
ON ASYMPTOTICALLY PERIODIC SOLUTIONS OF
LINEAR DISCRETE VOLTERRA EQUATIONS

ISTVÁN GYŐRI AND DAVID W. REYNOLDS

Abstract. We show that a class of linear nonconvolution discrete
Volterra equations has asymptotically periodic solutions. We also
examine an example for which the calculations can be done explic-
itly. The results are established using theorems on the bounded-
ness and convergence to a finite limit of solutions of linear discrete
Volterra equations.

1. Introduction

The problem of finding periodic and asymptotically periodic solu-
tions of linear discrete Volterra equations has been investigated in sev-
eral papers, including [3, 4, 6, 7, 8]. Each of these considers the equation

u(n+ 1) = A(n)u(n) +
n∑

j=0

B(n, j)u(j) + e(n),

and perturbations thereof, under the assumptions that

A(n+N) = A(n), e(n+N) = e(n),

B(n+N,m+N) = B(n,m),

}
n ∈ Z+,

for some integer N > 0.
In this paper we study the asymptotic behaviour of solutions of the

initial-value problem

x(n+ 1) = A(n)x(n) +
n∑

j=0

K(n, j)x(j) + f(n), n ≥ 0, (1)

assuming that the periodicity condition

A(n+N) = A(n), n ∈ Z+,

holds for some integer N > 0. Here (1) is viewed as a perturbation of

u(n+ 1) = A(n)u(n).
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Our method is to use a variation of constants to transform (1) into an
equation of the form

z(n+ 1) = h(n) +
n∑

j=0

H(n, j)z(j), n ∈ Z+,

and use results in [1, 5] on the boundedness and asymptotic constancy
of solutions. Our main result establishes the existence of asymptotically
periodic solutions

In the case of A(n) and K(n, j) being 2× 2 real matrices, a different
result on the existence of asymptotically periodic solutions of (9) was
recently proved in [2] using fixed point arguments. We analyse fully an
example found in [2] to show that our result can be less restrictive.

2. Preliminaries

Firstly we collect together some notation.
Let Z+ = {0, 1, 2, . . .} denote the set of non-negative integers, and

K either of the fields R or C. Kd×d is the space of all d × d matrices
with entries in K, and the zero and identity matrices are denoted by
0 and I respectively. ‖A‖ = (

∑d
j=1

∑d
i=1 |Aij|2)1/2 is the Euclidean

norm of A = (Aij). Kd×d can be endowed with many norms, but they
are all equivalent. The absolute value of A is the matrix |A| defined by
(|A|)ij = |Aij| for all 1 ≤ i ≤ d and 1 ≤ j ≤ d. The matrix A = (Aij) in
Rd×d is nonnegative if Aij ≥ 0, in which case we write A ≥ 0. A partial
ordering is defined on Kd×d by letting A ≤ B if and only if B−A ≥ 0,
which is equivalent to Aij ≤ Bij for all 1 ≤ i ≤ d and 1 ≤ j ≤ d. The
spectral radius of a matrix A is defined by ρ(A) = limn→∞ ‖An‖1/n,
and is independent of the norm used: it equals the maximum of the
absolute values of the eigenvalues of A. Note that ρ(A) ≤ ρ(|A|), and
ρ(A) ≤ ρ(B) if 0 ≤ A ≤ B.

Let H : Z+ × Z+ → Kd×d be a double sequence of matrices with
H(n, j) = 0 for all j > n, and h : Z+ → Kd a sequence of vectors. For
each ξ ∈ Kd, there is a unique solution z : Z+ → Kd of the explicit
discrete Volterra equation

z(n+ 1) = h(n) +
n∑

j=0

H(n, j)z(j), n ∈ Z+, (2)

which satisfies the initial condition

z(0) = ξ. (3)

Sufficient conditions for the solution of (2) and (3) to be bounded
can be found in [1, Theorem 5.1]. We state a variant of it.
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Lemma 1. Suppose that

WH := lim
m→∞

lim sup
n→∞

n∑
j=m

|H(n, j)| <∞, ρ(WH) < 1, (4)

sup
n≥j
|H(n, j)| <∞ for each j ≥ 0. (5)

If h is bounded, then z is also bounded.

Sufficient conditions for the solution of (2) and (3) to converge to
a finite limit are given in [5, Theorem 3.1], a variant of which is now
given.

Lemma 2. Suppose that (4) holds, and that

H(n, k)→ H∞(k) as n→∞. (6)

Assume also that there is VH in Kd×d such that

lim
m→∞

lim sup
n→∞

∣∣∣∣ n∑
j=m

H(n, j)− VH
∣∣∣∣ = 0, (7)

and h(n)→ h(∞) as n→∞. Then z(n)→ z(∞) as n→∞, and this
limit obeys

z(∞) = (I − VH)−1
[
h(∞) +

∞∑
j=0

H∞(j)z(j)

]
. (8)

The hypotheses of this theorem ensure that all the terms in (8) are
well-defined. Since

|VH | ≤
∣∣∣∣VH − n∑

j=m

H(n, j)

∣∣∣∣+
n∑

j=m

|H(n, j)|,

we see that |VH | ≤ WH by firstly taking the limit superior as n→∞,
followed by the limit superior as m → ∞. Hence ρ(VH) ≤ ρ(|VH |) ≤
ρ(WH) < 1. Therefore I − VH is invertible and (I − VH)−1 ≥ 0.

Also for large enough m ∈ Z+,

lim sup
n→∞

n∑
j=0

|H(n, j)| =
m−1∑
j=0

|H∞(j)|+ lim sup
n→∞

n∑
j=m

|H(n, j)|

is certainly finite. Hence

k∑
j=0

|H∞(j)| = lim sup
n→∞

k∑
j=0

|H(n, j)| ≤ lim sup
n→∞

n∑
j=0

|H(n, j)|,

is uniformly bounded for k ∈ Z+, and the series
∑∞

j=0 |H∞(j)| is sum-
mable. Therefore if z is bounded,∣∣∣∣ ∞∑

j=0

H∞(j)z(j)

∣∣∣∣ ≤ ∞∑
j=0

|H∞(j)| sup
j≥0
|z(j)| <∞.
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3. Formulation of Problem

We study the asymptotic behaviour of the solution x(·; ξ) : Z+ →
Kd×d of the initial-value problem

x(n+ 1; ξ) = A(n)x(n; ξ) +
n∑

j=0

K(n, j)x(j; ξ) + f(n), n ≥ 0, (9a)

x(0; ξ) = ξ, (9b)

assuming that the periodicity condition

A(n+N) = A(n), n ∈ Z+, (10)

holds for some integer N > 0.
We regard (9) as a perturbation of

u(n+ 1) = A(n)u(n),

u(0) = ξ,

}
(11)

which has solution

u(n) = Φ(n)ξ, n ≥ 0,

where Φ : Z→ Kd×d is the principal matrix solution defined by

Φ(n+ 1) = A(n)Φ(n), n ≥ 0,

Φ(0) = I.

}
The matrix Φ(N) is termed a monodromy matrix, and its eigenvalues
are called Floquet multipliers.

The following standing hypotheses are assumed to hold throughout
the remainder of the paper.

(A1) A : Z+ → Kd×d is a sequence of invertible matrices, which
satisfies the periodicity condition (10) for some positive integer
N .

(A2) The monodromy matrix Φ(N) is assumed to satisfy

Φ(N) = I (12)

(A3) K : Z+ × Z+ → Kd×d is a double sequence of matrices with
K(n, j) = 0 for all j > n, and

∞∑
n=0

n∑
j=0

|K(n, j)| <∞. (13)

(A4) f : Z+ → Kd is a sequence with

∞∑
j=0

|f(j)| <∞. (14)
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Remark 1. (12) is equivalent to

Φ(n+N) = Φ(n), n ∈ Z+. (15)

Due to this periodicity,

Φ(n) = Φ(n− [ n
N

]N), n ≥ 0, (16)

where [·] is the greatest integer part function, though it is cumbersome
to employ this expression in succeeding formula.

4. Main Results and Discussion

Our main result clearly exhibits the asymptotic behaviour of all so-
lutions of (9).

The theorem refers to a matrix M and vector m, each of which is
defined to be the limit of the solution of a discrete Volterra equation.
Let Y : Z+ → Kd×d be the solution of

Y (n+ 1) = I +
n∑

j=0

n∑
k=j

Φ(k + 1)−1K(k, j)Φ(j)Y (j),

Y (0) = I.


Then it is proved in Section 5 that

M = lim
n→∞

Y (n) (17)

exists. Clearly M is independent of the initial-value ξ. Also let w :
Z+ → Kd be the solution of

w(n+ 1) =
n∑

j=0

n∑
k=j

Φ(k + 1)−1K(k, j)Φ(j)w(j)

+
n∑

k=0

Φ(k + 1)−1f(k),

which satisfies w(0) = 0. It is also shown that in Section 5 that

m = lim
n→∞

w(n) (18)

exists. Observe that because {w(n)} is independent of ξ, m is inde-
pendent of ξ. In Section 6 an example is given in which M and m are
calculated explicitly.

Theorem 1. Suppose that (A1)-(A4) hold, and let M be defined by
(17) and m by (18). Then for every ξ ∈ Kd, the solution of (9) satisfies

x(n; ξ) = Φ(n)[Mξ +m] + v(n; ξ), n ∈ Z+, (19)

where v(n; ξ)→ 0 as n→∞.
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The sequence {x(n; ξ)} is asymptotically periodic if there is a non-
trivial periodic {p(n)} such that

x(n; ξ) = p(n) + o(1) as n→∞.

Under the conditions of Theorem 1, x(·; ξ) is asymptotically periodic
if and only if Mξ +m 6= 0. There are three cases:

(a) M = 0 andm = 0, implying that {x(n; ξ)} is not asymptotically
periodic; the zero solution is a global attractor.

(b) M = 0 but m 6= 0, implying that {x(n; ξ)} is asymptotically
periodic with respect to the {Φ(n)m} for all initial values.

(c) If M 6= 0 and c − m is in the range of M , then {x(n; ξ)}
is asymptotically periodic with respect to the {Φ(n)c} for all
initial-values obeying Mξ +m = c.

It is clearly desirable to know what are the null space and range of
the linear mapping associated with M .

In order to compare our result with [2, Theorem 1], we state the
following.

Corollary 1. Suppose that {a1(n)} and {a2(n)} are N-periodic se-
quences in K \ {0}, satisfying

N−1∏
j=0

as(j) = 1, s = 1, 2. (20)

Let

A(n) =

(
a1(n) 0

0 a2(n)

)
, n ∈ Z+, (21)

and suppose that (A3)-(A4) hold with d = 2. Then the solution x(·, ξ)
of (9) obeys (19).

Note that in this case

Φ(n) =

(∏n−1
j=0 a1(j) 0

0
∏n−1

j=0 a2(j)

)
, n ∈ Z+.

There are important differences between [2, Theorem 1] and Corol-
lary 1. Firstly the conclusion of [2, Theorem 1] says that for each c in
a precisely defined region of R2, there is a solution of (9) such that

x(n; ξ) = Φ(n)c+ o(1) as n→∞. (22)

Secondly, additional hypotheses to those in Corollary 1 are required in
[2] to prove Theorem 1.

In Section 6 an example is discussed for which M and m are explicitly
calculated. In the example M is invertible, and hence for each c ∈ R2,
there is an initial-value ξ = M−1(c − m) for which (22) holds; also
x(·; ξ) is asymptotically periodic as long as ξ 6= −M−1m. This shows
that conditions on the vector c in [2, Theorem 1], though sufficient, are
not necessary for the existence of asymptotically periodic solutions.
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5. Proof of Main Theorem

We define z(·; ξ) : Z+ → Kd by

z(n; ξ) = Φ(n)−1x(n; ξ), n ≥ 0, (23)

and investigate the auxiliary problem it satisfies.

Lemma 3. x is a solution of (9) if and only if z solves

z(n+ 1; ξ) = ξ + f ∗(n) +
n∑

j=0

H(n, j)z(j; ξ), (24a)

z(0; ξ) = ξ, (24b)

where

H(n, j) =

{∑n
k=j Φ(k + 1)−1K(k, j)Φ(j), 0 ≤ j ≤ n,

0, j > n,
(25)

f ∗(n) =
n∑

k=0

Φ(k + 1)−1f(k), n ≥ 0. (26)

Proof. Clearly x(0; ξ) = ξ if and only if z(0; ξ) = Φ(0)−1x(0; ξ) = ξ.
By substituting (23) into (9a) , we obtain

z(n+1; ξ) = z(n; ξ)+
n∑

j=0

Φ(n+1)−1K(n, j)Φ(j)z(j; ξ)+Φ(n+1)−1f(n).

A variation of constants formula is easily obtained by observing that

z(n+ 1; ξ)− z(0; ξ) =
n∑

k=0

{z(k + 1; ξ)− z(k; ξ)}

=
n∑

j=0

( n∑
k=j

Φ(k + 1)−1K(k, j)Φ(j)

)
z(j; ξ)

+ f ∗(n).

Hence we obtain the equation in (24a). The converse is proved similarly.
�

It is important to know what is the asymptotic behaviour of {f ∗(n)}.

Lemma 4. f ∗(n)→ f ∗(∞) as n→∞, where

f ∗(∞) :=
N−1∑
j=0

Φ(j)−1
∞∑
i=0

f(iN + j − 1). (27)

Proof. Recall that f : Z+ → Kd is in `1. Extending f to {−1, 0, 1, . . .}
by setting f(−1) = 0, it follows from (26) that

f ∗(n) =
n+1∑
k=0

Φ(k)−1f(k − 1),
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We write n + 1 = pN + r where p = [(n + 1)/N ], so that r is in
{0, . . . , N − 1}, and p→∞ if n→∞. Then

f ∗(n) =

pN−1∑
k=0

Φ(k)−1f(k − 1) +

pN+r∑
k=pN

Φ(k)−1f(k − 1). (28)

Using the periodicity of Φ, we can manipulate the first summation and
deduce that

pN−1∑
k=0

Φ(k)−1f(k − 1) =

p−1∑
i=0

(i+1)N−1∑
k=iN

Φ(k)−1f(k − 1)

=

p−1∑
i=0

N−1∑
j=0

Φ(iN + j)−1f(iN + j − 1)

=
N−1∑
j=0

Φ(j)−1
p−1∑
i=0

f(iN + j − 1)

→
N−1∑
j=0

Φ(j)−1
∞∑
i=0

f(iN + j − 1) as p→∞,

since f ∈ `1. To complete the proof, it suffices to notice that the second
term in (28) satisfies

pN+r∑
k=pN

Φ(k)−1f(k − 1) =
r∑

j=0

Φ(j + pN)−1f(pN + j − 1)

=
r∑

j=0

Φ(j)−1f(pN + j − 1)

→ 0 as p→∞,

again since f ∈ `1. �

Our method is to apply Lemma 2 to (24). It must therefore be
verified that H satisfies the hypotheses of that lemma.

Lemma 5. The kernel H defined in (25) has the property (4) with
WH = 0, (6) with

H∞(j) =
∞∑
k=j

Φ(k + 1)−1K(k, j)Φ(j), (29)

and (7) with VH = 0.

Proof. By the periodicity of n 7→ Φ(n) and n 7→ Φ(n)−1 there are
positive matrices C1 and C2 such that

|Φ(n)| ≤ C1, |Φ(n)−1| ≤ C2, (30)
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for all n ≥ 0. Also by (13)
∞∑
n=0

n∑
j=0

|K(n, j)| =
∞∑
j=0

S(j) <∞,

where S(j) =
∑∞

n=j |K(n, j)|.
For an integer m > 0,

lim sup
n→∞

n∑
j=m

|H(n, j)| ≤ lim sup
n→∞

n∑
j=m

n∑
k=j

|Φ(k + 1)−1||K(k, j)||Φ(j)|

≤ C2 lim sup
n→∞

n∑
j=m

n∑
k=j

|K(k, j)|C1

≤ C2 lim sup
n→∞

n∑
j=m

∞∑
k=j

|K(k, j)|C1

≤ C2 lim sup
n→∞

n∑
j=m

S(j)C1

≤ C2

∞∑
j=m

S(j)C1.

Since
∑∞

j=0 S(j) is finite,
∑∞

j=m S(j)→ 0 as m→∞, and

WH = lim
m→∞

lim sup
n→∞

n∑
j=m

|H(n, j)| = 0.

Consequently (7) also holds with VH = 0.
Lastly we demonstrate that (6) is true. We fix j ∈ Z+. For n ≥ j,

H(n, j)→
∞∑
k=j

Φ(k + 1)−1K(k, j)Φ(j) as n→∞.

Because
∞∑
k=j

|Φ(k + 1)−1K(k, j)Φ(j)| ≤ C2S(j)C1,

the limit is finite �

It is a consequence of Lemma 2 that z(n; ξ) converges to a limit
z(∞; ξ) as n→∞, which satisfies

z(∞; ξ) = ξ + f ∗(∞) +
∞∑
j=0

H∞(j)z(j; ξ), (31)

where f ∗(∞) is given by (27) and H∞(j) by (29) .
We now explicitly exhibit the dependence of the limit z(∞; ξ) on

the initial value ξ. For this reason, we examine (24) in the case that
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f(n) ≡ 0, which corresponds to the homogeneous problem associated
with (9):

y(n+ 1; ξ) = ξ +
n∑

j=0

H(n, j)y(j; ξ), (32a)

y(0; ξ) = ξ, (32b)

But ξ 7→ y(·; ξ) is linear; indeed y(n) = Y (n)ξ, where

Y (n+ 1) = I +
n∑

j=0

H(n, j)Y (j),

Y (0) = I.

 (33)

Lemma 2 says that
M = lim

n→∞
Y (n) (34)

exists, and y(n; ξ) → Mξ as n → ∞. Also the matrix M satisfies the
implicit limit formula

M = I +
∞∑
j=0

H∞(j)Y (j).

We summarise what has been discovered about (32).

Lemma 6. The solution y of (32) satisfies y(n; ξ)→ Mξ as n→∞,
where M is given by (34).

Finally we introduce the sequence {w(n)} by

w(n) = z(n; ξ)− Y (n)ξ, n ≥ 0,

observing that it solves

w(n+ 1) = f ∗(n) +
n∑

j=0

H(n, j)w(j),

w(0) = 0.

 (35)

We infer from Lemma 2 that

m = lim
n→∞

w(n) (36)

exists, and that m = f ∗(∞) +
∑∞

j=0H∞(j)w(j).
In this section the following theorem has been proved.

Theorem 2. Suppose that (A1)-(A4) hold. For every ξ ∈ Kd, the
solution z of (24) satisfies

lim
n→∞

z(n; ξ) = Mξ +m, (37)

where the matrix M is defined by (34) and the vector m by (36).

Theorem 1 is now consequence of this and (23).
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6. Example

To illustrate our results we examine an example from [2], which
concerned (9) the case that

A(n) = −I, f(n) =
1

2n+13n
e, K(n, j) =

(−3)j

2n3n+1
Q,

where

Q =

(
1 1
−1 −1

)
, e =

(
1
−1

)
.

Note that Q2 = 0 and Qe = 0. Since A(0)A(1) = I, N = 2 and
Φ(n) = (−1)nI. Also

∞∑
j=0

|f(j)| = 3

5

(
1
1

)
,

∞∑
n=0

n∑
j=0

|K(n, j)| = 4

5

(
1 1
1 1

)
,

so that (A1)-(A4) hold with d = 2 and K = R.
Let x(n; ξ) = (−1)nz(n; ξ) for all n ≥ 0. Then {z(n; ξ)} satisfies

z(n+ 1; ξ) = ξ +
n∑

j=0

H(n, j)z(j; ξ) + f ∗(n),

z(0; ξ) = ξ,

 (38)

where

H(n, j) =
2

7

(−1)j+1

2j

[
1−

(
−1

6

)n−j+1]
Q,

f ∗(n) = −3

7

[
1−

(
−1

6

)n+1]
e.

These expressions can be written more concisely as

H(n, j) = α(n− j)β(j)Q, f ∗(n) = γ(n)e,

where

α(j) = 1−
(
−1

6

)j+1

, β(j) =
2

7

(−1)j+1

2j
,

γ(n) = −3

7

[
1−

(
−1

6

)n+1]
.

Here {α(n)} and {γ(n)} are convergent, and {β(n)} is summable with

lim
n→∞

α(n) = 1,
∞∑
j=0

β(j) = − 4

21
, lim

n→∞
γ(n) = −3

7
.

Note that

H∞(j) = lim
n→∞

H(n, j) = β(j)Q, f ∗(∞) = lim
n→∞

f ∗(n) = −3

7
e.
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The solution of (38) can be split up as

z(n; ξ) = Y (n)ξ + w(n),

where Y is the solution of

Y (n+ 1) = I +
n∑

j=0

α(n− j)β(j)QY (j),

Y (0) = I,

 (39)

and w is the solution of

w(n+ 1) = γ(n)e+
n∑

j=0

α(n− j)β(j)Qw(j),

w(0) = 0.

 (40)

We attempt to find a solution of (39) under the condition that
QY (n) = Q for all n ≥ 0. This is equivalent to Y having the form

Y (n) =

(
Y11(n) Y12(n)
Y21(n) Y22(n)

)
=

(
Y11(n) Y12(n)

1− Y11(n) 1− Y12(n)

)
.

By substituting this into (39), we obtain

Y11(n+ 1) = 1 +
n∑

j=0

α(n− j)β(j), Y12(n+ 1) =
n∑

j=0

α(n− j)β(j),

leading to

Y (n+ 1) = I +
n∑

j=0

α(n− j)β(j)Q. (41)

The solution of (40) is found in a similar fashion. We look for its
solution in the form

w(n) =

(
w1(n)
w2(n)

)
=

(
w1(n)
−w1(n)

)
= w1(n)e,

so that Qw(n) = 0 for all n ≥ 0. The equation becomes w1(n + 1) =
γ(n), and

w(n+ 1) = γ(n)e. (42)

The exact solution of (38) is then z(0, ξ) = ξ and

z(n+ 1; ξ) = ξ +
n∑

j=0

α(n− j)β(j)Qξ + γ(n)e, n ≥ 0. (43)

Since

lim
n→∞

n∑
j=0

α(n− j)β(j) = − 4

21
, lim

n→∞
γ(n)e = −3

7
e = −3

7

(
1
−1

)
,
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it follows from (43) that

z(n+ 1; ξ)→
(
I − 4

21
Q

)
ξ +

(
−3

7
e

)
as n→∞. (44)

We can calculate the matrix M defined by (34) from (41), and the
vector m given by (36) from (42), and obtain

M = I − 4

21
Q =

1

21

(
17 −4
4 25

)
, m = −3

7
e = −3

7

(
1
−1

)
.

Observe that detM = 1 so that M is invertible. It follows from (44)
that z(n + 1; ξ) = c + o(1) as n → ∞, where c = Mξ + m. Since M
is invertible, there is a solution with this property for every c ∈ R2.
Therefore (9) has asymptotically periodic solutions of form x(n) =
(−1)nc+ o(1) for every nonzero c in R2.

We remark that if ξ =
(
2 1

)T
, then

c =
1

21

(
17 −4
4 25

)(
2
1

)
+

3

7

(
−1
1

)
=

(
1
2

)
,

which is the case examined in [2].
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