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ABSTRACT
In this paper we present an innovative and novel system for
tennis performance analysis that allows coaches to review
a player’s match performance and provide detailed audio-
visual feedback to the athlete. The system utilises a simple
network of low-cost IP cameras that encompass the tennis
court. A graphical user interface provides coaches with video
playback feeds from multiple viewpoints, a range of intuitive
tools for 2D and 3D annotation, real-time game statistics
and the facility for a coach to record audio commentary.
This system is specifically designed with non-professional
sports clubs in mind, with an emphasis on low-cost equip-
ment. While we focus on tennis in this work, we believe our
system can be generalised to a wide range of other sports.

Categories and Subject Descriptors
I.4.8 [IMAGE PROCESSING AND COMPUTER VI-
SION]: Scene Analysis—Object recognition, Tracking ; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Design, Experimentation, Human Factors

Keywords
Sports analysis, coaching interface, ball tracking, player track-
ing, 3D sports visualisation sports feedback

1. INTRODUCTION
In order for a coach to improve a player’s performance,

both technically and tactically, they must be able to as-
certain the deficiencies in the athlete’s abilities and effec-
tively communicate to the player how to correct these lim-
itations. Traditionally coaches obtain the information re-
quired to such make decisions on a sports-person’s abilities
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via statistics obtained from manual, or semi-automatic, an-
notation entire tennis matches and technical analysis of pre-
recorded video clips. For these purposes there are several
commercially available solutions, most notably Protracker
Tennis [3], ProZone [4] and Dartfish [2]. The primary focus
of these systems is to collate data on player performance
and to provide statistical feedback to coaches. However, [3]
requires significant manual annotation to gain insight into
a player’s tactical ability, while providing no video data for
technical analysis. ProZone [4] performs similar function-
ality, but in a semi-automatic manner, however it still re-
quires a high level of manual input to correct errors from
the automatic processing. The Dartfish system [2] focuses
more on analysis of a player’s technical ability, providing
semi-automated tracking and measurement of a player’s bio-
mechanical movements, but provides little insight into a
player’s tactical performance over multiple games.

In this paper, we describe a coaching system that has
a number of main objectives; (1) to automate, as much as
possible, the manual annotation requirements needed by the
coaches – eliminating the laborious overheads of traditional
sports coaching systems; (2) to provide the tools that allow a
coach to quickly perform a rigorous analysis on the recorded
data; (3) to maximise the impact of coaching feedback by
providing tools to emphasis and highlight the feedback that
they wish to convey to their players; and (4) to provide this
coaching functionality by means of a network of low-cost
cameras, making these tools affordable to non-professionals.

In Section 2 an overview of the low-cost camera infrastruc-
ture is given. Section 3 describes the software components
of the system. The performance analysis and visualisation
modules are explained in Section 4 and the conclusions are
presented in Section 5.

2. CAMERA SET-UP AND DATA SET
The dataset used is this paper is from the 3DLife: Sports

Activity Analysis in Camera Networks ACM MultiMedia
2010 Grand Challenge. This dataset includes video streams
of competitive singles tennis captured from 9 low-cost cam-
eras, which could feasibly be installed within any local sports
club (see Figure 1 for camera network layout). Details of the
dataset and camera network set–up can be obtained from the
Grand Challenge web site.

3. SYSTEM OVERVIEW
Figure 2 shows a flowchart that outlines the proposed

coaching system. The video feeds from the dataset are in-
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Figure 1: A schematic layout of a tennis court show-
ing sample images from the nine cameras surround-
ing the court. Camera number 9 is positioned on
the ceiling above the court. The labels A–D will be
explained later in Section 3.4.

Figure 2: Overview of our coaching system.

put to the system software, which consists of three analy-
sis modules, foreground extraction, player tracking and ball
tracking. Camera calibration is also carried out using cali-
bration data included in the dataset. The foreground data
and camera calibration information are then utilised to per-
form 3D player reconstruction. These 3D player avatars are
generated from all 9 cameras streams and rendered on a
3D virtual tennis court for visualisation, analysis and coach
feedback purposes. An annotation interface is also used in
the coaching tool and incorporates a built-in record facility,
which enables the coach to record an informative voice-over
on player performance issues. This can be a valuable tool
when the coach does not have direct access to the player.

3.1 Player and Ball Tracking
In this study, we follow the approach of [12] to provide

temporal localisation data on the players and tennis ball.
This technique utilises a single overhead camera, which is
assumed to be in a fixed position, and tracks the objects
in the image plane. These image pixel coordinate locations
are subsequently converted into real-world Euclidean coor-
dinates – see Figure 3. In Figure 3 (b) the real world Eu-

(a) Image Coordinates (b) Euclidean Coordinates

Figure 3: Example player and ball tracking results.

(a) (b) (c) (d) (e)

Figure 4: Foreground extraction post-processing
steps: (a) Image; (b) Extracted foreground; (c)
Small region removal; (d) Dilation; (e) Holes filled.

clidean positions of the objects are displayed on a 2D virtual
tennis court. The median error of these results for the two
tracked players was calculated to be 1.10m and 0.99m. It
should, however, be noted that the ball tracking presented
in this paper only determines the 2D position of the ball –
the height of the ball above the court is not calculated. In
future work we intend to extend the tracking of the ball to
3D by including views from multiple calibrated cameras.

3.2 Foreground Extraction
The accuracy of the 3D player reconstruction algorithm,

in part, relies on generating accurate athlete silhouettes. To
achieve this aim, a layered background model for each cam-
era is generated. Each pixel’s model can be represented by
up to 5 colours, which are determined by processing an en-
tire video sequence and updating the model with non-motion
pixels (determined using 3-frame motion differencing).

At run-time, a pixel is considered to be part of the back-
ground if it is within a distance T of any of its background
colours within RGB space. Based on our experimental ob-
servations we have chosen T = 20. As lighting changes and
shadows are frequent in the videos, the extracted foreground
pixels are then subjected to a further test. A colour/brightness
difference value, D, is defined as:

D = 18×Dgb + |log(VBG/Vcurr)| (1)

where Dgb is the Euclidean distance between the current
pixel and the most common background pixel in normalised-
gb space; VBG is the background brightness; and Vcurr is the
current pixel brightness. The constant in equation (1) was
determined experimentally based on unrelated video data.
For a particular foreground pixel, if D < 0.5 then that pixel
is marked as a lighting change pixel (shadow/highlight) and
discarded. The resultant foreground is then subsequently
post-processed to remove noise and fill holes in the silhouette
as can be seen in Figure 4.

The method was compared with manually annotated ground
truth images for 65 results and used the Fuzzy Jaccard index
as a comparison metric (the uncertainty tolerance was set to
σ = 4 as proposed by [11]). Using this metric, a value of 1.0



indicates perfect segmentation. Table 1 shows the results
from this comparison and shows that the technique used in
this paper out-performed the standard mixture-of-Gaussians
(MoG) model and frame differencing.

Method Results A Results B
Layered 0.10 0.74
MoG 0.60 0.58

Frame differencing 0.34 0.42

Table 1: Foreground segmentation accuracy results
(Fuzzy Jaccard index). Results are shown (A) be-
fore post-processing and (B) after post-processing.

3.3 Camera Calibration and Synchronisation
The Grand Challenge dataset video sequences were ac-

companied by calibration data, however they were not syn-
chronised. The Matlab Camera Calibration Tool [1] was
used to calculate the intrinsic parameters and the OpenCV
camera calibration toolbox was used to calculate the extrin-
sic parameters of the cameras. To account for synchronisa-
tion a camera-sync algorithm [10] was adapted to align the
input foreground silhouettes. The mean back projection er-
ror of the 3D points, provided in the challenge dataset, used
in order to calibrate the extrinsic parameters was 3.33777
pixels. This is a relatively high error and is due, mainly, to
the high distortion and low resolution of the cameras.

3.4 3D Player Reconstruction
There are a variety of 3D reconstruction methods pre-

sented in the literature [6, 13, 7]. In this paper, a volumetric
intersection technique is employed to perform 3D reconstruc-
tion. Using this technique the visual hull of the 3D object
is computed, which is based on the shape-from-silhouette
method presented in [5]. The visual hull is created from in-
tersection cone projections obtained from each camera view.
Each cone projection takes into account both the silhouette
and the rays between the center of the camera and the con-
tour of the silhouette.

One of the main advantages of this method is that no
texture correspondences are needed and therefore it can pro-
duce high quality 3D reconstructions from poor quality video
inputs. In the Grand Challenge dataset the tennis players
are not captured by all the cameras simultaneously and thus
cannot be used for calculating the visual hulls of the players.
To account for this we have divided the tennis court into 4
sections (A, B, C, D – see Figure 1) and the required visual
hulls are computed from the corresponding section.

Following from [10] let Ic be the image projection captured
by a camera c, where c = 1, ..., N and N is the total number
of cameras. Ic is projected onto a base plane, z0 = 0, forming
Ic

z. All other planes, zs, are parallel to z0 and occur at
distances d(zs+1 − zs) = ρ = const, where s = 0, ..., K and
K is the total number of planes per camera. Let W be
the width and H be the height of the tennis court then the
dimension of Ic

z is defined to be (W
ρ
× H

ρ
). Let Sc

z be the
silhouette projection in a plane z captured by a camera c
and Sc

z ⊂ Ic
z. Therefore,

Ic
z(i, j) ∈ Sc

z if and only if Ic
z(i, j) = 1

where i =
x

ρ
and j =

y

ρ
and x, y are the coordinates of a

(a) 3D Model View 1 (b) 3D Model View 2

Figure 5: Example 3D player reconstruction.

point that lies on a plane zs.
The Visual Hull is obtained by the intersection of planes

from all cameras. If a 3D point is simultaneously captured
by all cameras of a section for a specific plane then that point
belongs to the Visual Hull. If n ∈ N is the total number of
cameras in a section then the intersection matrix Mz can be
defined as follows:

Mz =

nX
c=1

Ic
z

The 3D mesh is subsequently calculated using the marching
cubes algorithm [9] where N = 9, ρ = 0.15 meters and K =
12 for each camera. An example of 3D player reconstruction
can be seen in Figure 5.

4. VISUALISATION AND ANNOTATION
The user interface of the proposed coaching system dis-

plays the input video, annotation tools, output statistics
and a 3D view (labeled 1-4 respectively in Figure 6), with
an intuitive browser on the top. The user can quickly surf an
entire game via the browser, pause, step forward/backward,
or play back at a chosen frame rate. In the input video pane
the user can designate what cameras to view and the tool
will automatically scale and position the camera images to
make efficient use of screen real-estate. The user can also
annotate the images in this pane in order to highlight points
of interest to the athlete – see Figure 7.

The annotation pane, labeled (2) in Figure 6, depicts the
tracked ball and player positions throughout the match (as
seen in Figure 3). There are two types of annotations are
available in this interface. The first are hotspots [8] (see Fig-
ure 8 (a)) and the second are player annotations (see Figure
8 (b)). Hotspot annotations are selected 3D regions of in-
terest that have been created from the 2D plan-view of the
court. Statistics (e.g. time spent by a player or ball in that
area of the court, average velocity through the area, etc.)
are calculated for each hotspot. Player annotations allow
the coach to highlight suggested adjustments of a player’s
movement about the court. In Figure 8 (b) the real move-
ments of player 1 are highlighted in red and the coach’s
annotation are depicted in green and depict how the athlete
should have moved during that particular sequence of play.

All the annotations and tracking data are rendered in real-
time in the 3D pane, which allows the game to be viewed
from any angle, enabling the coach to further clarify an issue



Figure 6: Annotation coaching tool.

Figure 7: Input Image Annotation.

to a player. The coach can also replay the match from the
point of view of either player or from the sideline – see Figure
9. This feature allows the player to relive the match from
their opponent’s point of view own viewpoint, or a specta-
tor’s viewpoint, to aid in the post-match analysis of tactical
performance. In this mode, the 3D animation follows the
course of the ball when it is in play, similar to how a player
will closely watch the ball in a match, adding a further level
of realism to the system.

5. CONCLUSIONS
In this paper we presented a novel tennis analysis system

to review a player’s match performance and provide detailed
feedback to the athlete via 3D reconstruction and audio an-

(a) (b)

Figure 8: (a) Hotspot Annotations; (b) Player An-
notations.

(a) (b) (c)

Figure 9: (a) View from the crowd; (b) Player 1
viewpoint; (c) Player 2 viewpoint.

notation. The system provides a range of intuitive tools
including 2D and 3D annotation, video playback from mul-
tiple viewpoints, real-time game statistics and the facility
to record audio commentary. This framework is specifically
designed for non-professional sports clubs and uses low-cost
equipment. The application presented in this work is tar-
geted at tennis but the framework can be utilised by a wide
range sports. In future work, we wish to perform usability
studies with a large number of coaches and to improve its
performance based on the feedback from these studies.
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