberateachnode.
Theannotationof thetreewith root nodeNP in figure
3 indicatesthat fragments1 – 4 have root nodeNP,
thatnodeD is a substitutionsite in fragment2 andN
is a substitutionsite in fragment3, and that both D
andN aresubstitutionsitesin fragment1. Fragment
4 correspondsexactly to theoriginal tree.Frequencies
arecalculatedby recursively comparingall annotated
treesandidentifyingduplicates.

This methodallows us to storeandaccessonly the
original treebanktrees,thusalleviating theneedto ex-
plicitly createthefragmentbase–ataskwhich,givena
corpusof reasonablesizeandcomplexity, quickly be-
comesunfeasible.Instead,we canefficiently retrieve
only thosefragmentsdirectly useful in analysingthe
giveninput string.

2.2.2 Analysis

A chart built during the analysisphaseis a com-
pactrepresentationof all possiblederivationsleading
to valid parsesof the input string,which canbe con-
structedeither bottom-upor top-down. In order to
build anSTSGchartusingconventionalchart-parsing
techniques,each fragment must be expressedas a
rewrite ruleof theform root :<; frontier� ... frontier"
and a direct referenceto the original tree structure
mustbe retained.However, theseapproachesarenot
designedto handlethesheernumbersof fragmentsin-
volvedin parsingwithin theDOPframework. Wehave
developeda two-phaseanalysiscomponentbasedon
an optimisationproposedby (Sima’an,1999). How-
ever, we have optimisedfor top-down computationof
themostprobableparseratherthanbottom-upcompu-
tationof themostprobablederivation.

Thesetof parsesthatcanbegeneratedfor any given
sentenceusinga tree-substitutiongrammaris a subset
of thosethatcanbegeneratedby meansof thecontext-
free grammarunderlyingthat tree-substitutiongram-
mar. Thus, the first phaseof analysisinvolvesusing
the context-free grammarunderlyingthe treebankto
computean approximationof the parsespacefor the
input usingtheCKY algorithmasillustratedin figure
4. GiventhatthegrammarunderlyingtheEnglishsec-
tion of the HomeCentrecorpuscomprisesjust 2606
rules, this clearly constitutesa dramaticreductionof
the initial searchspace.During the secondphase,il-
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Figure5: STSGparsespacefor theman

lustratedin figure 5, the tree-substitutiongrammaris
appliedto this reducedparsespaceto generatetheex-
actDOPparsespacefor theinput string.

In orderto reducefrom theCFGparsespaceto the
STSGparsespace,a correspondencemustbe drawn
betweenthe context-free grammarrules usedduring
thefirst phaseandthetreefragmentswewish to insert
into thechartduring thesecondphase.The fragmen-
tationprocessdescribedin Section2.2.1providesthis
correspondencebecauseit allows the identificationof
all fragmentsin whicheachcontext-freegrammarrule
occurs.WhenextractingCFGrulesfrom thetreebank
tree in figure 3, we alsofind all occurrencesof each
rule in the set of annotatedtreesand extract the an-
notationson the nodecorrespondingto the left hand
side of the relevant rule. Thus, all rules in figure 4
areannotatedwith explicit referencesto thefragments
in which they occurin the tree-substitutiongrammar.
Ratherthanreturningto thetree-substitutiongrammar,
this information allows us to rebuild the set of frag-
mentsappropriateto thecurrentparsespaceasshown
in figure5, thusresultingin ahighly optimisedsecond
analysisphase.

2.2.3 Disambiguation
Disambiguationis thefinal stagein theparsingpro-

cessand involves selectingthe most probableparse
or derivation from the parsechart. Within the DOP
framework this constitutesan NP-completeproblem
(Sima’an,1999)asmany differentderivationscanre-
sult in thesameparseand,therefore,themostprobable
derivation(MPD) doesnot necessarilyequalthemost
probableparse(MPP).

Monte-Carlosamplinginvolvessearchingoverare-
ducedrandomsampleof thesearchspacewhichcanbe
generatedin polynomial time andwasfirst proposed
asa methodfor maximisationof theMPPin theDOP

framework in (Bod, 1992). Our implementationin-
corporatesthe refinementsdetailedin (Chappelier&
Rajman,2003).

3 Experiments

We have performedexperimentson a subsetof the
PennChineseTreebank(Version2.0)(Xue,2004).We
calculatedthe dimensionsof eachtreein termsof its
depth,width andnumberof nodesandselectedonly
thosetreeswhich wereof averagesizeor smaller, re-
sulting in a datasetcontaining1473 treebanktrees.
We thendivided this datasetinto threerandomtrain-
ing/testsplits. The sole constraintimposedon each
split wasthatall wordsin thetestsetalsobepresentin
thetrainingdata.Eachtestsetcontained150sentences
andeachtrainingsetcontained1323treebanktrees.

In addition to performingstandardtreenormalisa-
tions – the removal of empty nodes,treesdominat-
ing no non-emptynodesandA over A unaries– we
also removed X over A unariessuchthat all unary-
branchingtreesareof theform PRE-TERMINAL :<;
terminal. We did not remove functional information
from the syntactictags. During disambiguation,the
maximumnumberof samplestakenwas5,000.

In DOP, the fragmentspaceis generallyprunedby
excludingfragmentsgreaterthanacertaindepthin or-
der to renderthe searchfor the most probableparse
tractable. For eachsplit, we performedthreesetsof
experiments,limiting thefragmentspaceto fragments
of depth1, depth2 or lessanddepth3 or less. Fur-
thermore,theseexperimentswereperformedon both
taggedanduntaggedinput.

3.1 Parsing taggedinput with DOP

Whenparsingtaggedinput, two optionspresentthem-
selves. The first involvestaking asinput only tag se-
quencesand parsingthem as though they were ter-
minals, while the secondinvolves taking as inputI tag,wordJ pairs. Unlike PCFGparsing,thesetwo
approachesarenot equivalentfor DOP becauseDOP
grammarscontain lexicalised fragments. Under the
first approach,all lexicalisedfragmentsare immedi-
ately excludedfrom the parsespace.The secondap-
proach,on the other hand,only excludesthoselexi-
calisedfragmentswhosepre-terminalsdo not corre-
spondto the input tagsand is, therefore,inherently
more powerful. This approachcan be viewed as an
input-drivenpruningmechanismandis themethodol-
ogywehave chosento adopt.

In certaininstances,adheringto thespecifiedtagse-
quencewill result in no parsebeingproduced. This
generallyindicatesawordof unknown category, i.e. a
word which was seenin the training data,but never
with the tag with which we now seeit in the input
string. Here,we have chosento treatsuchwordsas



“un-tagged” words and simply include in the parse
spaceall relevant lexicalisedfragments,regardlessof
thepre-terminalsthey specifyfor thesewords.Where
we have successfullyconstructeda parsespacecover-
ing all inputwordsbut still cannotproduceafull parse,
we revert to an“un-tagged”parse.

Depth Recall Precision F-score
1 62.68 63.22 62.94
2 69.96 68.09 69.01
3 72.93 69.73 71.29

Table1: Resultsachievedonuntaggedinput.

Depth Recall Precision F-score
1 70.69 69.55 70.11
2 77.35 74.28 75.78
3 77.92 74.46 76.15

Table2: Resultsachievedon taggedinput.

4 Results

4.1 Quality

Table 1 shows standardrecall, precisionand f-score
resultson untaggedinput stringsat depths1, 2 and
3 averagedover all splits. Increasingthe sizeof the
fragmentbaseto includefragmentsof depth2 results
in a 7.28%increasein recall anda 4.87%increasein
precision. Increasingfrom depth2 to depth3 results
in furtherincreasesin accuracy of 2.97%for recalland
1.64%for precision. The averageincreasein f-score
from depth1 to depth3 is 8.35%.

Table2 shows recall, precisionand f-scoreresults
on taggedinput stringsat depths1, 2 and3, again av-
eragedover all splits. Increasingthesizeof the frag-
mentbaseto includefragmentsof depth2 resultsin a
6.66%increasein recallanda 4.73%increasein pre-
cision. Increasingfrom depth2 to depth3 resultsin
small increasesin recall andprecisionof 0.57%and
0.18%respectively. The averageincreasein f-score
from depth1 to depth3 is 6.04%.

TheDOP Hypothesisstatesthatparseaccuracy in-
creasesas larger fragmentsare includedin the frag-
ment base. This hypothesishasbeenshown for the
first time to hold for the parsingof English on sev-
eral different treebanks(Bod, 1998; Bod & Kaplan,
2003;Bod, 2003). It hasrecentlybeenshown to hold
for Data-OrientedTranslationfrom Englishto French
whenthe DOT systemis trainedon the HomeCentre
Corpus(Hearne& Way, 2003).Theresultspresented
here confirm that this hypothesisalso holds for the
parsingof Chinesetext whenthe parseris trainedon
theChinesePennTreebank.However, the increasein

Depth secs/sentence frags/sentence
1 94.39 373.38
2 117.65 1407.77
3 121.99 1493.89

Table3: Efficiency onuntaggedinput.

accuracy from depth2 to depth3 on taggedinput is
minimal.

Depth secs/sentence frags/sentence
1 57.60 263.29
2 76.93 976.82
3 88.16 1182.07

Table4: Efficiency on taggedinput.

4.2 Efficiency

The time taken to parseraw input stringsvariesfrom
94.39secs/sentenceatdepth1 to 121.99secs/sentence
at depth3, asshown in Table3. Obviously, parsing
is fasterover taggedstringsdueto the corresponding
reductionin ambiguity. Table4 showsthatparsetimes
on taggedinput vary between68.29secs/sentenceat
depth1 and 88.16 secs/sentenceat depth3. These
tablesalso clearly illustrate that averageparsetimes
generallycorrespondto the averagenumberof frag-
mentspresentin the parsespacefor eachsentence
at eachdepth. It is reasonableto expect that, as the
numberof training fragmentsavailableincreasesand
the numberof fragmentsrelevant to the parsespace
increases,the time taken to producea parsealso in-
creases.However, parsingcanbe separatedinto two
distinct phases:the constructionof the parsespace
and the selectionof the mostprobableparse. While
this expectationholdstrue for thefirst phase,it is not
necessarilythe casefor disambiguation.Despitein-
creasesin the averagenumbersof training fragments
andrelevantfragments,parsetimesdecreasefor splits
s1ands2by 2.68secs/sentenceand4.23secs/sentence
respectively from depth 2 to depth 3. As sentence
lengthandthenumberof samplestakenremainscon-
stantateachdepth,variationin disambiguationtimeis
dueto variationin the lengthsof thederivationssam-
pled. Longer derivationsarisewheremany smaller
fragmentsaresampled,andthesederivationsrequire
moretime. As fragmentdepthincreases,larger frag-
mentsareavailable for selection,resultingin shorter
derivationsand, therefore,decreaseddisambiguation
time.

No comparisonof parsetimesis possiblegiventhat
the previous work on parsingthe CTB did not pro-
vide any such details. While our parsetimes may
be deemedratherslow, fastertimesfor data-oriented
parsinghavebeenachievedby extractingaprobabilis-



Precision Recall F-Score
Bikel & Chiang2000 77.2 76.2 76.7

Levy & Manning2003 78.4 79.2 78.8
Chiang& Bikel 2002 81.8 78.8 79.9

Table5: PreviousResultsonParsingtheChineseTree-
bankfor sentenceslessthanor equalto 40words.

tic context-freegrammar(PCFG)which generatesthe
samestringsandtreeswith the sameprobabilitiesas
the correspondingDOP grammar(Goodman, 2003).
While this is worthy of investigation in further re-
search,our primary aim is not parsingper se, but
rathermachinetranslation(MT). Our intention is to
build large-scaleDOPandLFG-DOP(Bod& Kaplan,
1998)systems(cf. Poutsma,2000;HearneandWay,
2003; Way, 2003). SuchmodelsrequirealignedPS-
trees(and, for LFG-DOP models,LFG f(unctional)-
structurescorrespondingto thesetrees,henceour use
of the HomeCentrecorpus),and to date,no efficient
PCFG reductionhas beendevelopedwhich can be
applied to a bilingual treebankand which will gen-
erate the samesource/target strings and trees with
the sameprobabilitiesasthe correspondingbilingual
DOP-basedgrammar. Accordingly, if we were to
adaptourparserto incorporateGoodman’sideas,there
is no guaranteethatsuchsavingswould carryover to
MT. Wehave, therefore,decidedto maintaintheflexi-
bility of aDOP-parserwhich is immediatelyutilisable
in theareaof machinetranslation.

5 Contrast with RelatedResearch

Previouswork on parsingtheCTB includes(Bikel &
Chiang,2000), (Chiang& Bikel, 2002) and (Levy
& Manning,2003). Bikel & Chiang(2000)usetwo
modelsfor their experiments,onebasedon the BBN
modelof (Miller et al., 1998),andtheotheron Tree-
InsertionGrammar(TIG) (Schabes& Waters,1995),
adaptedfrom (Chiang, 2000).Chiang& Bikel (2002)
usesthesameTIG-parser, but useInside-Outsiderees-
timation to improve the setof headrulesfor Chinese
given in (Bikel & Chiang,2000). Levy & Manning
(2003) use the factoredparsingmodel of (Klein &
Manning, 2002), which involves combininga parse
derived from a non-lexicalised,maximumlikelihood
estimatedPCFGwith a parseobtainedindependently
from adependency model.

Levy & Manning(2003)discusswhy they chosenot
to usethesametrainingandtestdataas(Bikel & Chi-
ang,2000).Thelatterusedarticles1–270for training,
301–325for systemdevelopment,and 271–300for
testing. Levy & Manning(2003)point out that “this
developmentsetwasuncharacteristicof thecorpusas
a wholeandnot idealfor development”.Accordingly,
they usearticles1–25for developmentand26–270for
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Figure 6: NN mis-taggedas VV at depth1 (top) is
correctlytaggedatdepths2 and3.

training underdevelopment. Given thesediscrepan-
cies,the two approachesarenot directly comparable.
Despitethe differencesin training and development
data,they neverthelessperformedexperimentson the
sametestset.The respective resultsfrom thesethree
approacheson this testdataaregivenin Table5.

As statedin section3, we usedifferenttrainingand
testsetsagaincomparedto thesepreviouslypublished
papers.We needto ensurethatcertaintreeswereex-
cludedfrom thesedatasetsso that the numberof tree
fragmentswasnot overly onerous.Giventhis, our re-
sultsarenot directly comparablewith thosegiven in
Table5. Our f-scoresare8.61%lower thanthoseof
(Chiang& Bikel, 2002) on un-taggedinput strings
and3.75%lower on taggedinput. More experiments
are requiredto determinewhetherfurther increasing
fragmentdepthandthe amountof training dataused
will resultin improvedperformance.

Levy & Manning(2003)provideanin-depthanaly-
sisof variouserrortypesaccordingto anumberof cri-
teria: multilevel VP adjunction,NP-NPmodification,
Coordination,andtaggingerrors.In thenext threesec-
tions,weprovideacomparisonwith Levy & Manning
(op cit.) on the latter threetypesof error. This com-
parisonis basedon manualanalysisof theparsespro-
ducedfor 100 testsentences,all of which werecon-
tainedin thesametraining/testsplit andweretherefore
parsedover thesametrainingdataateachdepth.

5.1 Tagging

Levy & Manning(2003)observe that the main error
in taggingwasthe tendency to mistagverbs(VV) as
commonnouns(NN) andvice versa. They notethat
while all languagesprovide a meanswherebyverbs
canbeconvertedinto nouns,this is particularlyaprob-
lem in Chinese,given its sparsemorphology. While
this is alsotrueof English,morphologicalvariantsof
ambiguousN-V wordscanbe insertedto resolve the



ambiguity. Theonly way in whichsuchambiguitycan
be resolved in Chineseis to seewhetheradverbial or
prenominalmodifierscanco-occurwith thesaidword

In orderto try to evaluatethe impactof N-V ambi-
guity in Chinese,Levy & Manning (op cit.) trained
their parserwith the VV and NN tagsmerged. Un-
surprisingly, theF-scoresdecrease:by 5.4%for their
vanilla PCFG parser, and by 1.7% for the refined
model.

When parsingraw input strings, our tagging ac-
curacy increasesfrom 92.48%at depth1 to 93.92%
at depth2, with no further improvementat depth3.
We alsoobserved that the main sourceof error con-
cernedambiguityasto whethercertainwordsshould
be taggedasnounsor verbs– theseerrorsaccounted
for 38.85%of all incorrecttagassignments.Theaddi-
tion of fragmentsof depth2 to theparsespacereduced
this typeof error to a certainextent– asillustratedin
Figure6 – but no further improvementswereseenas
fragmentsof depth3 wereintroduced.

5.2 NP-NPmodification

Levy & Manning (op cit.) note that this type of er-
ror wasthemostcommonin their experiments.Com-
pound noun interpretationis notoriously difficult in
Englishaswell, of course,but Levy & Manningob-
serve that suchstructurestypically receive a flat in-
terpretationin thePenn-IITreebank.While sucham-
biguity is difficult to resolve in Chinese,the fact that
thedifferentsemanticinterpretationswill have differ-
ent dependency parsesenablescertaincasesto be in-
terpretedcorrectly, but only “when word frequencies
are large enoughto be reliable”. Nevertheless,even
wherethedependency parsewasunableto help, they
notedthat “the internal distributions (i) of NP mod-
ifiers and (ii) left-modified NPs both differ from the
internaldistribution of NPsin general”.Accordingly,
they mark eachtype as(i) or (ii) in the PCFGparser
whichreducestheamountof biasagainstNP-NPmod-
ification in nominalcompounds.

Again, we found that the addition of larger frag-
mentsto theparsespaceled to greateraccuracy in the
interpretationof compoundnouns.Figure7 illustrates
how, as the available context increases,the required
shallow NR-NN-NN modificationis correctly identi-
fied, while Figure 8 shows the alternative situation,
wherea deeperparseis required. However, even at
depth3 NP-NPmodificationerrorsarestill common.

5.3 Coordination

With respectto coordination,Levy & Manning (op
cit.) found two main error types: misattachmentof

1Translationsprovided by a native speaker of Chinese
with fluentEnglish.

IP

NR NP-SUBJ VP PU

NN NN ... ...

IP

NP-SBJ VP PU

NR NP ... ...

NN NN

(a) (b)
IP

NP-PN-SBJ VP PU

NR NN NN ... ...

(c)

Gloss:XiamenSpecialEconomicZone...1

Figure 7: Shallow NR-NN-NN modification is cor-
rectly identified stepwiseas depth increasesfrom
depth1 (top) to depth3 (bottom).

IP-HLN

NP-TPC NP-SBJ VV

DT NN NN NN

IP-HLN

NP-SBJ VV

NP NP

DT NN NN NN

(a) (b)

Gloss:TheNationalTrack andField Championshiphasfinished1

Figure8: NP-NPmodification,incorrectlyanalysedat
depth1 (top) is correctlyanalysedatdepths2 & 3.

the right conjunctwherethis is eitherverbalor nom-
inal. Therearetwo main problemsfor VP coordina-
tion: firstly, dueto pro-drop, any VP coordinationis
ambiguouswith a higher IP coordination(assuming
thereto bearule K � :<;ML � somewherein thegram-
mar); andsecondly, VPs in the CTB aremulti-level,
whichmakesit difficult to establishthescopingof ad-
juncts. Levy & Manning (op cit.) find that the first
of theseproblemscanbelessenedsomewhatby mark-
ing adverbswhich possessan IP grandparent,while
thesecondproblemis alleviatedto a certainextentby
markingVPsasadjunctionor complementationstruc-
tures. They alsonote that only like VPs arecoordi-
natedin their trainingphase.As for NP coordination,
themajorscopingproblemwasin falsehighscopings,
which are reducedby the marking of NP conjuncts.
They foundnocasesof falselow attachmentsatall for
NPs.

We encounteredsimilar difficultiesin analysingNP
coordination,andachievedlittle improvementdespite
the additionalcontextual informationavailablewhen
larger fragmentswereaddedto theparsespace.Con-



trary to theobservationsof Levy & Manning(op cit.),
we foundno errorsin VP coordination.However, VP
coordinationwasnot particularlycommonin the set
of manuallyanalysedparsesandfurther investigation
is neededin ordergain a clearerpictureasto how it is
analysedundertheDOPapproach.

6 Conclusionsand Futur eWork

This work hasprovided an accountof how our Data-
OrientedParser fared in parsing the ChineseTree-
bank.Despitethefactthatourparserwasinitially con-
structedfor Englishon a differenttreebankinvolving
texts from differentdomains,wedid nothave to make
any adaptationsat all in orderto parsethe CTB. Un-
like relatedresearch,no furthermechanismssuchasa
manualencodingof headrulesfor Chineseor adepen-
dency parser, wererequired.

While our resultsarenot directly comparablewith
this relatedresearch,our figuresin termsof Precision
andRecallareslightly lower. Nonetheless,given the
fact that the relatedwork requiresa numberof other
resources,we considerour results to be extremely
promising.In addition,in a qualitative evaluation,we
observed that our approachwasbetterableto handle
certainconstructionswhich posedproblemsin previ-
ouswork.

This is thefirst attemptto applydata-orientedmeth-
ods to the CTB, and importantly our work confirms
the ‘DOP Hypothesis’,which statesthat parseaccu-
racy increasesaslarger fragmentsareincludedin the
fragmentbase.

As for furtherwork, while our maininterestsarein
theareaof DOP-basedmodelsof translation,therere-
maininsightsfrom Goodman’s (2003)researchwhich
show that parsetimescanbe decreasedconsiderably
for DOP. In addition,wewouldliketo applyourparser
to sectionsof thePenn-IITreebankto compareour re-
sultsonChinesefor English.
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