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Abstract 

The specific cake resistance in dead-end filtration is a complex function of suspension properties and 

operating conditions. In this study, the specific resistance of resuspended dried bakers yeast 

suspensions was measured in a series of 150 experiments covering a range of pressures, cell 

concentrations, pHs, ionic strengths and membrane resistances. The specific resistance was found to 

increase linearly with pressure and exhibited a complex dependence on pH and ionic strength. The 

specific resistance data were correlated using an artificial neural network containing a single hidden 

layer with nine neurons employing the sigmoidal activation function. The network was trained with 104 

training points, 13 validation points and 33 test points. Excellent agreement was obtained between the 

neural network and the test data with average errors of less than 10%. In addition, a network was 

trained for prediction of the filtrate flux directly from the system inputs and this approach is easily 

extended to crossflow filtration by adding inputs such as the crossflow velocity and channel height. An 

attempt was made to interpret the network weights for both the specific resistance and flux networks. 

The effective contribution of each input to the system output was computed in each case and showed 

trends that were as expected. Although network weights, and consequently the computed effect of each 

parameter, is different each time a network is changed (depending on the initial weights used in the 

training process), the variation was low enough for information contained in the network to be 

interpreted in a meaningful way. 
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Nomenclature 

a constant in equation [5] 

A membrane area (m
2
) 

b constant in equation [5] 

c mass of solids per unit volume of filtrate (kg/m
3
) 

J filtrate flux (m/s) 

m mass of cake per unit membrane area (kg/m
2
) 

MSE maximum squared error 

nh number of neurons in hidden layer 

nv number of input variables 

Oj absolute value of the weight from the jth neuron in hidden layer 

ΔP applied pressure (N/m
2
) 

ΔPc cake pressure drop (N/m
2
) 

Rc cake resistance (m
−1

) 

Rm membrane resistance (m
−1

) 

RT total resistance to flow (m
−1

) 

t time (s) 

v relative effect of input variable 

V filtrate volume (m
3
) 

wkj absolute value of weight from kth input to the jth hidden neuron 

wvj absolute value of weight from the input of interest to the jth hidden neuron 

xi data point to be normalised 

 normalised data value 

xmin minimum value of data point 

xmax maximum value of data point 

Greek letters 

α specific cake resistance (m/kg) 

μ filtrate viscosity (N s/m
2
) 

 

  



1. Introduction 

Membrane filtration is frequently used for the separation of solids such as colloids and microbial cells 

from liquids. Applications range from treatment of industrial wastewater to purification of drinking 

water, to dairy processing, to the removal of macromolecules (proteins, polyphenols, polysaccharides, 

etc.) from beer and wine. Microfiltration in particular is an efficient technique for separating particles 

ranging from 0.1 μm up to a few microns in size from a liquid medium [1]. It can be conducted using two 

distinct modes of operation referred to as dead-end and crossflow microfiltration. In the dead-end 

configuration, the feed suspension flows perpendicular to the membrane surface, whereas in crossflow 

systems, the suspension flow is tangential to the membrane. 

Filtration performance is usually expressed in terms of the filtrate flux, J, defined as the filtrate flowrate 

per unit membrane area. This is typically related to the applied pressure through the expression 
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where J is the filtrate flux, ΔP the applied (trans-membrane) pressure, μ the filtrate viscosity, Rm the 

membrane resistance, α the specific cake resistance and m is the cake mass per unit membrane area. In 

dead-end filtration, m can be related to the filtrate volume, V, by the expression 
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where A is the membrane area and c is the mass of solid particles per unit volume of filtrate. The specific 

cake resistance can be measured (or process performance calculated) from the well-known expression, 

derived using Eqs. (1) and (2) and valid for constant pressure filtration [2], namely 
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In membrane filtration operations, the specific cake resistance can be considered to be a measure of the 

‘filterability’ of suspensions as its value determines to a large extent the efficiency of a process. 

However, while filtration equations are simple in form, much complexity is concealed because the 

specific resistance is dependent on many other variables. Traditionally, the main factor assumed to 

affect the specific resistance is the pressure drop across the filter cake, ΔPc, where this quantity is 

defined by the expression 

(4) 
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Although α is technically dependent on cake pressure drop, most authors correlate dead-end specific 

resistance data in terms of the total applied pressure, ΔP, an approach that that is reasonable as long as 

the cake resistance is dominant throughout the filtration. The equations used to correlate specific 

resistance data are varied but most authors use the classic power-law equation [3], [4] and [5] or, in 

some cases (especially for microbial suspensions), a linear relationship between specific resistance and 

pressure is employed [6], [7] and [8]. 



The specific cake resistance is dependent on many parameters other than pressure. Ionic strength and 

pH are well known to influence specific resistance in a complex manner that is very system specific [9], 

[10] and [11]. In addition to the effects of pH and ionic strength, microbial filtration is complicated by 

subtleties that arise due to the biological nature of the suspensions. Hodgson et al. [12] demonstrated 

the importance of cell surface properties on filtration behaviour. Very often these properties are 

affected by, and related to, conditions such as the type of growth medium used to produce the cells [13] 

and [14], the stage of the growth cycle at which the cells are harvested for filtration and the possibility 

of cell aging between halting the fermentation and performing the filtration [15] and [16]. 

As well as causing changes in cell surface properties, medium components may also provide additional 

resistance to flow. Solid medium components may cause cake clogging [17] while concentration 

polarisation of soluble components may also be significant if solute rejection occurs [18]. Both of these 

phenomena may increase the effective specific cake resistance. 

Further complications have been suggested by Mota et al. [19], who have found evidence that the 

specific resistance of yeast suspensions increases with increasing suspension concentration, a finding 

that is supported in recent work on the ultrafiltration of silica suspensions [20]. These findings are 

atypical as most authors would consider the specific resistance to be independent of concentration. 

Given the number of factors affecting the specific cake resistance, prediction of this parameter becomes 

problematic. While conventional non-linear regression approaches could be used to derive experimental 

correlations, the complexity of the problem, especially the dependence of specific resistance on pH and 

ionic strength, makes such an approach difficult and likely to lead to very complex and unwieldy 

empirical equations. In this context, artificial neural networks (ANNs) may provide a promising avenue of 

research. The aim of an approach based on ANNs is not unlike that of conventional non-linear regression 

in that experimental data can be used to develop computational algorithms that will allow a given 

quantity to be predicted for any set of process variables within the range of the original experimental 

data [21]. While the network architecture must be chosen after some numerical experimentation, no 

assumptions about the functional relationship between the independent (input) variables and the 

dependent variables (output) are required. Furthermore, even quite simple network architectures can 

reproduce highly complex non-linear behaviour. Recently, ANNs have been employed in a number of 

studies to model the flux dynamics of crossflow membrane filtration processes, including microfiltration 

[22], [23], [24], [25], [26] and [27], but have not yet been employed for dead-end microfiltration of 

particulate or cellular suspensions. 

In the study reported here, we have measured the specific resistance and steady flux through cakes 

formed by bakers yeast suspensions over a range pressures, pHs, ionic strengths, cell concentrations and 

membrane resistances. ANNs are constructed, trained and validated and found to perform well in the 

correlation and prediction of specific resistance and filtrate flux. Furthermore, an attempt is made to 

interpret the relative effects of the network inputs on the network output. 

  



2. Materials and methods 

2.1. Yeast suspensions 

Experiments were conducted with suspensions of dried ‘Fermipan’ bakers yeast (DSM Bakeries, Holland) 

resuspended in distilled water and prepared freshly before use. Suspensions were washed twice with a 

0.5 M NaOH solution and then three times with distilled water. The washing step involved suspension of 

1.5 g of cells in 15 mL of either NaOH or distilled water, followed by centrifugation for 3 min at 58.33 Hz 

(3500 rpm), and the supernatant removed. Cells were washed in caustic solution because washing in 

pure water alone resulted in protein that had leached from the cells remaining in the suspension. It is 

well established that proteins can cause fouling of microfiltration membranes and the presence of this 

protein would have affected the specific cake resistance measurements. The dry mass of cells after the 

washing steps was found to be 50% of the unwashed dry mass and it is this dry mass concentration that 

is reported throughout the paper. The pH of each solution was adjusted to the desired value by adding 

either 0.5 M HCl or 0.5 M NaOH. The salt concentration (and therefore the ionic strength) was adjusted 

by adding NaCl. 

2.2. Membranes 

Experiments were performed using the following hydrophilic polyethersulphone membrane discs 

(47 mm diameter): (i) a Supor
®
-450 membrane filter from Pall Corporation with a nominal pore size of 

0.45 μm and a thickness of 140 μm, and (ii) a Supor
®
-200 membrane filter from the same supplier with a 

nominal pore size of 0.2 μm and a thickness of 145 μm. The 0.45 μm membrane had a mean resistance 

to flow of 1.78 × 10
10

 m
−1

, and the 0.2 μm membrane had a mean resistance to flow of 3.81 × 10
10

 m
−1

. 

Slight variability (in the order of 10–15%) in the membrane resistances was noted. A clean membrane 

was used for each run, and the membrane resistance was experimentally determined before each run. 

The membranes were supported in the filtration cell with circumferential supports of width 1 mm and 

the effective filtration area was 1.59 × 10
−3

 m
2
. 

2.3. Filter cell 

Microfiltration experiments were carried out using a 150 mL, 47 mm diameter stainless steel dead-end 

filtration cell from Pall Corporation. The cell was pressurised using compressed air and the pressure 

controlled using a regulator. All experiments were carried out at room temperature. Fresh yeast 

suspension and a new membrane were loaded into the apparatus for each experiment. The filtrate was 

collected in a reservoir placed on an electronic balance (Mettler Toledo BS3001) interfaced to a 

computer using Winwedge
®
 software (TAL Technologies Inc., PA, USA) to collect and record time and 

filtrate mass data at 1 s intervals. After each run, the apparatus was thoroughly cleaned using Teepol 

detergent, followed by a rinse of distilled water. 

2.4. Filtration method 

The membrane resistances were determined by measuring the filtrate flux of distilled water through the 

membrane at a fixed pressure and applying Eq. (1) with m = 0. The steady-state method [3] was 

employed to determine the specific resistance of the filter cake. In this method, a given volume of yeast 

suspension (typically 100 mL), containing a known dry mass of yeast, was filtered at a pressure of 

0.2 × 10
5
 Pa (0.2 bar). Once the initial (dynamic) filtration was complete, the pressure was released. The 



filtrate was carefully returned to the filtration module, ensuring that the cake of cells was not disturbed. 

The cell was re-pressurised to the pressure employed to form the filter cake (0.2 × 10
5
 Pa (0.2 bar)) and 

filtration recommenced. The filtrate flux was allowed to reach steady-state before the transmembrane 

pressure was incremented to the next pressure, and recorded at five different pressures between 0.2 

and 2 × 10
5
 Pa (0.2 and 2 bar). The filtrate mass was monitored continuously throughout the experiment 

and the steady-state flux was determined from this measurement for each pressure. The specific 

resistance was then calculated by applying Eq. (1). It should be noted that it is generally found that the 

specific resistance of a microbial cake at a given pressure is independent of whether or not the cake has 

been exposed previously to different pressures [28] and hence the approach of incrementing the 

pressures in the way described above is valid. 

The membrane was examined for evidence of irreversible fouling after each experiment. This was 

achieved by washing the membrane with distilled water and then measuring the flux of distilled water 

through the washed membrane. Although there was some evidence of membrane fouling, the 

membrane resistance before and after filtration was of the order of 10
10

 m
−1

, whereas the cake 

resistance ranges between 10
12

 and 10
13

 m
−1

. Therefore, the increase in membrane resistance due to 

fouling does not affect the filtration characteristics and the cake resistance is the limiting resistance. 

2.5. Experimental design 

The experimental data in this work were collected for the purpose of attempting to model and predict 

the specific resistance and filtrate flux in dead-end microfiltration using an artificial neural network. The 

process parameters that were identified as being important in determining the specific cake resistance 

and filtrate flux were the pressure, yeast concentration, pH, salt concentration and membrane 

resistance. In the case of the specific resistance, the expectation would normally be that the effect of 

concentration should be negligible despite recent findings to the contrary [19] and [20]. Similarly one 

would expect the effect of membrane resistance on both the specific resistance and the flux to be small. 

Nevertheless, the effects of both cell concentration and membrane resistance were examined, in order 

to ascertain whether the predictions of the Garson Equation (described in Section 3.5) agree with these 

findings. 

The experimental population was devised using a range of possible combinations of the process 

parameters that were deemed of importance in the dead-end filtration of the yeast suspensions 

employed in this study. These were arbitrarily set to the values outlined in Table 1. All of the possible 

combinations of the values of the parameters outlined in Table 1 were numbered and using a random 

number generator, 30 experiments were chosen at random. The reason for choosing a random sample 

of experiments is to illustrate the applicability of the neural network approach to a process in which 

interactions between parameters are not necessarily understood. This lack of understanding would 

make impossible the use of a partial factorial design, for example. Choosing the experiments randomly 

needs no prior knowledge of the effect of the process parameters or their interactions on the 

experimental outcome. 

  



Table 1: Process Parameters 

Yeast concentration 

(g/L) 
pH 

NaCl concentration 

(g/L) 

Rm 

(m
−1

) 

ΔP 

(×10
5
 Pa (bar)) 

3 2 0 1.78 × 10
10

 0.2 

5 3 1 3.81 × 10
10

 0.5 

7 4 2  1.0 

9 5 3  1.5 

11 6 4  2.0 

13 7 5   

15 8 6   

 

Each combination of process parameters was performed at five different pressures, so a sample of 150 

experiments was thus performed from all of the possible combinations of the process parameters. The 

specific resistance and steady-state flux were experimentally determined for each parameter 

combination selected. 

2.6. Artificial neural networks 

The principles of artificial neural networks and their application to membrane processes have been 

described in detail previously in the studies mentioned in Section 1 and here we only give the key 

features of our implementation of this approach. A feed-forward ANN employing the sigmoid transfer 

function and the Levenberg-Marquardt algorithm for training was constructed with the MATLAB 7.0 

Neural Networks Toolbox (The MathWorks Ltd., UK). All network weights were assigned random initial 

values in the range (−0.1, +0.1), training was conducted in batch mode and the training rate was set at 

the Matlab default value. Input data were normalised according to the following expression, used by Fu 

et al. [21] 

(5) 
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Where xi* is the normalised value, xi the original data point, xmax and xmin, respectively, the maximum 

and minimum values for x, and a and b are the positive constants allowing the limits of the interval for 

the scaled values to be fixed. In this paper, a and b are set as 0.6 and 0.2, thus the range of the data 

after normalisation is (0.2, 0.8). The scale of the sigmoid transfer function is (0, 1), so training the 

network in the range 0.2–0.8 allows a margin for extrapolation outside the range of the training data. 

The data in this study were divided into three sub-sets: a training set, a validation set and a test set as 

described previously [29] and [30]. Using a technique known as cross-validation, the validation set 

prevents over-training of the network by stopping training early once the maximum squared error (MSE) 

in the validation set begins to increase. The number of training points was chosen arbitrarily to be 104 

and training points were selected to ensure that extreme values of the output (specific cake resistance) 

were included in the training set, as is clear from Fig. 1. The number of validation points was 13 and the 

number of test points was 33. It has been shown by Amari et al. [31] that the number of data points 

used for cross-validation should be very small compared to the number of training points. Reduction in 

the number of training data points reduced the accuracy of the final network. Table 2 provides a 



summary of all the experimental conditions employed and shows which experiments were used for 

training, validation and testing. 

 

Figure 1: Fit of 5-9-1 network to specific resistance data. Dashed lines denote + 10% variation from the y=x line 

 

 
  



Table 2: Experimental combinations and choice of training, validation and testing points 

Yeast concentration 

(g/L) 
pH 

Salt concentration 

(g/L) 

Pore size 

(μm) 

Training (T), validation (V), test 

(X)
a
 

3 2 5 0.2 T, T, T, T, T 

3 2 2 0.2 T, V, T, T, T 

3 7 2 0.45 T, V, T, T, T 

3 9 4 0.2 T, X, T, T, X 

5 4 0 0.45 T, T, T, X, X 

5 5 5 0.45 T, V, T, T, T 

5 9 4 0.2 T, X, V, X, X 

7 2 1 0.45 T, V, T, T, T 

7 2 5 0.45 T, T, T, T, X 

7 4 0 0.2 T, T, T, T, X 

7 4 1 0.45 T, T, X, T, T 

7 8 2 0.2 T, T, X, T, X 

7 8 6 0.2 T, T, T, X, T 

7 9 4 0.2 T, X, T, X, X 

9 5 3 0.2 T, T, T, T, V 

9 5 4 0.2 T, T, T, X, T 

9 9 0 0.2 V, T, T, T, T 

9 9 3 0.45 T, V, T, T, X 

9 9 4 0.2 T, T, T, T, X 

11 4 3 0.2 T, V, T, T, X 

11 6 6 0.2 V, T, T, T, T 

11 8 3 0.45 T, V, X, T, X 

11 9 1 0.2 T, V, T, X, X 

11 9 2 0.45 T, T, X, X, X 

13 4 3 0.45 T, T, T, T, T 

13 8 2 0.2 T, T, T, X, X 

13 8 3 0.45 T, V, T, T, T 

15 5 0 0.45 T, T, T, T, X 

15 5 1 0.45 T, T, T, T, X 

15 6 3 0.45 T, T, X, X, T 
a
 Letters correspond to experimental pressures of 0.2, 0.5, 1.0, 1.5 and 2.0 × 10

5
 Pa (0.2, 0.5, 1.0, 1.5 and 

2.0 bar), respectively. 

 

  



3. Results and discussion 

3.1. Filtration behaviour 

In the absence of membrane fouling and/or cake clogging a plot of t/V versus V in dead-end filtration 

should lead a straight line with a slope that is proportional to the specific cake resistance. In 

experiments over a wide range of conditions, all our t/V versus V plots obtained during the initial cake 

formation step, were found to be linear suggesting that the performance of the filtration system 

employed in this study is dominated by the cake resistance. 

Fig. 2 shows plots of specific cake resistance, measured by the steady-state method, as a function of 

pressure, at various pHs. The magnitudes of the specific resistance values are in agreement with other 

workers [32] and [33], but higher than those of Nakanishi et al. [3] and McCarthy et al. [28]. This is 

probably due to variations in the types of dried yeast employed in each study as well as differences in 

the various cell washing regimens used. It should be noted also that differences in specific resistance 

values can occur depending on whether this parameter is defined in terms of a dry cell mass or a wet 

cell mass. In general, the specific resistance based on a dry cell mass will be larger than its wet cell 

equivalent. 

 

Figure 2: Effect of pH and pressure on the specific cake resistance for a yeast concentration of 5g/L and a pore size of 0.45µµµµm 

In Fig. 2, the dependence of specific resistance on pressure is shown to be linear in agreement with 

other workers [6], [7] and [8] and there is a strong and complex dependence on pH of both the specific 

resistance at a given pressure and of the cake compressibility, where the latter is proportional to the 

slope of the α versus ΔP plot [7] and [34]. 

Fig. 3 shows the dependence of specific resistance on pH at two salt concentrations and various 

pressures. The apparent complexity of the behaviour means that a conventional non-linear regression 

approach to developing a correlation of specific resistance will prove problematic because in that 



approach some functional relationship between specific resistance and the various parameters affecting 

it must be assumed. This relationship is likely to be quite complicated and unwieldy in form. 

 

Figure 3: Effect of salt concentration on the specific resistance at various pHs and pressures for a yeast concentration of 5 g/L 

and a membrane pore size of 0.45 μm. Closed symbols: salt concentration = 2 g/L. Open symbols: salt concentration = 6 g/L. 

 

As mentioned in Section 1, there is now tentative evidence that the specific cake resistance may show a 

dependence on suspension concentration. Mota et al. [19] found that the specific resistance increased 

with increasing concentration of yeast cells, while Zaidi and Kumar [20] found a similar effect with silica 

suspensions. In the work of Mota et al. [19], the specific resistance approximately doubled as the dry 

weight cell concentration increased from about 4 to 40 g/L, at pressures of 40 and 80 kPa. Zaidi and 

Kumar [20] found that the specific resistance of silica suspensions increased by a factor of approximately 

three as the concentration increased from about 3 to 28 g/L. These results were obtained at pressures 

of 135, 270 and 405 kPa. However, using linear regression, we found that the slopes of plots of specific 

resistance versus yeast concentration were insignificantly different from zero at the 95% confidence 

level and can conclude that concentration has no apparent effect on specific resistance. 

The results outlined in this section have shown that the specific cake resistance is a complex parameter 

and is dependent on a number of different variables. The correlation of specific resistance data is 

difficult, therefore, and new approaches to developing regression equations are required. The following 

sections outline our results obtained by implementing an approach based on artificial neural networks. 

3.2. Determination of optimum network architecture 

The network architecture refers to the number of layers in the network and the number of neurons in 

each layer. It has been shown previously that just one hidden layer is generally sufficient to model most 

data sets in membrane separation processes [23]. Training of the network is performed by updating the 

networks weights over a number of epochs, or iterations, until the MSE in the validation data set begins 



to increase. This use of the validation set avoids the problem of overtraining [35]. Optimisation of the 

network architecture, with the aim of minimising the MSE for the training data, was performed via a trial 

and error procedure. The effect of the number of hidden neurons on the MSE is shown in Fig. 4 (MSE for 

nine neurons = 9.85 × 10
−8

) and, on that basis, a 5-9-1, fully connected architecture was chosen. 

 
Figure 4: Optimisation of network architecture 

 

3.3. Fit of ANN to specific resistance data 

Fig. 1 shows the fit of a 5-9-1 network to the full set of specific resistance data, including those used in 

training, validation and testing. For the vast majority of the data, the network is able to predict the 

specific resistance to within 10%. Therefore, the neural network approach offers a potential alternative 

to more traditional regression techniques for correlating specific resistance behaviour, especially when 

factors in addition to pressure are included in the analysis. In combination with conventional filtration 

theory, e.g. Eq. (3), the neural network could be used to form a hybrid model that calculates filtration 

performance over a wide range of suspension and process conditions. 

3.4. Fit of ANN to flux data 

While the focus of this paper has been to develop an ANN to predict the specific resistance from which 

process characteristics can be calculated using Eq. (3), we have also investigated the possibility of using 

an ANN to predict the filtrate flux data directly. The advantage of this approach is not so much its 

applicability to dead-end filtration, since the experimental set-up is somewhat artificial and does not 

reflect the true batch nature of industrial filtration process, but because the ANN for predicting steady 

fluxes is easily extended to crossflow systems where specific resistance measurements are very difficult 

to obtain [36]. Fig. 5 shows the fit of a 5-9-1 network obtained in the experiments described above. 

Exactly the same training, testing and validation sets as for the specific resistance network were used, 

although a superior fit may have been obtained if a new training set had been chosen specifically for the 



flux data. As can be seen, the ANN for the flux correlates the data well and could form the basis of an 

ANN applied to predicting steady-state fluxes in crossflow systems once additional inputs such as 

crossflow velocity, and module geometry are included. 

 
Figure 5: Fit of 5-9-1 network applied to flux data. Dashed lines denote + 10% variation from the y=x line 

 

3.5. Interpreting the network weights 

In this paper, we have shown that an artificial neural network can be used to correlate dead-end specific 

resistance and flux data. However, previous researchers have shown that the network weights 

corresponding to an apparently best fitting network are not unique [37]. Indeed, two networks with 

identical architecture, trained with the same data, may model that data with very similar accuracy and 

yet the final network weights obtained will almost certainly not be the same. The initial values of the 

weights (which are initialized here to random values between −0.1 and +0.1) have a strong effect on the 

final weights obtained for the trained network. This is because the initial weight vector determines the 

network starting point on the error hyper-space [26]. There is a tendency, when training, for the 

network to move into the closest local minimum to the starting point on the error surface, rather than 

to obtain the global minimum. The number of hidden neurons is directly proportional to the number of 

local minima in the error surface, and therefore adding more hidden neurons to the network will 

increase the risk of the network becoming trapped in a local minimum. 

This variability in the weights obtained when training a network has implications for interpreting the 

network weights. Traditionally, ANNs have been looked on as ‘black-box’ models, where an accurate 

description of the process is not required, relying merely on the ability of neural networks to 

approximately calculate the outputs of a system from knowledge of its inputs [22]. However, some 

attempts have been made to assess the network connection weights in order to quantitatively derive 

some cause–effect information. The equation used by Chellam [23], developed by Garson [38], can be 

written 
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where v represents the relative effect of the input variable, v, on the output, nv the number of input 

variables, nh the number of neurons in the hidden layer, wkj represents the absolute value of the weight 

from the kth input to the jth neuron and Oj represents the absolute value of the weight from the jth 

neuron. However, since the network weights are variable, depending on the initial weights used in the 

training process, the computed effects of input parameters will also be variable. To investigate this 

phenomenon, we trained the 5-9-1 specific resistance and flux networks over a series of 20 runs with 

random initial weights in each case. While the effects of the inputs on the output were found to vary, 

this variation was small as shown in Fig. 6 and Fig. 7 suggesting that the variability of network weights 

does not make their interpretation impossible. 

 

Figure 6: The (mean) relative effect of input parameters on the specific cake resistance. The error bars denote the standard 

error over 20 runs. 



 
Figure 7: The mean relative effect of input parameters on the steady-state flux. The error bars denote the standard error 

over 20 runs. 

From Fig. 6, we see that the main parameters affecting the specific resistance are the pressure and the 

pH, as would have been expected from Fig. 2 and Fig. 3. The effects of the other parameters are lower 

but not insignificant. It is important to note, however, that this approach is only semi-quantitative and a 

non-zero value for the relative effect of a parameter does not imply a cause–effect relationship but 

simply shows that the experimental output was different for various values of a given input. This 

variation may have been due to normal experimental scatter rather than representing a true 

relationship. Fig. 7 gives the relative effects of the input parameters on the flux. The effect of yeast 

concentration on the flux is large, as would be expected from Eq. (3) where the concentration appears 

explicitly in the mechanistic filtration theory. The other parameters that have the most effect are the 

pressure and the pH. This approach of calculating the relative effects of various input parameters on the 

system output would be most useful in complex systems where the underlying physics was not well 

understood and it was desired to identify key process parameters. However, its semi-quantitative nature 

means that it will only serve as a guide that may aid in reducing the amount of experimentation required 

but will not lead to a true physical understanding of the process. 

4. Conclusions 

This study focused on the correlation of specific cake resistance and flux data in dead-end filtration of 

yeast suspensions using artificial neural networks. The results obtained show that excellent agreement 

between experimental data and predicted values could be achieved over wide ranges of pressure, 

membrane resistance, yeast concentration, and suspension pH and ionic strength. The approach is easily 

extended to include the many other factors that affect the specific resistance. The neural network for 

the steady-state flux would be easy to extend to encompass crossflow filtration by the addition of 

parameters such as the crossflow velocity and module configuration. The network weights were 

interpreted using the equation suggested by Garson [38] to evaluate the relative effect of the input 

parameters on the specific cake resistance and the steady-state flux. This is an area that is worthy of 

further study as it is very desirable to be able to extract meaning from the weight matrix of neural 

networks. 
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Appendix A.  

A.1. Sample calculation of the relative effect of input parameters using the Garson equation 

Consider a neural network with two inputs, a single hidden layer with three neurons and a single output. 

After training of the network, the network weights are found to have the values given in Table 3. 

Table 3.  

Sample absolute values of network weights in a 2-3-1 neural network 

From first input to hidden layer From second input to hidden layer From hidden layer to output 

w11 0.517 w21 0.649 O1 0.981 

w12 0.162 w22 0.132 O2 0.461 

w13 0.488 w23 0.458 O3 0.641 

 

The relative effect of the first input on the network output is given, according to the Garson equation, by 

the expression: 

 

where 

 

 

and 

 

 

Thus, the relative effect of the first input works out to be 0.5078. 


