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Abstract

Even with the advent of cutting-edge computing facilities on desktop computers,

electromagnetic scattering simulations of moderately sized problems still faces ma-

jor challenges. This is primarily due to the finer resolution requirement for lower

wavelengths in the scatterer. Domain Decomposition (DD) methods are an apparent

candidate to alleviate this difficulty. In this dissertation, the primary focus will be

on the use of DD methods for the solution of Electric Field Integral Equations for

dielectric objects.

Novel variants of two classes of DD methods are investigated in this thesis; namely,

the Buffered Block Forward Backward Methods (BBFB) and the Characteristic Ba-

sis Function Methods (CBFM). BBFB methods solve the discretised equations for

finding the unknown field in a semi-iterative block-wise manner and march towards

a complete solution. The BBFB method and its variants investigated in this work

are confirmed not to be suitable for dielectric objects with higher permittivity and

complex shapes. Some of the difficulties faced by the BBFB methods are due to the

propagation of spurious edge effects appearing near the artificial boundaries that the

BBFB method creates to decompose the object.

The original CBFM is a Macro-domain Basis Function (MBF) based method

which is free from some of the shortcomings of the FBM. Detailed investigation of

the method shows that the CBFM can be tuned easily for the efficient analysis of

electromagnetic scattering problems of dielectric objects. A novel modification of

the CBFM is investigated and successfully implemented. This latest version of the

CBFM is free from all the shortcomings that were reported for the other DD methods

we came across. In principle, any large EM scattering problem can be solved on a

personal computer using this novel method.
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Notations

Mathematical Statement Descriptive Statement
I Identity matrix, imm = 1 and imn = 0
∗ Indicates complex conjugation
[A]T = [A] Symmetric
[A] = [A∗]T Hermitian (self-adjoint)
[A] = −[A∗]T Skew Hermitian
[A]−1 = [A∗]T Unitary
[AT ][A] = [I] Orthogonal
[A∗]T [A] = [A][A∗]T Normal
Amn > 0 Positive-definite
Amn ≥ 0 Nonnegative or positive semidefinite
Amn = 0 for m 6= n Diagonal
R Set of real numbers
C Set of complex numbers
Rm×n Vector space of real matrices
Cm×n Vector space of complex matrices
O(n) Complexity (n) of an algorithm
span{a1, a2, . . . , an} Subspace spanned by aj
Kn = span{b, Ab, . . . , An−1b} n-dimensional Krylov subspace spanned by A

Operator type Eigenvalue (λ) Properties
Hermitian Real eigenvalues
Unitary Eigenvalues on unit circle
Skew Hermitian Eigenvalues on imaginary axis
Positive semidefinite Eigenvalues ≥ 0
Positive-definite Eigenvalues > 0
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Symbols

Symbol Descriptive Statement Unit
ε0 free space permittivity 8.854× 10−12 farads/meter (F/m)
µ0 free space permeability 4π × 10−7 henrys/meter (H/m)
σ electric current conductivity mhos/m ( 1

Ω
/m)

σm magnetic current conductivity ohms/m (Ω/m)
ρe electric charge density Coulombs per cubic meter (C/m3)
ρm magnetic charge density Webers per cubic meter (Wb/m3)
ε permittivity Farad per meter (F/m)
µ permeability Henries per meter (H/m)
λ wavelength meter (m)
k wavenumber reciprocal meter (m−1)
f frequency Hertz (Hz)
ω angular frequency 2πf , radians per second (rads/sec)
λ0 free space wavelength reciprocal meter (m−1)
E electric field intensity Volts per meter (V/m )
H magnetic field intensity Amperes per meter (A/m )
B magnetic flux density Webers per square meter (Wb/m2)
D electric flux density Coulombs per square meter (C/m2)
K source magnetic current density Volts per square meter (V/m2)
J source electric current density Amperes per square meter (A/m2)
εr medium’s relative permittivity constant
µr medium’s relative permeability constant

x



Chapter 1

Introduction

Electromagnetics (EM) is the study of the propagation and interaction of electromag-

netic fields in matter. Whether it is in home appliances, medical imaging equipment,

communication devices, military applications like radar, or computers, EM find ap-

plications everywhere. Knowledge of the EM phenomena is necessary during the

design stage of the aforementioned applications. Electromagnetic Theory (EMT) is

the basic underlying theory that guides a designer when computationally modelling

prototypes of these appliances. Electromagnetic Compatibility (EMC) is the branch

of EM that studies the unintentional generation, propagation and reception of electro-

magnetic energy producing unwanted effects. During the design of such appliances,

computation of the EM fields in and around the device is necessary.

The basic theory and equations governing the propagation and interaction of elec-

tromagnetic waves have been developed a century ago [35, 23, 71]. The number of

cases for which classical solutions exist is limited. Many practical problems that need

electromagnetic analysis are analytically intractable using available analytic solution

methods [16, 41, 29]. Often, the only option left is numerical solutions with the aid

of computers [63, 24, 44]. The branch of computational science where such numerical

modelling is done is known as Computational Electromagnetics (CEM). The advent
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of ever-increasing computing power has accelerated the CEM research. Recent ad-

vances in computer hardware and numerical algorithms have significantly improved

the possibility of numerical investigations of several problems, where analytical meth-

ods are not applicable. However, as the application domain becomes computationally

expensive or memory-wise impractical, the computational approach gets into diffi-

culty. CEM techniques can be broadly classified into differential equation (DE) and

integral equation (IE) methods of various forms [44, 66, 63]. Methods in the former

category consist of the Finite Element Methods (FEM) and the Finite Difference

Time Domain (FDTD) methods [24, 72, 68, 63, 37]. In this dissertation, we devote

our attention only to the IE based approach.

Our primary focus in this work is to develop efficient IE based CEM methods

for the EM analysis of dielectric objects. The problem of electromagnetic scattering

from inhomogeneous dielectric objects can be formulated in terms of an Electric Field

Integral Equation (EFIE) over the domain of the object. The first method for solving

the EFIE over a dielectric object of arbitrary cross-section was developed by Rich-

mond [49, 50]. Before Richmonds’s work, only approximate solutions were available

for dielectric objects with arbitrary cross section. In this article, Richmond uses the

Method of Moments (MoM) with pulse expansion functions and point matching. The

dielectric object is discretised into small cells. The total electric field intensity within

each cell is initially considered to be an unknown quantity. The fields inside each

cell are considered uniform. A system of linear equations is obtained by enforcing at

the center of each cell the condition that the total field must be equal to the sum of

the incident and scattered fields. This system of equations is solved numerically to

compute the electric field intensity in each cells.

The requirement of a large number of basis functions in the Method of Moments

(MoM) solution method has limited the use of the IE-MoM modelling approach to
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smaller objects in terms of wavelength [49, 44]. Typical basis functions, such as the

Rao-Wilton-Glisson (RWG) [48] or rooftops [3], do not incorporate any phase varia-

tion, so they are not able to model the behavior of the induced surface currents on

large domains [31]. In addition, these basis functions are defined over flat surfaces,

and are not suitable for modeling currents on large arbitrary shaped surfaces, except

by using a subdomain approach [31]. As the object size increases in terms of wave-

length, the size of the associated MoM matrix becomes prohibitively large. Entire

domain basis functions [3] have not been successful and they tend to make the result-

ing matrices highly ill-conditioned. One class of techniques to alleviate this problem

is to use domain decomposition (DD) method and to define Macro Basis Functions

(MBF) [62] on decomposed domains. The strategy is to divide-and-conquer the large

scale problem into a number of small sub-problems that are computationally man-

ageable and have a physical interpretation.

A number of techniques have been developed recently to enhance the MoM analy-

sis of large electromagnetic problems. To handle large problems, one common strategy

is to use asymptotic methods like the Geometrical Theory of Diffraction (GTD) [28]

or the Physical Optics (PO) [67] solutions. These methods are geometry dependent

and not valid for all objects with fine structures. A recently prposed method for the

MoM analysis of large objects is known as the Fast Multipole Method (FMM) [10, 55].

The FMM’s extension, known as the Multilevel Fast Multipole Algorithm (MLFMA),

saves memory by storing only the near-field interaction part of the large matrix. These

methods are mostly suitable for far-field computations. Another recently proposed

method known as the IES3 [26] is very efficient for certain types of problems, espe-

cially for far-field computations. Computation of near-field quantities requires better

methods. Most of these methods still require iterative methods for their solution. It

would be desirable to avoid the use of iterative methods as they would sometimes
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diverge or take too many iterations to produce reasonably accurate results. One idea

is to compress the MoM matrix some how so that direct matrix solution methods

[14] can be brought in for their solution. The Macro Basis Function (MBF) and a

recursive technique called the Subdomain Multilevel Approach (SMA) were recently

developed for large antenna arrays [61, 22]. These methods analyse portions of the

object separately and compute macro-basis for each domain. The above approach

does not directly account for the mutual coupling of different portions. Usage of this

sort of method must be investigated for electromagnetic scattering problems taking

care of the mutual coupling of various portions of the object. Though these methods

have been vastly implemented for various problems [61, 46, 45, 8, 11, 38, 13], EM

scattering problems for dielectric objects were not thoroughly investigated.

1.1 Domain decomposition methods

Domain decomposition has different meanings in different contexts [54].

• In parallel computing, DD often denotes the process of distributing data belong-

ing to different regions of the problem to different processors in the computing

machinery.

• In computational sciences, DD means the separation of physical domain into

regions that can be modelled with different equations (in the most trivial case,

only matrix indices differs) with interfaces between the domain handled by

various conditions.

Throughout this thesis, DD methods with various names will denote either or both

of these terminologies. The attractive feature of DD methods are [54]:

• They can handle problems of any size.
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• They are easy to parallelise.

• Simplification of complicated geometry.

• Superior convergence properties.

The widespread availability of parallel computers with distributed and shared memory

offers endless potential for the numerical solution of large problems in computational

sciences. In the CEM community, the migration from serial to parallel algorithms

is comparatively slower than in other branches of computational sciences. Domain

decomposition methods are intrinsically suitable for parallel computation. However,

they are not frequently implemented for CEM problems. In this thesis, an effort

is made to investigate the computational efficiency of some DD methods with an

intention to implement them for shared memory parallel processing. Shared memory

systems with several processors on board are becoming a very common member in

computational science laboratories. This facilitates efficient implementation of DD

based methods for CEM simulations.

1.2 DD methods used in this dissertation

A class of physically inspired iterative solutions, known as the current marching

method is a DD method that was successfully implemented for perfect electrical

conductors. Examples include the method of ordered interactions [25] and the For-

ward Backward Method (FBM) [20, 70, 69]. These methods solve scattering problems

in portions and use direct matrix inversion methods for the solution of MoM sub-

matrices. The Buffered Block Forward Backward (BBFB) Method was implemented

to investigate the EM wave scattering by infinite dielectric cylinders [7]. In the BBFB

method, basis functions that belong sub-regions are grouped together, and buffers rep-

resent a set of adjacent basis functions that belong to neighbouring sub-blocks. The
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introduction of the buffer regions allow the suppression of spurious edge effects at the

boundaries of decomposition. These FB methods work well when applied to prob-

lems involving objects that do not have the possibility of multiple scattering. These

methods are not efficient for complex geometrical objects. The FB methods converge

at a much faster rate compared to iterative techniques when applied to problems of

scattering from simple structures. Our goal in this work is to develop a DD method

that would efficiently handle dielectric objects irrespective of its shape and electrical

properties. After a thorough investigation, the FBM was found not to be suitable for

implementing a standalone software for the EM analysis of dielectric objects.

In contrast to the conventional IE-MoM technique and the FEM which uses subdo-

main basis functions, the Characteristic Basis Function Method (CBFM) [46, 21, 42,

64, 60, 31, 12, 33, 43] defines a new kind of macro-domain basis function. These MBFs

are constructed from traditional low-level basis functions that depend on the geom-

etry of the problem. Consequently, they are automatically adapted to the shape of

the body and are also capable of modeling the phase variations in large domains [31].

Once these Characteristic Basis Functions (CBFs) have been generated, a reduced

matrix is computed using these CBFs. The reduced matrix system can be computed

by evaluating the matrix-vector products involving the sub-blocks of the conventional

MoM matrix and their corresponding CBFs. The reduced matrix is so called because

it is a compressed version of the conventional MoM matrix. It is usually much smaller

in size and, hence, is amenable to direct solvers. This avoids the need for iterative

methods. Even though the problem is split into isolated pieces, the algorithm takes

into account mutual coupling at a global level.
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1.3 Novel elements in the dissertation

• Investigation of an improved FBM for dielectric objects.

• Implementation of the CBFM for dielectric objects.

• A novel version of the CBFM tailored for dielectric objects.

• Efficient implementation of the CBFM on desktop computers.

1.4 Outline of the dissertation

This dissertation is organised as follows. In Chapter 2, fundamental EM field equa-

tions are presented and the mathematical framework is reviewed and summarised in

the context of this thesis. In Chapter 3, the electric field integral equation is formu-

lated and subsequently discretised using the method of moments. Numerical results

are validated with available analytical results. In Chapter 4, linear algebraic methods

that are used in various contexts in the dissertation are summarised. In Chapter 5,

some novel modifications of the forward backward method are implemented. The

CBFM is implemented for the EM analysis of dielectric objects in Chapter 6. In

Chapter 7, a novel modification of the CBFM especially tailored for dielectric objects

is developed and implemented for electrically large objects.

1.5 Notation

Unless otherwise specified, vectors are distinguished from scalars using bold typeface.

For example, r ∈ R3 denotes position in three-dimensional space. The three compo-

nents are given by r = (x, y, z)T , here T denotes transpose. The electric field vector

is denoted E while the scalar magnetic potential is denoted A.
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Chapter 2

Basic Equations for CEM

In general, all scattering problems are formulated using fundamental classical electro-

dynamics equations. In Section (2.1) of this chapter, the equations used for modelling

the propagation of electromagnetic waves will be reviewed. Section (2.4) summarises

the advantages of Integral Equation (IE) methods over Differential Equation meth-

ods. Throughout this thesis, the focus will be on the Integral Equation methods.

A formulation leading to the integral equation approach of the scattering theory is

illustrated in Section (2.4.2).

2.1 Governing Equations

This section is a brief review of the classical mathematical models for the propagation

of electromagnetic waves. The most important set of equations in electromagnetics

were formulated by James Clerk Maxwell in 1864 [35], known as Maxwell’s Equations.

These equations consist of two pairs of coupled partial differential equations relating

six fields. These equations are not sufficient to uniquely determine the electromagnetic

field. Additional conditions are required to model the interaction of an EM wave with

a target.
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2.1.1 Maxwell’s Equations

In Maxwell’s formulation, the electromagnetic field in a scattering domain is described

by five vectors, which are functions of position r ∈ R3. Maxwell’s equations relate

these five vectors in a compact form:

∇× E +
∂B

∂t
= 0 (2.1.1)

∇×H− ∂D

∂t
= J (2.1.2)

∇ ·B = 0 (2.1.3)

∇ ·D = ρ (2.1.4)

In Equations (2.1.1)- (2.1.4), the vector fields E,H,D,B and J are

E, the electric field intensity (volts/meter)

H, magnetic field intensity (amps/meter)

D, Electric flux density (coulombs/meter2)

B, Magnetic flux density (webers/meter2)

J, Electric current density (amps/meter2)

M, Magnetic current density (volts/meter2)

ρ, Electric charge density (coulombs/meter3)

ρm, Magnetic charge density (webers/meter3)

Note that:

coloumb = amp.second

weber = volt.second

ohm = volt/amp

The scalar quantity ρ is the electric charge density.

The EM field is created by a distribution of static electric charges and a directed

flow of electric charge. Equation (2.1.1) is termed Faraday’s law. This gives the effect

of the changing magnetic field on the electric field. Equation (2.1.2) is called Ampère’s
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law which was modified by Maxwell to this form. Equation (2.1.3) shows why free

magnetic poles do not exist. Equation (2.1.4) is called Gauss’s law. This gives the

effect of charge density on electric displacement. In an isotropic media, where the

electrical properties are independent of the direction of propagation of the EM wave:

D = εE (2.1.5)

B = µH (2.1.6)

J = σE (2.1.7)

The scalar quantities ε, µ and σ are the electrical permittivity, magnetic permeabil-

ity and electrical conductivity respectively. Note that, ε = ε0εr. Substitution of

Equations (2.1.5)-(2.1.7) into (2.1.1)-(2.1.4) results in:

∇×B− µ0ε0
∂E

∂t
= µ0J (2.1.8)

∇ · E =
ρ

ε0
(2.1.9)

Also, implicit in the Maxwell equations is the continuity equation for charge density

and current density:
∂ρ

∂t
+∇ · J = 0 (2.1.10)

This follows from combining the divergence of Equation (2.1.2) and time derivative of

Equation (2.1.4). The speed of light in vacuum, given by c = 1√
(µ0ε0)

, is an essential

quantity in electromagnetics. Another important equation worth mentioning here is

the Lorentz force equation arising from the motion of charged particles:

F = q(E + v ×B) (2.1.11)

This gives the force acting on a point charge q in the presence of electromagnetic fields.

The electric and magnetic fields, E and B, in Maxwell’s equations and elsewhere

were actually introduced by means of the Lorentz force equation. In Coulomb’s
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experiments [71], forces acting between localised charge distributions were observed.

Therefore, it was useful to introduce E as force per unit charge. Similarly, in Ampère’s

experiments [71], the mutual forces on current carrying loops were studied [23]. The

current I in a loop of cross sectional area A with N charge carriers per unit volume

moving at a velocity v is given by I = NAqv. B in Maxwell’s Equations is defined

in magnitude as the force per unit current.

Consider the case where the source currents vary sinusoidally in time. If the EM

radiation has a temporal frequency ω > 0, the field is said to be time-harmonic. The

time dependent Equations (2.1.1)-(2.1.4) can be rewritten as time-harmonic Maxwell’s

Equations. Time-harmonic electromagnetic waves of the form

E(z, t) = E0e
j(kz−wt) (2.1.12)

H(z, t) = H0e
j(kz−wt) (2.1.13)

satisfy the time-harmonic Maxwell equations.

∇× E + jkH = 0 (2.1.14)

∇×H− jkE = 0 (2.1.15)

∇ · (µH) = 0 (2.1.16)

∇ · (εE) = ρ (2.1.17)

In Equations (2.1.12) and (2.1.13), E0 and B0 are the complex amplitudes, ω is the

angular frequency. The physical fields are the real parts of E and B. k is the wave

number given by:

k2 = (ε+
jσ

ω
)µω2 (2.1.18)

In Equations (2.1.14)-(2.1.17), E and H are complex-valued phasors, representing the

vector amplitude and phase angle of electromagnetic waves.
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2.1.2 Boundary Conditions

Figure 2.1: Two electrically different media separated by surface S

In general, electromagnetic fields are discontinuous at a boundary between two dif-

ferent media, or at a surface that carries charge density ρ or surface current density

K [3, 16, 44]. The Maxwell equations must be supplemented with suitable boundary

conditions. Consider the interface between two different media denoted as Region 1

and Region 2 as in Figure 2.1. n is unit vector normal to the surface of separation de-

noted as S. The tangential component of the electric field must be continuous across

S, i.e., n × E is continuous across S [41]. If E1 and E2 denote the limiting value of

the electric fields in Region 1 and 2 as S is approached, we must have:

n× (E1 − E2) = 0 on S (2.1.19)

At the same time, the normal components of µrH are continuous across S so that:

n · (µr,1H1 − µr,2H2) = 0 on S (2.1.20)

In general,

n× (H1 −H2) = JS (2.1.21)
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where JS is the surface current density on S. In most cases, the magnetic field has

continuous tangential components, (i.e, JS = 0). An exception to this is when S is

a thin conductive layer. This gives rise to the conductive boundary condition. But

when JS = 0, usually Equation (2.1.21) is generalised as:

n× (H1 −H2) = 0 on S (2.1.22)

The presence of singularities in the charge density ρ may cause jumps in the normal

component of εrE.

n · (εr,1E1 − εr,2E2) = ρS on S (2.1.23)

where, ρS is the surface charge density. Thus it is clear that the electric and mag-

netic fields are not always continuous if εr or µr are discontinuous across a boundary.

Numerical discretisation schemes for Maxwell’s equations in the presence of a discon-

tinuity must take into account that although, the tangential components of the fields

are continuous, the normal components have a jump at the boundary.

If the second medium is a perfect conductor, the tangential component of Et and

tangential component of Ht vanish at the interface. This gives rise to the perfect

conductor boundary condition on the interface. According to Ohm’s law [41], if con-

ductivity σ →∞ and the current density J is to remain bounded, then E→ 0. This

suggests that inside a perfect conductor the electric field vanishes. If Region 1 is a

perfect conductor, then E1 = 0 and the perfect conductor boundary condition for E1

is:

n× E1 = 0 on S (2.1.24)

When the second interface is not a perfect electric conductor (PEC), but allows

electromagnetic waves to penetrate to some extent, then the impedance boundary

condition is given by:

n×H1 − κ(n× E1)× n = 0 (2.1.25)
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where, impedance κ is a suitably chosen positive function of position on the surface

of the material.

2.2 Various CEM Methods

To solve Maxwell’s equations numerically, the usual procedure is to discretise the

scattering domain into finite regions. There are several methodologies employed in

CEM modelling. Selection of a particular method for any specific problem depends on

various facts such as the available computational resources, the required accuracy, the

scattering domain’s electrical parameters, size and so on. The following sub-sections

give an overview of the most widely employed methodologies.

2.2.1 Differential Equation (DE) methods

DE methods evolve from the direct discretisation of Maxwell’s equations. Derivatives

are approximated using finite differences and the final system to be solved is a linear

equation. Various DE methods are the finite difference method, finite element method

and its various forms. They are local in nature and the computational domain includes

additional regions of space outside the scatterer [66]. This adds to the computational

burden and memory requirements. However, the favourable properties of differential

formulations are the ease of implementation and resultant sparse matrices [24, 66].

Development of parallel software for DE methods is relatively easy.

2.2.2 Variational Methods

Variational methods are based on the variational formulation of Maxwell’s Equa-

tions [24]. Examples include method of moments (MoM), finite element methods,

finite volume methods, etc. They offer many algorithmic advantages like ease of
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implementation, parallelisation, involvement of sparse matrices etc. The main dis-

advantage is that they require a large computational domain. This results in large

memory requirements and high computational costs.

2.2.3 Integral Equation methods

The Integral Equation (IE) formulation represents the entire physics of the problem in

a very compact form [66]. This is because the integral equation describes the physical

global features, including the boundary conditions. In IE formulations, unlike DE

methods, only active regions are modelled. That is, the IE formulation is exact, even

though the discretisation schemes used for the computational solution of IEs introduce

a numerical nature to the overall formulation. The power of IEs lie in their ease of

use for arbitrary geometries and excitations. Allthough IEs can be applied to any

frequency range, there are two main practical limitations [27] in the high frequency

region. The interaction matrix that needs to be inverted becomes very large. This

is a major issue and in this thesis we will be focussing on methods to circumvent

these problems. Secondly, the interactions between different regions decrease as the

frequency increases and eventually becomes very much local.

2.2.4 Asymptotic Methods

Unlike the other methods in Section 2.2, asymptotic models do not solve the full

Maxwell model but an approximation to the Maxwell model. These methods are very

efficient since they do not solve for the whole field. However, they are asymptotic

in nature and thus not error-controllable and give rise to significant error for large

frequencies.
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2.2.5 Some final comments on the above methods

All of the aforementioned schemes are successfully employed in a variety of CEM

problems. One or more of these methods may be suitable for certain specific problems.

The suitability of any method is decided after analysing the solution requirements.

However, in this thesis, the focus shall be on Integral Equation Methods.

2.3 Integral Equations

An integral equation is an equation involving an integral of an unknown function φ(r).

Integral equations are classified into two major groups depending on the integration

domain. If the integration domain depends on a variable, the equation is termed a

Volterra integral equation. If the integration domain is fixed, it is termed a Fredholm

integral equation [66]. Integral equations can be further classified. If the unknown

function φ(r) appears only in-side the integral, it is a Fredholm integral equation of

the first kind. If the unknown function appears both inside and outside the integral,

it is a Fredholm integral equation of the second kind. Throughout our study, we deal

with integral equations where the integration domain is fixed. Thus, we will only be

concerned with Fredholm integral equations. Fredholm integral equations of the first

and second kind are defined by:

∫
Ω

K(r, r′)φ(r′)dΩ = f(r), r′ ∈ Ω (2.3.1)

and

φ(r)− λ
∫

Ω

K(r, r′)φ(r′)dΩ = f(r), r′ ∈ Ω (2.3.2)

respectively. Here, K is a function of two variables, known as the kernel. f(r) is a

known function, often termed as data function. Note that in the second kind, the

unknown function φ(r) appears both inside and outside the integral.
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2.4 Why Integral Equation Methods?

DE Methods are easy to implement, and are extensively used in EM modelling [24].

However, they are constrained to use structured grids even for complex structured

bodies. Therefore, one has to discretise regions outside the object, and this adds to

the memory burden [24].

When using DE methods in scattering simulations, one has to supply boundary

conditions. This is possible with Dirichlet to Neumann maps [19]. However, the re-

sulting boundary conditions are not local. These boundary conditions are, in general,

known as artificial boundary conditions. A type of artificial boundary, that requires

the scattered field to vanish at the artificial boundary is often used [19]. However,

this causes significant reflections from the artificial boundary and this affects the re-

sults, unless the artificial boundary is placed away from the scatterer. A solution to

this problem is the introduction of an absorbing medium known as perfectly matched

layer [5].

Integral equations counter many of the DE difficulties. The boundary conditions

are explicitly enforced in IEs. In IE formulations, unlike DE methods, the discretised

domains contain only the active regions. However, IE methods result in highly dense

matrices. Inversion of a dense matrix of order N by a direct solver is an O(N3)

operation [14]. While an iterative method can reduce this to O(N2) [51], this require-

ment again puts a constraint on the problem size that can be computationally solved.

In the following chapters, we address some recently developed methods which use

domain decomposition techniques. These methods avoid the requirement of storing

the whole matrix. In this thesis, we report some novel improvements in the above

mentioned domain decomposition methods. In particular, it will be shown that these

improved methods can be applied successfully to dielectric objects modelled using the

Electric Field Integral Equation (EFIE).
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2.4.1 Volume Equivalence Principle

The Volume Equivalence Principle [44] helps to simplify the formulation of integral

equations. The dielectric or magnetic material is replaced by equivalent induced

polarisation current and charges. The equations in Section 2.1 can be used for formu-

lating integro-differential equations for modelling the interaction of an EM wave with

penetrable dielectric scatterers. Maxwell equations (2.1.14)-(2.1.17)can be rewritten

as:

∇× E = −ωµ0H−K (2.4.1)

∇×H = ωε0E + J (2.4.2)

∇ · (ε0E) = ρe (2.4.3)

∇ · (µoH) = ρm (2.4.4)

where,

K = ωµ0(µr − 1)H (2.4.5)

J = ωε0(εr − 1)E (2.4.6)

ρe = ε0εrE · ∇(
1

εr
) (2.4.7)

ρm = µ0µrH · ∇(
1

µr
) (2.4.8)

One can think of the source terms J and K as replacements for E and H in

Equations (2.1.14)-(2.1.17). Equations (2.4.1)-(2.4.4) are equivalent to Equations

(2.1.14)-(2.1.17). The procedure of replacing the dielectric or magnetic material by

induced sources is known as the volume equivalence principle. Sources in Equations

(2.4.5)-(2.4.8) radiate in free space. The scattering problem can thus be modified

with these sources as unknowns. If the scatterer is homogeneous with εr and µr

constant throughout, Equations (2.4.7) and (2.4.8) show that there is no induced

charge density in those regions. If εr and µr vary continuously and are differentiable,

Equation (2.4.7) and (2.4.8) produce an induced volume charge density.
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Figure 2.2: An inhomogeneous scatterer illuminated by an incident electromagnetic
field

2.4.2 Electric Field Integral Equation (EFIE)

Consider a source free region containing an inhomogeneity characterised by a relative

permittivity εr and a permeability µr which are functions of space. When this region is

illuminated by an electromagnetic wave, the electromagnetic field in the region must

satisfy Maxwell equations (2.1.14)-(2.1.17). The central problem in computational

electromagnetics is the calculation of the electromagnetic field inside and near the

scatterer. We wish to determine the EM field inside the inhomogeneity and the

scattered field around it. The scattered field is determined by the currents induced

in the object. These currents are related to the polarisation of the incident fields, the

direction of the incident wave and how various parts of the object interact. The later

is dependent on the electrical properties of the body

Suppose the scatterer in Figure (2.2) is illuminated by a field produced by a source

located outside the scatterer. Then the inhomogeneous scatterer can be replaced by

equivalent induced sources radiating in free space [44]. Now we can split the total

field into two parts, one associated with the primary source and the other associated
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with the induced sources. The fields produced by the primary source are denoted by

Ei, the incident electric field, and Hi, the incident magnetic field. The fields due to

induced sources are the scattered electric field, Es, and the scattered magnetic field

Hs. The superposition of incident and scattered fields constitute the original fields

in the presence of scatterer which can be denoted as below:

Et = Ei + Es (2.4.9)

Ht = Hi + Hs (2.4.10)

Here, Et and H t are the total electric and magnetic fields. The incident field near

the scatterer (i.e. at reasonable distance from the source) satisfies the Helmholtz

equations.

∇2Ei + k2Ei = 0 (2.4.11)

∇2Hi + k2Hi = 0 (2.4.12)

The scattered fields are solutions to the equations:

∇2Es + k2Es = ωµ0J−
∇∇ · J
ωε0

+∇×K (2.4.13)

∇2Hs + k2Hs = −∇× J + ωε0K−
∇∇ ·K
ωµ0

(2.4.14)

Here, J and K are the equivalent sources in Equations (2.4.5) and (2.4.6). In order

to find the solution of Equation (2.4.13) and (2.4.14), the classical approach is to

express the fields in terms of magnetic and electric vector potentials denoted by A

and F, respectively.

Es =
∇∇ ·A + k2A

ωε0
−∇× F (2.4.15)

Hs =
∇∇ · F + k2F

ωµ0

+∇×A (2.4.16)
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On substituting Equations (2.4.15) and (2.4.16) into Maxwell’s equations, the vector

potentials satisfy:

∇2A + k2A = −J (2.4.17)

∇2F + k2F = −K (2.4.18)

A solution to these equations can be written as:

A = J ∗G (2.4.19)

F = K ∗G (2.4.20)

where, G is the Green’s function given by:

G =
e−k|r|

4π|r|
(2.4.21)

In equation (2.4.19) and (2.4.20), ∗ denotes 3-dimensional convolution of the form:

A(r) =

∫ ∫ ∫
J(r′)

e−k|r−r′|

4π|r− r′|
dr′ (2.4.22)

In 2-dimensional problems, the integration over the third dimension involves only

the Green’s function and this can be performed analytically. Once J and K are cal-

culated, Es and Hs are determined using Equations (2.4.15) and (2.4.16). Note that

this procedure involves integration followed by differentiation. Often, integrals arising

from source field relations can not be evaluated in closed form. Numerical quadra-

ture algorithms are used to evaluate these integrals which introduces some error. This

error can be further magnified if the derivative of this integral is evaluated using a

finite-difference scheme. Such an order of operations is not suitable for numerical

implementation [44]. Green’s functions can be easily differentiated analytically and

then brought into the integral. Thus a change of order gives differentiation followed

by integration. This reduces the error in numerical implementation of the EFIE.

21



An alternative to the pure vector potential source-field relations is the mixed

potential source-field relation [44].

Es = −ωµ0A−∇Φe −∇× F (2.4.23)

Hs = ∇×A− ωε0F−∇Φm (2.4.24)

where, Φe and Φm are scalar potential functions. which are given by convolutions

similar to Equation (2.4.19) and (2.4.20).

In Chapter 3, methods leading to the discretisation of the EFIE is presented.

Results obtained are verified using analytically obtained solutions.
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Chapter 3

Discretisation of Integral Equations

Continuous integral equations can be discretised and solved for the unknown fields

using numerical methods. Several numerical techniques have been developed for the

solution of computational electromagnetic problems [16]. The advantage of these

computer oriented numerical techniques over the eigenfunction expansion method

generated huge interest a few decades ago [16, 52]. The Method of Moments (MoM)

is one among these numerical methods that is still widely used with great success. The

mathematical foundation of the MoM will be reviewed in this chapter and an EFIE

will be discretised using it. All discretisation procedures place a limit on the accuracy

of the numerical results. Before using them, questions like whether or not a numerical

method will converge to exact solution must be addressed. Also, the suitability of

selected basis functions for a particular problem must be examined. This chapter

is intended to investigate, characterise and finally implement an Integral Equation-

Method of Moments (IE-MoM) discretisation scheme.

3.1 Mathematical foundation

Tools of functional analysis, a branch of mathematics, throw insight into fundamentals

and theory behind numerical approximations [41, 15]. These tools characterise and
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help us to choose approximation methods that shall be used for the problem at hand.

Lf = g (3.1.1)

In Equation (3.1.1), the linear operator L maps functions in its domain to functions

in its range. The domain DL, and the range RL are different linear spaces. Two

functions a and b in the inner product space are said to be orthogonal if:

Figure 3.1: Domain and range space of L and L∗

〈a, b〉 = 0 (3.1.2)

Similarly, functions {Bn} in an inner product space form an orthogonal set if:

〈Bm, Bn〉 = 0 m 6= n (3.1.3)

The set {Bn} is said to be complete if the zero function is the only function in the

inner product space orthogonal to each member of the set. A set of functions that is
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both orthogonal and complete is said to be a basis. A basis can be used to represent

any function f in the inner product space such that:

∥∥∥∥∥f −∑
n

αnBn

∥∥∥∥∥ = 0 (3.1.4)

Here, αn are scalar coefficients given by:

αn =
〈Bn, f〉
〈Bn, Bn〉

(3.1.5)

The functions of interest are actually projected to a finite-dimensional subspace

of the original infinite dimensional inner product space. In the subspace, the basis is

truncated to the form {B1, B2, . . . , BN} and the function is represented by:

f ∼= fN =
N∑
n=1

αnBn (3.1.6)

The scalar coefficients {α1, α2, . . . , αn} are selected to minimise the distance between

f and fN . The error

d
(
f, fN

)
=
∥∥f − fN∥∥ (3.1.7)

is minimised when the coefficients are chosen to make the error orthogonal to {Bn},

ie.,

〈Bn, f − fN〉 = 0 n = 1, 2, . . . , N (3.1.8)

This technique is known as orthogonal projection [57]. Due to the orthogonality of

the basis functions, the coefficients are the same in the subspace as in the original

inner product space. The best approximation for f is obtained when coefficients from

Equation (3.1.5) are used. Since f is unknown, αn cannot be determined directly, a

quantity similar to α defined using the range g might be useful. If the set {Tn} forms

a basis for the range space RL, any function in the range may be represented in the

N -dimensional subspace spanned by {T1, T2, . . . , TN}:
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g ∼= gN =
N∑
m=1

βmTm (3.1.9)

The projection that minimises the error d(g, gN) employs coefficients:

βm =
〈Tm, g〉
〈Tm, Tm〉

(3.1.10)

Likewise, the function LBn can be represented by:

LBn
∼=

N∑
m=1

lmnTm (3.1.11)

The coefficients that minimise the error ‖LBn − lmnTm‖ are given by:

lmn =
〈Tm,LBn〉
〈Tm, Tm〉

(3.1.12)

Coefficients in (3.1.12) achieve an orthogonal projection in RL and therefore, give

the best approximation. In order to get the approximate solution of Lf = g, the

unknown f can be represented in the form (3.1.6). This produces a function on RL

of the form:

LfN =
N∑
n=1

αnLBn (3.1.13)

Projecting this function onto {T1, T2, . . . , TN} gives:

LfN ∼=
N∑
m=1

N∑
n=1

lmnαnTm (3.1.14)

Coefficients lmn are calculated from (3.1.12). Equating (3.1.14) with (3.1.9) produces

a system of equations:
N∑
n=1

lmnαn = βm m = 1, 2, . . . , N (3.1.15)

The N × N linear equation in (3.1.15) can be solved for the unknowns {αn}. The

coefficients {α1, α2, . . . , αn} determined from (3.1.15) are not always the same as that
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given by (3.1.5). The fact that projections in RL are orthogonal does not always

ensure that the projection in DL is orthogonal and will usually not produce the

approximation as measured by the metric d(f, fN).

3.2 The Method of Moments (MoM)

Following on from the development in Section (3.1), an approximate solution of the

linear equation Lf = g can be written in the form:

f ∼=
N∑
n=1

αnBn (3.2.1)

{Bn} are known as the basis functions, defined on the domain DL and the scalars

{αn} are unknown coefficients to be determined. Substituting Equation (3.2.1) to

Lf = g and by forcing the residual

L

(
N∑
n=1

αnBn

)
− g =

N∑
n=1

αnLBn − g (3.2.2)

to be orthogonal to a set of testing functions {T1, T2, . . . TN} produces a matrix equa-

tion:

Lα = β (3.2.3)

with entries:

lmn = 〈Tm,LBn〉 and βm = 〈Tm, g〉 (3.2.4)

The matrix equation (3.2.3) can be solved for α using matrix solution algorithms

which will be described in Chapter (4). The system of equations (3.2.3) is obtained

by forcing the residuals to be orthogonal to the testing functions and hence the method

is called the weighted-residual method. In electromagnetics, this is popularly known as

the Method of Moments. The discretisation of a continuous integral equation by the
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MoM involves the projection of the continuous linear operator onto finite dimensional

subspaces defined by the basis and testing functions.

In reality, the aforementioned process can be applied to produce an approximate

solution even if {Bn} and {Tn} are not complete and orthogonal [44]. In practice,

the basis and testing functions used are often not orthogonal sets [44]. However, even

if the basis functions are orthogonal, the projection of the domain space onto the

basis functions is not guaranteed to be orthogonal. Thus in the limiting case N →∞

convergence of the numerical solution to the exact solution cannot be guaranteed

and the result obtained will always be approximate (In any case, N will always be

finite). The choice of the basis and testing functions is the main issue arising in

the implementation of the MoM. Basis functions will be selected depending on the

required accuracy, computational resources and on the upper limit on the matrix size.

3.3 Various basis functions

A crucial choice in the numerical computation of the electromagnetic problems using

the method of moments is that of the basis functions. A basis set that has the

ability to accurately represent the anticipated function must be chosen as the basis

functions. However, at the same time, the computation involved in employing this

basis set to represent the unknown function must also be considered. A basis function

with smoother properties than the unknown being represented must not be selected

as the basis function [53]. Even though there are numerous basis sets, only a very

limited number of them are used in practice. Basis functions fall into two main classes

sub-domain basis functions and entire domain basis functions

28



3.3.1 Sub-domain functions

Sub-domain functions are nonzero only over a part of the domain of f . They can be

used without the prior knowledge of the nature of the function they must represent.

Some of the most commonly used sub-domain basis functions are outlined below.

Pulse basis function

Figure 3.2: Piecewise constant or pulse basis functions: (a) single, (b) multiple,
(c) function representation.

The piecewise constant 1-dimensional scalar pulse basis function in Figure (3.2) is

defined as:

fn(x) =

1 xn−1 ≤ x ≤ xn

0 elsewhere
(3.3.1)
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When the associated coefficients are determined, the pulse basis functions will produce

a stair case representation of the unknown function.

Triangle function

Figure 3.3: Piecewise linear or triangle basis functions: (a) single, (b) multiple,
(c) function representation.

The piecewise linear 1-dimensional scalar triangle basis function in Figure (3.3) is

defined as:

fn(x) =



x− xn−1

xn − xn−1

xn−1 ≤ x ≤ xn

xn+1 − x
xn+1 − xn

xn ≤ x ≤ xn+1

0 elsewhere

(3.3.2)

Triangle functions cover two cells in the discretised domain and adjacent functions
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overlap. They provide a smoother representation than that of the pulse basis, also it

can go to zero. Their usage results in increased computational complexity compared

with that of pulse basis [4].

Other basis functions

Increasing the sophistication beyond the level of the triangle function may not guar-

antee or even help with the improvement of accuracy. In some cases, more specialised

functions shall be used as they might help when the integrals involved are multiplied

by a sin(kx) or cos(kx) function [3] where x is the variable of integration. Since

numerical integration can be avoided, numerical round off errors can be avoided. Sig-

nificant advantages in error minimisation and computation time can be gained by

using basis functions like the piecewise sinusoid or truncated cosines.

Piecewise sinusoid:

fn(x) =



sin[k(x− xn−1)]

sin [k(xn − xn−1)]
xn−1 ≤ x ≤ xn

sin[k(xn+1 − x)]

sin [k(xn+1 − xn)]
xn ≤ x ≤ xn+1

0 elsewhere

(3.3.3)

Truncated cosine:

fn(x) =


cos

[
k

(
x− xn − xn−1

2

)]
xn−1 ≤ x ≤ xn

0 elsewhere

(3.3.4)

3.3.2 Entire domain functions

Entire domain functions exist over the entire domain of the unknown function and

no segmentation is involved in their use. A common entire domain basis set is the set
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Figure 3.4: Piecewise sinusoids subdomain functions: (a) single, (b) multiple, (c)
function representation.

of sinusoidal functions:

fn(x′) = cos

[
(2n− a)πx′

l

]
− l

2
≤ x′ ≤ l

2
(3.3.5)

This basis set is useful for modelling the current distribution on a wire dipole which

is known to have a sinusoidal distribution [3]. Entire domain basis functions are used

mainly when the unknown quantity to be modelled has a known pattern. Thus one

can use fewer number of points to render the assumed approximate pattern of the

unknown.

3.4 Galerkin’s method

When an identical set of basis functions is used for the basis and testing for the

MoM discretisation, the procedure is termed Galerkin’s method [44]. For Galerkin’s
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Figure 3.5: Truncated cosines subdomain functions: (a) single, (b) multiple, (c)
function representation.

method, the weighting functions are chosen as piecewise continuous functions defined

over a subinterval. The assumption is that one can get arbitrarily good accuracy by

making the subintervals smaller [52]. For the Galerkin method to be applied, the

expansion function must span both the domain and the range of the operator. The

procedure is advantageous when the operator L is self-adjoint with respect to the

inner product. The idea behind the method is as follows. If the operator equation L

is self adjoint with respect to the inner product, such that:

〈La, b〉 = 〈a,Lb〉 (3.4.1)

and the operator is positive definite:

〈a,La〉 > 0 for all non zero a (3.4.2)

Another inner product can be defined:
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〈a, b〉2 = 〈a,Lb〉 (3.4.3)

where the subscript 2 denotes a 2nd inner product. In this case,〈
Bm,L(fN − f)

〉
= 0 (3.4.4)

In the original inner product space, this can be expressed as:〈
Bm, f

N − f
〉

2
= 0 (3.4.5)

This means that the projection of the error in the approximation fN is orthogonal to

the basis with this new inner product. This means that the method of moments pro-

jection of the unknown function f onto the basis functions is an orthogonal projection

and the important consequence of this is that fN → f as N →∞ .

Using Galerkin’s method for the discretisation of EFIE gives matrices with di-

agonal symmetry [44]. For a problem discretised using N discretisation points, this

requires the generation and storing of only N2

2
elements of the MoM matrix.

3.5 Selection of basis and testing functions

Mathematical aspects defining the proper selection of the basis and testing functions

were outlined in Section (3.1). Computational aspects must also be considered when

selecting the basis and testing functions. Evaluation of matrix elements may be

computationally demanding or analytically impossible for higher-order basis functions

and due to the non-availability of closed form solutions. Various basis functions were

used in the course of this work. The pulse functions were found to be the most suitable

one for the domain decomposition methods used to model dielectric objects analysed

in this thesis. Recently, after their successful use in signal-processing, wavelets are

used as basis functions for representing current in integral equations [44]. Because of
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Figure 3.6: The cross-section of a dielectric cylinder divided into N square cells of
area ∆n.

their oscillatory nature, wavelets produce sparse matrices that can be exploited for

computational storage and speed up. However, we will not use them.

3.6 Discretisation of the EFIE

Consider a cross section perpendicular to the axis of an infinite dielectric cylinder as

shown in Figure (3.6). The relative permittivity εr is assumed to vary from point

to point within the body. A source is radiating a TM plane wave propagating along

the +x direction with polarisation parallel to cylinder’s axis. This wave produces an

incident field which interacts with the infinite cylinder of arbitrary cross-section to

produce a scattered field Es. The field components excited by the TM wave are Ez, Hx

and Hy. The total electric field at any point is the sum of incident and scattered fields.

Note that, the time dependence e(ωt) will be omitted in the formulation.

Et
z(r) = Ei

z(r) + Es
z(r) (3.6.1)

From now on, we drop the z subscript as it is assumed that all electric fields are
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polarised in this direction. For a penetrable dielectric, Equation (3.6.1) can be written

as [44]:

Ei = Et(r) + kηA+∇Φe +∇× F (3.6.2)

where, η =
√
µo/ε0. Equation (3.6.2) is known as the EFIE and holds everywhere

throughout the scatterer. Throughout this thesis, we will deal with scatterers com-

posed entirely of dielectric material, so the term involving magnetic current drops

out.

Ei = Et(r) + kηA+∇Φe (3.6.3)

Using the volume equivalence principle, the dielectric material can be replaced by

equivalent polarisation currents:

J(x, y) = ẑωε0[εr(x, y)− 1]Ez(x, y) (3.6.4)

For TM polarisation, the EFIE can be written as:

Ei
z(x, y) =

Jz
ωε0(εr − 1)

+ ωµ0Az (3.6.5)

where

Az(x, y) =

∫ ∫
Jz(x

′, y′)
1

4j
H

(2)
0 (kR)dx′dy′ (3.6.6)

here

R =
√

(x− x′)2 + (y − y′)2 (3.6.7)

In this formulation, Jz is the primary unknown. The scatterer can be divided into

N square cells denoted as ∆n as in Figure (3.6). The unknown polarisation current

density Jz can be approximated by the superposition of pulse basis functions defined

on the discretised cells as:

pn(x, y) =

{
1 if (x, y) ∈ ∆n;

0 otherwise.
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Now, the current density can be written as:

Jz(x, y) ∼=
N∑
n=1

jnpn(x, y) (3.6.8)

Using Equation (3.6.8), Equation (3.6.5) can be written as:

Ei
z(x, y) ∼=

N∑
n=1

jn

(
ηpn(x, y)

k[εr(x, y)− 1]
+ kη

∫ ∫
∆n

1

4
H2

0 (kR)dx′dy′
)

(3.6.9)

where, k is the wave-number at any cell, η =
√
µ0/εr and H2

0 is the zeroth-order

Hankel function of the second kind.

Equation (3.6.9) can be imposed at the cell centres in Figure (3.6) to produce a

N ×N matrix equation:


Ei(x1, y1)

Ei(x2, y2)
...

Ei(xN , yN)

 =


Z11 Z12 . . . Z1N

Z21 Z22 . . . Z2N

...
...

. . .
...

ZN1 ZN2 . . . ZNN




j1

j2

...

jN

 (3.6.10)

Off-diagonal entries in the N ×N matrix are given by:

Zmn =
kη

4

∫ ∫
∆n

H2
0 (kRm)dx′dy′, m 6= n (3.6.11)

Diagonal entries are given by:

Zmm =
η

k(εr,m − 1)
+
kη

4

∫ ∫
∆n

H2
0 (kRm)dx′dy′,m = n (3.6.12)

where

Rm =
√

(xm − x′)2 + (ym − y′)2 (3.6.13)

Integrals in Equations (3.6.11) and (3.6.12) can be evaluated analytically [49], assum-

ing that the cell shape is approximately circular but of the same area as the square

cells.
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∫ 2π

φ′=0

∫ 0

ρ′=0

H2
0 (kR)ρ′dρ′dφ′ =

{
2πa
k
J0(kρ)H2

1 (ka)− 4
k2 if ρ < a;

2πa
k
J1(ka)H2

0 (kρ) if ρ > a;

Here, ρ and φ are the cylindrical coordinates, a is the radius of the equivalent circle.

J0 and J1 are the Bessel functions of order zero and one. H2
0 and H2

1 are the second

kind Hankel functions of order zero and one, respectively. Using the circular cell

approximation [49], Equations (3.6.11) and (3.6.12) can be evaluated as:

Zmn =
ηπan

2
J1(kan)H2

0 (kRmn),m 6= n (3.6.14)

Zmm =
ηπam

2
H2

1 (kam)− ηεrm
k(εrm − 1)

(3.6.15)

Equation (3.6.10) can be solved to compute the coefficients jn. These can be used

for calculating the total field Et
z or other useful quantities like the bi-static scattering

cross section given by:

σTM(φ) ∼=
kη2

4

∣∣∣∣∣
N∑
n=1

jn
2πan
k

J1(kan)ek(xncos(φ)+ynsin(φ))

∣∣∣∣∣
2

(3.6.16)

For practical problems, often the size of this matrix equation will be so large that

direct inversion is not practical. Iterative solutions are widely used for the solution

of such matrices. In the following chapters, we will discuss various Krylov subspace

iterative methods and some recently proposed novel methods based on domain de-

composition techniques.

3.7 Validation of the discretisation scheme

Before closing this chapter, validation of the results obtained using the discretisation

scheme in Section (3.6) is done with an available analytical solution. For this pur-

pose, a homogeneous infinite dielectric cylinder of circular cross-section is analysed.
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The radius of the cylinder is r = 0.5λ and the relative permittivity εr = 2 − 0.8.

The incident field is produced by a TM plane wave of frequency 800 MHz prop-

agating along the +x direction with its polarisation parallel to the cylinder’s axis.

The scattered field Es
z produced by this field will be computed using an analytical

solution method [32]. It is compared to the results from the IE-MoM approach in

Section (3.6).

3.7.1 Analytical formulation of dielectric cylinder

A standard analytical method for calculating the scattered field is the classical eigen-

function solution (Mie series) [16, 59]. The Mie series is applicable only to geometries

which permits formulation in separable coordinate systems. In this section we review

a method [32] for calculating the scattered field from a dielectric cylinder using the

eigenfunction expansion of the total field. Consider an incident TM plane wave prop-

agating along the +x-direction with its polarisation parallel to the cylinder’s axis. It

is expressed as:

Ei
z = e−k0ρcosφ =

∞∑
n=−∞

j−nJn (k0ρ) enφ (3.7.1)

Here, k0 is the wavenumber in free space. The scattered field external to the cylinder

(Es
ze) is given by [32]:

Es
zd =

∞∑
n=−∞

j−nATMn H(2)
n (k0ρ) enφ (3.7.2)

where,

ATMn =

η0
ηd
Jn (k0a) J

′
n (kda)− J ′n (k0a) Jn (kda)

Jn (kda)H
(2)′
n (k0a)− η0

ηd
J ′n (kda)H

(2)
n (k0a)

(3.7.3)

Here, ηo and ηd are the wave impedences in free space and within the dielectric object,

respectively. kd is the wavenumber in the dielectric. The scattered field inside the

dielectric is:

Es
zd

=
∞∑

n=−∞

j−nBTM
n Jn (kdρ) enφ (3.7.4)
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where,

BTM
n =

−2/πk0a

Jn (kda)H
(2)′
n (k0a)− η0

ηd
J ′n (kda)H

(2)
n (k0a)

(3.7.5)

3.7.2 IE-MoM formulation of dielectric cylinder

A TM planewave propagating in the +x-direction impinges an infinite dielectric object

with a circular cross-section. The incident field of frequency 800 MHz is given by:

Ei
z = e−k0ρ cosφ (3.7.6)

From now on, the z subscript will be avoided as the electric field is always polarised in

the z direction. This incident field interacts with the object and produces a scattered

field Es. The scattered field can be expressed as a volume integral convolving the total

electric field at each point with the two-dimensional free space Green’s function [6].

The resultant integral equation is:

Ei (r) = Et (r) + Es (r) (3.7.7)

where

Es (r) =


4

∫
s

χ (r′)Et
z (r)H

(2)
0 (k0 |r− r′|) ds′ (3.7.8)

In Equation (3.7.8), χ(r) is the contrast at r given by:

χ (r) = k2 (r)− k2
0 (3.7.9)

k0 is the background wavenumber and k(r) is the wavenumber at the point r. H
(2)
0 is

the zeroth order Hankel function of the second kind. The electric fields throughout the

volume of the scatterer are solved by introducing N pulse basis and testing functions.

The pulse basis functions are defined on identical square cells ∆n and point matching

at the cell centres, that is:
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Et (r) =
N∑
n=1

Jnpn (r) (3.7.10)

where,

pn (r) =

1 r ∈ ∆n

0 elsewhere
(3.7.11)

The Galerkin’s procedure results in a dense matrix equation of order N .

ZEt = Ei. (3.7.12)

The matrix elements Zmn are given by:

Zmn = C1J1(k0a)J1(k0Rmn)− H0(k0Rmn), m 6= n (3.7.13)

Zmm = 1 +
C1

k0

J1(k0a)− H1(k0a)− 4

k2
0

, m = n (3.7.14)

where, C1 =
2πaγ

4

and γ = k2(n)− k2
0

Here, Rmn is the distance between cells m and n, η0 and k0 are the impedance and

wave-number of the background medium respectively. a is the radius of a circle of

equal area ds.

3.7.3 Comparison of the analytical and IE-MoM results

A surface plot of the magnitude of Et
z on the cross-section at z = 0 computed using

the analytical solution is shown in Figure (3.7). The MoM matrix in (3.7.12) is

ivnverted and the solution is plotted in Figure (3.8). In Figure (3.9), a comparison

is made between the above two solutions at y = 0. In Figure (3.10) a comparison

is made between the above two solutions at x = 0. These results confirm that the

IE-MoM method will converge to exact results.
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Figure 3.7: Magnitude of the total electric field (Et
z) computed using the analytical

method.
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Figure 3.8: Magnitude of the total electric field (Et
z) computed with the EFIE-MoM

method.
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Figure 3.9: Comparison of the magnitude of the total electric field (Et
z) at y = 0 in

the object.
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Figure 3.10: Comparison of the magnitude of the total electric field (Et
z) at x = 0 in

the object.
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3.8 Discretisation requirement

For successful implementation of the IE-MoM approach, the size of the resultant

linear equation to be solved depends on the electrical size of the object. To take care

of the material-dependent wavelength inside the dielectric, one must be careful about

the discretisation size used. For 2-dimensional surface areas modelled using the EFIE,

an estimation of the minimum number of discretisation cells needed to discretise the

object is given by [44]:

N =
A

λ2
d

D2
λ (3.8.1)

A is the area of the object (m2), Dλ is the number of discretisation cells used per λd

where λd is the wavelength inside the object, given by:

λd =
λ0√
|εr|

(3.8.2)

Here, λ0 is the free-space wavelength and εr is the relative permittivity of the dielectric

object. Typically, Dλ must be greater than 10 [44]. According to Equation (3.8.1),

when the object size or εr increases, N grows rapidly. For electrically large objects

operating at high frequencies, N becomes too large for computations on desktop

computers. Domain decomposition methods can be used to circumvent this limitation

and to implement EM solvers for small scale computers.
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Chapter 4

Numerical methods for CEM

The discretisation of the integral equations governing the scattering problem results

in linear equations of the form:

Ax = b (4.0.1)

of size N×N . From a purely mathematical point of view, determination of x is trivial

but, when N is large, the task of computing x may become computationally expensive

or even impossible. Often, the main constraint in computing the solution x is the

available computational resources. Even with the availability of high-end number-

crunching machines and huge parallel and grid computing resources, inversion of large

matrices is still a computationally demanding job. The traditional way to solve (4.0.1)

is to employ Gaussian elimination [14]. This process can be implemented using

O(N3) floating point operations. The memory requirement is O(N2). These methods

are not suitable if A is large and sparse. A variant of the Gaussian elimination

is known as Gauss Jordan Method, this requires O(N3/2). For large system of

equations this difference will be significant. Anyway all the direct methods require

operations of the order O(N3).

Another approach to solve (4.0.1) is based on the solution of a nearby linear

system, with a matrix that is computationally easy to manipulate both in terms of
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storage and number of operations needed. These methods generate a sequence of

approximate solutions x(k). Well known examples for methods of this type are Gauss-

Seidel, Jacobi method, Successive Over Relaxation(SOR), etc. All iterative methods

require the computation of a matrix-vector product which is an O(N2) operation.

This leads to operations of order O(nN2) for n iterations. However, this may be a

bottleneck. Therefore, in Section (4.5) a survey of more efficient iterative methods for

solving such large matrices will be reviewed. This highly successful class of methods,

known as Krylov subspace iterative methods, are widely used in CEM.

4.1 Direct methods for solving Ax = b

Most text books in numerical linear algebra start with the introduction of these meth-

ods as they play an essential role in understanding how the numerical solutions might

encounter instabilities if the algorithm has draw backs. A common trend in scientific

computing is to break complicated objects into more elementary components. Fac-

toring big matrices into matrices that are easy to deal with helps in solving them

easily in parts. Most of the direct methods utilise this idea and create equivalent

triangular systems that are easy to solve. The most basic and commonly used direct

method is the Gaussian elimination, Gaussian elimination with partial pivoting is the

most fundamental algorithm used for the solution of linear algebraic equations [36].

It solves the linear equation in two parts. 1) Forward elimination: this transforms the

the system of equations to a triangular or echelon form [36]. 2) Back substitution:

This part finds the solution of the triangular system. The only method we use from

this class of direct methods is the LU decomposition.
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4.2 Gaussian elimination

If Ax = b is a nonsingular system, then the Gaussian elimination reduces A to

an upper-triangular matrix using elementary row operations. In this process, the

algorithm systematically transforms one system into another simpler, but equivalent,

system. The elimination process relies on simple operations such as row interchange,

addition, subtraction and multiplication. To illustrate the method, let us consider a

3× 3 linear equation:


2 1 1

6 2 1

−2 2 1




x

y

z

 =


1

−1

7

 (4.2.1)

Forward elimination

For convenience, we will adapt a compact notation for the coefficients in Ax = b:


2 1 1 1

6 2 1 −1

−2 2 1 7

 (4.2.2)

At each step, the strategy is to select one position, called the pivot position, and to

eliminate all terms below this position in the same column using the aforementioned

elementary operations. The coefficient in the pivot position is called a pivot. The

equation in which the pivot lies is called the pivotal equation. Only nonzero numbers

can be taken as pivots. If a coefficient in a pivot position is zero, then the pivotal

equation is interchanged with an equation below it to get a nonzero pivot. To start

with, if not zero, a11 is taken as the first pivot. In (4.2.2), to eliminate all terms

below the first pivot 2, we subtract three times the first equation from the second to

produce an equivalent system:
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R2 − 3R1 →


2 1 1 1

−1 −2 −4

−2 2 1 7

 (4.2.3)

In (4.2.3), add the first equation to the third equation to produce the next equivalent

system:

R1 +R3 →


2 1 1 1

−1 −2 −4

3 2 8

 (4.2.4)

Select the next pivot by moving down and to the right (a22). If this coefficient is

not 0, then take it as the next pivot. Otherwise, interchange with an equation below

this position to bring a nonzero number into a22. In (4.2.4) we can select −1 as the

next pivot. Add three times the second equation to the third equation to produce

the equivalent system in (4.2.5).

R3 + 3R2 →


2 1 1 1

−1 −2 −4

−4 −4

 (4.2.5)

(4.2.5) is a diagonal system as required. If no zero pivots are encountered, then

row interchanges are not necessary, and the reduction can be accomplished by using

only elementary row operations. A triangular system can be easily solved using a

procedure known as back substitution.

Back substitution

Solving the system in (4.2.5) gives:

z =
−4

−4
= 1 (4.2.6)

Substituting z = 1 back into the second equation in (4.2.5):

y = 4− 2z = 4− 2(1) = 2 (4.2.7)
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Substituting z = 1 and y = 2 back into the first equation in (4.2.5):

x =
1

2
(1− y − z) =

1

2
(1− 2− 1) = 1 (4.2.8)

Now the complete solution is: 
x

y

z

 =


−1

2

1

 (4.2.9)

If no zero pivots are encountered, then row interchanges are not necessary, and the

reduction can be accomplished by using only elementary row operations. Gaussian

elimination with back substitution applied to an N ×N system requires:

N3

3
+N2 − N

3
multiplications or divisions (4.2.10)

and

N3

3
+
N2

2
− 5N

6
additions or subtractions (4.2.11)

As N grows, the N3

3
term dominates in both expressions. Gaussian elimination with

back substitution on an N ×N system requires operations of the order O(N3).

4.3 LU decomposition

If A in (4.0.1) is nonsingular, then A = LU is a product of a lower-triangular matrix

L and an upper-triangular matrix U . The process is called an LU factorization of

A. Notice that U is the end product of the Gaussian elimination, it has pivots on

its diagonal. L has 1’s on its diagonal. In L the lower diagonal entries lij are the

multipliers used in the elimination. Once the LU factors of the matrix A have been

obtained, it is relatively easy to solve the linear system (4.0.1) by rewriting it as

L(Ux) = b and setting y = Ux The two triangular systems Ly = b and Ux = y is
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equivalent to (4.0.1). To explain the method, let us consider the linear system in

(4.2.2). Operations on equivalent systems (4.2.3) - (4.2.3) can be represented by a

series of matrix multiplications.

R2 − 3R1 →


2 1 1 1

−1 −2 −4

−2 2 1 7

 (4.3.1)

R1 +R3 →


2 1 1 1

−1 −2 −4

3 2 8

 (4.3.2)

R3 + 3R2 →


2 1 1 1

−1 −2 −4

−4 −4

 (4.3.3)

Operations on the LHS of these equivalent systems can be executed using left-hand

multiplication with elementary matrices Gi

G3G2G1 =


1 0 0

0 1 0

0 3 1




1 0 0

0 1 0

2 0 1




1 0 0

−3 1 0

0 0 1

 =


1 0 0

−3 1 0

−7 3 1

 (4.3.4)

That is G3G2G1A = U , so that A = G−1
1 G−1

2 G−1
3 U = LU , L is the lower-triangular

matrix.

L = G−1
1 G−1

2 G−1
3 =


0 0 1

0 0 0

0 0 0

 (4.3.5)

Clearly A is a product of L and U . Note that U has pivots in its diagonal while L

has 1′s in its diagonal.

Once L and U are determined Ax = b can be rewritten as:
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L(Ux) = b (4.3.6)

if y = Ux (4.3.7)

Ly = b (4.3.8)

The lower-triangular system Ly = b can be solved by forward substitution:

y1 = b1, yi = bi −
i−1∑
k=1

likyk for i = 2, 3, . . . , n. (4.3.9)

Once y is known, the upper-triangular system Ux = y can be solved using back

substitution:

xn =
yn
unn

(4.3.10)

xi =
1

uii

(
yi −

n∑
k=i+1

uikxk

)
for i = n− 1, n− 2, . . . , 1. (4.3.11)

If the LU factors of A were computed and saved when the original system was solved,

then they need not be recomputed for a new RHS. That is, the operation counts for

each subsequent system are on the order of N2. We will use the LU decomposition

for inverting matrices when N is of the order of a few hundred. Beyond this limit we

will use iterative methods outlined in Section (4.5).

4.4 Classical iterative methods

All classical iterative methods for solving Ax = b start with an initial guess x0 (zero,

if nothing better is available). At the mth iteration step, the updated estimate for x

is :

xm = xm−1 + hm (4.4.1)
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Here, hm is a chosen correction step. The best possible correction step would be the

current error vector:

fm−1 = x∗ − xm−1 (4.4.2)

But as the unique solution x∗ is unknown, fm−1 is also unknown and cannot be used

as a correction. The error fm−1 would solve the residual equations:

Afm−1 = rm−1 (4.4.3)

where, rm−1 = b − Axm−1. The idea behind classical iterative methods is to solve a

related problem [58]:

Mhm = rm−1 (4.4.4)

where the matrix M is close to the original matrix A and is easy to manipulate in

the iteration. The mth iteration step of a basic iterative method can be summarised

as:

Compute residual vector : rm−1 = b− Axm−1 (4.4.5)

Solve the linear system : Mhm = rm−1 (4.4.6)

Update the previous iterate : xm = xm−1 + hm (4.4.7)

The principal operations in this iteration are the matrix-vector multiplications in

(4.4.5) and the solution of the linear system with M in (4.4.6). If M is independent

of the iteration step m, then the resulting iteration schemes are called Stationary

iterative methods. Classical methods such as the Richardson, Jacobi, Gauss-Seidel,

Successive Over Relaxation(SOR) and Symmetric Successive Over Relaxation (SSOR)

methods, etc. are stationary iterative methods [14]. If A is decomposed as:

A = D − L− U (4.4.8)

where, D is diagonal, −L and −U are strictly lower and upper triangular respectively,

then the stationary methods are classified as in Table (4.1).
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M Stationary method
1

ω
I, (ω 6= 0) Richardson

D Jacobi
D − L Gauss Seidel
1

ω
D − L, (ω 6= 0) SOR

ω

2− ω

(
1

ω
D − L

)
D−1

(
1

ω
D − U

)
, (ω 6= {0, 2}) SSOR

Table 4.1: Classification of stationary iterative methods based on the structure of
iteration matrix

There are block versions of these methods [14]. Stationary methods are implemented

by splitting the coefficient matrix A = M − (M − A). Then Ax = b is transformed

into a fixed point form:

Mx = (M − A)x+ b (4.4.9)

x = M−1(M − A)x+M−1b (4.4.10)

x = Tx+ c (4.4.11)

where, T := I−M−1A is the iteration matrix and c := M−1b. The mth iteration step

can be written as:

xm = Txm−1 + c (4.4.12)

The suitability of implementing an iteration of the form (4.4.12) lies in the ease

of solving a linear system with T as the matrix. Convergence of (4.4.12) depends

on the eigenvalues of T. These methods will converge only if the spectral radius

ρ(T ) := max|λ| : λ ∈ Λ(T ) of T is strictly less than one [14].
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4.5 Why Krylov methods?

The origin of this class of methods is deeply rooted in approximation theory and,

in particular, in orthogonal polynomials. Aleksei Nikolaevich Krylov [36] showed

how a sequence of the form b, Ab,A2b, . . . can be used to construct the characteristic

polynomial for a matrix. The minimal polynomial [36] of A can be used to express

A−1 in terms of powers of A. This shows the solution to (4.0.1) x = A−1b lies in a

Krylov space whose dimension is the degree of the minimal polynomial of A. If the

minimal polynomial A has a lower degree, then the dimension of the space in which

an algorithm will have to search for a solution will be smaller than N . Thus, the

Krylov space, when used as a search space for x, might achieve faster convergence.

Another advantage of these methods is that they do not require the matrix A

to be stored, but merely needs an implicit subroutine which when given a vector

x returns Ax. In electromagnetics, one often comes across such linear equations

where, A is an implicit linear operator acting on some vector. Krylov methods solve

Ax = b by repeatedly performing matrix-vector multiplications involving A. Krylov

methods can be again subdivided according to the constituent procedures used in

the algorithm [65, 36]. All Krylov methods start with an initial guess x0 and correct

it towards a more accurate solution in each iteration. At the kth iteration, Krylov

methods produce an approximate solution xk from a Krylov space spanned by k

vectors. A good candidate for this vector is b, because b is problem dependent.

K(A, b) = span
{
b, Ab,A2b, . . . , Ak−1b

}
(4.5.1)

It was in the early 50s, that a number of Krylov subspace methods appeared

mainly due to Lanczos [30], Arnoldi [1] and Hestenes and Stiefel [18], who proposed

different versions of the well known Conjugate Gradient method. Krylov methods are
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projection methods, where N -dimensional problems will be projected into a lower-

dimensional (say k) Krylov subspace. So these methods are sometimes termed as

Krylov projection methods. The associated Krylov sequence for Equation (4.0.1) is

the set of vectors b, Ab,A2b, A3b, . . . , Ak−1b, which can be computed using a subroutine

A( ) to give A(b), A(Ab), A(A(Ab)), . . .. The corresponding Krylov subspaces are the

spaces spanned by larger groups of these vectors. K = (b, Ab, . . . , Ak−1b) is termed

as the Krylov matrix.

It is easily observable that the Krylov sequence tends to become nearly linearly

dependent. As k increases, vectors in Krylov sequence almost become multiples of

each other. The directions of the vectors Akb tend to converge to the direction of the

largest eigenvalue of A. This means that K is ill conditioned. This difficulty can be

overcome by replacing K by its QR factorization [65]:

K = Qn×kRk×k (4.5.2)

If A is hermitian, the reduced matrix will be tridiagonal, otherwise it will have Hes-

senberg form [65]. A complete reduction of a large A into Hessenberg form by an

orthogonal similarity transform can be written as A = QHQ∗ or AQ = QH. If A is

large, computation of the full reduction is not practical. Instead, the first n columns

of AQ = QH is often considered. There are numerous methods based on the Krylov

approach, all of them are built upon a few fundamental ideas. In the next section,

the Arnoldi and Lanczos methods are reviewed, which are the foundations behind

the methods used in this thesis. The orthonormal basis for the Krylov subspace can

reduce a matrix to upper Hessenberg form. Matrices with orthonormal columns are

perfectly conditioned. The eigenvalues of H are called the Ritz values for A. They

are often a good approximation to the extreme eigenvalues of A, especially when A

is Hermitian. Now the task is the computation of orthonormal bases for the Krylov

subspaces. As mentioned above, the connection between the tridiagonalisation and

55



QR factorisation of K(A, b) will be used. Forthcoming subsections explore this idea.

4.6 QR Factorisation

The QR factorisation is a sequential construction of orthonormal vectors q1, q2, . . .

that span a column space of A ∈ Cm×n (m ≥ n), assuming that A has full rank n.

The sequence should have the property:

span{q1, q2, . . . , qj} = span{a1, a2, . . . , aj} j = 1, 2, . . . , n (4.6.1)

Consider an equation of the form [65]:

 a1 . . . an

 =

 q1 . . . qn+1




r11 . . . r1n

. . .
...

rn,n

 (4.6.2)

Here, the diagonal entries rjj are nonzero. Expanding (4.6.2):

a1 = r11q1

a2 = r12q1 + r22q2 (4.6.3)

a3 = r13q1 + r23q2 + r33q3

an = r1nq1 + r2nq2 + . . .+ rnnqn

Equation (4.6.3) can be written as a compact matrix equation.

A = QR (4.6.4)

Equation (4.6.4) is known as the QR factorisation of A. Equation (4.6.3) can be

implemented as an algorithm to construct Q and R from A. The Gram-Schmidt

orthogonalisation algorithm does this. At the jth step, the process finds a unit vector

qj ∈ span {a1, a2, . . . , aj} that is orthogonal to q1, q2, . . . , qj−1.
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q1 =
a1

r11

q2 =
a2 − r12q1

r22

q3 =
a3 − r13q1 + r23q2

r33

(4.6.5)

...

an =
an −

∑n−1
i=1 rinqi
rnn

An algorithm that implements (4.6.5) is known as the classical Gram-Schmidt orthog-

onalisation.

Algorithm Classical Gram-Schmidt

1. for j = 1, 2, . . . , n

2. vj ← aj

3. for i = 1, 2, . . . , j − 1

4. rij ← q∗i aj

5. vj ← vj − rijqi
6. rjj ← ‖vj‖

7. qj ← vj/rjj

8. return

The Gram-Schmidt algorithm is a process of triangular-orthogonalisation, making

the columns qj of an orthonormal matrix Q via sequential multiplication of vectors

ri of an upper-triangular matrix R. Numerically this turns out to be unstable due to

rounding errors on a computer [36]. The modified Gram-Schmidt orthogonalisation

that is free from this draw back is given in Section (4.7). Once the QR factorisation is

done, to solve Ax = b we can write QRx = b or Rx = Q∗b. If Q and R are computed,

owing to the triangular nature of the LHS one can easily solve the new system.
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4.7 Modified Gram-Schmidt

In the classical Gram-Schmidt algorithm, a single orthogonal projection of rank m−

(j − 1) is computed for every j. In the modified Gram-Schmidt the same projection

is computed by a sequence of j− 1 projections of rank m− 1. The projector notation

can be developed as follows [65], consider a sequence:

q1 =
P1a1

‖P1a1‖
, q2 =

P2a2

‖P2a2‖
, . . . qn =

Pnan
‖Pnan‖

(4.7.1)

In Equations (4.7.1), Pj denotes an orthogonal projector which is a m × m matrix

of rank m − (j − 1) that projects Cm onto span{q1, . . . , qn}. Note that P1 = I and

Pj = I −Qj−1Q
∗
j−1 The rank-one orthogonal projector that isolates the components

in the direction of q can be denoted as:

Pq = qq∗ (4.7.2)

For each j the classical Gram-Schmidt algorithm computes the orthogonal projection

of rank (m− j − 1) given by :

vj = Pjaj (4.7.3)

Pj = P⊥qj−1
, . . . , P⊥q2P⊥q1 (4.7.4)

⊥ denotes the orthogonality. In the modified Gram-Schmidt algorithm, (4.7.3) is

replaced with (4.7.5):

vj = P⊥qj−1
, . . . , P⊥q2P⊥q1aj (4.7.5)

Mathematically (4.7.3) and (4.7.5) are equivalent, but the sequence of arithmetic

operations in them are different. In finite precision computer arithmetic the new

sequence introduces smaller errors [65]. The modified Gram-Schmidt algorithm is

given below.

Algorithm Modified Gram-Schmidt

1. for i = 1, 2, . . . , n
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2. vi ← ai

3. for i = 1, 2, . . . , n

4. rii ← ‖vi‖

5. qi ← vi/rii

6. for j = i+ 1, . . . , n

7. rij ← q∗i vj

8. vj ← vj − rijqi
9. return

4.8 Lanczos iteration

When A is Hermitian, A∗ = A impliesH∗ = (Q∗AQ)∗ = H and symmetric Hessenberg

matrices are tridiagonal. Denote H as T to symbolise the tridiagonal nature:

T =



α1 β1

β1 α2
. . .

. . . . . . . . .

. . . . . . βn−1

βn−1 αn


(4.8.1)

Here, Q = (q1, q2, . . . , qn) and consider β0 = 0 and qn+1 = 0. Equating jth column in

AQ = QT gives a three-term recurrence relation:

Aqj = βj−1qj−1 + αjqj + βjqj+1 (4.8.2)

or,

βjqj+1 = vj, where, vj = Aqj − αjqj − βj−1qj−1 for j = 1, 2, . . . , n (4.8.3)

The orthogonality of qj implies that:

αj = qTj Aqj and βj = ‖vj‖ (4.8.4)
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The Lanczos iteration is presented below [65]:

Algorithm Lanczos Iteration

1. b 6= 0 , β0 = 0, q0 = 0 q1 = b/ ‖b‖

2. for j = 1, 2, . . . , n

3. v ← Aqj or Aqn − βn−1qn−1 for stability

4. αj ← qTj v

5. v ← v − αjqj − βj−1qj−1

6. βj ← ‖v‖

7. if βj = 0 then quit

8. qj+1 ← v/βj

9. return

After the jth step we have an n×(j+1) matrixQj+1 = (q1, q2, . . . , qj+1) of orthonor-

mal columns. The qjs are called Lanczos vectors. If the iteration terminates because

β = 0 for j < n then it can be restarted with a new vector b which is orthogonal

to q1, q2, . . . , qj and a complete orthonormal set qn can be computed. Alternatively,

to compute a reduced tridiagonal decomposition, one can stop the Lanczos iteration

before completion

4.9 Arnoldi iteration

One way to extend the Lanczos process to asymmetric matrices is the Arnoldi method

[14]. Reduction of Am×m to Hessenberg form by an orthogonal similarity transform

can be written as A = QHQ∗ or AQ = QH. The Arnoldi iteration involves a

column-by-column generation of the orthogonal matrix Q. If m is large full reduction

is tedious, instead we can consider the first n columns of AQ = QH. Let Qn be the

m× n matrix whose columns are the first n columns of Q:
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Qn =

 q1 . . . qn

 (4.9.1)

It is straightforward to notice that here, Q∗AQ = H, where H is a Hessenberg matrix.

Let Hn be the (n+ 1)× n upper left section of H

Hn =



h11 . . . h1n

h21 h22
...

. . . . . .

hn,n−1 hn,n

hn+1,n


(4.9.2)

Now, one can write:

AQn = Qn+1Hn (4.9.3)

that is:

 A


 q1 . . . qn

 =

 q1 . . . qn+1




h11 . . . h1n

. . .
...

hn+1,n

 (4.9.4)

The nth column of this equation can be written as:

Aqn = h1nq1 + . . .+ hnnqn + hn+1,nqn+1 (4.9.5)

Equation (4.9.5) shows that qn+1 satisfies an (n + 1)-term recurrence involving itself

and the previous Krylov vectors. The Arnoldi Iteration [65] is the Gram-Schmidt

iteration that implements Equation (4.9.5).

Algorithm : Arnoldi Iteration

1. b = arbitrary, q1 = b/ ‖b‖
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2. for n = 1, 2, 3, . . .

3. v ← Aqn

4. for j = 1 to n

5. hjn ← q∗j v

6. v ← v − hjnqj
7. hn+1,n← ‖v‖

8. qn+1 ← v/hn+1,n

9. return

After the kth step, we have an n×(k+1) matrix Qk+1 = (q1, q2, . . . , qk+1) of orthonor-

mal columns. The Arnoldi algorithm will not be as efficient as the Lanczos because

of the Hessenberg matrix instead of a tridiagonal one. It can be easily noticed that

the Arnoldi algorithm is just the modified Gram-Schmidt process [14].

It is evident from (4.9.5) that qj form bases of the successive Krylov subspaces

generated by A and b:

Kn = span{b, Ab, . . . , An−1b} = span{q1, q2, . . . , qn} ⊆ Cm (4.9.6)

Note that vectors qj are orthonormal, so these are orthonormal bases. The Arnoldi

process is therefore a method for construction of orthonormal bases for successive

Krylov subspaces. qj are called Arnoldi vectors.

4.10 Various Krylov methods

In our study, we will deal with inhomogeneous objects and the MoM matrices involved

in computations will be asymmetric. A classification of suitable Krylov subspace

iterative methods based on matrix properties is given in Table (4.2).

In Table (4.2), CG is the Conjugate Gradient, and GMRES is the Generalised Minimal

RESidual method. The CG algorithm requires that the matrix A is positive-definite
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Ax=b Ax = λx

A=A* CG Lanczos
A 6= A* GMRES Arnoldi

Table 4.2: Comparison of matrix properties and Krylov methods

and hermitian. There are other variants of the Krylov family where A need not be

symmetric. In all of these methods projection into the Krylov subspaces reduces the

original problem to a sequence of matrix problems of dimensions n = 1, 2, 3, . . ..

4.10.1 Conjugate Gradient Method

The Conjugate Gradient Method (CGM), famously known as the CG-method is

the original Krylov subspace iteration. Discovered independently by Hestenes and

Stiefel [18] in 1952, the CGM is the most common iterative method. It solves symmet-

ric positive definite systems of equations quickly if eigenvalues are well distributed [65]

If A ∈ Rn×n is symmetric and positive definite, consider a function defined by:

φ(x) =
1

2
xTAx = xT b (4.10.1)

where b ∈ Rn, Its gradient is given by:

∆φ(x) = Ax− b (4.10.2)

A unique minimizer for φ is the the solution x = A−1b. Thus any attempt to minimize

φ can be used to find the solution x. Since x is somewhere in K one can try to

minimize φ over K. One approach is the method of steepest descent. In this, the

current approximation xj is updated by adding a correction term directed along the

negative gradient:
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−∇φ(xj) = b− Axj = rj (4.10.3)

xj+1 = xj + αjrj (4.10.4)

where, αj =
rTj rj

rTj arj
, because this α minimizes φ(xj+1). The rate of convergence can be

slow if the ratio of eigenvalues λmax(A)/λmin(A) is large. Geometrically, this means

that the surface φ can be highly distorted and in the steepest decent, the corrections

can move back and forth without going to the lowest point quickly.

A workaround for this is to replace search directions rj by vectors q1, q2, . . . that

are conjugate to each other such that qTi Aqj = 0 for i 6= j. The idea is to start the

iteration with x0,

x1 = α1q1, where, q1 = r0 = b and α1 =
rT0 r0

rT0 Ar0

(4.10.5)

In the second step, use the direction vector:

q2 = r1 + β1q1, where, β1 is chosen to force qT2 Aq1 = 0 (4.10.6)

where, β1 =
rT1 r1

rT0 r0

, then set x2 = x1 + α2q2.

Algorithm CG Iteration

1. x0 = b, r0 = b, q1 = b

2. for j = 1, 2, 3, . . .

3. αj ←rTj−1rj−1/q
T
j Aqj (step size)

4. xj ←xj−1 + αjqj (approximate solution)

5. rj ←rj−1 − αjAqj (residual)

6. if ‖rj‖ = 0, or is satisfactorily small

7. then set x = xj and stop

8. else

9. βj ←rTj rj/rTj−1rj−1 (conjugation factor)
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10. qj+1 ←rj + βjqj (search direction)

Vectors produced by the CG algorithm after j steps are such that:

span {x1, x2, . . . , xj} = span {q1, q2, . . . , qj} = span {r0, r1, . . . , rj−1} = Kj (4.10.7)

The Algorithm will find the solution in k ≤ n steps. The CG iteration involves

many vector manipulations and one matrix-vector product. If A is dense the matrix-

vector product dominates the operation count, which is ∼ 2n2 for each iteration.

4.10.2 GMRES

After j Arnoldi iterations, one obtains Qj and Qj+1 with orthonormal columns that

span Kj and Kj+1 , respectively. Also, a j × j upper-Hessenberg matrix Hj:

AQj = Qj+1H̃j, here Hj =

(
H̃j

hj+1,je
T
j

)
(4.10.8)

Equation (4.10.8) suggests that least squares solution AQjz = b is the same as

Qj+1H̃z = b. Also, H̃jz = QT
j+1b. But QT

j+1b = ‖b‖2 e1, because the first column

in Qj+1 is b/ ‖b‖2

Algorithm GMRES Iteration

1. b = arbitrary, q1 = b/ ‖b‖2

2. for n = 1, 2, 3, . . .

3. v ← Aqn

4. for j = 1 to n

5. hjn ← q∗j v

6. v ← v − hjnqj
7. hn+1,n← ‖v‖

8. qn+1 ← v/hn+1,n
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9. Usr QR method to compute the least squares solution of H̃jz = ‖b‖2 e1

10. if ‖b− AQjz‖2 < tolerance, set x = Qjz

11. else go to line 3

12. return

The upper Hessenberg least square problem can be solved using rotations. The

main problem with GMRES is that the jth iteration involves O(kn) operations. Thus

a restart strategy is employed to minimize iterations and to limit memory usage. If m

steps are tolerable, the algorithm can be restarted with xm as initial guess for another

GMRES iteration.

4.11 Singular Value Decomposition

Many problems in Linear Algebra can be better dealt with by using the Singular

value Decomposition. The Singular Value Decomposition (SVD) is often seen as a

significant topic in linear algebra due to its potential application to a wide range of

data analysis. SVD has many practical and theoretical values. One special feature

of SVD is that it can be performed on any m × n matrix. It factors A into three

matrices U, S, V such that, A = USV T , where U and V are orthogonal matrices and

S is a diagonal matrix.

If A is a real m× n matrix, then there exists orthogonal matrices:

U = [u1, u2, . . . , un] ∈ Rm×m and V = [v1, v2, . . . , vn] ∈ Rn×n

such that,

UTAV = diag (σ1, σ2, . . . , σp) ∈ Rm×n p = min (m,n) (4.11.1)

where,

σ1 ≥ σ2 ≥ σp ≥ 0
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If A is a complex m× n matrix, then

A = UΣV ∗ (4.11.2)

In this case, there exists unitary matrices:

U = [u1, u2, . . . , un] ∈ Cm×m and V = [v1, v2, . . . , vn] ∈ Cn×n

The σi are called the singular values, the first p columns of V the right singular vec-

tors and the first p columns of U the left singular vectors. Singular values are the

eigenvalues of ATA, and the singular vectors are specialised sets of eigenvectors for

ATA and AAT . Constructive method used to derive the SVD can be used as an algo-

rithm but in practice sophisticated techniques exist, and all good matrix computation

packages contain numerically stable SVD implementations. The details of a practical

SVD algorithm are too complicated to be discussed in this thesis. A detailed descrip-

tion of such algorithms can be found in [65]. The practical algorithm for computing

the SVD is an implementation of the QR iteration applied to ATA without explicitly

computing ATA.
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Chapter 5

The Forward Backward Method

Recently, there has been much research into what may be termed physically inspired

iterative solutions, or informally known as current marching methods. Examples

include the method of ordered interactions [25] and the Forward Backward (FB)

method [20]. This chapter investigates an adaptive strip-size current-marching al-

gorithm which is applicable to dielectrics modelled using the Electric Field Integral

Equation (EFIE). The algorithm presented in this chapter constitutes an extension

of the ideas presented in [7] for conducting objects. These ordinary FB methods [7]

are seen to be not suitable for dielectric objects modelled with the EFIE. The new

algorithm introduced here is termed the Adaptive-Strip Forward-Backward (ASFB)

method. The performance of the ASFB when it is applied to dielectric scattering

problems will be studied in this chapter.

5.1 Numerical Procedure

Consider an infinite cylindrical dielectric scatterer as in Figure (5.1), illuminated by

a normally incident TM plane-wave. Ei is the incident electric field that would exist

in the absence of the scatterer. The total field anywhere in space is then given by the

sum of the incident and scattered electric fields where the scattered field Es is given
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Figure 5.1: An infinite homogeneous cylinder whose electrical properties are invariant
in the z-direction. The shaded region is the cross-section of the cylinder at z = 0.
The radius of the cylinder is denoted as r. A plane wave in the +x-direction with
frequency f illuminates the object normal to the surface of the cylinder.

by the following integral expression. For TM polarisation, the EFIE can be written

as [44]:

Ei
z(x, y) =

Jz
ωε0(εr − 1)

+ ωµ0Az (5.1.1)

The object is impinged by a TM plane wave of frequency f = 300 MHz. The radius

of the object is r = λ where, the vector potential Az is given by:

Az(x, y) =

∫ ∫
Jz(x

′, y′)
1

4j
H

(2)
0 (kR)dx′dy′ (5.1.2)

where

R =
√

(x− x′)2 + (y − y′)2 (5.1.3)

In this formulation, the z component of current density Jz is the primary unknown.

Following the discretisation process in Section (3.7.2), Equation (5.1.1) can be written
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as an N × N matrix equation (5.1.4). N is the number of basis functions used to

discretise the cross section of the object.

ZJ = Ei (5.1.4)

The matrix elements Zmn are given by:

Zmn =
ηπan

2
J1(kan)H

(2)
0 (kRmn) m 6= n (5.1.5)

Zmm =
ηπam

2
H

(2)
1 (kam)− jηεrm

k(εrm − 1)
m = n (5.1.6)

In Equations (5.1.5) and (5.1.6) Rmn is the distance between cells m and n, η and

k are the impedance and wave-number of the dielectric medium respectively. a is

the radius of a circle of equal area dxdy. In the discretisation process, according to

Equation (3.8.1) N will be large. As the electrical size of the object increases, it

becomes impossible to store or invert the impedance matrix Z. This leads to the

need for domain decomposition methods where it is possible to solve bigger problems

in steps, without having to deal with bigger matrices.

5.2 The Ordinary FB method

The FB method is implemented by breaking down the scatterer into smaller blocks

of size nofb × nofb. Then each sub-block is solved sequentially for the unknown basis

function amplitudes Jz in that block (henceforth denoted J for convenience) in a

manner that attempts to mimic the physical processes that create the current. This

can often yield fast convergence in a reduced number of iterations [7]. Mathematically,

the algorithm involves decomposing the Z matrix into blocks, the Z̃ij block containing

the interactions between basis functions residing in the ith and jth sub-regions on

the scatterer. Each iteration of a forward-backward algorithm involves solving two

equations. The first equation (5.2.1) is solved for the sub-regions i = 1 . . .m in turn

and is termed the forward sweep.
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Z̃iiJ̃
k
i = Ẽi −

i−1∑
j=1

Z̃ijJ̃
k
j −

m∑
j=i+1

Z̃ijJ̃
k−1
j (5.2.1)

where, Ẽi and J̃i are the ith sub-block vectors of Ei and J , respectively. Equa-

tion (5.2.1) is a matrix equation for the kth estimate of the currents on sub-region i.

Note that the right-hand side incident fields have been modified to include the effects

of the most up to date current estimates available for the other sub-regions. As it

involves a matrix of relatively low order, Equation (5.2.1) can be efficiently solved

using a conjugate gradient solver.

Figure 5.2: Interaction matrix Z subdivided into m blocks (Z̃) of equal size nofb×nofb
in the ordinary FB method.

Z̃iiJ̃
k+1
i = Ẽi −

i−1∑
j=1

Z̃ijJ̃
k
j −

m∑
j=i+1

Z̃ijJ̃
k+1
j (5.2.2)

Equation (5.2.1) is solved for i = m. . . 1 in turn and corresponds to a backward

sweep. The right-hand side incident fields have been modified to include the effects
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of the most up to date current estimates available for the other sub-regions. Being of

low order, Equation (5.2.2) can be efficiently solved using a conjugate gradient solver.

For the sake of clarity in comparing the FB method’s performance with other iterative

methods, a full FB iteration is considered to be one complete forward sweep followed

by a complete backward sweep. The convergence or divergence of the iteration process

is defined by computing how well the governing equation (5.1.4) is satisfied at each

iteration. The error δnofb in satisfying (5.1.4) after completion of the nth iteration is

given by:

δnofb =
‖ZJz − Ei

z‖2

‖Ei
z‖2

(5.2.3)

5.2.1 OFBM applied to homogeneous 2D cylinder

The OFB method is applied to the dielectric cylinder shown in Figure (5.1). The

interaction matrix Z is sub-divided into m blocks Z̃ of equal size nofb × nofb as

shown in Figure (5.2). The absolute error in the OFB iteration process given by

Equation (5.2.3) is plotted in Figure (5.3) The experiment is repeated for several

block sizes. Each fails to achieve convergence.

Figure (5.3) shows that the FB method is inappropriate even for a simple object.

This inability of the ordinary FB method is due to an improper decomposition of the

interaction matrix. Another reason for the OFB method’s failure is due to spurious

edge effects arising due to the improper decomposition. These edge effects will prop-

agate and consequently, distort the computation. In the next section, a new method

to overcome these problems of the OFB method is introduced.
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Figure 5.3: The OFB iteration applied to a 2D dielectric cylinder, with ε = 3 and
σ = 1.2. The object is impinged by a TM plane wave at frequency f = 300 MHz. The
radius of the object is r = λ. nofb is the number of basis functions in each sub-block.
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5.3 Adaptive-Strip FB method

Figure 5.4: 2D dielectric cylinder, with ε = 3 and σ = 1.2 radius r = λ. The number
of strips is given by Ns = 2r/dx, dx is the discretisation size.

Consider the corss-section of the dielectric cylinder impinged by a TM plane wave of

frequency f = 300 MHz. The radius of the object is R = λ. The object can be broken

into Ns strips of different sizes as shown in Figure (5.4). nasfb is the number of basis

functions in each strip. The complex permittivity of the dielectric is set to be ε = 3

and σ = 1.2. The interaction matrix Z is subdivided into Ns sub-blocks according to

the geometry of the object as shown in Figure (5.5). The ASFB algorithm determines

the strip width from the information obtained from the geometry of the object. The

added storage requirement due to this is just an Ns dimensional vector. Using this

information, the ASFB algorithm suitably subdivides the interaction matrix Z. The

interactions between basis function in each strip will be grouped together in a single

sub-matrix Z̃ and solved using the ASFB method. Equation (5.2.1) and (5.2.2) are

modified for the ASFB method. Equation (5.3.1) corresponds to the forward sweep
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Figure 5.5: Interaction matrix subdivided according to strip width. Note the adaptive
step size, this gives a superior performance compared to ordinary FB methods (For
convenient representation, the number of basis functions in each strip is set to be
1, 2, 3, 2 and 1)

and Equation (5.3.2) corresponds to the backward sweep.

Z̃s(i)J̃
k
s(i) = Ẽs(i) −

strip(i−1)∑
strip(1)

Z̃s(j)J̃
k
s(j) −

strip(m)∑
strip(i+2)

Z̃s(j)J̃
k−1
s(j) (5.3.1)

Z̃s(i))J̃
k+1
s(i)) = Ẽs(i)) −

strip(i−2)∑
strip(1)

Z̃s(j)J̃
k
s(j) −

strip(m)∑
strip(i+1)

Z̃s(j)J̃
k+1
s(j) (5.3.2)

In Equations (5.3.1) and (5.3.2) Z̃s(i) is the sub-matrix of Z containing basis functions

from the ith strip. A similar notation is used for sub-vectors of Ei and J . In an

adaptive FB method, the user can select the number of strips ns that can be joined

together for forming a single block Z̃.

The ASFB method makes room for a new approach for solving highly inhomoge-

neous and complex shaped objects. Since the sub-blocks in the interaction matrix will

be of different sizes nasfb × nasfb, one can use direct inversion methods for relatively
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smaller sub-blocks and various other Krylov methods for larger blocks. For highly

inhomogeneous objects divided into smaller strips, various Krylov methods will show

different performances depending on the electrical parameters in various strips. Thus

the algorithm can itself select suitable solvers for each sub-block from the information

provided in a database describing which solver is most suitable for different dielectric

properties.

5.3.1 ASFB method applied to homogeneous 2D Cylinder

The ASFB method is applied for a homogeneous 2D cylindrical dielectric impinged

by a TM plane wave of frequency f = 300 MHz. Dielectric properties are varied in

the range: ε = {1, 7} and σ = {0, 4}. The object can be broken into Ns strips of

different sizes as shown in Figure (5.4). The ASFB algorithm determines the strip

width from information about the geometry of the object. nasfb is the number of

basis functions in each strip. Also, a number of strips ns may be clubbed together to

form a single sub-block Z̃ in the ASFB method. Figure (5.6) shows ASFB method’s

convergence compared to that of the OFB method. It is seen that as the electrical

size of the object increases, ASFB method’s performance deteriorates. In order to

over come this inability of the ASFB, a number of buffer strips can be added to a

number of strips ns. The next section investigates this extension of the ASFB.

5.4 Buffered ASFB Method (BASFB)

As a means to improve the convergence properties of the ASFB, the Buffered ASFB

is investigated for dielectric objects. The ASFB method treats each strip as a phys-

ically isolated scatterer. This results in spurious edge effects that arise from this

isolation of the strips. These edge effects will propagate and consequently, distort the
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Figure 5.6: The ASFB method applied to 2D cylinder ( ε = 3.0 and σ = 1.2).
ASFB shows a superior performance compared to ordinary FB methods with 20 basis
functions in each sub-block.

computation if not suppressed. To eliminate this problem, one or more buffer strips

bi can be added to each strip. The inclusion of these buffer regions suppresses the

spurious edge effects that occur within the isolated strips of a dielectric object. The

buffering scheme in [7] can be applied with the ASFB method to improve it. Equa-

tions (5.3.1) and (5.3.2) can be modified to include buffer strips in ASFB method.

Equation (5.4.1) corresponds to the forward sweep and Equation (5.4.2) corresponds

to the backward sweep with buffers.

Z̃s(i∪(i+1))J̃
k
s(i∪(i+1)) = Ẽs(i∪(i+1)) −

strip(i−1)∑
strip(1)

Z̃s(j)J̃
k
s(j) −

strip(m)∑
strip(i+2)

Z̃s(j)J̃
k−1
s(j) (5.4.1)

Z̃s(i∪(i−1))J̃
k+1
s(i∪(i−1)) = Ẽs(i∪(i−1)) −

strip(i−2)∑
strip(1)

Z̃s(j)J̃
k
s(j) −

strip(m)∑
strip(i+1)

Z̃s(j)J̃
k+1
s(j) (5.4.2)

Equation (5.4.1) is solved for i = 1 . . .m and Equation (5.4.2) for i = m. . . 1. In

Equation (5.4.1), Z̃s(i∪(i+1)) denotes the sub-matrix Z̃ that contains interactions from
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strip(i) and strip(i+ 1), likewise for J̃ and Ẽ. At any update i only the J̃s(i) in that

strip will be updated. In Figure (5.7), the interaction matrix Z is subdivided into

Figure 5.7: The interaction matrix subdivided according to the strip width, during
forward sweep from 1 to i. For ith strip the very next strip (i+ 1) is used as a buffer.
During the backward sweep from i to 1, the (i− 1)th strip will be taken as a buffer.

blocks of different sizes Z̃i and a buffer is added to each block. For clarity of the

discussion, consider the strip sizes for i = 1, . . . , Ns to be 1, 2, 3, etc. In Figure (5.7)

for the ith strip the very next strip (i + 1) is used as a buffer. That is, during the

forward sweep, when i = 1, Z̃1 will be a 3 × 3 matrix which consists of interactions

from strip 1 and strip 2. Before moving to i = 2, only J̃1 will be updated. When

i = 2 in the BASFB iteration Z̃2 will be a 5 × 5 matrix which consists interactions

from strip 2 and strip 3, after this only J̃2 will be updated. This is repeated and a

forward sweep will be completed updating the whole J . When i = Ns, there will be

no buffer. During the backward sweep from i = m. . . 1, the (i − 1)th strips will be

taken as a buffer for the ith strip.
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5.4.1 BASFB method applied to homogeneous 2D cylinder

The BASFB method is applied to a homogeneous 2D cylindrical dielectric impinged

by a TM plane wave of frequency f = 300 MHz. Dielectric properties are varied in the

range: ε = {0, 7} and σ = {0, 4}. The object can be broken into Ns strips of different

sizes as shown in Figure (5.4). A number of strips ns may be clubbed together to

form a single sub-block Z̃ in the ASFB method. b is the number of strips added as

buffer strips with ns strips. Figure (5.4.1) plots the error in Equation (5.2.3) against

the iteration number.
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Figure 5.8: Absolute error given by Equation (5.2.3) for the object in Figure (5.1)
with ε = 3.0 and σ = 1.2. The BASFB shows a superior performance compared to
the ASFB method. ns is the number of strips and b is the number of buffers.

Figure (5.4.1) shows that the BASFB method is comparatively better than the

ASFB method. However, this marginally better performance comes form a relatively

expensive buffering scheme. It is seen that the buffer width required is often of the

same size of the width of the strip or even wider that it. The following figures show
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surface plots of the magnitude of Jz and the distribution of δ.
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Figure 5.9: Analytical solution for the cylindrical object with ε = 3.0 and σ = 1.2
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Figure 5.11: Polarisation current density Jz on the 2D cylindrical dielectric object
discretised into 1020 cells. ε = 3.0 and σ = 1.2. To solve for JZ, with the BASFB
method with ns = 1 and b = 1 is used.
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Figure 5.10: Polarisation current density Jz on the 2D cylindrical dielectric object
discretised into 1020 cells. ε = 3.0 and σ = 1.2. To solve for JZ, GMRES(10) was
used, which converged at outer iteration 9 (inner iteration 7), with relative residual
0.94e− 4
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Figure 5.12: Surface distribution of the error δ4
basfb in polarisation current density

Jz obtained from the BASFB method compared to the GMRES solution.
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Figure 5.13: Polarisation current density Jz on the 2D cylindrical dielectric object
discretised into 1020 cells. ε = 3.0 and σ = 1.2. To solve for JZ, BASFB method
with ns = 2 and b = 1 is used.
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Figure 5.14: Surface distribution of the error δ4
basfb in polarisation current density

Jz obtained from the BASFB method compared to the GMRES solution.
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Figure 5.15: Polarisation current density Jz on the 2D cylindrical dielectric object
discretised into 1020 cells. ε = 3.0 and σ = 1.2. To solve for JZ , ASFB method with
ns = 1 is used.

5.5 Final Comments on the FB Methods

As the electrical size of the object is increased, all the versions of the forward backward

methods presented in this chapter fail to converge. When the object size is increased

the BASFB method requires buffer regions wider than the width of the strip. This is

not satisfactory for a domain-decomposition method. We conclude that the forward-

backward algorithm based methods are not suitable for the electromagnetic analysis

of dielectric objects.

The FBM is semi-iterative in nature and lacks a global nature in its algorithm.

That is, in each iteration individual blocks are solved at different steps to find the

currents in that block. This is one reason behind the unpredictable behaviour of

solutions obtained via FBMs. In the following chapters of this thesis we verify the
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suitability of another domain decomposition method known as the Characteristic

Basis Function Method (CBFM) and develop it further.
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Chapter 6

The Characteristic Basis Function
Method (CBFM)

A recently developed domain decomposition method, termed the Characteristic Basis

Function Method (CBFM) [39, 46], is designed for solving large-scale electromagnetic

problems [34, 17] with limited computing resources. The CBFM uses a kind of macro

basis function [62] termed the characteristic basis function. The CBFM algorithm

permits the user to set an upper limit on the size of the matrix equation that must

be inverted while modelling a variety of electromagnetic problems. Even if the object

is electrically large, one can suitably decompose the object geometry, use the CBF

method and thus constrain the size of the matrix equation such that a direct method in

Chapter 4 can be used for its inversion. To date, the CBFM has not been extensively

used for the analysis of dielectrics objects [40]. A thorough study of the CBFM’s

efficiency for solving scattering problems involving dielectric objects is carried out in

this chapter.

6.1 Motivation and Advantages

Perfectly conducting objects (PEC) are quite successfully modelled using domain

decomposition (DD) methods like the FB Method and its various versions [7]. In
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Chapter 5 we saw that, as the object size and dielectric constant increases, the FB

algorithm based methods are shown to be incapable of solving scattering problems

involving dielectric objects. This is mainly due to the greater wave-effects inside the

object, which in turn brings about greater edge effects due to the imaginary edges

constructed for partitioning the object [2].

Rather than solving the whole object in a semi-iterative and block-wise way as in

the FB methods, the CBFM creates a single reduced or compressed matrix that can

be inverted using a stationary method. Theoretically, any large object can be solved

on a personal computer using the CBFM and a non-iterative solver. Depending on

the required accuracy and available computing resources, one can suitably choose the

CBFM parameters for a complete solution of objects of any size. The efficiency of

the CBF method is independent of the type of basis and testing functions used to

discretise the object [46]. The aforementioned advantages over contemporary meth-

ods which often need iterative methods makes the CBFM a suitable candidate for

scattering problems involving large objects.

Using the CBFM, the linear equation resulting from the MoM with N unknowns

can be compressed to another linear equation with M2 unknowns, where, M is the

number of imaginary patches that the CBFM creates to partition the object. Thus, in

the CBFM, the size of the resultant linear equation to be solved does not depend on

the dimension of the object. It depends only on the number of imaginary sub-domains

that the CBFM creates in the object. Even if the object to be modelled is electrically

large, the number of patches M that the CBFM creates on the object can be kept at a

manageable level. This property enables the CBFM to solve electrically large objects

using limited computing resources. In reality, the bigger the scatterer, the higher will

be the number of discretisation points used. This, in turn, requires more patches or

needs bigger patches covering larger portions of the object. In any case, the user can
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fix a tolerance for the accuracy required and select a suitable number of patches of

appropriate size so that the reduced matrix can be solved using a stationary method.

This chapter investigates the CBFM’s suitability for computing EM fields inside

dielectric objects modelled with the EFIE. Results calculated using the CBFM are

compared with the analytic solution obtained using the Mie series [32], where the later

exists. The CBF method is easily parallelisable and most suitable for shared memory

parallel computation. This will facilitate the use of massively parallel processors

emerging in the market to solve large EM problems quickly on desktop computers.

6.2 The CBF Formulation

The matrix equation resulting from the Method of Moments (MoM) solution method

of the EFIE [49] is denoted as:

ZJ = R (6.2.1)

Z is the N ×N matrix containing the coefficients of the interaction between different

cells in the object [44]. R is the excitation field vector of size N . J is the unknown

solution vector of size N that contains information related to the total electric field

on the object. According to Equation (3.8.1), for electrically large objects, N will be

large.

The CBFM begins by dividing the scatterer geometry into several patches as

shown in Figure (6.1) The MoM matrix elements that belong to each patch can be

easily computed at once and stored separately on the main memory. In Figure (6.1),

the object is partitioned into M = 16 distinct patches. Now, basis functions that

are characteristic of each domain are constructed. The characteristic basis functions

constructed for each patch are of two categories:
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• Primary basis: These arise from the self-interactions within the same patch,

one each for every patch, M primary basis functions in total.

• Secondary basis: These account for the mutual coupling of patch i with all

other patches. There will be M − 1 secondary basis functions for each patch,

M2 −M in total.

Figure 6.1: A 2-dimensional rectangular dielectric object divided into M = 16 patches
for constructing the CBFs, note the extended blocks i = 6 and 16.

6.2.1 Computation of primary basis functions

Let Ni be the number of unknowns in patch i. Each patch will be extended on all

sides to include buffer regions of width ∆b as shown in Figure (6.1) for patches 6 and

16. For the sake of clarity, consider an object divided into M = 3 patches, in Figure

(6.2). The coefficient matrix Z is subdivided into 9 blocks. Let N e
i be the number

of unknowns in these extended block-matrices. Elements of Z that belong to the ith

domain will be extracted from Z and a new matrix Z̃
(i)
e of dimension N e

i ×N e
i shall
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Figure 6.2: The coefficient matrix Z divided into 9 blocks. Note the extension of each
block to include a buffer region to form the extended block Z̃e.

be stored to the main memory. The primary basis Ji for the ith domain is computed

by solving Equation (6.2.2).

Z(i)
e J

(i)
i = R(i) (6.2.2)

R(i) is the N e
i × 1 dimensional vector taken out from R that corresponds to block i.

Equation (6.2.2) will be solved for i = 1, . . . ,M to find the primary basis for each

sub-block.

6.2.2 Computation of secondary basis functions

To construct the secondary basis functions arising from the mutual interaction of

block i with other blocks, Equation (6.2.3) will be solved M − 1 times.

Z(i)
e J

(i)
k = R

(i)
k (6.2.3)
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where,

R
(i)
k = −Z(i,k)J

(k)
k (6.2.4)

Here, J
(i)
k is the kth secondary basis for the ith block. R

(i)
k is the excitation vec-

tor resulting from the mutual coupling between block i and block k. If there is no

overlap between block i and block k, the excitation sub-vector R
(i)
k is given by Equa-

tion (6.2.4). Z(i,k) is an N e
i × Nk matrix formed from the MoM matrix Z. When

the ith block shares some unknowns with block k, let N c
i,k be the number of com-

mon elements. These elements will be eliminated from Z(i,k) and J
(k)
k making them

N e
i × (Nk −N c

i,k) and (Nk −N c
i,k)× 1 respectively. The excitation vector R

(i)
k is still

determined using (6.2.4).

6.2.3 Generation of the reduced matrix

M characteristic basis functions constructed for each patch will be ortho-normalised

using the modified Gram-Schmidt [14] procedure as described in Section (4.7). The

solution J can be expressed as a linear combination of the ortho-normalised CBFs as

given in Equation (6.2.5). Here, α
(i)
k are unknown coefficients to be determined. J

(i)
k

is the kth CBF of block i. Substituting (6.2.5) in (6.2.1) results in an over-determined

system of equations given by Equation (6.2.6):

M∑
k=1

α
(1)
k ϑ

(1)
k +

M∑
k=1

α
(2)
k ϑ

(2)
k + . . .+

M∑
k=1

α
(M)
k ϑ

(M)
k = (R) (6.2.6)

where,

ϑ
(i)
k =

(
(A1,i)

(
J

(i)
k

)
(A2,i)

(
J

(i)
k

)
. . . (AM,i)

(
J

(i)
k

))T
(6.2.7)

The over-determined system of equations (6.2.6) with α as unknowns can be com-

pressed to a linear equation (6.2.8) of size M2×M2. This is done by taking the inner
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 J

 =
M∑
k=1

α
(1)
k


(J

(1)
k )
.
.

(0)



+
M∑
k=1

α
(2)
k


(0)(
J

(2)
k

)
.

(0)



+ . . .+
M∑
k=1

α
(M)
k


(0)
(0)
.(

J
(M)
k

)
 (6.2.5)

product of (6.2.6) on both sides with ϑ
(j)†
q , where {q, j} = 1, 2 . . . ,M and † denotes

the conjugate transpose. Note that M2 will be termed Nc in further discussions.

Zcα = Rc (6.2.8)

Nc, the size of the compressed equation, can be kept low so that it can be solved

using a stationary method like LU decomposition.

6.3 Numerical Results

Scattering problems involving infinite cylindrical dielectric objects of various sizes

and cross-sectional shapes will be formulated and numerically implemented in the

following sections. The field components that are excited by a normally incident TM

plane wave are Ez, Hx and Hy. Only Ez, which is invariant in the z direction is

computed in this work. A cross-section of the dielectric object can be discretised into

N square cells, each with a side of width = ∆. The EFIE formulation in Chapter 3
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results in a matrix equation:

ZEt = Ei (6.3.1)

Ei is an incident plane-wave [32] and Et is the unknown total electric field. The

matrix elements in Z are given by:

Zmn = C1J1(k0a)J1(k0Rmn)− H0(k0Rmn) m 6= n (6.3.2)

Zmm = 1 +
C1

k0

J1(k0a)− H1(k0a)− 4

k2
0

m = n (6.3.3)

where, C1 =
2πaγ

4

and γ = k2(n)− k2
0

In Equations (6.3.2) and (6.3.3), Rmn is the distance between cells m and n, η =√
µ0/εr, H

2
0 is the zeroth order Hankel function of the second kind, k(n) is the wave-

number at cell n and a is the radius of a circle with equivalent area ∆2. The EFIE

solution will be compared with the Mie-series solution [32]. A varying buffer size

of width ∆b will be used in all test cases. Ei is a TM plane wave with frequency

f = 300− 800 MHz in the +x direction with a polarisation parallel to the cylinder’s

axis [32]. Dλ is the number of discretisation cells used per wavelength.

6.3.1 Validation of the CBFM

In order to validate the method, a homogeneous dielectric cylinder with circular

cross-section and εr = 2 and σ = 0.8 is considered. The object is impinged by a TM

plane wave of frequency f = 300 MHz. The radius of the object is r = 0.5λ0 and

Dλ = 10. The interaction matrix Z is created using Equations (6.3.2) and (6.3.3).

The MoM matrix (6.3.1) is directly solved using the GMRES method [14] with a

tolerance δg ≤ 1e− 05.
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The CBFM with M = 16 is applied to compute the total field Et produced on

the object. A buffer size of ∆b = ∆ is used. Surface plots of the magnitude of Et
z

computed using the Mie series, EFIE-MoM and CBFM are shown in Figures (6.3),

(6.4) and (6.5) respectively. A comparison of all the above solutions at z = y = 0 is

plotted in Figure (6.6). A comparison of these solutions at z = x = 0 is plotted in

Figure (6.7). Figures (6.6) and (6.7) show excellent agreement between the analytical

solution and the CBFM solutions.
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Figure 6.3: A surface plot of the magnitude of Et
z on the object computed using the

Mie series, Dλ = 10.
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Figure 6.4: A surface plot of the magnitude of Et
z on the object computed using the

EFIE, Dλ = 10.
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Figure 6.5: A surface plot of the magnitude of Et
z on the object computed using the

CBFM with M = 16 patches, Dλ = 10.
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Figure 6.6: A comparison of the magnitude of the Et
z on the object at y = 0 computed

using the Mie series, EFIE-MoM and CBFM.
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Figure 6.7: A comparison of the magnitude of the Et
z on the object at x = 0 computed

using the Mie series, EFIE-MoM and CBFM.

Figures (6.3) - (6.7) show that the CBFM can be used for the analysis of dielectric
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cylinders with circular cross-section. In next sections, we consider several test cases

with different cross-sectional shapes and sizes.

6.3.2 Homogeneous Infinite Circular cylinder

A number of infinite homogeneous dielectric cylinders with different electrical prop-

erties and sizes are examined. In all cases, TM plane waves of frequency in the range

f = 300 − 800 MHz are used as incident field. The radius of the object is varied

from r = 0.5λ to 2λ. The linear equation (6.3.1) is directly solved using the GMRES

method [14] with an error δg ≤ 1e− 05. The CBFM with M = 16 patches is applied

to find the total field Et produced on the object. A buffer size of ∆b is used in all

cases. Table (6.1) summarises results from all of the test cases.

Test

Case

f(MHz) R ε σ Dλ N ∆b κ δ

1 300 λ 2 0.8 15 576 2∆ 5.114 0.0084

2 300 λ 5 0.8 10 576 2∆ 44.635 0.0052

3 300 2λ 2 0.8 10 1024 1∆ 10.185 0.0141

4 300 2λ 2 0.8 10 1024 2∆ 10.148 0.0100

5 300 2λ 2 0.8 10 1024 3∆ 10.135 0.0084

6 300 2λ 2 0.8 10 1024 5∆ 10.135 0.0064

Table 6.1: Summary of results from test cases involving scattering from homogeneous
circular infinite cylinders with various parameters. R is the radius of the object, f is
the frequency of the incident field, Dλ is the number of discretisation cells used per
wavelength, ∆b is the buffer width used, Nc is the size of the reduced matrix Zc, κ
is the condition number of Zc and δ is the normalised error in satisfying Equation
(6.3.1).
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In Figures (6.8)-(6.20), magnitude of Et
z computed using the CBFM is compared

with the Mie series and EFIE solutions. It can be observed that as the buffer size

∆b is increased, CBFM solutions get closer to the EFIE solution. This confirms the

fact that the CBFM can be tuned to achieve accurate solutions for EM computations

involving dielectric objects. The main computational constraint in the use of CBFM

for large objects is the size of the reduced equation that needs to be inverted. This

in turn restricts the number of patches that has to be created to decompose the

scattering domain. If the object gets larger, one can keep M constant considering the

available RAM size on the computer and increase the buffer size appropriately. Note

that this does not add any significant burden to the overall computation time.
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Figure 6.8: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 2 at z = 0 computed using the Mie series.
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Figure 6.9: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 2 at z = 0 computed using the EFIE-MoM approach.
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Figure 6.10: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 2 at z = 0 computed using the CBFM with M = 16 patches.
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Figure 6.11: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 2 at z = x = 0 computed using the Mie series, EFIE-MoM and CBFM.
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Figure 6.12: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 2 at z = y = 0 computed using the Mie series, EFIE-MoM and CBFM.
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Figure 6.13: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 3 at z = x = 0 computed using the Mie series, EFIE-MoM and CBFM.
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Figure 6.14: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 3 at z = y = 0 computed using the Mie series, EFIE-MoM and CBFM.
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Figure 6.15: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 4 at z = x = 0 computed using the Mie series, EFIE-MoM and CBFM.
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Figure 6.16: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 4 at z = y = 0 computed using the Mie series, EFIE-MoM and CBFM.
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Figure 6.17: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 5 at z = x = 0 computed using the Mie series, EFIE-MoM and CBFM.
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Figure 6.18: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 5 at z = y = 0 computed using the Mie series, EFIE-MoM and CBFM.
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Figure 6.19: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 6 at z = x = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.20: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 6 at z = y = 0 computed using the EFIE-MoM and CBFM.
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For test case 2, the CBFM results show excellent agreement with the analytical

Mie series and EFIE-MoM results. For test case 3, the size of the object is increased.

In this case, the results are not accurate especially at z = x = 0 in Figure (6.13). In

test case 4, we increase the buffer width to 2∆ and the normalised error comes down.

This is evident in Figure (6.15). With a buffer width of 3∆, in test case 5 results are

more accurate as shown in Figure (6.17) and (6.18). In Figures (6.19) and (6.20), we

see excellent agreement between the CBFM result and the EFIE-MoM solution.

These results confirm that the CBFM can be tuned for the electromagnetic anal-

ysis of homogeneous dielectric cylinders. In Section (6.3.3), infinite inhomogeneous

dielectric cylinders with various dielectric properties and sizes are analysed using the

CBFM.
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6.3.3 Infinite Inhomogeneous Circular Cylinder

Figure 6.21: An infinite inhomogeneous cylinder whose electrical properties are
invariant in the z-direction. Shaded region is the cross-section of the cylinder at
z = 0. The radius of the inner cylinder is denoted as ri and that of the outer cylinder
is denoted as ro. A plane wave in the +x-direction with frequency f impinges the
object normally.

A number of infinite inhomogeneous cylinders of circular cross-section like that shown

in Figure (6.21) are impinged by a TM plane wave of frequency f . The outer radius

of the object is denoted ro and the inner radius is denoted by ri. The dielectric

properties of the outer and inner cylinders are εro, εri and σo ans σi, respectively.

Dielectric properties are varied gradually for each test case. The interaction matrix

Z is created using Equations (6.3.2) and (6.3.3). In all cases, the linear equation

(6.3.1) is iteratively solved using the GMRES method with a tolerance δg ≤ 1e− 05.

The CBFM with M = 16 patches is applied to find the total electric field Et produced

on the object. A buffer size of ∆b is used. Table (6.2) summarises results from all

the test cases.
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Test

case

R f

(MHz)

εr1 σr1 εr2 σr2 N ∆b κ δ

1 0.5λ 300 5 0.8 8 2.8 576 1∆ 51.328 0.0048

2 0.5λ 300 5 0.8 8 2.8 576 3∆ 51.318 0.0039

3 λ 800 5 0.8 8 2.8 2304 1∆ 104.487 0.0472

4 λ 800 5 0.8 8 2.8 2304 3∆ 107.344 0.0668

5 λ 300 3 0.8 5 2.8 1296 3∆ 36.154 0.0243

6 λ 300 3 0.8 5 2.8 1296 5∆ 36.352 0.0175

7 λ 300 3 0.8 5 2.8 1296 6∆ 36.090 0.0141

Table 6.2: Summary of results from various test cases involving scattering from
inhomogeneous circular infinite cylinders with various dielectric parameters. R is the
radius of the object, f is the frequency of the incident field, Dλ is the number of
discretisation cells used per wavelength, ∆b is the buffer width used, Nc is the size of
the reduced matrix Zc, κ is the condition number of Zc and δ is the normalised error
in satisfying 6.3.1.

In Figures (6.26)-(6.41) the magnitude of Et
z computed using the CBFM is com-

pared with solutions computed using the Mie series and EFIE-MoM. It can be ob-

served that as the buffer size ∆b is increased, CBFM solutions gets closer to the EFIE

solution. This in turn confirms the fact that the CBFM can be tuned to achieve

accurate solutions for electromagnetic scattering problems involving inhomogeneous

objects. If the object gets larger, one can keep M constant considering the available

RAM size on the computer and increase the buffer size appropriately. Note that this

does not add any significant burden to the over all computation time.

106



0
5

10
15

20
25

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

xy
 

M
ag

ni
tu

de
 o

f t
he

 to
ta

l e
le

ct
ric

 fi
el

d 
(E

zt )

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 6.22: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 1 at z = 0 computed using the EFIE.
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Figure 6.23: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 1 at z = 0 computed using the CBFM with M = 16 patches.
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Figure 6.24: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 1 at z = x = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.25: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 1 at z = y = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.26: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 3 at z = 0 computed using the EFIE.
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Figure 6.27: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 3 at z = 0 computed using the CBFM with M = 16 patches.
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Figure 6.28: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 3 at z = 0 and x = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.29: A comparison of the magnitude of Et
z on the cross-section of the object

in test case 3 at z = 0 and y = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.30: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 4 at z = 0 computed using the EFIE.
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Figure 6.31: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 4 at z = 0 computed using the CBFM with M = 16 patches.
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Figure 6.32: A comparison of the magnitude of Et
z on the object in test case 4 at

z = 0 and x = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.33: A comparison of the magnitude of Et
z on the object in test case 4 at

z = 0 and y = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.34: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 5 at z = 0 computed using the EFIE.
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Figure 6.35: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 5 at z = 0 computed using the CBFM with M = 16 patches.
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Figure 6.36: A comparison of the magnitude of Et
z on the object in test case 5 at

z = 0 and x = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.37: A comparison of the magnitude of Et
z on the object in test case 5 at

z = 0 and y = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.38: A comparison of the magnitude of Et
z on the object in test case 6 at z = 0

and x = 0 computed using the EFIE-MoM and CBFM. A buffer width of ∆b = 5∆ is
used.
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Figure 6.39: A comparison of the magnitude of Et
z on the object in test case 6 at z = 0

and y = 0 computed using the EFIE-MoM and CBFM. A buffer width of ∆b = 5∆ is
used.
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Figure 6.40: A comparison of the magnitude of Et
z on the object in test case 7 at z = 0

and x = 0 computed using the EFIE-MoM and CBFM. A buffer width of ∆b = 6∆ is
used.
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Figure 6.41: A comparison of the magnitude of Et
z on the object in test case 7 at z = 0

and y = 0 computed using the EFIE-MoM and CBFM. A buffer width of ∆b = 6∆ is
used.
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Table (6.2) shows that the CBFM can be very well tuned to achieve accuracy for

DD based computation using the CBFM. It is clearly seen in Figures (6.26)-(6.41)

that as the buffer width is increased the CBFM solutions get closer to the EFIE-MoM

solutions.

6.3.4 Infinite Square Cylinder

Figure 6.42: An infinite homogeneous square cylinder whose electrical properties are
invariant in the z-direction. The shaded region is the cross-section of the cylinder at
z = 0. The width of the cylinder is denoted as a. A plane wave in the +x-direction
with frequency f illuminates the object normal to the surface of the cylinder.

An infinite homogeneous dielectric square cylinder with side a = 2λ and εr = 5− 0.8

is analysed in this section. The object is impinged with a normally incident TM plane

wave at frequency f = 300 MHz. The CBFM is used to compute the total electric

field Et
z at the cross-section of the object at z = 0. The number of discretisation

cells used per wavelength is Dλ = 10. The cross-section at z = 0 is discretised into

N cells using the pulse basis functions. The MoM matrix equation resulting from

117



the EFIE-MoM formulation is iteratively solved using the GMRES method with a

tolerance δi ≤ 1e− 5.

The CBFM with M = 16 is applied to find the scattered field Et produced on the

object. A buffer size of ∆b is used in all test cases. The magnitude of Et computed

with the GMRES method is compared with the CBFM solution in the following

figures.

Test

case

a f

(MHz)

εr σ N ∆b κ δ

1 λ 300 5 0.8 576 1∆ 39.3323 0.0079

2 λ 300 5 0.8 576 2∆ 39.3596 0.0071

3 λ 300 5 0.8 576 3∆ 39.3831 0.0062

4 2λ 300 5 0.8 2304 1∆ 84.5024 0.0704

5 2λ 300 5 0.8 2304 2∆ 84.8191 0.0717

6 2λ 300 5 0.8 2304 3∆ 84.8696 0.0667

7 2λ 300 5 0.8 2304 6∆ 83.6334 0.0534

7 2λ 300 5 0.8 2304 6∆ 87.3086 0.0400

Table 6.3: Summary of results from various test cases involving scattering from
homogeneous square infinite cylinders with various dielectric properties and sizes. a
is the width of the object, f is the frequency of the incident field, Dλ is the number of
discretisation cells used per wavelength, ∆b is the buffer width used, Nc = 256 is the
size of the reduced matrix Zc, κ is the condition number of Zc and δ is the normalised
error in satisfying 6.3.1.
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Figure 6.43: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 3 at z = 0 computed using the EFIE.
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Figure 6.44: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 3 at z = 0 computed using the CBFM with M = 16 patches.
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Figure 6.45: A comparison of the magnitude of Et
z on the object in test case 3 at

z = 0 and x = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.46: A comparison of the magnitude of Et
z on the object in test case 3 at

z = 0 and y = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.47: A comparison of the magnitude of Et
z on the object in test case 7 at

z = 0 and x = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.48: A comparison of the magnitude of Et
z on the object in test case 7 at

z = 0 and y = 0 computed using the EFIE-MoM and CBFM.

121



0
10

20
30

40
50

0

10

20

30

40

50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

xy
 

M
ag

ni
tu

de
 o

f t
he

 to
ta

l e
le

ct
ric

 fi
el

d 
(E

zt )

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6.49: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 8 at z = 0 computed using the EFIE.
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Figure 6.50: A surface plot of the magnitude of Et
z on the cross-section of the object

in test case 8 at z = 0 computed using the CBFM with M = 16 patches.
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Figure 6.51: A comparison of the magnitude of Et
z on the object in test case 8 at

z = 0 and x = 0 computed using the EFIE-MoM and CBFM.
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Figure 6.52: A comparison of the magnitude of Et
z on the object in test case 8 at

z = 0 and y = 0 computed using the EFIE-MoM and CBFM.

Test cases in Table (6.3) show that the CBFM can be used to analyse homogeneous
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square infinite cylinders with various dielectric properties and sizes. In Figures (6.47)

and (6.48) even though a buffer width of ∆b = 6∆ = a/8 is used we are unable

to achieve good accuracy. But it can be clearly seen in Figures (6.49) - (6.52) that

further increase in the buffer width is improving the accuracy.

6.4 Chapter Summary

Results in Sections (6.3.1) - (6.3.4) show that the CBFM can be successfully used for

the analysis of dielectric objects. The only disadvantage in this method is that the

required buffer width keeps on increasing as the electrical size of the object increases.

Total electric field Et
z computed on the cross-section of test cases using the CBFM

show good agreement with solutions obtained using the Mie series and MoM-EFIE

approach. Our aim in this chapter was to confirm that the CBFM can be used

to analyse scattering problems involving dielectric objects of any size even if the

computational resources are limited. That is, one can use CBFM even if an object’s

MoM discretisation results in a matrix equation that cannot be loaded to the RAM of

a desktop computer. In our test cases, we fixed the size of the reduced matrix equation

that needs to be solved during the CBFM. The size of this matrix equation depends

only on the the number of imaginary patches created to decompose the object.

It was seen in all test cases that one has to increase the buffer width ∆b as the

object becomes electrically large, either due to the physical size or with an increase

in dielectric constant. Even though this was easily done in most of the test cases

presented here, it will be advantageous to avoid this requirement as it would some-

times require buffer sizes of the order of the magnitude of the patch width. In the

next chapter, a modification of the original CBFM is done avoiding the use of buffer

regions.
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Chapter 7

The CBFM Tailored for the EM
Analysis of Dielectric Objects

In this chapter, we propose a novel modification of the CBFM by using a new type

of characteristic basis function. The new CBFs will serve as a basis set that does

not depend on the angle of incidence. They are computed using a spectrum of plane-

waves in several possible directions of incidence. The new CBFs are created for each

patch treating them as separate isolated objects. An investigation is done into using

the new CBFs to avoid the use of buffer regions. The new CBFs span a subspace for

representing the unknown total field. Results confirm that the method is suitable for

the EM analysis of dielectric objects and is free from the shortcomings of previous

versions of the CBFM.

7.1 Introduction

In this new version of the CBFM, which is specially tailored for scattering problems in-

volving dielectric objects, initially, we do not include buffer regions as in conventional

versions of the CBFM [46]. Instead, while decomposing the object, smaller patches

(strips) of the size of the order λ/10 are sandwiched in between bigger patches. The

bigger patches are a few times wider than the sandwiched patches. For small objects,
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we would be able to keep all or most of the CBFs in all patches and in that case all

patches can be of the same width.

A set of Macro-domain Basis Functions [62] are defined on each patch in the

dielectric object. To derive a macro-domain basis set that does not depend on the

angle of incidence of the incident electric field, each patch is illuminated by a number

of plane-waves at different angles of incidence as shown in Figure (7.1). A number of

marco-domain basis functions will be generated for all patches. When creating the

macro-domain basis functions, each patch is considered as an individual object. Use

of these MBFs is expected to be a helping factor in truncating the edge effects.

Figure 7.1: Cross-section of an infinite rectangular dielectric cylinder at z = 0. Nθ

plane-waves normal to the the surfaces illuminate the cylinder with a uniform angular
interval of dθ = 360/Nθ between them.

Each plane wave impinges the object at intervals dθ = 360/Nθ degrees. Depending

on the availability of computational resources, dielectric properties, required accuracy,

etc., one can flexibly choose the number of incident waves used in the procedure.

Nθ macro basis functions are computed for each block. The set of solutions of the
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individual sub-sectional basis functions belonging to a given patch are merged into

MBFs for that patch.

We use a large number of plane-waves to create MBFs that are invariant of the

direction of propagation of the electric field. The MBFs will have redundant infor-

mation. The SVD will be applied to the complete set of MBFs to down-select the

number of basis functions and to remove the redundancy. This also helps in main-

taining the condition number κ of the reduced matrix low. A threshold will be set

for the normalised singular values of each patch and only a small number of macro

basis functions will be retained to represent the unknown field. A dominant sub-set

of these MBFs are retained after the SVD. These MBFs will be used as the CBFs for

individual blocks. These new CBFs enable us to construct a reduced linear equation

of lower order than that in Chapter (6).

The decomposition of the object geometry into patches is somewhat arbitrary.

There is no limitation on the number and size of the patches, except that the sand-

wiched blocks (ie., patch 2 and 4 in Figure (7.1)) are kept thinner compared to other

patches. This enables us to retain all the MBFs in these patches as CBFs because

the degrees of freedom of the sandwiched patches would be lower than other patches.

Around the boundaries of the imaginary edges this is expected to be advantageous.

Another advantage of this method is that it enables us to solve for multiple excitations

using the same reduced matrix. Only the RHS of the reduced system needs to be

computed for a new excitation. This results in a significant time-saving. Moreover,

it is possible to generate the CBFs by using a sparse representation of the impedance

matrix. In addition, this version of the CBFM is highly parallelisable and suitable

for shared memory parallel computations.
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7.2 Numerical Procedure

Figure 7.2: An infinite homogeneous cylinder whose electrical properties are invariant
in the z-direction. The shaded region is the cross-section of the cylinder at z = 0.
The radius of the cylinder is denoted as r. A plane wave in the +x-direction with
frequency f illuminates the object normal to the surface of the cylinder.

As in the original CBFM, the new procedure begins by dividing the geometry of the

object into patches, say M in number. To illustrate the method, consider a cross-

section of the infinite circular dielectric object in Figure (7.2) divided into M = 3

patches as shown in Figure (7.3). The matrix equation resulting from the Method of

Moment (MoM) solution method of the EFIE [49] is denoted as:

ZJ = V (7.2.1)

Z is the N × N matrix containing the coefficients of the interaction between dif-

ferent cells in the object given by Equations (6.3.2) and (6.3.3) [49, 44]. V is the

excitation field vector of size N . J is the unknown solution vector of size N that

contains information related to the total electric field on the object. The set of

macro-domain basis functions that belong to the same patch are grouped together to
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Figure 7.3: Cross-section of the infinite circular cylinder in Figure (7.2) at z = 0
illuminated by Nθ plane waves at equally spaced discrete angles around the object.
The object is divided into M = 3 blocks.

create M2 sub-matrices of Z. The M diagonal matrices represent the self-impedance

sub-matrices and the off-diagonal blocks correspond to the mutual impedance of the

patches. Matrix elements that belong to each patch will be blocked appropriately as

shown in Figure (7.4). The decomposed parts of the impedance matrices are denoted

Z̃i, where i denotes the ith block in Figure (7.4) containing interaction elements re-

lated to the ith patch. Ni is the number of pulse basis functions in patch i. When

the objects under investigation are large compared to the available RAM size, the

sub-matrices shall be stored in the main memory.

7.2.1 Creation of Macro-domain Basis Functions

To create macro-domain basis functions for all patches, the object in Figure (7.2)

will be impinged by Nθ normally incident TM plane-waves of frequency f at dθ

equally spaced angles around them. Macro MoM matrices corresponding to block i
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Figure 7.4: The coefficient matrix Z divided into 9 blocks grouping MoM matrix
elements belonging to 3 patches in Figure (7.3). Indices (i, j) denote MoM elemets
from patch i and j.

in Figure (7.4) are given by:

Z̃ijJ̃
(i,θ) = Ṽ(i,θ) for θ = 1, 2, . . . , Nθ if (i = j) (7.2.2)

Block matrix equations in (7.2.2) are used for computing Nθ macro basis functions

for each patch by inverting Equation (7.2.2):

J̃(i,θ) = Z̃−1
ij Ṽ(i,θ) for θ = 1, 2, . . . , Nθ if (i = j) (7.2.3)

Macro basis functions J̃ (i,θ) for each patch for all angles of incidence of Ṽ(i,θ) are

computed. If there are N1, N2, . . . , NM cells in each patch, inverting Equation (7.2.2)

would give M sets of macro basis functions. We arrange the macro basis functions of

the ith block in a matrix form.
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J̃ (i) =


J

(i,1)
1 J

(i,2)
1 . . . J

(i,Nθ)
1

J
(i,1)
2 J

(i,2)
2 J

(i,Nθ)
2

...
...

. . .
...

J
(i,1)
Ni . . . . . . J

(i,Nθ)
Ni

 (7.2.4)

Due to the presence of the inversion operation in Equation (7.2.3) this would turn

out to be a computationally expensive method. However, one can approximate the

inversion with a vector-vector division using the sparse representation of Zii, it will

be summarised in Section (7.2.2).

7.2.2 Sparse Representation

Macro basis functions created in Section (7.2.1) will only be used for the testing

procedure and thus there is no need to invert the matrix equations in (7.2.2). Instead,

one can use the sparse representation of the macro impedance matrices to approximate

J̃ (i,θ) for each patch for all angles of incidence of the Ṽ(i,θ) given by:

J̃(i,θ) =
Ṽ

(i,θ)
ii

Z̃i
ii

for θ = 1, 2, . . . , Nθ if (i = j) (7.2.5)

However, in our work, we will construct macro-basis function by inverting (7.2.2).

Sparse representations will not be used in test cases, from our observation it is seen

that using sparse representations produce results that are close to the exact results but

not that satisfactory. Since our aim is the development of the method and speed-up is

not a concern at this stage. The sparse representation would reduce the computation

time by several times as matrix inversion that costs O(Ñ3) is substituted with O(Ñ)

vector-vector divisions, where Ñ is the size of sub-matrices.
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7.2.3 Creation of the Characteristic Basis Functions

The number of plane waves used to generate the macro basis functions sometimes

exceeds the degrees of freedom (DoF) associated with each block. It is desirable to

remove the redundancy in the macro basis functions also to improve the condition

number of the reduced matrix equation. A new set of characteristic basis functions

that are linear combinations of the significant macro basis functions will be computed

using the SVD procedure. The SVD is applied to the M sets of macro basis functions

separately. Applying the SVD procedure to 7.2.4 results in:

J (i) = U (i)S(i)V (i)H (7.2.6)

U (i) = (u1, u2, . . . , un) ∈ CNi×Ni (7.2.7)

V (i) = (v1, v2, . . . , vn) ∈ CNθ×Nθ (7.2.8)

S(i) = diag (σ1, σ2, . . . , σp) ∈ RNi×Nθ p = min (Ni, Nθ) (7.2.9)

U (i) and V (i)H are the column orthogonal matrices. S(i) is a diagonal matrix contain-

ing singular values of J (i) given by:

σ1 ≥ σ2 ≥ . . . σp ≥ 0

Now the singular values are normalised with respect to the maximum σ1 and termed

σNj given by:

σNj =
σj
σ1

for j = 1, 2, . . . , p (7.2.10)

The normalised singular values will span over several orders of magnitude. A thresh-

olding is done on the normalised singular values with respect to the maximum (σN1 ).

Macro basis functions with normalised singular values below this threshold will be

discarded to avoid redundancy. Say, Si normalised singular values are retained for

each block, then the first Si columns of U (i) denoted C(i) in (7.2.11) are used as the

characteristic basis functions for block i.
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C(i) =


c

(i,1)
1 c

(i,1)
2 . . . c

(i,1)
Si

c
(i,2)
1 c

(i,2)
2 . . . c

(i,2)
Si

...
...

. . .
...

c
(i,Ni)
1 c

(i,Ni)
2 . . . c

(i,Ni)
Si

 (7.2.11)

Note that in patch i, the maximum number of linearly independent CBFs will be:

Smaxi = min(Ni, Nθ) (7.2.12)

Following the above mentioned procedure, we construct K =
∑M

i=1 Si primary basis

functions. These CBFs can be used to create a reduced matrix of size K ×K using

the Galerkin method.

7.2.4 Computation of the reduced matrix

J, the solution to the entire problem in Equation (7.2.1), can be expressed as a linear

combination of the CBFs as in Equation (7.2.13). Here α
(i)
k , for i = 1, 2, . . . ,M and

k = 1, 2, . . . , Si are the K unknown expansion coefficients to be determined using a

reduced matrix,. The next step is to generate the reduced K×K matrix equation for

the unknown complex coefficients α
(i)
k by using the Galerkin method. This procedure

results in a reduced linear equation given by:

Zc
K×KαK×1 = V c

K×1 (7.2.14)
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 J
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k
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(0)
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(2)
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(0)
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SM∑
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α
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(0)
...(

c
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k

)
 (7.2.13)

where,

Zc =



〈
c

(1)t
1 Z̃11, c

(1)
1

〉 〈
c

(1)t
1 Z̃12, c

(1)
2

〉
. . .

〈
c

(1)t
1 Z̃1SM , c

(M)
SM

〉〈
c

(1)t
2 Z̃21, c

(1)
1

〉 〈
c

(1)t
2 Z̃21, c

(1)
2

〉
. . .

〈
c

(1)t
2 Z̃2SM , c

(M)
SM

〉
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...
. . .

...〈
c

(M)t
Sm Z̃M1, c

(1)
1

〉 〈
c

(M)t
Sm Z̃M2, c

(1)
2

〉
. . .

〈
c

(M)t
Sm Z̃MSM , c

(M)
SM

〉

(7.2.15)

V c =
( 〈

c
(1)t
1 , Ṽ1

〉 〈
c

(1)t
2 , Ṽ2

〉
. . .

〈
c

(1)t
SM
, ṼM

〉 )T
(7.2.16)

Here, Zij, i 6= j is the coupling matrix linking patches i and j, Zii is the self coupling

matrix of patch i. Note that Zc is diagonally symmetric and this property saves time

in its creation and memory space in its storage. The reduced matrix, Zc has to be

computed only once for the object under investigation. Also, if there are some changes

in the geometry or electrical constitution of one or more patches, the corresponding

elements in Zc can computed and replaced.
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7.3 Numerical Results

A number of infinite cylindrical objects with various cross-sectional shapes are con-

sidered as test cases. Both homogeneous and inhomogeneous objects are tested.

The objects to be analysed are discretised with Dλ = 10 pulse basis functions per

wavelength and the number of cells N is given by Equation (3.8.1) to discretise the

cross-section of the object at z = 0. The MoM-EFIE formulation in Section (3.7.2) is

used to discretise the object and the MoM matrix is generated. The improved CBFM

with M patches is implemented. In Section (7.3.1) a validation of the method is done

by comparing the CBFM results with the Mie Series [32] solution for a homogeneous

infinite cylinder. The incident field Ei is a TM plane wave at frequency f in the +x

direction with a polarisation parallel to the axis of the cylinder [32]. The field com-

ponents excited by the TM plane waves are Ez,Hx and Hy. Throughout this work,

we compute only the electric field component Ez.

7.3.1 Validation of the Method, Circular cylinder

In order to validate the method, a homogeneous infinite dielectric cylinder with circu-

lar cross-section as in Figure (7.2) is analysed in this section. The object is impinged

with a normally incident TM plane wave at frequency f = 300 MHz. The radius of

the cylinder is r = 0.5λ and the relative permittivity is εr = 2 − 0.8. The object is

discretised into N = 225 cells. We compute the total electric field Et
z on the object

using the Mie series. A surface plot of the magnitude of Et
z on the cross-section at

z = 0 computed using the Mie series is shown in Figure (7.5). The matrix equation

resulting from the EFIE-MoM formulation is iteratively solved using the GMRES

method with a tolerance ≤ 1e− 05. This iterative solution is plotted in Figure (7.6).

Three patches with N1 = 105, N2 = 15 and N3 = 105 pulse basis functions
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each are used for the improved CBFM procedure. Nθ = 20 plane-waves are used to

create Nθ MBFs for each block. The normalised singular values σN of matrices J (i)

obtained using the SVD are plotted in Figure (7.7). A threshold σNt = 1e − 4 is set

and S1 = 13, S2 = 8 and S3 = 13 CBFs are retained in each block. The Galerkin

procedure in Equation (7.2.15) results in a reduced matrix Zc
34×34. Figure (7.8) shows

a surface plot of the magnitude of Et
z computed using the CBFM. Figure (7.9) shows a

comparison of all the three solutions at z = x = 0, while in Figure (7.10) a comparison

is made at z = y = 0.
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Figure 7.5: A surface plot of the magnitude of Et
z on the object at z = 0 computed

using the Mie series.
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Figure 7.6: A surface plot of the magnitude of Et
z on the object at z = 0 computed

using the EFIE-MoM approach.
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Figure 7.7: On the log y-axis is the normalised singular values σNj of all the 3 blocks,
Nθ = 20.
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Figure 7.8: A surface plot of the magnitude of Et
z on the object at z = 0 computed

using the CBFM with M = 3 patches.
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Figure 7.9: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the Mie series, EFIE-MoM and the CBFM.
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Figure 7.10: A comparison of the magnitude of the Et
z on the object at z = y = 0

computed using the Mie series, EFIE-MoM and the CBFM.

Figures (7.5)-(7.10) show that the total electric field Et
z computed using the Im-

proved CBFM matches very well with the analytical Mie series solution. In the next

sections, a number of objects with different electrical properties and sizes are analysed

in detail.

7.3.2 Infinite Inhomogeneous Cylinders

Two inhomogeneous infinite dielectric cylinders with circular cross-section are anal-

ysed in this section. The incident fields are normally incident TM plane waves at

frequency f = 300 MHz. The inhomogeneity in the objects are due to a coaxial

cylinder inside the object as shown in Figure (6.21). The radius of the outer cylinder

is denoted ro while that of the inner cylinder is ri = 0.2ro. The dielectric profiles of

the inner and outer cylinders are εro = 2, εri = 20, σo = 0.8 and σi = 0.8, respectively.

Dλ pulse basis functions per wavelength are used to discretise the cross-section of the

object at z = 0. This results in N discretisation points in total.
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Test Case 2A

An inhomogeneous infinite dielectric cylinder of circular cross-section with ro = 0.5λ

and ri = 0.2ro is used as the object. Three patches with N1 = 90, N2 = 45 and

N3 = 90 pulse basis functions each are used for the Improved CBFM procedure. Nθ

plane-waves are used to create Nθ MBFs for each block. The normalised singular

values σNn of the matrix J (i) from various test cases, computed using the SVD, are

plotted in figures below. After the SVD, Si CBFs are selected in each block. The

Galerkin procedure in (7.2.15) results in a reduced matrix Zc
K×K which is solved using

LU decomposition. Table (7.1) summarises results from several test cases where Nθ

and Si are varied and the error in satisfying Equation (7.1), denoted by δ is computed.

The matrix equation resulting from the EFIE-MoM formulation is iteratively

solved using the GMRES method with a tolerance ≤ 1e − 05. This iterative so-

lution is plotted following figures. Results from a number of relevant test cases in

Table (7.1) are plotted in Figures (7.11)-(7.25). Figures showing surface plots of the

magnitude of Et
z computed using the CBFM are shown in these figures. Other figures

show a comparison of the magnitude of the CBFM and EFIE solutions at z = x = 0

and z = y = 0.
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Test case Nθ Si δ
S1 S2 S3

1 15 15 15 0.0135
2 17 15 17 0.0101
3 20 20 14 20 0.0075
4 20 15 20 0.0072
5 20 20 20 0.0072
6 17 15 17 0.0101
7 27 27 27 0.0026
8 30 27 16 27 0.0026
9 30 16 30 0.0014
10 30 30 30 0.0012
11 17 15 17 0.0101
12 25 25 25 0.0031
13 36 30 30 30 0.0012
14 33 33 33 0.0009
15 36 36 36 0.0013

Table 7.1: A Summary of the results from test case 2A involving scattering from
infinite inhomogeneous circular cylinder. The frequency of the incident field f =
300MHz. The radius of the object is R = 0.5λ. Nθ is the number of plane waves used
to create the macro basis functions. Si is the number of CBFs used from block i and
δ is the normalised error in satisfying Equation (7.2.1).
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Figure 7.11: On the log y-axis is the normalised singular values σNn of all the 3 blocks
in TC 2(A) (1-5), Nθ = 20 .
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Figure 7.12: A surface plot of the magnitude of Et
z on the object in test case 2A

computed using the EFIE-MoM approach.
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Figure 7.13: A surface plot of the magnitude of Et
z computed using the CBFM with

parameters as in test case 2A(1) in Table (7.1).
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Figure 7.14: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM approach and the CBFM with parameters as in test
case 2A(1) in Table (7.1).
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Figure 7.15: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM approach and the CBFM with parameters as in test
case 2A(1) in Table (7.1).
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Figure 7.16: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2A(4)
in Table (7.1).
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Figure 7.17: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2A(4)
in Table (7.1).
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Figure 7.18: On the log y-axis is the normalised singular values σNn of all the 3 blocks
blocks in TC 2(A) (6-10), Nθ = 30.
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Figure 7.19: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2A(8)
in Table (7.1).
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Figure 7.20: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2A(8)
in Table (7.1).
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Figure 7.21: On the y-axis is the normalised singular values σNn of all the 3 blocks
blocks in TC 2(A) (11-15), Nθ = 30.
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Figure 7.22: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2A(12)
in Table (7.1).
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Figure 7.23: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2A(12)
in Table (7.1).
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Figure 7.24: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2A(14)
in Table (7.1).
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Figure 7.25: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2A(14)
in Table (7.1).
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Figures (7.12) - (7.25) show that the Improved CBFM can be used to compute elec-

tromagnetic fields produced by scattering from infinite inhomogeneous dielectric cylin-

ders with circular cross-section. Various test cases show that increasing Nθ always

helps in achieving better accuracy. It is clear from test cases 2A(7), 2A(8), 2A(14) and

2A(15) in Table (7.1) that increasing Si does not always guarantee better accuracy,

while it can sometimes deteriorate the accuracy as seen in 2A(14) and 2A(15).

Test Case 2B

An inhomogeneous infinite dielectric cylinder with a circular cross-section is analysed

in this section. The inner radius of the object is ro = λ and the outer radius ri = 0.2ro.

Three patches with N1 = 348, N2 = 145 and N3 = 348 pulse basis functions are used

for the Improved CBFM procedure. Nθ plane-waves are used to create Nθ MBFs for

each block. The normalised singular values σNj of the matrix J (i) computed using the

SVD are plotted in the following figures. After the SVD, Si CBFs are selected in each

block. The Galerkin procedure in (7.2.15) results in a reduced matrix Zc
K×K which

is solved using the LU decomposition. Table (7.2) summarises results from several

test cases where Nθ and Si are varied and the error in satisfying Equation (7.2.1),

denoted by δ, is computed.

The matrix equation resulting from the EFIE-MoM formulation is iteratively

solved using the GMRES method with a tolerance ≤ 1e − 05. This iterative so-

lution is plotted in the figures below. Results from a number of relevant test cases

in Table (7.2) are plotted in Figures (7.26)-(7.38). Figures showing surface plots of

the magnitude of Et
z computed using the CBFM are shown. Other figures show a

comparison of the magnitude of the CBFM and EFIE solutions at z = x = 0 and

z = y = 0.
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Test case Nθ Si δ
S1 S2 S3

1 17 17 17 0.0131
2 18 18 18 0.0121
3 20 18 16 18 0.0122
4 20 18 20 0.0115
5 20 20 20 0.0117
6 23 21 23 0.0085
7 18 16 18 0.0110
8 30 20 18 20 0.0104
9 20 20 20 0.0099
10 30 30 30 0.0070
11 17 17 17 0.0128
12 20 20 20 0.0099
13 36 30 30 30 0.0062
14 36 30 36 0.0048
15 36 36 36 0.0047

Table 7.2: A Summary of the results from test case 2B involving scattering from
infinite inhomogeneous circular cylinder. The frequency of the incident field is f =
300MHz. The radius of the object is R = λ. Nθ is the number of incident fields used
to create the macro basis functions, Si is the number of singular values retained in
block i and δ is the normalised error in satisfying Equation (7.2.1).
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Figure 7.26: On the log y-axis is the normalised singular values σNn of all of the 3
blocks, Nθ = 20.
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Figure 7.27: A surface plot of the magnitude of Et
z computed using the EFIE-MoM

for test case 2B.

0

10

20

30

0

10

20

30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

xy
 

M
ag

ni
tu

de
 o

f t
he

 to
ta

l e
le

ct
ric

 fi
el

d 
(E

zt ),
 (

C
B

F
M

)

0.2

0.4

0.6

0.8

1

1.2

Figure 7.28: A surface plot of the magnitude of Et
z computed using the CBFM with

parameters as in test case 2B(1) in Table (7.2).
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Figure 7.29: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2B(1)
in Table (7.2).
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Figure 7.30: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2A(1)
in Table (7.2).
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Figure 7.31: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2B(4)
in Table (7.2).
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Figure 7.32: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2B(4)
in Table (7.2).
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Figure 7.33: On the log y-axis is the normalised singular values σNn of all the 3 blocks,
Nθ = 20.
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Figure 7.34: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2B(9)
in Table (7.2).
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Figure 7.35: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2B(9)
in Table (7.2).
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Figure 7.36: On the log y-axis is the normalised singular values σNn of all the 3 blocks,
Nθ = 20.
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Figure 7.37: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2B(13)
in Table (7.2).
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Figure 7.38: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2B(13)
in Table (7.2).
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Table (7.2) shows that δ is reasonably small in all test cases. A close examination

of the figures shows that compared to the EFIE-MoM results, the CBFM results

show slight disagreements in the total electric field at y = 0, close to the boundary

of the inhomogeneity. This draws attention to the fact that the width of the middle

patch in 2B was less than the diameter of the inner cylinder. It is desirable to

increase the width of the middle patch such that an unnecessary decomposition of

the inhomogeneity is avoided. In test case 2C a few experiments are done by increasing

the width of patch 2, such that the inhomogeneity is enclosed inside it.

Test Case 2C

The same object as in test case 2B is used in this section. The inhomogeneous infinite

dielectric cylinder with circular cross-section has an outer radius ro = λ and inner

radius ri = 0.2ro. The difference in this test case is that the middle patch is made

wider, Three patches with N1 = 309, N2 = 203 and N3 = 309 pulse basis functions

each are used for the Improved CBFM procedure. Nθ plane-waves are used to create

Nθ MBFs for each block. Normalised singular values σNj of the matrix J (i) computed

using the SVD is plotted in following Figures (7.39) and (7.42). After the SVD Si

CBFs are selected in each block. The Galerkin procedure in (7.2.15) results in a

reduced matrix Zc
K×K . Table (7.3) summarises results from several test cases where

Nθ and Si are varied and the error in satisfying Equation (7.1), denoted by δ is

computed.

The impedance matrix resulting from the EFIE-MoM formulation is iteratively

solved using the GMRES method with a tolerance ≤ 1e− 05. Results from test cases

2C(10) and 2C(8) in Table (7.3) are plotted in Figures (7.40)-(7.43).
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Test case Nθ Si κ δ

S1 S2 S3

1 17 17 17 38.1247 0.0086

2 18 18 18 38.1159 0.0081

3 20 18 17 18 38.1829 0.0081

4 20 18 20 38.7016 0.0115

5 20 20 20 64.7244 0.0072

6 20 20 20 60.5514 0.0058

7 30 25 25 25 99.6466 0.0033

8 30 30 30 115.8138 0.0023

9 30 30 30 115.2604 0.0022

10 40 36 36 36 118.5709 0.0014

11 40 40 40 115.0110 0.0012

Table 7.3: A Summary of the results from test case 2C involving scattering from
infinite inhomogeneous circular cylinder. The frequency of the incident field f =
300MHz, the radius of the object is R = λ. Nθ is the number of incident fields used
to create the macro basis functions, Si is the number of singular values retained in
block i and δ is the normalised error in satisfying Equation (7.2.1).
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Figure 7.39: On the log y-axis is the normalised singular values σNn of all the 3 blocks
in test case 2C, Nθ = 20.
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Figure 7.40: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2C(8)
in Table (7.2).
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Figure 7.41: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2C(8)
in Table (7.2).
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Figure 7.42: On the log y-axis is the normalised singular values σNn of all the 3 blocks
in test case 2C, Nθ = 40.
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Figure 7.43: A comparison of the magnitude of Et
z on the object at z = y = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 2C(10)
in Table (7.2).

Figure (7.43) shows that the Improved CBFM can be used to compute EM fields

produced by the scattering of infinite inhomogeneous dielectric cylinders with circular

cross-section. Various test cases show that increasing Nθ always helps in achieving

better accuracy. Note that we used all the possible CBFs in test case 2C(10). Even-

though σN40 for all the blocks are of several orders of magnitude smaller than σN1 ,

including all the CBFs helped. This is due to the fact that by keeping all CBFs we

enrich the sub-space such that it can handle scattered waves in more directions near

the inhomogeneity. Excellent agreement with iterative solution of the EFIE-MoM

formulation is obtained for infinite inhomogeneous cylinders. Test case shows that

care must be taken in decomposing patches when inhomogeneity exists. In test case

2B, width of patch 2 was shorter than the inhomogeneity and this is increased in

test case 2C. This is shown to have increased the accuracy of the solution around the

boundary of the inhomogeneity.
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7.3.3 Infinite Square Cylinder

Figure 7.44: An infinite homogeneous square cylinder whose electrical properties are
invariant in the z-direction. The shaded region is the cross-section of the cylinder at
z = 0. The width of the cylinder is denoted as a. A plane wave in the +x-direction
with frequency f illuminates the object normal to the surface of the cylinder.

Infinite homogeneous dielectric square cylinders with different electrical properties

and sizes are analysed in this section. To create MBFs, the objects are illuminated

with a normally incident TM plane wave at frequency f . The number of discretisation

cells used per wavelength Dλ = 10. The object is discretised into N cells using pulse

basis functions. The Improved CBFM is used to compute the total electric field Et
z

at the cross-section of the object at z = 0.

Test case 3A

An infinite homogeneous dielectric square cylinder with side a = 2λ and εr = 2− 0.8

is analysed in this section. The object is illuminated with a normally incident TM

plane wave of frequency f = 300 MHz. The cross-section of the object is discretised
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into N = 841 cells. The MoM equation resulting from the EFIE-MoM formulation in

Section (3.7.2) is directly solved using the GMRES method with a tolerance δ ≤ 1e−5.

To decompose the object, N1 = 348, N2 = 145 and N3 = 348 pulse basis functions

each are grouped together into three patches for the CBFM procedure. Nθ = 20, 30

and 36 plane waves are used to create Nθ MBFs for each patch. The normalised

singular values of the matrix J (i) computed using the SVD are plotted in Figure (7.45)

and (7.50). Table (7.4) shows a number of test cases. Si is the number of CBFs used

in each patch for the computation of Et
z. The Galerkin procedure in (7.2.15) results in

a reduced matrix Zc
K×K which is inverted using the LU decomposition. The condition

number κ of the reduced matrix is also tabulated. Figure (7.46) - (7.52) show surface

plots of the magnitude of Et
z computed using the CBFM.

Test
case

Nθ Si κ δ

S1 S2 S3

1 18 18 18 08.0191 0.0051
2 20 19 19 19 10.0770 0.0037
3 20 20 20 10.0489 0.0036
4 20 20 20 7.6039 0.0017
5 30 20 15 20 7.7327 0.0038
6 25 25 25 7.6059 3.29e-4
7 20 20 20 7.5967 0.0014
8 36 20 18 20 7.5962 0.0017
9 30 30 30 7.6254 5.93e-5

Table 7.4: A Summary of the results from test case 3A involving scattering from
infinite inhomogeneous circular cylinder. The frequency of the incident field f =
300MHz, the width the object is a = 2λ. Nθ is the number of incident fields used to
create the macro basis functions, Si is the number of singular values retained in block
i and δ is the normalised error in satisfying Equation (7.2.1).
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Figure 7.45: On the log y-axis is the normalised singular values σNn of all the 3 blocks,
Nθ = 20.
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Figure 7.46: A surface plot of the magnitude of Et
z on the object at z = 0 in test

case 3A computed using the EFIE-MoM approach.
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Figure 7.47: A surface plot of the magnitude of Et
z on the object at z = 0 computed

using the Improved CBFM with parameters as in test case 3A(3).
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Figure 7.48: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 3A(3).
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Figure 7.49: A comparison of the magnitude of the Et
z on the object at z = y = 0

computed using the, EFIE-MoM and the CBFM with parameters as in test case 3A(3).

0 5 10 15 20 25 30
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

σ nN

n

 

 

Block 1
Block 2
Block 3

Figure 7.50: On the log y-axis is the normalised singular values σNn of all the 3 blocks,
Nθ = 30.
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Figure 7.51: A comparison of the magnitude of Et
z on the object at z = x = 0

computed using the EFIE-MoM and the CBFM with parameters as in test case 3A(6).
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Figure 7.52: A comparison of the magnitude of the Et
z on the object at z = y = 0

computed using the, EFIE-MoM and the CBFM with parameters as in test case 3A(6).
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Figures (7.46)-(7.52) show that the Improved CBFM can be used to compute

electromagnetic fields produced by the scattering of infinite homogeneous dielectric

cylinders with square cross-section. Various test cases show that increasing Nθ always

helps in achieving better accuracy.

Test case 3B

An infinite homogeneous dielectric cylinder of square cross-section with side a = 4λ

and εr = 2−0.8 is analysed in this section. The object is illuminated with a normally

incident TM plane wave at frequency f = 300 MHz. The cross-section of the object

is discretised into N = 3481 cells. The MoM matrix resulting from the EFIE-MoM

formulation in Section (3.7.2) is directly solved using the GMRES method with a

tolerance δ ≤ 1e− 5.

To decompose the object N1 = 1593, N2 = 295 and N3 = 1593 pulse basis

functions each are grouped together into three patches for the CBFM procedure. Nθ =

36 plane waves are used to create MBFs for each patch. Normalised singular values

of the matrix J (i) computed using the SVD is plotted in Figure (7.53). Table (7.5)

shows a number of test cases with Si number of CBFs used in each patch for the

computation of Et
z. The Galerkin procedure in (7.2.15) results in a reduced matrix

Zc
K×K which is inverted using the LU decomposition. The condition number κ of the

reduced matrix is also tabulated.
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Test
case

Nθ Si κ δ

S1 S2 S3

1 25 25 25 22.1127 0.0454
2 36 30 30 30 12.3546 0.0044
3 36 36 36 11.3728 5.87e-4

Table 7.5: A Summary of the results from test case 3B involving scattering from
infinite inhomogeneous circular cylinder. The frequency of the incident field f =
300MHz, the width the object is a = 4λ. Nθ is the number of incident fields used to
create the macro basis functions, Si is the number of singular values retained in block
i and δ is the normalised error in satisfying Equation (7.2.1).
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Figure 7.53: On the log y-axis is the normalised singular values σNn of all the 3 blocks.
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Figure 7.54: A surface plot of the magnitude of Et
z on the object computed using the

EFIE-MoM approach in test case 3B.
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Figure 7.55: A surface plot of the magnitude of Et
z on the object computed using the

CBFM with parameters as in test case 3B(1).
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Figure 7.56: A comparison of the magnitude of Et
z on the object at x = 0 computed

using the EFIE-MoM and the CBFM with parameters as in test case 3B(1).
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Figure 7.57: A comparison of the magnitude of the Et
z on the object at y = 0 computed

using the EFIE-MoM and the CBFM with parameters as in test case 3B(1).
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Figure 7.58: A comparison of the magnitude of Et
z on the object at x = 0 computed

using the EFIE-MoM and the CBFM with parameters as in test case 3B(3).
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Figure 7.59: Comparison of the magnitude of the Et
z on the object at y = 0 computed

using the EFIE-MoM and the CBFM with parameters as in test case 3B(3).
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In test case 3B(1) we observed that using only 25 CBFs in each block out of the

available 36 does not produce good enough result. But using all the possible CBFs

produces excellent agreement with the the iterative results computed using the EFIE-

MoM method. This confirms that in the case of a large objects, the Improved CBFM

is capable of producing accurate results.

Test case 3C

An infinite homogeneous dielectric cylinder of square cross-section with side a = 4λ

and εr = 4−0.8 is analysed in this section. The object is illuminated with a normally

incident TM plane wave at frequency f = 300 MHz. The cross-section of the object

is discretised into N = 6561 cells. The MoM matrix resulting from the EFIE-MoM

formulation is directly solved using the GMRES method with a tolerance δ ≤ 1e− 5.

Three blocks with N1 = 3078, N2 = 450 and N3 = 3078 pulse basis functions each

grouped together into three blocks for the CBFM procedure. Nθ = 36 plane waves

are used to create Nθ CBFs for each patch. Normalised singular values of the matrix

J (i) computed using the SVD is plotted in Figure (7.60). Table (7.6) shows 3 test

cases with Si number of CBFs used in each patch for the computation of Et
z. The

Galerkin procedure in Equation (7.2.15) results in a reduced matrix Zc
K×K which is

inverted using the LU decomposition. The condition number κ of the reduced matrix

is also tabulated.

Test case 3C was implemented with MATLAB Version 7.2.0.283 (R2006a) running

on a Dell Precision 670 workstation with 2 Intel Xeon dual-core processors and 4GB

RAM with Fedora Core 7 OS, only one core was used. The creation of MoM elements

took a little less than 24 hours while the generation of CBFs took 6 hours. Generation

of the reduced matrix in test case 3C(3) took only 35 minutes.
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Test
case

Nθ Si κ δ

S1 S2 S3

1 60 36 36 36 50.0062 0.0091
2 45 35 35 60.1421 0.0031
3 60 60 60 73.0110 0.0016

Table 7.6: A Summary of the results from test case 3C involving scattering from
infinite inhomogeneous circular cylinder. The frequency of the incident field f =
300MHz, the width the object is a = 4λ. Nθ is the number of incident fields used to
create the macro basis functions, Si is the number of singular values retained in block
i and δ is the normalised error in satisfying Equation (7.2.1).
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Figure 7.60: On the log y-axis is the normalised singular values σNn of all the 3 blocks,
Nθ = 60.
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Figure 7.61: Comparison of the magnitude of Et
z on the object at x = 0 computed

using the EFIE-MoM and the CBFM with parameters as in test case 2C(2).
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Figure 7.62: Comparison of the magnitude of the Et
z on the object at y = 0 computed

using the EFIE-MoM and the CBFM with parameters as in test case 2C(2).
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Figure 7.63: Surface plot of the magnitude of Et
z on the object computed using the

EFIE-MoM approach in test case 2C(3).
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Figure 7.64: Surface plot of the magnitude of Et
z on the object computed using the

CBFM with parameters as in test case 2C(3).
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Figure 7.65: Comparison of the magnitude of Et
z on the object at x = 0 computed

using the EFIE-MoM and the CBFM with parameters as in test case 2C(3).
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Figure 7.66: Comparison of the magnitude of the Et
z on the object at y = 0 computed

using the EFIE-MoM and the CBFM with parameters as in test case 2C(3).
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Test case 3C confirms that, when dielectric constant increases, the increased wave-

effects inside the object requires a higher Nθ. Even though σN1 and σN60 differ by

several times in magnitude, we had to retain all the possible CBFs. Clearly as shown

in Figures (7.65) and (7.66) the Improved CBFM provides accurate results.

7.4 The efficiency of the CBFM for Eis at an angle

θ to the x-axis

It is desirable to verify that the efficiency of the new CBF method is invariant with

the direction of propagation of the incident electric filed. Consider a number of plane

waves Ei
θ that illuminate the object, where, θ is the angle between the +x-axis and

the direction of propagation of the plane waves (PWs). We use Nθ plane waves to

compute Si CBFs for each patch.

An infinite homogeneous dielectric square cylinder with side a = λ and εr = 2−0.8

is analysed in this section. The cross-section of the object is discretised into N = 225

cells. The MoM equation resulting from the EFIE-MoM formulation in Section (3.7.2)

is directly solved using the GMRES method with a tolerance δ ≤ 1e−5. To decompose

the object, N1 = N2 = N3 = 75 pulse basis functions are grouped together into three

patches for the CBFM procedure. Nθ = 36 plane waves are used to create Nθ MBFs

for each patch. The normalised singular values of the matrix J (i) computed using the

SVD are plotted in Figure (7.67). Si = 15 is the number of CBFs used in each patch

for the computation of Et
z. The Galerkin procedure in Equation (7.2.15) results in a

reduced matrix Zc
45×45 which is inverted using the LU decomposition.

The object is illuminated with four incident TM plane waves of frequency f =

800 MHz at θ = 0, 90, 180 and 270. Figures (7.68) and (7.69) show that the improved
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CBFM is efficient in producing accurate results irrespective of the angle of incidence

of the incident field.
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Figure 7.67: On the y-axis is the normalised singular values σNn of all the 3 blocks,
Nθ = 36.
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Figure 7.68: Comparison of the magnitude of Et
z on the object at x = 0 produced by

the incident field Ei at θo computed using the EFIE-MoM and the CBFM.
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Figure 7.69: Comparison of the magnitude of Et
z on the object at y = 0 produced by

the incident field Ei at θo computed using the EFIE-MoM and the CBFM.

7.5 Conclusion

Several infinite dielectric objects with various cross-sectional types, sizes and elec-

trical properties were analysed using the Improved CBFM procedure. Results show

excellent agreement with results obtained using analytical and EFIE-MoM methods.

The use of the new kind of CBFs that are invariant of the prorogation of the incident

electromagnetic field is shown to be helpful in truncating edge effects.

When the object being analysed enclose inhomogeneities inside, special care must

be taken by not breaking the inhomogeneity such that they go into different patches.

If the decomposition is improper like this, the Improved CBFM would sometimes

result in slight edge effects at the boundaries of the inhomogeneity. This can also be

avoided by increasing Nθ, but if a proper decomposition can be done as stated above,

that would be a better option.
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It was observed in test cases 2C that sometimes one has to use more CBFs even

though σN1 and σNi (cut-off singular value) differ by several times in magnitude. Even

in this case to get accurate results that overlies the EFIE-MoM solution, we had to

use all the CBFs created. In any case the maximum number of CBFs K = MNθ can

be kept lower than M2 as in the case of the original CBFM. Results presented in this

chapter confirm that this Improved CBFM has all the capabilities to tune results to

achieve excellent accuracy if required.
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Chapter 8

Conclusion

The work presented in this dissertation evolved from an investigation to find domain

decomposition methods suitable for the efficient electromagnetic analysis of dielectric

objects. Several methods that are successful for perfect electrical conductors were

investigated during the course of this work. The goal was to develop algorithms that

could be used for the implementation of EM scattering analysis software that could

handle electrically large dielectric objects.

8.1 Findings and Recommendations

In Chapter 5, variants of the forward backward method were applied for the EM

analysis of dielectric objects. Investigations showed that the method is not suitable

for computations for dielectric objects. Small changes in the electrical properties or

size of the object resulted in unpredictable instability in the results. Changes made

in the size of the sub-regions used for the decomposition of objects also resulted in

instabilities. The most advanced method in this class of method was presented in

Chapter 5. It is termed the Buffered Adaptive Strip Forward Backward (BASFB)

Method and was successful to an extent. This method requires buffer strips of a width

equal to that of the strips used in each block. Sometimes the required buffer width
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had to be even greater than the strip width. The instabilities in this method come

because of the consideration of the strips as individual objects. Although the buffer

regions help us overcome this, as the dielectric constant increases, there are greater

wave-effects inside the object and the buffer size required to truncate these spurious

effects gets larger. The FBM is semi-iterative in nature and lacks a global nature

in its algorithm. That is, in each iteration, individual blocks are solved at different

steps to find the currents in that block. This is one reason behind the unpredictable

behaviour of solutions obtained via FBMs. This is not desirable and motivated us to

look for better methods.

A sub-domain multilevel method termed the Characteristic Basis Function Method

(CBFM) was investigated for dielectric objects. Again, the idea was to break up the

object into pieces. However, isolated solutions are merged into macro-domain basis

functions. These MBFs are fit into a single global MoM system that considers the

physics of the problem. This new MoM system is a compressed or reduced linear

equation that is much smaller in size compared to the original MoM matrix equation.

The reduced matrix equation is solved using a direct matrix inversion method. This

global operation solves the problem faced by the FBM. In Chapter 6, the CBFM was

used for the EM analysis of dielectric objects. The CBFM method in Chapter 6 used

two kinds of MBFs for the ith decomposed patch of the object, the primary character-

istic basis functions and secondary characteristic basis functions. The former account

for the self interaction inside patch i and the later account for the mutual coupling of

patch i with all the remaining patches. The method used a similar buffering scheme

to that used in the FBM. This buffering scheme has been shown to be very useful

in truncating the edge effect created by the decomposition of the object. However,

the computation involved in computing all secondary basis functions significantly in-

creases the over all operation count. In addition, although the method is shown to be
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suitable for the EM analysis of scattering problems of dielectrics, the need for wide

buffers for electrically large objects is disadvantageous. In Chapter 7 the CBFM is

further developed to rectify the aforementioned disadvantages.

In Chapter 7, we propose a novel modification of the CBFM by using a new type

of characteristic basis function. The new CBFs serve as a basis set that does not

depend on the direction of propagation of the incident field. The CBFs are computed

using a spectrum of plane-waves in several possible directions of incidence. The new

CBFs are created for each patch treating them as separate isolated objects. The

use of new CBFs helps in truncating spurious edge effects. The new CBFs span a

subspace for representing the unknown total field. In this new version of the CBFM,

which is specially tailored for scattering problems involving dielectric objects, we did

not include buffer regions as in the conventional versions of the CBFM [46]. For small

objects, we would be able to keep all or nearly all of the CBFs for all patches. In

that case, all patches can be of the same width. For electrically larger objects, some

patches were kept smaller compared to the bigger ones such that we can keep all

the available CBFs in these patches. Use of these advanced CBFs is shown to be a

helping factor in truncating the edge effects. This is due to the use of the CBFs that

are invariant with the direction of propagation waves inside the object.

8.2 Future Study

The novel CBFM algorithm in Chapter 7 was developed for efficient implementation

on desktop computers. Software developed using this algorithm will be able to do

electromagnetic scattering simulations of large objects on desktop computers. Some of

the most time-consuming parts of the algorithm, like generation of MBFs, SVD, etc.

were successfully implemented using OpenMP [56, 9]. This showed several times speed
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up and agreed with Gustafson’s [47] law. Further work will be carried out with the

full implementation of the new CBFM for shared memory parallel desktop computing.

Graphic Processing Units (GPUs) can also be used for the efficient implementation

of these algorithms. Work in this direction will further facilitate development of

software for the EM analysis of large objects on desktop computers much faster than

contemporary EM solvers in market.
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