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Data refinement is a special instance of refinement where a specification is refined

by replacing the data type used in the specification. The theory of data refinement

guarantees that this replacement does not adversely affect the functional behaviour

of the programs that use these specifications.

Object-oriented programming languages such as JML and Spec# support the

specification and verification of object-oriented programs. We research their capa-

bilities, identifying their strengths and weaknesses from both a specification and

a tool-support point of view. This leads us to the conclusion that object-oriented

specification languages should support a view of objects that abstracts away from

the implementation details. We examine the specification and verification of pro-

grams that are written in this way, making use of existing language features, so that

data refinements can be verified using existing verification tools.

We propose a framework for the specification and verification of modular data

x



refinement within an object-oriented environment. Objects are specified in terms

of one data type and implemented in terms of another. Clients who interact with

these objects are never concerned with the underlying implementation details as they

interact directly with the abstract specification. A proof-of-concept tool is developed

to demonstrate the viability and effectiveness of our proposed framework. This tool

takes the form of an application that checks whether or not a program conforms to

our framework for the modular data refinement of object-oriented programs.
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Chapter 1

Introduction

Formal methods of software development provide maximal levels of software reli-

ability. However, methods such as program derivation and program verification

[39, 31, 32, 73], have received much criticism due to their increased emphasis on

proof, either during program construction or program verification.

More recently, a more pragmatic approach seeks to integrate the basic mecha-

nisms of program verification, such as pre-conditions, postconditions and loop invari-

ants, with routine software testing and model checking. Characterised as lightweight

formal methods [43], they are most commonly found in the design-by-contract ap-

proach of Eiffel [68], and more recently in extensions to programming languages

such as Java and C#. In this approach, pre-conditions and postconditions clearly

assert the obligations of the software client and the software supplier, ensuring that

there is no doubt about the environment in which the software should be executed

in order to guarantee the expected results. These assertions provide the software

specification that the implementation must satisfy if it is to be verified as correct.

Formal reasoning about programs provides extensive and detailed tool support

that can be used to validate specifications against system requirements, check the

consistency of specifications, and assist in the refinement of specifications into exe-

cutable programs. The main advantage of a tool that performs these tasks is that

it leads to a well-structured and safe approach to program construction.

During the last decade, experience in the specification and the verification of

moderately scaled software systems has been achieved: interactive program verifiers,
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such as B [1] and Spark Ada[10], have been applied to control software and other

critical applications, software model checking with tools such as the Static Driver

Verifier [8], has had an impact on industrial applications, and a number of research

tools that detect errors in software have been built using semi-automatic program-

verification technology (e.g. Spec# [13, 12, 14], JML [50], Spark [10], ESC/Java2

[46], Perfect Developer [24] Why [33], Krakatoa [67], KeY [15]).

1.1 Verifying Compilers

The Grand Challenges Exercise [45], an enterprise of the UK Computing Research

Committee, revived the challenge of the construction and application of a verifying

compiler: “the time is ripe to embark on an international Grand Challenge project

to construct a program verifier that would use logical proof to give an automatic

check of the correctness of programs submitted to it” [42]. Such a compiler could

come in many varieties, from systems that generate provably correct code from

specifications, to systems that ask users to guide an interactive theorem prover to

produce a replayable proof script.

Two successful verifying compilers for procedural languages are those for the

SPARK programming language and for the B specification language. SPARK is

a high-level programming language based on a subset of the Ada language, and is

designed in such a way that all SPARK programs are legal Ada programs. Although

SPARK does not support many dynamic language features like references, memory

allocation, and subclassing, it is useful for many embedded industrial applications as

demonstrated by Praxis Critical Systems [3]. The SPARK tool-set offers a selection

of static tools, from lightweight checking to full verification with an interactive

theorem prover.

The B-Tool supports writing specifications in B and provides a machine-aided

process for step-wise refining [78] these specifications into programs that can be com-

piled and executed. The resulting programs are similar in expressiveness to SPARK

programs. This methodology, which has been used with success in constructing

the braking system software for the Paris Metro, produces only correct programs.

However, the interactive proofs and the skills needed during the refinement process

make for a steep learning curve, which is a barrier for many programmers.
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1.2 Contributions of this Research

This thesis contributes to work on the automatic verification of object-oriented pro-

grams. Two of the most successful projects in this area are the Extended Static

Checker for Java (ESC/Java2) [46], and the Spec# programming system[13, 12, 14].

Both systems use the design-by-contract approach to annotate programs with as-

sertions so that tools, such as compilers and theorem provers, can use these asser-

tions to generate the proof obligations required to verify that a program satisfies

its specification. Verification tools are then used to automatically discharge the

proof obligations that have been generated. ESC/Java2 supports Java programs

with assertions written in the Java Modeling Language (JML) [50] while the Spec#

programming system supports C# programs with assertions written in the Spec#

specification language.

The central emphasis in these projects is Extended Static Checking, i.e., support

for traditional static verification techniques extended with support for dynamic

analysis of programs. By static verification we mean checking the consistency of a

program with its specification without executing the program. A typical example

is type checking. Extended static checkers allow the compiler to emit run-time

checks at compile time, recording assertions in the specification as meta-data for

consumption by downstream tools such as SMT solvers like Simplify [28] or Z3 [27].

The result is the static detection of errors (null dereferences, casting errors, array

bound errors, etc) that would traditionally be detected at run-time.

In this research we contribute to the verification of data refinement in existing

verification tools for object-oriented programs. By verification, we mean proving

that an implementation satisfies its specification in every possible execution. We

are primarily concerned with accomplishing this proof via static reasoning, although

the tools that we use also support dynamic checking. Our work provides an in-depth

analysis of the current support for data refinement in the specification languages,

Spec# and JML. We propose a framework for expressing and verifying modular

data refinement, which could be used to extend existing languages such as these,

so that their support for data refinement is improved. The feasibility of these

proposed extensions is shown through the development of a prototypical tool. This

tool accepts JML programs as input and checks whether they conform to the rules

3



governing a data refinement, as defined by our framework.

Some publications from our related research are listed below:

• K. Rustan M. Leino and Rosemary Monahan, “Using Boogie 2 in the Verifica-

tion of Spec# Programs”. In 13th Brazilian Symposium on Formal Methods

(SBMF 2010)

• Rosemary Monahan, “Verification of C# programs using Spec# and Boogie

2”. In 8th International Conference on integrated Formal Methods Workshops

(iFM Workshops 2010)

• K. Rustan M. Leino and Rosemary Monahan, “ Dafny meets the Verification

Benchmarks Challenge”. In 3rd International Conference on Verified Software:

Theories, Tools, Experiments (VSTTE 2010)

• Rosenary Monahan and Yan Xu, “Implementing the Verified Software Ini-

tiative Benchmarks using Perfect Developer”. In China-Ireland International

Conference on Information and Communications Technologies (CIICT 2010)

• K. Rustan M. Leino and Rosemary Monahan, “Reasoning about Comprehen-

sions with First-Order SMT Solvers”. In 24th Annual ACM Symposium on

Applied Computing (SAC 2009)

• K. Rustan M. Leino and Rosemary Monahan, “ Program Verification Us-

ing the Spec# programming system”. In European Conference on Object-

Oriented Programming Summerschool Series (ECOOP Summer-school 2009)

• K. Rustan M. Leino and Rosemary Monahan, “ Program Verification Using

the Spec# programming system”. In European Joint Conferences on Theory

and Practice of Software, Summer-school Series (ETAPS-Summerschool 2008)

• K. Rustan M. Leino and Rosemary Monahan, “ Automatic verification of

textbook programs that use comprehensions”. In Formal Techniques for Java-

like Programs (FTfJP 2007)

• Gareth Carter, Rosemary Monahan and Joseph Morris, “Software Refine-

ment with Perfect Developer”. In Software Engineering and Formal Methods

(SEFM 2005)
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1.3 The Problem Description

A software client should only be concerned with the software specification. They

do not need to know details about the implementation and the verification process.

This separation of concerns is achieved via data abstraction. In all approaches to

data abstraction the key idea is to provide an abstract view of a program which we

can provide to the client without exposing implementation details. The specification

of the program is typically written in terms of some data type whose relationship

with the data type actually used in the implementation is only known to the pro-

grammer. We refer to the data type used in the specification as the abstract data

type and to the data type used in the implementation as the concrete data type.

By data refinement we mean the process of transforming a specification written

in terms of the abstract data type into a specification that is written in terms of

the concrete data type. We refer to this latter specification as the implementation.

The theory of data refinement guarantees that this replacement of types does not

adversely affect the behaviour of the programs that use these specifications. We

say that the implementation refines the specification. The key idea is to use an ab-

straction relation to describe the connection between the abstract and the concrete

data types.

A standard example of data refinement is to replace a mathematical set with

a sequence representation such as an array or a singly linked list. A suitable ab-

straction relation would map the contents of the sequence to the contents of the

set. A consequence is that all operations defined on the abstract data type must be

redefined in terms of the concrete data type. For example, if we specify a library

as a set of books, the operation that adds a book might use the union operator,

whereas if we specify a library as a sequence of books this would require use of the

sequence concatenation operators.

The refinement calculus provides a set of laws that, using the abstraction rela-

tion, transforms a specification written in terms of the abstract data type into a

specification that is written in terms of the concrete data type. The abstraction

relation must take into account how the abstract variables have been used in the

specification. The major advantage of data refinement is that specifications can be

written and reasoned about in a way that is independent of their implementations.

5



In this way we can prove properties of the specification and then, through the laws

of data refinement [72], we can prove that the implementation is consistent with

the specification. Proving the correctness of a data refinement relies on a mapping

that relates the abstract data and the operations defined on it, to the concrete

data and its operations. In this work, we determine how existing specification lan-

guages and their corresponding verification tools should support data refinement in

object-oriented programs.

1.3.0 The Significance of this Problem

A specification language typically contains sophisticated data types that are ex-

pensive or even impossible to implement. Their replacement with simpler or more

efficiently implementable types during the programming process is necessary in or-

der to achieve an implementation. This replacement and its verification is not fully

supported in object-oriented programming languages at present. Supporting data

refinement in object-oriented programming languages and their verification tools

will allow greater flexibility when writing specifications. It will also support rea-

soning about specifications in a way that is independent of their implementations.

Reasoning that applies to the specification is also applicable to the implementation,

as a correct implementation and its specification will satisfy the same properties

even if these properties are expressed in terms of different data types.

1.3.1 Current Approaches to this Problem

Current approaches to support for data abstraction in specification languages in-

clude ghost variables, model fields, logic functions and pure methods. In all of

these approaches the idea is to present a higher-level, more abstract view of what a

program implements. While these approaches support writing the specification in

terms of an abstract view that is somehow mapped to its implementation, we believe

that these approaches have shortcomings in supporting full data refinement verifi-

cation in an object-oriented environment. In particular, the abstract specification

and its concrete implementations are seldom modular. Hence the client’s view of

the specification is not guaranteed to be free of implementation details. Even when

the client’s view of the specification is free from these details, the substitution of one

6



implementation for a specification, and the substitution of one implementation for

another, is not an easy task. In an object-oriented programming language, topics

such as object mutability, aliasing, subtyping and modularity all play a considerable

role in this substitutability.

1.4 The Goals of this Research

The first goal of this work is to provide and evaluate, a framework for modular

data refinement in behavioural interface specification languages for object-oriented

programs. The second goal is to provide improved support for data refinement

in existing verification tools for object-oriented programs, making use of existing

language structure and verification techniques where possible. To achieve these

goals we first analyse existing specification languages and their support for data

abstraction.

1.5 Thesis Overview

In this chapter we have introduced the motivation and the context of our work. We

have described the problem that we wish to solve and the goals of our research. The

remainder of this dissertation is laid out as follows.

In chapter 2, we present an overview of object-oriented programs and their speci-

fications. We introduce the idea of software contracts, which provide the obligations

for both the software and the software supplier. A notation in which to express these

contracts is introduced. This notation is similar to that of popular object-oriented

specification languages, JML and Spec#. Verification tools for object-oriented pro-

grams and the key factors that influence the modular verification of these programs

are also presented.

We review the main components of the refinement calculus in chapter 3. Re-

finement laws for procedural refinement and data refinement are presented as well

as strategies by which data refinements can be verified. In chapter 4, we discuss

the verification of data abstractions in an object-oriented environment, focusing on

support in JML and Spec#. As a result, we provide a suite of proposals to assist
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the verification of modular data refinement in an object-oriented programming en-

vironment. These proposals are summarised in section 4.3. We provide an overview

of Spec# notation in chapter 5 and proposes a strategy for the modular verification

of data refinements in it’s programming system, using existing language features to

achieve a two-class approach to data refinement.

In chapter 6 we present an object-oriented programming framework to support

a modular approach to data refinement. This framework completely decouples an

object’s specification from its implementation maintaining a client and a supplier

view of the software. The language is designed to meet the proposals discussed in

chapter 4. A proof-of-concept tool was developed to demonstrate the viability and

effectiveness of our framework. This tool, described in chapter 7, takes the form of

an application that checks whether or not a program conforms to our framework for

the modular data refinement of object-oriented programs. Finally, we summarise

our research in chapter 8 and suggest interesting topics for future work in this area.
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Chapter 2

Object-Oriented Verification

In this chapter, we present an overview of object-oriented programs and their speci-

fications. We introduce the idea of software contracts, which provide the obligations

for both the software and the software supplier. A notation in which to express these

contracts is introduced. This notation is similar to that of popular object-oriented

specification languages such as the Java Modeling Language (JML) and Spec#.

Verification tools for object-oriented programs and the key factors that influence

the modular verification of these programs are also presented.

2.1 Object-Oriented Programs

An object-oriented program is typically defined as a set of classes where each

class provides the structure and implementation for a family of objects. We work

with typed object-oriented programming languages which support the definition of

classes, objects, object references, interfaces and abstract classes with single (rather

than multiple) inheritance, and a type system that supports subtyping and poly-

morphic types. The notation that we use throughout our work is similar to Java

and C#.

Classes are similar to modules in Modula-3, packages in Ada and aspects in As-

pectJ, in that they encapsulate variables that define state and functions that define

the allowed behaviour on that state. As is normal in object-oriented programming,

we refer to these variables and functions respectively as fields and methods and
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collectively as features.

Classes support information hiding through providing a private component of the

class which keeps the fields and the method implementations hidden from the client

(the programmer who uses the class) yet available for the supplier (the programmer

who writes the class). A public interface for the class, in the form of method

signatures, is visible to all clients. Clients may use the class by creating instances of

the class, called objects. An object’s state is given by the values of its fields and its

behaviour is given by the methods that can be called (or executed) on the object.

When a method m is called on an object obj (written as obj.m()) we refer to obj

as the receiver object.

2.2 Behavioural Interface Specifications

The challenge in writing a specification for a class is to provide information about

its allowed behaviour, without exposing implementation details to the client. The

design-by-contract approach[68], pioneered by Bertrand Meyer in the Eiffel Pro-

gramming language, embraces this challenge. A class contract outlining the client

and supplier obligations provides the class specification without exposing imple-

mentation details. This class specification is provided in the form of assertions.

These are boolean expressions that are written in predicate logic and side-effect

free. Typically the language of assertions is a super-set of the programming lan-

guage, supporting expressions that include quantifiers and data types that are not

available for the implementation. As the implementation details are not exposed by

the class contract, the programmer has the flexibility to change the implementation

as long as it satisfies the specification. Wing [86, 87, 37] and Lamport [47] called

these contracts interface specifications. They are also referred to as behavioural

interface specifications [21, 38] to reflect the recording of the behavioural aspect of

these specifications.

In their most basic form, behavioural interface specifications describe the func-

tional behaviour of a class by describing the relationship between the inputs and

outputs of its methods. For example a class containing a method that calculates the

minimum of two positive integers might specify that the method has two positive

values as input and that the smaller of those two inputs is returned as the result.
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A class contract typically consists of a object invariant and its method con-

tracts. A method contract consists of its signature, pre-conditions, postconditions

and frame conditions. It does not include the implementation. Pre-conditions,

postconditions and object invariants are expressed as assertions whereas frame con-

ditions simply list the parts of the object’s state that a method is allowed modify.

The obligation of the client is that when they execute a method, they do so in a

state that satisfies the object invariant and the pre-conditions of that method. In

return, the supplier guarantees that the method’s postconditions and the object

invariant will be satisfied after the method has been executed.

In the sections that follow we discuss these components of class contracts in

detail. We support our discussion with examples and in this way we introduce the

notation that we use throughout this document.

2.2.0 Behavioural Interface Specification Languages

Specification languages which are used to express specifications can be general (as in

the Z language) but are often specialised to precise methodologies and verification

tools. We are primarily interested in specification languages that are specialised for

object-oriented languages. Examples include Eiffel, JML and Spec#. These lan-

guages provide extensions to their underlying programming languages which allow

assertions, such as method pre-conditions and postconditions, to be expressed in a

syntax that is a super-set of the programming language.

Assertions may be processed by verification tools that perform static and dy-

namic analysis of programs. We will discuss existing tool support for these in section

2.2.7. First, we discuss the components of the class contracts and provide notation

in which to express them. This notation is similar to that used in JML and Spec#.

2.2.1 Pre-conditions and Postconditions

Hoare logic [4, 39] and Dijkstra’s weakest pre-conditions calculus [76, 31] lay the

foundation for the design-by-contract approach. Hoare logic provides a set of log-

ical rules in order to reason about the correctness of software using the rigour of

mathematical logic. Proof that an implementation satisfies its contract is presented

in the form of a triple {Q}P{R}. The meaning of this triple is: if program P is
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executed in a state satisfying the pre-condition Q, and if P terminates, then the

state achieved will satisfy the postcondition R . For example, the triple

{x > 4} x := x + 1 {x > 5}

where := represents assignment, means that the program x := x + 1 executed in a

state where x has a value that is greater than 4 will achieve a state where x has a

value that is greater than 5.

Hoare’s programming rules prove properties of programming constructs such as

skip (do nothing), assignment (:=), sequential composition (;), if statements and

loops. His logical rules allow the manipulation of pre-conditions and postconditions

through strengthening or weakening them and through distributing logical operators

over them.

An alternative formulation of these rules, that is used in many program ver-

ification tools, is Dijkstra’s weakest pre-conditions calculus. In this calculus the

operator wp(P,R) is used to construct the weakest pre-condition that can establish

the postconditions R for the program P . An assertion Q is weaker that assertion

S if S ⇒ Q . Intuitively this means that Q is less restrictive than S and hence if

{S}P{R} is a valid triple in Hoare logic then {Q}P{R} is also valid.

The notation that we use to represent pre-conditions and postconditions is close

to that of Spec# and JML. To see how this compares to the traditional Hoare style

format, we write a class in Fig. 2.1 that encompasses our previous example as a

method, i.e., {x > 4}x := x + 1{x > 5} . Note that the method pre-conditions is

annotated with the keyword requires and its postconditions are annotated with

the keyword ensures. We refer to these as requires and ensures clauses respec-

tively. A method contract may contain any number of requires clauses, which

provide the method’s pre-conditions when they are conjoined. Likewise a method’s

postconditions is the conjunction of its ensures clauses. Note also, the symbol that

we use for assignment is = and the symbol that we use for equality is ==. This

is in keeping with the notation for assignment and equality in popular specification

languages such as Spec# and JML.

Pre-conditions express the constraints under which the method will execute cor-
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public class Inc{

private int x;

public void Increment ()

requires x > 4;

ensures x > 5;

{

x = x+1;

}

}

Figure 2.1: The specification and implementation of a method that increments an
integer variable.

rectly and postconditions express what will happen as a result of the methods proper

execution. Since the client must establish the pre-conditions before calling a method,

it is reasonable to demand that every feature appearing in the pre-conditions of a

method must be available to every client to which the method is available. Meyer[68]

refers to this as the Pre-condition Availability Rule. So, for example, a method’s

pre-conditions should not refer to the private fields of the class. Postconditions may

refer to features that are not directly available to the client, as they should record

all effects of the method. These effects could impact on the client even if they have

no access to the features that are modified. If a pre-conditions is violated the error

is known to be in the client’s code whereas if a postconditions is violated the error

is known to be in the supplier’s code.

2.2.2 Quantification

Specifications may contain quantifiers such as the universal and existential quan-

tifiers. These quantifiers are specification constructs that are not directly imple-

mentable in our language. In our specification notation, we represent universal

quantification and existential quantification using the keywords forall and exists

respectively. For example an assertion that expresses that all values in an array

called A are greater than zero could be written as

forall{int k in (0 : A.Length); A[k] > 0};
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whereas the assertion that there is at least one positive value in the array A could

be written as

exists{int k in (0 : A.Length); A[k] > 0};

An example of a specification containing universal quantification is presented in

Fig. 2.2.

public class Sq{

private int []! a;

public int Square ()

modifies a[*];

ensures forall {int i in (0 : a.Length ); a[i]==i*i};

{

int x = 0;

int y = 1;

for (int n = 0; n <a.Length; n++){

a[n] = x; x +=y; y + =2;

}

}

}

Figure 2.2: An example of a postcondition that contains the universal quantifier.

2.2.3 Relating Values Before and After Method Executions

Postconditions may relate the value of a variable after a method’s execution with

its value prior to that method’s execution, i.e., in its pre-state. We use the notation

old x to denote the value of the variable x in its pre-state. The method’s post-

condition, ensures x > old x , expresses that the value of the variable x has been

incremented. This notation is used in the same way in Eiffel, JML, and Spec#.

Some other popular notations, with which the reader might be familiar, are x′ to

denote the value of x in the post-state and x0 to denote the value of x in the

pre-state. Logical variables have also been used in Hoare logic and specification

languages like Z to relate the values of variables in the pre-state and post-state.

These variables can be used in specifications but cannot be assigned values in the

implementation.
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2.2.4 Non-Null Types

Errors in modern programs often manifest themselves as null-dereference errors.

Many specification languages try to eradicate null dereferences through supporting

non-null types. For example, in C#, each reference type T includes references to

objects of type T and references to the null value. In Spec#, type T! contains

only references to objects of type T. We adopt this notation in our specification

language. The supplier delegates to the client, the responsibility of ensuring that

non-null arguments are used in a method call. This decision is recorded using an

exclamation point. For example, in Spec# the declaration int []! xs declares an

integer array called xs which cannot be initialized to null. Verification tools enforce

this decision at call sites returning a message such as “ Error: null is not a valid

argument” if a null value is passed to a method that requires a non-null argument.

2.2.5 Frame Conditions

Frame conditions specify the parts of the object’s state that a method is allowed to

modify. In Fig. 2.3 the annotation modifies x specifies the frame condition and

hence limits the parts of the program state that the method is allowed to modify

to the variable x . In our notation, the modifies keyword is followed by a list of

variables that the method is permitted to change. We refer to this list as the method

frame . In this case the example in Fig. 2.2 illustrates how a modifies clause can

refer to an array of values. The notation a[∗] refers to all values in the array a.

Similarly, the notation b.∗, used in a modifies clause refers to all fields of the object

b while modifies b.x, refers to the allowed modification of field x of the object b .

2.2.6 Return Values

The postconditions of the Increment() method of Fig. 2.3 specifies that the method

returns the value x. This is specified by writing result == x, where result denotes

the value returned by the method. Recall that the symbol that we use for equality

is == (as used in Java and C#).
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public class Inc{

private int x;

public int Increment ()

requires x > 4;

modifies x;

ensures x > old x && result == x;

{

x = x+1;

return x;

}

}

Figure 2.3: A method that increments an integer variable and returns its value.

2.2.7 Object Invariants

An object invariant is an assertion that specifies properties of the object’s state.

An object is valid if it satisfies the object invariant at all stable times. By this we

mean that the object invariant must be established when the object is constructed

and must be re-established before a method execution terminates. These are the

responsibilities of the supplier. In return the client can assume that the object

invariant holds when a method is executed. A method implementation may violate

an object invariant but must re-establish it before its execution terminates, ensuring

that the object is in a state where other methods may be called without error.

Assertions within a class definition, labelled with the keyword invariant are

called object invariants. The conjunction of these assertions provides the overall

object invariant. See Fig. 2.4 for an example, where the constructor establishes the

object invariant by assigning the values 0 and true to the variables c and even

respectively. The method Inc() temporarily violates the object invariant within

the method body, but re-establishes it before the method execution terminates.

Another example is a class that describes a linked list, where a suitable object

invariant is that each node in the list must be linked to another. A method that

inserts a node into the centre of the list must break the invariant so that the node

is inserted. When the insert method has completed, the object invariant must be

re-established.

Object invariants strengthen method contracts by adding properties that the

object should satisfy and that the client should maintain. All object invariants are

public in our notation.
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public class Counter{

private int c;

private bool even;

invariant 0 ≤ c;

invariant even ⇐⇒ c mod 2 == 0;

public Counter ()

ensures c == 0 && even == true;

{

c = 0; even = true;

}

public void Inc()

modifies c, even;

ensures c == old(c)+1 && even 6= old(even);

{

c++; even = !even;

}

}

Figure 2.4: The method Inc() violates the object invariant after it increments c and
before it changes the value of even as even ⇐⇒ c mod 2 == 0 is false.

2.3 Object-Oriented Program Verification

Program verification means proving that a program implementation satisfies its

specification for every possible execution path. This is usually achieved through

static reasoning which establishes whether an implementation satisfies its specifi-

cation through examining all possible execution paths before the implementation

is executed (i.e., at compile time). Static reasoning can also be combined with

dynamic analysis techniques such as run-time assertion checking. Run-time asser-

tion checking discovers any inconsistencies that exist between the specification and

the implementation by executing assertions to determine their validity at run-time.

This execution of assertions does not change the behaviour of the implementation,

as specifications are not permitted to have any side-effects [16].

Verification tools for languages like JML and Spec# provide both static and

run-time assertion checking of specifications and their implementations. If the proof

obligations can be discharged, the program is proved to be a correct implementation

of the specification. Failed proof attempts are reported as error messages, to which

a user responds by fixing errors or omissions in the program and its specifications.

There are several tools for statically checking JML assertions, providing different

levels of automation and supporting different levels of expressiveness in specifica-

17



tions. One example is ESC/Java2 which checks assertions and automatically detects

errors such as dereferencing null, indexing an array outside its bounds, or casting

a reference to an incorrect type. JML specifications can be dynamically checked

by the JML run-time assertion checker (JML RAC). JML RAC tries to find in-

consistencies between the specification and the implementation by executing JML

assertions and notifying the user of any assertion violations.

The Spec# static program verifier, Boogie [55], generates logical verification

conditions from a Spec# program. It achieves this by first translating compiled

Spec# programs into the intermediate verification language BoogiePL. BoogiePL is

a simple first-order language that includes mathematical functions, arithmetic, and

logical quantifiers. The Spec# compiler performs run-time checks for method con-

tracts and invariants. Internally, the Spec# programming system uses an automatic

theorem prover that analyses the verification conditions to prove the correctness of

the program or find errors if they exist.

The main advantage of static and dynamic analysis of programs is that potential

errors can be identified even before the program is complete or executable. A

further advantage is that the program is better designed and documented due to

the assertions that describe the properties that are statically checked.

There are two fundamental properties of any proof method: soundness and

completeness. A proof system is sound if what it proves is also true. Therefore, if no

error is reported we are sure that no error exists. A program verification system that

is not sound may fail to produce errors about incorrect programs . Such a system

is still useful if the user knows the type errors that the system fails to report. For

example, ESC/Java fails to report errors arising from modular arithmetic and/or

multi-threading.

A proof system is complete if everything that is true can be proven. Therefore, a

verification system that is complete will report a positive result if a program verifi-

cation is true for all possible inputs. If the verification system is not complete it may

produce errors about correct programs, hence complaining that an implementation

does not satisfy its specification when it does.
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2.3.0 Modular Verification and Behavioural Subtyping

In any object-oriented program we expect class invariants, method pre-conditions,

frame conditions and method postconditions to be specified and verified. The aim is

to achieve modular verification of classes and methods so that they may be reused

in software development. Specification techniques must be capable of handling

language features for modular object-oriented programming such as subtyping, dy-

namic dispatch and inheritance.

Subtype Polymorphism

A type defines a set of values and the operations that are allowed on those values.

We write x : T to express that a variable x has type T. S is a subtype of T if

a value of type S can be substituted anywhere that a value of type T is expected

without causing type errors. Conversely we say that T is a supertype of S. We write

S<:T to denote that the type S is a subtype of T and understand this as “every

value described by S is also described by T” or “the set of values of S is a subset of

the set of values of T”. One of the consequences of subtyping is that if S<:T, then

every element t of type S also has type T. We refer to this property as subsumption

and express it by the following rule:

Γ ` t : S S <: T

Γ ` t : T
(Subsumption)

where Γ ` t : S expresses the type judgement t : S (the variable t is of type S )

in the typing context Γ. A typing context is just a set of type judgements like

{x0 : T0, x1 : T1, ...} where xi refer to variables and Ti refer to types and 0 <= i.

Due to subsumption, S<:T then a variable of type T may be assigned a value of

type S without causing any type errors. For example a language might allow floating

point values to be used wherever integer values are expected (Float <: Integer)

so given the function f : Integer → Integer, the function call f(v) with v : float

does not result in any type errors.

In a programming language that supports subtyping, variables and expressions

can therefore denote values of several different but related types at run-time. We
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refer to this as subtype polymorphism. Note that if S<:T then a variable of type

T can be assigned the value of a variable of type S. However a variable of type

S cannot be assigned a value of type T as it is possible that some operations are

allowed on S which are not permitted on T. The subtyping relation is reflexive and

transitive as expressed by the rules below:

S <: S (Subtyping Rule 1:Reflexivity)

S <: U U <: T

S <: T
(Subtyping Rule 2: Transitivity)

Inheritance and Subtyping

Clients of a class must satisfy the class contract in order to obtain guarantees about

an object’s behaviour. The client is typically a class which uses another class in its

definition (as in Fig. 2.6). Another popular way to reuse a class definition is via

extension where a class inherits features from an existing class. An example can be

seen in Fig. 2.7, where a ColouredPoint inherits from the class Point (which

is defined in Fig. 2.5).

As is standard in object-oriented programming, when a class inherits from an-

other we refer to the inheriting class as the subclass and the inherited class as the

superclass. The advantages of subclassing are mostly due to reuse. The subclass can

reuse features from the superclass, may add new features to extend the class, or may

change the behaviour of the inherited methods. When a class inherits from another

it inherits the class contract as well as the implementation. We refer to this as

specification inheritance. The resulting design is more modular and hence easier to

reason about. A key mechanism that enables these benefits is method overriding,

which specialises the behaviour of inherited methods.

Dynamic Dispatch and Behavioural Subtyping

In object-oriented programming, the Liskov Substitution Principle is a definition

of subtyping that was introduced by Barbara Liskov in a 1987 conference keynote

address [63]. In a follow-up paper [66] Liskov stated the principle as: “Let q(x)
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public class Point{

private int X;

private int Y;

invariant 0 ≤ X && 0 ≤ Y;

public Point()

ensures X == 0 && Y == 0;

{

X = 0; Y = 0;

}

public void SetPoint(int x1, int y1)

requires 0 ≤ x1 && 0 ≤ y1;

modifies X, Y;

ensures X == x1 && Y == y1;

{

X = x1; Y = y1;

}

public int getX()

ensures result == X;

{

return X;

}

public int getY()

ensures result == Y;

{

return Y;

}

}

Figure 2.5: The specification and implementation of a class that defines a two-
dimensional point.

be a property provable about objects x of type T. Then q(y) should be true for

objects y of type S where S is a subtype of T.”

The Liskov Substitution Principle means that if S<:T then objects of type T in

a program may be replaced with objects of type S without changing any desirable

properties of that program.

In most class-based object-oriented languages, subclasses give rise to subtypes,

i.e., if A is a subclass of B, then an instance of A may be used in any context where an

instance of B is expected. Therefore, we say A is a subtype of B. The consequence is

that any variable declared as having type B might, at run-time, hold a value of type

A. We say that the variable’s static type is B and its dynamic type is A. Examples

of where subclasses do not give rise to subtypes include private inheritance in C++

and operations on derived types in Eiffel where features inherited from a subclass
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public class Line{

private Point a;

private Point b;

public Line()

ensures a.getX == 0 && a.getY == 0;

ensures b.getX == 0 && b.getY == 0;

{

a.SetPoint (0,0); b.SetPoint (0,0);

}

public void SetLine(int x1, int y1, int x2, int y2)

requires 0 ≤ x1 && 0 ≤ x2;

requires 0 ≤ y1 && 0 ≤ y2;

modifies a.*, b.*;

{

a.SetPoint(x1, y1); b.SetPoint(x2, y2);

}

}

Figure 2.6: The specification and implementation of a line.

public class ColouredPoint : Point{
private int colour;

public ColouredPoint (){

colour = 0;

}

public void SetColour(int c1)

ensures colour == c1;

{

colour == c1;

}

}

Figure 2.7: The specification and implementation of a class which inherits from the
class defined in Fig. 2.5.

can be modified.

The Liskov substitution principle is closely related to the design-by-contract

methodology, leading to some restrictions on how contracts can interact with inher-

itance. For example, method pre-conditions cannot be strengthened in a subclass

and method postconditions cannot be weakened in a subclass.

Dynamic dispatch, a characteristic feature of object-oriented languages, allows a

method call to have different effects depending on the dynamic type of the receiver.

A receiver’s dynamic and static types can be identical. However, due to subsump-

tion, the receivers dynamic type can also be any subtype of its static type. Dynamic

dispatch allows the class of the receiver to be determined at run-time. The version
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of the method corresponding to that class definition is then executed.

Dynamic dispatch generates a problem for static verification as the method to

be executed, and hence its specification, is unknown at compile time. One ap-

proach to solving this problem is to verify a method call for each possible subtytpe.

This approach has efficiency problems as every time a new subtype is added to the

language a new suite of verification tasks need to be performed. A more popular ap-

proach is to place restrictions on the behaviour of subtypes so that subclass objects

are capable of behaving according to the specifications of superclass objects. This

methodology is known as behavioural subtyping [66] and allows reasoning about the

behaviour of all possible subclasses in terms of the superclass specification. Most

object-oriented specification languages enforce behavioural subtyping via their rules

for specification inheritance. The necessary restrictions on the contracts of inherited

specifications will be discussed below in the context of modular verification.

As explained by the Liskov Substitution Principle, a subtype object may be

substituted where a superclass object is expected. Therefore, restrictions are placed

on inheriting specifications as follows:

0. The object invariant for objects of the subclass must imply the object in-

variant for objects of the supertype (inheriting classes may strengthen object

invariants).

1. The postcondition of any overriding method must imply the postconditions

of the method that it overrides in the superclass (overriding methods may

strengthen postconditions).

2. The pre-condition of any method in the superclass must imply the pre-condition

of the corresponding overriding method (overriding methods may weaken pre-

conditions).

3. For every method that is overridden, its frame must be a subset of the frame

of the method that it overrides from the superclass.

Restriction 0 is necessary to support inheritance. All inherited methods assume

that the object invariant for the superclass holds in the subclass. Therefore, object
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invariants cannot be weakened by the subclass. For example, the object invariant

in the class Point in Fig. 2.5 is

0 <= X && 0 <= Y

The class ColouredPoint in Fig. 2.7 inherits this invariant from the class Point.

A method call such as Cp.SetPoint(2, 4), where Cp is a ColouredPoint object,

expects the object invariant to hold. In method calls like this weakening the object

invariant by replacing it with

0 <= X

where there is no constraint on Y could cause an error (as a negative value for Y

would be acceptable).

The object invariant in the subclass will normally be strengthened as constraints

are added on new or inherited fields. For example the ColouredPoint object

invariant could be strengthened to become

0 <= X && 0 <= Y && 0 <= c

If an inherited method is called on an object of the subclass, errors can occur as

the inherited method does not know to establish the potentially stronger invariant

of the subclass. A number of solutions have been suggested: object invariants that

mention variables of the superclass could be prevented [75], overriding methods, that

have the potential to modify the object invariant of the subclass, could be required

[82], all inherited methods that have not been overridden could be re-verified [77]

or restrictions on when a field can be modified and when an object invariant must

hold can be put in place [13, 11, 60].

Restrictions 1, 2 and 3 ensure that all overriding subtype methods satisfy the

contract of the method that they override. This means that method contracts can

be verified at compile time. As the pre-conditions cannot be strengthened, we are

guaranteed that the pre-conditions of an overriding subclass method, which could

be called at run-time, is also satisfied. The postconditions of overriding methods

establish at least what the overridden methods establish. Hence, we are guaranteed

that a method call whose receiver class is a subclass object at run-time, will establish
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the postconditions expected from a similar method call when the receiver class is

a superclass object. As the number of locations that an overriding method can

modify cannot increase from those that the overridden method can modify, we

are guaranteed that locations that are left unchanged by a superclass method call

are also left unchanged by a subclass method call. Hence, once again, a run-time

substitution of a subclass object will satisfy the compile time contract.

In summary, all overriding subtype methods must satisfy the contract of the

method that they override. This is necessary for sound modular reasoning using a

supertype’s method contract [29, 51]. Most existing specification languages enforce

behavioural subtyping through specification inheritance. By this we mean that

subtypes inherit their specification from their supertypes but may add their own

specifications to an overridden method.

The rules for behavioural subtyping [65] can be enforced by generating the over-

ridden methods effective contract as follows:

• The effective pre-conditions becomes the disjunction of its pre-conditions and

the pre-conditions of the methods which is overrides. This guarantees that

the overriding method’s pre-conditions is weaker that the overridden methods

pre-condition.

• The effective frame condition is the intersection of its frame condition and

the frame conditions of the methods which it overrides. This guarantees that

the overriding methods frame condition is a subset of the overridden method’s

frame condition.

• The effective postconditions becomes the conjunction of its postconditions and

the postconditions of the methods which it overrides. This guarantees that the

overriding methods postconditions is stronger than the overridden method’s

postcondition.

However, these rules can hide errors [35]. Given a method with the pre-conditions

x < 0, overridden by a method with the pre-conditions x >= 0, a the effective pre-

conditions of the method is x < 0 || x >= 0
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2.3.1 Verification Issues

The most prominent issues that arise in program verifications are modular correct-

ness, frame conditions, modular verification of class invariants and the extended

state problem [74].

A method invocation can lead to the execution of code that is declared outside

the module containing the invocation. This can occur due to dynamic method

binding. Therefore, the correctness of a module relies on properties of the context

in which it can be reused.

Frame properties list fields that can be modified by a method execution. Proving

that fields these are the only fields that are modified by the method is difficult, as

assignments in class extensions often have the knock-on effect of modifying a field

that is not present in the frame conditions.

Class invariants lead to proof obligations for all public methods of a program

as each method must reestablish the class invariant. An inherited method must es-

tablish the class invariant of both the superclass and subclass. Since re-verification

of inherited methods is prevented by information hiding, invariants have to be re-

stricted such that they can be proved based on the specifications of the inherited

methods.

Subclasses inherit from their superclasses and can introduce additional fields,

which are referred to as extended state. To be able to refine the behaviour of

inherited methods, their specifications of frame properties must be loose enough to

allow subclasses to modify the extended state.

Other verification problems that arise from inheritance include method callbacks

when invariants are not satisfied, superclasses breaking subclass invariants, overrid-

ing methods can break contracts, and overriding methods can violate the frame

conditions. These will be discussed in detail in chapter 4.

2.3.2 Assisting the Verification Process

In addition to the assertions that define class contracts (as discussed in section 2.3)

program verification tools use other assertions to check properties of the implemen-

tation other than those visible to the client. These assertions are not concerned

with specifying the external client contract. Instead, they that assist the verifica-
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tion tools in proving that a specification satisfies its implementation. We discuss

these assertions here.

Loop Invariants

public class Sq{

private int n;

public int Square ()

requires 0 ≤ n;

ensures result == n*n;

{

int r = 0;

int x = 1;

for(int i = 0; i < n; i++)

invariant i ≤ n && r == i*i;

invariant x == 2*i + 1;

{

r = r+x; x = x+2;

}

return r;

}

}

Figure 2.8: Example of a method specification containing a loop invariant.

Loop invariants specify the conditions that hold on each loop iteration. The

Hoare logic rule for loops state that the loop invariant holds before the loop guard

is evaluated, is maintained by the loop body and holds when the loop terminates.

Loop invariants are not part of a method’s external contract with the client. How-

ever, they are used to verify that the containing method establishes the method’s

postcondition. Examples are presented in Fig. 2.8 and Fig. 2.9.

Assertions and Assumptions

Assertions such as method pre-conditions and postconditions are used to describe

a method contract. However, assertions may be added to a class for reasons other

than providing a contract for the client. For example, static analysis tools can be

used to verify assertions that are embedded into an implementation. This can be

seen in the Java programming language and in specification languages like Spec#

where assertions are written as executable code that may be executed during testing

and removed afterwards. Likewise, SPARK supports the verification of assertions,
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public class Summation{

private int []! a;

public int Sum()

requires 0 ≤ n;

ensures result == sum{int i in (0 : a.Length ); a[i]};

{

int s = 0;

int n = 0;

while (n < a.Length)

invariant n ≤ a.Length;

invariant s == sum {int i in (0 : n); a[i]};

{

s += a[n]; n++;

}

return s;

}

}

Figure 2.9: Example of loop invariants with quantifiers.

although these are added to program comments rather than to the implementation.

In these systems, the execution of an assertion has no effect if the assertion holds in

the state in which it is evaluated. If the assertion does not hold then the program

execution is stopped and an error is reported.

Like JML and Spec#, we support the addition of an assertion to a method

implementation as illustrated in Fig. 2.10. The notation assert E requires that

the pure boolean expression E is verified via static reasoning. The assertion assert

x < y in Fig. 2.10 evaluates to true. If it is replaced with assert x > y an error

should be reported at compile time.

We also support the addition of assertions that verification tools can assume to

hold. These are typically assertions that cannot be verified in the given context but

are needed for the verification. The statement assume E is like assert E at run-

time, but the static program verifier checks the assert whereas it blindly assumes

the assume statement.

Issues Associated with Behavioural Interface Specification Languages

The behavioural interface specification style used in JML and Spec# is in contrast

with specification languages, such as those from the Larch family [37, 86], which

provide a special mathematical syntax that is ideally suited for input into automatic

verification tools. These mathematical languages have the advantage that specifica-
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public class Minimum{

private int x;

private int y;

public int Min()

requires true;

ensures (x<y)=⇒ result == x;

ensures (x>=y)=⇒ result == y;

{

int m;

if (x<y){

assert x<y; m = x;

} else {

assume x>=y; m = y;

}

return m;

}

}

Figure 2.10: Example of assertions added using assert and assume.

tions can be written in terms of abstract values [40]. This allows the specifications

to be an abstraction of the concrete state of the program. Their disadvantage is

the overhead created for programmers, who need to learn, understand and express

both the specification language and the implementation language.

The approach taken in JML and Spec# eliminates this overhead but there is

a trade-off. Specifications which are written in an implementation-like syntax are

not suited for input to automatic verification tools. Hence, the overhead becomes

an issue for the tool developer, as specifications must be encoded in a form that

automated tools can understand and verify.

A further issue arises due to the lack of distinction between the specification

language and the implementation language. The issue is that the specification often

gets written in terms of the concrete data types. This has a number of drawbacks.

First, it exposes implementation details in the specification, letting clients know how

the specification is implemented. Second, this coupling between the specification

and the implementation creates a dependency which requires that the specifica-

tion is rewritten every time that the implementation details are changed. Third,

verification tools may need to execute some of the code in the implementation to

determine the state of variables used in the specification. This has the negative

effect of slowing down the tool’s performance.

We address these issues by providing support for data refinement so that im-

plementations can be written in terms of a concrete data type and can be proved
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to satisfy a specification that is written in terms of another data type. This work

is relevant to languages where the syntax used in specifications and implementa-

tions is shared. The verification that the implementation satisfies the specification

is supported through a framework for data refinement.

2.4 Data Abstraction Challenges for

Object-Oriented Programming Languages

Leavens, Leino and Müller describe several important specification and verification

challenges for sequential object-oriented programming languages [49]. They draw

on their experience of specifying and verifying code using JML and Spec#, and

static checking and verification tools for programs written in these languages.

The challenges of most interest to our work concern data abstraction in spec-

ifications. By data abstraction we mean that specifications are written in an

implementation-independent way. Two main challenges in this area are identified.

The first challenge,is the development of a specification technique for modeling

types. Modeling types that describe mathematical types such as bags, sets, se-

quences, relations and maps were added to JML so that specifications could be

written in terms of abstract mathematical types [48]. While these built-in types

work well for run-time assertion checking, they are difficult to specify in a way that

is useful for static verification.

Rather than using built-in modeling types for specification, we use the data

types that are already supported in our programming language. Our focus is on

the data abstraction techniques that are used to relate modeling types to their

implementations. We provide a stand-alone specification that is expressed in terms

of one data type, and which may be implemented in terms of another. In this way

the client can view and use the specification without knowing any implementation

details. The data type used in the implementation is referred to as the concrete

data type and the data type used in the specification is referred to as the abstract

data type.

Through the laws of data refinement [72] we can prove that the implementation

is a correct implementation of the specification. This proof relies on a mapping that
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relates the abstract and the concrete data types. We say that the implementation

refines the specification. The major advantage of providing data abstraction in

specifications is that specifications can be written and reasoned about in a way

that is independent of their implementations. However, the verification of a data

refinement must also consider the specification’s implementation. In an object-

oriented programming language these verifications will be influenced by issues such

as mutable objects, aliasing, subtyping and modularity.

The second challenge identified in the area of data abstraction is the develop-

ment of a verification technique for general quantifiers and comprehensions that is

suitable for automatic verification tools. These tools encode proof obligations as

first-order formulae that are passed to automatic theorem provers like Simplify [28]

or Z3 [27]. Our work in this area is documented in [57, 59] where a technique for

translating common comprehension expressions ( sum, count,product,min, and

max) into verification conditions that can be tackled by two off-the-shelf first-order

SMT solvers is presented. The technique has been implemented in the Spec# pro-

gram verifier.

2.5 Conclusion

In this chapter, we presented an overview of object-oriented programs and their

specifications. We introduced behavioural interface specifications using a notation

that is similar to that of popular object-oriented specification languages JML and

Spec#. The factors that influence the modular verification of object-oriented pro-

grams were identified and some specification and verification challenges for data

abstraction in sequential object-oriented programming languages were presented.

We aim to address these challenges through the provision of a framework which

supports the modular data refinement of object-oriented programs. This framework

will provide a stand-alone specification that is expressed in terms of one data type,

and which may be implemented in terms of another. In this way the client can view

and use the specification without requiring any implementation details. Related

work, where we added support for comprehensions to the Spec# programming sys-

tem, provides for the improved specification of abstract data. We discuss the speci-

fication and verification of data refinements in Spec# in chapter 4. First, we provide
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an overview of the refinement calculus, which is concerned with the transformation

of specifications into executable programs through a series of correctness-preserving

steps.
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Chapter 3

The Refinement Calculus

Refinement is a style of development that leads from a formal specification to a work-

ing implementation in a sequence of correctness-preserving steps. The refinement

calculus [5, 6], based on the weakest pre-condition approach to program correct-

ness, provides a set of laws that supports the derivation of a program that satisfies

a given specification. Data refinement arises when we decide on a change of data

representation and want to derive the new version of the specification from the old

one. The change of data representation can arise for a variety of reasons. The

classical case is employing one type of data to facilitate the specification process

and replacing it with a more concrete type to allow implementation. We refer to

this as type transformation in our work in [17]. In this chapter, we review the main

components of the refinement calculus. Refinement laws for procedural refinement

and data refinement are presented as well as strategies by which a data refinement

can be verified.

3.1 Refinement

The language in which we write specifications and their implementations is a lan-

guage of typed terms. We view the specification language as a programming lan-

guage with extra terms that improve the expressiveness of our language. These more

expressive terms are used in the early stages of software development to describe the

program that we wish to implement. The notation used in the specification is richer
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in two ways. Firstly, it has more expressive terms, such as those that involve quan-

tified expressions. Secondly, the notation has richer data types than those available

to the executable program. Such data types allow specifications to be written in a

way that is independent of implementation details.

Refinement is a multi-step process which transforms a specification into a more

algorithmic one through a series of correctness-preserving transformations. These

transformations rewrite the non-executable statements in terms of executable con-

structs while maintaining the original meaning of the specification. The two specifi-

cations are not necessarily functionally equivalent as the refined specification might

eliminate some of that non-determinism offered by the original specification. The

main types of refinement that we consider here are procedural refinement and data

refinement. We discuss other refinement techniques in [17]. Procedural refine-

ment [6, 69, 71] focuses on transforming the more expressive statements of spec-

ifications into executable statements while data refinement focuses on a replacing

the data types used in a specification with more concrete representations. Together

they achieve executable specifications that may be expressed in terms of data types

other than those used in the original specification.

Refinement offers a method of programming where the implementation is correct-

by-construction. By this we mean that the implementation is constructed from the

specification through a series of steps that are known to be correctness preserving.

An alternative method is to generate an implementation and to prove that it satisfies

its specification using a technique such as the weakest pre-condition calculus.

3.2 Notation

We take Dijkstra’s language of guarded commands as our programming language.

Our specification language is a super-set of this language allowing more expressive

statements (which take the form of predicate calculus formulae), as well as a richer

set of data types. We adopt the notation of Morgan [70] where specifications have

the form

~w : [pre, post]
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Like contracts in the design-by-contract methodology, these specifications con-

sist of three parts. First, the pre-condition, denoted by the keyword pre, provides

the initial conditions that must hold for the implementation to function correctly.

Next, the postcondition, denoted by the keyword post , specifies the state that is

achieved if the implementation is executed in a state where its pre-condition is true.

Third, the frame condition, denoted by ~w, lists the variables that the implementa-

tion may modify in order to achieve the postcondition. The specification

y : [x >= 0 ∧ y > 0, y >= x]

provides the pre-condition x >= 0 ∧ y > 0, the postcondition y >= x and the

frame variable y . When this specification is refined by an executable program, its

execution from a state that satisfies the pre-conditions will achieve the corresponding

postconditions through modification of variable y.

Terms

The language in which we write specifications is a language of typed terms. The

symbols T, T1, T2 etc represent general types in the language. We write E : T

when the term E has the type T. Terms, also called expressions, are either

• variables which are denoted by a small letter a - z

• constants such as 0 or

• functions that are applied to other terms e.g., x+1

We associate types with a variable through variable declarations using the key-

word var; the declaration var x : T declares variable x as having type T. The

symbols ‖ and ‖ are delimiters for the local scope of a declaration. Any declara-

tions made within ‖ and ‖ exist only within that scope. The formulae to which

they apply are separated from the declarations by the symbol • . We write

‖var x : T • w, x : [pre, post]‖
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to declare variable x with type T in the scope of the specification w, x :

[pre, post].

Constants are declared using the keyword con and used to refer to values that

do not change within the scope of the declaration.

The sequential composition operator may be used to associate assumptions with

variable declarations: we write var x : T ; and inv to declare x with type T and

that the assumption inv is true. For example, var x : N ; and x> = 1 declares

x a natural number, which has a value > = 1. While the variable declaration is

part of both the specification and the programming language, the and inv decla-

ration is only part of the specification language and hence must be removed during

refinement.

Terms can be combined with predicate symbols (such as the relational oper-

ations) to form boolean terms. These terms are combined, using the standard

boolean operators ∧,∨,¬,⇒ and ⇔ , to generate propositions which are used to

express assertions such as pre-conditions and postconditions.

The value of a term may be determined through its state, the mapping of

variables to their values. E.g., The term

x = 5 ∧ y = 10 ∧ x + y = z

describes a state in which x has the value 5, y has the value 10 and the value of z

is 15.

The quantifiers ∀ and ∃ have their usual meaning, allowing for the consideration

of a collection of values. Given a formula A,

• (∀x • A) is true when A is true for all values of the bound variable x , and

• (∃x•A) is true when A is true for at least one value of the bound variable x .

All free occurrences of x in A become bound occurrences in the overall quantified

formulae. Typed quantifications are written (∀x : T • A) and (∃x : T • A), where

T denotes a set of values which variable x ranges over in the term A. Types in our

language include the Real numbers (R), the Naturals (N ), the Integers (Z ) and

the Boolean type (B ) with the usual operators. We also include Sets, Bags and

Sequences which use the following traditional notation:
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• Set elements are written between { and }. Basic set operations include set

union (∪), set intersection (∩), set difference (-), cartesian product (×),

membership (ε), inclusion (⊆), strict inclusion (⊂) and cardinality (#), while

the empty set is represented by ∅ or { }. To describe sets of terms we use set

comprehension of the form {x:T | P • t } where x is a variable of type T and

which may occur in predicate P. The elements of the set are the terms t which

satisfy the predicate P. For example, the set {n : N | ∃m : N • n = 2m • n}

contains the natural numbers that are even.

• Bag elements are written between b and c and the basic operations are bag

union (t), bag intersection (u), bag difference (-), bag addition (+), bag

cardinality (#) and membership ( ε), while the empty bag is represented by
⊔

.

• Sequence elements are written between < and > with operators including:

concatenation of a single element to a list (:), concatenation of two lists (##),

head (hd), tail (tl), front (ft), last (lt) and length (#). The empty sequence

is represented by <> .

Functions and Relations

Mathematically, functions and relations may both be regarded as sets of pairs.

All the pairs are elements of the Cartesian product of its source and its target

type. We assume the usual definitions of functions and relations with the notation

var f : T1 9 T2, var g : T1 → T2 and var r : T1 ←→ T2 denoting the

declaration of partial functions, total functions and relations respectively. Relations

map an element of the domain type to many elements in the range whereas functions

map an element of the domain type to at most one element in the range.

Given a function f : T1 9 T2 and some x : T1 we apply a function f to its

argument x by writing f(x). A function application is a term that evaluates to

an element in the range of the applied function. We can override a function f by

another function by writing f ⊕ g which behaves as follows:

(f ⊕ g)(x) = g(x) if x ε dom g

(f ⊕ g)(x) = f(x) otherwise
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3.2.0 Reasoning about Specifications

The weakest pre-condition that must be satisfied for a specification to achieve a

postcondition R, is defined using the wp function

wp((~w : [pre, post]), R) , pre ∧ (∀~w • post→ R)[~v0\~v]

where ~v is a vector containing all the specifications variables, the vector ~v0 repre-

sents those variables values in the initial state and [ ~v0\~v] represents the substitution

of all values in ~v0 with the corresponding values in ~v .

When reasoning about specification we relate different predicates so that proper-

ties may be proved about the specification. Two predicates, A and B, are equivalent

if, in every state, A is true if and only if B is true; we write A ≡ B. We write A⇒ B

if in every state, if A is true then B is true; and A ⇐ B if, in every state, A is true

if B is true.

Predicates that evaluate to true are satisfied by all states while predicates that

evaluate to false are not satisfied by some states. These relations, together with

the laws of predicate calculus (e.g., associativity and commutativity of ∧ and ∨)

allow us to reason about specifications.

3.2.1 Programming Constructs

The programming language is an implementable subset of the specification language.

Specifications are refined by executable specifications which are written in terms of

assignments (:=), sequential composition (;), skip statements, if statements and

loops. We also provide for the declaration of procedures and modules which allow

us to group language constructs into one component that can be reused within a

program. The conventional meaning applies for all of this programming constructs.

We outline our notation below.

Assignment: The notation w := E represents an assignment where the vari-

able w is mapped to the value of expression E . All other variables are unchanged.

A multiple assignment changes many variables at the same time:
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w0, w1, ...wn := E0, E1, ...En assigns E0 to w0, E1 to w1, ..., En to wn

simultaneously.

Skip: The skip command specifies when no change in behaviour is required. An

equivalent program is one that assigns variables to themselves achieving no change

in state.

Sequential composition: We write S0; S1 to mean term S0 followed by term

S1. Refinement laws allow the use of ; to combine terms into a refined term.

Conditional Statements: The programming language with which we work

is the language of guarded commands. Guarded commands have the form G → P

where G is a boolean valued term, referred to as the guard. If G is true then G→ P

behaves in the same way as the term P. We use the traditional guarded command

notation for these statements: if G0 → P0 [] G1 → P1 [] . . . [] Gn → Pn fi where

G0. . . Gn are guards. We write if([]i.Gi → Pi)fi as shorthand. The meaning of

this statement is that if exactly one guard Gi, is true its corresponding command

Pi, will be executed. If several guards are true, then one of them is selected and its

corresponding command executed. If the alternation has been designed properly,

it will not matter which of the guards is executed and no assumption about which

one will be chosen will be possible. If no guard is true, the full statement aborts.

Iterations: Iterations are built from a single guarded command: do G→ P od

which repeatedly executes P when G evaluates to true.

Procedures: Procedures are similar to functions and methods, in that they

provide a way of naming a group of language constructs that may be reused many

times. They differ from functions in that they do not return a result when they are

called. While procedures help to control the size and structure of a specification,

their main advantage is due to the reuse of their refinements: whenever a proce-

dure definition is reused in a specification, it may be replaced by that procedure’s

refinement.

Procedures declared using the syntax procedure N (value f : T ) , P have N
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procedure Swap(value x : N, value y : N) , x,y : [x=X ∧ y=Y,x=Y ∧ y=X]

procedure Square_root(value x : R, result r : R) , r :=
√
(x)

Figure 3.1: Procedure declarations.

as the name of the procedure, f, which has type T, as the name of the procedure’s

formal parameter and P as an executable term or a specification that forms the

procedure body. In the context of refinement we use the symbol , for “is defined

as” and the symbol = for equality. As shown in Fig. 3.1 procedure bodies may have

the form of a non-executable specification or the form of an executable program.

Procedures that contain specifications may have the form

procedure N (value f : T ) , w, f : [pre, post]

whereas procedures that contain code may have the form

procedure N (value f : T ) , f := E.

Calling a procedure requires that the actual parameter is substituted for the

formal parameter; this substitution can be achieved in a number of alternative ways.

These are substitution-by-value, substitution-by-result or substitution-by-value-result.

Parameters are labelled with the substitution type expected Fig. 3.1.

Substitution-by-value allows the direct substitution of the actual parameter for

the formal parameter. Given the definition of the procedure Swap as in Fig. 3.1,

the procedure call Swap(a, b) results in the values of the actual parameters a and b

being substituted for the formal parameters x and y . As before, we use the notation

a\x to represent the substitution of a for x. The actual parameter must be a term

that evaluates to a legal value of the appropriate type. Variable capture is avoided

in the case of variable name clashes.

Substitution-by-result is complementary to substitution-by-value, It takes a value

out of a procedure, rather than passing a value in. As procedure calls are not

terms, they do not return a result. Instead the result of executing the procedure

call can be stored in a procedure parameter using substitution-by-result (Fig. 3.1).

Substitution-by-value-result is used when we want to combine the functionality of
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substitution-by-value and substitution-by-result in the parameter.

Modules: Modules allow the programmer to bring together related parts of a

program, in a similar way to procedures, so that the details that do not concern

the client can be hidden. In this way, modules may be used for data abstraction.

Modules typically contain local variable declarations, procedure declarations and

variable initialisations as in 3.2. Refinement of a modules individual procedures,

results in the overall refinement of the module.

Procedures are local to the module but may be exported for use in other modules

and programs. Procedures that are not exported are only available for use within

the module. We refer to these as local procedures. Variables can be exported for

reading but they cannot be changed outside a module. They can only be changed

by local procedures of a module. Both variables and procedures can be imported

for reuse and re-declared within that module (see Figure 3.2). This re-declaration

allows reasoning about the module to be independent of the overall program.

module Date{

export AddDay;

import GetDay;

var day : N;
var month : N;
var year : N;

init() , day , month , year : [True , day = month = year = 0;]

procedure AddDay () , day : [True , day = old(day) +1;]

procedure GetDay(result d : N) , : [True , d = day;]

}

Figure 3.2: An example of a module that specified a Date.

3.3 The Refinement Calculus

Specifications are refined through applying refinement laws from the refinement

calculus [5, 69, 71]. The refinement calculus originates with the stepwise refinement

method of program construction [30, 41]. In this section, we recall the refinement

calculus of Morgan [70], where a specification is refined through the application
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of refinement laws. Through the refinement calculus, the refined specification is

guaranteed to be a correct refinement of the original specification.

3.3.0 The Refinement Relation

As is normal in refinement, we define a relation v on terms, such that s0 v s1

formalises the statement that “term s0 is refined by term s1” or that “term s1

refines term s0”. A refinement law is an inference rule that allows us to deduce that

a refinement s0 v s1 is valid. As equality is a stronger property than refinement,

we can also treat any rule which concludes that two terms are equal as a refinement

law. We use refinements laws to establish that the individual refinement steps are

correct in a derivation s0 v s1 v s2 v ... v sn.

The refinement process is possible because of two properties of the v relation.

First, it is transitive. By this we mean that s0 v s1 ∧ s1 v s2 ⇒ s0 v s2. Another

important property of refinement is monotonic replacement. This permits specifi-

cations to be refined through refining their components in isolation. The refined

components may then be substituted back into the specification to achieve an over-

all refinement. We express this property as follows: for specification S and terms

s0, s1 and s2 if s1 v s2 then S(s0\s1) v S(s0\s2). Note that where S(s0\s2)

denotes S with each occurrence of s0 replaced by s2.

The result of the refinement process is the generation of a sequence of specifi-

cations where any of the specifications may contain a mixture of executable and

non-executable constructs. The initial specification is typically written in terms of

the richer non-executable terms, while the refined specification contains only ex-

ecutable terms. If the refined specification, sn, is fully executable, we call it a

program and say that the specification s0 is refined by sn.

Through studying the refinement relationship between specifications, laws which

transform a specification into its refinement has been documented. We examine

these in the section that follows.

3.3.1 Refinement Laws for Reasoning about Specifications

The laws presented here, and others, are available in [5, 69, 71]. These laws provide

for the refinement of initial specifications into executable specifications. Equivalent
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rules are applied in program verification tools to reason about the implementations

when verifying that they satisfy their specification.

Strengthening postcondition: A specification of the form w : [pre, post] is

refined by strengthening the postcondition as follows:

if post’ ⇒ post then w : [pre, post] v w : [pre, post′]

Strengthening the postcondition improves the specification from the client’s

point of view, as it achieves what the original specification achieved and more.

For example:

y : [x >= 0 ∧ y > 0, y >= x]

v y : [x >= 0 ∧ y > 0, y >= x ∧ x > 10]

Weaken Pre-condition: A specification may be refined by weakening its pre-

condition as follows:

if pre’ ⇒ pre then w : [pre′, post] v w : [pre, post]

The resulting specification will achieve the original postcondition but under a

broader range of conditions than the original specification. For example:

y : [x >= 0 ∧ y > 0, y >= x]

v y : [x >= 0, y >= x]

Assumption: When the frame is empty and the postcondition is true we call the

pre-condition an assumption. We write the assumption pre as {pre} and define it

as [pre, true] i.e. if an assumption is true, the postcondition is achieved. Otherwise

the program fails to terminate. Assumptions before a specification can be absorbed

into its pre-condition as follows:

{pre′} w : [pre, post] , w : [pre′ ∧ pre, post]

Sequential Composition: A specification is refined by the sequential compo-
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sition of two other specifications if the postcondition of one specification implies the

pre-condition of the other. Formally, we write:

w : [pre, post] v w : [pre, inter]; w : [inter′, post]

where inter ⇒ inter′

Introduce Local Variable: Local variables, invariants and constants may be

introduced to specifications. For example, a local variable x may be introduced into

a specification using the following law:

If x does not occur in w , pre or post then

w : [pre, post] v [| var x : T • w, x : [pre, post] |]

Remove Constant: Constants may be removed from a specification during

refinement as follows:

If c occurs nowhere in the program P then [| con c : T • P |] v P

Expand Frame: Recall from section 2.2.3 that we use the convention that

terms with a 0 subscript in a postcondition refer to the initial value of these terms

e.g., x0 refers to the initial value of x . The following law expands the frame to

include extra variables that can be modified:

w : [pre; post] = w, x : [pre, post ∧ x = x0]

3.3.2 Some Interesting Specifications

The following specifications also describe interesting situations which we need to be

aware of in verifications.

Abort w : [false, true].

From the clients point of view, Abort describes the worst specification of all, as it
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is never guaranteed to terminate (pre-condition false) and allows any refinement to

have complete freedom in setting any variables.

Choose w w : [true, true].

Choose w always terminates, but guarantees no particular result. It can be refined

by any terminating program that changes only w.

Skip : [true, true].

The specification Skip always terminates, changing nothing.

Magic w : [true, false].

The infeasible specification Magic always terminates and establishes the impossible

postcondition false . This specification cannot be executed on a computer and no

contract based on it could ever be met.

Note that if the pre-condition of a specification is true, we may omit the pre-

condition from the specification. We write w : [post] instead of w : [true, post].

3.3.3 Laws for Refining Specifications to Executable Pro-

grams

If the feasibility of a specification can be established, it can be refined by an ex-

ecutable program. The specification w : [pre; post] is feasible if and only if the

pre-condition implies that there exists a w such that the postcondition is estab-

lished. It is important to establish the feasibility of a specification, as infeasible

specifications cannot be refined to code. This is achieved by introducing program-

ming language components such as assignment statements, if statements, loops and

procedure calls. We now describe some of the laws that permit these transforma-

tions. Examples of their use can be seen in Appendix A.
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Assignment:

Code that refines a specification may be produced by applying the following assign-

ment law:

If pre→ post[w\E] then w : [pre, post] v w := E

The assertion post[w\E] stands for the assertion post with each free occurrence

of variable w replaced by the term E. If E and w are lists, the rule applies to

corresponding elements of the lists. Provided E contains no w, the assignment

w := E is equivalent to w : [true, w = E]. From the client’s point of view, the

statement w := E is better than w : [pre, post] because post may have allowed

several final values for w, whereas now only one is allowed and the client knows

exactly which one it will be. An example that shows a specification that is refined

by an assignment is x : [x >= 0, x > 0] v x := x + 1 as

x >= 0→ (x >= 0)[x\x + 1]

≡ x >= 0→ x + 1 >= 0

≡ true

Skip:

We specify that no changes occur in a specification by using the skip command:

if pre→ post then w : [pre, post] v skip

An equivalent program is one that assigns variables to themselves:

w : [pre, post] v w : [pre, post]; w := w.

Alternation:

An alternation statement may be introduced into a specification by applying the

following refinement law:

if pre→ G0 ∨G1 ∨ ... ∨Gn then

w : [pre, post] v if ( [ ]i.Gi → w : [Gi ∧ pre, post]) fi
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The meaning of ([ ] i.Gi → w : [Gi ∧ pre, post]) is that if exactly one guard Gi, is

true the specification w : [Gi ∧ pre, post] is the specification of the code that will

be executed. This specification can be refined by one that contains an alternation

statement as described in section 3.2.1.

Iteration:

Iteration is used to implement the repeated execution of a command (the loop body),

while the loop guard evaluates to true. A loop invariant is a formula which, if true

initially, is true after every iteration of the loop.

We write w : [G ∧ inv, inv] v P where G represents the guard, inv represents

the loop invariant and P represents the loop body. To guarantee termination, the

loop body must also establish the negation of the guard. Therefore, if the invariant

conjoined to the negation of the guard implies the loop postcondition, then the

specification may be refined as follows:

w : [inv, inv ∧ ¬G] v do G→ P od

We include a variant function, which determines when the loop iterations will

terminate. In general, some integer valued term, bound by a lower bound and that

is strictly decreasing on each iteration of the loop is chosen. The refinement law has

the following format:

w : [inv, inv ∧ ¬G] v do G→ w : [inv ∧G, inv ∧ 0 <= V < V0] od.

where neither G or inv contain initial variables, V is the variant function and V0

is the initial value of the variant function (V [w\w0]).

Procedures:

Specifications may be refined by procedure calls, given appropriate procedure defi-

nitions. At the specification level, a procedure declaration has the form

procedure P (f : T ) , w, f : [pre, post]
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with local variable w and parameter f, while procedures defined at the code level

have the form

procedure P (f : T ) , w, f := E,F

The assignment w, f := E,F assigns the local variable w the term E , and the

parameter variable f the term F , simultaneously. We often use the symbol ? to

denote a yet undetermined term for assignment.

The refinement laws used when refining specifications to procedure calls depend

on the parameter substitution method used and whether the procedure is specified

at the specification level or at the code level. The following rules are used when

refining procedure calls that have their parameters passed by value.

Value Assignment: Given the procedure procedure P (value f : T ) , w, f :=

E, ?, then w := E[f\A] v P (A) where the actual parameter A is a term of type T

and variables w and f are disjoint.

Value Specification: Given the procedure procedure P (value f : T ) , w, f :

[pre, post] then w : [pre[f\A], post[f0\A0]] v P (A) where A0 is A[w\w0] and post

contains no f.

Similar refinement laws for procedure calls that use substitution-by-result may

be found in [70].

Modules:

If M v N where M and N are modules then we call M a specification module

and N an implementation module. The specification module is made public to the

client and the implementation module remains private to the supplier. As a module

can be refined by many different implementations, a specification module may have

many implementation modules associated with it. Morgan [70]defines refinement of

modules by the following law.

Let E be the list of exported procedures from module M, I its imported pro-

cedures, and initially its variables initialisation. A module M ′ refines M if the

following three conditions are satisfied:

• Its exported variables are unchanged
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• Its exported procedures E ′ refine E

• Its initialisation initially′ refines initially

The following changes can also be made as long as the conditions above are

not invalidated. Conditions specified on imported variables’ declarations can be

weakened and a modules imported procedures I ′ can be refined by I. In addition,

an imported procedure I can be replaced by a local (neither imported or exported)

procedure I ′ that refines I . Refinement of procedures is described above.

3.4 Data Refinement

Data refinement [7, 70, 71, 89, 88, 90] originates in Hoare’s work on program cor-

rectness [39]. Specifications are typically written using a rich set of abstract data

types such as sets, bags and mappings. We refer to these specifications as abstract

specifications. Data refinement is a special instance of refinement where an abstract,

possibly non-executable, specification is refined by modifying the data type used in

the specification. This change is data representation can arise for a variety of rea-

sons. Examples include the introduction of extra variables to improve efficiency and

changing the data type, to a more concrete one, the implementation stage [17].

The theory of data refinement [72] provides for these systematic changes while

maintaining consistency with the original specification. The overall effect of the

data type substitution is the refinement of the specification in which the abstract

data type is used. We refer to the refined data type as the concrete data type.

A standard example of data refinement is to replace a mathematical set with a

sequence representation such as an array or a singly linked list.

We aim for semantic implementation correctness, as defined in [36], where “Given

two programs, one called concrete and the other called abstract, the concrete pro-

gram implements the abstract program correctly whenever the use of the concrete

program does not lead to an observation that is not also an observation of the

abstract program.”

Changing the data type used in a module definition results in the refinement

of the module’s external behaviour. Using the laws for data refinement we refine a

module through a three step process:
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0. The concrete variables are added to the module.

1. The module operations are transformed so that they refer to the concrete

variables rather than the abstract variables. This transformation ensures that

the abstraction invariant is satisfied throughout the specification.

2. The abstract variables are removed.

In order to transform the operations, a number of rules must be followed. These

are outlined below and described fully in [70]. For simplicity, we assume that there

is only one abstract variable a and one concrete variable c. There may, of course, be

many. We use the shorthand AI, to refer to the abstraction invariant, which relates

the abstract variable a to the concrete variable c. The notation w : [pre, post]

describes a procedures specification and initially refers to the procedure which

initialises the module’s data(as in section 3.3.3).

3.4.0 Augmentation Laws

These laws introduce concrete variables into abstract specifications, ensuring that

the specifications do not change their meaning. The main laws are summarised as

follows.

Augment Initialisation: The postcondition of the procedure that initialises

module variables, is strengthened to include the abstraction invariant. Hence, a

specification of the form w : [true, w = 0] becomes w : [true, w = 1 ∧ w = x + y]

where w is the abstract variable and the concrete variables are x and y .

Augment Specification: The abstraction invariant is conjoined to the pre-

conditions and postconditions of procedure specifications and the frame is extended

to allow the new concrete variables to change. Hence, each procedure specification

w : [pre, post] becomes w, c : [pre ∧ AI, post ∧ AI ]

Augment Assignment: Assignments in procedure bodies must preserve the

abstraction invariant and hence, their specifications must be extended so that they

can change the concrete variables. Therefore, an assignment such as w := E is
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replaced by {AI} w, c := E, ? {AI} where {AI} is the assumption that the ab-

straction invariant holds and ? represents a value assigned to the concrete variable

c so that the abstraction invariant is preserved.

Augment Guard: Guards in specification statements can be rewritten in terms

of the concrete variables. Hence, a guard G , that is written in terms of the abstract

variables, may be replaced by another guard G′ , that is written in terms of the

concrete variables, provided that AI → (G ≡ G′).

3.4.1 Diminution Laws

When the concrete variables have been added to the specification and the specifi-

cation has been rewritten in terms of the concrete variables, the abstract variables

may be removed from the specification. The abstract variables declaration is simply

deleted and the following rules are applied to remove all occurrences of the abstract

variables in the refined specification. We refer to the abstract variable by the letter

a and assume that it has type A. We write a : A to express that variable a has

type A .

Diminish Initialisation: The specification of the procedure that initialised

variables is modified so that the postcondition no longer refers to the abstract vari-

ables. Instead it specifies the existence of an abstract variable which allows the

specification to be satisfied. Therefore, the specification w : [pre, post] becomes

: [pre, ∃a : A • post] . For example, the specification w : [true, w = 1 ∧ w = x + y]

becomes : [true, 1 = x+ y] when the concrete variables x and y are added and the

abstract variable w is removed.

Diminish Specification: The specification w, a : [pre, post] becomes

w : [∃a : A • pre, ∀a0 : A • pre0 ⇒ (∃a : A • post)] where pre0 is pre[w, a\w0, a0].

The frame beforehand must include the variable a. The pre-condition becomes

∃a : A•pre , as we know that there exists a value of a although we cannot say what

that value is. The postcondition becomes ∀a0 : A • pre0 ⇒ (∃a : A • post), as we

specify the existence of an abstract variable a which allows the specification to be
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satisfied. The quantification involving a0 indicates that the postcondition depends

on all values of a , not just its initial value a0 .

Diminish Assignment: Assignments to abstract variables can be removed as

follows. The assignment w, a := E,F can be replaced with w := E if E contains

no variable a.

Note that all references to abstract variables in guards must also be removed.

This is achieved by the refinement law for alternation discussed earlier.

3.4.2 A Data Refinement Example

An example of data refinement in [70] specifies a calculator in terms of a bag of

real numbers and implements it in terms of a pair of numbers. We now present

this example to illustrate the data refinement process. Recall that bag elements are

written between b and c , the operator for bag addition is + and the operator for

bag enumerations is #, while the empty bag is represented by
⊔

. The calculator

operates by clearing any input, entering values one at a time and then taking the

mean of those values. The abstract specification is shown in Fig. 3.3:

module Calculator{

var b : Bag R;

initially () , b : [true , b :=
⊔
];

procedure Clear() , b :=
⊔
;

procedure Enter(value r : R) , b := b + brc;
procedure Mean(result m : R) , m : [b 6=

⊔
, m = (Σb)/#b]

}

Figure 3.3: Specification of the calculator module.

To implement the bag in terms of its sum, s, and its size, n, we use the laws of

data refinement from section 3.4.0 and section 3.4.1 with

• abstract variable: b : bag R ,

• concrete variables: s : R and n : N , and
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• abstraction invariant: s = Σb ∧ n = #b.

The steps involved in the data refinement are:

0. Add declarations of the concrete variables s : R, n : N,

1. Use Augment Initialisation so that the initialisation b : [true, b :=
⊔

]

becomes

b : [true, b :=
⊔
∧ s = Σb ∧ n = #b].

2. Use Augment Assignment to add assignments to the concrete variables

while maintaining the abstraction invariant.

• In the procedure Clear replace b :=
⊔

; with b, s, n :=
⊔

, 0, 0;

• In the procedure Enter replace b := b + brc; with b, s, n := b + brc, s +

r, n + 1;

3. Use Augment Specification to include the abstraction invariant in proce-

dure specifications.

module Calculator {

var b : Bag R;

var s : R;
var n : N;

initially () , b : [true , b :=
⊔
∧ s = Σ b ∧ n = #b];

procedure Clear () , b,s,n:=
⊔
,0,0;

procedure Enter(value r : R) , b,s,n := b+brc, s+r, n+1;

procedure Mean(result m : R) ,
m,s,n : [b 6=

⊔
, s = Σ b ∧ n = #b, m = (Σ b)/#b]

}

Figure 3.4: Specification of the calculator module contained both abstract and
concrete data.

The resulting module, shown in Fig. 3.4 contains a mixture of abstract and

concrete data. The Mean procedure is refined as follows.
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m, s, n : [b 6=
⊔

, s = Σb ∧ n = #b, m = Σb/#b]

v m, s, n : [n 6= 0, s = Σb ∧ n = #b, m = s/n]

v m : [n 6= 0, s = Σb ∧ n = #b, m = s/n]

v m : [n 6= 0, s = Σb ∧ n = #b, m = s/n]

v m : [n 6= 0, m = s/n]

Removing the abstract variables (using the laws from section 3.4.1) produces

the implementation in Fig. 3.5:

module Calculator{

var s : R;
var n : N;

initially () , : [true , n = 0 ∧ s = 0];

procedure Clear() , s,n:= 0,0;

procedure Enter(value r : R) , s,n := s+r, n+1;

procedure Mean(result m : R) , m : [n 6= 0, m = s/n]

}

Figure 3.5: Implementation of the calculator module.

3.4.3 Abstraction Functions and Data Type Invariants

In a data refinement, the abstraction invariant is defined as a function from the

concrete data type to the abstract data type. The classic example is representing a

set as a sequence where a given set can be presented by many different sequences

but every sequence is associated with just one set. However, we may want to specify

further properties of the concrete data type. Perhaps we want to specify that the

sequence is not permitted to contain duplicates. In this way we can make the

abstraction functional so that for every sequence there corresponds at most one set.

The general form of functional abstraction invariants such as these is:

a = f(c) ∧ dti c

where the abstraction function f(c) maps the concrete type c to the abstract

type a and the data type invariant, dti c, specifies properties of the concrete data.
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The abstraction invariant described above is both total and functional. The

abstraction function is often partial, meaning that it is not defined for all input

values. Abstraction invariants need not be functional either. This means that it

can map its input to more than one representation. For example, a bag may be

the abstract representation of a real number that represents the mean of a list of

numbers. In this case the number 5 could have many abstract representations as

bags have no ordering on their elements and they allow multiplicity of elements.

If the abstraction invariant is functional then data refinement can achieved by

completing the augmentation and the diminutation sets together. Therefore, the

data refinement steps become:

0. Replace all declarations of abstract variables by their concrete counterparts.

1. Refine the initialisation procedure so that the concrete variables are initialised

and the abstraction invariant is maintained.

b : [true, post] becomes

b : [true, post[a\f(c)] ∧ dti(c)].

2. Refine assignments so that w, a := E,F is replaced by w, c := E[a\f(c)], G

provided the expression G contains no abstract variable a and dti c ⇒

F [a\f(c)] = f(G) and dti c⇒ dti G

3. Refine procedure specifications so that the abstraction invariant is maintained.

w, a : [pre, post] becomes

w, a, c : [pre, a = f(c) ∧ dti c, post] which becomes

w, c : [pre[a\f(c)] ∧ dti c, post[ao\f(co), a\f(c)] ∧ dti c]

4. Refine guards so that all abstract variables are replaced by f(c) and the data

type invariant is maintained.

3.4.4 Data Types

A data type provides a collection of related operations for manipulating data while

isolating users of the data type from the details of how the data is represented. Each

data type has three parts: a signature, which gives the types of its operations, a

representation type, which is the type used to represent the data and give the data
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type state, and a body, which gives details about the operation’s implementation.

The key idea here is data abstraction. The software client is only concerned with

the signature of the data type. They are not concerned with the representation type

and the implementation of the operations. These are provided by the supplier.

Generally, we write a signature Sig and a data type D as follows:

Sig , {type L0; ...; type Lm; val Op0 ∈ T0; ...val Opn ∈ Tn; }

D , {Sig}{type L0 , U0; ...type Lm , Um; let Op0 , u0; ...; let Opn , un; }

Signature , {

type Num;

val init ∈ Set N;

val add ∈ Set N times N → Set N;

val remove ∈ Set N times N → Set N;

}

Sales , {Sig} {

type Num , Seq N;

let init , Num : [True , Num = {}];

let add , Num : [a 6∈ Num , Num = Num ∪ {a}];

let remove , Num : [True , Num = Num /{a}];

}

Figure 3.6: An example of a signature used to specified a Sales type.

A specification S that uses a data type D , of signature SigD is said to be a

SigD client (or a client, when the signature is understood). The example in Fig. 3.6

shows Sales which is a SigSignature client . We define the term S[SigD] to represent

a client S who uses the a data type of signature SigD and the term S[SigD.Opi] to

represent a client S who uses the operation Opi, as defined in the signature SigD.

An abstract specification S[SigA] can be refined by replacing data type A with

a more concrete data type C . Note that the signatures (the operations available) in

the specification remain. It is the underlying data representation and the implemen-

tation of the operations that changes. This requires that the operations Aj from

A are replaced by corresponding operations Cj which belong to a more concrete

data type C . We concentrate on the two data types, rather than the programs, so

that the focus is on determining when the concrete operations correctly refine the

abstract operations.
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3.4.5 Simulation

Let A and C be data types which both have the signature Sig . Let S[SigA] rep-

resent a client specification S, which uses the the signature Sig, and data type A

in its specification. We say that A is data refined by C , written A v C , if and

only if S[SigA] v S[SigC ] for all specifications S. This definition of data refinement

involves a quantification over all client specifications, making proofs expensive. We

use simulation as a client-independent way of establishing a data refinement. Two

simulation techniques enable us to verify data refinement [41]. These are forward

(downward) and backward (upward) simulations. When the data types have differ-

ent representation types we must find a relation that relates the representation of

one of the data types with the representation of the other.

A simulation is established between data types A and C , which have the same

signature Sig , through two steps. First, for each representation type L in Sig, we

define a correspondence between the two implementations of L . Secondly, for each

operation Opi in Sig , we prove that the correspondences are preserved. Therefore,

there is a proof obligation corresponding to each operation of Sig .

Let signature Sig and data types A and C be defined as in Fig. 3.7.

Sig , {

type L_{0}; . . .;
type L_{m};

val Op_{0} ∈ T_{0}; . . .;
val Op_{n} ∈ T_{n};

}

A , {Sig} {

type L_{0} , U_{0}; . . .;

type L_{m} , U_{m};

let Op_{0} , u_{0}; . . .;

let Op_{n} , u_{n};

}

C , {Sig} {

type L_{0} , V_{0}; . . .;

type L_{m} , V_{m};

let Op_{0} , v_{0}; . . .;

let Op_{n} , v_{n};

}

Figure 3.7: Data-types A and C with signature Sig.

We assume that there are no dependencies between the components i.e., no
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Ui or Vi involves Lj , and no ui or vi involves either Lj or lk . We establish a

correspondence between A and C by a set of abstraction functions from the repre-

sentation types of C to the representation types of A. We call this set of functions

the abstraction invariant. This invariant is typically written as a backward simula-

tion (also called L-simulation or upward simulation [44, 41]) that maps the concrete

data type to the abstract data type. The simulation is written in this direction

as the concrete type may offer many representations of the abstract data. If the

invariant is written in the opposite direction, mapping the abstract data type to the

concrete data type, then we refer to this as forward simulation.

In implementing the specification, all references (assignments, declarations, ex-

pressions) to the abstract data type are replaced with references to the concrete

data type, so that the abstraction invariant is maintained throughout. If the spec-

ifications A and C, have the same signature, and AI is the abstraction invariant,

then we write the simulation relation A vAI C to mean that A is data refined by

C via the abstraction invariant AI .

For example, if a specification S[SigA] , where the abstract data type A is a

set, is refined by replacing the set by a list C , we write the simulation relation as

S[SigA] vAI S[SigC ] . We define the abstraction invariant AI so that A is defined

by function f as the range of C , e.g.,

• f(<>) , {}

• f(append(x,C)) , {x} ∪ f{C}

The symbols <> and {} represent the empty list and the empty set respectively,

append is an operation that adds an element (in this case x) to a list and ∪ is an

operation on sets, which returns the union of its parameters. An example is the

following lists < 1, 2, 3 >,< 1, 3, 2 >,< 2, 1, 3 >, ... which all correspond to the set

{1, 2, 3} .

The data type C simulates the data type A if and only if:

• for each data type in the signature of A and C there is a correspondence

defined via the abstraction invariant and

• the abstraction invariant is preserved for each operation in A and C .
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This simulation condition must be proved for each operation in the specifica-

tion’s signature. We prove that the initial states of each operation correspond, and

that each operation in the concrete representation behaves in the same way as the

abstract representation. Hence the concrete operation succeeds whenever the ab-

stract one does and if the abstract and concrete operations start in states equivalent

states they produce the same results. By equivalent states we mean states initial

states that are related through data refinement. A technique for simulation is called

sound if the existence of a simulation between data types A and C guarantees that

A is data refined by C. This is, if A vAI C then A v C .

3.5 Data Refinement in Object-Orientation

In an object-oriented programming language a user can define their own data types

by providing class definitions. A class consists of three parts: a representation type

which represents the data, method signatures which describe the allowed operations

on the data, and method bodies which provide the operations implementations. The

software client is only concerned with method signatures as they provide the be-

haviour associated with objects of the class. A class can be refined by replacing

its representation type with a more concrete representation and its method bod-

ies with implementations that are written in terms of the concrete representation.

The signature of both the abstract class and the concrete class remains the same.

Therefore, as far as the client is concerned, no change in behaviour will occur due

to a data refinement. To verify the data refinement, we establish a simulation be-

tween the abstract and the concrete representations, establishing a correspondence

between the two representation types (the abstraction invariant) and prove that this

correspondence is preserved for each operations on the data.

Support for data abstraction in object-oriented programs is offered through their

specification languages and verification tools. These will be discussed in detail in

chapter 4. Verification of simulations typically involve transforming a program into

a logical expression, corresponding to the proof obligations that must be discharged

for a program to be proved correct, and passing these expressions to an underlying

theorem prover or SMT solver to be discharged. The logical expression represents

the weakest pre-condition of the program relative to its specification (section 2.2.1).
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3.6 Conclusion

In this chapter we provided an overview of the laws for refining a specification into

an executable program. While both procedural refinement and data refinement

were discussed, we focus on data refinement as we are concerned with providing a

framework for modular data refinement in object-oriented programming languages.

Data refinement proofs are achieved via simulation. These proofs require the

definition of a mapping between the data types used in the refinement, and verifica-

tion that this mapping is preserved for each operation in the specifications signature.

In the chapter that follows we investigate how specification languages assist in this

verification in an object-oriented environment. In particular we examine how these

languages support data abstraction so that a clear separation between the abstract

properties of a program’s specification and the concrete properties of its implemen-

tation is achieved.
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Chapter 4

Data Abstraction

Support for data abstraction in object-oriented programs is offered through specifi-

cation languages and their verification tools. We introduce the main approaches and

analyse how JML and Spec#, two of the more popular specification languages, sup-

port data abstraction. Our aim is to support the verification of data refinement in

a behavioural interface specification language, where the client view is written com-

pletely in terms of the abstract data and the implementation is provided in terms of

the concrete data. We discuss the issues that impact upon the verification of data

abstractions in an object-oriented environment. As a result, we provide a suite of

proposals to assist the verification of modular data refinement in an object-oriented

programming environment. These proposals are listed throughout the chapter and

are summarised in section 4.3.

In this chapter we assume some familiarity with the syntax of JML and Spec#.

The notation used in these languages is close to the notation introduced in chapter 2.

We will assist the reader with comments about the syntax where necessary but refer

them to [52] for JML syntax and [14] for Spec# syntax should more information be

required.

4.1 Data Abstraction

Through data abstraction we enforce a clear separation between the abstract prop-

erties of a program’s specification and the concrete properties of its implementation.
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The abstract properties are those that are visible to the client while the implementa-

tion is kept entirely private and can change for example, to make the implementation

more efficient. These changes should not impact the client since they involve no dif-

ference in the abstract behaviour. We focus on changes from the specification to the

implementation, where the core data types used in the specification are replaced in

the implementation.

There are four popular approaches to data abstraction in specification languages.

These are pure methods, ghost fields, model fields and logic functions. We discuss

each of these with examples, focusing on pure methods and model fields as they are

most relevant to our work.

4.1.0 Pure Methods

Pure methods [23, 48] are methods that have no observable side effects on a pro-

gram’s state. These methods are typically annotated with the keyword pure. An

example of a pure method definition in Spec# follows:

[Pure] public boolean Even(int x)

requires true;

ensures result == (x % 2 == 0);

{

return x % 2 == 0;

}

These methods may be used in specifications to return a value without revealing

any implementation details. Note that the modifies clause is empty as no variables

are changed by the method. For example, the Even method could be used in the

postcondition of a method that returns the sum of all even values in the array a as

follows:

ensures result == sum{int k in(0 : a.Length ); (Even(a[k])};

The pure methods pre-conditions and postconditions are used when reasoning

with assertions that involve them. Hence implementation details are concealed from

the client. However pure methods do create difficulties for verification. One issue

is checking that they really are free from observable side effects. This is difficult to

assess as pure methods may have side effects that are not observable to the client,

e.g., creating local objects and modifying their state. A second issue is that they
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are not necessarily deterministic as a pure method may return different results if

called twice in succession. This is because unobserved side effects of the first call

could have caused a different start state for the method execution. Solutions to this

problem have been suggested in [61] where different return values are allowed but

callers are prevented from assuming anything other than an equivalence between

the results. A third complication is ensuring they are well-defined and do not lead

to an unsound axiomatisation [25, 2, 83, 56]. Despite these complications, pure

methods are a useful technique for hiding implementation details from the client

and are often used in combination with ghost and model fields as we will see in

further examples.

We note also that pure methods have been used to build up theories of data

types in the form of model classes [20] in JML. While this expands the scope for

data abstraction by allowing the use of model classes in assertions, it appears to

generate difficulties for static verification as these classes must be mapped to the

verifiers underlying logic [49, 26].

4.1.1 Ghost Fields

Ghost fields are specification-only variables which cannot be directly referred to in

the implementation. These variables are primarily used to represent the abstract

view of the specification and are sometimes used in method specifications to link a

variable’s pre-state to its post-state. The values which ghost fields are assigned must

be pure, i.e., the evaluation of the expression which they are assigned must have no

side effects. Although ghost variables cannot be referred to in the implementation,

some specification languages provide special assignment statements which can be

used to update their values. These assist the verification of properties which ghost

variables specify. As ghost variables are not used in implementations, they are not

included in the executable code that is generated for compilation.

In Fig. 4.1 the class Swap declares two variables and a method that swaps the

values stored in those variables. The property that the sum of these two variables

should remain the same throughout the class is specified by declaring a ghost vari-

able and setting it equal to their sum. In JML, ghost fields are declared using the

keyword ghost. The relationship between ghost fields and concrete fields is speci-
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public class Swap{

private /*@ spec_public @*/ int x;

private /*@ spec_public @*/ int y;

//@ ghost public int Sum;

//@ public invariant Sum == x+y;

/*@ assignable x,y,Sum;

@ ensures Sum == x+y;

@*/

Swap(int a, int b){

x = a; y = b;

//@ set Sum = x+y;

}

/*@ public normal_behavior

@ assignable x,y, Sum;

@ ensures x== \old(y) && y == \old(x) && Sum == \old(x+y);

@*/

public void swapxy (){

int t;

t = x; x = y; y = t;

//@ assert Sum == x+y;

}

}

Figure 4.1: Using ghost fields in JML. JML assertions start with the characters //@

or may be written between assertion delimiters /*@ and @*/.The syntax of JML
follows Java syntax closely but excludes any operators that have side effects, e.g.,
++. Other operators have the same syntax and semantics as those in Java. The
keyword assignable proceeds a list of variables that may be modified in the frame
of a method.

fied using an object invariant and must be maintained by updating the ghost fields

(using set in JML) within the implementation where necessary.

Linking ghost fields and concrete fields in this manner originates from the the-

ory of abstraction functions which describes the relationship between abstract and

concrete fields in data refinement. In the data refinement calculus (as discussed in

chapter 3), ghost fields are used to introduce concrete fields into a specification.

Through the refinement process these fields become part of the implementation,

replacing the abstract fields entirely. The abstract fields are then removed from the

specification to generate the final implementation [7]. Rather than supporting the

transformation of ghost variables into variables that are used in the implementation,

specification languages support their use for the documentation of specification de-

tails for the client. Verification tools ensure that the abstraction specification is
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satisfied by a given implementation. One disadvantage of using ghost variables

in this way is that verification relies on the supplier to change the value of ghost

variables. Their advantages include abstraction and their simple semantics.

4.1.2 Model Fields

Model fields are similar to ghost fields in that they are specification-only variables

that are used to provide an abstract view of the specification. They differ in that

they cannot be directly assigned values. Instead, the value of a model field is defined

as a function of its corresponding concrete fields.

In program verification, this relationship between model fields and concrete fields

is often referred to as its representation. As we have already used this term with

respect to data structures in chapter 3 we will use the term “abstraction” (as used

in data refinement) instead. This relationship can be in the form of an abstraction

function or an abstraction relation.

The value of a model field changes as soon as the concrete fields in its abstraction

are modified. Therefore, as far as the client is concerned, there is no difference

between a ghost field and a model variable. As far as the supplier is concerned, the

implementation is easier when a model field is used, as model fields are automatically

updated when their representation changes.

As model fields provide an abstract view of the specification they, and the spec-

ifications in which they are used, can be made visible to the software client. The

concrete fields and the abstraction function remain private as they reveal informa-

tion about the implementation. This private information is used when verifying

that the implementation satisfies its abstract specification.

Both JML and in Spec# support the use of model fields. In both languages the

keyword model is used to identify these fields. JML provides a represents clause

to define the abstraction function that maps the model field values to the concrete

field value’s while Spec# declares constraints on model field declaration that relate

them to concrete values. Fig. 4.2 provides a simple example in JML, that shows

how the model field Name is simply renamed from its public representation to the

non-null string Code which is its implementation. This is a simple example of how

model fields could be used to hide implementation details.
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//@ public model string Name;

private /*@ non_Null @*/ string Code;

//@ private represents Name → Code;

Figure 4.2: Using model fields in JML.

The mapping from abstract to concrete data is not always a one-to-one mapping,

as illustrated in this example. It often requires the definition of an abstraction rela-

tion which translates the concrete data representation into its abstract counterpart.

An example of this is the classic data refinement example where an abstract set

data type is represented as a sequence data type. As the set data type does not dis-

tinguish between sets that have their elements in a different order, there are many

sequence representations of the same set. JML distinguishes between abstraction

functions and abstraction relations by the notation used in the represents clause.

It uses a ← for abstraction functions and the such that keyword to identify ab-

straction relations. See section 4.2.5 for more details. Note also that JML includes a

library of modelling types that describe primitive types such as integers, characters

and doubles, as well as mathematical types such as bags, sets, sequences, relations

and maps. These types allow the specifier to describe abstract specifications using

standard mathematical notation. Objects created from this library are immutable

and pure, as they are designed for use in specifications.

A number of complications arise when verifying specifications that contain model

fields. One arises from the use of partial abstraction functions, as these can lead to

undefined variables. Another complication is the effect that changing a variable may

have. When a variable is modified all model fields which depend on that variable

are also modified, i.e., it has a potential impact on the entire upward closure [62]

of this variable. A solution to this problem is proposed in [61] where Leino and

Muller present an encoding in which model fields are not updated immediately

when concrete fields are modified. Instead model fields are only updated when

the object invariant is guaranteed to be true. The methodology guarantees that

the abstraction function holds for objects when they are in a valid state. This

methodology is currently being implemented in the Spec# programming system.
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4.1.3 Logic Functions

Logic functions are mathematical functions and predicates, which are defined using

the expression language of the specification language. These functions are non-

executable and used directly by the specification logic during a verification. Lan-

guages that use logic functions include Larch [37], C programs that have been an-

notated for verification by the Caducceus tool [34], Java programs that have been

annotated for verification using the Krakatoa tool [67], VeriCool [85] and Dafny [54].

Logic functions must be checked to ensure that their definitions are well-defined and

logically consistent.

KML (Krakatoa Modelling Language) is a specification language for Java pro-

grams that is similar to JML. It is used for writing specifications for Java programs

that can be verified using the Krakatoa tool suite. KML does not allow pure method

definitions but it does allow the definition of logic functions, predicates and lemmas

as follows:

//@ logic T id(T1 x1; . . . ; Tn xn) = e ;

//@ predicate id(T1 x1; . . . ; Tn xn) = p ;

//@ lemma id : p;

An example is presented in Fig. 4.3 when the logic function

//@ logic integer sq(integer x) = x * x;

is used in the specification of a method that calculates the square root of an integer.

4.2 Data Abstraction in JML and in Spec#

We present an example of data abstraction in both JML and Spec# to analyse

how these languages, and the verification of programs written in these languages,

support data abstraction and its verification. Both languages support the use of

model fields in specifications. An example from [18] is presented in both JML and

Spec# notation in Fig. 4.4 and Fig. 4.5. Using this example we explore the use of

model fields in both JML and Spec#.

This example uses the model field time to provide an abstract view of the spec-

ification while its concrete representation is implemented in terms of three integers:
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//@ + CheckArithOverflow = no

/*@ lemma distribute_right :
@ \forall integer x y z; x*(y+z) == (x*y)+(x*z);@*/

/*@ lemma distribute_left :
@ \forall integer x y z; (x+y)*z == (x*z)+(y*z);

@*/

//@ logic integer sqrt(integer x) = x * x;

public class Isqrt {

/*@ requires x >= 0;

@ ensures \result >=0 && sqrt(\ result) ≤ x && x < sqrt(\ result + 1);

@*/

public static int isqrt(int x) {

int count = 0, sum = 1;

/*@ loop_invariant count >= 0;

@ loop_variant x >= sqrt(count) && sum == sqrt(count +1);

@ loop_variant x - sum;

@*/

while (sum ≤ x) {

count ++; sum = sum + 2*count +1;

}

return count;

}

}

Figure 4.3: Using Logic Functions in the Krakatoa Modelling Language (KML).

hour, minutes and seconds. We examine the notation used and discuss its implica-

tion for verification in both specification languages.

4.2.0 Using Model Fields

Both JML and Spec# annotate model fields with the keyword model. In JML

the represents keyword is used to identify the abstraction function that maps the

model field time to the concrete value given in terms of the variables hour, minute

and second.

The model field is immediately updated when a variable in this abstraction

changes. However this immediate update can cause modularity problems in spec-

ifications. For example, how can a method specification name all variables that a

method will modify without revealing implementation details? It can also lead to

unsoundness if an abstraction function is applied to an object whose object invariant

is not satisfied. These situations must be checked during verification.
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Recent advances in the treatment of model fields within the Spec# programming

system have simplified the verification of programs that use model fields by restrict-

ing their updates to special statements within the language [61]. The value of each

model variable is constrained using a satisfies clause and a boolean expression of

the programming language. Rather than applying immediate updates Spec# uses

a special pack/unpack statement that updates values of model fields whenever an

object’s invariant holds. This method guarantees that the abstraction function is

true whenever the object invariant holds making reasoning about model fields easier

to manage.

One of the main ways that JML and Spec# differ in the expression of data

abstraction is in the details that are available in the client view of the specification.

JML conceals the implementation details by keeping abstraction functions, concrete

fields, and their invariants private as well as concealing concrete fields in data-groups

in method frames. In Spec#, model fields and their satisfies clauses are publicly

available (access modifiers such as private, public, and protected are not supported

on model fields) so implementation details can be viewed by the client through

consulting the satisfies clause.

4.2.1 Invariants

In JML, object invariants expressing properties of the model fields can be expressed

publicly, e.g., 0 <= time && time < 24∗60∗60 while invariants which express prop-

erties of the concrete fields can be kept private, e.g., 0 <= hour && hour <= 23.

In Spec# there is no distinction between private and public invariants. All invari-

ants are available to clients of the class. However Spec# does not allow invariants

to refer to model fields. Instead such constraints are added to the model field’s

satisfies clause.

4.2.2 Method Contracts

If implementation details are to be keep separate from the specification no concrete

fields should appear in the method contract. JML supports this through using data

groups (see section 4.2.8) which hide concrete fields from the specification. Spec#
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public class Clock {

//@ public model long time;

//@ private represents time == second + (minute * 60) + (hour * 60 * 60);

//@ public invariant time ==
getSecond () + getMinute () * 60 + getHour () * 60 * 60;

//@ public invariant 0 ≤ time && time < 24 * 60 * 60;

//@ private invariant 0 ≤ hour && hour ≤ 23;

private int hour; //@ in time;

//@ private invariant 0 ≤ minute && minute ≤ 59;

private int minute; //@ in time;

//@ private invariant 0 ≤ second && second ≤ 59;

private int second; //@ in time;

//@ ensures time == 12 * 60 * 60;

public /*@ pure @*/ Clock (){ hour = 12; minute = 0; second = 0; }

//@ ensures 0 ≤ result && result ≤ 23;

public /*@ pure @*/ int getHour (){ return hour; }

//@ ensures 0 ≤ result && result ≤ 59;

public /*@ pure @*/ int getMinute (){ return minute; }

//@ ensures 0 ≤ result && result ≤ 59;

public /*@ pure @*/ int getSecond (){ return second; }

/*@ requires 0 ≤ hr && hr ≤ 23 && 0 ≤ min && min ≤ 59;

@ assignable time;

@ ensures time == hr * 60 * 60 + min * 60;

@*/

public void setTime(int hr, int min){

this.hour = hr; this.minute = min; this.second = 0;

}

//@ assignable time;

//@ ensures time == \old(time + 1) % 24 * 60 * 60;

public void tick (){

second = second + 1;;

if (second == 60){ second = 0; minute = minute + 1;}

if (minute == 60){ minute = 0; hour = hour + 1;}

if (hour == 24){ hour = 0;}

}

}

Figure 4.4: JML specification and implementation for a clock illustrating model
fields, represents clauses and assignable clauses.
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public class Clock{

model long time{

satisfies time ==
second + (minute * 60) + (hour * 60 * 60) &&

time == getSecond () + getMinute () * 60 + getHour () * 60 * 60;

}

invariant 0 ≤ hour && hour ≤ 23;

protected int hour;

invariant 0 ≤ minute && minute ≤ 59;

protected int minute;

invariant 0 ≤ second && second ≤ 59;

protected int second;

public Clock()

ensures time == 12 * 60 * 60;

{

hour = 12; minute = 0; second = 0;

}

[Pure] public int getHour ()

ensures 0 ≤ result && result ≤ 23;

{

return hour;

}

[Pure] public int getMinute ()

ensures 0 ≤ result && result ≤ 59;

{

return minute;

}

[Pure] public int getSecond ()

ensures 0 ≤ result && result ≤ 59;

{

return second;

}

public void setTime(int hr, int min)

requires 0 ≤ hr &&hr ≤ 23 && 0 ≤ min && min ≤ 59;

modifies time , hour , minute , second;

ensures time == hr * 60 * 60 + min * 60;

{

this.hour = hr; this.minute = min; this.second = 0;

}

public void tick()

modifies time , hour , minute , second;

ensures time == old(time + 1) % 24 * 60 * 60;

{

second = second + 1;

if (second == 60){ second = 0; minute = minute + 1;}

if (minute == 60){ minute = 0; hour = hour + 1;}

if (hour == 24){ hour = 0;}

}

}

Figure 4.5: Spec# specification and implementation for a clock illustrating model
fields and satisfies clauses.
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allows the use of both model and concrete fields in the frame conditions of a method

contract.

In the following we refer to both the Spec# and the JML approaches as we

discuss the issues that impact the verification of data abstractions in an object-

oriented environment. In particular we provide a suite of recommendations for how

best to support the verification of data refinement.

4.2.3 Providing Client and Supplier Views

While the above approaches to data abstraction provide some distinction between

abstract specifications and concrete implementations, both the client and the sup-

plier view are usually presented together in a class.

An alternative is to use an interface to provide the client view of a class, i.e., the

public methods, their signatures and their specifications. The model fields used in

the specification and properties of those variables, expressed as an invariant, must

also be made available to the client. Traditionally no data fields or invariants would

appear in an interface as these reveal implementation details of which the client

should not be aware. However model fields and their invariants form part of the

client contract without revealing implementation details, so they should be made

available in the interface in this case. Verification tools require that the interface

is implemented in order to verify that the implementation satisfies the specifica-

tion. This implementation, together with the interface specification, provides the

supplier’s view of the software. An example showing an interface and its imple-

mentation written in JML are presented in Fig. 4.6 and Fig. 4.7. Note that the

abstraction function and the concrete fields remain private in the class definition

so that they are not available to the client. The semantics of implementing an

interface ensures that the signature of the abstract specification and the concrete

implementation stay the same.

Such a separation of client and supplier views is not as easy to achieve in Spec#

as the abstraction that relates model fields to the concrete fields appears in the

satisfies clause of the model fields. One option is to write the invariant on the

model field in the specification and to strengthen the satisfies clause by adding the

abstraction in the implementation, keeping this strengthening hidden from the client
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(we achieve this by overriding the model variable).

Proposal 1:

Separate the client and the supplier view to ensure a modular approach to data

refinement. From the client perspective, the specification is completely independent

of implementation details. From the supplier perspective, the specification can be

implemented by many different concrete classes, thus ensuring specification reuse.

public interface Coin{

/*@ public instance model int i;

@ public invariant 0 ≤ i && i < 2;

@*/

/*@ public normal_behavior

@ requires true;

@ assignable i;

@ ensures i == (old(i) + 1) % 2;

@*/

public void flip ();

}

Figure 4.6: An abstract specification for a coin.

public class Flip_Coin implements Coin{

private boolean b;

//@ in i;

/*@ private represents i ← (b ? 1 : 0); @*/

public void flip()

{

if (b) b = 0; else b = 1;

}

}

Figure 4.7: A concrete implementation for coin.

4.2.4 Client View of the Concrete Specification

Even when the client and the supplier views are separated, the client’s view is writ-

ten in terms of the abstract data and the supplier’s view is a mixture of abstract (in

the form of the specification) and concrete data (in the form of the implementation).
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Indeed, the abstraction function is written in terms of both as it provides the map-

ping from the concrete data to the abstract data. The lack of a specification, that

is written entirely in terms of the concrete fields, makes the work of the supplier

difficult as they are implementing the class in terms of one data type while ensuring

that the implementation satisfies a specification that is written in terms of another.

It also makes verification difficult as the implementation and the specification are

written in terms of two different types of data. An example follows:

/*@ requires true;

@ assignable i;

@ ensures i == (old(i)+1) % 2;

@*/

public void flip (){

if (b) b = 0; else b = 1;

}

Proposal 2:

Provide a version of the specification in terms of the concrete data to assist the

supplier of the implementation and verification tools. This specification should not

be written as a mixture of abstract and concrete fields but entirely in terms of the

concrete data. Its generation could be formalised through the application of data

refinement laws as presented in section 3.4.0. Having such a concrete specification

would make both the implementation and its verification easier as the specification

and the implementation is written in terms of the same data .

4.2.5 Abstraction Invariants

The mapping between abstract and concrete fields can be a function where each

concrete state corresponds to exactly one abstract state, or it can be a relation

where each concrete state can map to any number of abstract states.

JML support both forms using the represents clause. The first form uses

the ← notation to give an explicit definition of the model fields in terms of the

concrete fields through an abstraction function. The type of right-hand side of the

represents clause must be compatible to the type of left-hand side by assignment.

For example, the interface in Figure 4.6 could be implemented by mapping the

model integer variable i to the concrete boolean variable b as follows:
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private boolean b;

//@ in i;

//@ private represents i ← (b ? 1 : 0);

The second form uses the such that notation to provide an abstraction relation

between the model field and the concrete field. For example:

private int y;

public model int x;

//@ private represents x such_that 0 ≤ x && x ≤ y;

The mapping from abstract to concrete data can be supported by the definition

of a method which translates the concrete data representation into its abstract

counterpart. This method must be pure as it is used in the specification. We

refer to these methods (that are used to define the abstraction function) as model

methods.

The satisfies clause associated with a model field declaration in Spec# provides

a boolean expression which constrains the values that a model variable may have.

An example follows where the model field Total is constrained in two ways. The

constraint that it must have a value that is greater than or equal to zero is equivalent

to an object invariant on the abstract data in JML, while the constraint that its

value is equal to the sum of the elements in the array Aprovides the abstraction

function which would be expressed in a represents clause in JML.

public int[] A;

model int Total{

satisfies 0 ≤ Total && Total == sum{int i in (0 : count); A[i]};

}

The satisfies clause can refer to the model field to which it belongs, other fields

of the class in which the model field is declared, and fields of any sub-objects which

are ”owned” by the class which declares the model field. The concept of ownership

is explained in section 4.2.7. A satisfies clause can refer to other model fields as

long as dependencies are not cyclic.

Proposal 3:

Provide separate declarations of properties of abstract fields (public invariants in

JML) and their mapping to concrete fields (represents clauses in JML). This will
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achieve separate client and supplier views of data refinement properties.The client

should be able to view the properties of the abstract fields but not their relationship

to the concrete fields.

Proposal 4:

Provide support for an abstraction invariant which maps the abstract data type that

is used in the specification to the concrete data type that is used in the implementa-

tion.

4.2.6 Object Invariants

As explained in chapter 2, an object invariant is an assertion that specifies proper-

ties of the object’s state. The object invariant must be established when an object is

constructed and may be violated during a method execution as long as it is reestab-

lished before that method execution terminates. Therefore, we are guaranteed that

the object invariant holds when a method is executed. An example written in Spec#

follows:

class Car{

[SpecPublic] protected int speed;

invariant 0 ≤ speed;

public Car() { speed = 0; }

public void set_Speed(int kmph)

modifies Speed;

requires 0 ≤ kmph; //The invariant must hold in the pre

ensures speed == kmph; //The invariant must hold in the post

{

speed = kmph;

}

}

In data refinement, object invariants that are visible to the client will be defined

on model data. Other invariants, visible to the supplier and for use in verification,

will be specified on the concrete data. For verification purposes, the concrete invari-

ant must hold as described above so that the implementation satisfies the concrete

specification. The abstract invariant must also hold, so that the implementation

satisfies the abstract specification as seen by the client. In the Spec# methodology

for model fields, constraints on model fields are included in their satisfies clauses
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and model fields are disallowed from object invariants (due to the need to maintain

ownership invariants).

The verification of object invariants is further complicated by method re-entrancy.

If we consider object invariants as assertions that must be true at a method’s pre-

conditions and postcondition, then it is possible that a method could call another

method when the object invariant does not hold. Method re-entrancy occurs when

a method call within the body of a method call backs into the object while the

object is in an inconsistent state [13]. Adding the following method to the class

Car provides an example of a method which violates the object invariant.

public void bad_Speed(int kmph)

modifies speed;

requires 0 ≤ kmph;

ensures speed == kmph;

{

speed = speed -1;

speed = kmph;

}

The object invariant requires that 0 <= speed , and the method bad Speed

can break the invariant when it decrements speed . The value of speed is reset to

be equal to kmph before the method terminates. This re-establishes the object

invariant. However if a method is called after decrementing speed, then an error

could occur because the invariant 0 <= speed is not satisfied.

The Boogie methodology is used to verify Spec# programs. In order to control

where an object invariant must hold, this methodology distinguishes between valid

and mutable objects. Spec# provides pack/unpack statements in the form of

expose blocks to identify if an object is valid or mutable. An object is in a valid

state when it is guaranteed to satisfy its object invariant. Fields of a valid object

may only be updated if the updates maintain the object invariant. An object is in

a mutable state when it is allowed to undergo change and its invariant is allowed to

be violated [38]. An object is mutable until the constructor has been fully executed.

After its construction expose statements are used to temporarily change an object

from valid to mutable.

In Spec# the expose statement, expose (this), puts the this object into a mu-

table state, allowing the invariant to be violated by the code enclosed by parenthesis

{ and }. The syntax can be seen in Fig. 4.8. The invariant may be violated within
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the expose block as long as the object invariant is re-established by executing the

code enclosed by the expose statement. This provides control of when an object

may be modified.

public void bad_Speed(int kmph)

modifies speed;

requires 0 ≤ kmph;

ensures speed == kmph;

{

expose(this){

speed = speed -1;

speed = kmph;

}

}

Figure 4.8: Using expose Blocks in Spec#.

Although the use of expose blocks has no direct impact on the client of a class

that is data refined, it does have an impact on the verification of a concrete speci-

fication.

Proposal 5:

Provide an object invariant which specifies properties of the abstract variables (the

abstract invariant). This object invariant should be available to the client as it

specifies details which are relevant to their view of the specification.

Proposal 6:

Provide an object invariant which specifies properties of the concrete fields (the con-

crete invariant). This object invariant should only be available to the supplier as

it specifies details which are relevant to the specification’s implementation. These

details are of no concern to the client as the client only need be aware of the speci-

fication.

Proposal 7:

Provide verification support so that proving the concrete invariant holds implies that

the abstract invariant also holds.
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Proposal 8:

Distinguish between valid and mutable objects, as in the Boogie methodology, and

use this information to determine when it is safe to violate the object invariant.

4.2.7 Ownership

The data fields of an object often reference other objects, which are often instances

of different classes and those objects reference further objects. The combination

of these sub-objects form an overall object, which we refer to as the aggregate

object. The Boogie methodology handles aggregate objects by guaranteeing that if

an object is valid (as discussed above) then that implies that its component objects

are also valid. This requires some form of aliasing control which controls the use

of object references. Ownership provides this control associating every object with

a unique owner object. An aggregate owner is the owner of its component objects.

Objects outside the aggregate are allowed to reference component objects, but these

references are only of limited use as they cannot modify them with owning them.

When model fields are objects and objects are implemented by other objects in

Spec#, the same discipline of ownership is needed to keep track of which objects

may specify and modify properties of other objects [74]. The satisfies clauses for a

model field may refer to fields of sub-objects as long as they are “owned” by the

aggregate object. Note that methods that are private to the class definition may

violate the class invariant at any time, as they do not have to honour the class

contract.

Spec# uses the concept of ownership to keep track of objects that reference

others. We say that an aggregate object owns its sub-objects. This is indicated in a

Spec# specification by using the annotation [Rep]. The owner of this [Rep] field

is granted permission to modify it. Fig. 4.9 shows an example where methods in

the Summation class are granted permission to modify the array a .

We have just seen that in order to be clear about when class invariants hold,

the Boogie methodology distinguishes between objects in a valid state where the

object is guaranteed to satisfy its invariant and objects in a mutable state where

its invariant is allowed to be violated. As the object invariant is allowed to specify

properties of component objects, Spec# organises objects further into a dynami-
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public class Summation{

[Rep] [SpecPublic] private int []! a;

invariant forall {int k in (0 : a.Length ); 0 ≤ a[k]}

[Pure] public int SegSum(int i, int j)

requires 0 ≤ i && i ≤ j && j ≤ a.Length;

modifies a[*];

ensures result == sum{int k in (i : j); a[k]};

{

int s = 0;

for(int n = i; n < j; n++)

invariant i ≤ n && n ≤ j;

invariant s == sum{int k in (i : n); a[k]};

{

s += a[n];

}

return s;

}

}

Figure 4.9: A Sample Spec# Class.

cally changeable ownership hierarchy. Each valid object is further categorised as

committed (when the object’s owner is in the valid phase) or consistent (when the

object’s owner is in the mutable phase). This is explained in [38] as

“Typically, public methods are applied to objects that are consistent,

and the transition to mutable takes place after entry to public methods.

A committed object cannot not be mutated directly and, because it is

not accessible except through its owner, it does not accept method calls;

rather, it is in a phase where its state is constrained by the objects’

owners’ invariant.”

If such constraints on object invariants are part of the specification, they must be

translated into equivalent constraints at the implementation level. The categorisa-

tion of objects as committed or consistent is also taken advantage of in the modifies

clause in Spec#.

Proposal 9:

In the specification of aggregate objects provide aliasing control so that every sub-

object has a unique owning object, and

(a) that sub-object can only be modified through its owner
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(b) the abstraction invariant and the invariant on the abstract data may refer to

fields of sub-objects as long as they are “owned” by the aggregate object

4.2.8 Framing Conditions

The specification should name the abstract fields that are modified by a method.

Traditionally these variables are modified when the concrete fields, on which their

values depend, are modified. Rather than applying automatic updates Spec# uses

a special pack/unpack statement that updates values of model fields whenever an

object’s invariant holds. As this methodology treats model fields in the same way

as concrete fields that are updated by a pack statement (at the end of an expose

block), the normal rule for modifies clauses in Boogie apply.

Frame conditions typically name the abstract and the concrete fields that a

method may modify. However concrete fields should not be named in the client’s

view of the frame condition, as this will reveal details about the implementation.

Furthermore, when a specification is being written it is most likely that the imple-

mentation will not be provided, hence the concrete fields are not available as they

are unknown.

The three main approaches to specifying frame conditions in specification lan-

guages are:

0. Use a modifies clause [64] or a similar construct listing the variables that are

modified by a method, i.e., a method where the modifies clause modifies x

specifies that the method is permitted to change the variable x.

1. Use the postconditions to specify the variables that are not modified by a

method, i.e., a method where the postcondition ensures x == old(x) specifies

that the method does not change the variable x. This approach is problematic

as the method specifications need to know information about the environment

in which the method will be called, and that information is not often available

when the method is being specified.

2. Use the pre-conditions to restrict the variables a method has access to modify,

e.g., in separation logic [80] if a pre-conditions specifies that the method is

dependent on a memory location then the method can modify its contents.
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The semantics of the language ensures that a method cannot modify a memory

location that it does not have permission to modify.

Using the modifies clause to list the variables that are modified by a method is the

approach that is used in specification languages like JML and Spec#. A number

of approaches that have been suggested, allow the modifies clause represent all the

variables that the procedure is permitted to modify without revealing implementa-

tion details (or having to predict concrete field names). These approaches include

downward-closures, data groups, dynamic frames, regions and ownership.

Model Fields and their Downward-Closure

When a modifies clause lists a model variable it makes clients of the specification

aware that the method may modify the model variable. As the model variable’s

value changes when the concrete fields on which it depends change, then the modifies

clause must also grant permission to the method to modify those concrete fields.

Leino and Nelson [62] refer to these variables as the downward-closure of the model

variable. When the model fields are object fields and objects are implemented by

other objects, the fields on which the model fields depend are influenced by the

program state as well as the program text. Hence a mechanism like ownership may

be useful to track object components [74].

Data-Groups

A data-group is used to name sets of locations in a way that does not expose repre-

sentation details. When a model variable is declared in a specification a data-group

of that name is automatically created. The concrete attributes, used in the imple-

mentation, are declared to be in that data-group so that, whenever modifications

to the data-group are allowed by the specification the concrete attributes may be

modified in the implementation. This technique is used in JML. It avoids exposing

implementation details as the concrete fields do not need to be explicitly named in

the method’s frame condition. In the examples in Fig. 4.7, the concrete variable b is

declared to be in i, the data group formed when the corresponding model variable

i is declared.
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An alternative to data-groups in JML is the depends clause which is used with

the represents clause to indicate the variables that the represents is dependent on.

In the above example we would have

private boolean b;

/*@ private represents i ← (b ? 1 : 0);

@ depends b;

@*/

Dynamic Frames

Dynamic frames allow the specification of variables that a method can modify

through naming sets of locations in the modifies clause. For example VeriCool [84]

specifies dynamic frames using pure methods. Dafny [54] is a language that explores

the use of dynamic frames in specifications. It uses ghost variables, which must be

explicitly updated to overcome issues regarding recursively defined pure methods

or logic functions. Banerjee et al. [9] offers a variant on dynamic frames based on

regions which are used for memory management.

Over-Approximation of a Method’s Set of Modified Locations

In Spec# the modifies clause lists the fields that may be modified by a method. In

addition to these variables, the Boogie methodology [13, 60] implicitly allows each

method to have a net effect on the state of committed objects. To modify an object,

the method body must first obtain a reference to the object and must then follow

the rules to make that object mutable (the object must be a [Rep] object that is

exposed). One advantage of this technique is that it requires only a modest set of

abstraction features for use in modifies clauses. A disadvantage is that sometimes

the over-approximation is too coarse.

Proposal 10:

In the client’s view frame conditions should name the abstract fields that a method

may modify.
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Proposal 11:

Concrete fields should not be named in the client’s view of the frame condition as

this will reveal details about the implementation.

Proposal 12:

Naming the abstract fields in a frame condition should grant permission for the mod-

ification of concrete fields on which they depend (via the abstraction).

These three proposals are primarily concerned with the data representation that

is available to the client and the supplier. The client should be aware of the ab-

stract fields that methods can modify (Proposal 10). He should not be aware of the

underlying concrete representation (Proposal 11). The supplier must be aware of

the concrete data that she is allowed to modify. As the method’s frame condition

is written in terms of the abstract data, and the abstraction invariant relates the

abstract and the concrete data, she should be allowed to modify the concrete data

to which the abstract data relates (Proposal 12).

4.2.9 Inheritance

A specification written in terms of model fields can be inherited by another. To

provide modular verification we must be able to guarantee that subtype methods

behave according to the specifications of supertype methods i.e they are behavioural

subtypes [65].

As a subtype object may be substituted where a superclass object is expected,

the normal restrictions (as discussed in chapter 2) are placed on inheriting specifi-

cations. In summary:

0. Object invariants may be strengthened by the subclass as constraints are

added on new attributes or on attributes inherited from its superclass.

1. Method pre-conditions may be weakened in the overriding methods.

2. Method postconditions may be strengthened in the overriding methods.
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In the case of Spec# specifications satisfies clauses may be strengthened as

these correspond to invariants that are defined on the model fields.

Behavioural Subtyping in Spec#

In Spec# the class specification and the run-time checks associated with it are in-

herited by the inheriting class. Spec# achieves behavioural subtyping by supporting

the strengthening of object invariants and method postconditions through inheri-

tance. However it does not allow any changes in the method’s pre-conditions, as

clients expect the method’s specification at compile time (its static resolution) to

agree with the specification at run-time (dynamic checking). Similarly, it does not

allow any changes in the modifies clause, as extending the frame would be unsound

and shrinking the frame can be achieved with an added postcondition that states

that a variable has not changed.

An example of an inheritance relationship in Spec# is shown in Fig. 4.10. In-

heritance is denoted by the symbol : .

class Car{

[SpecPublic] protected int speed;

invariant 0 ≤ speed;

public Car(){

speed = 0;

}

public virtual void SetSpeed(int kmph)

requires 0 ≤ kmph;

ensures speed == kmph ;

{

speed = kmph;

}

}

public class LuxuryCar : Car{
[SpecPublic] private int cruiseControlSettings;

invariant cruiseControlSettings == -1 | | speed == cruiseControlSettings;

public LuxuryCar (){

cruiseControlSettings = -1;

}

}

Figure 4.10: Inheritance in Spec# where a the subclass LuxuryCar inherits from
the superclass Car.
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Overriding Abstractions

The JML compiler (release 5.0 rc1) permits the overriding of represents clauses in

JML. JML semantics do not specify that there must be a relation between the repre-

sents clause of the overridden and overriding class. Without a behavioural subtyping

constraint for represents relations, inconsistencies can be introduced easily.

In Spec# a model field’s satisfies clause can be strengthened via a subclass.

This is accomplished by repeating the declaration of the model field and providing a

further satisfies clause. The satisfies clause then equates to the conjunction of all

satisfies clauses in the inheritance hierarchy for that model variable. This permits

strengthening the invariant that is specified on the model fields and strengthening

abstractions as both are specified in the satisfies clause.

Proposal 13:

Support inheritance between abstract specifications, ensuring that the rules of be-

havioural subtyping are adhered to.

Proposal 14:

Support the overriding of abstractions to strengthen them in inheriting classes (this

only applies to implementations as abstractions will not be present in specififcations).

4.3 Conclusion

Through our examination of how specification languages support data abstraction

we have generated a suite of proposals for representing modular data refinement in

object-oriented verification environments. These proposals are summarised below:

Proposal 1: (section 4.2.3)

Separate the client and the supplier view to ensure a modular approach to data re-

finement.
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Proposal 2: (section 4.2.4)

Provide a version of the specification in terms of the concrete data to assist the

supplier of the implementation and verification tools.

Proposal 3: (section 4.2.5)

Provide separate declarations of properties of abstract fields (public invariants in

JML) and their mapping to concrete fields (represents clauses in JML).

Proposal 4: (section 4.2.5)

Provide support for an abstraction invariant which maps the abstract data type that

is used in the specification to the concrete data type that is used in the implementa-

tion.

Proposal 5: (section 4.2.6)

Provide an object invariant which specifies properties of the abstract fields (the ab-

stract invariant).

Proposal 6: (section 4.2.6)

Provide an object invariant which specifies properties of the concrete fields (the con-

crete invariant).

Proposal 7: (section 4.2.6)

Provide verification support so that proving the concrete invariant holds implies that

the abstract invariant also holds.

Proposal 8: (section 4.2.6)

Distinguish between valid and mutable objects, as in the Boogie methodology, and

use this information to determine when it is safe to violate the object invariant.

Proposal 9: (section 4.2.7)

In the specification of aggregate objects provide aliasing control so that every sub-

object has a unique owning object, and

(a) that sub-object can only be modified through its owner
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(b) the abstraction invariant and the invariant on the abstract data may refer to

fields of sub-objects as long as they are “owned” by the aggregate object

Proposal 10: (section 4.2.8)

In the client’s view frame conditions should name the abstract fields that a method

may modify.

Proposal 11: (section 4.2.8)

Concrete fields should not be named in the client’s view of the frame condition as

this will reveal details about the implementation.

Proposal 12: (section 4.2.8)

Naming the abstract fields in a frame condition should grant permission for the mod-

ification of concrete fields on which they depend (via the abstraction).

Proposal 13: (section 4.2.9)

Support inheritance between abstract specifications, ensuring that the rules of be-

havioural subtyping are adhered to.

Proposal 14: (section 4.2.9)

Support the overriding of abstractions to strengthen them in inheriting classes (this

only applies to implementations as abstractions will not be present in specifications).
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Chapter 5

Representing Data Refinement in

Spec#

We propose a framework for the modular verification of data refinements in the

Spec# programming system [14]. This system consists of the Spec# programming

language, the compiler, and the verifier. These tools support a sound program-

ming methodology that permits specification and reasoning about object-oriented

programs.

The Spec# language is a superset of C#, an object-oriented programming lan-

guage similar to languages such as Java and C++. The C# features that are most

relevant to this work are single inheritance, interfaces, object references and dy-

namically dispatched methods. Spec# builds on C#, adding support for program

specification through a rich assertion language that includes quantifiers, thus al-

lowing the specification of objects through object invariants, field annotations, and

method specifications like pre- and postconditions. A class specification and its im-

plementation are typically written together, within one Spec# class definition. The

Spec# verifier translates the compiled programs into the intermediate verification

language BoogiePL [11], from which it then generates verification conditions for

various SMT (Satisfiability Modulo Theories) solvers.

In languages like Spec#, specifications are typically written in terms of fields,

methods, and types that are intended to be private to the implementation, with

the unfortunate consequence of exposing implementation details to the client. This
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coupling between the specification and the implementation requires the specification

to be rewritten every time the implementation details are changed. Furthermore,

assertion checking tools may incur run-time performance penalties, as some code

may require execution to determine the state of variables used in the specification.

To support data refinement object-oriented languages, we propose a framework

for verification that completely decouples an object’s specification from its imple-

mentation. This framework maintains a client and a supplier view of the software

as discussed below. The remainder of this chapter is laid out as follows. section

5.1 provides an overview of our proposed framework, presenting a one-class ap-

proach, followed by a two-class approach to data refinement. section 5.2 provides

an overview of Spec# notation, highlighting the main features that we will use in our

presentation. section 5.3 discusses the representation of data refinement in Spec#

in more detail, providing an example of the one class approach. section 5.4 pro-

vides an argument for a two class approach, where our improved solution links the

specification and its implementation through inheritance. The proof obligations for

the modular correctness of object-oriented programs, and their compatibility with

the proof obligations generated by a data refinement, are discussed in section 5.5.

In section 5.6, we use C# properties and Spec# model fields to explore alternative

data refinement representations in Spec#. Finally, in section 5.7 we evaluate our

representation, revisiting our suite of proposals for data refinement representations

as listed in chapter 4.

5.1 Modular Data Refinement in an

Object-Oriented Language

One possible approach to supporting data refinement in an object-oriented language

combines the specification and the implementation in one class definition. However,

rather than using the same data-type to specify and to implement the class, the

specification is written in terms of one data type, while the implementation is writ-

ten in terms of another. This is the approach that we have seen throughout many

of the examples that illustrate data abstraction in specifications. While this ap-

proach achieves the separation of the client and supplier views, the resulting class
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is complex. It contains both the abstract and the concrete data fields, invariants on

both sets of data, method specifications and implementations, and the abstraction

invariant which relates the two data types. A further disadvantage is that it is

difficult to distinguish between the abstract and the concrete components without

thoroughly examining the class. For example, the invariant on the abstract data the

invariant on the concrete data and the abstraction invariant are all conjoined into

one object invariant which contains a mixture of specification and implementation

data types.

Specification languages typically provide specification-only variables that can be

used to represent the abstract fields, and hence restrict them from been used in

the implementation. However, no such mechanism exists to restrict concrete fields

from use in the specification. This means that we cannot enforce the separation

of abstract specifications and concrete implementations in the one-class approach

described above.

An alternative approach puts the specification and the implementation into two

classes that are related via data refinement. The specification class consists of three

components: the declaration of the abstract data, the object invariant which speci-

fies properties of the abstract data, and the constructor and the method specifica-

tions written in terms of the abstract data. The implementation class is similar, in

that it provides the declaration of the concrete data, the object invariant specifying

properties of the concrete data, and the constructor and the method implementa-

tions written in terms of the concrete data. This approach has the advantage of

clearly distinguishing the view of the client from the view of the supplier. The client

view is provided by the specification class while the supplier view is provided by a

combination of the specification and the implementation classes.

However, the abstraction invariant, a vital component of the data refinement,

has not yet been included in our representation. Including this invariant in the

specification class would reveal implementation details to the client, as it refers to

both the abstract and the concrete data. The supplier already has access to both

the abstract and the concrete data, so including it in the specification class does not

pose any problems as it does not reveal any implementation details to the client.

Any methods that may be used in the definition of the abstraction invariant may

also be included, because they will not affect the client’s view of the specification.
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There is currently no direct support in Spec# for linking and verifying a spec-

ification and implementation written in this way. In our proposal, we go out of

our way to make use of existing Spec# features as much as possible. We represent

the specification using an abstract class, and the implementation using a subclass

that inherits this specification. Our aim is to achieve a modular representation of

data refinement, where the specification is available to the client who should not be

concerned about the implementation details of a class. Any implementation module

should be substitutable as long as it satisfies the abstract specification.

Abstract classes provide the declaration of data fields and the signatures of the

abstract methods which sub-classes must implement. In languages like Spec#, the

specification of these methods may also be added to the abstract class. Abstract

classes support single inheritance. By this, we mean that a subclass will inherit from

only one abstract class. Through this inheritance relationship, we provide the imple-

mentation class. This subclass provides the concrete data and the implementation

of all abstract methods that are presented in the abstract class. Method overriding

is used to add implementations to methods that are specified in the specification

class. This has the added advantage of guaranteeing that method specifications and

method implementations have the same signature.

In data refinement, the specification is provided in terms of the abstract data

and the implementation is provided in terms of the concrete data. This separation

of specification and implementation is not directly supported through inheritance,

although we could restrict the inheritance relationship to support this (section 7).

Concrete data declarations may be added to the subclass and this concrete data may

be used in method implementations. Verifying that each method implementation

satisfies its specification is difficult, as the specifications are written in terms of the

abstract data, and the implementations are written in terms of the concrete data.

The abstraction invariant which links the two data types is required, and is added

as an object invariant of the implementation class.

An abstract class can be instantiated via its subclass. This provides another

similarity to specification classes, as the client chooses a specification which can

only be instantiated through the implementation class. We choose abstract classes to

represent our specifications rather than interfaces, since abstract classes may declare

fields that correspond to abstract types that are used in specifications. The other key
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difference between abstract classes and interfaces is that a class may implement any

number of interfaces, but may inherit from only one abstract class. This provides a

1:1 correspondence between our specifications and our implementations.

There are some drawbacks to using inheritance to represent data refinement.

First, the abstract class does not require the specification of a constructor. We

require the specification of a constructor to establish the properties of the abstract

data (the abstract class object invariant). These properties are established through

the constructor of the implementation class. A second drawback resurrects one of

the flaws of the one-class approach. As both the abstract and the concrete data are

available in the implementation class, the implementation can be written in terms

of either, or indeed both, sets of data.

Thirdly, inheritance does not require that all methods in the abstract class are

implemented by its subclass. In data refinement, we insist that all specifications are

implemented. Otherwise the data refinement is not complete. On a positive note,

inheritance does allow the addition of extra methods to the subclass. This coincides

with our data refinement representation, as suppliers may want to add methods to

assist in the implementation. Since these methods are not visible to clients, they

do not influence the data refinement.

A fourth drawback is that inheritance does not support the definition of an

abstraction invariant. It is expected that the subclass methods will be implemented

in terms of the same data type as that used in its specification. Since this is not

the case in data refinement, an abstraction invariant is required to provide the link

between the abstract and the concrete data. We include it as an invariant of the

implementation class so that the supplier knows how the abstract and the concrete

data are related. However, this does not distinguish the abstraction invariant from

other object invariants, and assertion checkers have difficulty proving that it is a

valid invariant in the inheritance hierarchy.

In summary, verifying that two classes are related via inheritance does not estab-

lish that they represent a data refinement. However, investigating the similarities

and inadequacies leads us to suggest enhancements to Spec# to better support

the verification of data refinements. First, we present a summary of the Spec#

programming language.
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5.2 The Spec# Language

The C# programming language, is an object-oriented language like C++ and Java.

It includes features such as single inheritance, interfaces, object references, dynam-

ically dispatched methods, and exceptions. Spec# extends C# with features that

include non-null types, method contracts and object invariants.

5.2.0 Types

The primitive types in C# include the boolean and integer types, while the com-

posite types include arrays and object types. A class describes an object type. Its

components are fields and methods, standard in object-oriented languages. Addi-

tionally, object invariants provide an assertion that must be true for all objects of

the class.

In C# a field can be declared as a value type in the case of the primitive types,

or as a reference type, in the case of composite types. Like Java, each reference type

T includes the value null. Spec# aims to eradicate all null dereference errors by

distinguishing non-null object references from possibly-null object references. Hence

in Spec#, type T! contains references to objects of type T that are not null. The

Spec# system will enforce this typing by returning an error if a null value is used

where a non-null value is required. Like other object-oriented languages, object

types and array types in Spec# respect polymorphic subtyping. By this, we mean

that if type T is a subtype of type S, then an expression of type T can be substituted

for an expression of type S.

5.2.1 Attributes

Similar to other object-oriented languages, C# provides attributes that attach infor-

mation to classes, fields, and methods. Spec# offers additional attributes, usually

enclosed in square brackets, which provide additional specification details. The

Spec# attributes that are of most interest to us are listed below:

• [SpecPublic]: A field that is not public may be annotated with [SpecPub-

lic], so that the fields may be used in the specification. This allows the client
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to see the field but prevents them from modifying it unless a public method

is provided for that purpose. An example is provided in Fig. 4.9 where the

private array a is used in a specification.

• [Rep]: In Spec#, a class has permission to modify its fields if they are declared

as a value type, e.g., integer fields. It does not have permission to modify

fields that are declared as reference types. This is because the object or array

to which this field refers to could be referred to by other (reference type)

fields. Declaring a field to be [Rep] ensures that the object which that

field references cannot be referenced by any other field. As this [Rep] field

is the only owner of the referenced object it is granted permission to modify

it. Figure 4.9 shows an example where methods in the Summation class are

granted permission to modify the array a.

• [Pure]: This annotation is used to identify methods which have no observable

side effects. These methods may be used in specifications, as they do not

change the state of any object fields. The method SegSum, Fig. 4.9, provides

an example of a [Pure] method declaration.

5.2.2 Assertions

Spec# provides an assertion language with which we can write object invariants

and method specifications. This assertion language includes quantified expressions

which have the form

Q{int k in E; F}

where Q is one of the quantifiers forall , exists , sum , product , min , max ,

count , k is a bound variable of type int in the range of integer values provided

by the expression E, and the expression F is the term to which the quantifier is

applied. The expression F has the type boolean for the quantifiers forall , exists

and count , and the type int for quantifiers sum , product , min and max.

The bound variable k can occur free in F , but not in E . For example, the

quantified expression

forall{int k in (0 : 10); 0 <= a[k]}
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evaluates to true if the values in the array a, in the range a[0], ..., a[9] are greater

than or equal to 0.

Every method and constructor can specify a contract between its clients and its

suppliers. In Spec#, this contract has three components.

• The method pre-condition, which is introduced with the requires keyword.

It provides the initial conditions that must hold for the method to function

correctly.

• The method postcondition, which is introduced with the ensures keyword.

It specifies the state that is achieved if the method is executed in a state where

its pre-condition is true.

• The frame condition, which is introduced with the modifies keyword. It

specifies the variables that the method may modify in its implementation.

An empty pre-condition is equivalent to requires true as there are no initial

constraints on the method. Similarly, omitting the postcondition is equivalent to

ensures true. Omitting the frame conditions is equivalent to stating that no at-

tributes can be modified, while modifies this.∗ permits all attributes of a class to

be modified by the associated method.

As in Java, in C#, the keyword this provides a reference to the current object.

It is an implicit method parameter, instantiated to the object which calls that

method. Method parameters, including this , are in the scope of the specification

and therefore they may be used in all method assertions. Variables in postconditions

can be prefixed with the keyword old , e.g.,x = old(x) + 1 indicates that the new

value of x is the old value incremented by 1. The postcondition of methods may refer

to the return value of a method using the keyword result. The type of the value

stored in result must be a subtype of the method’s return type. Method bodies

may have additional assertions which assist in a verification. Loop invariants are

introduced with the keyword invariant . They help the verifier to verify method

postconditions. Assertions like assert E state a condition E that is expected

to hold whenever execution reaches that assertion. Assertions like assume E are

similar to assert statements, but the Spec# verifier checks the condition in the assert

statement, whereas it blindly assumes the condition in the assume statement.
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Object invariants are identified by the keyword invariant. They define proper-

ties that apply to the class as a whole, imposing proof obligations on the constructor,

and on each public method of the class. When the invariant holds we say that the

object is valid. First, the invariants must be established by the constructor, so that

the object is valid when it is created. Second, the object invariant must hold prior

to the execution of every public method of the class. Otherwise methods could

be called on objects that are not valid. Finally, the object invariant must be re-

established after the execution of every public method of the class. This ensures

that the object is in a state where other methods may be called without error.

Spec# has a construct called expose blocks. These explicitly identify when

an object is in a state where its object invariant must be true. We discuss this in

more detail in section 4.2.6 where Spec#’s methodology for reasoning with object

invariants is presented.

5.3 Data Refinement: A One-Class Approach

As outlined in section 5.1, one approach to representing data refinement in Spec#

is to combine the specification and the implementation in one class definition. The

resulting class contains:

• the abstract data, the methods, the constructors, and the object invariant

specified in terms of the abstract data;

• the concrete data, the method’s implementations, the constructor’s implemen-

tation and the object invariant written in terms of the concrete data; and

• an abstraction invariant relating the abstract and the concrete data.

We present an example of the one-class approach to data refinement in Fig. 5.1.

A Bag is specified in terms of a pair of integers: bagsum which records the sum of

the elements in the bag, and bagcount which records the number of elements in the

bag. The bag is implemented in terms of an integer array elems , which stores the

values in the bag, and integer count , which records the number of elements that it

contains.
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public class Bag {

[SpecPublic] private int bagsum;

[SpecPublic] private int bagcount;

[Rep] private int[] elems;

private int count;

invariant 0 ≤ bagcount;

invariant 0 ≤ count && count ≤ elems.Length;

invariant bagcount == elems.Length && bagsum == absSum ();

Bag()

ensures bagcount == 0 && bagsum == 0;

{

this.count = 0;

elems = new int [100];

}

[Pure] public bool isEmpty () // unsatisfied postcondition - needs AI

ensures result == (bagcount == 0);

{

if (count == 0) return true;

else return false;

}

void add(int x) // unsatisfied postcondition - needs AI

requires 0 ≤ x;

modifies this .*;

ensures bagSum == old(bagsum) + x && bagcount == old(bagcount) + 1;

{

expose(this){

if (count == elems.Length ){

int[]! b = new int[2* elems.Length +1];

Array.Copy(elems , 0, b, 0, elems.Length );

elems = b;

}

elems[this.count] = x;

count ++;

}

}

[Pure] public int absSum ()

ensures result == sum{int i in (0 : elems.Length ); elems[i]};

{

int s = 0;

for(int j = 0; j < elems.Length; j ++)

invariant j ≤ elems.Length;

invariant s == sum{int i in (0 : j); elems[i]};

{

s = s+elems[j];

}

return s;

}

}

Figure 5.1: The One-Class approach to representing data refinement in Spec#. Both
abstract and concrete components are present in the class with the bag represented
as a pair of integers in the specification and as an array in the implementation.
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The abstract data fields can be used in the specification, as indicated by the

[SpecPublic] annotation, while the concrete data fields remain private to the im-

plementation. The methods defined for use with objects of the class are:

• the constructor Bag() which initialises the class attributes

• [Pure] public bool isEmpty() which determines if the bag is empty

• void add(int x) which adds x to the bag

The invariants that are defined in the class are:

invariant 0 ≤ bagcount

invariant 0 ≤ count && count ≤ elems.Length

invariant bagcount == elems.Length && bagsum == absSum ()

which describes the properties of the abstract data, the properties of the concrete

data, and the abstraction invariant respectively. In keeping with the Boogie method-

ology (as discussed in section 4.2.6), all three invariants will be checked whenever

Bag objects are in a valid state. Without reference to the abstract data in the

implementation, the verification of the invariant on the abstract data, and the in-

variant which provides the abstraction invariant, is not possible as there is no code

to establish these invariants.

Note that the method [Pure] public int absSum() is an abstraction function

which maps the concrete data to its abstract counterpart. This method should be

kept private from the client as it exposes details about the Bag implementation.

However, in this one-class approach, we are forced to make the method public, as

Spec# does not allow private methods to be used in invariants and does not allow

methods to be annotated with [SpecPublic].

Using Spec# model fields to identify the abstract data does not significantly im-

prove the one class representation of data refinement. Slight improvements include

identification of the abstract data fields using the model keyword and using the

satisfies clauses to provide the invariants for the abstract data. However, both the

abstract and the concrete data are present in the class and hence a modular view

of data refinement is not provided. Other restrictions, such as the lack of support

for method calls in the satisfies clause, puts further limits on the representation.
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5.4 Motivation for a Two-Class Approach

The one-class approach combines the specification and the implementation in one

class definition in Spec#. It differs from the normal Spec# approach in that the

specification is written entirely in terms of one data type, and the implementation

in terms of another. Although this separates the specification from the implemen-

tation, in terms of the data types used, the resulting class is cluttered due to its

abstract and concrete components (section 5.1). Furthermore, a client can discover

implementation details, since all invariants and abstraction functions are publicly

available in the class.

Separating the specification and its implementation into two separate classes

helps to solve these problems, because the client is presented with the specification

while keeping the implementation details private.

The example of the implementation of the bag from Fig. 5.1 is presented, using

the two-class approach in Fig. 5.2 and Fig. 5.3. This separation of the class specifi-

cation from its implementation provides two views of the class. These are the client

view provided by the class specification, and the supplier view which is provided by

the implementation.

public class Bag{

[SpecPublic] private int bagsum;

[SpecPublic] private int bagcount;

invariant 0 ≤ bagcount; //(object invariant)

Bag()

ensures bagcount == 0;

ensures bagsum == 0;

[Pure] public bool isEmpty ()

ensures result == (bagcount == 0);

public void add(int x)

requires 0 ≤ x;

modifies bagsum , bagcount;

ensures bagsum == old(bagsum) + x ;

ensures bagcount == old(bagcount) + 1;

}

Figure 5.2: A specification class in the Two-Class Approach: A bag is specified in
terms of two integer variables BagSum and BagCount, recording respectively, the
sum of the elements in the bag, and the number of elements in the bag.
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public class Bag{

[Rep] private int []! elems;

private int count;

invariant 0 ≤ count && count ≤ elems.Length;

public Bag(){

this.count = 0

this.elems = new int [100];

}

[Pure] public bool isEmpty (){

if (count == 0) return true;

else return false;

}

public void add(int x){

expose (this){

if (count == elems.Length ){

int []! b = new int[2* elems.Length +1];

Array.Copy(elems , 0, b, 0, elems.Length );

elems = b;

}

elems[this.count] = x;

count ++;

}

}

}

Figure 5.3: An implementation class in the Two-Class Approach: A Spec# imple-
mentation of a bag, written in terms of an integer array elems which stores the bag
contents and an integer count which records the number of elements in the bag.
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We represent the two-class approach in Spec# using inheritance. This ensures

that the implementation class is a subtype of the specification class and hence, its

objects may be used anywhere that objects which satisfy the specification class are

expected. This meets the expectation of data refinement, where a concrete class

may be substituted anywhere that its abstract specification is expected.

The superclass is a specification class containing the abstract data fields, object

invariant, and method specifications. All its class-level and method-level assertions

are written in terms of abstract data, and therefore are independent of the object’s

implementation details. The subclass is the implementation class containing the

concrete data, object invariant, and the method implementations. It inherits the

method specifications and in doing so allows the Spec# tools to check that the

implementation satisfies its specification. This verification is possible due to the

abstraction invariant which links the abstract and the concrete data.

As the abstraction invariant would reveal implementation details to the client

if it were visible in the specification, we record the abstraction invariant and any

abstraction functions required for its definition in the subclass. This is permitted

in an inheritance relation, since subclasses may add both fields and methods to a

class.

5.5 Behavioural Subtyping

We now review how behavioural subtyping is supported in Spec#, before continuing

our representation of data refinement. In Spec#, the class specification and the

run-time checks associated with it, are inherited by the inheriting class. Spec#

achieves behavioural subtyping by supporting the strengthening of object invariants

and method postconditions through inheritance. However, this does not allow any

changes in the method’s pre-conditions as clients expect the method’s specification

at compile time (its static resolution) to agree with the specification at run-time

(dynamic checking). Similarly, it does not allow any changes in the modifies clause,

as extending the frame would be unsound, and shrinking the frame can be achieved

with an added postcondition that states that a variable has not changed. Other

method verification issues that arise from inheritance include:
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Method Callbacks

A mechanism to prevent errors due to method callbacks in Spec# programs is

presented in section 4.2.6, where expose blocks are used to control when an object

is valid and when it is mutable. The invariant may be violated when the object is

mutable, and must be satisfied when the object is valid.

Superclasses Breaking Subclass Invariants

Even when superclasses are modularly verified their impact on future subclasses is

unknown. For example, object invariants may refer to fields that are defined in the

superclass. However, superclass methods have permission to modify these, and in

doing so may violate the invariant defined the subclass.

Spec# addresses this by restricting object invariants when they refer to su-

perclass fields. Only fields annotated with [Additive] in the superclass, may be

referred to in object invariants defined in their subclass[58]. There is a difficulty

with this, as when the superclass is being defined, the invariants of its subclasses

are unknown. Therefore, the supplier needs to predict the fields that should be

annotated with [Additive] .

Annotating a field as [Additive] means that subclasses are allowed to add

further constraints on the value of the field. Subclass methods that are allowed

to modify superclass fields must also be annotated with [Additive] . Figure 5.4

provides an example of using the [Additive] annotation where the SetSpeed method

modifies the superclass field speed.

Overriding Methods Can Break Contracts

The Spec# methodology ensures that overriding methods do not break contracts

by checking that postconditions and object invariants are strengthened, and that no

changes occur in pre-conditions or frame conditions when a method is inherited.

Furthermore, an [Additive] expose is required on all methods in the superclass

that are inherited. This is because the subclass must be exposed if this method is

called on a subclass object.
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public class Car{

[Additive] [SpecPublic] protected int speed;

invariant 0 ≤ speed;

public Car(){

speed = 0;

}

[Additive] public virtual void SetSpeed(int kmph)

requires 0 ≤ kmph;

ensures speed == kmph;

{

additive expose(this){

speed = kmph;

}

}

}

public class LuxuryCar : Car{
[SpecPublic] private int cruiseControlSettings;

invariant cruiseControlSettings == -1 | | speed == cruiseControlSettings;

public LuxuryCar (){

cruiseControlSettings = -1;

}

}

Figure 5.4: Car with Additive Expose blocks.

Overriding Methods and Modifies Clauses

Overriding methods should maintain the specification of the base method. If we were

to list the fields that an overriding method can modify, we would need fore-sight

regarding future fields that could be added to the class. If an overriding method

modifies some field other than those listed in the modifies clause of its superclass

methods, it will violate the original method specification.

5.6 Data Refinement: A Two-Class Approach

The support that Spec# provides for behavioural subtyping assists our two class

representation of data refinement. In a data refinement, the client will request an

object that satisfies the specification and will not be concerned with the imple-

mentation that they actually receive. Therefore, the implementing class must be a

subtype of the specification class as all of the methods that are available in a spec-

ification must also be available in the implementation. As no code will be supplied

in the specification class, there will be no need for expose blocks or additive expose

blocks. However, we will include these in the implementing subclass for verification
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purposes. The specification class contains data fields and method specifications, so

our representation of data refinement is assisted by: using [Additive] to allow data

fields to be referred to in invariants of subclasses; support for strengthening postcon-

ditions and invariants; and the maintenance of modifies clauses from specification

methods.

5.6.0 Representing Data Refinement using Inheritance

We present the specification as an abstract class, since no implementation details

are required. In Spec#, a class is described as abstract if it contains one or more

abstract methods. An abstract class is annotated with the keyword abstract and

its fields are usually declared as protected allowing them to be inherited by the

subclass. Methods are publicly available to clients of the class as indicated by the

keyword public. They are also annotated with abstract to indicate that only their

specification needs to be supplied. [Pure] methods which are included to assist in

writing the specification must also be publicly declared so that they can be referred

to in the specification.

We represent the implementation class as a subclass that inherits the protected

fields from the abstract class, provides additional concrete fields, and overrides the

methods from the superclass providing their implementations. For simplicity, we

assume that the fields declared in a class are distinct from other fields declared

in the class or any class that it is associated with. Object invariants and method

postconditions may be strengthened as outlined in section 5.5.

The Bag specification and implementation classes, represented as an abstract

class and its implementation, are presented in Fig. 5.5 and Fig. 5.6. Note that the

abstract class requires its data fields to be [SpecPublic] and [Additive] for reasons

outlined above. Note also that no verification can be applied to the abstract class, as

there is no implementation to check the specifications against. All assertion checking

will be done in the subclass, where the method implementations are provided.

The implementation class presented in Fig. 5.6 provides both the invariant on

the concrete data (0 <= count && count <= elems.Length) and the abstraction

invariant(bagcount == elems.Length && bagsum == absSum()). Note that they

are not easily distinguished in the class definition, as they are both introduced us-
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public abstract class Bag{

[SpecPublic] [Additive] private int bagsum;

[SpecPublic] [Additive] private int bagcount;

invariant 0 ≤ bagcount;

invariant 0 ≤ bagsum;

Bag()

ensures bagcount == 0;

ensures bagsum == 0;

[Pure] public bool isEmpty ()

ensures result == (bagcount == 0);

public void add(int x)

requires 0 ≤ x;

modifies bagsum , bagcount;

ensures bagsum == old(bagsum) + x ;

ensures bagcount == old(bagcount) + 1;

}

Figure 5.5: An abstract class used to represent a specification class in the Two-Class
Approach. Attributes are annotated as [Additive] since the abstraction invariant
in the implementing class in Fig. 5.6 refers to them.

ing the keyword invariant. In fact, we could have written them as a conjunction,

combining them into one object invariant. The abstraction invariant reveals imple-

mentation details and hence is more suitable for inclusion in the implementation,

rather than in the specification. Likewise, the abstraction method absSum() is

specified and implemented in the implementation class. It reveals implementation

details as it is used to define the abstraction invariant. Other methods inherit their

specification from the abstract class while their implementation is provided here.

It is worthwhile drawing the readers attention to the constructor. The construc-

tor has the responsibility of establishing the object invariant, which consists of the

invariant on the concrete data and the abstraction invariant as mentioned above.

It also has the responsibility of establishing the invariant on the abstract data, as

this invariant is inherited from the specification class. The code provided in the

constructor implementation only initialises the concrete data so the only invariant

that is established is the invariant on the concrete data. The verification tools do

not automatically know to use the link between the abstract and the concrete data,

to verify the invariant on the abstract data. Rather than taking this abstraction

invariant as an axiom, the tools try to verify the mapping as it is stated as a class

invariant. As a result, the Spec# verification tools cannot verify the classes pro-
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vided in our example. We solve this problem through the use of C# properties and

Spec# model fields in sections 5.6.1 and 5.6.2 respectively.

Client and Supplier Views

This two-class approach provides separate views of the data refinement for the client

and the supplier. As is desirable, there is no evidence of the specification in the

implementation class (see Fig. 5.6). Due to the inheritance relationship, tools that

enforce behavioural subtyping will try to verify that the implementation satisfies the

abstract specification. This is what we require in a data refinement. However, in

our representation, the only relationship specified between the abstract and concrete

classes is a boolean expression that is the object invariant of the implementing class.

Providing the abstraction invariant simply as an object invariant is not sufficient.

The Spec# verifier tries to prove that this abstraction invariant (and the invariants

on the abstract and concrete data) is established by the constructor and maintained

by all methods. These verifications are not possible without the use of model or

ghost fields which support the update of abstract fields in the specification when

the concrete fields on which they depend are modified.

Extra specifications, written in terms of the concrete data, could be added to the

implementation to provide a specification in terms of the concrete data. This would

assist the supplier, as the specification would be written in terms of the data that is

used in the implementation. It also assists the verification tools, since the proof that

the implementation meets its specification is easier if both are written in terms of

the same data. However, because we need to support behavioural subtyping, there

are limitations to the specifications that we can add. Spec# permits strengthening

object invariants and method postconditions in subclasses, but does not allow any

changes in a method’s pre-condition. Similarly, it does not allow any changes in

the modifies clause, as extending the frame would be unsound as it would allow

the method to establish its postcondition in more states than those permitted for

the same method in the parent class. Shrinking the frame is achieved with an

added postcondition that states that a variable has not changed. This means that

both abstract and concrete fields that a method implementation can modify can

be listed in the abstract specification. Likewise, the pre-conditions of methods
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public class BagConcrete : Bag{
[Rep] private int []! elems;

private int count;

invariant 0 ≤ count && count ≤ elems.Length;

// abstraction invariant

invariant bagcount == elems.Length && bagsum == absSum ();

public BagConcrete (){

this.count = 0

this.elems = new int [100];

}

[Pure] public bool isEmpty (){

if (count == 0) return true;

else return false;

}

public void add(int x){

expose (this) {

if (count == elems.Length) {

int[]! b = new int [2* elems.Length +1];

Array.Copy(elems , 0, b, 0, elems.Length );

elems = b;

}

elems[this.count] = x;

count ++;

}

}

[Pure] public int absSum ()

ensures result == sum{int i in (0 : elems.Length ); elems[i]};

{

int s = 0;

for(int j = 0; j < elems.Length; j ++)

invariant j ≤ elems.Length && s ==
sum{int i in (0 : j); elems[i]};

{

s = s+elems[j];

}

return s;

}

Figure 5.6: An implementation class in the Two-Class Approach where the Bag
Implementation class inherits from the abstract Bag specification from Fig. 5.5.
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in the abstract specification specifies the pre-conditions in terms of the concrete

data. As a result, the abstract specification exposes implementation details, mixes

the client and the supplier’s view of the data, and requires the supplier to know

the implementation that they were going use at the time that they are writing

the specification. It also creates a dependency between the specification and a

particular concrete implementation. This is not our intention, as a specification

should be independent of its implementation. It should also be possible to provide

many different implementations for one specification.

Relating Abstract and Concrete Data

We now discuss the relationship between the abstract and the concrete data in a

data refinement. The first challenge concerns how to state the abstraction invariant.

As inheritance allows object invariants to be strengthened and provides access to

both the abstract and the concrete data, we added the abstraction invariant to the

implementation class. Inheritance also permits new methods to be added, allowing

abstraction functions that are required for the abstraction invariant’s definition to

be added, without making them visible in the class specification. One disadvantage

off including the abstraction invariant here is that there is no distinction between

the concrete object invariant and the abstraction invariant, since both appear as

invariants of the subclass. In Spec#, this also generates problems for the verifier as

the abstraction invariant needs to refer to fields that are defined in the superclass.

Superclass methods have permission to modify these, and in doing so, may violate

the abstraction invariant. Hence Spec# insists that we annotate the superclass

fields with [Additive] so that the subclass is allowed to add further constraints on

the value of the field.

A second challenge is establishing the object invariants. The constructor has

the responsibility of establishing the object invariant when an object is created. In

a data refinement, we never need to initialise the abstract data fields as they are

not used in the class implementation. However, we do need to specify the initial

values that these abstract fields should have in order to establish the abstract object

invariant. This is achieved by specifying the constructor. The implementation class

also requires a constructor. This constructor must establish the concrete invariant
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by initialising the concrete data fields.

However, constructors that are declared within a superclass are not directly

inherited by subclasses (although they can be called from within the subclass con-

structor). Therefore, the implementation class does not inherit the constructor

specification from its superclass. Hence, the subclass constructor has no knowledge

of the initialisations that are necessary to establish the invariant on the abstract

data or the abstraction invariant.

We discuss the constructor implementation further in section 5.6.4. First, we

discuss the use of C# properties and Spec# model fields to specify the invariants

on the abstract and concrete data. These approaches also allow the elimination of

the abstract data from the implementation, since abstract data is overridden with

their concrete counterparts. An added advantage is that this override eliminates the

necessity to use the [Additive] annotation on superclass fields. These model fields

are overridden and hence no longer exist in their abstract form, in the subclass. The

abstraction invariant will therefore be expressed as a combination of C# properties

or Spec# model fields constraints that must be satisfied as the abstract data is

overridden.

5.6.1 Using C# Properties to Specify and Implement

Data Refinement

A C# property declares a private field and may declare methods which read, write,

or compute the values of that field. They can be used as though they are public

data members, but they are actually methods (called accessors). This enables data

to be accessed easily while still providing the safety and flexibility of methods.

The only method that we require for an abstract data field is a method that

reads its value. This method is declared as part of the property declaration using

the keyword get. Property get methods are pure by default and hence may be used

in specifications. Its specification, written as an ensures clause, corresponds to an

invariant on that abstract data field.

Overridden versions of the property provide its concrete implementation. The

value read in its overridden get method is the concrete representation of the abstract

field. As the method is overridden, its postconditions can be strengthened and, in
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doing so, the abstraction invariant that relates the abstract and concrete fields is

provided in conjunction with the specification for the abstract field.

An example follows, where the property Age declares an abstract field which has

the invariant property that 0 <= Age. This is expressed by the property definition

as follows:

public abstract int Age{

get;

ensures 0 ≤ result;

}

The sample implementation below, replaces the abstract field Age with the concrete

field count by overriding the property so that the concrete field is read rather than

the abstract field. The invariant relating the abstract and the concrete data is pro-

vided via the postconditions of the overriding property which yields the abstraction

invariant Age == count.

private int count;

public override int Age{

get

ensures result == count;

{

return count;

}

}

A larger example is shown in Fig. 5.7 and Fig. 5.8, where a Bag is specified as a pair

of integers and implemented in terms of an array. The invariant on the abstract

data is provided through the specifications of C# properties called BagSum and

BagCount.

public abstract int BagSum{

get

ensures 0 ≤ result;

}

public abstract int BagCount{

get

ensures 0 ≤ result;

}
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These properties express that both BagSum and BagCount are greater or equal to

zero. The concrete version of these properties strengthen their postconditions via

inheritance:

public override int BagSum{

get

ensures result == sum{int i in (0 : count); elems[i]};

{

//Add implementation here

}

}

public override int BagCount {

get

ensures result == count;

{

//Add implementation here

}

}

The result is:

• the postconditions result == sum{int i in (0: count); elems[i]} is conjoined

to the postconditions of the abstract BagSum; and

• the postconditions result == count is conjoined to the postconditions of the

abstract BagCount.

It is through method overriding that we get the combined postconditions which

allow us to deduce the following invariant on the concrete data:

(0 ≤ BagCount && BagCount == count) =⇒ 0 ≤ count &&

(0 ≤ BagSum && BagSum == sum{int i in (0 : count); elems[i]})

=⇒ 0 ≤ sum {int i in (0 : count); elems[i]}

Note that postconditions on the concrete fields are expressed as normal in the

implementation class, and it is they that supply the abstraction invariant:

BagCount == count && BagSum == sum{int i in (0 : count); elems[i]};

It is possible to write object invariants in an abstract class but it is not necessary

in our example, because all invariants are expressed through the postconditions of
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public abstract class BagAbstract{

public abstract int BagSum{

get;

ensures 0 ≤ result;

}

public abstract int BagCount{

get;

ensures 0 ≤ result;

}

[Pure] public abstract bool isEmpty {

get;

ensures result == (BagCount == 0);

}

public abstract void add(int x);

requires 0 ≤ x;

modifies this .*;

ensures BagSum == old(BagSum) + x;

ensures BagCount == old(BagCount) + 1;

}

Figure 5.7: Specification of a Bag written as an abstract class using properties to
specify the abstract and concrete data and their abstraction invariant.

public class BagConcrete : BagAbstract{

[Rep][ SpecPublic] private int []! elems;

[SpecPublic] private int count;

invariant 0 ≤ count && count ≤ elems.Length;

invariant forall{int i in (0 : count); 0 ≤ elems[i]}

invariant 0 ≤ sum{int i in (0 : count);elems[i]};

public override int BagCount {

get

ensures result == count;

{

return count;

}

}

public override int BagSum{

get

ensures result == sum{int i in (0 : count);elems[i]};

{

int s = 0;

for(int j = 0; j < count; j ++)

invariant j ≤ count;

invariant s == sum{int i in (0 : j);elems[i]};
invariant 0 ≤ s;

{

s = s+elems[j];

}

return s;

}

}

}

Figure 5.8: An implementation of the bag specification using properties BagCount
and BagSum from Fig. 5.7.
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the property get methods. However, expressing a relationship between properties,

such as

invariant BagSum ≤ BagCount;

is not currently supported in Spec#. (It causes a verification error, as the properties

BagSum and BagCount are not “peer valid” and hence the invariant cannot be ver-

ified). This is a limitation of using properties. Using normal data fields rather than

properties, overcomes this problem and allows invariants to express relationships

between abstract fields.

However, the advantage of using properties is that we can override the abstract

data, thus simplifying the specification, because an invariant that expresses proper-

ties of the abstract data is not necessary, and the abstraction invariant is inferred

from the postconditions of overridden property methods.

5.6.2 Using Spec# Model Fields to Specify and Implement

Data Refinement

Another option that allows us to support data refinement in Spec# is the use of

model fields. Model fields, as discussed in chapter 4, are specification-only fields

whose values are determined by mappings from an object’s concrete state.

Rather than defining the abstract fields as properties, we define them as model

fields which satisfy given assertions. This approach also offers the option of overrid-

ing the abstract data in the inheriting class. We illustrate by changing the example

in Fig. 5.7 to specify its data fields using model fields rather than properties. The

model fields representing BagCount and BagSum are specified as:

model int BagCount{

satisfies 0 ≤ BagCount;

}

model int BagSum{

satisfies 0 ≤ BagSum;

}

These model fields may be overridden in the subclass as follows:
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override model int BagCount{

satisfies BagCount == count;

}

override model int BagSum{

satisfies BagSum == sum{int i in (0 : count);elems[i]};

}

Note that the abstraction invariant is specified directly when we use model fields,

rather than being implied from the postconditions of property Get methods in

our previous representation. Another advantage of using model fields rather than

properties is that model field values are updated when the concrete fields on which

they depend are updated. As discussed in section 4.1.2, the methodology used in

the Spec# verifier has been recently extended to update these model fields when

the object invariant is known to be true.

Overriding model fields used in our example causes compilation errors in Spec#.

These errors occur as the array elems and the variable count are “not admissible”.

Model fields are specification fields and our overrides relate them directly to vari-

ables from their concrete subclass. This is generally not allowed and hence causes

(admissibility checking in) the Spec# compiler to report an error. When admissi-

bility checking is turned off (using the command line switch /cc-), overriding model

fields will not cause any errors.

Turning off admissibility checking is generally not desirable as it allows programs

to be compiled when undesirable field access is present. However, in this case, the

error reported concerns a field access that we want to allow so that we can express the

relationship between the (abstract) model fields and their concrete representation (in

the subclass). Overriding a model fields in the subclass so that its satisfies clause

relates the abstract fields and the concrete representation is how we express the

abstraction invariant. Even with admissibility checking turned on, the unpermitted

field access (according to the Spec# compiler) is in the concrete class, where, in a

data refinement, both abstract and concrete variables can be referred. Hence, this

is not an error that effects our representation of data refinement.

115



5.6.3 Specifying and Implementing Methods

Method specifications, in the form of its signature and contract, are provided in

the abstract class as illustrated in Fig. 5.7. In general, an abstract class is not

restricted to containing only abstract methods. However, we enforce this restriction,

as a specification that is data refined will have no implementation details available.

We also restrict the subclass public methods to contain methods with the same

signature as those in the superclass. All of these methods must be overridden in

the subclass to provide their concrete implementations. Our choice of using C#

properties or Spec# model fields to represent the abstract and the concrete data

does not affect the specification and implementation of methods.

We implement methods using the inheritance mechanism provided in Spec#,

with methods in the concrete class overriding their abstract equivalents. Through

inheritance, a subclass may add extra methods that are not in the superclass. This

does not cause any problems for representing data refinement using inheritance.

Suppliers may add extra methods to assist with the implementation. As the client

only sees the specification (superclass), they will never be aware of their existence.

Methods that do not change the object’s state are prefixed with the keyword

[Pure] , and may be invoked in assertions such as pre-conditions, postconditions

and invariants as they have no side effects. Methods of C# properties are pure

by default. The methods isEmpty and add in Fig. 5.7 are implemented as follows,

using the data refinement from Fig. 5.8:

[Pure] public override bool isEmpty{

get{

return count == 0;

}

}

public override void add(int x){

expose(this){

if (count == elems.Length ){

int[]! b = new int[2* elems.Length +1];

Array.Copy(elems , 0, b, 0, elems.Length );

elems = b;

}

elems[this.count] = x;

count ++;

}

}

116



The use of an expose block explicitly indicates when the object’s invariant

may be temporarily broken, so that method callback cannot occur as discussed in

chapter 4. It is also used to identify where methods may modify sub-objects. In

this case the array elems is a sub-object which is owned by the aggregate object of

type Bag (as identified by the [Rep] field in Fig. 5.7. This subclass object is only

mutable when its owner is mutable.

public class Super{

int state;

public void set(int v)

modifies state;

{

state = v;

}

}

public class Sub : Super{
int oldState;

public void set(int v){

oldState = state;

super.set(v);

}

}

Figure 5.9: Overriding and modifies clauses.

5.6.4 Specifying and Implementing Constructors

As discussed in section 5.6.0, an abstract class cannot be instantiated directly. It can

only be instantiated as a derived class. In a data refinement, we want to maintain

the client’s view that they create an instance of the specification when they create

an object. The underlying implementation should be hidden from them, although

the client will need to identify the implementation which they choose. We propose

the use of a factory method to construct the concrete object.

To illustrate this, we continue the Bag example of Fig. 5.7. We provide the

concrete class constructor BagConcrete() which initialises the fields of the concrete

object:

protected BagConcrete ()

ensures count == 0;

{

count = 0;

elems = new int [100];

}
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We also provide a factory method Make(), which returns a concrete object mas-

querading as an abstract object.

public static BagAbstract!Make()

ensures result.IsNew;

ensures result.BagCount == 0;

ensures result.BagSum == 0;

{

BagConcrete b = new BagConcrete ();

return b;

}

This is permitted as, due to subsumption, a subtype may be returned where a

supertype is expected. In a data refinement, both of these methods will be provided

in the implementation class. Every implementation class must provide a Make()

method whose return type cannot be a null reference (note the ! annotation).

This method will return an object which satisfies the abstract specification. As

far as a client is concerned, the object returned is an instance of the specification

class. The object that is actually returned is an instance of the implementation class.

Since the implementation class is a subtype of the specification class, this object

can be substituted wherever an instance of the specification class is expected. The

client chooses the concrete implementation that they want to use when they create

an object in main(). In the case of the Bag example above, the client would write

BagAbstract b = BagConcrete.Make ();

where BagAbstract is the name of the specification, and BagConcrete is the name

of the chosen implementation.

5.7 Evaluation of the Two-Class Approach to Data

Refinement in Spec#

Our two class approach to data refinement uses inheritance to link the abstract

specification to its implementations, with C# properties or Spec# model fields rep-

resenting the abstract data. We now summarise our findings with respect to the

suite of proposals that we presented in chapter 4.
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Proposal 1: Separate the client and the supplier view to ensure a modular ap-

proach to data refinement.

Evaluation: This separation is achieved via inheritance. Abstract classes provide

the client view while their subclasses provide the supplier view.

Analysis: Abstract classes must be restricted, so that they do not contain method

implementations (which traditionally they can). In addition, every method must

be provided with an implementation in the implementing class. The client will call

methods that are available in the specification, using the signature of the specifi-

cation class. The actual method that is executed will be the method of the same

name from the implementation class. When the method that the client calls has

a parameter of type this, the type of the actual object that will be passed to the

method will be a subtype of this. An error does not occur here, as the imple-

mentation object type is a subtype of the specification object type. Similarly, if a

client expects to have a specification type object returned from a method call, but

a subclass (implementation type) object is returned, no type error occurs.

When extra methods are provided in the implementation ( for example, to assist

the supplier) the client will not be aware of them, because they are not available

in the public specification. When the client calls the constructor, a special Make()

method in the implementation class returns a subclass object (which masquerades

as a superclass object). Suppliers must be aware of the inherited variables that are

specification-only variables, and hence which should not be available for use in the

implementation. In Spec#, these variables must be annotated with [Additive] , so

that the abstraction invariant in the implementing class can refer to them. Alter-

natively, specification-only fields are achieved by using model fields to declare the

abstract data. The value of these fields change when the concrete fields on which

they depend, change in the implementation.

Proposal 2: Provide a version of the specification in terms of the concrete data to

assist the supplier of the implementation and verification tools.

Evaluation: This is partially achieved by our representation, through the presence

of concrete data invariants in the supplier view. However, method specifications

remain written in terms of the abstract data.

Analysis: Method specifications are inherited in our representation of data refine-
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ment. This means that the suppliers view of the method is in terms of the abstract

data, even though the implementation is written in terms of the concrete data.

This is satisfactory for a data refinement, as the verification proceeds using the

relationship between the abstract and the concrete data defined in the abstraction

invariant.

Provision of specifications in terms of the concrete data would assist the supplier

when reasoning about their implementations. This can be partially supported, as

the supplier may add specifications that are written in terms of the concrete data.

However, due to our use of the inheritance hierarchy, there are restrictions on the

additions that are permitted (section 5.6.0). Spec# does not allow method pre-

conditions or frame conditions to be changed in subclasses. Therefore, changing

pre-conditions and frame conditions so that they refer to concrete fields is not per-

mitted in our two-class representation of data refinement. Adding postconditions

that refer to the concrete fields is permitted and simply adds an extra proof obliga-

tion to the verification.

Proposal 3: Provide separate declarations of properties of abstract fields (as object

invariants) and their mapping to concrete fields (abstraction invariants).

Evaluation: The object invariant, which specifies properties of the abstract fields,

is specified in the specification class, and the abstraction invariant is specified in

the implementing class.

Analysis: Using properties or model fields to represent the abstract data, allows

the separation of invariants that specify the properties of the abstract fields in the

specification, and the specification of the abstraction invariant.

When using properties, the invariant on the abstract data is provided as a post-

condition of the property get method. The abstraction invariant can be inferred from

a combination of the property name (the abstract field name) and the postcondi-

tion of the concrete property get method in the specification class. The invariant on

the concrete data is inferred automatically. When using model fields, the abstract

invariant is provided through the satisfies clause of the model field declarations in

the specification class. The abstraction invariant is explicitly stated in the satisfies

clause of the overridden model fields, and the invariant on the concrete data is in-

ferred automatically.
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Proposal 4: Provide support for an abstraction invariant which maps the ab-

stract data type that is used in the specification to the concrete data type that is used

in the implementation.

Evaluation: This is achieved through the postconditions of property get methods

or through the satisfies clauses of model fields.

Analysis: See Analysis of Proposal 3 above.

Proposal 5: Provide an object invariant which specifies properties of the abstract

fields (the abstract invariant).

Evaluation: This is achieved in the specification class, through the postconditions

of the property get methods or through the satisfies clause of the model field dec-

larations.

Analysis: See Analysis of Proposal 3 above.

Proposal 6: Provide an object invariant which specifies properties of the concrete

fields (the concrete invariant).

Evaluation: When properties are used to represent the abstract data, the concrete

invariant is provided through a combination of the postconditions of the abstract

fields and the concrete property get methods. When model fields are used to rep-

resent the abstract data, the concrete invariant is provided through a combination

of the satisfies clauses of the model fields in the specification and the implemen-

tation.

Analysis: In both cases, extra invariants on the concrete data can be explicitly

stated (as a conjunct of the satisfies clause, or as a conjunct of the postcondition

of the property get method) for the overridden field. This is permitted, as it could

be necessary to state properties of the concrete data. The client will not be aware

of the extra constraints, and a stronger object invariant will not damage the spec-

ification in any way. Note that neither property get methods or model fields can

modify the data types that they declare. This is because property get methods are

pure by default, and model fields may not be used in assignments.
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Proposal 7: Provide verification support so that proving the concrete invariant

holds implies that the abstract invariant also holds.

Evaluation: This is achieved with both properties and model fields.

Analysis: In both cases, the concrete invariant is inferred from the abstract in-

variant and the abstraction invariant. Due to this dependency and the overriding

of get methods or model fields, the abstract invariant holds whenever the concrete

invariant holds. The concrete invariant must hold whenever the corresponding ob-

ject is valid. If extra constraints are specified on the concrete data, they will not

interfere with the inherited constraints that are specified on the abstract data.

Proposal 8: Distinguish between valid and mutable objects, as in the Boogie

methodology, and use this information to determine when it is safe to violate the

object invariants.

Evaluation: This is achieved, as we are using the Boogie methodology to verify

that the implementation provided in the subclass satisfies the specification in the

superclass.

Analysis: See Analysis of Proposal 7 above.

Proposal 9: In the specification of aggregate objects provide aliasing control so

that every sub-object has a unique owning object, and

(a) that sub-object can only be modified through its owner

(b) the abstraction invariant and the invariant on the abstract data may refer to

fields of sub-objects as long as they are “owned” by the aggregate object.

Evaluation: Aliasing control is achieved through use of the [Rep] annotation in

Spec#. Sub-objects that are identified with [Rep] are owned by the aggregate ob-

ject. Sub-objects can only be modified if its owner is in a mutable state.

Analysis: Spec# allows the modification of non-local variables that are listed in the

modifies clause. In addition, the Boogie methodology implicitly allows each method

to have a net effect on the state of committed objects. To modify an object, the

method body must first obtain a reference to the object and must then follow the

methodology rules to make that object mutable. In other words, the object must

be a [Rep] object that is exposed. The satisfies clause can refer to the model field

to which it belongs, other fields of the class in which the model field is declared,
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or fields of any sub-objects which are owned by the class which declares the model

field. Therefore, the abstraction invariant, and the invariant on the abstract data,

may refer to fields of sub-objects as long as they are owned by the aggregate object.

Proposal 10: In the client’s view frame conditions should name the abstract fields

that a method may modify.

Evaluation: This is achieved in all of our representations.

Proposal 11: Concrete fields should not be named in the client’s view of the frame

condition as this will reveal details about the implementation.

Evaluation: Due to the Spec# implementation of behavioural subtyping, an over-

riding method cannot extend its frame conditions. Hence, concrete fields must be

named in the client’s view of the specification. This can be avoided if the specifica-

tion is given ownership of the concrete fields when an implementation is provided.

If an object owns another object, it can modify its owned object, when that owned

object is in a committed state. This is achieved by using the [Rep] annotation.

Using model fields to represent the abstract data, and overriding them to give

them the properties of the concrete also avoids this problem. In this case, the ab-

stract and concrete fields have the same name so their names will be available in

both the client and supplier views. However, only the abstract properties of the

data will be available in the client’s view. The concrete properties will remain in

the supplier’s view.

Analysis: One advantage of the use of [Rep] fields is that it requires only a mod-

est set of abstraction features for use in modifies clauses. A disadvantage is that

sometimes the over-approximation is too coarse.

Proposal 12: Naming the abstract fields in a frame condition should grant per-

mission for the modification of concrete fields on which they depend (via the ab-

straction).

Evaluation: Naming the abstract fields in a frame condition does grant permission

for the modification of concrete fields on which they depend when model fields are

used to represent the abstract data and are overridden in the implementation class.

Analysis: See Analysis of Proposal 11 above.
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Proposal 13: Support inheritance between abstract specifications, ensuring that

the rules of behavioural subtyping are adhered to.

Evaluation: Inheritance between abstract classes can be used to generate a new

specification.

Analysis: New methods and new object invariants may be added to specifica-

tions in an inheriting class. Existing method specifications, including properties

and model fields, may be overridden to strengthen postconditions.

Proposal 14: Support the overriding of abstractions to strengthen them in in-

heriting classes (this only applies to implementations).

Evaluation: Abstractions that are expressed through properties and model fields

may be overridden.

Analysis: postconditions of abstractions, expressed through properties and model

fields, may be strengthened via overriding. The postconditions of overriding ab-

stractions are conjoined to the postconditions of the overridden abstractions.

5.8 Conclusion

In this chapter, we explored the options for representing modular data refinement

in the Spec# programming system. We used existing Spec# features in our rep-

resentation, and completely decoupled the specification from its implementation.

Our aim was to separate the client and supplier views of a program so that the

client sees a specification that is written in terms of the abstract data. Any class

that satisfies this specification can provide the implementation. The client should

not be concerned with any implementation details. Their only concern is that the

implementation provided should satisfy the specification.

Our conclusion is to represent data refinement in Spec# using a two-class ap-

proach to represent the specification and its implementation. The specification,

written in terms of the abstract data is provided by an abstract class. The imple-

mentation, written in terms of the concrete data is provided by a class that inherits

the specification and provides the code that satisfies this specification. Model fields

are used to model the abstract data and its invariant properties. These model fields
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can be overridden to define the abstraction invariant, and the invariant on the con-

crete fields that is used to implement the specification. We make use of the Boogie

methodology, which is built into the Spec# programming system, to control aliasing

and mutability.

Our representation meets all of the proposals in our proposal suite from sec-

tion 4.3, albeit with some limitations. The provision of a specification that is writ-

ten in terms of the concrete data (proposal 2) is not fully met, although enough

concrete specification is provided so that our data refinement can be verified by the

Spec# tools. Proposals 9, 11 and 12 rely on the use of Spec# annotations to assist

the underlying verifier. If these annotations are not used correctly, the Spec# tools

will not verify the data refinement as access to necessary data will not be granted.

Some drawbacks of using inheritance to relate the specification and the imple-

mentation classes are identified in section 5.1. These restrictions, together with the

suite of proposals though which we evaluate our representation will be used in chap-

ter 7 to analyse when two classes in an inheritance relationship meet the criteria for

representing a data refinement. First, we build on our experience of representing

data refinement in Spec# to design a framework for a modular approach to data

refinement. In particular, this framework presents a language that could be imple-

mented as an extension of existing specification languages so that they do not rely

on inheritance as the mechanism for linking an implementation to its specification.
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Chapter 6

A Framework for Modular Data

Refinement

In this chapter we present an object-oriented programming framework to sup-

port a modular approach to data refinement. We focus on representing a single-

step refinement process, where there are two views of a program: the view of the

supplier who writes the implementation; and the view of the client who uses the

program. The client need only be aware of the abstract specification, instantiating

the specification to generate an object. The concrete object that is created satisfies

the abstract specification, while its implementation details remain hidden from the

client. The supplier has access to the abstract specification, and is responsible for

providing a concrete implementation and the abstraction invariant which relates the

concrete and the abstract data. When the client instantiates the specification, the

object that is created is one that is implemented in terms of the concrete data.

We design DRSL, a data refinement specification language which supports mod-

ules to express the abstract specification, the concrete specification (which we refer

to as the implementation), and the abstraction invariant. It also supports relat-

ing these modules via a refines relationship. The language is designed to meet

the proposals discussed in chapter 4 where possible. We evaluate our language

with respect to these proposals in section 4.3 and provide some examples of data

refinements expressed in our framework in section 6.3.
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6.1 A Data Refinement Specification Language

DRSL is a Java-like language with added support for data refinement. It is similar

to JML and Spec# in that it contains a mixture of specification constructs and

programming constructs. Object-oriented characteristics such as object references,

classes, subclasses, methods with dynamic dispatch and covariant arrays are sup-

ported, while features like inheritance, interfaces, static members, access modifiers

and generics are excluded.

A program is defined as a collection of classes as follows:

Prog : : = Class*

Class : : = Specification | Abstraction | Implementation

When a client instantiates a specification, an object type that satisfies the spec-

ification is created. The actual implementation that is used remains hidden from

the client. Therefore, the client only needs to see the specification class whereas the

supplier is concerned with all three types of class involved in the data refinement.

Specification classes are linked to their implementation and the abstraction invari-

ant through a refinement relation. We write the data refinement: A vAI C using the

syntax

impl C refines A via AI

where

• A, a specification class, specifies an object type in terms of abstract data

types; its fields are abstract and it specifies method behaviour in terms of the

abstract data.

• C, an implementation class, implements an object type in terms of concrete

data types; its fields are concrete and its methods consists of executable code

which is written in terms of the concrete data.

• AI, an abstraction class, provides the abstraction invariants that define the

relationship between the abstract data in an object’s specification and the

concrete data in an object’s implementation.

A specification is refined when any of its abstract data fields are replaced by

a concrete data field. All references to that abstract data type must be refined
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to refer to the concrete data type in the implementation, while maintaining the

original specification contracts. The refines relationship links the specifications

and implementations using the abstraction invariant and associated methods as

described by the abstraction class.

6.1.0 Types

Throughout the text, the words term and expression are used synonymously. We

write T t when a term t is declared to have the type T . The types permitted in

our language are booleans, integers, arrays and object types where the object types

are either generated from a specification identifier ( Id) or from the built-in Object

type.

Type : : = bool | int | Type[] | ObjectType

ObjectType : : = Id | Object

Values of object types are called objects. They consist of a special value called null ,

and of references to a suite of class members (fields, invariants and methods). We

write Id o when an object o has the object type specified by the specification Id .

Implementations provide the executable code that give these objects the behaviour

which satisfies their specifications.

Object types and array types respect polymorphic subtyping. Therefore, if T

is a subtype of S , then an expression of type T can be assigned to a designator of

type S (but not vice-versa unless T and S are the same type). Every reference has

a type which returns the actual type (the type or a subtype) stored in the reference,

represented as an object. All objects are a subtype of Object . Arrays are references

to sequences of values. Our arrays are covariant in their element type, support the

usual indexing, and have a built in read only field called Length .

6.1.1 Specifications

Each specification specifies the behaviour of an object type. We identify specifica-

tion classes using the spec keyword and define them as follows:

128



Specification : : = spec Id {SMember *}

SMember : : = Field | Inv | SMethod

Field : : = Type Id;

Inv : : = invariant BExpr

SMethod : : = pure ReturnType Id (TypeId *) , Contract

| public ReturnType Id (TypeId *) , Contract

| Id(TypeId *) Contract

A specification has an identity and a set of member declarations in the form of

fields, invariants and methods. We refer to these as model members, as they are

written in terms of abstract data and therefore are independent of the object’s im-

plementation details. A client can create an object o which maintains the specified

behaviour of a specification Id by writing Id o . A specification for a bag specified

in terms of a pair of integers is presented in Figure 6.1.

spec BagAbstract{

int bagsum;

int bagcount;

invariant 0 ≤ bagcount && 0 ≤ bagsum;

BagAbstract () , bagsum , bagcount : [true; bagcount == 0 && bagsum == 0)]

pure bool isEmpty () , result : [true; result == (bagcount == 0)]

void add(int x) ,
bagsum , bagcount : [0 ≤ x;

bagsum == old(bagsum) + x && bagcount ==
old(bagcount) + 1]

}

Figure 6.1: DRSL specification of a bag of integers.

Model Fields and Model Invariants

Model fields define the abstract state space of the specified object type. They

are specification-only fields that can be declared of any type, and which are used

to specify the methods and properties of the object. Model invariants are boolean

expressions which state properties of the object in terms of its abstract data. Hence,

if an integer field c should be positive for all objects that satisfy its specification,

then we write invariant 0 <= c .

All fields and invariants in a specification are public. This allows the client to see

the abstract data, its properties, and model method specifications which describe
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the permitted behaviour of the abstract data. A sample specification is provided in

Fig. 6.1.

Model Methods

A method is a parameterised operation that can be invoked on an object to modify

or observe its state. Model methods provide the specifications of these methods and

hence are publicly available to the client of a specification. We support specifications

on pure methods, methods that have side effects and constructors:

SMethod : : = pure ReturnType Id (TypeId *) Contract

| ReturnType Id (TypeId *) Contract | Id (TypeId *) Contract

ReturnType : : = Type | void

TypeId : : = Type Id

Contract : : = Modfield* : [BExpr; BExpr ]

Every specification must provide at least one constructor which has the same

name as its specification. It has the form Id (TypeId∗) Contract and its role is

to specify the value of the fields so that the specification’s invariant is established.

A constructor’s contract therefore consists of a frame condition which names the

model fields, the pre-condition which cannot refer to the parameter this (as this

does not exist before the constructor call), and a postcondition that implies the

specification invariant.

Methods that do not change the object’s state are referred to as pure. They

are prefixed with the keyword pure and may be invoked in assertions such as pre-

conditions, postconditions, and invariants as they have no side effects. Methods

that may change the state of an object are not permitted for use in assertions.

Return Types

Methods which do not return a value have the return type void. The postcondition

of methods which return a value may refer to the result variable (a variable which

refers to the return type of a method). The type of the value stored in result must

be a subtype of the method’s return type.
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Contracts

The contract Modfield∗ : [BExpr; BExpr] provides the methods specification.

The frame condition ModField∗ provides the list of model fields that a method can

modify (akin to assignable clauses in JML or modifies clauses in Spec#). The

contract’s frame [BExpr; BExpr] provides the method’s pre-condition followed by

the method’s postcondition (akin to requires and ensures clauses in JML and

Spec#). The specific fields that a method is allowed to modify is described using

the following notation:

ModField : : = ODesignator ModSuffix

ODesignator : : = this | Designator

Designator : : = Id | Expr.Id | Expr [Expr]

ModSuffix : : = .Id | .* | [*]

These include any fields within the scope of this and cannot include the ex-

pression E.Length (for any expression E ). A frame condition designator may have

different forms:

• O.x permits the method to modify field x of object O,

• O.∗ allows the modification of any field in the object O,

• O[∗] allows the modification of array O at any array index.

Assertions such as pre-conditions, postconditions and invariants are expressed

as boolean expressions. Logical and arithmetic operations (&&, || , ! , =⇒ <=,

>=, ==, etc) with standard precedences are permitted in our expressions. So too

are atoms as listed below:

Atom : : = Literal | Designator | (Type)Expr | Call | old(Expr) |

Quantification | this | result

Literal : : = false | true | null | 0 | 1 | 2 | 3 | 4 . . .

Designator : : = Id | Expr.Id | Expr [Expr]

Call : : = Expr.Id(Expr*)

In addition to the explicitly declared parameters, every method has an implicit

parameter referred to by the keyword this . This parameter is within the scope of

the specification and provides a reference to the object which can call a method.

postconditions can also mention variables (annotated with old) which evaluate to

the value of the variable in the pre-condition of the method.
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Method calls in assertions are restricted to pure method calls as these have no

side effects and are therefore allowed in expressions. Calls to constructors, calls to

methods which have side effects, and the allocation of new types are not permitted

in assertions. Universal and existential quantifiers may be used to quantify over a

range of integer values. Bindings of the form int i in (0 : N) are equivalent to

the range 0 <= i < N. Comprehensions, which apply an operator over a range of

integer values, could be added to DRSL. We include the sum comprehension for

illustration purposes and show its usage in Fig. 6.4.

Quantification : : = Quantor{Binding;Expr}

Quantor : : = forall | exists | sum

Binding : : = int Id in (Expr : Expr)

Fig. 6.2 illustrates the use of quantification in assertions. The invariant states

that all values in the array are greater than or equal to zero. The constructor is

responsible for establishing this invariant by ensuring that all values in the array

are set to zero, while the method add() has the responsibility of maintaining the

invariant, ensuring that at least one value in the array is greater than zero.

spec CounterArray{

int[] c;

invariant forall {int i in (0 : c.Length ); 0 ≤ c[i]}

Counter () , c : [true; forall{int i in (0 : c.Length ); c[i] == 0}]

void add() , c : [0 ≤ c.Length; exists {int i in (0 : c.Length ); 0 < c[i]}]

}

Figure 6.2: DRSL specification illustrating quantifier syntax.

6.1.2 Implementations

A specification class specifies an object type in terms of its abstract data, while an

implementation class implements an object type in terms of the concrete data. An

implementation class has an identity, identifies the specification that it refines, and

provides the abstraction class which defines the data refinement. It also contains

fields, invariants and methods that provide the concrete implementation of the ob-

ject. The syntax for implementation classes is as follows:
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Implementation : : = impl OID refines SId via AbstrId {IMember *}

OId : : = Id

SId : : = Id

AbstrId : : = Id

IMember : : = Field | IMethod | Inv

Field : : = Type Id

Inv : : = invariant BExpr

IMethod : : = | Id (TypeId *) Block | Prefix ReturnType Id (TypeId *) Block

| Prefix ReturnType Id (TypeId *) Block

An example of an implementation class is provided in Fig. 6.3.

impl BagConcrete refines BagAbstract via BagAI{

int [] elems;

int count;

invariant 0 ≤ count && count ≤ elems.Length;

BagConcrete (){

this.count = 0;

elems = new int [100];

}

pure bool isEmpty (){

if (count == 0) return true;

else return false;

}

void add(int x){

if (count == elems.Length ){

int [] b = new int [2* elems.Length +1];

Array.Copy(elems , 0, b, 0, elems.Length );

elems = b;

}

elems[this.count] = x;

count ++;

}

}

Figure 6.3: DRSL implementation of the specification from Fig. 6.1

Implementation Fields and Invariants

Implementation fields define the concrete state space of an object and are used in

the implementation of each of the methods. Each object has its own copy of the

variables which are instantiated to give the object its state. Implementation fields

are private to the class, as they provide the concrete data used in the implemen-

tation. Invariants in the implementation class specify properties of the concrete

fields. These invariants are also private as they, like the data that they describe,

should not be revealed outside the implementation. For simplicity, we assume that
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the fields declared in a class are distinct from other fields declared in the class or

any class that it is associated with.

Implementation Methods

The methods in an implementation class have the same type signature as the meth-

ods in the specification class that it refines. Methods are public as they must be

available to the client of the specification. Every method has one implementation,

consisting of a block of statements as defined below.

Stmt : : = Block | Type Id; | Designator = Expr; | ifStmt |

Call | WhileStmt | ForStmt | return Expr;

Block : : = {Stmt*}

IfStmt : : = if (Expr) Stmt else Stmt

WhileStmt : : = while (Expr) invariant Block

ForStmt : : = for(Stmt; Expr; Stmt) invariant Block

The statement T x declares a variable named x with type T which is local

to the method’s implementation. The name of variables must be distinct in the

method’s scope. The assignment statement x = E assigns the value of expression

E to the designator x . The type of E must be the same type as (or a subtype of)

the type of x . If x has the form o.f where o is an object and f is its field, then the

field f of object o is assigned the value of E . If x has the form A[f ] then element

f of array A is updated to the value of E .

Expressions are as in the specification module with the following additions:

Expr : : = Call | Allocation

Call : : = Id(Expr*) | Expr.Id(Expr*)

Allocation : : = new ObjectType(I, Expr*) | new Type[Expr]

We allow for two types of call statement: calls to constructors and calls to

methods that have a void return type. These have the form m( ~E) or O.m( ~E)

where O is an object that is not null , m is a method, and ~E is a possibly empty

vector of expressions whose types must be subtypes of the formal parameters of

the method m. Calls to methods whose return type is not void may be used in

expressions.

The allocation of new object types and new arrays is supported. We write

S o = new I( ~E)
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to allocate an object which has the object type specified in specification S and im-

plemented by implementation I, where ~E is a possibly empty vector of expressions

whose types must be subtypes of the formal parameters of the implementation’s

constructor. The expression new T [x] allocates an array containing x values of

type T, where x is an integer defining the length of the allocated array. The array

type is T [ ] .

In the statement, if (E) then S else T, the expression E must be a boolean

expression. If E evaluates to true, then statement S is executed. If E evaluates to

false, then statement T is executed. Similarly, the guard of a while statement is a

boolean expression. The statements that make up the body of the loop are executed

if the guard evaluates to true. The value of the guard is checked again, and the

loop body is repeated until the guard evaluates to false. The loop invariant is a

boolean expression that states a property that is true on every iteration of the loop.

It cannot contain any non-pure call or allocation expressions. The for statement is

similar to the while statement and follows the standard syntax of for loops in Java.

6.1.3 Abstractions

An abstraction class contains the abstraction invariants that relate the abstract

and the concrete data in the data refinement. No fields are present as the class

can never be instantiated. The class may contain methods which help in defining

the abstraction invariant. We do not need to provide an implementation for these

methods as they are helper methods that will never be executed. Instead, we supply

their specification contract which is required while discharging data refinement proof

obligations. All members of the abstraction class are private, as the client should

not be permitted access to these implementation details. The class is identified by

the keyword abstr and defined as:

Abstraction : : = abstr Id {AMember *}

AMember : : = Inv | AMethod

Inv : : = invariant BExpr

AMethod : : = ReturnType Id(TypeId *) Contract

Fig. 6.3 presented an implementation of the BagAbstract specification in terms

of an array. The same methods are supplied as those in its specification, but are

implemented in terms of the concrete array. The abstraction invariant, relating the
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concrete data from the implementation to the abstract data of the specification is

provided in Fig. 6.4.

abstr BagAI{

invariant bagcount == elems.Length && bagsum == absSum ();

int absSum () , result : [true; result == sum {int i in (0 : elems.Length ); elems[i]}]

}

Figure 6.4: An abstraction class in DRSL.

6.2 Evaluating our Data Refinement Framework

In this section we evaluate our proposed framework for modular data refinement with

respect to our proposals for the two-class approach to data refinement as presented

in section 4.3.

Proposal 1: (section 4.2.3) Separate the client and the supplier view to ensure

a modular approach to data refinement.

Our framework achieves the separation of client and supplier views by design.

All data and specification relating to the client view is contained within the speci-

fication class where it is publicly available for the client to read. All concrete data

and implementations are privately contained within two classes: the implementation

class and the abstraction class. This achieves a deeper separation of the supplier

view, so that methods and invariants involved in the abstraction relation are sepa-

rated from the implementation of the specification. Public specifications from the

specification class complete the view for the supplier.

Proposal 2: (section 4.2.4) Provide a version of the specification in terms of

the concrete data to assist the supplier of the implementation and verification tools.

Our framework provides some support for specification in terms of the concrete

data, as invariants on the concrete data in the implementation class, and specifi-

cations on methods in the abstraction classes are permitted. It does not currently

provide specifications in terms of the concrete data for methods that are specified

in the specification class. This support could be added by allowing contracts on

methods in the implementation class. The automatic generation of these contracts

should be possible through a combination of information in the specification class,

invariants in the implementation class and invariants in the abstract class.
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Proposal 3: (section 4.2.5) Provide separate declarations of properties of ab-

stract fields and their mapping to concrete fields.

Our framework achieves this by requiring properties of abstract fields to be ex-

pressed as invariants in the specification class and their mapping to concrete fields

to be expressed as invariants in the abstraction class.

Proposal 4: (section 4.2.5) Provide support for an abstraction invariant which

maps the abstract data type that is used in the specification to the concrete data type

that is used in the implementation.

Our framework provides this support in the form of the abstraction class.

Proposal 5: (section 4.2.6) Provide an object invariant which specifies proper-

ties of the abstract fields (the abstract invariant).

Our framework achieves this by requiring properties of abstract fields to be expressed

as invariants in the specification class.

Proposal 6: (section 4.2.6) Provide an object invariant which specifies prop-

erties of the concrete fields (the concrete invariant).

Our framework achieves this by requiring properties of concrete fields to be ex-

pressed as invariants in the implementation class.

Proposal 7: (section 4.2.6) Provide verification support so that proving the

concrete invariant holds implies that the abstract invariant also holds.

Combining the knowledge that the concrete invariant holds, with the information

in the abstraction module will allow the abstract invariant to be verified.

Proposal 8: (section 4.2.6) Distinguish between valid and mutable objects, as

in the Boogie methodology, and use this information to determine when it is safe to

violate the object invariant.

Our framework does not enforce this at the same granularity as the Boogie method-

ology. Invariants must be established by the constructor, hold before a method

call and be re-established when the method terminates. Therefore, an object must

be in a valid state at the start and end of every method call, nested or otherwise.

Finer granularity of support for this proposal depends on the verification tools in

which our framework is implemented. Our framework is compatible with languages

like Spec# where a distinction between valid and mutable objects is supported via

expose() statements.
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Proposal 9: (section 4.2.7) In the specification of aggregate objects provide aliasing

control so that every sub-object has a unique owning object, and

(a) that sub-object can only be modified through its owner

(b) the abstraction invariant and the invariant on the abstract data may refer to

fields of sub-objects as long as they are “owned” by the aggregate object.

This should be the case but enforcement depends on the underlying language in

which our framework is implemented. For example, in Java1 to get exclusive owner-

ship of an object, a class could either construct an object (or make a deep clone of

an existing object) and never expose that instance to the outside world. However,

if our framework is implemented as an extension of the Spec# language, there is

explicit support for ownership through the use of [Rep ] annotations section 4.2.7.

Proposal 10: (section 4.2.8) In the client’s view frame conditions should name

the abstract fields that a method may modify.

Our framework achieves this by supporting frame conditions in method contracts

in the abstract class.

Proposal 11: (section 4.2.8) Concrete fields should not be named in the client’s

view of the frame condition as this will reveal details about the implementation.

Our framework achieves this by only allowing frame conditions in method contracts

to refer to fields in the scope of the specification class.

Proposal 12: (section 4.2.8) Naming the abstract fields in a frame condition

should grant permission for the modification of concrete fields on which they depend

(via the abstraction).

The abstraction class provides information about the dependencies between the

abstract and the concrete fields so a rule could be easily implemented to ensure

that this is the case.

Proposal 13: (section 4.2.9) Support inheritance between abstract specifica-

tions, ensuring that the rules of behavioural subtyping are adhered to.

This is currently not supported by our framework but could be permitted if the

inherited specification adheres to the permitted structure for a specification class.

Proposal 14: (section 4.2.9) Support the overriding of abstractions to strengthen

them in inheriting classes (this only applies to implementations as abstractions will

not be present in specifications).

1There are also techniques in Java to ensure ownership using generics.
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Our framework supports this by allowing a specification to have many implemen-

tations. Strengthening the abstraction invariant requires the expression of a new

refines relationship between the specification class, the new implementation class

and new abstraction class.

Summary: Our framework concentrates on what a programming language

should provide in order to express a data refinement. This framework could be

used to extend existing languages such as Spec# or JML so that their support for

data refinement is improved. Building this framework into such languages would

allow our framework to benefit from the underlying verification technologies that

are already in place for these languages.

6.3 Data Refinement Examples in DRSL

Two further examples of data refinements expressed in DRSL are presented in this

section. The first example, provided in Fig. 6.5, Fig. 6.6 and Fig. 6.7, illustrates

the specification and implementation of a bank-account. The abstraction invariant

is simply a one-to-one mapping between the abstract and the concrete data.

spec AccountAbstract{

int bal;

invariant 0 ≤ bal;

AccountAbstract(int amt) , bal : [0 ≤ amt; bal == amt]

AccountAbstract(AccountAbstract acc) ,
bal : [0 ≤ acc.getBalance (); bal == acc.bal]

void transfer(int amt , AccountAbstract acc) ,
bal , acc.bal : [0 < amt && amt ≤ acc.getBalance ();

bal == old(bal) + amt && acc.bal ==
old(acc.bal - amt)]

void withdraw(int amt) , bal : [0 < amt && amt ≤ bal; bal ==
old(bal) - amt]

void deposit(int amt) , bal : [0 < amt; bal == old(bal) + amt]

pure int getBalance (), [true; result == bal]

}

Figure 6.5: DRSL specification of a bank account.

We note that constructor and method signatures take in formal parameters which

have the specification type. The actual parameter types used in the implementation

are the implementation types. This substitution is permitted as the object type
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created by instantiating the concrete specification is a behavioural subtype of the

abstract specification.

The second example, provided in Fig. 6.8, Fig. 6.9 and Fig. 6.10, illustrates the

specification and implementation of a clock as discussed in section 4.2. Here, the

abstraction invariant maps the three concrete data fields to a single abstract field.

6.4 Conclusion

In this chapter we presented DRSL, a framework for modular data refinement. This

framework could be used to extend existing languages such as Spec# or JML so

that their support for data refinement is improved and their underlying verification

technology can be used to verify that a program conforms to our framework. In the

next chapter we build a tool to demonstrate the viability and effectiveness of our

proposed framework.

impl AccountConcrete refines AccountAbstract via AccountAI{

int balance;

invariant 0 ≤ balance;

AccountConcrete(int amt) { this.balance = amt; }

AccountConcrete(AccountConcrete acc){

this.balance = acc.getBalance (); }

}

void transfer(int amt , AccountConcrete acc){

acc.withdraw(amt);

deposit(amt);

}

void withdraw(int amt){ balance -= amt; }

void deposit(int amt) { balance += amt; }

pure int getBalance () { return balance; }

}

Figure 6.6: DRSL implementation of the specification in Fig. 6.5.

abstr AccountAI{

invariant bal = balance;

}

Figure 6.7: An abstraction class for Fig. 6.6.
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spec ClockAbstract{

long time ;

invariant time == getSecond () + getMinute () * 60 + getHour () * 60 * 60;

invariant 0 ≤ time && time < 24 * 60 * 60;

ClockAbstract () , time : [true; true]

void tick() , time : [true; time == old(time + 1) % (24 * 60 * 60)]

pure int getHour () , : [true; 0 ≤ result && result ≤ 23];

pure int getMinute () , : [true; 0 ≤ result && result ≤ 59];

pure int getSecond () , : [true; 0 ≤ result && result ≤ 59];

void setTime(int hr, int min) ,
time : [0 ≤ hr && hr ≤ 23 && 0 ≤ min && min ≤ 59;

time == hr * 60 * 60 + min * 60]

}

Figure 6.8: DRSL specification of a clock.

impl ClockConcrete refines ClockAbstract via ClockAI{

int hour , second , minute;

invariant 0 ≤ hour && hour ≤ 23;

invariant 0 ≤ minute && minute ≤ 59;

invariant 0 ≤ second && second ≤ 59;

Clock (){

hour = 12; minute = 0; second = 0;

}

void tick() {

second = second + 1;;

if (second == 60){ second = 0; minute = minute + 1;}

if (minute == 60){ minute = 0; hour = hour + 1;}

if (hour == 24){ hour = 0;}

}

pure int getHour (){ return hour;}

pure int getMinute (){ return minute ;}

pure int getSecond (){ return second ;}

void setTime(int hr, int min){

this.hour = hr; this.minute = min; this.second = 0;

}

}

Figure 6.9: DRSL implementation of the specification in Fig. 6.8

abstr ClockAI{

invariant time = second + (minute* 60) + (hour * 60 * 60);

}

Figure 6.10: An abstraction class for Fig. 6.9.
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Chapter 7

JIRRA: A JIR Refinement

Analyser

As part of this dissertation, a proof-of-concept tool was developed to demonstrate

the viability and effectiveness of our proposed framework. This tool takes the form

of an application that checks whether or not a program conforms to our framework

for the modular data refinement of object-oriented programs.

7.1 Tool Overview

Our JIR Refinement Analyser (JIRRA) is built using OpenJIR as a JML/Java

parser in conjunction with the ObjectWeb bytecode manipulation and analysis

framework. OpenJIR [53] is an experimental version of OpenJML [22] supporting

the embedding of JML specifications into class files in the form of a JML Intermedi-

ate Representation (JIR) [81]. The OpenJIR library allows parsing JML programs

and embedding their JML in into the Java bytecode. It also provides visitors to

assist in later analysis of the JML specifications. The ObjectWeb1 library provides

visitors to permit analysis of the regular Java bytecode. The advantage of using

these libraries is that they are both used in JMLEclipse, an Eclipse-based integrated

development and verification environment for Java and JML which is under active

development [19].

1http://asm.objectweb.org
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7.1.0 Using JIRRA

The tool is run from the command line with the following options:

java -jar jirra <parameters> abstractClass concreteClass

where parameters are:

–classpath <paths> A semicolon separated list of folders where .class files are

located

–sourcepath <paths> A semicolon separated list of folders where .java files are

located

abstractClass The name of the abstract class. Must be in a package.

concreteClass The name of the concrete class. Must be in a package.

For an example of how to run JIRRA on the classes BagAbstract.java and Bag-

Concrete.java see Figure 7.1.

C : \>jirra --classpath ./ account/bin --sourcepath ./ account/src

account.BagAbstract account.BagConcrete

Abstract class : account.BagAbstract Concrete class : account.BagConcrete

Working directory : ./ jirembedded

Figure 7.1: Running JIRRA at the command-line.

7.1.1 Tool Requirements

The tool requires OpenJDK6 or later and has been tested under Windows XP,

Windows 7 and Ubuntu 10.04.

7.1.2 Tool Input

The input to JIRRA is a program in the form of two Java classes with JML specifi-

cations. One class represents the client’s view of a data refinement, while the other

represents the supplier’s view of a data refinement. Sample input for the bag data

refinement from chapter 6 is presented in Fig. 7.2 and Fig. 7.3.
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public abstract class BagAbstract{

// -----------------Abstract Data ----------------------

@SpecPublic protected int bagsum;

@SpecPublic protected int bagcount;

// -----------------Abstract Invariant -----------------

//@ public invariant 0 ≤ bagcount && 0 ≤ bagsum;

// --------Machinery to provide access to concrete ------

/*@ assignable bagsum;

@ assignable bagcount;

@*/

protected abstract void init ();

// ------------------Abstract Methods --------------------

//@ ensures \result == (bagcount ==0);

@Pure public abstract boolean isEmpty ();

/*@ requires 0 ≤ x;

@ assignable bagsum ,bagcount;

@ ensures bagsum == \old(bagsum) + x;

@ ensures bagcount == \old(bagcount) + 1;

@*/

public abstract void add(int x);

}

Figure 7.2: JIRRA Input: Client view of a data refinement.

7.1.3 Tool Output

JIRRA determines whether or not a program conforms to our framework for the

modular data refinement of object-oriented programs by using a series of checks to

analyse its input. The output is in the form of a list of questions and the tool’s

response. Sample output, resulting from the analysis of the classes in Fig. 7.2 and

Fig. 7.3, is displayed in Fig. 7.4.

7.1.4 Refinement Checks

As the tool takes in programs written in JML, rather than programs written in

DRSL, we formulate the JML programs so that they exhibit features of programs

written in our framework. Modifications to the input are in keeping with our two-

class approach to data refinement (section 5.6). The client view is represented by an

abstract class which contains the abstract data, the invariant describing the abstract

data and the method specifications. The supplier view is represented by a single

class, which inherits the abstract data, invariants and the method specifications
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public class BagConcrete extends BagAbstract{

// ------------------Concrete Data and Invariants ------------

private int count;

private int[] elems;

//@ private invariant 0 ≤ count && count ≤ elems.length;

//@ private invariant coupling ();

// -----------Machinery to make Data Refinement work ----------

// @ensures coupling ();

private BagConcrete () {

init ();

}

public static BagAbstract getInstance (){

return new BagConcrete ();

}

// @ensures coupling ();

@Helper protected void init (){

this.count = 0;

this.elems = new int [5];

for(int i = 0; i < count; i++){

this.elems[i] = i;

}

}

// ----------------- Concrete Methods --------------------------

@Pure public boolean isEmpty (){

if (count == 0) return true;

else return false;

}

// @ensures coupling ();

public void add(int x){

if (count == elems.length ){

int [] b = new int[2* elems.length +1];

System.arraycopy(elems ,0,b,0,elems.length );

elems = b;

}

elems[this.count] = x;

count ++;

}

// -----------------------Coupling Invariant ---------------------

@Pure protected boolean coupling (){

bagsum = sum();

bagcount = count;

return true;

}

// @ensures \result == (\sum int i; 0 ≤ i && i < count; elems[i]);

private int sum(){

bagsum = 0;

for(int i = 0; i < count; i++){

bagsum += elems[i];

}

return bagsum;

}

}

Figure 7.3: JIRRA Input: Supplier view of a data refinement.
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Calling OpenJirEmbedder : Made directory ./ jirembedded/account

JIR embedding done on account.BagAbstract at./ jirembedded/account/BagAbstract.class

JIR embedding done on account.BagConcret at./ jirembedded/account/BagConcrete.class

Analysing Java bytecode on ./ jirembedded/account/BagAbstract

Analysing embedded JML on ./ jirembedded/account/BagAbstract

Analysing Java bytecode on ./ jirembedded/account/BagConcrete

Analysing embedded JML on ./ jirembedded/account/BagConcrete

Stored results for : account/BagConcrete and account/BagAbstract

------------------ Abstract Class Checks : --------------------------
is the super class object? yes

is the class abstract? yes

does the class contain at least one field? yes

does the class contain at least one factory initialiser method? yes

are all fields spec public and protected? yes

are all normal methods public and abstract? yes

have all normal methods a specification? yes

is only the default constructor present? yes

are all factory initialiser methods protected? yes

are all factory initialiser methods abstract? yes

do all factory initialiser methods return void? yes

do assignable clauses for each factory initialiser

method list all the abstract class fields? yes

are all invariants public? yes

are all invariant fields spec public? yes

are all requires fields owned or method parameters? yes

are all ensures fields owned or method parameters? yes

are all assignable fields owned? yes

------------------- Concrete Class Checks : --------------------------
does the class inherit from the abstract? yes

is the class concrete? yes

does the class contain at least one field? yes

does the class contain at least one factory initialiser? yes

does the class contain at least one factory method? yes

are all fields private or protected? yes

are no fields spec public? yes

are all constructors private or protected? yes

do all constructors call the factory initialiser? yes

do all factories call the constructor? yes

are all factory initialisers protected? yes

all factory initialiser methods return void? yes

all factory initialiser methods are helper methods? yes

each factory initialiser ’s first postcondition is ’ensures coupling ()’? yes

all factory initialisers implemented in terms of concrete variables only?yes

are all factory methods public and static? yes

do all factory methods return an instance of the abstract super -class? yes

is there exactly one coupling () method present? yes

is the coupling method protected and pure? yes

does the coupling method return true? yes

is coupling () implemented in terms of both abstract and concrete variables?yes

shadowing of abstract fields absent? yes

are all normal non -inherited methods non -public ? yes

are normal methods implemented in terms of concrete variables only? yes

first post of all non -pure normal methods is ’ensures coupling ()’? yes

are all invariants private? yes

is coupling () present as an invariant? yes

are all invariant fields local to the class (not inherited )? yes

All tests passed .

Figure 7.4: Sample JIRRA output.
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from the abstract class. The concrete data, the invariant describing the concrete

data, method implementations and the abstraction invariant are added to this class.

The abstraction invariant is established by a method named coupling(), allowing

us to distinguish it from the invariant on the concrete data. A preferred approach

would use JML model variables with represents clauses (section 4.2.5) to define

the abstraction invariant. However, these are not currently supported in OpenJIR.

When the client requests an object satisfying the specification, the implementa-

tion class creates an object that satisfies the specification. This effect is achieved

in the two-class approach using factory methods (section 5.6.4). When a client

requests an object satisfying the specification, a factory method from the imple-

mentation class is called. This factory method calls the concrete constructor, which

calls an initialiser method, which initialises the created object. For example, when

the client requests an object that satisfies the BagAbstract specification, a fac-

tory method of its concrete class is called. The result is that an object of type

BagAbstract is created and returned.

BagAbstract bag = BagConcrete.getInstance ();

In order to perform checks to determine if programs conform to our framework

for modular data refinement, we assume the following conventions:

• factory methods are named getInstance(),

• initialiser methods are named init(), and

• abstraction invariants are defined in methods named coupling().

The checks performed on the input are listed below. The phrase “normal meth-

ods” refers to all methods apart from constructors, factory methods, initialiser meth-

ods and coupling methods.

Abstract Class Checks

A0 the super class is Object :

checks that nothing is inherited from other specification or implementation

classes.

A1 the class is abstract :
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ensures that the class is a specification class.

A2 the class contains at least one field:

ensures there is data in the class which can be represented in the concrete class.

A3 the class contains at least one initialiser method:

used to pass parameters to the concrete constructor and to specify the initial

state of the object on creation.

A4 all fields are annotated with @SpecPublic :

ensures that the client can view the invariant and method specifications.

A5 all fields are protected :

ensures that fields can only be accessed through an inheriting class.

A6 all normal methods are public :

allows the client to call the methods when an object has been created.

A7 all non-constructor methods are abstract :

as they provide a specification view of the program.

A8 all normal methods have a specification:

to provide the method’s behaviour.

A9 no constructors are present other than the default constructor:

ensures that all objects are constructed via the initialiser method.

A10 all initialiser methods are protected :

ensures that initialiser methods can only be called by objects of an inheriting

class.

A11 all initialiser methods are abstract :

ensures that objects can only be created in an inheriting class.

A12 all initialiser methods have a return type of void :

ensures that no value is returned (initialisers simply initialise the object’s state).

A13 the frame conditions of each initialiser method lists all of the abstract fields:

ensures that all fields corresponding to the abstract representation of the object

can be initialised.

A14 all invariants are public :

ensures specification visibility to the client.

A15 all fields used in the invariants are @SpecPublic :

allows properties of the abstract fields to be publicly specified.

A16 all fields used in the method pre-conditions are declared in the class or provided
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as method parameters:

ensures visibility to the client and does not reveal implementation details.

A17 all fields used in the method postconditions are declared in the class or provided

as method parameters.

ensures visibility to the client and does not reveal implementation details.

A18 all fields in the method frame conditions are declared within the abstract class:

ensures visibility to the client and does not reveal implementation details.

Java specific comments: Abstract classes in Java provide a default constructor

that is not abstract so the check A7 is limited to non-constructor methods. Check

A9 ensures that no constructors, other than the default, are present. Check A15

is true if checks #A0 and #A4 are true.

Concrete Class Checks

C0 the super class is the abstract class:

ensures that the concrete class inherits the specification.

C1 the class is not abstract:

ensures that the concrete class implements all methods in the specification.

C2 the class contains at least one field:

ensures there is data in the class which can be mapped to its abstract represen-

tation.

C3 the class contains at least one initialiser method:

needed to initialise the object on creation.

C4 the class contains at least one factory method:

needed to call the constructor and return the created object.

C5 the class contains at least one user-supplied constructor:

needed to create an object and call the initialiser method to initialise it.

C6 no fields are public :

ensures that no implementation details are revealed.

C7 no fields are annotated with @SpecPublic :

ensures that no implementation details are revealed in the specification.

C8 no constructors are public :
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ensures that constructors cannot be called outside the class.

C9 all constructors call an initialiser method, only call an initialiser method and

call it with the same parameter list (in the same order) as the initialiser method:

ensures that objects cannot be created without calling the initialiser method,

establishing the specification inherited from the abstract class.

C10 all factory methods call a constructor, only call a constructor and call it with

the same parameter list (in the same order) as the factory method:

ensures that objects cannot be created without calling the concrete constructor.

C11 all initialiser methods are protected :

ensures that initialiser methods cannot be called outside the class. They are

inherited from the abstract class where they are required to be protected(A10).

C12 all initialiser methods have a return type of void :

ensures that no value is returned (initialisers simply initialise the object’s state).

C13 all initialiser methods are annotated with @Helper :

avoids an invariant check at the pre-condition of initialiser methods, as the con-

structor will not have returned, and hence the invariant will not be established when

the initialiser method is called. All initialiser methods are called by constructors,

so avoiding this check on initialiser methods does not cause verification errors.

C14 all initialiser method specifications are strengthened to include the postcondi-

tion ensures coupling():

adds a check that the invariant is established by the initialiser methods.

C15 no initialiser methods are abstract:

ensures that all initialiser methods are implemented.

C16 all initialiser methods are implemented in terms of concrete fields only:

ensures that no abstract fields are used in the implementation.

C17 all factory methods are public :

ensures that they can be called by clients of the class.

C18 all factory methods are static :

ensures that an object can be created.

C19 all factory methods return an instance of the superclass:

ensures that objects that satisfy the specification are generated.

C20 exactly one coupling() method is present:

ensures that the abstraction invariant is defined in one unique place.
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C21 the coupling() method is protected:

ensures that no implementation details are revealed outside the class.

C22 the coupling() method is annotated with @Pure :

ensures that we can call the coupling() method in specifications even though

we know it has the (desirable) side effect of setting the abstract fields to values

determined by the changes to their concrete representations.

C23 the coupling() method returns true :

allows us to express when the coupling invariant should be true.

C24 the coupling() method is implemented in terms of both the abstract and the

concrete fields:

ensures that the coupling invariant refers to all of the abstract fields and at least

one of the concrete fields (checking that all mappings between abstract and concrete

fields are provided by the invariant is not checked automatically).

C25 all normal methods are not abstract :

ensures that a full implementation is provided by the class.

C26 all normal methods which are newly added to the class are not public :

allows the addition of methods to assist with the implementation. As these are

not public, they cannot be called from outside the class.

C27 permitted changes to method parameters are in keeping with subtyping rules:

ensures no typing errors when a concrete implementation is substituted for an

abstract specification.

C28 methods are implemented in terms of concrete fields only:

ensures that no abstract fields are used in the implementation.

C29 the first ensures clause of all non-pure normal methods is ensures coupling():

ensures that the coupling invariant is established by every non-pure normal

method before its postcondition (written in terms of the abstract data) is checked.

C30 all invariants are private :

ensures that no implementation details are revealed outside the class.

C31 invariant coupling() is present:

checks that the abstraction invariant is established by the constructor and main-

tained by the public methods.

C32 all fields used in the invariant on the concrete data are declared within the

implementation class:
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ensures that the private invariant does not state any properties of the abstract

fields.

Java specific comments: We check that no shadowing of abstract fields occurs in

the concrete class. Check C5 is given for free as we check that all constructors call

the initialisation method. If the user does not supply a constructor, the presence of

the default constructor will cause check C9 to fail. Check C15 is true if C0 and C1

are true, check C25 is true if C1 is true and check C27 is automatically checked

by Java.

7.2 Conclusion

We have developed JIRRA, a proof-of-concept tool to demonstrate the viability and

effectiveness of the framework for modular data refinement as proposed in chapter

6. This tool takes the form of an application that checks whether or not a program

conforms to our framework for the modular data refinement of object-oriented pro-

grams. A series of checks are performed on the program to determine whether or

not the program conforms to our framework. Further examples of programs that

have been tested in JIRRA are available in Appendix B.
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Chapter 8

Conclusions

The major advantage of data refinement is that specifications can be written and

reasoned about in a way that is independent of their implementations. Object-

oriented verification tools provide some support for data abstraction, but fall-short

of supporting the verification of data refinements. We summarise our achievements

in providing support for data refinement in object-oriented verification tools and

suggest some future work in this area.

8.1 Summary and Conclusions

Object-oriented program verification tools provide a behavioural interface specifica-

tion language in which to express their specifications. These languages are typically

a superset of the programming language, offering a richer set of expressions, which

are used to provide the specification. The implementation is provided in terms of

the programming language constructs. Verification tools are used to translate these

specifications and their implementations into proof obligations that are discharged

by a theorem prover if the implementation satisfies its specification. If the theorem

prover cannot discharge the proof obligations, no guarantee that the implementation

satisfies its specification is offered.

Data refinement is the process of transforming a specification written in terms

of the abstract data type into a specification that is written in terms of the concrete

data type. We say that the implementation refines the specification. The theory
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of data refinement guarantees that this replacement does not adversely affect the

behaviour of the programs that use these specifications. The key idea is to use an

abstraction relation to describe the connection between the abstract and the con-

crete data types. In verifying a data refinement, we prove that the implementation,

which is written in terms of one data type, satisfies the specification that is written

in terms of another data type.

Techniques for data abstraction provide clear separation between the abstract

properties of a program’s specification, and the concrete properties of its imple-

mentation, while maintaining the relationship between the two data types that are

used in the refinement. However, many specification languages allow the specifi-

cation to be written in terms of fields, methods and types that are intended to

be private to the implementation. This forces a coupling between the specification

and the implementation, exposing implementation details in the specification, and

requiring the complete rewriting of a specification when minor modifications to an

implementation are made.

In this dissertation, we proposed a framework for object-oriented programming

languages that supports modular data refinement and the separation of client and

supplier views of these data refinements. This separation also ensures that imple-

mentation details are not exposed via a specification and that alternative implemen-

tations can be provided for a specification without concerning the software client.

Our proposed framework can be used to extend existing behavioural interface speci-

fication languages, such as Spec# or JML, so that their support for data refinement

is improved and their underlying verification technology can be used to verify that a

program conforms to our framework. To prove the feasibility of these proposed ex-

tensions, a prototypical tool was developed to analyse JML programs to determine

if they conform to our framework.

8.1.0 Achieving Our Goals

To achieve our goals, we examined existing specification languages and their sup-

port for data abstraction. The support offered for data abstraction in the JML

and Spec# languages was thoroughly analysed. Our conclusion was to represent

data refinement using a two-class approach to represent the specification and its
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implementation. The specification, written in terms of the abstract data is pro-

vided by an abstract class. The implementation, written in terms of the concrete

data, is provided by a class that inherits this specification and provides the code

that satisfies it. Many restrictions on the inheritance relationship were imposed in

order to achieve a true representation of a data refinement. For example, no im-

plementation details are permitted in the abstract class, and extra public methods

cannot be added to the inheriting concrete class. These are normal restrictions in

data refinement, but are permitted in the inheritance hierarchy. We analysed this

approach to data refinement in the Spec# language and showed that our approach

could also be used in JML.

The first goal of our research was to provide and evaluate a framework for mod-

ular data refinement in behavioural interface specification languages for object-

oriented programs. This framework is presented and evaluated in chapter 6. As

our framework concentrates on what a programming language should provide in

order to express a data refinement, it is designed to meet the proposals listed in

chapter 4. Enforcement of proposals concerning the verification technology used

(Proposals 8 and 9) depend on the underlying language in which our framework

is implemented. For example, if our framework is implemented as an extension

of the Spec# language, there is explicit support for ownership through the use of

[Rep ] annotations section 4.2.7. Inheritance between specifications is not directly

supported as our framework concentrates on a one-step data refinement where one

specification is refined by one implementation. We do not consider this a drawback,

as providing alternative specifications and implementations is possible within our

framework. This is achieved by defining alternative specification-implementation

pairs which are related by an appropriate abstraction invariant.

The second goal of our research was to provide improved support for data refine-

ment in existing verification tools for object-oriented programs, making use of ex-

isting language structure and verification techniques where possible. Our proposed

framework could be integrated into existing languages such as Spec# or JML, so

that their support for data refinement is improved and their underlying verification

technology used to verify that a program conforms to a data refinement. To prove

the feasibility of these proposed extensions, a prototypical tool was developed. This

tool accepts JML programs and checks whether they conform to the rules governing
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a data refinement, as defined by our framework. We implement our proposed exten-

sions using a restricted form of inheritance to represent a data refinement. We show

that, even without a critical abstraction component1, a data refinement can still be

expressed and verified satisfactorily in JML. At present, writing data refinements in

JML in the format accepted by our tool is cumbersome (a checklist is provided in

section 7.1.4). Therefore, the next phase of this research is to provide the language

extensions for our framework in JML. We have already demonstrated that a similar

representation of data refinement can be expressed in Spec# (chapter 5). Therefore

we believe that these results are also applicable here.

8.2 Future Work

The refinement analysis tool which we developed is presented in chapter 7. This tool

checks if a JML program conforms to our framework for modular data refinement.

This is achieved by analysing the Java bytecode along with an embedded JML

intermediate representation of the program. The OpenJIR library allows us to

parse JML programs and embed their JML in their Java bytecode. It also provides

visitors to assist in later analysis of the JML specifications. The ObjectWeb library

also provides visitors to permit analysis of the regular Java bytecode.

The next phase in this work is to move from an analytical tool to a synthetic

one. Both the OpenJIR and ObjectWeb libraries allow for program manipulation

in addition to analysis. By providing the developer with carefully designed Java

annotations, we can allow them to easily embed information about their program

into their compiled bytecode. A second stage compiler (our data refinement com-

piler) can detect these annotations and, using the aforementioned bytecode libraries,

transform the code automatically to generate a verifiable data refinement. The code

generated by this tool will be JIR embedded code. This JIR approach is used by

the current version of the JMLEclipse project so back-end tools should be readily

available for manipulation of this generated code. Our proposed annotation-based

approach also fits naturally with JML 4.5, where an annotation-based approach to

JML has already been adopted. We can achieve a similar result on the .NET plat-

1model fields are currently not supported in JMLEclipse
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form once the bytecode translator2 for .NET programs is released. This translator

takes Microsoft Intermediate Language (MSIL) programs from a .NET compiler and

produces a Boogie program which existing verification tools can be used to verify.

It is envisaged that bytecode manipulation capabilities, similar to those already

available in Java will be supported.

In summary, we have shown in this dissertation that support for data refinement

is both desirable and feasible in behavioural interface specification languages. Our

future work will focus on integrating such support into both JML and Spec#.

2Due for release at http://boogie.codeplex.com
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Appendix A

Refinement Examples

A.1



S : [T, S = (+j : 0 <= j < 100 : A[j])]
“Introduce Local variable′′ and “Strengthen postcondition′′

S, i : [T, S = (+j : 0 <= j < i : A[j]) ∧ i = 100]
“Sequential Composition′′

1)S, i : [T, S = (+j : 0 <= j < i : A[j])]
2)S, i : [S = (+j : 0 <= j < i : A[j]), S = (+j : 0 <= j < i : A[j]) ∧ i = 100)]

1)S, i : [T, S = (+j : 0 <= j < i : A[j])]
“Following assignment′′

S, i : [T, S = (+j : 0 <= j < i : A[j])]
i := 0
S, i : [T, S = 0]
“Contract Frame′′

S : [T, S = 0]
“Introduce assignment′′

S := 0

2)S, i : [S = (+j : 0 <= j < i : A[j]), S = (+j : 0 <= j < i : A[j]) ∧ i = 100)
“Introduce Iteration′′

While i 6= 100
DO

4)S, i : [i 6= 100 ∧ S = (+j : 0 <= j < i : A[j]),
S = (+j : 0 <= j < i : A[j]) ∧ 0 <= (100− i) < (100− i)]

OD

4)S, i : [i 6= 100 ∧ S = (+j : 0 <= j < i : A[j]),
S = (+j : 0 <= j < i : A[j]) ∧ 0 <= (100− i) < (100− i)

“Following assignment′′

i := i + 1
“Contract Frame and simplify′′

S : [i 6= 100 ∧ S = (+j : 0 <= j < i : A[j]), S = (+j : 0 <= j < i + 1 : A[j])]
= S : [i 6= 100 ∧ S = (+j : 0 <= j < i : A[j]), S = (+j : 0 <= j < i : A[j] + A[i])
“Introduce assignment′′

S := S + A[i]

Finished Solution
S := 0, i := 0;
while i 6= 100
DO

S := S + A[i]; i := i + 1;
OD

Figure A.1: The refinement of a specification to an implementation using refinement
calculus. A.2



Fact : [T, Fact = N !]
“introduce Local Var” and “Strengthen pre − condition′′

Fact, i : [t, Fact = i!I = N ]
“Sequential Composition′′

1)Fact, i : [t, Fact = i!]
2)Fact, i : [t, Fact = i!, Fact = i! ∧ i = N ]

1)Fact, i : [t, Fact = i!]
“Following assignment′′

Fact, i : [t, Fact = 0!]
i := 0
“Contract frame′′

Fact : [t, Fact = 1]
“Introduce Assignment′′

Fact := 1

2)Fact, i : [t, Fact = i!, Fact = i! ∧ i = N ]
“Introduce Iteration′′

while i 6= N
DO

3)Fact, i : [i 6= N ∧ Fact = i!, 0 = (N − i) ∧ (N − i0)]
OD
3)Fact, i : [i 6= N ∧ Fact = i!, 0 = (N − i) ∧ (N − i0)]

“Following assignment′′

Fact, i : [i 6= N ∧ Fact = i!, Fact = (i + 1)!0 = N − (i + 1) ∧ (N − i0)]
i := i + 1
“Contact frame and simplify′′

Fact, i : [i 6= NFact = i!, Fact = (i + 1) ∗ i!]
“Introduce Assignment′′

Fact := Fact ∗ (i + 1)

Finished Solution
Fact := 1
i := 0
whilei 6= 100
DO

Fact := fact ∗ (i + 1)
i := i + 1

OD

Figure A.2: The refinement of a specification to an implementation using refinement
calculus.
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Appendix B

JIRRA Inputs: Data Refinement

Examples

B.1



public abstract class AccountAbstract {

// -----------------Abstract Data and Invariants ---------------------

@SpecPublic protected int bal;

//@ public invariant bal >= 0 ;

// -------------Machinery to provide access to concrete --------------

/*@ requires amt >= 0;

@ assignable bal;

@ ensures bal == amt; @*/

protected abstract void init(int amt); d

/*@ requires acc.bal >= 0;

@ assignable bal;

@ ensures bal == acc.bal; @*/

protected abstract void init(AccountAbstract acc);

// -----------------Abstract Methods ------------------------------------

/*@ requires amt > 0 && amt ≤ acc.getBalance ();

@ assignable bal , acc.bal;

@ ensures bal == \old(bal) + amt && acc.bal == \old(acc.bal - amt);

@*/

public abstract void transfer(int amt , AccountAbstract acc);

/*@ requires amt > 0 && amt ≤ bal;

@ assignable bal;

@ ensures bal == \old(bal) - amt; @*/

public abstract void withdraw(int amt);

/*@ requires amt > 0;

@ assignable bal;

@ ensures bal == amt + \old(bal); @*/

public abstract void deposit(int amt);

// @ensures \result == bal;

@Pure public abstract int getBalance ();

}

Figure B.1: JIRRA Input: Client view of the account data refinement.

B.2



public class AccountConcrete extends AccountAbstract{

// -------------Concrete Data and Invariants ---------------------

private int balance; // concrete data

//@ private invariant balance >= 0; // concrete invariant

//@ private invariant coupling (); // abstraction function

// ----------Machinery to make Data Refinement work --------------

// @ensures coupling ();

private AccountConcrete(int amt){

init(amt);

}

public static AccountAbstract getInstance(int amt){

return new AccountConcrete(amt);

}

// @ensures coupling ();

private AccountConcrete(AccountAbstract acc){

init(acc);

}

public static AccountAbstract getInstance(AccountAbstract acc){

return new AccountConcrete(acc);

}

// @ensures coupling ();

@Helper protected void init(int amt){

this.balance=amt;

}

// @ensures coupling ();

@Helper protected void init(AccountAbstract acc){

this.balance=acc.getBalance ();

}

// ----------------- Concrete Methods ----------------------------

// @ensures coupling ();

public void transfer(int amt , AccountAbstract acc) {

acc.withdraw(amt);

deposit(amt);

}

// @ensures coupling ();

public void withdraw(int amt) {

balance -= amt;

}

// @ensures coupling ();

public void deposit(int amt) {

balance += amt;

}

// @ensures coupling ();

public /*@ pure @*/ int getBalance () {

return balance;

}

// -----------------------Coupling Invariant -------------------

// @ensures true;

@Pure protected boolean coupling (){

bal=balance;

return true;

}

}

Figure B.2: JIRRA Input: Supplier view of the account data refinement.

B.3



public abstract class ClockAbstract{

// -----------------Abstract Data and Invariants ------------------

@SpecPublic protected long time;

//@ public invariant time ==
getSecond () + getMinute () * 60 + getHour () * 60 * 60;

//@ public invariant 0 ≤ time && time < 24 * 60 * 60;

// -----------------Abstract Methods -------------------------------

//@ assignable time;

//@ ensures time == (\old(time + 1)) % (24 * 60 * 60);

public abstract void tick ();

//@ ensures 0 ≤ \result && \result ≤ 23;

@Pure public abstract int getHour ();

//@ ensures 0 ≤ \result && \result ≤ 59;

@Pure public abstract int getMinute ();

//@ ensures 0 ≤ \result && \result ≤ 59;

@Pure public abstract int getSecond ();

/*@ requires 0 ≤ hr && hr ≤ 23 && 0 ≤ min && min ≤ 59;

@ assignable time;

@ ensures (time == hr * 60 * 60 + min * 60);

@*/

public abstract void setTime(int hr, int min);

// --------Machinery to provide access to concrete ----------

//@ assignable time;

protected abstract void init ();

}

Figure B.3: JIRRA Input: Client view of the clock data refinement.
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public class ClockConcrete extends ClockAbstract{

// ------------------Concrete Data and Invariants ------------------

private int hour;

private int minute;

private int second;

//@ private invariant 0 ≤ hour && hour ≤ 23;

//@ private invariant 0 ≤ minute && minute ≤ 59;

//@ private invariant 0 ≤ second && second ≤ 59;

//@ private invariant coupling ();

// -----------Machinery to make Data Refinement work --------------

// @ensures coupling ();

private ClockConcrete (){

init ();

}

public static ClockAbstract getInstance () {

return new ClockConcrete ();

}

// @ensures coupling ();

@Helper protected void init (){

hour = 12;

minute = 0;

second = 0;

}

// ----------------- Concrete Methods ---------------------------

@Pure public int getHour (){ return hour; }

@Pure public int getMinute (){ return minute; }

@Pure public int getSecond (){ return second ;}

// @ensures coupling ();

public void setTime(int hr, int min){

this.hour = hr; this.minute = min; this.second = 0;

}

// @ensures coupling ();

public void tick (){

second = second + 1;;

if (second == 60) second = 0; minute = minute + 1;

if (minute == 60) minute = 0; hour = hour + 1;

if (hour == 24) hour = 0;

}

// -----------------------Coupling Invariant ------------------

//@ ensures \result==true;

@Pure protected boolean coupling (){

time = second + (minute * 60) + (hour * 60 * 60);

return true;

}

}

Figure B.4: JIRRA Input: Supplier view of the clock data refinement.
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