
Graph-based Pattern Matching and Discovery
for Process-centric Service Architecture

Design and Integration

Veronica Gacitua-Decar

B.Eng. (UTFSM) 2003
M.Sc. (UTFSM) 2004

A Dissertation submitted in fulfilment
of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

DUBLIN CITY UNIVERSITY
FACULTY OF ENGINEERING AND COMPUTING

SCHOOL OF COMPUTING

Advisor: Dr. Claus Pahl

June, 2010

Examiners :
Dr. Markus Helfert - School of Computing,

Dublin City University
Prof. Dr. Reiko Heckel - Department of Computer Science,

University of Leicester

2

Acknowledgments

Looking back upon the path this journey has taken, I feel very fortunate to have
had the opportunity to learn from a life enriching experience and to share mo-
ments with wonderful people. I was lucky to have explored not only a new field
of knowledge, but also a new language and different cultures.

I would like to express my sincere gratitude to those who made this thesis possible
and made the time during this PhD even more valuable.

I am deeply thankful to my advisor and colleagues in DCU.

To Claus my sincere gratitude for always having an endless and constant pa-
tience, willingness to support me and give me all the freedom to develop my own
ideas.

To my colleagues in the Software and System Engineering Group, thank you so
much for sharing all those brilliant and cloudy moments, full of laughs, conver-
sations, discussions and hard work. Ronan and Mark thanks for receiving me
with open arms and showing me the exciting Irish life. Mark, you always give
me optimist and strength to continue. Thanks Wong for always having very
intelligent and sharp opinions regarding our work but also about politics and
life matters. Kosala, Aakash and Javed, thanks for helping me through this jour-
ney and opening my knowledge to other cultures and religions. I learned many
things from all of you.

To my bay-mates and colleagues in Lero: Declan, Haiying, Oisin, Michele, Dar-
ren, Paul, Michal, Murat, Aarthy, Yalemisew, who supported me in a number
of ways, from positive energy during breaks, to excellent morning coffees that
made me able to continue during the day, to discussions during the preparation
of presentations, to excellent asian food! Thanks all for your great camaraderie.

I am immensely grateful to Laly and Alberto who help me as family during my
days in Dublin. To Paola for her constant and generous friendship that I feel will
last my lifetime. To Elisabeth and Jeff who helped me through the last months of
writing this thesis with a wonderful friendship.

I am forever indebted to my family – mama, papa y hermano – for their uncon-
ditional love and constant care although I was physically far from them. They
taught me what is important in life, including the strong sense of perseverance,
that made this work possible. Gracias por todo.

I owe my deepest gratitude to my beloved Ivan who was day by day, hour by
hour, second by second giving me his time, love and soul. Thank you for making
me a better person every day.

Declaration

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Doctor of Philosophy is entirely my
own work, that I have exercised reasonable care to ensure that the work is original,
and does not to the best of my knowledge breach any law of copyright, and has not
been taken from the work of others save and to the extent that such work has been
cited and acknowledged within the text of my work.

Signed :
(Veronica Gacitua-Decar)

Student ID : 56124821

Date : June 26, 2010

ii

Graph-based Pattern Matching and Discovery
for Process-centric Service Architecture Design and Integration

Abstract: Process automation and applications integration initiatives are often
complex and involve significant resources in large organisations. The increasing
adoption of service-based architectures to solve integration problems and the widely
accepted practice of utilising patterns as a medium to reuse design knowledge
motivated the definition of this work. In this work a pattern-based framework and
techniques providing automation and structure to address the process and appli-
cation integration problem are proposed. The framework is a layered architecture
providing modelling and traceability support to different abstraction layers of the
integration problem. To define new services - building blocks of the integration
solution - the framework includes techniques to identify process patterns in concrete
process models. Graphs and graph morphisms provide a formal basis to represent
patterns and their relation to models. A family of graph-based algorithms support
automation during matching and discovery of patterns in layered process service
models. The framework and techniques are demonstrated in a case study. The
algorithms implementing the pattern matching and discovery techniques are inves-
tigated through a set of experiments from an empirical evaluation. Observations
from conducted interviews to practitioners provide suggestions to enhance the
proposed techniques and direct future work regarding analysis tasks in process
integration initiatives.

Keywords: service-oriented architecture, enterprise application integration, busi-
ness process management, process pattern, architectural pattern, pattern matching,
pattern discovery, graph matching, frequent subgraph discovery.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of Problems with the State of the Art 2
1.3 Contribution . 3

1.3.1 Hypothesis and Research Questions . 3
1.3.2 Proposal . 4

1.4 Research Approach and Evaluation Methodology 5
1.5 Organisation of the Thesis . 8

2 Literature Review 11
2.1 Overview . 11
2.2 Introduction to Enterprise SOA, EAI and BPM 12
2.3 Architectural Abstractions in Enterprise SOA . 13

2.3.1 Enterprise SOA Design Approaches . 13
2.3.2 Architectural Abstractions . 16
2.3.3 Pattern-based Techniques . 21
2.3.4 Traceability in SOA Modelling . 24

2.4 Service Identification . 25
2.4.1 Identifying New Services . 26
2.4.2 Identifying Existing Services . 27

2.5 Process Models Comparison and Querying . 29
2.6 Graph-based Pattern Matching and Discovery 33

2.6.1 Graph Matching . 34
2.6.2 Frequent Subgraph Discovery . 39

2.7 Summary . 40

3 A Framework for Processes and Applications Integration 49
3.1 Motivation . 49
3.2 Layered Architecture for Business, Applications and Services 51

3.2.1 Layers in LABAS . 52
3.2.2 Patterns in LABAS . 54
3.2.3 Pattern Description for End Users . 56

3.3 Pattern-based Techniques . 61
3.3.1 Business model augmentation . 62
3.3.2 Service identification . 63
3.3.3 Business model to service architecture transformation 64
3.3.4 Service architecture augmentation . 65

3.4 Traceability in LABAS . 65
3.4.1 Types of Trace Links . 66
3.4.2 Traceability Metamodel . 67
3.4.3 Trace Link Generation . 69

3.5 Summary . 71

Contents

4 Graph-Based Process Models and Patterns 73
4.1 Process Models as Graphs . 73
4.2 Process Model Graph . 75
4.3 Process Pattern Configuration Graph . 76
4.4 Process Pattern and its Instances . 78
4.5 Process Pattern Instance Graph . 79

4.5.1 Overlapping and Edge-disjoint Instances 80
4.5.2 Model vs Pattern Attributed Type Graphs 83

4.6 Changes in Pattern Instances . 83
4.6.1 Recorded Models and Atomic Modifications 84
4.6.2 Pattern-Instance Change . 85
4.6.3 Conditions for Derived Pattern Instances 88

4.7 Summary . 89

5 Pattern Matching 91
5.1 Overall Approach . 91
5.2 Structural Matching . 92

5.2.1 Exact and Complete Process Pattern Matching 93
5.2.2 Exact and Partial Process Pattern Matching 96
5.2.3 Inexact and Complete Process Pattern Matching 97
5.2.4 Inexact and Partial Process Pattern Matching 98
5.2.5 A Comprehensive Pattern Matching Framework 98

5.3 Algorithms for Structural Matching . 99
5.3.1 Matrix-based Structure for Process and Pattern Graphs 100
5.3.2 Complete/Partial & Exact Pattern Matching Algorithm 103
5.3.3 Complete/Partial & Inexact - Pattern Matching Algorithm (CP-I-PM) . 109

5.4 Hierarchical Pattern Matching . 118
5.5 Semantic Matching . 121

5.5.1 Semantic Vertex Matching . 121
5.5.2 Type Vertex Similarity . 123
5.5.3 Attribute Vertex Similarity . 123
5.5.4 The Label Attribute and Label Similarity Calculation 125

5.6 Summary . 127

6 Pattern Discovery 129
6.1 Motivation to a Pattern Discovery Solution . 129

6.1.1 Matching versus Discovering Patterns in Graphs 130
6.1.2 Frequent Pattern Discovery in Process Graphs 132

6.2 Matching-based Algorithm for Pattern Discovery 133
6.3 Summary . 136

7 Evaluation of LABAS Framework 139
7.1 Overview . 139

7.1.1 Influenced System Quality Characteristics 139
7.1.2 Evaluation Strategy . 140
7.1.3 Specific Challenges, Solutions and Evaluation Methods 142

7.2 ALMA-based Analysis of Case Studies . 146
7.2.1 Architecture-level Modifiability Analysis Method 146
7.2.2 Loan Management (LM) Case . 147
7.2.3 Electronic Bill Presentment and Payment (EBPP) Case 160

7.3 Tool Support . 174

vi

Contents

7.3.1 LABAS Profile . 174
7.3.2 Model to Graph Transformation . 175

7.4 Summary . 177

8 Evaluation of Matching and Discovery Techniques 179
8.1 Overview . 179
8.2 Definition and Planning . 180

8.2.1 Type of Experimental Evaluation . 180
8.3 Experiments - Matching Graph Structure . 182
8.4 Experiments - Processing Time of Pattern Matching 191
8.5 Case - Adding Type and Attribute Vertex Matching 194
8.6 Experiments - Frequent Subgraph Discovery . 198

8.6.1 Case to explain the algorithm’s results 198
8.6.2 Effects of Varying the Size of the Vertex Descriptors’ Set 202

8.7 Tool Support . 210
8.7.1 Matlab Functions for Matching, Discovering and Experimental Envi-

ronment . 211
8.7.2 Label Similarity . 211
8.7.3 Graphs Generation and Visualisation . 211

8.8 Summary . 212

9 Interviews: State-of-the-Practice in Process Analysis 215
9.1 Overview . 215
9.2 Results of Closed Questions . 216

9.2.1 Profile of Interviewees and Organisations 216
9.2.2 Process and Process Constraints Documentation and Notation 217
9.2.3 Compliance with and Type of Process Constraints - Including Process

Patterns) . 222
9.2.4 State and Relevance of Automated Process Analysis 224

9.3 Results of Open Questions . 224
9.3.1 Factors Influencing Non-compliance with Process Constraints (Ques-

tion 14) . 225
9.3.2 Comments on general benefits of automating process analysis activities

(Question 21) . 227
9.3.3 Specific comments on benefits of automating pattern matching and dis-

covery (Question 22) . 227
9.3.4 Comments on other relevant activities that can be automated in the

context of process analysis (Question 23) 229
9.3.5 Open and general comments regarding process analysis (Question 24) . 230

9.4 Summary . 231

10 Conclusions 235
10.1 Overview . 235
10.2 Summary of the Contribution . 235

10.2.1 Relevance and Focus . 235
10.2.2 Achievements and Practical Implementation 236
10.2.3 Reference to Background Research and Related Work 237
10.2.4 Detailed Contribution . 238

10.3 Discussion and Future Work . 238
10.3.1 Discussion . 239
10.3.2 Future Work . 240

vii

Contents

Bibliography 247

A Background on Graphs 269
A.1 Digraphs and Undirected Graphs . 269
A.2 Graph Homomorphisms . 271
A.3 Typed Graphs and Morphisms . 272
A.4 Attributed Graphs and Morphisms . 274
A.5 Attributed Typed Graph . 274
A.6 Graph Transformations . 275

B Quality Sub-characteristics 279
B.1 Overview . 279
B.2 Suitability . 279
B.3 Functional Compliance . 281
B.4 Maintainability: Changeability and Analysability 282

B.4.1 Changeability . 282
B.4.2 Analysability . 285

B.5 Reusability . 287

C Complementary Information for Case Studies 289
C.1 EBPP Case Study’s Complementary Information 289

C.1.1 Business and Application Level Models 289
C.1.2 Intermediary Services between Business and Application Level Models 290

C.2 LM Case Study’s Complementary Information 299

D Main Source Code for Algorithms 303
D.1 Matlab Code for Structural Matching and Discovery 303
D.2 Matlab Code Experiments and Visualisation Functions 310
D.3 Graph Models and Samples . 327

E Interview Form 329

viii

List of Figures

1.1 Organisation of this thesis. 9

2.1 Relation between the proposed framework/techniques and theoretical foun-
dations, background research and related work. 43

2.2 Examples to illustrate problems in exact and inexact matching. Figures
adopted from [Tsantalis 2006] and [Wombacher 2006]. 44

2.3 Results that proposed techniques would provide for cases in Figure 2.2. 45
2.4 Part-A: Results that proposed techniques would provide for cases in Figure 2.2. 46
2.5 Part-B: Results that proposed techniques would provide for cases in Figure 2.2. 47

3.1 Layered Architecture for Business, Applications and Services (LABAS). 52
3.2 Abstraction levels and types of patterns. 55
3.3 Relations between elements of a pattern template. 59
3.4 Types of trace links. 66
3.5 Traceability metamodel . 68

4.1 Two process models in BPMN v1.1 and related graph representations. 74
4.2 Excerpt of executable WS-BPEL process and related graph representation. . . . 75
4.3 Excerpt of BPMN 2.0 specifications [OMG 2009a], associated attributed type

graph and concrete process model example. 77
4.4 Example of pattern configuration and associated attributed type graph. 78
4.5 Configuration for abstract factory pattern [Gamma 1995]. 80
4.6 Model M, pattern configuration P and one of its instances Pi in M. 81
4.7 Illustration of overlapping and edge-disjoint instances. 82
4.8 Model versus Pattern Attributed Type Graphs. 84
4.9 Relation between recorded changes and graph transformations. 85
4.10 Pattern-instance changes and trace links in traceability model. 87

5.1 Exact, partial and inexact pattern instances. 94
5.2 Types of pattern matching. 95
5.3 Example of partial process pattern instance. 96
5.4 Kinds of pattern instances (complete/partial, exact/inexact, with intermediate

elements). 99
5.5 Sample graph G, associated ATG and Adj(Gt), Attr(Gt), AType(Gt),

DType(Gt) matrices. 101
5.6 Illustration of expansion steps during exact pattern matching. 108
5.7 Matching over derived undirected graphs. 109
5.8 Illustration of relaxed type matching. 111
5.9 Example of intermediate vertices from an inexact pattern instance. 116
5.10 Illustration expansion steps during inexact structural pattern matching. 117
5.11 Hierarchical pattern matching. 119
5.12 Merging of (attributed) type graph for inexact vertex matching by type. 123
5.13 Example of type graph AT, where abstract type tv subsumes the abstract type

tu. 124

6.1 Example of an abstract process-centric service with frequent pattern instances. 134

List of Figures

6.2 Example of an abstract process-centric service with frequent pattern instances. 135

7.1 The Loan Management Process. 148
7.2 Applications supporting the LM process (phone sales agent role). 149
7.3 Relevant domain model elements, LM process - phone sales agent role. 149
7.4 Loan Management process variation. 150
7.5 Architecture model evolution. 152
7.6 The Loan Management Process for the Phone Sales Agent role. 155
7.7 Pattern constraining the Loan Management process and its variation in Figure

7.4. 160
7.8 Billing and payment process modelled in BPMN [OMG 2008b]. 162
7.9 Extract of domain model for EBBP process. 163
7.10 Applications associated to different roles participating in the EBBP process. . . 164
7.11 Variations between Generate Bill activities across utility companies. 164
7.12 DIPs at application architecture level. 168
7.13 Applications and services architecture. 172
7.14 Service architecture with instantiated ESB pattern. 173
7.15 Snapshot of LABAS toolboxes in standard UML tool 175
7.16 LABAS toolboxes diagram . 176
7.17 Snapshot of pattern template in standard UML tool 176
7.18 LABAS process model to graph adjacency matrix and label vector transforma-

tion. 177

8.1 Graph Model with instances of positive and negative pattern samples. 182
8.2 Estimation of the accumulated effort to match patterns in directed and undi-

rected versions of target graphs. 187
8.3 Match result for graph M50 and positive pattern sample S2. 188
8.4 Second positive pattern sample (S2). 189
8.5 Estimation of match accuracy and accuracy for exact pattern matching of pos-

itive samples. 189
8.6 Estimation of match accuracy and accuracy for exact pattern matching of neg-

ative samples. 190
8.7 Pattern structures used in the experiment. 191
8.8 Average response time of exact - complete and partial - matching on arbitrary

random graphs for different pattern structures (top) and different sizes of a
pattern with close-walk structure (bottom). 192

8.9 Trend of the normalised response time of the matching algorithm on arbitrary
random graphs and patterns with different structures. 193

8.10 NRA process model. 195
8.11 Best practices documentation as process pattern configurations. 195
8.12 Process model and associated graph (process) model. 199
8.13 Frequency of subgraphs (potential patterns) centered in each model graph

vertex. 201
8.14 Frequency results for subgraphs appearing more than two times in the graph

model. 203
8.15 Visualisation - in GraphViz, Section 8.7.3 - of pattern discovery algorithm re-

sults. One expansion step and frequency greater than two. 204
8.16 Sample patterns, including discovered Pattern A and B. 204
8.17 Results of matching known patterns, including those discovered. 205
8.18 Graph M50 - frequency matrix (FM) results greater than one, with one/two

expansion steps. 207

x

List of Figures

8.19 Graph M100 - frequency matrix (FM) results greater than one, with one/two
expansion steps. 208

8.20 Average frequency of potential patterns. Graph size = 50, 95% confidence
interval. 209

8.21 Average frequency of potential patterns. Graph size = 100, 95% confidence
interval. 209

8.22 Tool chain support. 210

9.1 Organisation and interviewees profiles. 218
9.2 Interviewees’ familiarity to and involvement with process analysis activities. . 219
9.3 Existence of dedicated roles/activites for process analysis and design. 219
9.4 Sources of process documentation. 220
9.5 Textual versus graphical documentation of processes and process constraints. 220
9.6 Modelling notation for processes and process constraints documentation. . . . 221
9.7 Estimated number of process model documents and activities per document. . 222
9.8 Obligation to comply with process constraints. 223
9.9 Type of process constraints. 223
9.10 Degree of automation in process analysis activities. 224
9.11 Utility of automating process analysis activities. 225

A.1 Digraphs and classes of graphs (from [Hell 2004]). 270
A.2 Double- and single- pushout approaches to graph transformations. 276

C.1 EBPP process from Figure 7.8 in BAIL layer. 290
C.2 transfer money activity in BAIL layer. 291
C.3 generate bill activity in BAIL layer. 291
C.4 get current debt activity in BAIL layer. 292
C.5 get customer number activity in BAIL layer. 292
C.6 get customer consumption activity in BAIL layer. 293
C.7 send bill activity (customer service provide role on behalf of main utility company)

in BAIL layer. 293
C.8 accumulate and liquidate debt activities in BAIL layer. 294
C.9 generate bill activity in BAIL layer for Utility Company A. 294
C.10 generate bill activity in BAIL layer for Utility Company B. 295
C.11 send bill activity (customer service provide role on behalf of main utility company)

in BAIL layer and associated services. 295
C.12 accumulate and liquidate debt activities in BAIL layer and associated services. . . 296
C.13 EBPP process from Figure 7.8 in BAIL layer and associated services. 296
C.14 transfer money activity in BAIL layer and associated services. 297
C.15 generate bill activity in BAIL layer and associated services. 297
C.16 get current debt activity in BAIL layer and associated services. 298
C.17 get customer consumption activity in BAIL layer and associated services. 298
C.18 Loan to Client pattern traced to its associated service and implementation. . . 302

D.1 Function dependencies for matching and discovery (find) algorithms. 304
D.2 Directed random graph model – ten vertices. 327
D.3 Directed random graph model – fifty vertices. 327
D.4 Directed random graph model – hundred vertices. 327
D.5 Directed random graph model – thousand vertices. 328

xi

List of Tables

1.1 Design science guidelines [Hevner 2010] and chapters in this thesis. 7

2.1 SOA design methodologies. 15

3.1 Domestic direct deposit pattern template . 60

5.1 CP-E-PM: Complete and Partial - Exact - Pattern Matching Algorithm. 104
5.2 ExactMatchTypes identifies exact matches of abstract types for vertices in M

and P and reduce matrices associated to M. 105
5.3 ExactMatchAttributes identifies exact matches of data vertices associated to at-

tributes of graph vertices in P and M. tmpP(m) is an initial temporal match
of P in M centered in m. 106

5.4 InexactMatchTypes identifies inexact matches of abstract types for vertices in
M and P and reduces matrices associated to M. 112

5.5 InexactMatchAttributes identifies inexact matches of data vertices associated to
attributes of graph vertices in P and M. tmpP(m) is an initial temporal match
of P in M centred on m, with m in {Pinit} that contains the vertices previously
matched by type. 114

5.6 H-PM Algorithm (Hierarchical - Pattern Matching Algorithm). 120

6.1 λ-PD Algorithm - Pattern Discovery Algorithm based on λ pattern matching algo-
rithm, with λ among the CP-E-PM and CP-I-PM families. 135

6.2 countFrequency function for counting the frequency of a subgraph P in M. 135

7.1 Summary of problems, proposed solutions and evaluation methods 142
7.2 Scenarios evaluation - LM case study . 154
7.3 Relations between architecture properties and patterns. 158
7.4 Scenarios evaluation - EBPP case study . 166

8.1 Experimental evaluation of structural matching – directed and undirected
graphs . 185

B.1 Quality characteristics in ISO/IEC 9126 quality model 280

C.1 Model-to-model Trace Links Reference. 300
C.2 Model-to-pattern Trace Links Reference. 301

List of Publications

• Gacitua, V. and C. Pahl (2007). Business Process-driven Service Architecture Reuse. ERCIM
News. Special Theme: Service Computing. 70: 49-50.

• Gacitua-Decar, V. and C. Pahl (2008). Business model driven design of service architectures
for Enterprise Applications Integration: A pattern-based approach. DCSOFT’08: Proceed-
ings of the Doctoral Consortium on Software and Data Technologies, INSTICC.

• Gacitua-Decar, V. and C. Pahl (2008). Business model driven Service Architecture Design
for Enterprise Application Integration. ICBIIT’08: Proceedings of the International Con-
ference on Business Innovation and Information Technology, Logos Verlag.

• Gacitua-Decar, V. and C. Pahl (2008). Pattern-based business-driven analysis and design of
service architectures. ICSOFT (SE/MUSE/GSDCA)’08: Proceedings of the Third Inter-
national Conference on Software and Data Technologies, INSTICC.

• Gacitua-Decar, V. and C. Pahl (2008). Service Architecture Design for E-Businesses: A
Pattern-Based Approach. EC-Web’08: Proceedings of the 9th International Conference
on Electronic Commerce and Web Technologies, Springer.

• Gacitua-Decar, V. and C. Pahl (2008). Towards Pattern-Based Service Identification.
WEWST’08: Proceedings of the 3rd Workshop on Emerging Web Services Technol-
ogy.

• Gacitua-Decar, V. and C. Pahl (2009). Automatic Business Process Pattern Matching for
Enterprise Services Design. SERVICES-2’09: Proceedings of the 2009 IEEE World Con-
ference on Services - II, IEEE.

• Gacitua-Decar, V. and C. Pahl (2009). Ontology-based Patterns for the Integration of Busi-
ness Processes and Enterprise Application Architectures. In Book: Semantic Enterprise Ap-
plication Integration, G. Mentzas, T. Bouras, P. Gouvas and A. Friesen (Eds.), IGI Pub-
lishers, Ltd.

• Gacitua-Decar, V. and C. Pahl (2009). Towards Reuse of Business Processes Patterns to
Design Services. In: Emerging Web Services Technology. W. Binder and S. Dustdar
(Eds.), Springer - Birkhauser. III: 15-36.

• Garcia-Gonzalez, J. P., G. Gacitua-Decar, et al. (2009). A Service Architecture Solution
for Mobile Enterprise Resources: A Case Study in the Banking Industry. Emerging Web
Services Technology. W. Binder and S. Dustdar (Eds.), Springer - Birkhauser. Volume
III: 143-155.

• Garcia-Gonzalez, J. P., V. Gacitua-Decar, et al. (2009). Service Registry: A Key Piece to
Enhance Reuse in SOA. The Architecture Journal, Microsoft. 21:29-34.

• Pahl, C., Y. Zhu, et al. (2009). A Template-driven Approach for Maintainable Service-
oriented Information Systems Integration. International Journal of Software Engineering
and Knowledge Engineering, World Scientific. 19(7):889-912.

List of Abbreviations

A : Accuracy
AAL : Application Architecture Layer
AG : Attributed Graph
ALMA : Architecture-level modifiability analysis
ATG(M/P) : Attributed Type/typed Graph (Model/Pattern)
Constr : Constraints
BAIL : Business-Applications Intermediate Layer
BML : Business Modelling Layer
BPM : Business Process Management
BPMN : Business Process Modelling Notation
CP-E-PM : Complete/Partial and Exact Pattern Matching
CP-I-PM : Complete/Partial and Inexact Pattern Matching
CP-I-Attr-PM : CP-I-PM with relaxed Attribute Matching
CP-I-Type-PM : CP-I-PM with relaxed Type Matching
CP-I-Strc-PM : CP-I-PM with relaxed Structural preserving mapping
dis : Dissimilarity
EAI : Enterprise Application Integration
EBPP : Electronic Bill Presentment and Payment
ecm : Exact and complete mapping
epm : Exact and partial mapping
H-PM : Hierarchical Pattern Matching
IEC : International Electrotechnical Commission
ISO : International Organization for Standardization
LABAS : Layered Architecture for Business, Applications and Services
LCGH : Locally Constrained Graph Homomorphism
LKB : Lexical Knowledge Base
LM : Loan Management
mA : Match Accuracy
maxOutDeg : Maximum Out Degree
NG(u) : Neighbourhood of u in G
NRA : National Revenue Agency
OMG : Object Management Group
P : Precision
PI : Pattern instance
R : Recall
recM : Set of recorded graph models
SAL : Service Architecture Layer
sim : Similarity
SOA : Service Oriented Architecture
TG : Type/typed Graph
UML : Unified Modelling Language
WS-BPEL : Web Services Business Process Execution Language

Chapter 1

Introduction

Contents
1.1 Motivation . 1

1.2 Overview of Problems with the State of the Art 2

1.3 Contribution . 3

1.3.1 Hypothesis and Research Questions 3

1.3.2 Proposal . 4

1.4 Research Approach and Evaluation Methodology 5

1.5 Organisation of the Thesis . 8

1.1 Motivation

Software applications in organisations are built or acquired to provide specialised
functionality required to support business processes. If new activities and applica-
tions are created and integrated into existing business processes and infrastructures,
new architecture and information requirements have to be satisfied. Enterprise Ap-
plication Integration (EAI) and Business Process Management (BPM) aim to link
separate applications into an integrated system driven by business models and the
goals they implement, and to improve productivity, product quality and operations
of an enterprise, respectively. In recent years, Service-Oriented Architecture (SOA)
appeared as an architectural approach that has the potential to bridge the gap be-
tween business and technology and to improve the reuse of existing applications and
the interoperability with new ones. Software services are the building blocks of SOA.
They can be composed to provide more complex functionality and to automate busi-
ness processes. However, to make the design of a service actually reusable across
processes and organisations is a challenging, manual and often iterative task. To-
gether with the challenge of designing adequate services, service architectures have
to be coherently maintained and closely aligned with business processes, although
applications are created without a structured architectural design and processes are
continuously changing due to new regulations, organisational mergers or opera-
tional redesigns.

Chapter 1. Introduction

The development of integrated enterprise- and process-wide application archi-
tectures is a continuous process. To improve the process and overall quality, the
experience of analysts, architects and developers should be captured and reused.
Abstraction is a central driver in software engineering approaches and – at the busi-
ness level – the reuse of successful business designs is equally important. Abstraction
and knowledge representation are principles that can assist in dealing with the chal-
lenges of SOA design and integration. On the other hand, the size and complexity of
models involved with enterprise SOA make the tasks of analysts and architects ex-
traordinarily time-consuming and susceptible to numerous errors. Any automated
assistance during the analysis and design of SOA can benefit the overall goal of
processes and applications integration.

1.2 Overview of Problems with the State of the Art

SOA methodologies have advanced the way services and their organisations are
designed and developed. However, there are still problems to be addressed such as
providing adequate integration between modelling views involved in enterprise pro-
cesses and application integration problems, providing guidelines and tool support
to automate steps during the design of services that have an adequate granular-
ity and satisfy the constraints imposed by existing applications and the processes
they integrate, and providing the means to reuse knowledge through documented
architecture and process abstractions. In this work, the concept of pattern, as a
medium to capture process-centric architectural abstractions, is a central idea used
to assist the design of new services. Only a few SOA development methodolo-
gies have explicit support to work with patterns. Most of them focus on providing
facilities to document new patterns, store them and then helping to apply those pat-
terns in working models. Moreover, most patterns are based at the software level.
For process-centric service architectures designed to solve enterprise processes and
applications integration problems, process level patterns are fundamental. Existing
tools facilitating pattern storage and utilisation are important; however, a main prob-
lem is pattern identification. The experience of analysts and architects in the context
of process-centric systems is embedded in large and complex layered process-centric
descriptions. Hand-crafted approaches to identify process patterns in large and com-
plex process models are subject to errors and excessive time consumption, making
them difficult to adopt in practice. Process pattern identification is a step preced-
ing pattern application. Automating pattern identification in layered process-centric
descriptions is the challenge addressed in this work. Two main scenarios are ad-
dressed. One focuses on finding instances of known patterns (pattern matching), and
the other one focuses on discovering unknown patterns (pattern discovery). Pattern

2

1.3. Contribution

matching and discovery in process and architecture models can be abstracted to the
graph matching and frequent subgraph discovery problems. These problems have
been addressed in different fields but only recently have been associated to problems
involving process-centric models. Process models contain rich descriptions of their
elements and capture the idea of behaviour; therefore, graphs capturing these mod-
els have special characteristics. Graph matching and frequent subgraph discovery
in process models go beyond techniques provided in other fields, requiring specific
solutions that take into account not only the graph structure but also the semantics
of process element descriptions and the behaviour that process models attempt to
capture.

1.3 Contribution

1.3.1 Hypothesis and Research Questions

This work aims to contribute techniques to automate and support the reuse of
process-centric architecture and model abstractions to improve the current ap-
proaches for enterprise SOA design and integration.

Hypothesis. A pattern-based framework and techniques for layered service process
models can benefit

• maintainability,
• functional suitability and compliance, and
• traceability

of service-based systems for enterprise processes and applications integration.
In particular, process pattern matching and discovery techniques can be auto-

mated while addressing requirements related to effectiveness and efficiency, involv-
ing

• feedback to end users on the matching and discovery results,
• the ability of the techniques to accommodate to variations in their inputs by

providing flexible outputs such as partial or inexact results,
• if the results are not the intended results the effort to modify them should be

less than the effort to perform the task manually, and
• the processing time for automatically matching or discovering patterns should

be significantly improved compared with a hand-crafted approach.

Research Questions. According to [Shaw 2002], an adequate research in software
engineering would depend on the type of questions defined for the investigation. For

3

Chapter 1. Introduction

methods or means of development, the question How do we do/create or automate
the method? is central. For analysis methods, How can I evaluate the quality/-
correctness of the method? For the design, evaluation or analysis of a particular
technique/product, How does the technique perform in relation to a particular mea-
sure? For generalisation and characterisation, What are the important characteristics
and varieties of the technique? How are they related? For feasibility, Is it possible
to accomplish the intended results? Considering these recommendations and the
hypothesis described above, basic research questions were derived and include

• How to organise and maintain related models from different layers involved in
enterprise processes and applications integration?

• How can design knowledge in the form of patterns be integrated to this organ-
isation?

• Can an organised framework and pattern-based techniques benefit maintain-
ability, functional suitability/compliance and traceability?

• Which properties of processes are critical in identifying patterns?
• How can these properties be represented?
• How can known patterns be identified in processes? Can this be automated?
• Can unknown patterns be identified in processes? Can this be automated?
• Can known and unknown patterns be effectively and efficiently identified?
• How can effectiveness and efficiency of pattern identification techniques be

evaluated?

1.3.2 Proposal

Based on the hypothesis and research questions this work proposes a pattern-based
framework to structure the integration problem in a layered architecture involving
business, service and application modelling layers supported by pattern-based tech-
niques to assist analysis and design tasks.

The framework focuses on the support for modelling and integration through
explicit traceability and a set of pattern-based techniques. A dedicated profile and
traceability model are proposed to support an integrated view of models during
SOA design and integration. Among the pattern-based techniques considered in the
proposed framework, two techniques for automated pattern matching and discovery
are proposed and investigated in details. The techniques are based on a family of
algorithms for graphs. A family of graph matching algorithms is the basis of the
pattern matching technique. The graph matching algorithms can identify exact and
inexact, as well as complete and partial matches. Also, a hierarchical graph matching
algorithm is introduced. An algorithm for frequent subgraph discovery is the basis
of the proposed pattern discovery technique. It recursively uses the algorithm for

4

1.4. Research Approach and Evaluation Methodology

exact and partial graph matching.

The framework is open to incorporate advances in any of the introduced pattern-
based techniques. The pattern matching and discovery techniques have addressed
the complexity of real process-centric models. They have the potential to be further
extended to scenarios where the dynamics of model modifications becomes more
critical.

1.4 Research Approach and Evaluation Methodology

Software engineering research is concerned with improving the ability to systemat-
ically and predictably analyse and develop software that satisfies complex quality-
centric requirements – often expressed in illities – and that must evolve during its
lifetime. Software engineering results often take the form of methods for develop-
ment and analysis, they can be new or improved models or theories, and they may
be established qualitatively, through empirical study of software systems, through
empirical study of the software development process, or through formal analysis
[SEI 2010].

Two main streams of research can be identified from behavioural science and
design science [Hevner 2004]. While behavioural science addresses research through
the development and justification of theories that explain or predict phenomena
related to the identified requirements, design science addresses research through the
building and evaluation of artifacts designed to meet the identified requirements.
The goal of behavioural science research is truth. The goal of design-science research
is utility. The research approach followed in this work is based in principles of design
science.

A number of guidelines for conducting and evaluating design-science are pro-
vided in [Hevner 2004], [Hevner 2010]. The relation between the development of
this thesis and these guidelines can be summarised as follow (Table 1.1 indicates the
relations between guidelines and chapters in this thesis):

• Guideline 1: Design an artifact in the form of a construct, a model, a method, or
an instantiation – An architectural and modelling framework provides a gen-
eral model to capture the different perspectives involved in SOA design and
integration, i.e., business model, service architecture and application architec-
ture. The framework also provides explicit traceability between elements of
its model. Constructs to capture model abstractions (processes pattern) and a
method (supported by techniques) to exploit their use for service identification
are provided. Instantiation of the framework in a concrete chain tool facilitates
its evaluation.

5

Chapter 1. Introduction

• Guideline 2: Develop technology-based solutions to important and relevant
business problems – Enterprise services design and application integration is
a relevant and current problem in organisations. Automating activities during
services development and targeting pattern identification can be beneficial to
reduce high costs of maintenance, compliance with regulations and poor reuse
of design knowledge.

• Guideline 3: The utility, quality, and efficacy of a design artifact must be rig-
orously demonstrated via well-executed evaluation methods. The evaluation
method involves an scenario-based evaluation with case studies for the pro-
posed framework. An experimental method including a prototype chain tool
is utilised to evaluate the proposed algorithms for (process) pattern matching
and discovery. Adequate metrics are defined for each type of evaluation. Inter-
views to practitioners in the field provided feedback to the proposed artifacts.

• Guideline 4: Provide clear and verifiable contributions in the areas of the de-
sign artifact, design foundations, and/or design methodologies – Descriptions
of foundational and related works are provided in the next Chapter 2. It gives
an overview of the contribution (and relation) of this thesis in regard with SOA
design and integration, and specifically, with the identification (matching and
discovery) of process patterns to aid the definition of new services.

• Guideline 5: Apply rigorous methods in both the construction and evalua-
tion of the design artifact – The main stages of the research, that involve the
construction of the proposed framework and techniques, consider activities of
requirements elicitation, development of the framework and pattern identifi-
cation techniques. The evaluation method was already referred in Guideline 3
and it is discussed in more details (together with the requirements elicitation
and development approach) in the following paragraphs.

• Guideline 6: Utilise available means to search for an effective artifact while
satisfying laws in the problem environment – A stage of requirement elicitation
and definition of initial case studies gave a sense of the available means to
provide an effective framework in the context of enterprise SOA design and
integration.

• Guideline 7: The research must be presented effectively both to technology-
oriented as well as management-oriented audiences – Communication of the
research in the form of publications is targeted to an academic and technology-
oriented audience. A complementary assessment involving interviews to pro-
fessionals in industry targeted not only an industry and technology-oriented
audience but a management-oriented audience.

6

1.4. Research Approach and Evaluation Methodology

Table 1.1: Design science guidelines [Hevner 2010] and chapters in this thesis.

Guideline Chapter (Ch)
Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10

Guideline 1 - - X - X X - - - -
Guideline 2 - X - - - - - - - -
Guideline 3 - - - - - - X X X -
Guideline 4 - X - - - - - - - X
Guideline 5 - - - - - - X X X -
Guideline 6 - - - - - - X X X -
Guideline 71 - - - - - - - - X -

Requirement Elicitation and Development Approach. Preliminary case studies
were utilised to elicit requirements for the framework and pattern matching and
discovery techniques. A goal-question-metric method was used to establish the met-
rics of interest, in this case focused on maintainability, functional suitability/com-
pliance and traceability. The scenarios of the case study involved processes in the
e-commerce and financial domains that include human interaction in processes and
automated inter-organisational processes.

The modelling aspects of the framework were iteratively developed and focused
on an effective use among end users. Modelling constructs were initially proposed;
however, finally widely spread definitions coming from standardisation bodies were
adopted. The purpose of this decision was improved usability. This implied the
adoption of the abstract syntax for process models, service architectures and appli-
cation architectures proposed from an external body from industry and their adap-
tion to the proposed framework. These were developed using a profile. The core
and distinguishing characteristics developed for the framework were related to the
integration of models, traceability and pattern-based support.

The development of the pattern matching and discovery techniques was based on
the creation of a family of graph-based algorithms. First, process-centric descriptions
and patterns were defined as a special type of graphs. Data structures facilitating
graph manipulation were used (in this case, matrix- and vector-based structures).
Subsequently, the graph-based algorithms were developed in a iterative fashion. Ini-
tial pseudo-codes were refined before implementation. Executable versions of the
algorithms were developed and critical circumstances tested, including termination.
Errors encountered during the development phase were studied and root causes ad-
dressed. Similar to the general framework, a goal-question-metric method was used
to establish the metrics of interest to assess the results obtained by the algorithms,
and finally the techniques. The metrics attempt to measure the effectiveness and ef-
ficiency of the techniques and they include flexibility to identify partial and inexact
results, accuracy of the results, time processing and the ability to provide feedback

7

Chapter 1. Introduction

to end users in a visual manner.
The overall proposal was evaluated considering three main parts:

• a scenario-based analysis method used for the framework,
• an empirical evaluation for pattern matching and discovery algorithms, and
• a complementary assessment based on interviews with practitioners.

Evaluation Approach. Enterprise SOA design and integration involve challenges
at several levels of abstraction and relevance for different analysts and architects.
In order to evaluate the work in this investigation, two main approaches have been
adopted. The proposed framework is evaluated using two case studies and the
guidelines of an scenario-based architecture analysis method. The scenario-based
method is used to assess the benefits of the framework with regard to quality char-
acteristics. Maintainability, functional suitability/compliance and traceability are the
studied characteristics. In early design stages, these characteristics have a direct im-
pact on the subsequent development stages and overall quality of the service-based
system created for enterprise process and applications integration. An empirical
evaluation involving a set of experiments is adopted to explore the effectiveness and
efficiency of algorithms for pattern matching and discovery. A complementary as-
sessment based on interviews with practitioners extends the evaluation process with
a wider perspective that includes an ’industry’ point of view. Based on these inter-
views, the ideas from a number of practitioners regarding model-based analysis and
design techniques are explored.

Communication of the Research. Initial research involved with the proposed
framework and techniques were presented to the academic community in the form
of publications and reports. A limited group of practitioners was also communicated
with during interview sessions that were a complementary part of this work’s eval-
uation. For the research community, in addition to publications, the implementation
of the techniques was made publicly available, offering the possibility to repeat the
research or check correctness.

1.5 Organisation of the Thesis

The thesis document is summarised in Figure 1.1 and organised as follow.

• Chapter 2 provides a review of the literature describing contributions encom-
passing SOA methodologies, concepts enclosing ideas to represent and work
with architecture and process model abstractions, and a number of techniques
for service identification, pattern matching and discovery.

8

1.5. Organisation of the Thesis

Figure 1.1: Organisation of this thesis.

• Chapter 3 describes the proposed pattern-based framework for SOA modelling
and design. It explains the role of patterns, the abstraction layers, the traceabil-
ity model and the techniques considered in the framework.

• Chapter 5 describes the proposed pattern matching techniques and underly-
ing algorithms. The chapter is divided according to solutions for problems
associated to structural and semantic aspects.

• Chapter 6 describes the proposed pattern discovery technique.
• The evaluation of the overall work and associated tool support is separated

into three chapters. Modelling tool support and a case study-based assessment
and discussion of the framework are explained in Chapter 7.

• The evaluation of the pattern matching and discovery techniques, together with
tool support for implementing the algorithms, experimental setting and results
visualisation are explained in Chapter 8.

• The results of a complementary assessment based on interviews with practi-
tioners in industry are described in Chapter 9.

• Conclusions of this work and a description of possible further research are
provided in Chapter 10.

9

Chapter 1. Introduction

Note that throughout the thesis, a number of sections are utilised to illustrate
the use and benefits of the proposed techniques. These sections are a complement
to the main structure of the thesis and they aim to facilitate the understanding of
introduced concepts and applications.

10

Chapter 2

Literature Review

Contents
2.1 Overview . 11

2.2 Introduction to Enterprise SOA, EAI and BPM 12

2.3 Architectural Abstractions in Enterprise SOA 13

2.3.1 Enterprise SOA Design Approaches 13

2.3.2 Architectural Abstractions . 16

2.3.3 Pattern-based Techniques . 21

2.3.4 Traceability in SOA Modelling . 24

2.4 Service Identification . 25

2.4.1 Identifying New Services . 26

2.4.2 Identifying Existing Services . 27

2.5 Process Models Comparison and Querying 29

2.6 Graph-based Pattern Matching and Discovery 33

2.6.1 Graph Matching . 34

2.6.2 Frequent Subgraph Discovery . 39

2.7 Summary . 40

2.1 Overview

This chapter describes a review of the literature that is divided into five main sec-
tions. The next section introduces basic notions of enterprise application integration,
business process management, service-oriented architectures and their relationships.
It also briefly discusses the relevance of design knowledge reuse for enterprise pro-
cesses and applications integration. The second section discusses several notions
of architecture and model abstractions related with enterprise service architectures.
The third section describes approaches to identify new and existing services, in-
cluding the identification of new services based on process patterns. The fourth
section describes techniques that are related to process pattern identification. They
include process model comparison and querying. Since the proposed process pat-
tern matching and discovery techniques in this work are based on graphs, the fifth

Chapter 2. Literature Review

section focuses on graph matching and frequent subgraph discovery techniques, in-
cluding a number of approaches beyond the scope of SOA design and development.
The chapter finishes by summarising some weaknesses and limitations of the state
of the art, which defines where this work builds up on.

2.2 Introduction to Enterprise SOA, EAI and BPM

Software applications are built or acquired to provide specialised functionality re-
quired to support business processes. If new activities and applications are created
and integrated into existing business processes and infrastructures, new architecture
and information requirements need to be satisfied [Themistocleous 2004]. Enterprise
Application Integration (EAI) aims to link separate applications into an integrated
system driven by business models and the goals they implement [Linthicum 2000],
[Gorton 2004].

Business process management (BPM) aims to improve productivity, product
quality, and operations of an enterprise. BPM encompasses methods, techniques,
and tools to support the analysis, design, implementation and governance of op-
erational business processes. Processes models have a critical role in the redesign
of business processes and its integration and automation [Johannesson 2001]. How-
ever, business analysts and software developers often face difficulties managing chal-
lenges such as discovering, modelling, and understanding business processes in the
context of their implementation through software applications.

Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an ap-
proach to EAI. Despite the design and implementation challenges, the expected
benefits have encouraged the adoption of SOA [Erradi 2006], [Linthicum 2004],
[Umar 2009]. SOA has the potential to bridge the gap between business and technol-
ogy and to improve the reuse of existing applications and the interoperability with
new ones. Software services are the building blocks of SOA; they can be composed to
provide more complex functionality and to automate business processes. However, if
applications are created without a structured architectural design, integrating these
into a coherent architecture closely aligned with the business processes becomes a
significant challenge [Land 2007]. Often business processes do not map one-to-one
to services in a process-centric service architecture, that makes refinement (and ab-
straction) between abstract process model levels and more concrete implemented
process levels difficult to approach systematically and to automate [Koehler 2008b].

Placing BPM on top of SOA has shown good results but many challenges remain
[Woodley 2005]. Short term goals can diminish the potential benefits of a strong
architectural governance function [Brahe 2007], including design knowledge reuse.
Abstraction and knowledge representation are principles that can address these chal-

12

2.3. Architectural Abstractions in Enterprise SOA

lenges. Architecture abstractions like patterns and styles capture design knowledge
and allow the reuse of successful applied designs, thus improving the quality of
software [Monroe 1997]. Abstraction is a central driver in software engineering ap-
proaches; at the business level the reuse of successfully business designs is equally
important. The development of integrated enterprise-wide application architectures
is a continuous process. To improve the process and overall quality, the experi-
ence of analysts, architects and developers should be captured and reused. Knowl-
edge gained from integration projects should be captured to build a repository of
experience-based pattern solutions.

2.3 Architectural Abstractions in Enterprise SOA

2.3.1 Enterprise SOA Design Approaches

Two early service-oriented development methodologies, SOMA1 (Service-Oriented
Modelling and Architecture method) [Arsanjani 2004] and MSOAM (Mainstream
SOA Methodology) [Erl 2004] originated from the IT industry sector. Both method-
ologies encompass an enterprise-wide vision and during analysis stages they cover
business and applications architecture modelling domains. In MSOAM, the analy-
sis of business-level models starts focusing mainly on processes; while in SOMA, it
starts with functional areas of the enterprise. Initially, none of the two methodolo-
gies provided a detailed and integrated modelling framework and neither of them
discussed support for inter-organisational processes and services.

Later, the standardization institution OASIS proposed a methodology to design
business-centric service architectures [Jones 2005]. The methodology focuses on en-
terprise project levels and it provides a basic notation to model services. The notation
is not formally defined and allows an abstract definition of business-centric services.
Detailed design and implementation is beyond the scope of the proposed notation.
The analysis phase from where service designs are derived included only models at
business levels, leaving out of scope the study of existing applications supporting
the operation of the business. Functions derived from the division of work among
organisational units are the basis to define services functionalities. After services
are defined, business processes are considered abstract guidelines to define service
orchestrations.

Subsequently, from academia, an empirically-based methodology for SOA de-
velopment was proposed [Papazoglou 2006a]. The proposed methodology is a syn-

1The same author participated in an earlier proposal consisting in a goal-driven approach to enter-
prise component identification and specification [Levi 2002]. A goal-oriented model of a business is
created and developed into a business architecture and then mapped onto a component-based software
architecture.

13

Chapter 2. Literature Review

thesis of existing methods and techniques used for SOA development. It includes
planning, analysis, design, construction, testing, provisioning, deployment, execu-
tion and monitoring phases. During the analysis phase, the use of reference models
and documented design knowledge (for instance, standard processes) is emphasized;
however, it is not clearly established how this can be operationalised. Standard mod-
elling notations are suggested for models at different stages. However, to facilitate
the overall lifecycle of services, an integrator modelling framework for all stages is
needed.

At enterprise scale, the emphasis on business modelling as a necessary step in
the development of services has promoted methodologies such as Business-driven
Development (BDD) [Mitra 2005]. BDD is focused on the idea of developing soft-
ware based on abstract business process models that can be transformed into exe-
cutable processes – composed of services. The benefits promoted by BDD are agility
and flexibility to deploy new software solutions. When changes at business pro-
cess level take place, a direct transformation to lower levels can be deployed quickly.
The latter strategy has also been promoted by several other proposals that aim to
translate business process models into executable processes (e.g., [Gardner 2003],
[White 2005] and [Ouyang 2007]). They often focus on solutions to directly trans-
late process models described with process modelling notations, such as BPMN
[OMG 2008b] or UML-activity diagrams [OMG 2007], into executable processes in
languages such as WS-BPEL [OASIS 2007]. While the majority of proposals follow
an element-by-element transformation, in [Ouyang 2007] the authors introduced the
concept of workflow patterns to support pattern-based transformations. One short-
coming of these approaches is that they assume software services have a one-to-one
relationship with activities in business-level process models. However, software ser-
vices can involve more than one activity and in some cases, they may be more granu-
lar than an activity in a process model. This observation and other considerations for
business model-driven development, including concerns about constraints imposed
by existing applications are discussed in [Koehler 2006],[Koehler 2008b].

The service-oriented modelling and architecture method SOMA [Arsanjani 2004]
is extended to a model-driven framework to SOA design (SOMA-ME) in
[Zhang 2008]. UML profiles extend the UML 2.0 metamodel to domain-specific con-
cepts. SOMA-ME is tool supported in IBM Rational Software Architect to provide a
development environment. Traceability between models, variation-oriented design
and facilities to maintain a repository of patterns and allow their instantiation are
relevant characteristics of the modelling framework. Service identification support
consists in an automated services categorisation function based on the ordering of
business functions using a clustering algorithm. A set of values for different criteria
are manually assigned to each service to provide a service score that is later used for

14

2.3. Architectural Abstractions in Enterprise SOA

selection purposes.

A recent contribution proposes a UML-based framework to assist the develop-
ment of service-based systems [Spanoudakis 2010]. A service discovery technique
allows the identification of services (used to build the system) in a repository. A
query language allowing the representation of structural, behavioural, and quality
characteristics of services and a query processor are proposed as basis of a service
discovery technique. The framework proposes an iterative process, where structural
and behavioural design models of service-based systems and additional constraints
are used to identify services that can fulfill functional and non-functional character-
istics of the system in development.

Table 2.1 summarises a number of characteristics of the previously mentioned
SOA methodologies. The third column in the table indicates the modelling strategy
used to analyse the domains involved during services design. The strategies are
top-down (from business to software levels), bottom-up (from software to business
levels) and in-the-middle (using models in software and business as input to design
services). The fourth column indicates the modelling languages considered in each
approach. The fifth column refers to modelling activities which are tool-supported
or automated to some degree. Modelling activities include transformations from
business to software levels (vertical transformations), architecture/model modifica-
tions (horizontal transformations) and service identification. The latter involves the
identification of new and existing services. For new services this includes the anal-
ysis of processes and existing applications that can reveal opportunities for reuse
and constraints for services implementation and their composition. Finally, the last
column of Table 2.1 indicates if the methodology takes into consideration the use
of patterns (business and software levels) as a medium to document and manage
design knowledge.

Table 2.1: SOA design methodologies.

15

Chapter 2. Literature Review

Summarising, SOA methodologies have advanced the way services and their
organisation are designed and developed, however there are still challenges such
as providing integration between modelling views, guidelines and tool support to
design services with adequate granularity and satisfying the constraints imposed
by existing applications and mediums to reuse knowledge embedded in reference
models and other types of design abstractions documentation. In particular, a special
section in this chapter is focused on the use of patterns as a medium to express
design knowledge that can guide the design of abstract services.

2.3.2 Architectural Abstractions

The potential benefits of reusing expert design knowledge expressed in architec-
tural/model abstractions such as patterns and styles has not been fully exploited
by existing SOA design methodologies and frameworks. The previous section men-
tioned some approaches that use software- and business-level patterns as a medium
to reuse previously applied designs. Architectural abstractions such as patterns and
styles can capture design knowledge that is expressed as a set of constraints over
types and relationships among elements of concrete models/architectures. These
relationships can go beyond structural relationships and the abstraction level can
vary. Related concepts to software architecture level patterns and styles such as
architectural frames [Rapanotti 2004], method chunks [Ralyte 2008] and business
process level patterns [Gschwind 2008], [Tran 2006], [Tran 2007], [Smirnov 2009],
[Thom 2007] are abstractions that can also be used to assist the design of service-
based systems within specific frameworks. In particular to patterns, the software
and business communities are involved with diverse definitions around the pattern
concept. Some of these definitions are revisited next.

2.3.2.1 Software Level Abstractions

Several concepts capturing software level abstractions, not always clearly differen-
tiable, have been proposed. Design patterns, architectural patterns, styles, architec-
tural frames and method chunks are examples of them.

Design patterns in [Gamma 1995] follow the concept of patterns for architectures
of buildings and towns proposed in [Alexander 1977], where patterns are solutions
to problems in a particular context. Patterns can then be identified with a name
and contain a description of the addressed problem, how to address it (i.e., the so-
lution) and the consequences of applying the pattern. In [Riehle 1996], the concept
of pattern is used to capture and communicate software design experience. Specifi-
cally, the authors define patterns as abstractions from a concrete form which keeps
recurring in specific non-arbitrary contexts. They categorise patterns in conceptual

16

2.3. Architectural Abstractions in Enterprise SOA

patterns, design patterns and programming patterns. They also describe different
ways to describe patterns, including the template patterns in [Gamma 1995], and
alternatives to combine patterns.

Architectural patterns in [Buschmann 1996] are used to communicate the struc-
tural organisation of a software system. The architectural pattern defines a set of
predefined subsystems, their responsibilities and guidelines to organise the rela-
tionships between subsystems. In a recent volume of the pattern-oriented software
architecture series books [Buschmann 2007], the authors discuss (in the context of
software development) what patterns are, what they are not, and how to use them.
According to them, patterns document existing best practices built on tried and
tested design experience. Patterns identify and specify abstractions that are above
the level of single objects, classes and components, and they provide a common vo-
cabulary and shared understanding for design concepts. Patterns can be a means for
documenting software architectures, support the construction of software with well-
defined properties, and capture the experience in a form that can be independent of
specific projects, implementation paradigm, and often even programming language.
In the view of the authors, developers tend to see patterns as fixed blueprints or
very specific configurations of classes, and they may believe that patterns help them
to formulate intricate architectures by following a recipe or through mechanical ap-
plication. A limited or misunderstood pattern vocabulary may cause developers to
apply the wrong pattern in response to a given problem. Patterns are not just pieces
of neat design, they require reoccurrence and generality. They are neither coding
guidelines nor components.

For the authors in [Avgeriou 2005], architectural patterns and architectural styles
are in essence the same concepts and they only would differ in that they use different
description forms. They use the term architectural pattern as an umbrella term
to cover the classical idea of an architectural pattern as in [Buschmann 1996] and
concepts of architectural styles (described in the next paragraphs). Also, design
patterns as in [Gamma 1995] are considered to be at a lower level (system level) of
abstraction. Thus, in [Avgeriou 2005], architectural patterns and styles would refer
to recurring solutions that solve problems at the architectural design level, help to
document the design decisions taken by architects, provide a common vocabulary
facilitating communication and the means to reason about the quality attributes of
a software system. However, styles would focus less on the problem and rationale
behind selecting a specific solution. According to the authors, the lack of consensus
in the community with respect to the ”philosophy” and granularity of architectural
patterns, as well as the lack of a coherent pattern language make difficult to apply
the appropriate architectural patterns in practice. In an attempt to find a common
understanding, the authors in [Avgeriou 2005] propose a pattern language that acts

17

Chapter 2. Literature Review

as a superset of the existing architectural pattern collections and categorisations.

For the authors in [Gregory 1995], software architecture styles are seen as a col-
lection of conventions used to interpret a class of architectural descriptions. Thus, in
order to understand the meaning of a specific architectural design two elements have
to be present: a description of the design (usually in the form of an architectural di-
agram) and a reference to the style used to describe the design. A style indicates the
kinds of components in the design diagram, their relationships and other semantic
details, such as constraints on the topology. The authors in [Gregory 1995] describe
styles by means of mappings from a syntactic domain of the architectural descrip-
tion to a semantic domain of the architectural meaning. In [Taylor 1996] a particular
style (C2) is proposed, which allows to model distributed and concurrent applica-
tions. In [Pahl 2007], an ontology-based approach for modelling architecture styles is
presented. The authors introduce operators for style modification and combination
between styles. Relationships between quality requirements and style modelling are
investigated. The application of the ontological framework in service ontologies is
illustrated.

Considering the scope of styles in [Gregory 1995], [Taylor 1996], there is not a
clear boundary between the definition of a style and an architecture description
languages (ADL) [Medvidovic 2000]. In a similar manner, architectural patterns, de-
sign patterns and styles are not clearly differentiated. For instance, in [Taylor 1996]
model-view-controller (MVC) is considered a style, while in [Curry 2008] it is consid-
ered a design pattern, in [Shaw 1996b] an architectural pattern (implicit invocation
architectural pattern), and in the original publication [Glenn 1988] is considered a
programming methodology. In [Giesecke 2007], the authors generalise architectural
styles, patterns and similar concepts by introducing the notion of architectural con-
straints. An architectural constraint is considered a medium to reuse architectural
design knowledge and to improve software quality.

Architectural frames, which are combinations of architectural styles and problem
frames are introduced in [Rapanotti 2004]. Problem frames classify software devel-
opment problems and, therefore, are used only in the problem space. The authors
observe that the solution space influences the problem analysis within a domain
through the software engineer’s domain knowledge, including choices of domain-
specific architectures, architectural styles, development patterns and reuse of past
development experience. Architectural frames use architectural styles, located in the
solution space, to guide the analysis of the problem space.

The structure of a knowledge-based system for situation-specific solutions, called
method chunks, is proposed in [Ralyte 2008]. Method chunks are based on the ideas
of modularisation and formalisation of method knowledge in the form of reusable
entities from situational method engineering. Method chunks can be combined to

18

2.3. Architectural Abstractions in Enterprise SOA

compose a situation-specific method and can be stored in a repository. An interop-
erability classification framework is used to classify and tag method chunks, and to
assess the project situation in which they are to be used.

This work is centred on the idea of patterns, and the word pattern would be used
to refer to a set of constraints over elements and their relations in concrete models,
including architectures, that allows to capture a known solution to a recurring prob-
lem. This view is similar to the notion of architectural constraints in [Giesecke 2007]
but focused on the problem-solution pair associated to architectural patterns and
styles in [Avgeriou 2005].

2.3.2.2 Business Process Level Abstractions

Different variants of business process level patterns are introduced in [Tran 2006],
[Tran 2007], [Barros 2007], [Gschwind 2008], [Smirnov 2009] and [Thom 2007]. Also,
basic workflow patterns for control flow are widely known and available in numer-
ous process modelling tools [Aalst 2003]. This section provides an overview of these
variants.

Workflow patterns constrain the flow of information in processes that can be
executed as workflows [Aalst 2003]. Examples of them are exclusive choice, par-
allel split, simple merge and synchronization patterns. Yet workflow patterns are
widely known and available in numerous process modelling tools, few of them pro-
vide support for end user to correctly apply these basic patterns. The authors in
[Gschwind 2008] describe the extension of a business process modelling tool with
workflow patterns. The tool supports the use of pattern compounds and provides
active recommendations for selecting patterns that are applicable in some user-
determined context, provides feedback to the end user if applying a pattern can
lead to a modelling error and it allows to trace the sequence of applied patterns dur-
ing the model editing process. More complex patterns that involve the semantics of a
business domain or a formal conceptualisation of process patterns is not addressed.

An approach to formalise the concept of process pattern based on a process meta-
model is introduced in [Tran 2006] and [Tran 2007]. The authors provide a general
definition to cover various kinds of process-related patterns in different domains and
a method to construct models based on pattern combinations. They include generic
process structures and patterns for determined domains such as the stage process pat-
tern, process interaction, time-to-customer and process layer control in [Ambler 1998] and
[Eriksson 1998], as well as process patterns applicable to specific software systems,
often captured from internal processes in organisations (e.g., they mention Fagan’s
process for software inspection [Fagan 1976]). In [Barros 2007], business process
patterns are considered the medium to encapsulate high-level business knowledge

19

Chapter 2. Literature Review

and logic of a given application domain. Business process patterns would capture
best practices and they could be reused to improve processes quality. Examples
are the process patterns documented in the Supply Chain Operations Reference-
model (SCOR), the Enhanced Telecom Operations Map (eTOM) and the Information
Technology Infrastructure Library (ITIL). In [Barros 2007], a number of real pro-
cess redesign projects (hundreds) were studied, and business patterns extracted. In
[Smirnov 2009], the authors address the problem of providing suggestions during
process modelling with the objective of assuring model quality and homogeneity.
They introduce action patterns (chunks of actions often appearing together in busi-
ness processes) and a technique to identify them. Actions patterns are domain spe-
cific and they are identified from existing process model repositories using associa-
tion rule mining techniques (the Apriori algorithm [Agrawal 1994]) and based on the
similarity of activity labels. Action patterns can then be used to suggest additional
actions for a process model. The authors use the SAP Reference Model to illus-
trate the type of pattern that action patterns are and to evaluate their approach. In
[Thom 2007], the authors describe three main categories of workflow patterns cap-
turing recurrent business functions frequently found in business processes: work-
flow patterns based on organizational structural aspects, specific application domains and
recurrent functions. The latter category is independent of the application domain. In
one of their recent works [Thom 2009], the authors introduce workflow activity patterns
(WAP) – or activity patterns for short – to capture descriptions of recurrent business
functions found in business processes such as the task execution request, notification
and approval patterns. Two main categories are considered: activity patterns based
on organizational structural aspects; and recurrent functions. Activity patterns are de-
scribed in a similar way to software design patterns. A structured document is used
for this purpose and it contains fields for a pattern name, a textual description of the
pattern and addressed problem, an illustrative example of their use, design choices
that determine different pattern variants, references to related patterns and remarks
regarding pattern implementation. Two hundred process models were analysed in
[Thom 2009] in order to evidence the practical relevance of process patterns.

The concepts of activity patterns based on recurrent functions in [Thom 2009]
and actions patterns in [Smirnov 2009] are close to the concept of process pattern in
this work. In the same way software level patterns define a set of constraints over el-
ements and relations among architecture elements, process patterns define constraints
over process elements and their relationships in concrete models. They abstract
recurrent (process) steps across processes and organisations. However, process pat-
terns are used for a different purpose than in [Thom 2009], [Smirnov 2009]. In a sim-
ilar intention to [Papazoglou 2006a], [Papazoglou 2006b], where the authors suggest
the use of reference models and associated business-level patterns to guide the defi-

20

2.3. Architectural Abstractions in Enterprise SOA

nition of normalised business functions for services, this work uses process patterns
identified in process level descriptions to guide the design of reusable process-centric
services, which would be used in integration systems. The proposed approach aims
to advance techniques for pattern-based service definition by providing an automatic
mechanism for process pattern identification.

2.3.3 Pattern-based Techniques

Different techniques can be used to benefit from patterns and to assist the devel-
opment of systems. Techniques can support the selection of appropriate patterns
and their adequate instantiation in developing systems. They can also assist, in a
controlled way, the transformation of existing systems. Moreover, if patterns have
been previously applied but the architecture of the system has no documentation
about them, recovery techniques can assist the extraction of higher level architecture
models. Similar to software levels, process models can be extracted from process
execution logs, the application of process patterns can be assisted during process
modelling, and process patterns can be identified in concrete models to assist the
development of pattern-based systems. Towards the end of the chapter, pattern
matching and discovery techniques, which are core to this work, are described in the
context of processes and graph-based models.

Pattern Selection. A systematic method to select patterns using pattern language
grammars and design space analysis is introduced in [Zdun 2007a]. The aim is to
facilitate the decision to select the appropriate patterns and pattern languages dur-
ing the construction of systems based on patterns. Pattern languages prescribe the
way patterns can be combined, defining interdependencies between patterns and
often documenting extensive examples or case studies explaining the combined use
of patterns. The authors explain that difficulties arise when patterns and pattern
languages are written by multiple entities, making necessary to identify interdepen-
dencies and overlaps between patterns and pattern languages before their utilisa-
tion. The pattern selection in [Zdun 2007a] is based on the desired system’s quality
attributes. Pattern relations are formalised in a pattern language grammar and the
grammar is annotated with effects on quality goals. Design decisions are analysed
using the design spaces covered by a set of related software patterns, possibly origi-
nating from different sources.

Design decisions for service-based systems development have their own partic-
ularities. In [Zimmermann 2007], a method to design solutions for service-based
transactional workflows is presented. The method identifies recurring architectural
decisions in analysis-level process models, models alternatives for these decisions

21

Chapter 2. Literature Review

as reusable, platform-independent patterns and primitives, and maps the patterns
and primitives into technology- and platform-specific settings in WS-BPEL and SCA.
Complementary to [Zimmermann 2007], in [Papazoglou 2006b], a design approach
for business transactions based on standard business functions is proposed. Both
methods guide the design of service- and process-centric systems using patterns at
software and business levels, respectively. Guidance however requires the defini-
tion of mappings from problem to conceptual primitives/patterns and from them
to known technical solutions in platform specific settings. Clear identification of
the design problem requiring a decision and posterior analysis of previous applied
patterns needs to be managed outside the proposed methods.

A few contributions have addressed the problem of pattern applicability in an
automated way. In [Kim 2007], an approach to specify the problem domain in de-
sign patterns is proposed. The domain problem of patterns follows the ideas for
pattern descriptions in [Gamma 1993], but adding a precise notation. Their concep-
tualisation and precise notation of the problem domain of patterns is suggested for
the utilisation of tool support for automatic evaluation of pattern applicability. They
demonstrate how the problem domain specification of the visitor pattern can be used
to evaluate pattern applicability in a more automated way.

An automated identification of process patterns in high-level process descrip-
tions (involved in the development of service systems for process and application
integration) is proposed in this work as an alternative to automate the identification
of the problem domain of services in development, which are subsequently refined
to service architecture implementation levels. This complements methods such as
[Zimmermann 2007] and [Papazoglou 2006b] with automated assistance during ser-
vices identification.

Pattern Variation and Combination. Non-controlled changes in an architecture
might interfere with previously applied design patterns. Several proposals in the
literature have taken advantage of the graph representation of software architec-
tures and they have used a graph basis to address issues on pattern evolution. In
[Zhao 2007], a graph-transformation approach to pattern level design validation and
evolution is presented. Based on types of design pattern evolution, they specify
graph-transformation rules to manipulate the pattern elements while maintaining
the underlying pattern properties of the design. The authors do not refer to pattern
property preservation after pattern combination.

Patterns are not often used in an isolated way, they can be part of organised col-
lections named pattern languages. Pattern languages allow regulated combinations
that extend the reach of individual patterns [Buschmann 2007]. In [Hentrich 2006] a
pattern language for process-oriented integration of software services is presented.

22

2.3. Architectural Abstractions in Enterprise SOA

However, it is only focused on structural aspects of executable processes, such as the
synchronisation between macro- and micro-process flows. The development of archi-
tectures with a pattern-based approach requires techniques providing mediums to
combine, refine, extend, and other more complex operations to work with patterns.
In [Gomes 2003] a set of pattern operators is introduced to design architectures for
applications in grid environments. In [Gomes 2008] these ideas are extended to grid-
based workflows.

Pattern Recovery. Architecture modifications are central after a software system
is implemented. Discovering the instances of previously applied patterns and pro-
viding techniques to modify the architecture in a controlled way are two important
activities in software maintenance.

Since the nineties, pattern discovery techniques have been proposed to recover
patterns from source code. Discovering instances of architectural and design patterns
from the source code of software systems is used to assist the analysis of systems
and their future modifications. Source code is typically large in size, making more
difficult its comprehension. Trying to manually identify patterns from the source
code consumes significant time and it is susceptible to errors. Most pattern recovery
approaches first extract a class model from the source code and subsequently anal-
yse that model in the search of patterns. The identification of architectural/desing
patterns in class models mostly relies on matching structural characteristics – from
patterns present in models. Less considered are the behavioural and semantic as-
pects.

A technique to detect design patterns using a similarity scoring approach is in-
troduced in [Tsantalis 2006]. The technique is flexible to allow the identification of
modified versions of patterns. The technique is adapted from a previous graph-
based algorithm for ranking pages on Internet [Jon 1999] and exploits the fact that
patterns reside in one or more inheritance hierarchies, reducing the size of the graphs
analysed by the algorithm. An evaluation in three systems indicates that the tech-
nique produces only a few false negatives and no false positives in their results. In
[Sartipi 2001], a technique for recovering the high-level design of legacy software sys-
tems based on a pattern matching technique is proposed. The technique is a based
on a graph matching algorithm that takes as inputs a graph-based representation
of architectural patterns defined by end users and a graph representation of legacy
systems. A multi-phase branch and bound search algorithm with a forward check-
ing mechanism controls the matching process of the system and pattern graphs. For
process pattern identification, a representation of the semantics involved with pro-
cess elements and behavioural aspects needs to be added to the structural aspects
addressed in [Sartipi 2001].

23

Chapter 2. Literature Review

A review of 26 design pattern discovery techniques can be found in [Dong 2007].
The authors also propose a design pattern identification technique that considers
structural, behavioural and semantic aspects. The review indicates that the choice
of source code representation in specific types of models directly affects the choice
of the algorithms for discovery. Some techniques only allow exact matches whereas
others may allow approximate matches. Most techniques provide as their result only
the number of discovered patterns, whereas some of them indicate the positions of
discovered patterns graphically. But more restrictive, in general, the discovery tech-
niques only support the discovery of a certain number of patterns. The proposed
technique in [Dong 2007] uses weighted matrices to represent the system architec-
ture and patterns. Patterns are discovered by comparing matrices associated to the
architecture and patterns. Instances of different patterns in a single architecture
model which have a similar structure and behavioural representation in matrices
can be only be distinguished by reviewing if the pattern elements were named with
some pattern-related information. Naming conventions of classes have to contain ref-
erences to design patterns if instances of different patterns need to be distinguished.

2.3.4 Traceability in SOA Modelling

Traceability among elements of an architecture is an important property for architec-
ture modification and evolution. Traceability between software components and rel-
evant business elements of an enterprise has been exploited as a fundamental instru-
ment to manage complex enterprise systems [Bernus 2003]. Service-based systems
for business processes and application integration are at the core of an intermediate
layer between models representing business operations and software architectures.
Traceability between business elements, services and software components is impor-
tant to manage the consistency between views involved in a process and application
integration problem.

The authors in [Steen 2005] discuss the relevance and impact of service orienta-
tion to enterprise architectures. Traceability between services is utilised as instru-
ment to align different views and to analyse the impact of changes in a single view.
Even though modelling support for traceability is provided, the architectural de-
scription of services is introduced in few details.

A multi-viewpoint approach for service-oriented design is introduced in
[Dijkman 2004]. The authors focus on interrelations of viewpoints at service and
service composition level to allow consistency between different parties designing
an inter-organisational service-based architecture. The views involve interface be-
haviour, provider behaviour, choreography, and orchestration. They formalise mod-
els from a control flow perspective using Petri nets. A traceability model interrelating

24

2.4. Service Identification

views is used to allow static verification of the consistency of composite services.

Practical experience regarding the adoption of a service-centric architecture in
the context of a very large and complex enterprise transformation is described in
[Kavianpour 2009]. The publication reveals the method used in Unisys to manage
the complexity of an enterprise-wide architecture transformation process, in this case
to a service-centric architecture. Models capturing different views are interrelated in
a traceability model. The traceability model is manually maintained. The objective of
the traceability model is to assist a change impact analysis by observing the effects
of changes from one model over models in other views. Changes in models are
intentionally made to emulate possible changes in reality. The effects on the overall
architecture are analysed and used to assess possible architecture configurations.
The analysis is performed by end users and facilitated with the information of the
traceability model.

An initial version with tool support involving functionality to manage traceabil-
ity among models in the SOMA-ME modelling framework for service systems devel-
opment is proposed in [Zhang 2008]. Predefined relations between model elements
define specific structures that are maintained and monitored. If changes in elements
occur, preservation of the predefined structures is checked and if alterations are
found, alerts to the end users are displayed using a colouring scheme on model el-
ements. This approach allows interaction with end users to maintain consistency
between models after changes. In [Zhang 2009], the initial work in [Zhang 2008] is
extended to facilitate the use of SOA solution patterns in concrete models associated
to a service-based system in development. Solution patterns can be associated to in-
dustry standards or best practices. During modelling, end users with the help of the
provided tool support can select solution patterns to be applied into their models.
The history of applied patterns on particular models is recorded and it constitutes a
traceability model between patterns and concrete models.

2.4 Service Identification

A critical step to design service architectures is service identification. Service identi-
fication can involve the discovery of existing services or modelling new ones. High-
level guidelines to design new services as the ones mentioned in the previous section
(e.g., [Erl 2004]) are very useful, however they require advances regarding formality
and techniques that can be realised in tool support. The following sub-sections de-
scribe a number of approaches providing techniques to (semi-)automate steps in the
service identification activity.

25

Chapter 2. Literature Review

2.4.1 Identifying New Services

During early stages of services design, service granularity is decided according to
principles such as loose coupling, reusability, abstraction, autonomy. Most SOA de-
sign methodologies consider services design a highly human-dependant task. Some
contributions, such as [Albani 2006], [Aizenbud-Reshef 2007] and [Zhang 2005] have
proposed techniques to (semi-)automate the identification of software components
and services.

A semi-automated method to identify business components from an enterprise on-
tology is proposed in [Albani 2006]. Business components are used to automate
inter-organizational business processes, combining different software artifacts. They
can be seen as precursors of business-centric services. The business domain model
from where business components are derived from satisfies the requirements of an
enterprise ontology. A matrix-like structure derived from the enterprise ontology
is used to organise business process steps from process models and manipulated
objects in each of the process steps. Each matrix entry has a value related to an oper-
ation type. Operation types capture the different ways an object can be manipulated
(processed) in a process step. After the matrix structure is (manually) populated, it is
re-organised using an optimisation algorithm that generates clusters. These clusters
are used to guide the definition of software components. Optimisation criteria aim-
ing at minimal communication between components (loose coupling) and maximum
component compactness (high cohesion) are used to identify the clusters. The ser-
vice identification method in [Albani 2006] can be seen as a top-down (from business
to software) method.

A bottom-up, semi-automated method to identify service candidates in legacy
source code is proposed in [Aizenbud-Reshef 2007] (associated with patent applica-
tion [Aizenbud-Reshef 2009]). The idea is to abstract information from legacy source
code, store that information in a repository and to match a service description-based
query with source code elements described in the repository. A ranking engine can
combine matches in order to obtain an aggregated answer to the service description-
based query. Information retrieval techniques and static analysis are used to retrieve
ranked candidate locations according with semantic context and similarity between
functional description associated to services in the query and functionality of source
code in the repository.

The approach in [Zhang 2005] focuses on identifying services based on a com-
parative analysis between information extracted from the problem domain at the
business level and architectural information derived from legacy systems. Architec-
tural information is recovered from legacy systems to subsequently apply a (hier-
archical) clustering technique to group legacy functionality from different systems.

26

2.4. Service Identification

Existing (grouped) functionality in legacy systems is matched with functionality of
ideal services derived from the business domain. Ideal services capture functional
requirements for concrete service implementations. They are derived manually from
the analysis of the business domain. The analysis aims to identify opportunities for
reuse across the domain.

2.4.2 Identifying Existing Services

The previous contributions to service identification focus on the identification of
new services. A related problem is the identification of existing services satisfying
specific requirements. This is of particular interest in service composition. There
are a number of approaches to identify existing services, from proposals based on
matching service signatures and effects to matchmaking techniques involving com-
plete process-centric service descriptions, from pure syntactical based approaches to
semantic ones [Kuster 2008], and from high-level process service descriptions to low
(implementation) level services (e.g., web services [Dustdar 2005]).

Approaches involving complete process-centric descriptions are motivated by the
idea of service requestors requiring detailed information of how the service pro-
cesses the input information (messages) and changes the state of system in which
it participates. Also, they are motivated by the fact that exact matches may be un-
likely to exist so that results similar to the expected ones are also relevant. Semantic
matching approaches aim to advance the lack of relevant results that more syntac-
tical proposals provide. Semantic descriptions involve information used to capture
the meaning of the described elements (services) and allow reasoning about them.
However adding semantic annotations to services and the existence of a common
ontology is difficult to realise in practice, for example, due to the distributed and
heterogenous nature of entities describing the offered services.

Rather than providing a comprehensive description of existing service identifi-
cation techniques, a number of contributions focusing on matching techniques in-
volving complete process-centric descriptions are explained. Process descriptions
include descriptions of existing services but also business processes, which are the
problem domain during the identification of new services.

Process centric descriptions and the matchmaking process in [Wombacher 2004]
are based on a formal semantics of deterministic finite state automata extended by
logical expressions associated to states. A matching function calculates the inter-
section between annotated automata representing the required and offered services
and checking the emptiness of the resulting automaton. In [Corrales 2006] (and a
subsequent contribution in [Corrales 2008]) services from a repository are identified
using a graph-based technique to match behaviour. Services described in WS-BPEL

27

Chapter 2. Literature Review

in a repository and queries to it are described as graphs. Existing graph edit dis-
tance algorithms are adopted to perform an approximate matching step. The result
of this step is a ranked list of similar services from the repository. The computa-
tional complexity of the proposed matching technique ranges between O(m2n2) and
O(mnn), with m and n the number of vertices from compared graphs representing
a service in the repository and a service query. In [Eshuis 2007] various types of
structural matches for BPEL processes supporting dynamic binding of services are
defined. BPEL processes are modelled as process trees, where each tree node is
an interaction. Activities that are not interactions are abstracted into internal steps
and cannot be matched. Duplicate interaction activities are not allowed in the tree.
Plugin matching is presented as an approach based on a process simulation notion.
However, as the authors indicate, the proposal requires further semantic analysis
to decide if a process can replace another after matching. Similar to [Corrales 2006],
the efficiency of the matching technique in [Wombacher 2004] can result in scalability
problems. Computing the intersection between automata in [Wombacher 2004] can
be expensive and present difficulties when cycles are involved. Another matching
approach, also based on service automata, is presented in [Massuthe 2007]. Services
are modelled as open workflow nets and their behaviours described as a service au-
tomata. Based on arbitrary finite-state service automata, the concept of an operating
guideline is introduced, which gives complete information about how to properly
interact with an open workflow net. A service requestor interested in a service com-
position can focus on matching operating guidelines associated to offered services.
These are limited to deadlock-free interactions between services in the composition
and bounded message buffers restricting the communication. The matching pro-
cess is performed in a single depth-first search through a deterministic automaton
representing the service requestor.

A recent service discovery technique was proposed in the context of a framework
to assist the development of service-based systems [Spanoudakis 2010]. A query pro-
cessor is used to match service queries against services in a registry. The matching
process involves matching of signatures, behavioural models and soft constraints.
Signature matching is based on a function combining linguistic distances between
the names of the operation and query messages, the names of their parameters, and
the data types of these parameters. Behavioural matching is based on matching
state machines representing the behaviour associated to interfaces of a query service
(SMQ) and a service in the repository (SMS). The matching relies on the minimum
sum of distances between possible pairs of transitions, where pairs of transitions are
composed of a transition in SMQ (linguistically) similar to a transition in SMS. State
machines are generated automatically from an interaction diagram representing the
behavioural model of the service query and a WS-BPEL specification of the offered

28

2.5. Process Models Comparison and Querying

service. State machine structures or states are not compared. Data type graphs which
have more than 10 edges are considered graphs with medium to high complexity.
The evaluation of the overall querying approach indicates good results for recall and
precision. However, as indicated by the authors, although the processing time grows
linearly with the size of the service registry, service retrieval is slow. They refer to
an appropriate indexing schema or alternative DBMS for future implementations of
the service registry in order to improve performance.

2.5 Process Models Comparison and Querying

Several approaches to service identification involve comparing or querying process-
centric service descriptions. A number of contributions have specifically targeted the
problem of business process models comparison and querying.

An algorithm for calculating process similarity to cluster open-source process
designs is presented in [Huang 2004]. Processes are composed of services related
through control flow elements (links). A weighted graph is used to represent pro-
cesses. A graph similarity measure is proposed. It is based on the weighted sum
of similarities between sets of services and sets of service links in a process. Ser-
vice similarity involves several similarity measures that include comparison of se-
mantic information of services, operations that can be invoked, messages and data
exchanged. These measures are adopted from [De Antonellis 2003], [Intan 2002].

A method to measure structural distance between process definitions associated
to web services is presented in [Bae 2006]. The method relies on a distance mea-
sure of normalised matrices representing graph-based process models. Improve-
ments on the data structure for matrices could provide more flexibility to represent
processes and improve performance. In [Beeri 2008], the authors propose a query
language for WS-BPEL process descriptions based on Context Free Graph Gram-
mars (CFGG), which in general are not closed under intersection. Process queries
are graphical queries annotated in the same way as process descriptions. Activ-
ities can be zoomed-in by means of graph refinement. Cycles in process graphs
and graph refinements containing recursion are handled by representing compacted
graph structures. Replacement in the utilised CFGG consider isomorphic relations
between graphs. Structural relations between processes and queries involving sur-
jective graph morphisms are not allowed. Many fork (split) and join constructs in
service descriptions (i.e., a high in/out degree in vertices from graphs representing
process descriptions) could lead to an exponential number of paths in the result of a
query. Matching of graph vertices requires syntactical equivalence of vertex descrip-
tors. A simple descriptor is a vertex label. Extensions to consider label predicates
and regular path expressions are discussed.

29

Chapter 2. Literature Review

The authors in [Aalst 2006] propose a way to compare two process models based
on their observed behaviour. Observed behaviour relies on the information extracted
from logs of process executions. Mining techniques are applied over sequences
of process steps [Aalst 2007]. While the focus of this work is rather on matching
graphs representing process models, the results of mining techniques (i.e., graph-
based models representing sets of process executions) can be considered as input
to the addressed problem and, therefore, they are complementary techniques to the
addressed matching and discovery techniques in this work.

An approach using digital logic is used to evaluate the distance and similarity
between two process models based on high-level change operations such as add,
delete or move activities [Li 2008]. Because of the complexity of the technique, the
aim is to minimise the number of high-level change operations needed to transform
one process model to the other. High-level change operations are adopted from
[Reichert 1998], [Weber 2007]. In [Li 2009] the authors focus on adaptive process-
centric systems. This type of system enables structural process changes during run-
time. Changes produces process variants that are expensive to configure and main-
tain. A heuristic search algorithm which fosters learning from past process changes
by mining process variants is proposed2. The algorithm discovers a reference model
based on which the need for future process configuration and adaptation can be
reduced. The authors indicate that the algorithm takes a relatively long time when
encountering large process models and, therefore, performance improvements are
needed.

An approach to calculate behavioural similarity between process models based
on causal footprints is proposed in [Dongen 2008]. Causal footprints are an abstract
representation of the behaviour captured by a process model. Similarity between
causal footprints is based on vector space models used in information retrieval. Se-
mantic similarity between labels in process elements and contextual similarity are
taken into account. Similar to other contributions in process model comparison, the
authors indicate that practical performance issues with large set of models need to
be addressed. Later, in [Dijkman 2009b], [Dijkman 2009a], the authors provide ad-
ditional details and complementary techniques to measure the similarity between
business process models. The existence of business process models repositories is
assumed. The focus is on retrieving process models in a repository that most closely
resemble a given process model or fragment thereof. In [Dijkman 2009b], three sim-
ilarity metrics are proposed. Label matching similarity that compares the labels at-
tached to process model elements, structural similarity that compares element labels
as well as the topology of process models, and behavioural similarity that compares

2Note that process variant mining is different from process mining [Aalst 2007] with regard to
objectives and inputs.

30

2.5. Process Models Comparison and Querying

element labels as well as causal relations captured in the process model. Findings in-
dicate that structural similarity slightly outperforms the other two metrics. Because
the proposal focused on developing similarity metrics rather than efficient algo-
rithms, the authors indicate that future work would address efficient algorithms for
searching similar processes in processes collections. Also, they indicate that rather
than matching process elements one-to-one, they would investigate many-to-many
matchings. This kind of matching is relevant for models that have been created
by different entities. In [Dijkman 2009a] four graph matching algorithms for process
similarity search are proposed (greedy, exhaustive, heuristic and A-star). The greedy
algorithm has a processing time O(N3) with N the number of vertices of the largest
graph in the repository and it may lead to suboptimal mappings. The exhaustive
algorithm with pruning has exponential complexity in the worst case; however, the
pruning stage can manipulate its complexity. The process heuristic algorithm is a
variation of the exhaustive algorithm with an improved pruning phase. The A-star
algorithm is based on [Bunke 1997], which uses an error-correcting strategy based
on a graph edit cost function. The evaluation provided in [Dijkman 2009a] indicates
that the A-star algorithm outperforms the others in terms of accuracy, however the
greedy algorithm is considerably faster than all others. All algorithms only find one-
to-one matches between vertices in the target and query graphs. The authors plan to
investigate adaptations of the algorithms for one-to-many or many-to-many matches
between vertices.

A number of proposals, including some of the previously de-
scribed [Wombacher 2004], [Corrales 2006], [Spanoudakis 2010], [Beeri 2008],
[Dongen 2008], [Li 2009] share the challenge of improving the efficiency of the
matching processing step. Matching of graphs or state machines/automata can be
computationally expensive. Service identification proposals have to look at this step
if they consider a matching step as part of the solution. In this work graph-based
matching and discovery techniques are proposed. In subsequent chapters, the
techniques shall be described and evaluated. Without going into detail, it can
be indicated that the proposed technique is efficient for graph-based structural
matching steps and depends on the complexity of the adopted approach to semantic
matching of vertices descriptors.

As in [Dijkman 2009b], semantic matching of process elements has been investi-
gated in [Ehrig 2007] and [Gunay 2007]. They are motivated by the possibility that
business processes can be modelled in different ways by different modelers even
when utilising the same modelling language. In [Ehrig 2007], a method for solv-
ing ambiguity issues in process models caused by the use of synonyms, homonyms
or different abstraction levels for process element names is addressed. They adopt
ontology-based descriptions of process models – in this case, OWL DL-based de-

31

Chapter 2. Literature Review

scriptions of Petri nets – and they address the particular questions of how similar
terms for process element names can be automatically discovered and how seman-
tic business process composition can be facilitated. Similarity calculations consider
ontological reasoning with regard to business rules. Their findings indicate that
syntactic and linguistic similarity are insufficient since the process instance context
is not considered and homonyms cannot be discovered. However, by considering
structural aspects of process instances, sufficient similarity degrees between element
names and processes can be computed. Integration of the approach with other tech-
niques for comparing processes based on control flow semantics is part of their
future work. In [Gunay 2007], structural and semantic similarity metrics for web
service matchmaking are proposed. Service matchmaking is based on the internal
process of services. The internal processes are modelled as finite state machines.
Several heuristics to find structural similarities between finite state machines are
proposed. Also, a process ontology is used to capture the semantic relations be-
tween processes. Semantic information is used to determine semantic similarities
between processes and to compute match scores of services. Complexity problems
in the approach relate to their calculation of all possible flow sequences for services
and requests and the comparison of each sequence of the request against all the se-
quences of the service. Also, there are practical problems with having a common
ontology describing the process elements and relations associated to services.

An indexing mechanism to create hierarchical ontologies for process models
and a query language to perform matchings on the ontologies are proposed in
[Klein 2004]. The proposed language is named Process Query Language (PQL) and
it considers process models as entity-relationship diagrams in which entities such
as tasks are characterised by attributes and connected by relationships such as has-
subtask. Entity-relationship patterns define queries in PQL. The retrieval approach
in PQL is similar to work on graph grammars in [Ehrig 1999b] and complexity as-
sociated to the PQL’s implementation is the equivalent of a datalog-type language
with polynomial computational complexity. Future work for the approach involves
improving recall when semantic differences between processes exist. Ideas for im-
provement include synonym-matching techniques and semantics-preserving query
mutation, which modifies a service query to produce a range of semantically similar
variants. The latter is applied in [Awad 2008b], where process queries in a process
query language (BPMN-Q) are expanded by substituting activities of a query graph
with similar activities. A visual process query language based on Business Pro-
cess Modelling Notation (BPMN) is proposed in [Awad 2008b] to retrieve process
models from a repository ordered by relevance to the query. Calculation of struc-
tural similarity between process models proposed in previous work [Awad 2008a]
is expanded in [Awad 2008b] to allow semantic similarity calculation. Enhanced

32

2.6. Graph-based Pattern Matching and Discovery

Topic-based Vector Space Model (e-TVSM) is used to capture semantic similarities
of natural language in plain text documents and to reflect them in document sim-
ilarity values. Semantics is encoded in an e-TVSM ontology. Similarity thresholds
control the expansion of queries to allow improved recall, however low thresholds
tend to generate an exhaustive search in all processes from the repository, possibly
leading to performance problems when queries have a large set of activity nodes
(vertices). The performance problem originates from the generation of expanded
queries, which is non-polynomial.

Other approaches addressing process similarity focus on clustering similar pro-
cesses from a repository rather than compute specific comparisons triggered by pro-
cess queries. In [Jung 2006], [Jung 2008] the authors focus on the analysis of accu-
mulated workflow process models and their classification into characteristic groups.
Domain classification and pattern analysis are the two main aspects of a proposed
framework for workflow clustering. Process models are represented as weighted
Complete Dependency Graphs (w-CDG). w-CDG are derived from directed graphs
representing process models which have added dependencies from indirect relations
originated from AND or XOR splits in process models. Similarities among graph
vectors associated to w-CDGs are estimated with regard to the relative frequency of
each activity and transition in the compared processes. Models are clustered based
on the similarities by a hierarchical clustering algorithm. The number of process
clusters is specified by end users. Semantics in process element descriptions is not
considered.

2.6 Graph-based Pattern Matching and Discovery

Several practitioners and some in academia argue that changes of business-level
services are less frequent as compared with more frequent changes in business pro-
cesses. For instance, the authors in [Woodley 2005] use a typical example to illustrate
this idea. They refer to the constant need to perform customer verifications, send
shipping orders, and prepare invoices in industry processes. However, they point
out that products, customers and the processes that integrate them change quite of-
ten. At a higher level of abstraction, a service performing a customer verification
is fundamentally the same across process, only details change. In this work, the
same observation is exploited to benefit from frequent and stable abstractions across
processes. Business services are considered stable entities in relation to frequently
changing processes. On the other hand, the fundamental idea in software engineer-
ing of patterns abstracting several specific software designs can be applied here at
process level. Even though patterns can evolve, intuitively, their changes are less fre-
quent than changes in models where they have been applied. Process level patterns

33

Chapter 2. Literature Review

could guide the definition of process-centric services, where process patterns repre-
sent abstractions to sections in several processes across organisations and changing
over time.

A number of pattern matching and discovery techniques are defined to work
with graphs. For graph-based pattern matching and discovery there is a significant
body of knowledge related to graph matching and frequent subgraph discovery. In
a very simplified explanation, graph matching takes as input a target graph and a
query graph and indicates as its output if the query graph has a structural preserving
relation with the target graph and – possibly – it would indicate for what elements
the relation holds. There are numerous variations considering what type of struc-
tural relation holds and what type of graphs are considered. On the other hand,
frequent subgraph discovery has two major variants, one focusing on discovering
subgraphs that occur frequently across a set of input graphs and the other focus-
ing on the discovery of subgraphs occurring multiple times in a single large input
graph. The following sections refer to contributions with regard to graph-based pat-
tern matching and discovery which could be adapted to assist service identification.

2.6.1 Graph Matching

Graph matching has several years of investigation and solutions to this problem vary
widely according to the specific graphs and type of matching required [Conte 2004],
[Bunke 2005], [Gallagher 2006b], [Gallagher 2006a].

A survey and classification of graph matching algorithms is provided in
[Conte 2004]. Algorithms are classified by class and application domain in the con-
text of pattern recognition and machine vision. Matching is mainly classified into ex-
act and inexact pattern matching, with most of the applications in image processing,
and with more than 160 publications analysed. Almost 40% are algorithms for tree
search. One interesting algorithm not based on tree search is the Nauty algorithm
[McKay 1981]. The algorithm (used in the context of a graph-transaction setting) is
based on its automorphism group, from which a canonical labelling is derived and
used to introduce a vertex ordering uniquely defined for each equivalence class of
isomorphic graphs. In this way, whether an isomorphism between two graphs exists
can be checked by verifying if the adjacency matrices of their canonical forms are
equal. This verification is done in O(N2) time, with N the size of the graph. How-
ever, for some classes of graphs the canonical labelling may require an exponential
time to construct. Others – approximately 20% of the surveyed algorithms – con-
vert the discrete optimisation problem defined by a graph matching problem into a
continuous nonlinear optimisation problem. The algorithms use solutions available
in the converted domain to find an approximate solution. Even though most of the

34

2.6. Graph-based Pattern Matching and Discovery

algorithms include techniques to avoid trivial local optima, they do not ensure an
optimal solution. Also, the solution has to be converted back to the discrete problem,
which can introduce other levels of approximation.

Several challenges related to graph matching for pattern recognition are anal-
ysed in [Bunke 2005]. The authors indicate that structural representation based on
graphs have several advantages over feature vectors for pattern recognition. Feature
vectors are limited because they can represent only unary properties and usually
assume that the same number of attribute values is being measured on each object.
String, trees and graph structures are suitable to overcome these kinds of limitations.
However, they also suffer from disadvantages, including their high computational
complexity and the lack of suitable mathematical tools. The authors indicate that a
number of concepts emerged recently from statistical pattern recognition that have
no equivalent counterpart in the domain of structural pattern recognition, including
multiple classifier systems and kernel methods, that may be means to mitigate the
disadvantages of graph-based techniques. In the view of the authors, some of the
advances include the availability of procedures for the automatic learning of edit
cost functions from sample sets of graphs. However, efficient kernel methods which
are originally developed for feature representations still require advances to be used
on structural data, multiple classifiers are in early stages of development and also
efficient graph retrieval in large repositories is still a hard problem.

The author in [Gallagher 2006a] surveys a number of approaches to match pat-
terns in graph-structured data. The basic matching problem is seen as a subgraph
isomorphism problem. The survey focuses on techniques that are applicable to gen-
eral graphs that may have semantic characteristics. The survey also discusses tech-
niques for graph mining as an extension of the graph matching problem. In terms
of performance, subgraph isomorphism algorithms are computationally expensive
and therefore techniques try to reduce calculations to a minimum. An effective way
to reduce processing time is candidate selection, where metadata construction and
application, such as indexing and data summarization, compression, and modelling
are central to an effective candidate selection. The survey indicates that existing
tree-search techniques (where the graphs are trees) such as [Ullmann 1976] can be
extended to match and prune based on semantics as well as structure. Existing
evaluations of the surveyed algorithms are not representative of the size and charac-
teristics of real-word graphs that include semantics. Many of the existing matching
algorithms focus on a graph-transaction setting. In this setting, one query graph is
matched against graphs from a repository and often the size of the query and graph
in the repository are similar. Individual graphs tend to be very small and, there-
fore, many techniques are not directly applicable to large graphs. Exceptions are
those where it is possible to divide a large graph into a set of smaller graphs. Thus,

35

Chapter 2. Literature Review

techniques developed for the graph-transaction setting could be applied to that set.
Type and attribute information in graphs could potentially improve candidate selec-
tion and indexing strategies focused on graph structure. More sophisticated graph
statistics are required to capture a combination of attributes, type, and structure.
Graph similarity measures used by existing techniques do not incorporate all of the
attribute, type, and structural information. Combination of these different kinds of
similarity is critical for inexact matching in semantic graphs.

Error-correcting is one common strategy for (inexact) graph matching. It uses a
set of graph edit operations to calculate the distance between two graphs. The ob-
jective is to find the shortest sequence or sequence having the least cost of edit oper-
ations that allows to transform one graph into the other. A subgraph of both graphs
in comparison is called maximum common subgraph of the two graphs if there
is no other subgraph with more vertices. In [Bunke 1997], the authors introduce a
graph matching technique based on an error-correcting strategy. They propose a cost
function for a graph edit distance algorithm that allows to compute the maximum
common subgraph between two graphs. They demonstrate that any other graph edit
distance algorithm (with a suitable assignment of costs to edit operations) can be ap-
plied to compute maximum common subgraphs. Improvements to the graph edit
distance measurement in [Bunke 1997] are proposed in [Fernandez 2001], based on
[Valiente 1997]. Also, in [Messmer 2000], an algorithm for matching a single graph
against a graph repository is presented. The algorithm, motivated in the ideas of
the RETE algorithm [Forgy 1982]3 for rule matching in expert systems, bases on a
recursive decomposition of the graphs in the repository into smaller subgraphs until
reaching graphs of one vertex. The matching process uses the common parts of the
decomposed graphs to avoid repeated comparisons with the query graph, resulting
in a total matching time that has a sublinear dependency on the number of graphs
in the repository.

A graph matching algorithm and accuracy metric for schema matching are pro-
posed in [Melnik 2002]. The input to the algorithm are two graphs and the output
is a mapping between corresponding vertices from the input graphs. Correspon-
dence between vertices is defined by a matching goal and the results obtained by
the algorithm are expected to be checked and adjusted by end users. To evaluate
the accuracy of the algorithm, the authors propose a new accuracy metric (match
accuracy). The metric is based on counting the number of needed adjustments to
the algorithm results. The metric is adequate for problems such the schema match-
ing, where the semantics associated to graph elements is a relevant challenge in the
matching process.

3Based on earlier working material: Forgy, C., A network match routine for production systems
(1974).

36

2.6. Graph-based Pattern Matching and Discovery

2.6.1.1 Pattern Matching in Graph Transformation Systems

In software engineering, graphs are often associated to models representing the ar-
chitecture of software systems. Elements in architectural models often contain rich
descriptions and, therefore, the type of graph representations should be sufficiently
expressive (involving for instance graphs whose vertices and edges have types and
attributes associated [Ehrig 2006a], [Heckel 2006]. A significant number of contri-
butions involved with architecture modifications relate to the field of Graph Trans-
formation (GT) systems [Rozenberg 1997]. Architecture modifications (or transfor-
mations) are also core to model-driven software development. For instance, in
[Baresi 2006] an architectural style-based approach for SOA modelling and design
is presented. Service architecture models are derived from refined business archi-
tectures. The refinement of a concrete business scenario is guided (automatically)
by the refinement of an abstract business-level style into a service architecture style.
Each refinement would provide for service architectures semantic correctness and
platform consistency with business levels. The focus is on the ability of dynamic
architecture reconfiguration where new services can bind at run-time.

Graph transformation rules in GT systems lead architecture modifications. For
the single push out approach [Ehrig 2006a], a graph transformations rule consist of
a left part (pattern graph) and a right part indicating the graph section that is to
be transformed into the target graph. An additional intermediate graph is used in
the double push out approach. A basic problem for GT systems is the problem of
matching the pattern graph contained in the transformation rule with a subgraph in
the target graph.

An algorithm to solve the graph pattern matching problem involved in the search
of a redex for an arbitrary graph rewrite rule is introduced in [Zundorf 1996]. Redex
is the subgraph in the target graph matched with the left side of the graph rewrite
rule. The algorithm is implemented in a tool (PROGRESS) for the execution and im-
plementation of graph grammar specifications. The aim is to improve the efficiency
of a naive implementation of an algorithm for the graph matching problem (whose
complexity is O(NL), with N the number of vertices in the target graph and L the
maximum size of the left side of the rewriting rule). The algorithm is specially suit-
able for large target graphs and small subgraphs to be matched, for target graphs
stored in data structures supporting efficient indexing schemes to access graph ele-
ments involved in the matching, and if a small number of graph rewriting rules is
involved.

A number of GT systems implement different pattern matching strategies. Fujaba
[Fujaba 2010] is an open source CASE tool aimed to support software forward and
reverse engineering. Pattern matching in the context of GT originates from the tech-

37

Chapter 2. Literature Review

nique presented in [Zundorf 1996], however the data model for graphs is updated
to an object-oriented data model. AGG is a development environment for algebraic
GT systems [Ermel 1999], [Taentzer 2004]. In AGG the matching of the left side of a
rewrite rule may be partially defined by the user. Partial matches are automatically
computed and several choices for completion can be chosen arbitrarily. All possible
completions can be computed and shown one after the other in a graph editor. The
(sub-)graph matching problem is solved as a constraint satisfaction problem, similar
to the approach in VIATRA [Varro 2002].

An adaptive approach for graph pattern matching is presented in [Varro 2006a],
where the optimal search plan can be selected from previously generated search
plans at run-time based on statistical data collected from the current instance model
under transformation. In [Varro 2006b], an approach to GT based on standard rela-
tional database management systems is presented. Graph rewrite rules are associ-
ated to database views, the graph (pattern) matching step is managed by inner join
operations on tables that represent either a vertex or an edge of the rule graph, and
negative application conditions are handled by left outer join operations. After exe-
cuting inner join operations, the joined table is filtered by injectivity and edge con-
straints – injectivity constraints express the injective mapping of rule graph vertices
and edges on the database level. Edge constraints define restrictions imposed by the
graph structure. Then, a projection selects columns of the filtered joined table that
represent vertex identifiers. Improvements to the efficiency of the pattern matching
step are suggested for parallel processing and the use of built-in query optimiser fea-
tures in database systems. The authors have carried out a performance comparison
of different GT tools in [Varro 2005]. For the pattern matching step, the benchmark
includes variations to the pattern size and maximum degree of out/in-going edges
for vertices, with large patterns containing up to fifteen vertices and hundreds of
out/in-going edges involved. The results indicate that the pattern structure and
the appearance of negative application conditions also influence the performance of
GT tools. The authors suggest that the improvement of GT tools should focus on
developing more efficient techniques to process multiple matchings when a straight-
forward parallel matching approach is not possible.

GrGen is a generative programming system for GT that applies heuristic opti-
misations during the graph matching task. A notion of search plans to represent
different matching strategies is used. Search plans involve a cost model that is opti-
mised to select an adequate search plan. According to the authors, the performance
of GrGen outperform the tools compared in the benchmark in [Varro 2005] for at
least one order of magnitude. A search plan involves a sequence of search opera-
tions, with each operation representing the matching of a single vertex or edge of
the pattern graph to an appropriate vertex or edge of the target graph. The whole

38

2.6. Graph-based Pattern Matching and Discovery

search plan describes the stepwise construction of possible matches between the
pattern and target graphs. Finding a match fast depends on the chosen search plan.
The selection of a search plan is based on an approach presented in [Dorr 1995a],
[Dorr 1995b]. Lookup and extension operations are used to iteratively find matches
(by type). Partly constructed matches are called candidates. Lookup operations add
vertices or edges not connected to previously matched vertices. Extension operations
add edges that are connected to previously matched vertices. Operations can cause
the splitting of a candidate into several new candidates, which can lead to an expo-
nential growth with worst case O(PNP) with P the number of vertices of the pattern,
N the number of vertices in the target graph. If the execution of a search plan causes
no splitting, a linear runtime for sparse target graphs O(P) can be achieved.

2.6.2 Frequent Subgraph Discovery

Discovering patterns in large processes can assist the design of new reusable process-
centric services. For process models represented as graphs, the problem of discov-
ering a pattern can be considered a problem of discovering frequent subgraphs. A
number of proposals for sequential and parallel calculation of the frequent subgraph
mining problem to discover interesting patterns has attracted attention in diverse ap-
plications scenarios such as analysis in social networks, molecular compounds and
document-based information retrieval [Han 2007], [Wang 1995], [Kuramochi 2005],
[Bringmann 2008]. Solutions to the frequent subgraph discovery problem – such as
the approximate solutions in [Kuramochi 2005] or the results of clustering-based ap-
proaches in [Jung 2006] – can be adapted to different process scenarios. However,
according to [Greco 2005], the adaptation may require major efforts for moving to
the process scenarios, hence dedicated solutions would be required.

The frequent subgraph discovery problem is addressed in two main settings. The
graph-transaction setting refers to the discovery of subgraphs that occur frequently
across a set of target graphs (graphs in a repository). The single-graph setting refers
to the discovery of subgraphs that occur multiple times in a single large input graph.
For the single-graph setting scenario [Kuramochi 2005] propose algorithms to obtain
approximate solutions. The algorithms have their origin in algorithms developed
for finding frequent itemsets and sequences [Agrawal 1994]. The subgraph isomor-
phism problem (involving a one-to-one mapping) is a derived problem addressed
in [Kuramochi 2005]. This problem, as indicated previously, can cause a significant
performance decrease in the algorithms. For large sparse graphs (in the single-graph
setting scenario) the authors indicate that algorithms have a good performance when
finding subgraphs that have many edge-disjoint embeddings. Large sparse graphs
are typical for process descriptions [Golani 2003] and frequent process substructures

39

Chapter 2. Literature Review

are expected to be edge-disjoint. Possible adaptations of the two proposed algo-
rithms in [Kuramochi 2005] to a scenario of a large and complex graph-based pro-
cess description would require significant efforts regarding the method for canonical
labelling, which provides a unique code (label) to each graph in a repository and it
is used to check whether two subgraphs are identical or not. Difficulties can arise
due to the inherent complexity of the descriptions for process elements. Similar to
[Kuramochi 2005], the advantages of the solution proposed in [Inokuchi 2005] for
mining frequent subgraphs in labelled graphs relies on the algebraic representation
of graphs and its organisation to limit the search space efficiently.

A solution to the problem of identifying frequent patterns of workflow execu-
tions is proposed in [Greco 2005]. The proposal focuses is on discovering the most
frequent substructures (patterns) of workflow executions. Workflow schemas and
their occurrences are formalised as acyclic graphs. Future extensions involve the
representation of cycles. Comparative analysis of realistic process execution data are
also required. In [Greco 2008], the same authors propose a mechanism for mining
taxonomies of process models. In this case, the focus is on extending process discov-
ery mechanisms [Cook 1995] to a method producing a taxonomy of workflow mod-
els. Models closer to the root of the taxonomy are more abstract and they are used
as abstractions during post-workflow executions analysis. Future improvements are
suggested, such as enhancing match functions to consider the semantics of activity
descriptions and further attributes like usage statistics and performance metrics in
order to enable a more adequate clustering of activities.

2.7 Summary

This chapter had described a number of contributions in the literature with regard to
SOA methodologies, service identification strategies and the use of architecture and
model abstractions for SOA design. Existing SOA methodologies (see Section 2.3.1)
have advanced the way services and their organisation are designed and developed;
however, there are still challenges such as providing integration between modelling
views, guidelines and tool support to design services with adequate granularity and
satisfying the constraints imposed by existing applications and mediums to reuse
knowledge embedded in architecture and model abstractions documentation.

This work proposes a framework to assist the design of service-based systems for
processes and applications integration. The framework integrates business process,
service architecture and application architecture layers in an integrated modelling
environment with explicit traceability support, and its distinguishing characteristic is
that it uses patterns across layers to assist the design of services. In this work, patterns
refer to a set of constraints over elements and their relationships in concrete models,

40

2.7. Summary

including architectures, and they capture known solutions to recurring problems.

Processes are central to the addressed integration problem, hence process pat-
terns are essential to the proposed pattern-based framework. Patterns at software
level have been widely studied and exploited within the software community; how-
ever, only recently have patterns and their use at a more business operation level
received more attention. A number of articles proposing different notions of process
patterns were discussed. The concept of activity pattern based on recurrent functions
in [Thom 2009] and actions pattern in [Smirnov 2009] are close to the concept of pro-
cess pattern in this work. Similar to software level patterns, process patterns define
constraints over process elements and their relationships in concrete models. They
abstract recurrent (process) steps across processes and organisations and; therefore,
they represent an opportunity to guide the design of reusable process-centric ser-
vices. In a similar intention to [Papazoglou 2006a], [Papazoglou 2006b], where the
authors suggest the use of reference models and associated business-level abstrac-
tions to guide the definition of normalised business functions for services, this work
uses process patterns identified in process level descriptions to guide the design of
services for integration systems. The proposed approach aims to advance techniques
for pattern-based service definition by providing an automatic mechanism for pro-
cess pattern identification.

Service architectures can be designed using existing services, but often enterprise
SOA initiatives involve the design of new services. Section 2.4 described a number of
approaches for identification of new and existing services. Ideally, new designed ser-
vices can become services that are actually reused across processes in organisations.
Pattern-based service design approaches focus on this principle of reuse. However,
they need to tackle a practical challenge. Instances of process patterns have to be
identified in often large and complex (process) models. Patterns could be known
patterns, but also unknown patterns (i.e., there may be recurrent process sections in
a process model, but the analyst or architect does not know that they exist). Pattern
matching and pattern discovery techniques can be used to identify known and un-
known patterns in process models. A number of these techniques are graph-based
techniques. These techniques can be also used to identify existing services from
repositories of process-centric service descriptions. Sections 2.4.2 and 2.4.1 described
a number of these approaches. They assist and automate some steps, but they have
a number of shortcomings including the significant processing time that they may
need to obtain results, the matching or similarity calculation could be only based
on the syntax of process and service descriptions, and they may be inaccurate when
partial or inexact matching is involved. In subsequent chapters, the proposed pattern
matching and discovery techniques shall be described and evaluated. Without go-
ing into detail, it can be indicated that the proposed graph-based pattern matching

41

Chapter 2. Literature Review

technique is fairly efficient for structural matching steps and the overall efficiency
would depend on the complexity of the adopted approach for semantic matching of
vertices descriptors. Towards the end of this chapter, some problems with exact and
inexact matching and how the proposed approach addresses them are discussed.

Pattern matching and discovery techniques have been also proposed for soft-
ware level patterns in the context of software maintenance and reverse engineering
approaches (Section 2.3.3), however they do not apply directly to process pattern
matching and discovery, since process elements and their relationships have partic-
ular semantic and behavioural characteristics. Additionally, pattern matching in the
context of model transformation systems has also been discussed. Although they
are frequently associated with architecture model transformations – where pattern
matching is rather involved with software levels – they could be also adapted for
process models. However, if pattern instances are identified in large graph-based
process models, a number of pattern matching techniques designed to work in a
graph-transaction setting (involving the matching of patterns in a repository of smal-
l/medium size graphs) and benefiting from canonical labelling or efficient indexing
methods may require significant changes to be adapted to the single-graph setting.

Process models or process-centric service descriptions are not always available. In
Section 2.5, process mining techniques were mentioned. Even though the emphasis
of these techniques is different from matching and discovering patterns, they attempt
to obtain process models that best represent sets of process executions. In that sense,
process mining techniques are an input to the addressed problem, providing the
models from where patterns could be matched or discovered.

Figure 2.1 shows a diagram summarising the relations between the proposed
framework and techniques, and theoretical foundations, background research and
related work.

Some Problems in Exact and Inexact Graph Matching. In the field of pattern re-
covery and process model comparison, some problems with exact and inexact graph
matching have been discussed. As pointed out in [Tsantalis 2006], in practice, inex-
act pattern matching techniques to identify patterns in models, which are based on
graph edit distance algorithms, can generate inaccurate results. Take the example at
the top of Figure 2.2 that shows the segment of two software systems and a design
pattern. A technique relying of graph edit distance would identify an instance in
System 2 as closer to the pattern definition because there are fewer edit operations
to transform the system graph into the pattern graph, even though System 1 has the
pattern completely instantiated.

Different workflow similarity measures used in service discovery techniques are
analysed in [Wombacher 2006]. Similarity between workflows (processes) focus-

42

2.7. Summary

Figure 2.1: Relation between the proposed framework/techniques and theoretical
foundations, background research and related work.

ing on behaviour and processes are represented as annotated finite state automata,
which allow synchronous communication. Beyond possible shortcomings regarding
computational complexity when using automata to represent processes, the authors
in [Wombacher 2006] describe other challenges for techniques calculating similar-
ities between processes (represented as automata in this case). Take the example
at the bottom of Figure 2.2 where twelve automata are depicted. The structures
of automata 1, 2 and 3 are different, however their represented behaviours are the
same. Since the structures are different, techniques relying on isomorphic structural
matching to compare automata can provide inaccurate results. The criteria that the
authors indicate for similarity measure are the following. (C1) The similarity mea-
sures between each combination of automata 1, 2, and 3 must be the same. (C2) The
similarity measures of one out of automata 1, 2, or 3 and automata 4 and 5 respec-
tively are the same. (C3) The similarity measures of two out of automata 4, 5, and 6
are the same. (C4) The similarity measure of automata 7 and 8 must be higher than
the similarity measure of automata 7 and 9. (C5) The similarity measure of automata
7 and 9 must be higher than the similarity measure of automata 7 and 11.

To finalise this review of the state of the art, the results that the proposed tech-
niques in this work would provide with regard to the criteria in [Wombacher 2006]
and problems illustrated in [Tsantalis 2006] are shown using the examples in Fig-
ure 2.2. The results provide an indication that the proposed techniques satisfy the
criteria in [Wombacher 2006] (Figures 2.4, 2.5) and address the problem indicated
in [Tsantalis 2006] that several other techniques are lacking (Figure 2.3). Also, even
though the particular representation of processes explained in the next chapters is

43

Chapter 2. Literature Review

Figure 2.2: Examples to illustrate problems in exact and inexact matching. Figures
adopted from [Tsantalis 2006] and [Wombacher 2006].

44

2.7. Summary

different to an automata-based representation, the techniques proposed apply to any
graph-based representation, including automata.

Figure 2.3: Results that proposed techniques would provide for cases in Figure 2.2.

45

Chapter 2. Literature Review

Figure 2.4: Part-A: Results that proposed techniques would provide for cases in
Figure 2.2.

46

2.7. Summary

Figure 2.5: Part-B: Results that proposed techniques would provide for cases in Fig-
ure 2.2.

47

Chapter 3

A Framework for Processes and
Applications Integration

Contents
3.1 Motivation . 49

3.2 Layered Architecture for Business, Applications and Services 51

3.2.1 Layers in LABAS . 52

3.2.2 Patterns in LABAS . 54

3.2.3 Pattern Description for End Users 56

3.3 Pattern-based Techniques . 61

3.3.1 Business model augmentation . 62

3.3.2 Service identification . 63

3.3.3 Business model to service architecture transformation 64

3.3.4 Service architecture augmentation 65

3.4 Traceability in LABAS . 65

3.4.1 Types of Trace Links . 66

3.4.2 Traceability Metamodel . 67

3.4.3 Trace Link Generation . 69

3.5 Summary . 71

3.1 Motivation

Enterprise Application Integration (EAI) aims to link separate applications into an
integrated system driven by business models and the goals they implement. A central
problem of application integration is maintaining alignment between the business
and technical dimensions involved. Business processes do not map one-to-one to
service architecture processes. This gap has turned out to be difficult to approach
systematically and to automate [Erl 2004]. Architecture abstractions like patterns
and styles capture design knowledge and allow the reuse of successfully applied
designs, thus benefitting the quality of software. Abstraction is a central driver in

Chapter 3. A Framework for Processes and Applications Integration

software engineering approaches. At the business (modelling) level the reuse of
successful designs is equally important.

The development of integrated enterprise-wide application architectures is a con-
tinuous process. To improve the process and overall quality, the experience of ana-
lysts, architects and developers should be captured and reused. Knowledge gained
from integration projects can be captured to build a repository of experience-based
pattern solutions. A coherence framework able to capture different architecture-level
descriptions and abstractions (such as patterns) into an integrated view with busi-
ness and software perspectives is required. The problem of process and application
integration in terms of modelling aspects, but also architecture issues involve:

• modelling aspects – modelling different views such as information hierarchy,
behaviour, and semantics in a coherent framework with interrelated models.

• architecture aspects – architecture description and abstractions such as patterns
are central. To benefit from reusable architecture design knowledge captured
in the form of patterns, pattern identification and utilisation are basic activities
requiring support.

Note that vertical transformations – from business to software architectures –
are also important. Elements involved with business operations should be mapped
to services. Synchronisation between the two modelling layers is required. Al-
though this work does not address this aspect, aiming at completeness, a strategy
for pattern-based vertical transformation is introduced in the context of the proposed
framework.

The rest of this chapter presents an architectural framework to address the prob-
lem of enterprise process and application integration. A layered architecture for
service-centric process and application integration is the backbone of the proposed
framework. Section 3.2 presents the modelling framework, its layers and involved
models. It also describes the role of patterns in the framework, how they can be
described by end users and utilised within the framework. Section 3.3 describes
the pattern-based techniques that can help analysts and architects during services
and service architecture design. Among the techniques, pattern-based service iden-
tification (pattern matching and discovery) is developed in detail in this work, but
described in the next chapters. Section 3.4 describes a traceability-based approach
used to integrate the different modelling layers, including a higher abstraction layer
containing patterns. The utility of this approach for change impact analysis is dis-
cussed.

50

3.2. Layered Architecture for Business, Applications and Services

3.2 Layered Architecture for Business, Applications and Ser-
vices

This section presents a framework that integrates different perspectives of the pro-
cess and application integration problem. It captures process and architectural mod-
els and patterns in an integrated structure. The framework is organised in a layered
architecture called LABAS – Layered Architecture for Business, Applications and
Services. It layers separate aspects and aid with the maintainability of the architec-
ture [Bass 2004].

Two interrelated perspectives of the integration problem, the business and appli-
cation view, and two aspect of the solution, services and patterns, are considered in
LABAS:

• Business view – two main models describe the business dimension of the EAI
problem: process models and domain models. While business process mod-
els capture the dynamics of the business, domain models capture structural
relations between business concepts.

• Applications view – an application architecture represents a system com-
posed of several software applications. Application architectures at enterprise
scale normally grow in a decentralised way and involve different technologies,
paradigms of development and modelling notations.

• Services view – services organised in an architecture have the potential to
bridge the gap between business and technology and to improve the reuse
of existing applications and the interoperability with new ones. Software ser-
vices are the building blocks of service architectures. They can be composed to
provide more complex functionality and to automate business processes.

• Patterns – reusing proven solutions reduces costs and development time and
ensures coherently integrated and architected application systems aligned with
business processes. Using patterns enables architects to implement successful
application integration solutions. Patterns are core and a distinguishing char-
acteristic in the LABAS framework.

Moreover, change management and traceability are important aspects of IT sys-
tems and business alignment. Consistence between LABAS layers is enhanced
through explicitly connecting modelling elements of the EAI problem with elements
of the service architecture solution. In order to provide traceability support to el-
ements involved in the integration problem across layers, LABAS provides explicit

51

Chapter 3. A Framework for Processes and Applications Integration

Figure 3.1: Layered Architecture for Business, Applications and Services (LABAS).

links between elements from different layers. An explicit traceability model main-
tains the dependencies between elements of the integration problem and the service-
based solution.

3.2.1 Layers in LABAS

The different layers organised in the LABAS framework capture the problem perspec-
tive, considering business and application architecture elements, and the solution
perspective, involving elements of the service-based integration solution. From a
modelling point of view, a meta-model defines the common constructs among the
different layers and provide the modelling support for the transformation from busi-
ness to software levels. Figure 3.1 shows the layers in LABAS.

• Business Modelling Layer. The Business Modelling Layer (BML) represents the
business context of the integration problem. BML is a container for elements of
the process and domain models. A concrete notation (BPMN [OMG 2008b]) is
utilised to implement process modelling support at BML. Process models cap-
tures events, activities/tasks and roles involved in actual business processes.
The main focus is on behaviour. On the other hand, domain models provide
a structural view of business concepts and their relations. Domain modelling
is supported through standard UML [OMG 2007] support. A basic ontology
to represent domain information model entities can provide extended facilities
[Gacitua-Decar 2009b].

• Application Architecture Layer. The Application Architecture Layer (AAL) is a
container for the application components supporting the business processes in
BML. AAL is organised as a process-wide application architecture. Thus, ap-

52

3.2. Layered Architecture for Business, Applications and Services

plications can support different tasks and be owned by different roles defined
in process models at BML. In order to describe an AAL model in architectural
terms, the component and connector view from [Garlan 2006] is adopted. It de-
scribes a software system as a set of components, where each component has a
set of ports with interfaces that enable the interaction with other components
through connectors.

• Business-Application Intermediate Layer. The Business-Application Intermedi-
ate Layer (BAIL) provides a consolidated view of the integration problem. The
aim behind jointly modelling the business and applications views is to derive
an integration solution from BAIL models. The consolidated model integrates
the models through trace links (see more details in Section 3.4). The integrated
models are the business process model, the domain model and the application
architecture model. Trace links between process model and domain model ele-
ments, and between domain model elements and application components, are
the core to consolidate the the integration problem covering elements of the
business and application views at BAIL.

• Service Architecture Layer. The Service Architecture Layer (SAL) provides a
service-based integration view. It is a container for software services. These
services, organised in a service architecture [Alonso 2004] implement the inte-
gration solution. A process-centric component and connector view [Allen 1997]
to represent AAL elements was used and it follows the recommendations of the
Object Management Group (OMG) for service-oriented architecture modelling
[OMG 2009b]. Additionally, the LABAS framework proposes a pattern-based
service identification technique (see more details in Section 3.3) to support the
design of service-based solutions for enterprise process and application inte-
gration problems. This technique is based on solutions for graph matching
and motif discovery which are formalised and described in more details in
Chapters 5 and 6.

3.2.1.1 Abstract Syntax for Models in LABAS

Concrete models in the LABAS framework require a modelling infrastructure that
defines the abstract syntax to create specific models and trace links connecting mod-
els and architecture abstractions. Model-based design provide concepts and tech-
niques to define a syntax to create concrete models. A metamodel defines the mod-
elling constructs and its relations which are used to create specific models. The Ob-
ject Management Group (OMG) is a large standardisation body addressing, among
other aspects, the development of modelling standards and guidelines for model-

53

Chapter 3. A Framework for Processes and Applications Integration

driven development. Modelling requirements for layers in LABAS can exploit meta-
models defined by this organisation. Section 3.2.1 indicated the type of models
considered in each LABAS layers. The abstract syntax used for these models is as
follow.

• In the BML layer, process model elements follow the recommendations of the
BPDM (Business Process Definition Metamodel) [OMG 2008a]. Domain model
elements and their organisation follow the UML specifications [OMG 2007] for
class diagrams. Only static aspect of classes are considered for domain models
in BML.

• In the AAL layer, application architecture models and their elements follow the
specifications for UML component diagrams.

• In the SAL layer, service architecture models use modelling constructs rec-
ommended in the OMG’s UPMS (UML Profile and Metamodel for Services)
[OMG 2006].

• A traceability metamodel adds to the LABAS modelling infrastructure facilities
to manage explicit trace links between elements in different layers and between
model elements and pattern elements. More details are provided in Section 3.4.

A LABAS profile was developed to create concrete LABAS’s models using a stan-
dard UML tool. Section 7.3.1 refer to profile used in the proposed framework and
support for pattern documentation.

3.2.2 Patterns in LABAS

Architectural abstractions such as patterns have diverse definitions in the software
and business communities. Section 2.3.2 refers to different notions of architectural
abstractions, in particular, Section 2.3.2.2 focuses on diverse definitions for process-
oriented patterns. Figure 3.2 illustrates different levels of abstraction where the pat-
tern concept can be positioned. At the concrete pattern level, pattern users can
document patterns associated to a specific application domain and utilise them in
that context. The focus in subsequent chapters is on process patterns at the concrete
pattern level. Once a pattern is selected at this level, it can be instantiated in a con-
crete model, i.e., at the model level. More abstract patterns, which are independent
of the application domain are expressed with an abstract syntax that is located at
a metamodel level. Examples of process patterns in the abstract level are the pro-
cess patterns defined in [WP 1999], [Aalst 2009b], [Weber 2008], [Lanz 2009]. They
define control flow constraints for executable processes, however they are indepen-
dent of the applications where they are involved in. Only recently, except for a few
exceptions, such as in [Malone 2003], [Barros 2007], [Thom 2009], [Smirnov 2009],

54

3.2. Layered Architecture for Business, Applications and Services

Figure 3.2: Abstraction levels and types of patterns.

knowledge from process designs created for common business operations is being
documented and reutilized in a similar way to design patterns in software engineer-
ing. In this work, process patterns are addressed in this sense, i.e., in an analogous
manner to patterns for software architectures.

The authors in [Buschmann 2007] suggest that the use of (software) patterns
is not possible to be fully tool-based or automated. Although the proposed
LABAS framework considers the notion of patterns similarly to the authors in
[Buschmann 2007], this work emphasises on automation and therefore, pattern de-
scriptions that make machine readability possible are encouraged. The aim is to
help pattern users to automate tasks which are repetitive, time consuming and diffi-
cult to manage due to size complexity.

Subsequent chapters explain how the automated use of patterns in the context
of LABAS is explored, in particular, the application domain of patterns in this work
is focused on the business process level. However the techniques developed in next
chapters can be applicable to any graph-based representation of software level pat-
terns. The reason to focus on process patterns at business level is that design and ar-
chitectural patterns at software level have been widely studied and exploited within
the software community, however patterns and their use at a more business op-
eration level are less investigated. Moreover, since service-based architectures are
closely related to both the business operation and software perspectives, the LABAS
framework should not only look at patterns from the software development perspec-
tive, but also from the business process design and integration perspective.

Business- and architecture-level patterns are the two main kinds of patterns dis-
tinguished in LABAS. Process patterns falling in the first category are central in the

55

Chapter 3. A Framework for Processes and Applications Integration

next chapters:

• Business-level patterns identify the interaction and structure between users, busi-
ness processes and data. Process-oriented patterns within this category capture
common process designs providing a solution to frequent problems associated
to business operations. Thus, not only structure but also behaviour are central
to process-oriented patterns.

• Architecture-level patterns – at a more technical level – address enterprise appli-
cation integration problems and capture reliable architecture solutions. In con-
trast to business-level patterns, architecture-level patterns shift the focus into
more structural software component and service connectivity aspects. They
can also have a direct link to quality attributes.

Process Pattern. In particular, this work associates a business process pattern to a
description of a reoccurring design problem with regard to an organisation’s opera-
tion in a specific business domain, and a generic process representation explaining
a solution to the operational problem. Beside the problem-solution pair description,
the constraints to the problem and the solution space are also explained. A generic
solution to a process-centric problem is specified describing the constituent elements
of the solution process, their responsibilities and relations. Processes are mainly fo-
cused on behaviour and; therefore, relations in a process pattern description are
mainly associated to that aspect. A more formal (and graph-based) definition for
process patterns is provided in Chapter 4.

3.2.3 Pattern Description for End Users

One important aspect facilitating the use of patterns is how they are described. There
are several approaches to describe patterns, from natural language and more infor-
mal graphical representations such as the pattern descriptions in [Buschmann 2007],
to more formal descriptions such as those based on role concepts [Kim 2008], graphs
[Bottoni 2009] or with an ontological base [Pahl 2007] and [Kampffmeyer 2007]. The
first type of descriptions are easily understood by humans but hardly readable for
machines. More formal and precise descriptions benefit automation, but they might
be difficult to use among pattern users.

A common and widely accepted medium to describe patterns is by means of
pattern templates. A pattern template is a predefined structure to organise the main
elements describing a pattern. This structure often involves an evocative pattern
name, a concrete and precise description of the context, problem statement, con-
straints limiting the solution space and a solution that solves the problem within the

56

3.2. Layered Architecture for Business, Applications and Services

constrained solution space. Additional elements of a pattern template can include
related patterns, pattern variants and examples where the pattern has been applied.

LABAS is a framework oriented to support the design of service-based solutions
for enterprise process and application integration. Regarding the use of patterns in
LABAS, a balance between facility of use among end users and formalisation to facil-
itate automation is considered. Thus, patterns are described using a pattern template.
The template has parts oriented towards pattern users and others designated to be
more easily processes by machines. The sections oriented to pattern users involve
textual descriptions that use a vocabulary familiar to pattern users. As emphasised
in [Rising 2007], a vocabulary and concepts familiar to pattern users are key to fa-
cilitate the use of patterns. On the other hand, one of the aims of this work is to
automate some tasks related to the use of patterns. Automation is facilitated by pro-
viding a section in the pattern template – referred to as pattern configuration – that
contains a graph-based representation of the pattern elements’ configuration.

3.2.3.1 Pattern Template

Pattern templates in LABAS organise the set of patterns used during the design of
service-based solutions for enterprise application and process integration. A pattern
template includes the following sections:

Name. The name should be recognizable and useful to facilitate its searching
and communication among pattern users. The name provides a reference to users
familiar with the pattern to immediately bring to mind the problem and solution
addressed by the pattern.

Problem. The problem section describes a recurrent design problem addressed by
the pattern. A description of the problem also contains its context. The problem
description and its context have a textual explanation targeting pattern users. The
pattern context might contain a machine readable section. That section uses a pre-
defined categorisation of the specific domain addressed in the problem. Constraints
are described for concepts in that domain. Categories and constraints can be defined
in a domain specific ontology that helps to divide, organise and explain the problem
space and support automation during the utilisation of patterns.

• Context. The context defines a set of conditions in which the pattern prob-
lem occurs. It can be thought as a constrained problem space, similar to the
constrained solution space described by the Forces section in the Solution. In
one extreme, a problem space without constraints cover an universal problem.
This extreme is not desirable since, as explained in [Buschmann 2003], a pat-

57

Chapter 3. A Framework for Processes and Applications Integration

tern can become all things for all people, each person with their different –
perhaps incompatible – view, potentially damaging pattern utilization. The
more constraints are defined for the problem space, the more precise the con-
text description. However, if the context is significantly restricted, the problem
addressed by a pattern can lose recurrence and; therefore, dilute the utility of
the pattern.

Solution. The solution identifies the configuration of elements balancing the con-
straints within the context of the problem. Elements of a pattern solution are generic
and often named pattern roles. Simple pattern role descriptions are composed of an
evocative name, a textual description for pattern users and possibly a category from
a domain specific ontology. If a category is not assigned, the pattern role name is
used as a more informal medium of identification.

Pattern roles are connected to each other in a pattern configuration. Connections
represent either static or dynamic relations among pattern roles. Comprehensive
pattern role descriptions contain a set of attributes describing them. In order to
support automated mechanisms to compare pattern roles, a threshold value can
be assigned to each attribute. This value represents a quantitative indication for
the minimum similarity value between two attributes being compared. Section 5.5
explains the use of these attributes and threshold values in more details.

Specific types of pattern involve different types of pattern roles. Architecture
patterns in LABAS consider the component and connector view from [Garlan 2006]
to represent pattern configurations. Components, connectors, interfaces and ports
are the types involved. Process patterns on the other hand refer to configurations that
relate pattern roles from a control flow perspective, reflecting the abstract behaviour
of a number of process instances. Process participants (or process pattern roles) are
involved with or in activities, decisions, events and domain entities that together
define a process pattern configuration.

• Forces. Forces define the influential factors restricting the possible solutions to
a pattern problem. They describe the constraints limiting the solution space
associated to a pattern problem. The information that forces provide help to
pattern users to select an adequate solution for particular problems. Similar to
the Context section, the Forces section describes the constrained solution space
of a pattern description. Note that a solution space which is significantly re-
stricted could make a pattern specific to such a degree that it can become no
more than a particular design solution but not a pattern.

Consequences. The consequences of applying a pattern in a determined context
are described to facilitate a reasoned design decision. If a pattern is applied, what

58

3.2. Layered Architecture for Business, Applications and Services

Figure 3.3: Relations between elements of a pattern template.

should a designer expect? A textual description is included in this section of the
pattern template. The consequences section can also provide a reference to effects
on quality attributes after applying a determined pattern to a design [Babar 2004],
[Harrison 2007].

A schema of how the different parts of a pattern template are related is depicted
in Figure 3.3. It illustrates the symmetry of the problem-solution pair, its restrictions
through the context and forces and their consequences. After a solution indicated by a
pattern is applied, consequences can create new problems.

Example. A simple example is used to illustrate the use of a pattern template. The
example mostly describes the information provided to pattern users. Machine pro-
cessable information used in this work can be derived from the pattern configuration
section. A graph-based representation of the pattern configuration can be derived
an processes by algorithms proposed in next chapters. The intention of the example
here is to illustrate what pattern users can expect from a pattern description in a
pattern template.

Suppose a company is dealing with the problem of reducing costs associated with
issuing and settling physical bills for expense and travel reimbursements. The com-
pany is also interested in providing a quicker and automatic way to reimburse bills to
its employees and avoid the use of paper checks. One alternative solution is consid-
ering an electronic bill presentment and payment scheme. The Electronic Payments
Association [NACHA 2010], a large standardisation body, suggested a number of
generic solutions to the mentioned problem. These generic solutions are associated
to constraints imposed on specific interactions between roles involved in the bill pre-
sentment and payment process. The most basic type of payment is a Direct Deposit
[EPN 2010], used for payroll, expense and travel reimbursement, pension and annu-

59

Chapter 3. A Framework for Processes and Applications Integration

ity payments, among many other concrete types of payments. Direct Deposit can be
considered as a process-oriented pattern at the business level.

Table 3.1: Domestic direct deposit pattern template

P A T T E R N T E M P L A T E S A M P L E
Name Domestic Direct Deposit
Problem An organisation needs to reduce costs associated with issuing and set-

tling physical bills and automate the payment process. The organisation
wants to avoid the use of paper or other physical payment documents.

Context Payments are not regular but they occur eventually. Individuals receive
physical bills and they need to process manually their payment docu-
ments, for example, by means of cashing paper checks. All employees
have a bank account. Financial institutions associated to employee’s
and the organisation’s bank accounts are in the same country. Organi-
sation are of any size.

Solution An individual authorises an organisation to make a direct deposit into
one or more of its accounts. Once an authorisation is processed, the
organisation making the direct deposit may perform a test run with
no amount to make sure the account details have been recorded cor-
rectly. If the account information is correct, the organisation processes
the direct deposit transaction by delivering or transmitting a special
file to the individual’s financial institution. The organisation’s finan-
cial institution processes the direct deposit file through the network of
financial institutions one or two days prior to the payday or payment
date. On or before the direct deposit date, the organisation’s financial
institution debits the individual’s account for the total amount of the
direct deposit transaction that were on the direct deposit transaction
file. The financial institutions that receive the direct deposit transaction
credit the individuals account and report the transaction on their ac-
count statements. The organisation should provide a statement of the
direct deposit payment.

Pattern roles Individual, organisation, individual’s financial institution, organisa-
tion’s financial institution.

Pattern configuration

60

3.3. Pattern-based Techniques

Forces Authorization forms can vary from organisation to organisation, but the
required information should be the same. Information of individual’s
accounts should be confidential. This can increase the effort to secure
personal information. Electronic direct deposits can be domestic and
international. Domestic direct deposits involve less organisations. The
network of financial institutions requires between one or two days to
process a transaction debiting from one account in a financial institution
and crediting to other account in a different financial institution. This
is true when both institutions are in the same country, if they are in
different countries the processing time can be increased. Each country
has their own processing requirements. If a pay date falls on a holiday
or other dates when financial institutions are closed, the amount of
money should be available on the day before the scheduled pay date.
In the case of a direct deposit of payroll, the statement should in general
include the same information provided on a paycheck stub, including
deductions and the net pay amount. An individual may have the option
of splitting a deposit or distributed among different accounts even from
different financial institutions. In the former case, all activities after
to the payment order posting are repeated for each split deposit. In
the latter case, all activities referred in the pattern configuration are
performed for each account in each financial institution.

Consequences Payment process is automated and physical payment documents elim-
inated. Depending on the number of individuals, the costs associated
with issuing and settling physical bills would be reduced.

3.3 Pattern-based Techniques

A service-based solution to the integration problem is incrementally obtained by
transforming models at business level and their restrictions at application level to a
service architecture solution. The transformation is supported by patterns and tech-
niques that facilitate their use. Pattern-based techniques provide support to business

61

Chapter 3. A Framework for Processes and Applications Integration

analysts and software architects to incrementally design a service architecture solu-
tion. The main activities involving the use of patterns in the LABAS framework
are: business model augmentation, services identification, business model to service
architecture transformation and service architecture augmentation. Note that two
techniques, pattern matching and discovery for service identification, are developed
in this work. The other pattern-based techniques are only introduced in an attempt
to define the overall environment for the proposed pattern-based approach to SOA
design. Figure 3.1 indicate the relation between activities and layers in LABAS.

3.3.1 Business model augmentation

This activity involves the intentional application of one or more process patterns to
a business process model. The result is an augmented process model. This model
has one or more instances of a single or several process patterns. A number of tasks
can be performed prior to the instantiation of a pattern: patterns can be recommended
before their instantiation, they can be compared and modified to accommodate their
appropriate utilisation. After a particular pattern is selected, it can be instantiated.
If several patterns are being instantiated they might be combined to cover a broader
design issue. Techniques and formalisation can facilitate automation during business
model augmentation.

• Pattern recommendation. Less experienced designers (business analysts, soft-
ware architects, developers) might not be aware that a pattern can be applied
to improve a particular design or solve a design problem in that context. The
use of a pattern is often triggered by the recognition of similarities between
the problem addressed in the pattern and the problem faced by the designer.
Automated pattern recommendation requires that the description of the prob-
lem addressed by a pattern is expressed in a way that machines can process
[Kim 2007]. Pattern descriptions containing machine processable problem-
solution descriptions can be considered as more feasible candidates for au-
tomated pattern recommendation. A problem can be systematically searched
in a model, localised and subsequently a solution can be recommended to end
users.

• Pattern comparison. A design problem can be addressed by more than one
pattern and therefore there might be more than one solution. Two or more
competing solutions require comparison. Competing solutions can be analysed
considering the information provided in the consequences section of pattern
templates. One example is to consider the effects of patterns on particular
quality attributes [Harrison 2007], [Babar 2004].

62

3.3. Pattern-based Techniques

• Pattern modification. A pattern defines a generic solution. The application of a
pattern to a particular model (design) often requires to adjust the generic solu-
tion to the particular model. The adjustments (modifications) should be made
in such a way that the intension of the pattern is preserved. During modifica-
tions to the original (and generic) solution, constraints imposed on the solution
space in the forces section of the pattern template should not be violated. Also,
the consequences of the particular solution after modifications should not be
in contradiction to the consequences of the original pattern. One way of re-
stricting the possible variations of the pattern solution is allow modifications
that result of applying a set of operations that preserve the pattern proper-
ties [Pahl 2009a]. After performing such operations to an original pattern a
validation step can be applied to check that properties have been preserved.

• Pattern instantiation. The instantiation of a pattern in a concrete model implies
that certain elements and connectors in the model are designated to play the
role of respective pattern elements (named pattern roles) and pattern connec-
tors. In the case that certain pattern roles and connectors can not be represented
by elements (or connectors) in the model, new model elements (or connectors)
are created.

• Pattern combination. Several instances of a pattern or instances of different pat-
terns might be present in a single process model. A combination of patterns
can be used as a way to accentuate positive consequences of applying differ-
ent patterns or to cover a broader problem that can be jointly addressed by a
set of patterns. For each pattern, its effects (positives and negatives) on the
rest of the applied patterns needs to be analysed. Since this is difficult to
measure before implementation, at design-time, it is possible to analyse the
potential interferences among documented consequences of each pattern de-
scription. If available, pattern languages define constrained ways to combine
patterns that can result in non-conflicting solutions [Buschmann 2007]. More
advanced approaches consider the use of formally defined operators to com-
bine architecture abstraction. For example in [Pahl 2009a], the authors propose
an ontology-based framework for style definition and style combination. Com-
bination of styles is based on ontology relationships.

3.3.2 Service identification

This activity involves the analysis of process models and their relation to the software
supporting the processes operation. The aim is to define the individual services
that will compose the architecture solution. Among the different approaches to

63

Chapter 3. A Framework for Processes and Applications Integration

define what services will be the building blocks of a service-based solution, two main
categories can be identified. Approaches to identify existing services and approaches
to design the scope and granularity of new services.

One approach to define the boundaries of a new process-centric service is one
considering process patterns as the standard solutions to recurring operational prob-
lems. The process pattern identifies a set of common process elements and their
relations in a particular process domain, it can identify common activities among
different organisations – either within an enterprise or across different enterprises –
and serves as guidelines to the definition of a reusable service across organisations
[Gacitua-Decar 2009c].

The identification of new services based on process patterns consists of finding
instances of one or more process patterns in a process model, and subsequently es-
tablishing new services based on each found pattern instance. The process model
captures the operation of a business(es) and the new services would be designed
to automate and/or integrate that business(es) operation. The composition of the
new services would be governed by the process model. The pattern based tech-
niques used to identify new services use as basis the identification of process pat-
terns in concrete process models. Specifically, techniques for pattern matching and
pattern discovery are proposed. They encourage the design of new services based on
reusable abstractions at process level. While pattern matching takes a process model
and a process pattern as input, pattern discovery only takes the process model. Both
techniques provide as output a set of identified pattern instances in the input process
models. The foundations and core solutions to implement the pattern matching and
discovery techniques are detailed in Chapters 5 and 6.

3.3.3 Business model to service architecture transformation

This activity considers the incremental transformation of the augmented process
models toward a process-centric service solution. During the transformation, the
restrictions imposed by existing software – which supports the processes operation –
are also considered. Pattern-based transformation templates are a medium defining
a set of rules to transform predefined process model configurations into process-
centric service compositions.

Note that several model-driven development approaches have followed a strat-
egy of direct translation from business modelling constructs to software constructs,
e.g., direct transformation from BPMN to BPEL constructs. However, business mod-
els could contain sections that cause deadlocks and other problems for the process
execution [Koehler 2008b].

LABAS proposes the transformation from business models to service architec-

64

3.4. Traceability in LABAS

tures to be based on pattern-based transformation templates [Pahl 2009b]. An ad-
vantage of using transformation templates is that they can be designed to provide
only error-free transformations. Nevertheless, this requires a previous step to refine
the business process model to match with the business model section of the trans-
formation template. In [Ouyang 2007], a control-flow pattern approach for BPMN to
BPEL translation is presented. Transformation templates follow a similar approach,
but are beyond control-flow structures.

3.3.4 Service architecture augmentation

This activity is similar to what was explained in Section 3.3.1, but instead process
models, a service architecture model is augmented with SOA pattern instances. SOA
patterns [Zdun 2006], [Erl 2008] provide guidelines to solve technical issues to de-
sign service-oriented architectures – such as services communication, security and
distribution. There are approaches targeting automation during the incorporation of
pattern instances into service architectures. For instance, in [Pahl 2006] a modelling
and automated transformation approaches is proposed. It automatically generates
executable web service compositions based on a distribution pattern chosen by a
software architect and existing web service interfaces.

3.4 Traceability in LABAS

Traceability is an important aspect of the LABAS framework to maintain aligned
modelling elements from different layers. A traceability model captures (in inter-layer
and intra-layer models) the relationships between model elements and between pat-
tern and model elements. These relationships cross different layers of abstraction and
perspectives and they change over time. Based on instantiated patterns, the traceabil-
ity model can be used to analyse the impact of changes on enterprise service-based
architectures and to maintain aligned business and software levels. For example,
assume the existence of models capturing a company’s software infrastructure (and
its location), applications, services and processes. Suppose now that the company
has a cluster of servers in Moscow centrally running the main services supporting
the company’s accounting process. What are the implications of changing the cen-
tralised configuration style to a distributed one? How is the accounting application
affected? What are the implications to the accounting process? Suppose that, the
company’s software services have been defined without a specific governance model
and currently the company is planning to increase the amount of offered services.
Software engineers in the company have been thinking of organising the services
in different layers according to specific domains in an service repository. For that,

65

Chapter 3. A Framework for Processes and Applications Integration

Figure 3.4: Types of trace links.

they plan to use the service layers and domain inventory patterns [Erl 2008]. What are
the effects on other layers once those patterns are instantiated in the current service
architecture? Also, after new services are created, are the benefits of the instanti-
ated pattern maintained? The traceability model provides a medium to analyse the
impact of changes on instantiated patterns and how these changes affect the service
architecture solution and the processes it supports.

3.4.1 Types of Trace Links

There are different types of relationships between model and pattern elements in
LABAS. The traceability model captures dependency relationships between model el-
ements in different layers; pattern instantiation relationships from pattern to pattern
instance elements; and the evolution of these dependency and instantiation relation-
ships. Evolution of these relationships makes the traceability model dynamic and
observation of this dynamic is core to the LABAS framework.

Dependency and instantiation relationships captured by the traceability model
are modeled as trace links.

Trace links representing dependency relationships are further categorised in
inter-model trace links, change trace links and inter-level trace links. Trace links between
pattern elements and pattern instance elements are modeled as pattern-model trace
links. Note that trace links between elements of executable models and elements
of their instances at run-time are not captured in the LABAS’s traceability model.
Figure 3.4 illustrates the mentioned types of traceability.

• Inter-model trace links capture dependency relationships between elements in
models from different perspectives but at the same level of abstraction. For
example, a send invoice task in a business process model has a trace link to the

66

3.4. Traceability in LABAS

invoice element in a domain model. Both, the send invoice task and the invoice
element are modeled at the same BML layer.

• Inter-layer trace links capture dependency relationships between model ele-
ments of the same perspective but at different layers of abstraction, for example
elements from an abstract process model in BPMN [OMG 2008b] and its asso-
ciated executable model in WS-BPEL [OASIS 2007]. Trace links between model
elements from different perspectives and different layers of abstraction can be
derived from inter-model and inter-layer traces.

• Pattern-model trace links capture the relationship between elements of a pattern
and elements of a model. Such a model contains at least one pattern element
instance. A pattern-model trace link is an special kind of inter-layer trace link since
elements of the pattern and model are in the same perspective but pattern
elements are at a higher level of abstraction. Certain modifications in model
elements over time can trigger the firing of trace rules associated to change trace
links whose consequences affect the modification or elimination of pattern model
trace links.

• Change trace links capture changes of pattern instance elements over time. A sin-
gle change trace link relates a pattern instance element in the same perspective
and abstraction layer before and after a change. Successive change trace links
capture a pattern instance element’s change history. The definition of what
corresponds to a change is defined by the model’s maintainer. For instance,
changes could correspond to predefined modifications in a ”change” taxon-
omy as in [Briand 2006]. Specific conditions in change trace links can trigger the
evaluation of trace rules. In turn, trace rules are associated to actions on pattern-
model trace links that might unattach a pattern from one of its instances. More
details on trace rules are given in Section 3.4.2.

3.4.2 Traceability Metamodel

A traceability metamodel defines the abstract syntax used to create the traceability
model in LABAS. Figure 3.5 illustrates the main elements and relationships of the
proposed metamodel. TraceLink and TraceableElement represent the connection and
connected elements in the traceability model. A TraceRule can be evaluated when
changes to a TraceableElement occur. According to results of the evaluation, changes
can be propagated across layers of LABAS and keep aligned business and software
levels. The proposed infrastructure allows the extension to new types of TraceLinks
and specific TraceRules. Moreover, there is no restriction to what kind of element is
considered a TraceableElement.

67

Chapter 3. A Framework for Processes and Applications Integration

Figure 3.5: Traceability metamodel

• A TraceLink connects to TraceableElements. A TraceLink has an ID and pos-
sibly a Name to identifying it. There are three types of TraceLinks accord-
ing to what type of TraceableElements are being connected. TraceableElements
from different perspectives but the same layer of abstraction can be connected
through InterModelTraceLink. TraceableElements from different layers of abstrac-
tion but the same perspective can be connected through InterLayerTraceLink,
including TraceableElements from abstractions such as patterns to be related to
traceable model elements (pattern instance elements) by means of PatternMod-
elTraceLinks. A ChangeTraceLink links two traceable elements of a modified pat-
tern instance. One element is a pattern instance element in a recorded model
before a change occurs and the other element is a copy or modified copy of that
element in a next version of the model (after the change has occurred). Section
4.6.2 formalises and details on pattern-instance changes. A TraceRuleTrigger indi-
cates if the evaluation of a RuleExpression in a TraceRule should be performed.
For specific values of a TraceLinkActionTrigger in a TraceRule, a ChangeAction
in a ChangeTraceLink could indicate that an action must be performed to set

68

3.4. Traceability in LABAS

the State of the ChangeTraceLink. Different values for State in a ChangeTraceLink
could determine values for ChangeAction and eventually, eliminate the connec-
tion between a TraceableElement in a pattern model and a TraceableElement in a
model.

• A TraceableElement defines a constituent part of a LABAS model, including
elements in pattern configurations that can be connected through a TraceLink
to other TraceableElement.

• A TraceRule represents a class of specialised rules used to evaluate the con-
dition of pattern instances after a change. A TraceRule has a RuleName and
defines a RuleExpression in a determined RuleLanguage. A RuleExpression is
evaluated for determined values of triggerRuleEval which is associated to con-
dition in ChangeTraceLink. After the evaluation of a RuleExpression in Change-
TraceLink, the TraceLinkActionTrigger can adopt different values and possibly
trigger (through ruleEval) a ChangeAction in ChangeTraceLink. The triggered ac-
tion could initiate the propagation of a change across TraceableElements using
actions associated to InterModelTraceLinks and InterLayerTraceLinks.

The previous sections have presented the different types of trace link in a meta-
model that introduces an abstract syntax for creating a traceability model in the
LABAS framework. The next section makes reference to how trace links are gener-
ated, stored and manipulated.

3.4.3 Trace Link Generation

There are different approaches to generate trace links between models, from man-
ual efforts to the use of automatic techniques. While a common way of automati-
cally generating inter-layer trace links involves instrumenting model transformations
[Vanhooff 2007], [Aizenbud-Reshef 2006], there are also a number of approaches ad-
dressing manual generation of trace links across different layers. An automated
trace generation mechanism for process-centric models could instrument a model
transformation from business process models to executable processes. For instance,
the (process) model transformation from models described in BPMN [OMG 2008b]
to models in WS-BPEL [OASIS 2007] in [Ouyang 2007], could use an adaptation of
the instrumentation strategy in [Vanhooff 2007]. However, as mentioned before in
the related work chapter (Section 2.2), often business processes do not map one-
to-one to services in a process-centric service architecture and ad-hoc adjustments
need to be done to incorporate the constraints imposed by existing applications
[Koehler 2008b], hence an approach for inter-layer traceability based on trace links

69

Chapter 3. A Framework for Processes and Applications Integration

generated by end users can be more appropriate in this case. An example of pro-
viding modelling support for inter-layer traces is one followed by the Archimate
framework [Lankhorst 2005]. The LABAS framework also use this type of approach
to generate trace links between model elements, using modelling facilities provided
by proposed UML-based profile. The profile is described in a subsequent chapter
involving the evaluation and implementation of the framework (see Section 7.3.1).

For the particular case of inter-model trace links relating process model elements
and domain model elements, they could be derived from specified pre- and post-
conditions in domain model elements that are involved with process steps (process
model elements). In [Jurack 2009], the authors use a graph transformation approach
to define the semantics of refined activity diagrams with object flows. A control flow
in a process is formalized by a set of transformation rule sequences and an object
flow is described by partial dependencies between transformation rules. Since the in-
formality of process and domain models in practice (available in organisations) could
make approaches such as in [Jurack 2009] difficult to apply or ineffective, automated
support for inter-model was left out of the scope in this work. While enterprise
modelling begins to mature, plans for future work could incorporate the definition
of a formal semantic for inter-model trace links.

Different strategies to generate and maintain trace links in several software de-
velopment activities, including those making use of architectural abstractions such
as patterns are discussed in [Lago 2009]. The authors indicated that there is a lack
of approaches representing architectural abstractions explicitly and in an integrated
way, and where and how these abstractions are used in concrete models. The LABAS
framework attempt to overcome these needs by proposing a semi-automated method
to create trace links between elements in concrete models and pattern configurations.
This type of trace links are referred as pattern-model trace links. The method would
allow end users to interact and select what trace links are generated. Initially, an end
user would select a pattern(s) and a model(s). A matching technique would identify
elements from the selected pattern(s) that are related to elements in the model(s).
This step is performed by the same pattern matching technique involved with ser-
vice identification, proposed in Section 3.3.2. Matched model elements can be high-
lighted and exposed to end users, which can choose what model elements will be
finally traced to pattern elements. Trace links between model and pattern elements
are maintained as part of the traceability model. This model can be used to manage
changes across LABAS layers affecting the service architecture solution. This is il-
lustrated with a case study in Section 7.2.2. The pattern matching technique used to
create pattern-model trace links uses a graph-based algorithm [Gacitua-Decar 2009c]
and semantic support [Gacitua-Decar 2009a]. The next chapters focus on the formal
basis (Chapter 4) and detailed implementation of this technique (Chapter 5).

70

3.5. Summary

3.5 Summary

This chapter has explained the modelling context and organisation of the different
layers of abstraction involved with service-based solutions for enterprise processes
and applications integration. A pattern-based framework to address this integra-
tion problem was proposed. The framework consists of a layered architecture with
business, services and application layers. Patterns and pattern-based techniques are
central to the proposed approach for designing service-based architectures relating
business processes and applications. A traceability model is used to maintain aligned
model elements in different layers and to allow change impact analysis based on the
effects of changing pattern instances in models.

71

Chapter 4

Graph-Based Process Models and
Patterns

Contents
4.1 Process Models as Graphs . 73

4.2 Process Model Graph . 75

4.3 Process Pattern Configuration Graph . 76

4.4 Process Pattern and its Instances . 78

4.5 Process Pattern Instance Graph . 79

4.5.1 Overlapping and Edge-disjoint Instances 80

4.5.2 Model vs Pattern Attributed Type Graphs 83

4.6 Changes in Pattern Instances . 83

4.6.1 Recorded Models and Atomic Modifications 84

4.6.2 Pattern-Instance Change . 85

4.6.3 Conditions for Derived Pattern Instances 88

4.7 Summary . 89

4.1 Process Models as Graphs

Process models often involve a graph-based representation used to facilitate commu-
nication and enhance understanding [Aguilar-Saven 2004]. Most graph-based rep-
resentations consider graph vertices and edges as the basic elements to capture the
structure and connectivity between process elements. A difference of other graph-
based formalisms considering a graph as the state of a system and a process as a
set of transformations from an initial to a final graph, such as in [Corradini 1996] or
[Ehrig 1997], the graph-based representation of processes in this work considers a
graph as the process itself. On edges, the flow of what is being processed and the or-
der between two consecutive process steps (vertices) is directed. On vertices, changes
to the system by processing or directing the flow and reacting to environmental con-
ditions takes place. Structural specifications in graphs capture the execution order of

Chapter 4. Graph-Based Process Models and Patterns

Figure 4.1: Two process models in BPMN v1.1 and related graph representations.

process steps and can evidence execution conflicts such as deadlocks and lack of syn-
chronization [Sadiq 2000], but also abstractions such as patterns and their relation to
process models can be represented through abstract types and constraints defined by
a pattern graph. Structure preserving relations defined by a graph homomorphism
between a process graph and a pattern graph can capture the relation between a
pattern and its instances [Gacitua-Decar 2009c], similar to what a metamodel is to a
concrete model [Ehrig 2008].

Figures 4.1 and 4.2 illustrate simple examples of graph-based representations for
business process models and executable processes. Figure 4.1 shows two business
process models annotated in BPMN [OMG 2008b], a well-known visual modelling
notation for business processes. On the right-hand side, two graph representations
are shown. Vertices and edges of the graph represent process model elements and
their connections. The Use-AccessBankAccSystem process on the left has at its core
(gray-colored elements) a common set of account usage activities that can be related
to a process pattern. If so, the process pattern instance can be considered a subgraph
of the Use-AccessBankAccSystem graph on the right (gray-colored vertices). Similar
to business process models, executable process descriptions can also be associated
to graph representations. Figure 4.2 illustrates an executable process description in
WS-BPEL [OASIS 2007] (left-hand side) and a simplified graph representation (right-
hand side).

The reminder of this chapter is dedicated to introduce a process model graph,
a process pattern configuration graph, its instances, and to introduce the necessary
graph-based foundations and notation. These special kinds of graphs are utilised
in the next chapter to explain the proposed techniques for process pattern matching
and discovery.

74

4.2. Process Model Graph

Figure 4.2: Excerpt of executable WS-BPEL process and related graph representation.

4.2 Process Model Graph

This and the next sections in this chapter are based on the background concepts and
notation for graphs described in Appendix A. For more details please refer to that
Appendix.

Let the graph representing a (business) process model be the typed attributed
graph M = 〈AM, am〉 over ATM. The graph morphism am : AM→ ATM relates the
attributed typed graph AM to an attributed type graph ATM = 〈TM, ZM〉 over ΣM

where ZM is the final ΣM-algebra ZM. Vertex and edge types for M are represented
by vertices and edges of TM, thus capturing types of process elements and their
relations. Elements of ZM represent the sorts of the signature which are included in
TM as types for data vertices. Edges connecting abstract types to data types in ATM
are attribute declarations.

75

Chapter 4. Graph-Based Process Models and Patterns

Note that attributed type graphs can be enriched with inheritance relations and
abstract vertices in a way such that a vertex type can inherit the attributes and edges
of all its ancestors [de Lara 2007], [Taentzer 2005]. Also, constraints, such as cardi-
nality on edges [Ehrig 2006b], can be added to ATM to define restrictions over any
concrete model M.

An example of an attributed type graph (only an excerpt) associated to the spec-
ifications for creating process models in BPMN 2.0 [OMG 2009a] is illustrated in
Figure 4.3. At the top of Figure 4.3, some of the elements defined in the specifi-
cations for BPMN 2.0 are shown. At the bottom of Figure 4.3 (right-hand side) a
simplified example of a concrete process model with three activities in sequence
(A1, A2 and A3) and its associated attributed typed graph M are shown. For the
sake of simplicity, only graph and data vertices associated to types and attributes for
the elements highlighted on the bottom/left-hand side of the figure are shown. The
bottom/left-hand side of Figure 4.3 shows a section of the related attributed type
graph ATM. Activity and Sequence Flow type vertices in ATM are derived from the
BPMN 2.0 specifications (top of the figure), also attributes and data types. Note that
vertex types have inherited the attributes and edges of their ancestors. For instance,
vertices typed by the Activity and SequenceFlow vertices in ATM have inherited the
attribute name (and associated data vertices String) from their common ancestor Flow-
Element. Note that in Figure 4.3 the types for elements and relations in the BPMN
2.0 specifications are considered graph vertices of ATM, simplifying the attribution
for relation elements.

4.3 Process Pattern Configuration Graph

Similar to (business) process models, a pattern configuration of a process pattern
description consists of a process model. The process model contains the pattern
roles and their relations such that it provides a graphical representation of a generic
solution to the operation problem addressed by the process pattern (Section 3.2.2).
The pattern configuration can also identify constraints for values of pattern role
attributes.

Let the graph representing a process pattern configuration be P =

〈〈AP, ap〉, Constr〉 with 〈AP, ap〉 a typed attributed graph over ATP and Constr a
set of applicable constraints to 〈AP, ap〉. The graph morphism ap : AP → ATP
relates the attributed typed graph AP to an attributed type graph ATP = 〈TP, ZP〉
over ΣP where ZP is the final ΣP-algebra ZP. Vertices and edges of TP represent
pattern role and pattern connector types. Attributes in TP (edges connecting ab-
stract and data type vertices) are attribute declarations. Elements of ZP represent
the sorts of the signature which are included in TP as types for data vertices. There

76

4.3. Process Pattern Configuration Graph

Figure 4.3: Excerpt of BPMN 2.0 specifications [OMG 2009a], associated attributed
type graph and concrete process model example.

might be additional constraints for concrete data vertices such that attribute values
are restricted to a subset of instances of a data type. Such constraints are captured
in Constr.

Figure 4.4 illustrates a simple example of a pattern configuration Py and its asso-
ciated attributed type graph ATPx defining abstract and data types. Concrete models
that conform to the pattern must not only conform to the types of ATPx but also re-
spect the constraints for attributes values imposed by Py. For instance, a task playing
the role of T1 should not last more than 30 minutes.

Note that the example in Figure 4.4 does not aim to illustrate any pattern used
amongst practitioners, but provide an abstract example to explain the formalism
above.

A more formal description of the relation between a process pattern (configu-
ration) and its instances is addressed in the next subsection. The process pattern

77

Chapter 4. Graph-Based Process Models and Patterns

Figure 4.4: Example of pattern configuration and associated attributed type graph.

configuration is used by the proposed techniques in next chapters. In the remain-
der of the chapter, the term process pattern (or only pattern for short) refers to the
graph-based representation of the process pattern configuration.

4.4 Process Pattern and its Instances

The concept and use of patterns in this work is related to the idea of providing a gen-
eral solution to a frequent design problem. As described in more detail in Chapter 3,
the description of a pattern contains (among other elements) a pattern configuration
model. The pattern configuration model is an abstract model (architecture) repre-
senting a solution to the design problem addressed by the pattern. A pattern instance
PIi of a pattern configuration P in a particular model M is the ith concrete imple-
mentation of the generic (abstract) solution described by P over M. The abstraction
relation between a pattern and its instances is similar to the relation between a meta-
model and its concrete instances (models). The difference is in the addressed level of
abstraction and scope. While a metamodel defines the abstract types, their structural
constraints and data types for attributes in elements of concrete models; a pattern
configuration defines the abstract roles, their structural constraints and restrictions
of attribute values for elements of pattern instances present in a concrete model.

In a single model, several instances of a pattern can exist, as well as, several
instances of different patterns. There is a special consideration when two or more
instances of the same pattern or different patterns overlap in a model. This special
condition is further discussed in Section 4.5.1. Now, the notion of pattern instance
graph is introduced focussing on a single instance of a single pattern in a concrete
model.

78

4.5. Process Pattern Instance Graph

Suppose a process model M, as defined in the previous section (Section 4.2), and
its associated ATM defining types and attributes for M. Also, suppose a process
pattern configuration P as defined in Section 4.3. ATM defines the abstract types
(and structural constraints) and data types for M; P defines the abstract roles and
structural and data constraints for a subset of vertices and edges of M. The subset
of vertices and edges conforming to types and constraints imposed by P defines the
instance (or instances) of P in M. Intuitively, there are three levels of abstraction con-
sidered in this situation. One referring to a ”metamodel” level, another associated
to a ”pattern” level, and (at the lower level of abstraction) there is a ”model” level.
Figure 4.6 illustrates this idea graphically. The two morphisms am and ap map ver-
tices and edges from the metamodel1 to the model level, and from the metamodel to
the pattern level, respectively. These morphisms represent the structure preserving
relations between the abstract and data types from M to ATM (am) and from P to
ATP (ap). The morphism ai represents the preserving structural relations between
a subset of vertices and edges in M to P. The subset defines a subgraph APIi ⊂ M
that, together with the morphism ai : APIi → P, identifies the ith pattern instance of
P in M.

4.5 Process Pattern Instance Graph

Let PIi = 〈APIi, ai〉 over P with APIi ⊂ M be an instance of the pattern configuration
P in M, where M = 〈AM, am〉 over ATM and P = 〈〈AP, ap〉, ConstrP〉 over ATP.
The graph morphism ai : APIi → P relates the attributed typed graph APIi ⊂ M to
P, such that vertices and edges in APIi conform to the abstract types and structural
and data constraints defined by the graph in P. Intuitively, elements and relations of
the model section represented by APIi satisfy the constraints for pattern roles and
connectors defined by the pattern configuration P. The relation between a vertex
from P and vertices from APIi is not necessarily one-to-one. It can be one-to-many.
This is explained in more detail in the next examples.

Consider the well-known design pattern abstract factory [Gamma 1995] for object-
oriented programming (Figure 4.5). An abstract factory declares an interface for
operations that create abstract product objects and concrete factories, who inherit
from the abstract factory class, implement the operations to create concrete product
objects. The number of concrete factories is not determined by the pattern, but it
depends on its application. Thus, several concrete factories can be created in a model
that instantiate the abstract factory pattern. Similar to the abstract factory pattern,
the example in Figure 4.6 shows a single complete instance PIi of P in M, which

1Note that the compact notation used in the specifications for BPMN 2.0, also illustrated in Figure
4.3 is used.

79

Chapter 4. Graph-Based Process Models and Patterns

Figure 4.5: Configuration for abstract factory pattern [Gamma 1995].

has activities Vote, Excuse and Invalidate related to the pattern role Action from P
through the mapping ai. This one-to-many relation captured by ai is fairly common
for pattern instances. The morphism ai is said to be surjective and allows mapping
several elements in PIi to a single element in P.

The example2 in Figure 4.6 shows a complete instance PIi of P, however it is pos-
sible that some vertices and edges from M are mapped to a subset of all vertices and
edges in P. Imagine that only the activity Action and gateways Option and Continue?
are images of a mapping ai′ relating elements from a pattern instance PIj ⊂ M to
some elements from P. The morphism ai′ is surjective but only maps partially to el-
ements in P. Thus, ai′ : PIj → SP ⊂ P is called a partial (and surjective) morphism.
The next chapter shall focus on a technique to automatically find complete and par-
tial instances of patterns in models, including those related by surjective mappings.

4.5.1 Overlapping and Edge-disjoint Instances

The representation of process pattern instances as graphs would be utilised to define
and implement techniques to identify pattern instances in models. One situation that
can occur when identifying pattern instances is that instances can overlap. If they do
not overlap, it may be of interest to identify new pattern instances in a model that is
abstracted by reducing the non-overlapping instances to a special kind of vertices.

Let PI1 and PI2 be two instances of the pattern P1 and P2 in M, respectively.
PI1 and PI2 are called overlapped if they have vertices in common, i.e. V(PI1) ∩
V(PI2) 6= ∅. The graph o(PI1, PI2) whose vertices are V(PI1) ∩ V(PI2) and edges

2Note that an enlarged figure of ATM = ATP in Figure 4.6 is in Figure 4.3.

80

4.5. Process Pattern Instance Graph

Figure 4.6: Model M, pattern configuration P and one of its instances Pi in M.

81

Chapter 4. Graph-Based Process Models and Patterns

Figure 4.7: Illustration of overlapping and edge-disjoint instances.

E(PI1) ∩ E(PI2) is called the overlap between PI1 and PI2. PI1 and PI2 are called
edge-disjoint if they do not share any edges of M, i.e. E(PI1) ∩ E(PI2) = ∅.

If P1 and P2 are the same pattern, the instances PI1 and PI2 are called identical if
for all edges (ui, uj) ∈ E(PI1), (wi, wj) = (vi, vj), with (wi, wj) ∈ E(PI2) and for all
vertices ui ∈ V(PI1) and vertices wi ∈ V(PI2), vi = wi.

Figure 4.7 (most left-hand side) illustrates an overlap in M between two instances
PIx1 and PIx2 of a pattern Px. o(PIx1, PIx2) is the single vertex indicated as an
overlap. At the centre of the figure (left-hand side), an instance PIy1 of the pattern
Py is shown together with the previously highlighted PIx1 and PIx2. The overlaps
o(PIx1, PIx2) and o(PIx1, PIy1) are also indicated. At the centre (right-hand side),
two edge-disjoint instances PIz1 and PIz2 of Pz in M are shown. These two instances
can be represented by two special vertices in M′. At the most right-hand side of
Figure 4.7, the two special vertices are indicated with the same name assigned to the
pattern instances, i.e. PIz1 and PIz2. M′ is called the raised graph of M – or the lifted
graph, as in [Fahmy 2000]. The two instances PIz1 and PIz2 together with the two
edges connecting them are referred as a 2-fold cover of Pz.

Note that a formal definition of graph lifting is not detailed here, a number of
articles regarding graph theory cover the topic at different levels. In [Fahmy 2000],
a simplified explanation and practical use of graph lifting in the context of software
architecture transformations is addressed, in [Diestel 2005] a more formal descrip-
tion of graph covering is provided. The basic concept of lifting a graph is used in the
next chapter to explain a technique for hierarchical pattern matching (Section 5.4).

82

4.6. Changes in Pattern Instances

4.5.2 Model vs Pattern Attributed Type Graphs

An observation derived from Figure 4.6 regarding the attributed type graphs for M
and P, i.e. ATM and ATP is discussed here. The example of Figure 4.6 shows that
that M and P are both typed by the same attributed typed graph (ATM = ATP).
However, this might not be always true in practice. For instance, if two different
languages are used to describe the model and the pattern. The reason of using
different modelling languages could be for example associated to preferences of
different modellers or changes of language constructs over time.

In the next chapters, techniques to identify pattern instances in models are pro-
posed. In their simplest form, these techniques assume ATM = ATP or at least, the
types mapped between M and P are not affected by the restrictions that P imposes
on their instances in M. A more complex implementation of the techniques require
an additional step to combine the attributed type graphs in a single graph defining
types for pattern and model elements.

Suppose one or more instances of the pattern P exist in a model M. For a sub-
graph PIi ⊂ M to be an instance of P, there must exist not only the (surjective)
morphism ai : PIi → P, but also the morphism ap : PIi → ATP which defines the
abstract and data types for P, given its associated ATP. Also, for M there exist a
morphism am : M → ATM, with ATM that defines the abstract and data types for
M, and therefore for PIi. On the other hand, a morphism between ATM and ATP
does not need to be restricted to surjection nor injection, as long as the elements
from both graphs (ATM and ATP) are not affected by the restrictions imposed by P.
Figure 4.8 illustrates the latter. The figure shows two hypothetical alternative pairs
of attributed type graphs for M and P – {ATM, ATP} and {ATM′, ATP′}. In the
first case, for vertices in P and PIi ⊂ M, the abstract type represented by a circle
vertex in ATM is less restrictive than the abstract type represented by a circle-with-
a-dot vertex in ATP, which adds an additional constraint (the dot). In the second
case, in both ATM′ and ATP′, there is an abstract type represented by a circle vertex.
While the concrete circle-with-a-dot vertex in PIi is mapped to the circle-with-a-dot
abstract type in ATM′; the concrete circle-with-a-dot vertex in P is mapped to the
circle abstract type in ATP′, however, it contains an additional restriction (the dot)
at the pattern definition level.

4.6 Changes in Pattern Instances

The framework presented in the previous chapter contains a traceability model that
maintains relations (trace-links) between model elements and elements in pattern
configurations. Changes in models can affect the pattern instances and therefore

83

Chapter 4. Graph-Based Process Models and Patterns

Figure 4.8: Model versus Pattern Attributed Type Graphs.

their relation to pattern configurations.

Consider a process model graph M and a process pattern graph P. Once P is
instantiated in M, the host model M might be modified over time. These modifica-
tions could affect an instance PIi of P in a way that it could be no longer an instance
of P. There are two relevant elements regarding changes in pattern instances; they
concern what is changed and when these changes occur. Awareness of time during
modifications benefits the management of active executions of processes and pro-
vides an indication of the modifications’ order. Identification of modified elements
in a model and what type of modifications have been done provide important infor-
mation to determine if pattern instances are being eroded – in a way that the benefits
of the applied pattern could be lost. Moreover, if a determined ordered set of modi-
fications is being performed (and they indicate that the pattern instance can be lost)
actions to alert end users could be performed before the change that can erode the
pattern instance to the point of losing it can be completed.

4.6.1 Recorded Models and Atomic Modifications

Atomic modification. Let mod be a (possible) model-level atomic modification of a
model graph M. An atomic modification mod is a transformation of the graph M
involving a single action (create, delete, modify) in either a vertex or edge of M.
Note that (in general) M is an attributed typed graph and actions can be performed
not only on graph vertices and edges, but also on attribute edges and data vertices.

Recorded Models and Change. Given a model M and a set of successive model
modifications ModM, recM identifies a finite ordered set of recorded graph models de-

84

4.6. Changes in Pattern Instances

Figure 4.9: Relation between recorded changes and graph transformations.

noting successive stages (temporally ordered) from the original model M indicated
by M(t0) to a final model indicated by M(t f). Each record recM(ti) ∈ recM stores
the model graph M(ti) that refers to the state of the model M at instant ti, i.e. M(ti)

denotes the ith record of M after a set Modi ⊂ ModM of successive modifications
(change), such that the result of applying Modi to the previous graph in record
recM(ti−1) is equivalent to the transformation Tmodi : M(ti−1) → M(ti). Thus,
Tmodti identifies a recorded change from M(ti−1) to M(ti).

M(ti) is an undirected graph where each of its vertices can store either the infor-
mation from a vertex or an edge in M (M at instant ti). A vertex in M(ti) that stores
the information of an edge in M identifies its associated source and target vertices.
Figure 4.9(a) illustrates the latter.

The instance ti is a point in a calendar [Lanz 2009] C, where C is a set of absolute
time points without gaps, such that C is a total order. The indexes for the family
of transformations in M(t0) ⇒∗ M(t f) is given by the ordered set of modification
records recM such that each time a change is recorded, the set of modifications per-
formed between a previous record recM(ti−1) and a current record recM(ti) is iden-
tified in M(t0) ⇒∗ M(t f) by the transformation Tmodi. Figure 4.9(b) illustrates the
latter.

4.6.2 Pattern-Instance Change

Let PIi = 〈APIi, ai〉 over P with APIi ⊂ M be an instance of the pattern config-
uration P in M, where M = 〈AM, am〉 over ATM and P = 〈〈AP, ap〉, ConstrP〉
over ATP. P denotes the graph representing a process pattern configuration,
P = 〈〈AP, ap〉, ConstrP〉 over ATP and a set of applicable constraints ConstrP; and
M = 〈AM, am〉 over ATM denotes the graph representing a (business) process
model.

M(t0) and PIi(t0) indicate the initial M and PIi, respectively. An ordered set of
records of M is denoted by recM, where recM(tj) ∈ recM contains the graphs M(t0)

to M(tj) and refers to the derivation M(t0)⇒∗ M(tj).
A change in a pattern instance between two consecutive records of the model

M is identified by the graph P, PIi(tj−1), PIi(tj) (from two consecutive records
recM(tj−1), recM(tj) ∈ recM) and by special edges representing pattern-model trace
links and change trace links between P, PIi(tj−1) and PIi(tj).

Pattern-model trace links and change trace links are part of the traceability model
introduced in Section 3.4. The traceability model provides modelling support to
maintain links (pattern-model trace links) between process pattern configurations and

85

Chapter 4. Graph-Based Process Models and Patterns

its pattern instances in models, and to keep track of modifications in pattern instance
elements through change trace links.

Change trace links connect elements before and after changes. In terms of the
pattern instance graph PIi of P in M and the model graphs M(tj−1) and M(tj) from
two consecutive records of M (i.e., recM(tj−1) and recM(tj)) a change trace link is an
edge ctl connecting a vertex from PIi(tj−1) to its copy or modified copy in PIi(tj)

– but yet an instance of an element from P. Deleted vertices from PIi(tj−1) can not
be linked. New created elements in M(tj), who are elements of the instance PIi(tj),
are traced to the corresponding pattern elements in P. Figure 4.10 shows change
trace links and pattern-model trace links using the example graphs from Figure 4.8.
From t0 to t1 the change involves eliminating an element (blue-coloured triangle)
and associated relation, and from t1 to t2 the change involve eliminating an element
(green-coloured triangle) and associated relation, and adding three new elements
(white-coloured triangle, and two white stars) and their associated relations. Note
that in order to simplify the figure, pattern-model and change trace links associated
to edges in P were not depicted. Figure 4.10 at the bottom shows the pattern-model
trace links and change trace links in the traceability model. A lifted view is also
illustrated.

Pattern-instance change graph. Let M, P and recM be a model graph, a pattern con-
figuration graph and records of M as introduced above. Let also PIi be an instance
of P in M. A pattern-instance change graph PICi(tj) is a graph capturing the history

of recorded changes in PIi, whose vertices V(PICi(tj)) = {V(P) ∪
j⋃

x=1
V(PIi(tx))}

and edges E(PICi(ti)) = {E(P) ∪
j⋃

x=1
E(PIi(tx)) ∪ {Ctl} ∪ {PMtl}}, where {Ctl} is

the set of all edges representing change trace links between {PIi(t0), . . . , PIi(tj)} and
{PMtl} is the set of all edges representing pattern-model trace links between P and
PIi(t0). Figure 4.10 at the bottom illustrates a pattern-instance change graph for P
and one of its instances PIi recorded at t0, t1 and t2. A lifted view is also shown.

Differences between two consecutive graphs M(tj−1) and M(tj) in recM are the
result of atomic modifications over M(tj−1). Edges in Ctl connecting vertices in
V(PIi(tj−1) to vertices in V(PIi(tj) have an attribute State (see traceability metamodel
in Section 3.4.2). State can indicate if a vertex in V(PIi(tj)) has been modified with
respect to a vertex in V(PIi(tj−1)). If a pattern instance element represented by v
exists in M(tj−1) and it is modified after tj, there would be an edge connecting the
vertex v in V(PIi(tj−1)) to its modified copy in V(PIi(tj)) (indicating the modifica-
tion). If instead modifying v it is eliminated after tj, there would not exist an edge
from v in V(PIi(tj)) to a vertex in V(PIi(tj+1)). Also, if a pattern instance element

86

4.6. Changes in Pattern Instances

Figure 4.10: Pattern-instance changes and trace links in traceability model.

87

Chapter 4. Graph-Based Process Models and Patterns

represented by w is created in M after tj, an edge between w and its corresponding
pattern role (or connector) in P is created and added to the set PMtl.

Explicit connections (edges) between P and its instances at different times can
be used to identify modifications to pattern instances independently. This infor-
mation can be used to support a pattern-based change impact analysis in a coarse
granular way. In this case, granularity is given at pattern-instance level. The inten-
tion of working at this level and keeping independence between pattern instances is
twofold. To use the information of pattern consequences to support change impact
analysis and to have the possibility to analyse the system for possible independent
changes on pattern instances.

In the context of the LABAS framework, the representation of pattern-instance
changes as graphs can be used as a basis for a pattern modification technique used
during augmentation of business process models and service architectures (Sections
3.3.1 and 3.3.4) and the use of the traceability model (Section 3.4) for change impact
analysis. Chapter 7 demonstrates the use of the traceability model for a pattern-
based change impact analysis. The aim is to facilitate the analysis of what properties
of a system are affected with a change in a pattern instance. The assumption is that
properties of systems can be related to patterns and therefore a pattern instance in a
specific system’s model would indicate that such property can be associated to the
modelled system.

4.6.3 Conditions for Derived Pattern Instances

A pattern template that contains a pattern configuration P (as described in Sec-
tion 3.2.3) could also add additional information regarding allowed and not allowed
modifications for its instances. This can assist the modification of patterns as intro-
duced in the pattern-based techniques of the LABAS framework.

Given an instance PIi, a derivation from PIi(tj) to f orbPIi(tj+1) is a derivation
that transform the pattern instance PIi(tj) into a forbidden graph f orbPIi(tj+1). The
forbidden graph is a graph representing a pattern instance that interferes with the
intentions of the pattern in such a manner that f orbPIi(tj+1) ⊂ M would no longer
be an instance of P.

Consistency conditions, such as the existence or uniqueness of certain elements,
are properties of graphs that have to be preserved by the application of rules (refer
to Section A.6 in Appendix A for details in application and consistency conditions).
Graphical consistency constraints as in [Heckel 1995] can describe conditions for ex-
istence or uniqueness of vertices and edges in graphs. The notion of consistency
constraints and conditional applications over the left- and right-hand side of a graph
transformation rule r (pre- and post-conditions over the rule r) can be used here

88

4.7. Summary

to define conditions on a rule transforming M(tj) to M(tj+1), such that it does not
induce the transformation PIi(tj) to f orbPIi(tj+1), which indicates a forbidden trans-
formation from a valid pattern instance to an invalid one.

Conditions for a model derivation to hold a valid pattern instance. A direct
derivation M(tj−1)

r,m
=⇒ M(tj) can be restricted to the existence or non-existence

of certain elements in M(tj). A restricted derivation can be defined for a rule
r̂ = (r, A(r)) that defines pre- and post-conditions for the transformation rule r
defined by A(r) = (ALPIi

, ARPIi
), where LPIi is a subgraph of PIi(tj−1) and RPIi is a

subgraph of PIi(tj). The rule r̂ and a match m : PIi(tj−1) → M(tj−1) can define a

conditional derivation M(tj−1)
r̂,m
=⇒ M(tj) such that M(tj) contains a valid instance

of PIi. Other derivations that do not comply with r̂ result in a model containing a
forbidden subgraph f orbPIi(tj+1).

Note that graphical consistency constraints can not express structural conditions
like the existence of paths or cycles of arbitrary length or global graph properties
such as connectivity. Also, edge multiplicity and inheritance, commonly used in
visual languages, is not addressed in [Heckel 1995]. In [Taentzer 2005], consistency
constraints are extended to graph constraints which allow the expression of multi-
plicity constraints and edge inheritance. Moreover, given a certain production, sev-
eral matches might be possible and in that case, one of them has to be selected. There
are several techniques to define the order to select determined matches to apply its
associated production rules [Ehrig 2006a]. The aspects perviously mentioned are not
within the scope of this work and can be considered as future work in the context of
techniques for pattern modification and horizontal model transformations.

4.7 Summary

This chapter introduced graph-based representations for process graphs, process
pattern graphs and process pattern instance graphs. It also defined the relation
between pattern instances in process models and pattern configurations as graph
morphisms. These representations are core to the proposed pattern matching and
discovery techniques described in the next chapters. Special situations such as over-
lapping pattern instances and different attributed type graphs defining types for
pattern and model elements were discussed. Changes in pattern instances were also
captured in a graph-based representation. This representation supports the use of
the traceability model defined in the context of the proposed LABAS framework
to assist pattern-based change impact analysis. Future work regarding the pattern
modification technique introduced in the previous chapter is also suggested. How-

89

Chapter 4. Graph-Based Process Models and Patterns

ever, the emphasis of this work is on the graph-based pattern matching and discovery
techniques.

90

Chapter 5

Pattern Matching

Contents
5.1 Overall Approach . 91

5.2 Structural Matching . 92

5.2.1 Exact and Complete Process Pattern Matching 93

5.2.2 Exact and Partial Process Pattern Matching 96

5.2.3 Inexact and Complete Process Pattern Matching 97

5.2.4 Inexact and Partial Process Pattern Matching 98

5.2.5 A Comprehensive Pattern Matching Framework 98

5.3 Algorithms for Structural Matching . 99

5.3.1 Matrix-based Structure for Process and Pattern Graphs 100

5.3.2 Complete/Partial & Exact Pattern Matching Algorithm 103

5.3.3 Complete/Partial & Inexact - Pattern Matching Algorithm (CP-
I-PM) . 109

5.4 Hierarchical Pattern Matching . 118

5.5 Semantic Matching . 121

5.5.1 Semantic Vertex Matching . 121

5.5.2 Type Vertex Similarity . 123

5.5.3 Attribute Vertex Similarity . 123

5.5.4 The Label Attribute and Label Similarity Calculation 125

5.6 Summary . 127

5.1 Overall Approach

Among the pattern-based techniques in the proposed framework for SOA design and
integration (Chapter 3), pattern matching can be exploited to guide the definition of
new services based on known and reusable process patterns.

The problem of matching a process pattern in a process model is addressed in
this work as a graph matching problem. Process patterns and process models are rep-
resented by attributed typed graphs – introduced in Chapter 4. A process pattern

Chapter 5. Pattern Matching

configuration graph and a process model graph are the input to the matching prob-
lem. The output is an annotated process model graph where pattern instances are
identified.

This chapter explains a solution to the graph matching problem considering per-
spectives involving structure, hierarchy and semantics. The solution consists of a
number of techniques, which are implemented as a family of algorithms. The algo-
rithms implement structural matching by checking homomorphic relations between
pattern and model graphs. Semantic matching considers the comparison between
types and attributes associated to graph vertices from models and patterns. The al-
gorithms go beyond exact matching and cover partial and inexact matching. This
provides more flexibility for cases where models and patterns can originate from
different sources.

The four main sections of this chapter cover a general description of the proposed
techniques for pattern matching, their implementation as a family of algorithms,
hierarchical matching of patterns and, finally, semantic matching at vertex level.
Section 5.2 provides a formal description and indicates the relations between the dif-
ferent kinds of proposed structural matching approaches: exact, inexact, complete
and partial. Formalisation can provide guaranties of correctness and improve confi-
dence in tools. Section 5.3 explains the family of algorithms implementing structural
matching. The algorithms include functions to match vertices from patterns and
models by comparing their types and attributes. These functions can be enhanced
by semantic similarity measures that are detailed in Section 5.5. After performing
matching at one level of abstraction, other matching steps can take place at higher
levels. A technique for recursively matching patterns at different levels of abstrac-
tion is proposed in Section 5.4. The technique is referred as hierarchical matching.
Related work and concluding remarks are provided in the two final sections of this
chapter.

5.2 Structural Matching

Graph matching has several years of investigation and solutions to this problem vary
widely according to the specific graphs and type of matching required [Bunke 2005],
[Conte 2004]. Solutions to the graph matching problem involve different complexi-
ties and implementations according to the kind of graph considered (directed, undi-
rected, labelled, typed, attributed, static, dynamic, among others) and the type of
matching required (e.g., exact, partial and inexact).

Graph matching involves the mapping between vertices of two graphs. From the
graph structure perspective, this mapping must be edge-preserving; that is, for two
vertices in one graph linked by an edge, they must be mapped to two vertices in

92

5.2. Structural Matching

the other graph, also linked by an edge. A less restrictive form of matching does not
need to ensure that vertices in one graph have to be mapped to distinct vertices in the
other graph, allowing many-to-one correspondences. Even in this less restricted form
of matching, the problem of graph matching is mostly NP-complete [Conte 2004].
Consequently, a solution to address the structural perspective of process pattern
matching has to consider an efficient implementation.

In realistic scenarios, where processes and patterns could originate from a dis-
tributed and semantically heterogenous environment, exact pattern matching could
be rather unlikely. Instead, partial and inexact matching acquires relevance. Figure
5.1 illustrates examples of exact, partial and inexact pattern instances of a process pat-
tern. Figure 5.2 summarises the types of pattern matching. Exact, inexact and partial
matching allow many-to-one correspondences. Partial matching identifies exact but
incomplete pattern instances. Partial instances might exist due to modifications or
evolution of previously instantiated patterns. Also, in cases where patterns have
not been previously considered as part of a process design, partial matches might
indicate an opportunity to improve the process by means of incorporating the whole
design solution indicated by the pattern configuration. Inexact matching provides a
good, but not exact solution to the matching problem. For instance, pattern instances
can incorporate additional elements not described in the pattern, provided that they
do not affect the documented consequences of applying the pattern (intention of the
pattern). Partial and inexact pattern instances are relevant in practice, where process
models and their implementations as services could be similar – although not exactly
the same – from organisation to organisation. Identifying commonalities in process
models, in this case by comparing pattern instances, can save costs and encourage
reuse [Erl 2004].

5.2.1 Exact and Complete Process Pattern Matching

Matching is captured by the notion of graph homomorphism, which refers to a
mapping having the property that, if two vertices form an edge in the source graph
then their images form an edge in the target graph, where the target graph can also
be the same source graph. Exact and complete matching is related to a weaker form
of the most restricted form of matching, formally represented by an isomorphism.

Isomorphism indicates a bijective mapping between graph elements, i.e., a one-
to-one correspondence must be found between each vertex from one graph to each
vertex from the other graph – similar for edges. A weaker form of matching is sub-
graph isomorphism. It requires that an isomorphism holds between a source graph and
a vertex-induced subgraph of the target graph. Yet another form of subgraph match-
ing is surjective subgraph homomorphism, where surjection applies to both vertex- and

93

Chapter 5. Pattern Matching

Figure 5.1: Exact, partial and inexact pattern instances.

94

5.2. Structural Matching

Figure 5.2: Types of pattern matching.

edge- mappings between source and target graphs. A special kind of this type of
homomorphism are the locally constrained graph homomorphisms (LCGH), where the
image of the neighbourhood of a (source) vertex in a graph is contained in the image
of source vertex’s neighbourhood in the target graph [Fiala 2008]. Exact and com-
plete matching is formalised by this last type of graph homomorphism. For more
details, refer to Annex A describing the mentioned types of graph homomorphisms.

Now, let M and P be a process model graph and a process pattern graph, respec-
tively. M is a typed attributed graph M = 〈AM, am〉 over ATM and P is a typed
attributed graph P = 〈〈AP, ap〉, Constr〉 over ATP and a set of applicable constraints
Constr. Consider that Mt and Pt are the recorded graphs. Mt and Pt are undirected
graphs. Original edges in these graphs have been replaced by vertices with the same
attribute, type and source/target information (see Section 4.6.1 for details).

An exact process pattern match between an instance PIj of P in M is captured by
a mapping ecm : PIj → Pt, where PIj ⊆ Mt is the jth instance of P in M. The
mapping ecm stands for exact complete mapping and refers to a locally constrained
homomorphism between PIj and Pt.

As already mentioned, process pattern instantiation can also involve many-to-
one relations between several elements from a model and a single element from the
pattern. This situation is captured by allowing surjection in the graph homomor-
phism. Surjection (or bijection) is indicated by using ecsm (or ecbm) instead ecm,
being the exact complete mapping surjective or bijective mapping, respectively.

95

Chapter 5. Pattern Matching

5.2.2 Exact and Partial Process Pattern Matching

Non-complete (partial) instances of patterns can exist in a model, for example, in
cases where sections of pattern configurations have been applied unintentionally.
Figure 5.3 illustrates an example with two process patterns - one abstract process
pattern send-receive message (P1) and a more domain specific pattern for a transfer
transaction (P2) - and two complete instances of P1 and a partial instance of P2 in
a business process model. The pattern role Check Clients Funds from P2 has no
instances in the model.

Note that patterns not only occur as business process-level patterns. They can
have refined versions at (lower abstraction) service implementation level or simply
occur at this level. For instance, P1 can be refined to the Request-Reply pattern im-
plemented in a JMS (Java Message Service) in [Hohpe 2004]. To apply the pattern
matching technique at lower level, the service description would be transformed into
a graph-based description. Similar to how a business process description is trans-
formed to a graph-based representation.

Figure 5.3: Example of partial process pattern instance.

For M and P as above (Section 5.2.1), a partial process graph match refers to a
mapping from a subgraph SPIj in Mt to a subgraph SP in Pt. SPIj is called the jth

96

5.2. Structural Matching

partial instance of P and it can be seen as a subgraph of an hypothetical complete
instance PIj in Mt. The mapping epm maps elements from SPIj to a reduced number
of elements in the codomain of ecm : PIj → Pt. As ecm, the exact partial mapping
epm : SPIj → SP is also type preserving. The difference is in the restricted domain
and codomain of the mapping. Surjective and bijective mappings are indicated by
epsm and epbm, respectively.

5.2.3 Inexact and Complete Process Pattern Matching

In some – often frequent – circumstances, the constraints imposed by an exact match-
ing are overly inflexible for the identification of model sections that are somehow
similar to exact pattern instances. In several scenarios, the observed graphs are sub-
ject to deformations due to causes such as intrinsic variability of instances (imple-
mentations) of pattern configurations; errors during the acquisition/documentation
of processes; presence of nondeterministic elements when translating processes to
graph representations (e.g., unclear assignment of activities to roles in choreogra-
phies, unknown service support for composed services) among possible causes for
having actual graphs that differ from their ideal models. Process pattern matching
has to be tolerant to inaccuracies in observed graphs, by relaxing to some extent the
constraints defined by an exact matching [Conte 2004].

Let M and P be the model and pattern graphs of the two previous subsections,
and let PIj and ixPIj be a complete exact instance and a complete inexact instance
of P in M. An inexact complete match refers to a pair of mappings 〈ecm, sim〉, with
ecm : PIj → P as in Section 5.2.1, and sim : {x, y} → (t, a), where the mapping sim
relates a pair of vertices {x, y} with x ∈ V(ixPIj) and y ∈ V(PIj) to a pair (t, a), with
t, a ∈ R+

0 .

The pair (t, a) indicates a measure of similarity between types (t) and associated
attributes (a) of x and y. It is expected that values of (t, a) are within a certain
threshold defined in the description of elements of P. Similarity between graph
vertices has different connotations according to what is measured [Blondel 2004],
[Leicht 2006]. To introduce vertex similarity, additional background information and
formalisation is required. Section 5.5 explains vertex similarity for pattern matching.
This section continues to focus on the structural relationship between elements of
patterns and their (inexact) pattern instances.

Intermediate elements. Consider the pair 〈ecm, sim〉 indicating an inexact and
complete process pattern match of P in M. ixwiPIj refers to an inexact and complete
process pattern instance with intermediate elements allowed. Figure 5.1(C) shows a
simple example of an inexact pattern instance with a single intermediate element,

97

Chapter 5. Pattern Matching

i.e., the CheckClient activity. Intermediate elements relax the mapping ecm (to a map-
ping ecm′) such that other elements not mapped in ecm and located in one or more
edges connecting elements in the original domain of ecm are allowed as part of the
pattern instance ixwiPIj. An intermediate element is considered to be a subgraph of
ixwiPIj that is not mapped in ecm. Intermediate elements should not interfere with
the pattern intention and they could be identified from descriptions of the pattern
configurations, where allowed modifications to patterns could be described in the
associated pattern templates.

5.2.4 Inexact and Partial Process Pattern Matching

Similar to Section 5.2.2, non-complete (partial) and inexact instances of patterns
could appear in a model after its modification or in cases where sections of pattern
configurations have been applied unintentionally.

An inexact and partial process pattern match refers to a pair of mappings 〈epm, sim〉,
where the domain of the original sim, indicated in the previous section, have been
restricted. Here, the mapping sim : {x, y} → (t, a) considers an x ∈ V(ixSPIj) such
that V(ixSPIj) ⊆ V(ixPIj) and y ∈ V(SPIj) with V(SPIj) ⊆ V(PIj). ixSPIj is called
the jth inexact and partial instance of P, where SPIj is the associated - hypothetical -
exact and partial instance. Vertices in V(ixSPIj) are related to vertices in V(SPIj) by
its degree of similarity indicated by sim. Similar to ixPIj, intermediate elements can
be added to edges connecting two elements in ixSPIj. The inexact and partial pattern
instance with intermediate elements is denoted by ixwiSPIj, and is related to the pair of
mappings 〈epm′, sim〉, where epm′ : ixwiSPIj → SP ⊆ P and sim as above.

5.2.5 A Comprehensive Pattern Matching Framework

A comprehensive framework for pattern matching should consider not only exact
and complete instances of patterns in models, but also possible partial and inexact
instances. Empirical studies have shown that variants of process patterns – not ex-
actly matching a pattern definition – can exist in real process models [Thom 2009],
[Smirnov 2009]. The same situation has been considered in for pattern matching in
other domains that use a graph-based approach [Gallagher 2006b], [Conte 2004].

Figure 5.4 illustrates an abstract pattern (left) and five types of pattern instances
(right) that represent the types/attributes of matches indicated in the four previous
sections. Different shapes identify different vertex types/attributes. Identical shapes
with different fillings identify similar (but not equal) types/attributes. This abstract
example is used to show in a compact figure the different notations for mappings
involved in complete, partial, exact and inexact pattern matches. ecm indicates ex-
act and complete matching, epm exact and partial matching, 〈ecm, sim〉 inexact and

98

5.3. Algorithms for Structural Matching

Figure 5.4: Kinds of pattern instances (complete/partial, exact/inexact, with inter-
mediate elements).

complete matching, 〈ecm′, sim〉 inexact and complete with intermediates matching
and 〈epm′, sim〉 inexact and partial with intermediates matching.

The next section explains the implementation of a pattern matching technique
that considers different types of matching and uses a family of pattern matching
algorithms.

5.3 Algorithms for Structural Matching

Let Mt and Pt be two graphs representing the recorded graphs of the process model
and process pattern graphs M and P, respectively. Two algorithms are proposed for
exact and inexact matching, allowing complete and partial matches of Pt in Mt:

• The CP-E-PM algorithm is used to identify complete, partial and exact in-
stances.

• The CP-I-PM algorithm is used to identify complete, partial and inexact in-
stances.

• The H-PM algorithm is used to recursively find instances of patterns at dif-
ferent abstraction layers, after lifting the pattern instances host model in each
iteration.

Prior to the introduction of the algorithms, matrix-based structures to manipulate
process and pattern graphs are described. These matrix-based structures facilitate
the implementation of the algorithms in an environment with improved performance
to work with matrices and basic functionality to manipulate them. This separates
what specifically distinguishes the (pattern) graph matching algorithms from basic
functionality such as accessing/modifying vertices information or deleting/creating

99

Chapter 5. Pattern Matching

vertices. Section 8 and Appendix D refers to tool implementation and evaluation
details.

5.3.1 Matrix-based Structure for Process and Pattern Graphs

A number of matrix-based structures are involved in the implementation of the pat-
tern matching algorithms. These are an adjacency matrix with rows and columns
indicating the connectivity between pattern and model graph vertices, an attribute
matrix whose rows are indexed by attributes and columns identifying graph ver-
tices, and two matrices abstract type matrix and data type matrix whose rows are in-
dexed by abstract and data types and columns indicating graph and data vertices,
respectively. Note that adjacency-, attribute- and abstract/data type- matrices can be
implemented as sparse matrices to save memory space, but here the full structure is
referred to for simplifying the explanations.

Before introducing the matrix structures, the sets of graph vertices and edges
from models and patterns are categorised. Let Gt represent a recorded graph of a
process graph G, with G a typed attributed graph G = 〈AG, ag〉 over ATG. ATG
is the attributed type graph defining abstract types of G vertices and data types for
attributes of G vertices. Note that, as explained in Section 4.6.1, edges of G are stored
as vertices in Gt. The sets of vertices and edges of Gt and ATG are subdivided as
follows.

• gV(Gt) denote graph vertices in V(Gt),

• aV(Gt) denote attribute vertices in V(Gt),

• dV(Gt) denote data vertices in V(Gt),

• gV(ATG) denote abstract types in V(ATG),

• dV(ATG) denote data types in V(ATG),

• gE(ATG) denote graph edges in ATG,

• aE(ATG) denote attributes in ATG.

Note that V(Gt) = {gV(Gt) ∪ aV(Gt) ∪ dV(Gt)} and V(ATG) = {gV(ATG) ∪
dV(ATG)}.

Examples of an adjacency matrix (Adj(Gt)), attribute matrix (Attr(Gt)), abstract
type matrix (AType(Gt)) and data type matrix (DType(Gt)) of a recorded graph Gt

are shown in Figure 5.5. The graph G, its associated attributed type graph ATG and
the matrices are indicated in the figure. The different matrix structures are explained
in the next paragraphs.

100

5.3. Algorithms for Structural Matching

(a) Graph G (b) Graph ATG

v1 v2 v3 e1 e2 e3
v1 0 0 0 1 1 0
v2 0 0 0 1 0 1
v3 0 0 0 0 1 1
e1 1 1 0 0 0 0
e2 1 0 1 0 0 0
e3 0 1 1 0 0 0

(c) Adj(Gt)

α1 α3 α4 α5 α6 α8 α9 α10
v1 0 0 0 d1 d2 0 0 0
v2 0 0 0 0 0 d4 d5 d6
v3 0 0 0 0 0 d9 0 0
e1 d3 0 0 0 0 0 0 0
e2 d10 0 0 0 0 0 0 0
e3 0 d8 d7 0 0 0 0 0

(d) Attr(Gt)

t1 t2 ε1 ε2
v1 1 0 0 0
v2 0 1 0 0
v3 0 1 0 0
e1 0 0 1 0
e2 0 0 1 0
e3 0 0 0 1

(e) AType(Gt)

δ1 δ2 δ3 δ4 δ5
α1 1 0 0 0 0
α2 0 1 0 0 0
α3 1 0 0 0 0
α4 0 1 0 0 0
α5 0 0 1 0 0
α6 0 0 0 1 0
α7 0 0 0 0 1
α8 0 0 1 0 0
α9 0 0 0 1 0
α10 0 0 0 0 1

(f) DType(Gt)

Figure 5.5: Sample graph G, associated ATG and Adj(Gt), Attr(Gt), AType(Gt),
DType(Gt) matrices.

101

Chapter 5. Pattern Matching

Adjacency Matrix. The adjacency matrix of Gt is denoted by Adj(Gt) and has di-
mension |gV(Gt)| × |gV(Gt)|. Adj(Gt) is symmetric and each of its non-diagonal
entries Adj(Gt)ij indicates the existence or non existence of an edge from vertex i
to vertex j, with both vertices in V(Gt). Diagonal entries having a value equal to 0
indicate that the associated vertices do not have self-loops in Gt.

Adj(Gt)ij =

{
1 if i, j ∈ E(G) and i, j ∈ V(G)

0 otherwise

Abstract Type Matrix. The abstract type matrix of Gt is denoted by AType(Gt) and
has dimension |gV(Gt)| × |gV(ATG)|. AType(Gt) is generally asymmetric and each
of its entries AType(Gt)ij indicates that the graph vertex i is of type j.

AType(Gt)ij =

{
1 if ag(i) = j for all i ∈ gV(Gt) and j ∈ gV(ATG)

0 otherwise

Attribute Matrix. The attribute matrix of Gt is denoted by Attr(Gt) and has maxi-
mum dimension |gV(Gt)| × |aE(ATG)|, with columns varying according to existing
attributes for vertices in gV(Gt). Attr(Gt) is generally asymmetric and each of its en-
tries Attr(Gt)ij indicate the attribute value x for attribute i of a graph vertex j. Note
that data values (entries in Attr(Gt)) have various types. Those types are indicated
in the data type matrix (Dtype(Gt)).

Attr(Gt)ij =

x if ji, ix ∈ E(Gt), j ∈ gV(Gt),
i ∈ aV(Gt) such that ag(i) = kl,
with kl ∈ aE(ATG), k ∈ gV(ATG), l ∈ dV(ATG) and
x ∈ dV(Gt) such that ag(x) = y, with y ∈ dV(ATG)

0 otherwise

Data Type Matrix. The data type matrix of Gt is denoted by DType(Gt) and has
dimension |aE(ATG)| × |dV(ATG)|. DType(Gt) is generally asymmetric and each
of its entries DType(Gt)ij indicate that data values for attributes in aV(Gt) whose
(attribute) type is i are of (data) type j.

DType(Gt)ij =

1 for all i, j ∈ aE(ATG), j ∈ dV(ATG) and

i ∈ gE(ATG) ∨ gV(ATG)

0 otherwise

102

5.3. Algorithms for Structural Matching

5.3.2 Complete/Partial & Exact Pattern Matching Algorithm

Let Mt and Pt be the recorded graphs of the process model graph M = 〈AM, am〉
over ATM and the pattern graph P = 〈〈AP, ap〉, ConstrP〉 over ATP. The adjacency-,
attribute- and abstract/data type- matrices for Mt and Pt are denoted by Adj(Mt),
Adj(Pt), Attr(Mt), Attr(Pt), AType(Mt), AType(Pt), DType(Mt) and DType(Pt), re-
spectively. Note that Attr(Pt) includes constraints for each of its entries according to
ConstrP, if any.

Note that trace links between identified pattern instances of Pt in Mt and the
Pt can be generated based on the pattern matching algorithm. Once trace links are
established after a match, changes in the model could be tracked to check if pattern
instances have been modified and the intention of the pattern associated to Pt has
been violated (see Section 3.4 for more details).

CP-E-PM consists of two main stages:
A first stage identifies individual instances of vertices in gV(Mt) such that they
preserve typing of vertices in gV(Pt) and have connections to data vertices in dV(Mt)

such that they comply with the data constraints imposed for vertices in dV(Pt). This
stage is implemented with two functions 5.2 and 5.3.
A second stage connects individual matched vertices in gV(Mt) through edges that
preserve the structure of the pattern indicated by Pt. These expansion steps are
performed in a breath-first manner and they are the core iteration of the CP-E-PM

algorithm to obtain the final results.

The result of CP-E-PM – after the second stage – is a set of subgraphs in Mt

that identify instances of the pattern Pt. These subgraphs are stored in {PI}, where
|{PI}| = i, with i indicating the number of edge-disjoint exact or partial instances of
Pt in Mt. Overlapping instances can be found, but individual instances are indistin-
guishable, and therefore they are quantified as a single match.

An initial implementation of the CP-E-PM algorithm with basic - mostly syn-
tactical - functions 5.2 and 5.3 was presented in [Gacitua-Decar 2008b]. A semantic
enhancement was subsequently provided in [Gacitua-Decar 2009a].

Pseudocode of CP-E-PM. The pseudo-code of CP-E-PM is described in Table 5.1.
CP-E-PM uses the ExactMatchTypes and ExactMatchAttributes functions to match
types and attributes between model and pattern graph vertices. They are described
in Table 5.2 and Table 5.3, respectively. A number of reduction steps modify the
original adjacency matrix (Adj(Gt)), attribute matrix (Attr(Gt)), abstract type matrix
(AType(Gt)) and data type matrix (DType(Gt)) of a recorded graph Gt into smaller
matrices that contain only information related to vertices involved in the match.
These matrices are ÂType(Mt), Âdj(Mt), Âttr(Mt) and D̂Type(Mt). Through the

103

Chapter 5. Pattern Matching

description of the CP-E-PM’s pseudocode, it is explained how these matrices are
obtained.

Table 5.1: CP-E-PM: Complete and Partial - Exact - Pattern Matching Algorithm.

CP-E-PM Algorithm

Input: AType(Mt), AType(Pt), Attr(Mt), Attr(Pt), Adj(Mt), Adj(Pt), DType(Mt) and DType(Pt).
Output: {PI}, where PIi is the ith instance of P in M, centered on a vertex indexed by i in Âdj(Mt)

1 : initiate {Pinit}
2 : initiate {PI}
3 : ExactMatchTypes

4 : ExactMatchAttributes

5 : For each tmpP(m) in {PI} do
6 : Do while ExpansionCondition == true
7 : For each vertex u ∈ tmpP(m) indexed by i in Âdj(Mt) do
8 : NtmpP(m)(u) ← NeighboursOf(i in Âdj(Mt))
9 : NPt (em(u)) ← NeighboursOf(j in Adj(Pt)), with j the index of em(u) in Adj(Pt)

10 : If 〈[em(NtmpP(m)(u)) = NPt (em(u))] ∨ [NtmpP(m)(u) * tmpP(m)]〉 == true then
11 : Expand tmpP(m) with NtmpP(m)(u)
12 : ExpansionCondition← true
13 : Else
14 : ExpansionCondition← false
15 : end if
16 : end for
17 : end do while
18 : end for

Stage 1: Exact Vertex Matching in CP-E-PM. The initial stage of CP-E-PM gener-
ates a set of initial temporal matches composed of single vertices in gV(Mt). That set
is denoted by {Pinit} and its elements are instances of vertices in gV(Pt), i.e. pattern
role instances. {Pinit} is expanded in the second stage to obtain the final set {Pi}
that contains the complete/partial instances of Pt in Mt. Various reduction steps are
performed at this stage to improve the efficiency of the matching process. This first
stage for exact vertex matching can be described as follows.

• First, each vertex u in gV(Mt) (identified by the row index k in AType(Mt)) is
related according to a type preserving relation to a vertex v in gV(Pt) (iden-
tified by the row index i in AType(Pt)) - see Table 5.2. Type preservation
is reviewed for each pair of no null entries (k, l) in AType(Mt) and (i, j) in
AType(Pt). If abstract types indicated by j and l are equivalent, then the ver-
tex indexed by k is considered an exact match - only by type - of the vertex
indexed by i. That results in a match at type level between the vertices u and v.

104

5.3. Algorithms for Structural Matching

Table 5.2: ExactMatchTypes identifies exact matches of abstract types for vertices in
M and P and reduce matrices associated to M.

ExactMatchTypes

Input: AType(Mt), Attr(Mt), Adj(Mt), AType(Pt), Attr(Pt), {Pinit}
Output: updated {Pinit} and ÂType(Mt), Âttr(Mt), Âdj(Mt)

1 : For each non null entry (i, j) in AType(Pt) do
2 : For each non null entry (k, l) in AType(Mt) do
3 : If j = l then
4 : match by type vertices indexed by k and i
5 : add vertex indexed by k to {Pinit}
6 : end if
7 : end for
8 : end for
9 : For each row k in AType(Mt) do

10 : If the vertex indexed by k /∈ {Pinit} then
11 : ÂType(Mt) ← Reduce(AType(Mt), k) (reduction by rows)
12 : Âttr(Mt) ← Reduce(Attr(Mt), k) (reduction by rows)
13 : Âdj(Mt) ← Reduce(Adj(Mt), k) (reduction by rows)
14 : end if
15 : end for
16 : For each column indexed by αx in Âttr(Mt) do
17 : For each column indexed by αy in Attr(Pt) do
18 : If αx != αy then
19 : Âttr(Mt) ← Reduce(Âttr(Mt), αx) (reduction by columns)
19 : D̂type(Mt) ← Reduce(Dtype(Mt), αx) (reduction by rows)
20 : end if
21 : end for
22 : end for

All vertices from gV(Mt) that were matched by type are added to {Pinit}. At
the end of this step, each vertex from {Pinit} becomes a potential exact match
of a pattern role in gV(Pt). These vertices are reviewed later to check attribute
level constraints satisfaction defined by pattern roles.

• A set of reduction steps eliminates all rows in AType(Mt), Attr(Mt) and
Adj(Mt) referring to vertices in gV(Mt) which were not matched in the previ-
ous step. Additionally, Attr(Mt) is further reduced by eliminating all columns
indicating attributes that are exclusive to the previously eliminated rows, i.e.,
columns which have all row entries equal to zero in the reduced Attr(Mt). The
same is done for the matrix DType(Mt). The resultant matrices are ÂType(Mt),
Âdj(Mt), Âttr(Mt) and D̂Type(Mt). These reduction steps reduce time of
matching at attribute level.

• From previous graph vertices in gV(Mt) matched by type, all their adjacent

105

Chapter 5. Pattern Matching

Table 5.3: ExactMatchAttributes identifies exact matches of data vertices associated to
attributes of graph vertices in P and M. tmpP(m) is an initial temporal match of P
in M centered in m.

ExactMatchAttributes

Input: Âttr(Mt), Attr(Pt), D̂type(Mt), DType(Pt), {Pinit}, {PI}
Output: updated {PI}

1 : For each non null entry (m, αn) in Attr(Pt) do
2 : For each non null entry (q, αr) in Âttr(Mt) do
3 : If vertices indexed by m and q are matched by type then
4 : For each non null entry (αr, δy) in row αr from DType(Pt) do
5 : For each non null entry (αn, δx) in row αn from D̂type(Mt) do
6 : If 〈[(q, αr) satisfies ConstrP : (m, αn)] ∨ [δx = δy]〉 then
7 : match by (attribute, ConstrP) data vertices indicated by (m, αn) and (q, αr)
8 : match by data type the attributes indicated by αn and αr
9 : Else

10 : eliminate vertex indexed by m from {Pinit}
11 : end if
12 : end for
13 : end for
14 : end if
15 : end for
16 : end for
17 : For each vertex m in {Pinit} do
18 : tmpP(m)← m, with tmpP(m) ⊂ Px and Px ∈ {Pi}
19 : end for

data vertices are compared to data vertices in dV(Pt) (see Table 5.3). The
comparison aims to find matches at attribute level. An exact match at attribute
level between a vertex u in gV(Mt) and a vertex v in gV(Pt) requires that all
data vertices adjacent to u and connected through common attributes between
u and v comply with the constraints imposed by data vertices adjacent to v.
Constraints on data values associated to attributes of v provide a range of
possible data values for attributes of u. A match at attribute level also verifies
equivalence of data types by comparing data from D̂Type(Mt) and DType(Pt)

matrices. The set {Pinit} is updated to contain only vertices that have been
matched at both levels: type and attribute.

Consider Figure 5.6 as a simplified example to illustrate Stage 1. A pattern and a
model in different stages of the matching process are shown. In the first stage (next
to the pattern at the left-hand side of Figure 5.6) seven vertices of the model were
matched according to their equivalence to types and attributes of pattern vertices.
Consider that the letter and number indicated in each vertex define the types and
attributes for vertices. The pattern contains three vertices of type T and one vertex of

106

5.3. Algorithms for Structural Matching

type G. Attributes are distinguished by a number. After matching vertices at type-
level, all vertices in the model except S1 are matched according to their attributes.
The result of matching at attribute-level contains all vertices of type T and numbers
4, 7, 9; and vertices of type G and number 3. They are the only remaining vertices
that would be expanded in the next stage. In real examples, the technique should
consider the semantics involved in matching complex vertex types and attributes.
Section 5.5 will discuss this subject in more detail.

Stage 2: Expansion Steps in CP-E-PM. The first stage of the algorithm provides
a set of vertices ({Pinit}) that correspond to exact instances of pattern roles (and
connectors) from P. Vertices in {Pinit} are not connected and, therefore, partial and
complete instances of the pattern P have not been identified yet. The second stage
of CP-E-PM expands pattern role instances with neighbour instances. Figure 5.6 il-
lustrates the expansion steps from an initial set of matched graph vertices to final
pattern instances identified in a model graph. A pattern graph is shown at the left of
the figure. For the sake of simplicity, data vertices and attributes are not shown. The
same label for a pattern vertex and model vertex indicates equivalence at type and
attribute level. The first expansion step extends single matched vertices with neigh-
bours such that these neighbours are mapped by ecm (or epc), indicating a homomor-
phic relation between vertices (and edges) from model and pattern graphs. This first
expansion step in Figure 5.6 is illustrated by the extension of vertices labelled by T4
to neighbours having a T7 label. The same relation holds in the pattern. The second
and third expansion steps expand the subgraph (temporal pattern instance) at the
right composed by vertices labelled with T4, T7 and the edge connecting them, with
the edges and vertices labelled with T8 and G3. The result of the three expansion
steps are two partial matches (containing a single vertex and two vertices) and one
complete match composed of four vertices (the subgraph indicated at the right of
Figure 5.6).

Expansion steps are repeated until all vertices in {Pinit} are visited.
Note that several exact or partial instances of a pattern graph P in graph model M

might exist, and hence there are possibilities of finding overlaps between instances.
CP-E-PM identifies overlapping instances as single subgraphs. The number of ver-
tices in each of these subgraphs is the total number of vertices in the overlap plus all
other vertices that are part of the instances but not the overlap.

Also note that in order to consider the directionality of edges in graphs repre-
senting concrete models and patterns, the algorithm uses the recorded graphs Mt

and Pt, which are undirected versions of M and P. Figure 5.7 shows an example
where two patterns that are exactly the same, except the direction of two arcs (di-
rected edges), are matched over the undirected versions of the model graph M. The

107

Chapter 5. Pattern Matching

Figure 5.6: Illustration of expansion steps during exact pattern matching.

matched patterns are P and P′. P is the same pattern from Figure 5.6. P′ is identical
to P except that the direction of two arcs was interchanged. An exact and complete
match of P in M is no longer a complete match in the case of P′. Two partial matches
are found for P′, one containing vertices labelled by T4 and the other one containing
vertices labelled by T7, T8, G3 and the intermediate vertices labelled by T7T8 and
T8G3. These latter vertices represent original edges in M.

Expansion steps performed during the second stage of CP-E-PM correspond to
the detection of a homomorphism between P and a subgraph of M. Such a subgraph
is a complete or partial instance of P in M, and it can be derived from a surjective or
bijective local homomorphism (see Section 4.5 for details).

According to [Fiala 2008], for a connected simple graph H, the problem of detect-
ing a locally surjective homomorphism between an arbitrary graph and H is solvable
in polynomial time if and only if H has at most two vertices. In all other cases the
problem is NP-complete. The complexity of the graph matching problem creates
issues related to performance of the algorithm. Reduction steps and the way expan-
sion steps are performed in CP-E-PM contribute to reduce the processing time of the
algorithm. Section 8 describes the results of an empirical evaluation of the CP-E-PM

algorithm. The results indicate that the algorithm performs in polynomial time -
with complexity that is quadratic to the size of the (recorded) graph. These results
are better or comparable to several algorithms in the literature (see a discussion in
the related work section of Chapter 10).

On the other hand, in terms of processing several patterns over one or more target
graphs, scalability could be addressed with an extended version of the algorithm that
allows parallel processing of different patterns in a number of models.

108

5.3. Algorithms for Structural Matching

Figure 5.7: Matching over derived undirected graphs.

5.3.3 Complete/Partial & Inexact - Pattern Matching Algorithm (CP-I-PM)

In practice, finding exact (complete or partial) instances of a pattern is sometimes not
possible. In a number of scenarios, pattern and model graphs could be subject to
variability due a number of reasons, for instance, different implementations of pat-
tern configurations, errors during the acquisition or documentation of processes and
patterns, presence of nondeterministic elements when translating process-centric
models to their graph representations, among other reasons [Gallagher 2006b],
[Conte 2004].

Inexact process pattern matching aims to make more flexible the exact matching
by allowing inaccuracies in observed graphs. That relaxes, to some extent, the exact
matching of individual vertices at type and attribute levels. Additionally, expansion
steps in CP-E-PM could relax the homomorphic condition between a pattern and its
instances. These three kinds of relaxations can give rise to three flavors of an inexact
pattern matching algorithm.

The main algorithm is denoted by CP-I-PM and covers the finding of complete
and partial inexact instances. The three flavors are denoted by CP-I-Type-PM, that re-
laxes type matching and it means to allow the inclusion of subtypes as valid matches;
CP-I-Attr-PM, that relaxes attribute matching by including vertices that do not satisfy
the constraints imposed by pattern roles, however they are ”close” to satisfy them;
and CP-I-Strc-PM, that makes more flexible the structural preserving mapping con-
sidered by CP-E-PM. CP-I-Strc-PM would allow intermediate graph vertices that are
not pattern role instances but that can be part of an inexact pattern instance because

109

Chapter 5. Pattern Matching

they do not affect the intention of the pattern.

5.3.3.1 CP-I-PM with Relaxed Type Matching (CP-I-Type-PM)

Consider the model M and pattern P over ATM and ATP, respectively. Types of
graph vertices from M and P are defined by the attributed type graphs ATM and
ATP. In particular, types belong to the subsets gV(ATM) and gV(ATP).

For an exact matching using CP-E-PM, the function ExactMatchTypes considers
a vertex u in gV(Mt) a match of a vertex v in gV(Pt) if their types are equal. In
CP-I-Type-PM this condition is relaxed by allowing (1) the type of u be a subtype
of v’s type or (2) the type of v be a subtype of u’s, but with the condition that
constraints over u capture the restrictions defined by the type of v. This relaxed
type of matching is performed by the function InexactMatchTypes. This function
replaces ExactMatchTypes in line 3 of CP-E-PM (see Table 5.1). This change defines
the difference between the CP-I-Type-PM and CP-E-PM algorithms. The pseudocode
of InexactMatchTypes is described in Table 5.4.

Figure 5.8 illustrates an example that shows the two instances of the pattern P1
in the model from Figure 5.3. Instances of P1 - only considering vertex types - can
be identified using a relaxed type matching. Subtypes of vertices in P1, defined at
attributed type graph level, can derive a number of patterns that contain vertices
whose types are subtypes of P1’s vertices types. Instances of these derived vertices
are instances of P1 that were matched by relaxing the pattern vertices types. In this
case, the send/receive message pattern roles have associated subtypes receive/send bank
transaction message and receive/send accounting message. Other subtypes, for instance,
secure and unsecure receive/send bank transaction message could be also defined. In-
stances of P1-bt and P1-a in Figure 5.8 are associated to Receive/Send bank transfer or-
der and Receive/Send settlement information activities at process model level. Attribute
matching could further filter out instances of P1.

A higher level graph relating possible pattern variations could be derived from
the (attributed) type graph for pattern and model graph elements. Pattern variation
(and combination) are only introduced in this work, a detailed investigation can be
considered as future work.

5.3.3.2 CP-I-PM with Relaxed Attribute Matching (CP-I-Attr-PM)

The function ExactMatchAttributes used by the CP-E-PM algorithm allows data ver-
tices in dV(Mt) to be compared with data vertices in dV(Pt). Compared data vertices
are those adjacent to vertices in gV(Mt), gV(Pt) which were previously matched by
type. An exact match at attribute level would relate a data vertex u1 in dV(Mt) to a
data vertex v1 in dV(Pt) only if they are connected through the same type of attribute

110

5.3. Algorithms for Structural Matching

Figure 5.8: Illustration of relaxed type matching.

111

Chapter 5. Pattern Matching

Table 5.4: InexactMatchTypes identifies inexact matches of abstract types for vertices
in M and P and reduces matrices associated to M.

InexactMatchTypes

Input: AType(Mt), Attr(Mt), Adj(Mt), AType(Pt), Attr(Pt), {Pinit}, Adj(ATMt), Attr(ATMt),
Adj(ATPt), Attr(ATPt)

Output: updated {Pinit} and ÂType(Mt), Âttr(Mt), Âdj(Mt)

1 : For each non null entry (i, j) in AType(Pt) do
2 : For each non null entry (k, l) in AType(Mt) do
3 : If 〈(l isSubtype of j) ∧ [(j isSubtype of l) ∨ (l satisfies ConstrP(j))]〉 then
4 : match by type vertices indexed by k and i
5 : add vertex indexed by k to {Pinit}
6 : end if
7 : end for
8 : end for
9 : For each row k in AType(Mt) do

10 : If the vertex indexed by k /∈ {Pinit} then
11 : ÂType(Mt) ← Reduce(AType(Mt), k) (reduction by rows)
12 : Âttr(Mt) ← Reduce(Attr(Mt), k) (reduction by rows)
13 : Âdj(Mt) ← Reduce(Adj(Mt), k) (reduction by rows)
14 : end if
15 : end for
16 : For each column indexed by αx in Âttr(Mt) do
17 : For each column indexed by αy in Attr(Pt) do
18 : If αx != αy then
19 : Âttr(Mt) ← Reduce(Âttr(Mt), αx) (reduction by columns)
19 : D̂type(Mt) ← Reduce(Dtype(Mt), αx) (reduction by rows)
20 : end if
21 : end for
22 : end for

α (α ∈ aE(ATM) ∨ α ∈ aE(ATP)) and all constraints imposed on v1 are satisfied by
u1. In the case of inexact matching at attribute level, a match between a vertex u2 in
dV(Mt) and a vertex v2 in dV(Pt) could exist, even though associated attributes are
not equal and constraints imposed on v2 are not entirely satisfied by u2.

Inexact matching extends exact matching allowing mappings between semanti-
cally similar vertices and relaxing constraints defined in pattern graph attributes.
Constraints are relaxed via a threshold allowing a range of additional values around
an original constraint. A constraint c for data values associated to an attribute α of
u, denoted by c : (u, α), is relaxed via the threshold τ, denoted by ĉ = (c, τ) : (u, α).
Similar to the algorithm CP-E-PM, that uses the function ExactMatchAttributes to
match vertices at attribute level, CP-I-Attr-PM uses the function InexactMatchAt-

tributes to inexactly match vertices at attribute level. The pseudocode of Inexact-

MatchAttributes is provided in Table 5.5. The following two examples illustrate cases

112

5.3. Algorithms for Structural Matching

of inexact matching of vertices at attribute level.

Example 1. Suppose two vertices u1 ∈ gV(Mt) and u2 ∈ gV(Mt) that corre-
spond to Send bank transfer order (u1) and Send settlement information (u2) activities
in Figure 5.8 and u1, u2 were previously matched by type to Send bank transac-
tion message (v1) and Send accounting message (v2) in P1-bt and P1-a. v1 and v2

are associated by a subtyping relation to a vertex v of P1 (v ∈ gV(P1t)) that cor-
respond to the Send message activity. Also, suppose that u1, u2 have the adja-
cent attributes: Label, averageCost, averageDuration and maximumDuration; and
v has adjacent attributes Label and Duration. Assume that the attributed type
graphs ATM and ATP defining abstract types for M and P were previously in-
tegrated into the type graph shown at the top of Figure 5.8, where the attributes
averageDuration and maximumDuration in aE(ATM) are subtypes of the Duration
attribute in aE(ATP). Consider the data vertices d1 and d2 are connected to u1

and u2 through averageDuration and maximumDuration, respectively. A value of
d1 = 12[minutes] connected to u1 indicates that the Send bank transfer order activity
has an average duration of 12[minutes]. A value of d2 = 30[minutes] connected to
u2 indicates that the Send settlement information activity has an maximum duration of
30[minutes]. Also, consider c1 : dI ≤ 10[minutes], with c1 ∈ ConstrP1 and dI a data
vertex in dV(P1t) defining the constraints for data values associated to the Duration
attribute. The constraint c1 - for a data vertex adjacent to Duration and the ver-
tex v - indicates that a message should be sent in at a time period ≤ 10[minutes].
A threshold τ = 3[minutes] defines a relaxation boundary to allow a less strict
matching between data vertices in dV(Mt) adjacent to attributes averageDuration
and maximumDuration to dI ∈ dV(P1t). c1 is relaxed through τ defining the relaxed
constraint c̃1, with c̃1 : dI ≤ 10± τ[minutes]. Note that τ is expressed using the same
data type of dI . d1 and d2 do not satisfy c1 and therefore they are not exact matches
of dI . However, if d1 and d2 satisfy c̃1, they could be considered inexact matches of
dI . In this example, while d1 satisfies c̃1 (d1 < (10 + τ) with τ = 3), d2 does not meet
the restrictions imposed by either c1 or c̃1. Given the relaxed constraint c̃1, since only
d1 can be matched to dI , only the Send bank transfer order activity could be considered
an instance of Send message from P1.

Example 2. Consider a Model (M), a Pattern (P) and two data vertices dM ∈
dV(Mt) and dP ∈ dV(Pt) connected through a Label attribute to u ∈ gV(Mt) and
v ∈ gV(Pt), respectively. The data type for data values associated to dM and dP is
String. dM and dP identify the labels email client data and send customer information,
respectively. When the two previous labels are compared by a human, intuitively,
s/he would match dM and dP. Data values comparison in Example 1 considers rela-

113

Chapter 5. Pattern Matching

tional operators such as <,≤, which can be implemented with simple mathematical
operators. However, other attributes such as the Label attribute can require more
complex operators when checking constraints satisfaction and calculating similarity.
In the case of an (automatic) Label matching, an implementation could rely on a com-
pletely syntactical comparison between the two labels, however it would not find a
match between dM and dP in Example 2. An approach considering semantic simi-
larity between the two sentences defining the labels would be more adequate than
a pure syntactical approach. Semantic similarity calculation for vertex matching at
attribute level is discussed in Section 5.5. This section only addresses the algorithmic
method used by the function InexactMatchAttributes to compare attributes stored in
the matrices representing the recorded graphs Mt and Pt.

Table 5.5: InexactMatchAttributes identifies inexact matches of data vertices asso-
ciated to attributes of graph vertices in P and M. tmpP(m) is an initial temporal
match of P in M centred on m, with m in {Pinit} that contains the vertices previously
matched by type.

InexactMatchAttributes

Input: Âttr(Mt), (Attr(Pt), {τ}), D̂type(Mt), DType(Pt), {Pinit}, {PI}
Output: updated {PI}

1 : For each non null entry (m, αn) in Attr(Pt) do
2 : For each non null entry (q, αr) in Âttr(Mt) do
3 : If vertices indexed by m and q are matched by type then
4 : For each non null entry (αr, δy) in row αr from DType(Pt) do
5 : For each non null entry (αn, δx) in row αn from D̂type(Mt) do
6 : If 〈[(q, αr) satisfies (ConstrP, τ) : (m, αn)] ∨ [δx ∼= δy]〉 then
7 : match by (attribute, ConstrP, τ) data vertices indicated by (m, αn) and (q, αr)
8 : match by data type the attributes indicated by αn and αr
9 : Else

10 : eliminate vertex indexed by m from {Pinit}
11 : end if
12 : end for
13 : end for
14 : end if
15 : end for
16 : end for
17 : For each vertex m in {Pinit} do
18 : tmpP(m)← m, with tmpP(m) ⊂ Px and Px ∈ {Pi}
19 : end for

5.3.3.3 CP-I-PM with Relaxed Structural Preserving Mapping (CP-I-Strc-PM)

Once graph vertices from gV(Mt) to vertices in gV(Pt) are matched at type and
attribute level, a number of expansion steps are performed. In the case of aim-

114

5.3. Algorithms for Structural Matching

ing to find exact structural matches, these expansion steps would link individual
pattern role instances through existing edges in Mt. Added edges between individ-
ual matches (pattern role instances) are established only if neighbour pattern role
instances satisfy certain structural conditions, i.e., they have to satisfy a structural
preserving mapping with vertices (and edges) of the pattern graph P governed by
specific graph homomorphisms.

Unlike exact structural matching, inexact structural matching considers map-
pings that allow other vertices beside the ones satisfying specific homomorphisms.
These additional vertices are so-called intermediate vertices. Intermediate vertices are
not any vertex on the path connecting exact pattern role instances. They must to
satisfy certain conditions, which imply that found inexact pattern instances should
not affect the intended result of applying the original pattern.

Pattern graphs make reference to configuration of vertices (pattern roles) that
support the achievement of a desired result. This result can be expressed as an
expected state of the objects being processed. The configuration of vertices defines
how such an expected state is reached. Constraints defined by a pattern graph
impose restrictions on how the expected state is reached. An inexact pattern instance
should allow the achievement of the expected state and at the same time it should
satisfy the constraints indicated in the pattern description. Describing an expected
state in terms of the graphs M and P would require the introduction of additional
elements used to model processes as graphs. In particular, a formal representation of
the objects being processed. This section does not address this formal representation
and it is limited to describe the algorithmic method to expand individual matches
in CP-I-Strc-PM to identify inexact pattern instances. The description assumes the
functionality for selecting appropriate intermediate vertices is provided elsewhere. The
next section is focused on how to determine these appropriate intermediate vertices.
These are used in CP-I-Strc-PM for connecting exact partial instances and to identify
complete – and eventually partial – inexact pattern instances.

An example is introduced to facilitate the explanations in the next paragraphs.
Example: Suppose a process pattern P defines a common document revision process
involving the repetition of two activities: Analyse documents and Evaluate documents,
and a process model M contains a set of core iterative activities: Analyse documents,
Rank documents, Evaluate documents and Record revision cycle. Figure 5.9 shows the
model M and the pattern P. The core iterative activities in M resemble the pattern
P, but not exactly. Intuitively, M contains an inexact pattern instance of P. The rest
of the section describes how CP-I-Strc-PM could identify this inexact instance.

Expansion Steps in CP-I-Strc-PM. Consider the process model M, the pattern P
and their recorded graphs Mt and Pt. The first stage of the CP-I-Strc-PM focuses

115

Chapter 5. Pattern Matching

Figure 5.9: Example of intermediate vertices from an inexact pattern instance.

on finding individual pattern role instances by using the functions ExactMatchTypes

or InexactMatchTypes and ExactMatchAttributes or InexactMatchAttributes, according
to the end user requirements. The results generated by this first stage (individual
pattern role instances) is the input of the next stage that performs a set of expansion
steps. The expansion steps in CP-I-Strc-PM start in the same manner as CP-E-PM

(Stage 2), but CP-I-Strc-PM goes beyond. It tries to connect exact isolated partial
pattern instances to identify complete but inexact pattern instances. The connection
is created through intermediate vertices and their adjacent edges.

Assume there is a function PartialInstanceConnector that takes the graph vertices
from the boundaries of two partial exact pattern instances of PT in Mt and returns a
number of paths in Mt connecting the two instances. Each of the connecting paths
starts in a boundary vertex from one of the partial pattern instances and ends in a
boundary vertex of the other partial pattern instance.

The number of paths connecting two partial pattern instances would be deter-
mined by an end user. A single path connecting the two partial pattern instances is
the minimum graph structure connecting two (edge-disjoint) partial exact instances.
The maximum connecting structure would be defined by the amount of all outgoing
edges of boundary vertices from the source partial pattern instance and the amount
of all ingoing edges of boundary vertices from the target partial pattern instance.

Consider the pattern P and the model M in the example of Figure 5.9. Figure
5.10 illustrates the expansion steps used in CP-I-Strc-PM to find an inexact pattern
instance of P in M. First, CP-I-Strc-PM identifies all pattern instance roles in Mt.
Afterwards, it expands the individual matches with their neighbours1 such that they
preserve structure with respect to mapped vertices in Pt, i.e. CP-I-Strc-PM performs
the same expansion steps as CP-E-PM in Stage 2. After all possible expansion steps

1Note that edges in M are vertices in Mt and therefore they are considered part of the possible
neighbours to be added during expansion steps. In Figure 5.10, matched edges in M are highlighted
with a wider line and red colour.

116

5.3. Algorithms for Structural Matching

Figure 5.10: Illustration expansion steps during inexact structural pattern matching.

via exact structural matching are done, partial exact matches are obtained. The graph
in the middle of Figure 5.10 identifies two exact partial instances of P in M. Consider
these partial instances are referred as PPartial

x and PPartial
y . The last expansion step of

CP-I-Strc-PM aims to connect PPartial
x and PPartial

y to identify a complete structurally
inexact instance of P in M. For that, CP-I-Strc-PM would use the PartialInstanceCon-

nector function to identify possible paths connecting PPartial
x to PPartial

y . Assuming
the paths containing the Rank documents activity and the Record revision cycle activ-
ity (and adjacent edges) satisfy the constraints defined for edges connecting Analyse
documents to Evaluate documents and the two control flows in P (see Figure 5.9), the
result of all expansion steps in CP-I-Strc-PM would be as it is shown at the bottom
of Figure 5.10. The framed subgraph is a structurally inexact instance of P in M.

Identification of Appropriate Intermediate Vertices for Inexact Structural Match-
ing. Consider the activity identified as Rank documents in Figure 5.10. The Rank
documents activity is considered an intermediate vertex from the structurally inexact
instance of the document revision pattern. To be considered an intermediate vertex,
Rank documents should not affect the results intended by the pattern. An obvious
question is, how it can be determined whether an intermediate vertex is not
affecting the intention of the pattern? To provide a possible answer, the graphs
representing the process model and process pattern could be expanded to consider
the information objects being processed. Representing not only processing steps,
but also processed information objects, can allow the representation of expected
results in terms of processed objects. Using the example in Figure 5.9, it is expected

117

Chapter 5. Pattern Matching

that the intermediate vertices Rank documents and Record revision cycle activities do
not transform the processed information object doc at the inputs of the activities
Analyse documents and Evaluate documents in the model M. Also, the state of doc just
before executing the Analyse documents or Evaluate documents activities has to satisfy
their (pre)conditions. A detailed implementation of a technique to identify the
appropriate intermediate vertices for inexact structural matching is out of the scope
of this work, and it can be a included as a technical contribution for future work.

The different types of inexact matching reviewed in the last part of this section
aims to provide a comprehensive framework for pattern matching, including situa-
tions where exact and complete pattern instances are only one type of instance that
end users could be interested in.

5.4 Hierarchical Pattern Matching

Previous sections have addressed exact and inexact, partial and complete matching
of process pattern instances in process model graphs. Model and pattern graphs in
previous sections are flat process models. Flat models have elements without inter-
nal structure. Often, process descriptions have elements with internal structures. For
instance, a composite activity in a process model can be disaggregated into a set of
more granular connected process steps. Similarly, process patterns can refer to high
level structures of connected patterns at lower layers of abstraction. Taking that into
account, this section focuses on process pattern matching in hierarchically arranged
process structures. In particular, the section addresses matching of process pattern
graphs at higher abstraction layers based on edge-disjoint pattern instances at lower
layers.

Consider a process model graph M and a set P of m process pattern graphs.
Pattern graphs in P are hierarchically organised considering aggregation relations
between pattern graphs. Each pattern graph Pi

k in P belongs to a certain level of
abstraction i, with i = 1, 2, . . . , n and it is indexed by k, with k = {1, 2, . . . , m}.

Matching patterns from the lowest layer of abstraction (i = 1) follows the same
steps explained in previous sections. Any of the algorithms from CP-E-PM and CP-

I-PM algorithm families can be used. The idea of hierarchical matching is that after
pattern instances are found at the lowest level, if they are edge-disjoint, they are
transformed to composite vertices using a lifting function to subsequently perform
new a matching step at a higher layer of abstraction. Pattern instances at this higher
level are formed by one or more lifted pattern instances from the previous lower layer.
A sequence of matching-lifting steps is repeated until no more matches are found
or no more lifting steps can be done. Thus, an algorithm to implement hierarchical

118

5.4. Hierarchical Pattern Matching

Figure 5.11: Hierarchical pattern matching.

pattern matching would iteratively match patterns at different abstraction layers. At
one particular layer several patterns could be matched. A subsequent step would lift
the model based on the found pattern instances. Subsequent matching-lifting steps
would be perform at higher layers of abstraction. Steps would be performed until
no more matching-lifting steps can be done.

Lifting was introduced in Section 4.5.1, which consists of a technique for abstract-
ing a subgraph SG of a graph G in a single composite vertex v∗

j
, where ∗j indicates

that v is a composite vertex in the jth abstraction layer. Outgoing and ingoing edges
from vertices in the boundaries of a lifted subgraph are the outgoing and ingoing
edges of the composite vertex. For instance, consider the right-hand side in Figure
4.7, where two composite vertices PIz1 and PIz2 illustrate two lifted complete exact
instances of the pattern Pz. Figure 5.11 illustrates another example where a model
graph Access-UseBankAccSystem and the result of lifting it two times is shown. Two
patterns, the BankAccUsage pattern and the Access-Use System pattern describe a set
of common bank account usage activities and a typical (simplified) set of steps to
access a generic system. The pattern BankAccUsage at layer i was matched and then
the model lifted. Later the pattern Access-UseSystem was matched at layer i + 1 and
the last lifting step performed. That resulted in a model with a single composite
vertex at layer i + 2.

Attributes of composite vertices. Data values for some attributes of a composite
vertex could be related to aggregated attribute values of vertices in its internal struc-
ture. For instance, consider a common attribute Duration for a sequence of activities
representing the jth pattern instance of a pattern P in layer i, referred as PIi

j . The

119

Chapter 5. Pattern Matching

Table 5.6: H-PM Algorithm (Hierarchical - Pattern Matching Algorithm).

H-PM Algorithm

Input: Target Graph (M), set P= {P1, P2, . . . , Pm} of m pattern graphs organised in i layers, selected
pattern matching algorithm alg-PM.
Output: {PI}, where PIi

x,k is the xth instance of Pk in M at i layer, centred on a vertex indexed by x in

Âdj(M∗
i

t) for layer i

1 : Do while IterationCondition ∨ change == true
2 : For each layer i do
3 : For each pattern Pk ∈P do
4 : If alg-PM (M∗

i
, Pk) != ∅ then

5 : {PI}\k,i ← alg-PM (M∗
i
, Pk)

6 : change← true
7 : For each pattern instance PIi

x,k ∈ {PI}\k,i do
8 : If isDisjoint(PIi

x,k) == true then

9 : M∗
i+1 ← li f t(M∗

i
, PIi

x,k)

10 : If |M∗i+1 | <= 1 then
11 : IterationCondition← false
12 : end if
13 : end if
14 : end for
15 : Else if
16 : change← false
17 : end if
18 : end for
19 : end for
20 : end do while

value of the attribute Duration of a composite vertex v∗
i+1

j representing the pattern
instance PIi

j in layer i + 1 could be obtained by adding the individual durations of
the sequence of activities in PIi

j .
This simplified example illustrates one concern to be taken into account when

implementing a lifting mechanism, i.e., a mechanism to (automatically) generate
types and attributes for composite vertices. This feature strongly depends on the se-
mantics of vertex descriptions that influences the ability of composing attributes and
types. The implementation of a lifting function is out of the scope of this work. The
reader might be interested in related work such as the abstraction algorithm presented
in [Pinzger 2005] and the lift transformation in [Fahmy 2000].

Pseudocode of H-PM. The pseudocode of H-PM is described in Table 5.6. H-PM

takes as input a recorded flat process model graph Mt (host model), a set of recorded
flat process pattern graphs P , and a reference to an algorithm alg-PM that would be
used during pattern matching in each abstraction layer. Any of the algorithms from

120

5.5. Semantic Matching

the CP-E-PM and CP-I-PM algorithm families can be used. A lifting function is used
by H-PM but implemented somewhere else. H-PM starts matching patterns from P
in layer i = 1 over the host model M using alg-PM. After pattern instances in i = 1
are identified in M (M∗

1
), M∗

1
can lifted to obtain the model M∗

2
. This is done

replacing all found edge-disjoint pattern instances in layer 1 with composite vertices
v∗

1

1 , v∗
1

2 . . . , v∗
1

s . These composite vertices represent the instantiated patterns PI1
1 to

PI1
s , with s indicating the total number of edge-disjoint pattern instances in level

1. If there are overlapped pattern instances, then H-PM terminates indicating this
condition (existence of overlaps). Each subsequent iteration takes a lifted host model
M∗

i
and the subset of pattern graphs in P from layer i + 1 to perform a pattern

matching step that transforms M∗
i

into M∗
i+1

. These iterations are repeated until no
more pattern instances can be found or lifting steps can be performed.

5.5 Semantic Matching

Preservation of the structural constraints defined by a process pattern is one of the as-
pects that has to be satisfied during the identification of process pattern instances on
concrete process models. In previous sections, structural aspects of pattern match-
ing were formalised using the edge/vertex preserving relations defined by graph
homomorphisms. However, during process pattern matching not only structural
preservation is addressed, but also satisfaction of constraints indicated by pattern
roles is a prerequisite for vertices in pattern instances.

Pattern roles specify constraints defining the characteristic properties of an ab-
stract pattern element. Beyond structure preservation, elements of a concrete model
have to satisfy these constraints to be considered pattern role instances. In this
section, matching at vertex level between vertices from process pattern graphs and
process model graphs is addressed. Matching is based on the semantic similarity
of pattern and model graph vertices. Matching at vertex level is a previous step
to structural matching. CP-E-PM and CP-I-PM algorithms use specific type and
attribute matching functions for this purpose. Similarity measures used by these
functions are explained in this section.

5.5.1 Semantic Vertex Matching

Let M and P be a process model graph and a process pattern graph, respectively. M
is an attributed typed graph M = 〈AM, am〉 over ATM and P is an attributed typed
graph P = 〈AP, ap, Constr〉 over ATP and a set of applicable constraints Constr. Mt

and Pt are the associated recorded graphs. Beside checking structure preservation,
a solution to find a match between a vertex u ∈ V(Mt) and a vertex v ∈ V(Pt) has

121

Chapter 5. Pattern Matching

to check if u satisfies the constraints defined by the type, attributes and data value
restrictions for attributes of v.

The proposed techniques, previously discussed in Section 5.2, involve exact and
inexact matching of types and attributes of vertices.

Regarding matching at type level, CP-E-PM identifies a match only if the types of
two compared vertices u ∈ V(Mt) and v ∈ V(Pt) are exactly the same. On the other
hand, CP-I-PM relaxes exact matching by allowing the type of v subsumes the type u.
To say that u and v have the same type or they are related by subsumption, CP-E-PM
or CP-I-PM would compare the abstract types of u and v defined by vertices in ATM
and ATP, respectively.

Often, patterns and models are documented at different times and by different
entities, and therefore is is likely that ATP 6= ATM. In this case, being able to iden-
tify similarities between types and attributes could be of interest. While subsumption
is defined by a hierarchical (vertical) relation, similarity would refer to a relation that
identify how close two values are within a neighbourhood.

In this work, matching at type level is restricted to identifying equivalent types
or types in a subsumption relation, and where the associated ATM and ATP corre-
spond to the same attributed type graph. Matching based on vertex type similarity
would require additional and complex tasks, including merging different attributed
type graphs related to models and patterns. The latter is similar to the studied prob-
lem of ontology merging, e.g., [McGuinness 2000], [Noy 2003] and it is beyond the
scope of this thesis.

Figure 5.12 illustrates a situation where two models and a pattern refer to differ-
ent (attributed) type graphs. In this case, two models M1 and M2 have instances of
a pattern P. An additional step to merge ATM1, ATM2 and ATP would be required
before starting any matching activity. Merging of ATM1, ATM2 and ATP would
provide a unified type graph that CP-E-PM or CP-I-PM could use to perform the
matching activity.

Matching at attribute vertex level compares the attribute values between common
attributes describing two vertices. It is assumed that the attributed type graphs
associated to a model M and a pattern P would refer to a single common graph,
say AT, where ATM = ATP = AT. Matching at attribute vertex level using CP-

I-PM would expand the exact matches identified by CP-E-PM to inexact matches
that identify similar attribute values for common attributes describing u ∈ V(Mt)

and v ∈ V(Pt). Compared attribute values would be those referring to the same
(abstract) attributes defined in AT. Attribute values would not necessarily satisfy a
subsumption relation and they might not always be hierarchically organised.

122

5.5. Semantic Matching

Figure 5.12: Merging of (attributed) type graph for inexact vertex matching by type.

5.5.2 Type Vertex Similarity

Consider M and P as above. Also, let the vertex u ∈ V(M) be a potential pattern
role instance of v in M, and the vertex v ∈ V(P) be a pattern role from P. To be an
instance of v, a necessary – even though not sufficient – condition for u is that the
type of v has to be equal or a subsumer of the type of u. When the latter condition
is true, it is said that there is a matching at type vertex level between u and v. To
check this condition, the abstract types of u and v have to be related in a hierarchical
structure, where the type of v would be at a higher level than the type of u.

Abstract types and attributes of v are defined by ATP according to the mapping
ap : v→ tv, with tv ∈ ATP. Similar, abstract types and attributes of u are defined by
ATM according to the mapping am : u → tu, with tu ∈ ATM. A match between u
and v at type vertex level indicates that tv subsumes tu.

For ATP = ATM (referred as to AT), the function CP-I-PM would check if the
depth of tv in AT is equal or greater than the depth of tu in AT. Figure 5.13 illustrates
an example where the abstract type tv subsumes the abstract type tu in a graph AT,
with d(tv) > d(tu).

Note that ε1, . . . , ε7 define is-a relations and the end of the relation identified with
an arrow indicates a more abstract type.

5.5.3 Attribute Vertex Similarity

Once checked if the vertices u and v are matched at type vertex level, attributes of
u and v are compared. In order to say that u is a match of v at attribute vertex
level, the data values for attributes of u have to be - at least - similar to the data
values of associated attributes of v. Associated attributes between v and u are those

123

Chapter 5. Pattern Matching

Figure 5.13: Example of type graph AT, where abstract type tv subsumes the abstract
type tu.

referring to the same descriptive aspects. Ideally, the attributes defined for v are also
attributes describing u. This can be true when ATM = ATP = AT and u and v
have the same type. Assuming a set of (abstract) attributes {αv} defined in AT and
used to describe v, and the same set of attributes being a subset of the attributes
describing u, a match at attribute vertex level between u and v would be identified
if the similarities between data values for {αv} in u and v are within a specified
threshold. This threshold identifies a region of similar data values for attributes
describing the pattern role v and a subset of attributes of interest describing u. If
data values of common attributes describing the model element u and the pattern
role v are similar enough (within the range defined by the threshold), then the model
element u could be considered a match at attribute vertex level of the pattern role v.

In order to calculate the similarity between data values for common attributes
between the u and v vertices, the attributes and their values are organised in vectors.
The attribute vectors of u and v are identified by ~u and ~v, respectively. To compare
both vectors and calculate their similarity, a weighted measure of distance dis(~u,~v) is
calculated. Values for this distance measure range between zero and one. Similarity
between the attribute vectors ~u and ~v would be one minus their distance.

Similarity between ~u and ~v, sim(~u,~v), is calculated based on the formulation of
the weighted Minkowski distance [Cha 2007] as,

sim(~u,~v) = 1−
(
|δi · dis(~ui,~vi)|p

)1/p , 1 ≤ i ≤ |~v| (5.1)

Note that other attributes in ~u are deliberately omitted since they do not concern
the process pattern configuration P. The choice of the attributes describing a process
pattern is made by considering both, its intended application and also its potential

124

5.5. Semantic Matching

users.

Also, note that dis(~ui,~vi) is the normalised dissimilarity between ~u and ~v in the
attribute i. Values of dissimilarity range between 0 and 1, with 0 representing equal-
ity. Dissimilarity can become a distance measure, if distance is possible to calculate.
According to the nature of each attribute, different measures of dissimilarity (or dis-
tance) can be considered. δi is a weighting factor to emphasize or deemphasize the
ith attribute value. We assume attributes are independent. p determines the mea-
sure’s norm. For p = 2, vertex similarity becomes a measure based on the Euclidean
distance.

5.5.4 The Label Attribute and Label Similarity Calculation

One of the most common attributes of a process graph vertex is its label. Often,
labels are sentences in natural language. Only a few approaches [Awad 2008b],
[Dongen 2008], [Dijkman 2009b] have considered process element labels as part of
the elements of comparison between process models.

In this work, to determine if the label of a process model element refers to a label
of a process pattern role, the similarity between those two labels is calculated based
on the sentence similarity measure described in [Li 2006]. This measure is conve-
nient in the process pattern matching context since the elements required to evaluate
the measure are dynamically generated using only the information from the words
contained in the two labels. The measure considers the semantic similarity among
words in the two sentences (labels), which is derived from a Lexical Knowledge Base
(LKB) and a corpus, and the word order on the sentence meaning. LKBs are fre-
quently organised as a hierarchy of words defining concepts (for example, WordNet
[WordNet 2010] or other more specific LKBs targeting particular business domains).
Semantic similarity between words is calculated based on the length of the path con-
necting the words in the hierarchy and their depth in it. By observing the direction
(from bottom to top) of the path connecting two words in the hierarchy, it is possible
to discriminate between abstraction or refinement of concepts. The latter can be used
as indication that a vertex label is an abstraction of another vertex label.

Vertex label similarity calculation here is simplified by avoiding word disam-
biguation, abbreviations expansion and acronyms replacement. Word disambigua-
tion requires the analysis of the context where the word appears [Navigli 2009].

Similarity between the vertex labels `(u) and `(v), where u is a vertex from a
process model graph M and v is a vertex from a process pattern configuration P,
is derived from the weighted sum of similarities between their associated lexical

125

Chapter 5. Pattern Matching

semantic vectors and word order vectors,

simlabel(`(u), `(v)) = ρ · sim(~w(u), ~w(v))

+ (1− ρ) · sim(~o(u),~o(v)) (5.2)

The lexical semantic vectors ~w(u) and ~w(v) represent quantifiable values regard-
ing the meaning of words in u and v’s labels. The values are based on information
from a lexical knowledge base and corpus. ~o(u) and ~o(v) represent quantifiable
values regarding the word order in the sentences. ρ determines the relative contri-
butions of the lexical semantic vector similarity and the word order vector similarity
measures. If syntax is less relevant, according to [Li 2006], a value between 0.5 and
1 should be assigned to ρ.

5.5.4.1 Similarity Between Lexical Semantic Vectors

Similarity between the lexical semantic vectors ~w(u) and ~w(v) is defined as the cosine
coefficient between them,

sim(~w(u), ~w(v)) =
~w(u) · ~w(v)
‖~w(u)‖‖~w(v)‖ (5.3)

~w(u) and ~w(v) are vectors with m entries. m is the number of words in a joint
word set W containing all the different words from the two labels `(u) and `(v),
hence m = |W|. Each ith entry ~wi(u) with i = 1, ..., m is derived from evaluating the
similarity between the word from the ith entry in the joint word set W, annotated
wi(u), and the most similar word from the label `(u), annotated w̃i(u). In turn, the
value obtained from the word comparison is weighted by the individual information
content of the two compared words,

~wi(u) = simW(w̃i(u), wi(u)) · I(w̃i(u)) · I(wi(u)) (5.4)

I(wi(u)) and I(w̃i(u)) refer to the information content of the words referred to
wi(u) and w̃i(u). The information content of a word (I(w)) is derived from its prob-
ability (relative frequency) in a corpus. The higher the frequency of the word in a
corpus, the less information it would contain.

I(w) = 1− log(n + 1)
log(N + 1)

(5.5)

where n is the frequency of the word w in a corpus with N words.
In order to obtain the value of an entry in Equation (5.4), we need to calculate

the similarity between two words (simW). We use the word similarity measure from

126

5.6. Summary

[Li 2003]. This measure, described in Equation (5.6), is a function of the path length
(le) connecting the two words in the lexical knowledge base and the depth (de) of
their common subsumer. The latter helps to differentiate the similarity between a
pair of words that refer to more abstract concepts and the similarity between a pair
of words that refer to more concrete concepts.

simW(w1, w2) = e−αle · eβde − e−βde

eβde + e−βde (5.6)

Adequate values for the constants α and β can be obtained experimentally de-
pending on the used lexical knowledge network. In [Li 2003], α = 0.2 and β = 0.45
are the proposed values for the lexical knowledge network WordNet. WordNet is
also used in part of the evaluation section of this work - see Section 8.5 for more
details.

5.5.4.2 Similarity Between Word Order Vectors

Similarity between two word order vectors ~o(u) and ~o(v) associated to the labels
`(u) and `(v) is derived from their normalized difference,

sim(~o(u),~o(v)) = 1− ‖~o(u)−~o(v)‖‖~o(u) +~o(v)‖ (5.7)

~o(u) and ~o(v) are obtained from the order in which the words in `(u) and `(v)
appear. The order is established based on a joint word order vector ~O. ~O defines
an order for words in the joint word set W used in Equations (5.3) and (5.4). If a
word in `(u) is in ~O, the entry associated with that word in ~o(u) is its index in ~O. If
the word is not in ~O, then two possible entries can be assigned. One is the index of
the most similar word in ~O (only if the similarity between the compared words is
greater than a threshold σO); otherwise, a value equal to zero is assigned to the entry.

Section 8.5 presents an example illustrating how this approach for semantic ver-
tex similarity can be utilised to enhance the structural pattern matching approach
presented in the previous sections.

5.6 Summary

In this chapter, a technical contribution involving a set of algorithms for a compre-
hensive framework for pattern matching was presented. A pattern matching tech-
nique for the LABAS framework (presented in Chapter 3) can use implementations
of these algorithms to automate the pattern matching activity. Note that automation
would include end user interaction to verify or modify, if necessary, the obtained

127

Chapter 5. Pattern Matching

results. The algorithms include solutions to identify complete and partial pattern
instances, and exact and inexact pattern instances. Hierarchical matching and se-
mantic matching were also addressed. Inexact pattern matching was discussed in
relation to inexact type matching, inexact attribute matching and inexact structural
matching. Ideas for future work in the latter aspect were described. Hierarchical
matching considered the possibility of patterns occurring at different levels of ab-
straction. This approach consisted of an iterative process that abstracts edge-disjoint
pattern instances into composite vertices and iteratively matches patterns in higher
abstraction levels. The iteration process required a graph lifting function that was
not addressed in this work but can be adopted from other works. Semantic match-
ing addressed the problem of vertices comparison for initial stages of the proposed
pattern matching algorithms. Vertices types and attributes often have to be com-
pared beyond their syntax. Comparison and matching of vertices at semantic level
was fundamental for providing solutions that can be used with graphs representing
realistic process-centric descriptions.

128

Chapter 6

Pattern Discovery

Contents
6.1 Motivation to a Pattern Discovery Solution 129

6.1.1 Matching versus Discovering Patterns in Graphs 130

6.1.2 Frequent Pattern Discovery in Process Graphs 132

6.2 Matching-based Algorithm for Pattern Discovery 133

6.3 Summary . 136

6.1 Motivation to a Pattern Discovery Solution

Among the pattern-based techniques in the proposed framework for SOA design
and integration (Chapter 3), pattern discovery can be exploited to guide the defini-
tion of new services based on unknown and frequent process sections which can be
documented and reused in the form of process patterns.

Previous sections focused on process pattern matching, whose aim is to identify
known process patterns in process models. The motivation behind it is to support
automatic process pattern matching as an analysis instrument during the definition
of process-centric services based on proven designs documented as process patterns.
Process patterns can provide guidelines to design new (software) services that can
be used during enterprise process and application integration projects. However, in
a number of organisations process steps are already supported by existing software
components. Identifying recurring connected process steps can provide an opportu-
nity to define reusable services that can be implemented encapsulating existing soft-
ware components. This idea is aligned with the basic principle of software reuse in
SOA [Erl 2004] and it can support software component rationalisation [Albani 2006].
Considering this opportunity, this section refocuses the attention from process pat-
tern matching to the discovery of frequently occurring substructures – that can be
captured as patterns – on large-scale business process models. The pattern matching
algorithms introduced in the previous chapter are used as the basis of the pattern
discovery technique proposed in this chapter. Also, semantic variations and gener-
alisation can potentially be used in this new scenario.

Chapter 6. Pattern Discovery

Pattern discovery scenarios. The problem of identifying recurring connected pro-
cess steps in process models is addressed as a problem of frequent pattern discovery
in graphs [Kuramochi 2005]. Two distinct scenarios can be considered in this regard:
the graph-transaction scenario and the single-graph scenario. The former refers to
the discovery of subgraphs that occur frequently across a set of input graphs (graph
transactions repository). The result of an algorithm for discovering patterns in the
graph-transaction scenario is a set of graphs containing the frequent subgraph (pat-
tern) across graphs in the repository. A graph is considered part of the result irre-
spective of how many times the pattern occurs in a particular transaction. Instead,
for the single-graph scenario, an algorithm would discover the subgraphs that oc-
cur multiple times in a single, large input graph. The problem formulation and
the input data used by algorithms in these two scenarios have inherent differences.
According to [Kuramochi 2005], the algorithms developed for the graph-transaction
scenario cannot be used to solve the problem defined for the single-graph scenario,
whereas algorithms for the latter scenario can be easily adapted to work in the graph-
transaction scenario. The problem and solution presented in this section are defined
on the basis of a single-graph setting scenario. Such a single graph represents an
– often large and complex – process model. Discovered patterns from this process
model graph would indicate potential reusable process-centric services. Trace links
to (lower) application architecture levels - see traceability model in Section 3.4 -
would link processes to software components that can be analysed with the aim of
being rationalised.

6.1.1 Matching versus Discovering Patterns in Graphs

Although there are similarities between the pattern discovery problem and the pat-
tern matching problem described in previous sections, the formal relationship be-
tween a pattern and its host graph is different for both problems. Pattern matching
on graphs involves the identification of a homomorphic relation between a given
pattern graph P and a given graph model M. Instead, pattern discovery only takes
the graph model M as input and, in order to discover unknown (frequent) patterns
in M, M is compared to itself during the search for reoccurring subgraphs. Just as
the homomorphic mapping from P to M formalises the structural preservation re-
lation between P and its pattern instances in M, an endomorphic relation from M to
subgraphs of itself formalises the structural relation involved in the frequent pattern
discovery problem.

Pattern Size and Occurrence Frequency. Discovering a frequent pattern in M in-
volves the identification of a subgraph U that appears in M a specific number of

130

6.1. Motivation to a Pattern Discovery Solution

times that is considered frequent. The occurrence frequency of U in M and also the
size of U are defined by end users. Users can be interested only in subgraphs occur-
ring in M at least a specific number of times fU . On the other hand, if a subgraph
U is considered a subgraph (pattern) of interest, then so can be subgraphs of U.
Determining what size of U is adequate depends on the final goal that triggered
the discovery of patterns in a graph. The goal in this work is to define boundaries
on process descriptions as guidelines to define new services. Those boundaries are
identified with the purpose of benefiting service reuse across the process. Service
reuse is strongly influenced by the service application scenario and therefore the
input from end users (designers) is important. During the design of new services
based on discovered patterns, end users would deal with a tradeoff between size and
frequency of the discovered patterns. A greater occurrence frequency would benefit
service reuse. On the other hand, a greater pattern size would lead to a coarser
grained service, and indirectly, it could benefit the performance of a service compo-
sition created to automate or integrate a business process. In terms of performance,
coarser grained services (as building blocks of service compositions) can be seen as
beneficial compared to finer grained services. By composing finer grained services
addressing the same integration problem, a larger number of services – therefore,
more service requests and responses – would be involved. That increased number
of requests and responses could cause undesired levels of performance due to the
added overhead originated from the new and more complex service composition.
Thus, pattern size and its occurrence frequency affects the decisions involved dur-
ing the design of new pattern-based services. Methodological guidelines for how to
adjust the parameters of an algorithm for pattern discovery and the implementation
of the algorithm in a tool that end users can interact with would assist with semi-
automated support to the design of the new services. The affected design guidelines
are those related to service reuse and service granularity.

Counting occurrence frequency of a subgraph. There are different approaches to
count the occurrence frequency of a subgraph U in M. If the subgraph is frequent
enough, then it is considered a pattern of interest. Counting approaches vary accord-
ing to how overlaps among of a subgraph U are considered – see Section 4.5.1 for
more details on overlaps in graphs. One alternative would count all occurrences of
a subgraph U, including those belonging to an overlap. Another alternative would
count occurrences of U in M only if they are edge-disjoint (i.e., they do not share
edges in M). Counting occurrences from overlaps could lead to the fact that the
counting of a subgraph occurrence frequency does not decrease monotonically as a
function of its length, causing a pattern discovery solution to become untractable
[Vanetik 2002].

131

Chapter 6. Pattern Discovery

6.1.2 Frequent Pattern Discovery in Process Graphs

Consider a process model M, where M is a typed attributed graph M = 〈AM, am〉
over ATM. The problem of frequent pattern discovery in process graph concentrates
on finding connected edge-disjoint subgraphs occurring in M. A subgraph U of M is
considered a frequent pattern if it appears in M at least a number f of times, where
f is the so-called occurrence frequency threshold.

In the case of an overlap containing recurrent edge-disjoint subgraphs, counting
occurrences of the subgraph involves the calculation of an independent set of vertices
from the overlap [Kuramochi 2005]. For a graph H = (V, E), a set of vertices I ⊂
V(H) is called independent if for every pair of vertices in I, the pair is not connected
by an edge in E(H). The independent set is called maximum if for every vertex v
in I there is an edge in E(H) that connects v to a vertex u in V(H) but not in V(I).
Exact counting of the occurrence frequency of a pattern involves calculating the exact
maximum independent set of an overlap containing the pattern. Because the calculation
of the exact maximum independent set of graphs is NP-complete [Lawler 1980], an
approximate pattern discovery would try to find as many as possible subgraphs with an
occurrence frequency at least f . This approximate solution is used in many practical
cases such as in [Kuramochi 2005], [Inokuchi 2005] and also in this work.

Motivating Example. Figure 6.1 shows an example of a business-level process-
centric service composition extracted from [Rabhi 2007]. The process-centric service
implements a trading strategy simulation process and it has highlighted - with borders
coloured in red and blue - instances of frequent patterns. Examples of these patterns
are shown in Figure 6.2. P1 is the larger frequent pattern occurring exactly two times
in the process from Figure 6.1. P2 is a smaller pattern that occurs more frequently
in the process, and it corresponds to a subgraph of the graph representing P1. On
the other hand, P3, P4 and P5 are associated to subgraphs of the graph representing
P2, and therefore P1. P3 and P4 consist of single elements that can be abstracted
by the Action on message element, which in turn, it is a more concrete element that
refines the Action element. The same situation can be considered for the Process In-
terrupted? element from P5, which refines the more abstract Decision element. If
an algorithm for frequent pattern discovery allows inexact matching by relaxing the
vertex matching to allow two elements to be matched if they are semantically sim-
ilar but no exactly the same, it could be considered that the model from Figure 6.1
has five instances of P1 (two exact instances and three inexact instances that include
semantically similar elements). Intuitively and considering the semantics of labels,
the elements with borders coloured in red are more similar to the pattern elements
in Figure 6.2 than the elements with borders coloured in blue. For instance, for the

132

6.2. Matching-based Algorithm for Pattern Discovery

trading strategy and simulation service (middle of Figure 6.1), the Generate and Submit
orders activity is semantically similar to Send message. Also, the Monitor Market Events
activity can be (semantically) associated to the abstract Action element in Figure 6.2.
A threshold defining how similar should be considered two elements to say that they
are instances of a same pattern role has to be defined by an end user. An algorithm
for pattern discovery which is flexible could allow for this inexact matches. Also, the
algorithm should allow end users to identify partial matches of a pattern of interest.
For instance, after discovering that P1 occurs exactly two times in the model, end
users may be interested in to know if there are partial instances of P1. In the case of
the example, there are indeed. They are associated to the frequent patterns P2, P3,
P4 and P5.

Note that the example here was chosen because it can fit in one page. Real
processes can be larger and more complex, requiring a means to automate some of
the analysis tasks that can be difficult and expensive to do without support.

6.2 Matching-based Algorithm for Pattern Discovery

This section describes a technique to find frequent patterns in an (often large) process
model M. The technique is based on an algorithm that uses the pattern matching
algorithm families from previous sections. The inputs to the pattern discovery algo-
rithm - named λ-PD algorithm, where λ is any of the pattern matching algorithms
from the CP-E-PM and CP-I-PM families described in the previous chapter - are:

• the recorded graph Mt of the target process model M,
• the maximum expected size of a subgraph U representing a pattern (|V(U) +

E(U)|), and
• the occurrence frequency threshold fmin indicating the minimum number of

times that U has to be contained in M. Since there is no interest in finding the
trivial automorphism of M and it is expected a (frequent) pattern to occur at
least two times in M, then |V(U) + E(U)| is trivially bounded by |V(Mt)| and
fmin ≥ 2.

The idea behind the proposed λ-PD algorithm is to create temporal patterns orig-
inated from each vertex in V(Mt), subsequently expand them and then check if they
occur at least the number of times defined by an occurrence frequency threshold fmin.
Before any expansion step is performed, temporal patterns formed by single vertices
are discarded early if they do not reach the occurrence frequency fmin. Expansion
steps are performed until the maximum desired size of the pattern is reached or
overlaps extending the target model graph are found. The pseudo code of λ-PD is
described in Table 6.1 and explained in the rest of the section.

133

Chapter 6. Pattern Discovery

Figure 6.1: Example of an abstract process-centric service with frequent pattern in-
stances.

134

6.2. Matching-based Algorithm for Pattern Discovery

Figure 6.2: Example of an abstract process-centric service with frequent pattern in-
stances.

Table 6.1: λ-PD Algorithm - Pattern Discovery Algorithm based on λ pattern matching algorithm,
with λ among the CP-E-PM and CP-I-PM families.

λ-PD Algorithm

Input: Target Graph (M), number of expansion steps (k), minimum occurrence frequency fmin and a
selected pattern matching algorithm λ = alg-PM

Output: score, FreqM

1 : For each vertex u in V(Mt) do
2 : Ppivot(u,1) ← u
3 : score(u,1) ←alg-PM(M, Ppivot(u,1))
4 : f(u,1) ← countFrequency(score(u, 1),Ppivot(u,1))
5 : If f(u,1) > fmin do
6 : If k >= 1 do
7 : For j : 2→ k
8 : Ppivot(u,j) ← expand(Ppivot(u,j−1))
9 : score(u,j) ←alg-PM(M, Ppivot(u,j))

10 : f(u,j) ← countFrequency(score(u, j),Ppivot(u,j))
11 : end for
12 : end if
13 : Else printf(insufficient frequency of temporal match centred on u)
14 : end if
14 : end for

Table 6.2: countFrequency function for counting the frequency of a subgraph P in M.

countFrequency

Input: score resulting from matching subgraph Pt in Mt, subgraph Pt, approximate match ratio (Rt)
Output: f

1 : For each index i in score do
2 : If score(i)/|V(Pt)| >= Rt then
3 : cnt← cnt + 1
4 : end if
5 : end for
6 : f ← cnt/|V(Pt)|

135

Chapter 6. Pattern Discovery

Pseudo-code of λ-PD. The λ-PD algorithm takes as inputs the recorded graph Mt

of a target process model where frequent patterns would be searched for, a parame-
ter k defining the maximum number of expansion steps for initial temporal matches
centred in each vertex of Mt, a parameter fmin indicating the minimum occurrence
frequency that a subgraph must have to be considered a frequent pattern and a se-
lected pattern matching algorithm λ = alg-PM - presented in the previous chapter
- that is used to identify occurrences of subgraphs in Mt. The outputs of the algo-
rithm are two matrices (score and FreqM). score is a m× k matrix of vectors. Each
entry (i, j) in score is a vector of length m, where m is the number of vertices in
the recorded graph of Mt. The vector contains the results of matching a subgraph
Ppivot(i,j) originated in the vertex i and created by means of j expansion steps that
included its neighbours. k is the maximum number of expansion steps considered
by the algorithm. FreqM is a m × k matrix whose entries indicate the frequency
of subgraphs representing potential frequent patterns. These subgraphs are created
from expansion steps indicated in the Line 8 of Table 6.1. Subgraphs in each step
continue their expansion if their frequency in Mt remains greater than fmin and per-
formed steps are less than k. Occurrence frequency of a subgraph is calculated with
the function countFrequency in Table 6.2. For countFrequency, the ratio between the
result of matching a subgraph (pattern) Pt ⊂ Mt and the number of vertices in Pt

is compared to an approximate match ratio Rt. If Rt = 1, the match between a
non-identical occurrence of Pt and Pt is exact and it does not consider surjection. If
Rt > 1 the counted occurrence involves an overlap. If Rt < 1, it indicates a partial
match - for details of exact, partial and overlapped pattern instances, please refer to
Section 4.4. The last column in FreqM indicates the frequency of subgraphs of Mt

originated from each vertex in V(Mt) and expanded k-times with its neighbours.

6.3 Summary

The contribution of this chapter is to relate the well-known problem of frequent
subgraph discovery to the finding of potential services based on frequent process
substructures. This idea promotes process-centric service reuse and can provide a
mechanism to discern redundant software components supporting similar or equiva-
lent process steps in complex and often de-integrated processes across organisations.

A solution for the frequent subgraph discovery problem is proposed. The pro-
posal relies on the pattern matching solution provided in previous chapters and
focuses on a single-graph scenario. It processes graphs one at a time and the so-
lution provided is restricted to count overlapped subgraphs (patterns) as a single
occurrence – i.e., it identifies overlapped instances but it can not differentiate them.
Other proposals in the literature can be more adequate in situations where overlaps

136

6.3. Summary

are common or parallel processing is required. However, the inherent complexity of
process descriptions, which can involve an elaborated typing and multiple attribute
values in graphs – including descriptions in natural language – certainly defines
a more complex scenario compared to more simple graphs considered in the liter-
ature. The complexity of the frequent pattern discovery problem in graph-based
process descriptions goes beyond the structural problem addressed when identify-
ing frequent subgraphs, it also includes matching of complex types and attributes
describing process elements.

Before explaining in detail the results of an evaluation for the matching and dis-
covery techniques (Chapters 5 and 6) proposed in the context of the LABAS frame-
work for process and application integration (Chapter 3), a reference to the general
limitations of the pattern discovery technique is provided. These indicate that the
proposed technique may perform poorly when the occurrences of the frequent graph
are highly overlapped. Also, as the pattern discovery technique is based on a pattern
matching technique, the latter could present limitations during matching activities
when dealing with unlabeled and highly connected graphs [Messmer 2000]. To the
best of the author’s knowledge there are not empirical studies indicating if it is
frequent to find real process descriptions which have highly overlapped frequent
pattern instances. Intuitively, if frequent subgraphs (patterns) are used to guide the
design of reusable services, they should not overlap, since another of the important
design guidelines for services is that service implementations should be – ideally –
decoupled from each other. Thus, highly overlapped instances can be discarded from
the results since they are not helpful for end users. Unlabeled and highly connected
graphs are not representative of process graphs. Process graphs often have labels
that identify the different process elements [Aguilar-Saven 2004] and connections be-
tween process elements are frequently upper-bounded to six or eight out/in-going
edges per process element [Golani 2003], which can not be considered a property of
a highly connected graph for the case of realistic medium size process graphs whose
size is in the order of hundred of vertices.

A comparative study covering other techniques for frequent pattern discov-
ery based on different paradigms, for example the approximate solutions in
[Kuramochi 2005] or cluster-based approaches such as in [Jung 2006] are required
to recommend an adequate solution to different process scenarios, specially in the
presence of overlapped frequent patterns. A number of proposals for sequential and
parallel calculation of the frequent subgraph mining problem to discover interesting
patterns has risen the attention in diverse applications scenarios such as analysis in
social networks, molecular compounds and document-based information retrieval
[Han 2007], [Wang 1995], [Kuramochi 2005], [Bringmann 2008]. Solutions in those
scenarios seem to require major efforts to be translated to the process and work-

137

Chapter 6. Pattern Discovery

flow settings [Greco 2005]; hence, dedicated solutions as the one presented here are
required.

Given the limitations to distinguish non-identical overlapped frequent subgraphs
in this particular proposal for discovering frequent patterns on graphs, investigations
on how other graph-based techniques proposed in the literature can be adopted in
the single-graph setting scenario for large and complex process models is defined
as a line of future work. Another envisioned and promising line of future work
refers to the use of spreading activation mechanisms [Crestani 1997], [Cohen 1987],
[Faloutsos 1995] over dynamic and weighted graphs for frequent pattern discovery
on run-time processes. Possible future work at the end of the thesis discusses this
idea in more detail (see Section 10.3.2).

138

Chapter 7

Evaluation of LABAS Framework

Contents
7.1 Overview . 139

7.1.1 Influenced System Quality Characteristics 139

7.1.2 Evaluation Strategy . 140

7.1.3 Specific Challenges, Solutions and Evaluation Methods 142

7.2 ALMA-based Analysis of Case Studies 146

7.2.1 Architecture-level Modifiability Analysis Method 146

7.2.2 Loan Management (LM) Case . 147

7.2.3 Electronic Bill Presentment and Payment (EBPP) Case 160

7.3 Tool Support . 174

7.3.1 LABAS Profile . 174

7.3.2 Model to Graph Transformation 175

7.4 Summary . 177

7.1 Overview

Previous chapters have presented a pattern-based framework and techniques to sup-
port the design of enterprise processes and applications integration solutions based
on services. Services are the intermediary architecture elements relating the busi-
ness operation to the process-wide application architecture elements. This chapter
describes how the proposed framework is evaluated in regard with the thesis ob-
jectives and it focus is on the overall framework and its support to architecture
modelling activities. Tool support for the framework is also described. The next
chapter focuses on the evaluation of the proposed pattern matching and discovery
techniques.

7.1.1 Influenced System Quality Characteristics

During the design of service-based systems to integrate enterprise processes and ap-
plications there are a number of challenges that influence the quality characteristics

Chapter 7. Evaluation of LABAS Framework

of the final architectural solutions. One part of the evaluation of this work refers to
quality characteristics that can benefit from the proposed pattern-based framework.

Nowadays enterprise software systems no longer evolve as separate entities but
evolve integrated with each other in a complex interrelated system [Land 2003].
Changes are constant and process and application integration systems have to be
continually re-designed to meet new requirements. Maintainability is a central char-
acteristic in this scenario and it helps the organisations’ capacity to change. For
process and application integration systems, the analysis and design stages are pre-
dominant in terms of cost and consumed time [Hohpe 2004].

On the other hand, functional characteristics are critical during analysis and de-
sign stages. Functional suitability during initial stages of development is a basic and
important characteristic in regard with requirements coverage. Also, compliance
to process regulations is a core aspect of process integration systems [Daniel 2009],
[Kharbili 2008]. Identifying early non-compliance to process regulations can reveal
future failures in the implementation of a system [Lu 2008].

Considering the categorisation for quality characteristics in the ISO/IEC 9126
standard and its corresponding update in the ISO/IEC 25000 standard series, the ex-
plored quality sub-characteristics in this investigation are derived from functionality
and maintainability characteristics. These are functional suitability, functional compli-
ance, changeability, analysability, reusability and traceability (the latter is discussed in
the context of analysability). Appendix B provides descriptions of these quality sub-
characteristics in relation to requirement analysis and architecture design stages1 in
the development of process and application integration systems.

7.1.2 Evaluation Strategy

The overall evaluation strategy adopted in this work involves three different ap-
proaches,

• Experiments. The core technical contribution of this work are the pattern match-
ing and discovery techniques used within the context of the proposed LABAS
framework. The framework uses patterns to support the design of services
and architectures. In order to evaluate the techniques, an empirical evaluation
involving a set of experiments is adopted to explore the effectiveness and effi-
ciency of the proposed algorithms for pattern matching and discovery. Chapter
8 describes the experimental setup and results.

1According to ISO/IEC 25010 std., at the earliest stages of development, only resources and pro-
cesses can be measured. When intermediate products (specifications, source code, etc.) become avail-
able, these can be evaluated by the levels of the chosen internal measures. These measures can be used
to predict values of the external measures.

140

7.1. Overview

• Case study & ALMA. An scenario based method is used with two case studies
to assess the proposed pattern-based framework with regard to its benefits
to maintainability. The ALMA method [Bengtsson 2004] was selected among
other scenario based methods such as ATAM [Kazman 2000] because it focuses
on maintainability and it can be used at various stages of development. This
work is centred in the initial stages of development, when domain models
are analysed and services are designed. The case studies and scenarios used
with the ALMA method provide rich examples for analysing the sub-quality
characteristics of interest in regard with the use of patterns and modelling
support in the context of the proposed architectural framework. Details on the
ALMA method and its use with the case studies are provided in Section 7.22.

• Interviews. A complementary assessment based on interviews supports the
evaluation process horizontally. Based on the interviews, the view of a num-
ber of practitioners from industry regarding model-based analysis and design
techniques is explored. Chapter 9 describes an overview of the interviewing
process and a discussion of the results.

Expected benefits for end users and organisations. Beneficiaries of an organised
framework and pattern-based techniques to address process and application integra-
tion are those end users whose roles are business analysts and IT architects, possibly
broadening the range to other related roles such as enterprise architects and solution
architects [Tandon 2007]. Inexperienced end users could benefit from the proposed
tools providing a medium to reuse design knowledge in the form of patterns. Pattern
matching and discovery could facilitate the identification of similar (and possibly re-
dundant) designs. As a consequence of identifying similar designs, experienced end
users could consider the use of automated tools to facilitate the benchmarking of
their solutions. At an organisational level, benefits of using an organised architec-
tural approach (framework) and design reuse support (pattern-based techniques)
are expected from reducing the complexity of integration solutions and its associ-
ated costs regarding maintainability. Inefficiencies such as unnecessary use of time
from domain and process experts due to lack of analysis tools, re-working of service
designs due to redundances and misalignment between process and software levels
are issues that could be addressed with the help of the proposed approach.

2Note that in order to follow the same sequence of how the framework (first) and the techniques
(later) were introduced in previous chapters, the ALMA method and its use to evaluate the LABAS
framework are presented first - in this chapter - and the experimental evaluation of the central con-
tribution (pattern matching and discovery techniques) is presented later in Chapter 8. This ordering
represents how this work went from general and contextual aspects to detailed and central aspects of
the contribution.

141

Chapter 7. Evaluation of LABAS Framework

7.1.3 Specific Challenges, Solutions and Evaluation Methods

This section refers to the addressed challenges (problems), proposed solutions and
adopted evaluation methods. Table 7.1 provides a summary that includes references
to (sub-)quality characteristics affected by these problems. The targeted quality char-
acteristics are those early mentioned in Chapter 1 (hypothesis), i.e., maintainability,
functional suitability, functional compliance and traceability. Throughout the chap-
ter, instead maintainability, derived sub-characteristics are analysed: changeability,
analysability and reusability. Traceability is discussed in the context of analysability.

Table 7.1: Summary of problems, proposed solutions and evaluation methods

Challenge QSC (∗) Solution (LABAS) Evaluation method
ALMA Experiments Interviews

P1 Suitability, Framework X - X
Analysability
Changeability

P2 Analysability
Changeability

Traceability support X - X

P3 Reusability Pattern support X X X
P4 Compliance Pattern support X X X
P5 Reusability Com-

pliance
Pattern support - X X

(∗) : Affected quality sub-characteristics.
P1 : Separate models for process, domain and architecture descriptions.
P2 : Misalignment between process and architecture levels after changes.
P3 : Ineffective or inefficient use of design knowledge.
P4 : Lack of automated support for checking regulatory process compliance.
P5 : Undesired time consumption and errors due to manual efforts during

pattern identification.

P1 : Separate models for process, domain and architecture descriptions

• Problem description. According to [Kazman 2000] architectures have to be well
documented, it includes static and dynamic views and the use of an agreed-on
notation that all stakeholders can understand with a minimum of effort. These
requirements are difficult to achieve if the architecture spans several processes
across an organisation(s) and involve different applications with heterogenous
architectures. This situation can be frequent for process and application inte-
gration scenarios [Linthicum 2000], [Johannesson 2001]. A basic requirement
in this scenario is to have an integrated view of the business operation (pro-
cesses) and its supporting application architecture. Maintaining different non-
connected models for all elements involved in an integration problem puts in
risk the adequate satisfaction of integration needs and correctness of imple-
mentation [Johannesson 2001], thus affecting functional suitability. Also, more

142

7.1. Overview

time is required to analyse what are the consequences over other elements in
different layers, thus influencing maintainability.

• Proposed solution. A modelling framework organised in a layered architecture
is presented in Chapter 3. The layered architecture includes three main lay-
ers encompassing process and domain models, and application and service
architectures.

• Affected (sub)-characteristics. Functional suitability and maintainability
(analysability and changeability).

• Evaluation method. The Architecture Level Modifiability Analysis (ALMA)
method [Bengtsson 2004] is considered to evaluate changeability and
analysability sub-characteristics derived from maintainability. Suitability is
demonstrated in a case study. The ALMA method and case study are pre-
sented in Section 7.2.1.

P2 : Misalignment between process and architecture levels after changes

• Problem description. The problem of misalignment between business and soft-
ware levels has been investigated since decades and from different perspectives
[Luftman 1999], [Henderson 1993]. From the modelling perspective, a funda-
mental aspect is the capacity of interrelating the different models involved in
both, business and software levels [Lankhorst 2005]. When changes at any of
the levels occur, their impact on other layers has to be assessed. Problems
associated to unknown effects can result in high costs for re-design and imple-
mentation [Chen 2005].

• Proposed solution. Explicit modelling of dependencies and active change man-
agement across layers of LABAS framework (Chapter 3).

• Affected (sub)-characteristics. Maintainability (analysability and changeability).
• Evaluation method. Architecture Level Modifiability Analysis (ALMA) method

[Bengtsson 2004].

P3 : Ineffective or inefficient use of design knowledge

• Problem description. Each time an integration project takes place, analysis and
design activities initiate the development. Understanding the enterprise con-
text and the problem domain associated to the integration project is the most
complex and time consuming part of the process [Linthicum 2000]. Reusing
proven design solutions like patterns has been widely promoted as a medium
to reduce costs and development time while benefiting design quality – see e.g.,
[Gamma 1993], [Buschmann 2007], [Barros 2007], [Zdun 2007b]. An inefficient
use of design knowledge in the form of patterns could reduce the potential cost

143

Chapter 7. Evaluation of LABAS Framework

savings of using proven designs, including savings due to reduced efforts of
development and testing [Vokac 2004], [Buschmann 2007]. If the conceptuali-
sation and infrastructure to create, manage and reuse patterns does not exist,
the previously mentioned benefits are more difficult to achieve. Automated
support for architectural design has a number of contributions for at least two
decades [Shaw 1996a]. With the emergence of new architectural approaches
such as service-based architectures and the increase of abstraction levels mov-
ing traditional software integration support (EAI tools) closer to business lev-
els (BPM tools) [Hill 2009], [Oracle 2008], automated support becomes more
specialised and sophisticated, including identification of process artifacts to
facilitate reuse and change management.

• Proposed solution. A framework for enterprise process and application integra-
tion that allows management of design knowledge in the form of patterns.
Patterns can be at process model, and service and application architecture lev-
els. A family of techniques is proposed to match and discover patterns in
graph-based representations.

• Affected (sub)-characteristics. Maintainability (reusability).
• Evaluation method. A case-study based approach is adopted. It uses the Ar-

chitecture Level Modifiability Analysis (ALMA) method [Bengtsson 2004] with
scenarios that demonstrate differences in reusability. Techniques providing au-
tomation to match and discover patterns are assessed through an empirical
evaluation. Description and results are provided in Section 8.

P4 : Lack of automated support for checking regulatory process compliance

• Problem description. Business process compliance has become a relevant con-
cern for organisations since legislative and regulatory environments have in-
creasingly been introduced [Ghose 2008]. Process and application integration
projects cover both process and the underlying software layers. Ensuring com-
pliance at business process level is a crucial feature for process-centric inte-
gration systems. Compliance has traditionally been achieved through efforts
performed by a auditing experts with poor or nonexistent automated assis-
tance [Kharbili 2008]. Manual efforts for checking compliance and lack of tech-
niques and tools supporting this task may introduce errors and significant time
regarding regulatory process compliance. Errors in turn, can introduce weak-
nesses that can result in fraud, organisational misconduct and loss of organi-
sational reputation [Daniel 2009].

• Proposed solution. As one possible alternative to improve the lack of automated
support for checking regulatory process compliance, the family of pattern

144

7.1. Overview

matching techniques presented in Chapter 5 is used to check if process pat-
terns defining regulations over the operation of businesses are completely or
partially instantiated, or if they are not presented at all.

• Affected (sub)-characteristics. Functional compliance.
• Evaluation method. Using the case study presented in Section 7.2, process com-

pliance is discussed in relation to hypothetical regulations formulated as pro-
cess patterns. Techniques providing automation to match and discover process
patterns are assessed through an empirical evaluation. Description and results
are provided in Chapter 8.

P5 : Undesired time consumption and errors due to manual efforts during pattern
identification

• Problem description. As mentioned previously, increased time consumption and
susceptibility to errors due to services design can occur due to manual ef-
forts during the analysis of dependencies in elements from different models
associated to the integration problem, identification of services and process
abstractions (patterns) or when checking compliance to process regulations.
Automated support for architectural design has a number of contributions for
at least two decades [Shaw 1996a]. With the rising of new architectural ap-
proaches such as service-based architectures and the increase of abstraction
levels moving traditional software integration support (EAI tools) closer to
business levels (BPM tools) [Hill 2009], [Oracle 2008], automated support be-
comes more specialised and sophisticated, including identification of process
artifacts to facilitate reuse and compliance management.

• Proposed solution. A family of pattern matching and discovery techniques to
assist the definition of new services and compliance to process regulations is
presented in Chapters 5 and 6.

• Affected (sub)-characteristics. Maintainability (reusability) and functional com-
pliance.

• Evaluation method. Techniques providing automation to match and discover
patterns are assessed through an empirical evaluation. Description and results
are provided in Chapter 8. References to the use of these techniques in scenar-
ios used with the ALMA are also provided.

145

Chapter 7. Evaluation of LABAS Framework

7.2 ALMA-based Analysis of Case Studies

The ALMA method is used with two case studies that include a number of differ-
ent scenarios that provide rich examples for analysing changeability, analysability,
reusability, traceability, functional compliance and suitability with regard to the use
of patterns and modelling support in the context of the LABAS framework. The case
studies and scenarios capture models, model changes and abstractions in the form
of patterns in different layers of the integration problem (process model, service ar-
chitecture and application architecture layers). The case studies capture a scenario of
integrated financial network services from an application perspective and a scenario
of a typical process in the e-commerce domain where customers and businesses in-
teract. Note that the cases have limitations with regard to the need of an empirical
justification where scenarios are confirmed by a relevant number of analysts or ar-
chitects and concrete implementations can be controlled. Beyond these limitations,
the aim of considering these scenarios has been to represent common situations of
processes and applications integration problems in organisations.

7.2.1 Architecture-level Modifiability Analysis Method

ALMA method is a scenario-based method designed for predicting mainte-
nance efforts, assessing risk and comparing different candidate architectures
[Bengtsson 2004]. The ALMA method consists of five steps3, described as follows.

• Set goal: setting the analysis goal;
• Architecture description: giving a description of the relevant parts of the software

architecture and their configuration;
• Elicit scenarios: finding the set of relevant change scenarios;
• Evaluate scenarios: determining the effects of the set of scenarios; and
• Interpret results: drawing conclusions from the analysis results.

Even though the main target of the ALMA method is to assess modifiability of
a system, the method is adopted to analyse a closely related quality characteristic:
changeability. Most of the aspects covered by the definition of changeability in Sec-
tion B.4.1 overlap with the definition of modifiability in ALMA, that is defined as the
ease with which a software system can be modified to changes in the environment,
requirements or functional specifications.

On the other hand, analysability, as a characteristic that benefits the easiness to
modify a software system, can also use the change scenarios derived in ALMA.
Moreover, these scenarios provide rich examples to assess functional suitability and

3Note that while performing the analysis, sequentiality of steps is not strict and it is often necessary
to iterate over various steps.

146

7.2. ALMA-based Analysis of Case Studies

compliance. The case studies presented in the next sections use the steps defined in
the ALMA method to assess the benefits of the proposed framework and techniques
to changeability, analysability, suitability and functional compliance.

Assumptions in this work. A number of assumptions are considered when ap-
plying ALMA to the case studies in the next sections. These involve the existence
of models describing the different layers of the integration problem, that all models
can be translated to a single graph-based notation, and the existence of a mecha-
nism to access models even though they could be located remotely in a distributed
environment.

Note that process models may have been created manually (during traditional
documentation activities) or automatically by using tools to mine process logs, e.g.,
[Aalst 2007], [Bae 2006], [Greco 2005]. The only conditions for these models are the
last two listed above. Also, note that the previous assumptions are valid for future
case studies involved in further research for assessing the proposed framework and
techniques, which can be applied in early stages of analysis and design for service-
based process and application integration systems development.

7.2.2 Loan Management (LM) Case

7.2.2.1 Analysis goals

The analysis goal is to get a comparative analysis of the costs of modifying the LM
process and its supporting systems. The emphasis is on analysing the relative bene-
fits for the proposed framework and a manual-based approach regarding analysabil-
ity, changeability and functional compliance support. The analysis is a post-mortem
analysis and therefore there is no need to normalise the weights of each change
scenario in ALMA [Bengtsson 2004]. The change scenarios involve modifications
resulting from the improvement of a bottleneck activity that affected the operation
of the business, the incorporation of new process regulations and technological up-
dates. Changes resulted in the re-design of the Loan Management process and its
underlying software.

7.2.2.2 Processes and software architecture

This case study looks at a scenario of integrated financial network services from an
application perspective. The main process involved is a traditional loan manage-
ment process. This is a basic banking operation and it represents a good example of
a process in the financial domain. The aim in this case is to integrate the process’s
supporting software to facilitate the tasks performed by bank agents, specially those

147

Chapter 7. Evaluation of LABAS Framework

considered to be a bottleneck. Also, internal rules for complying with loan manage-
ment regulations would require modifications of some of the activities in the Loan
Management process.

Figure 7.1 shows three business actors and their participation in a simplified loan
management process. The process starts when a client requests a loan by email. A
bank agent from a call centre calls the client to present him an offer. To provide the
offer the agent needs to obtain client data, calculate the amount of loan offer and to
call the client to explain the conditions of the loan (top of Figure 7.1). In subsequent
steps of the process, the agent registers relevant information regarding the client’s
acceptance respect to the offer. If the client accepts the offer and the amount of
money involved in the loan is sufficient to meet the sales goals of the bank, then a
business alert is triggered. Due to this alert, a direct sales agent located near the
client would visit her. The agent visits the client with the objective to establish a
contract and obtain a signed contract document. After the contract is established
and the agent is in the bank location, she registers the visit with her signature and
reports the visit to her supervisor.

Figure 7.1: The Loan Management Process.

The applications supporting the process on the phone sales agent side and an
extract of the main domain model elements are indicated in Figure 7.2 and 7.3,
respectively. The involved applications are a mail server application (EMAIL-MNG),
a customer relation management application (CRM), an application managing the

148

7.2. ALMA-based Analysis of Case Studies

Figure 7.2: Applications supporting the LM process (phone sales agent role).

Figure 7.3: Relevant domain model elements, LM process - phone sales agent role.

149

Chapter 7. Evaluation of LABAS Framework

client’s bank account (BANK-ACC), and two applications managing the information
of sales and plans of the bank, SALES and PLANNING, respectively. Available
operations are shown in the application interfaces at the right side of Figure 7.2. The
applications are isolated and the data manipulated during the process is managed
by the phone sales agent. Other activities in the LM process have no direct software
support.

7.2.2.3 Change scenarios elicitation

Two business scenarios and five technical scenarios describe requirements that are
the basis of the change scenario elicitation. These scenarios involve changes at the
process level triggered by requirements to comply with process regulations and new
technological acquisitions. Also, the architecture levels are affected by new require-
ments for automating processes. At a software architecture level, the software com-
ponents (existing and new ones) are iteratively configured according to patterns
targeting different requests to improve quality characteristics.

First business scenario (B1). Managers at the bank asked IT architects if they could
facilitate the tasks of the phone sales agent in order to reduce the time to attend the
clients. They suggested to integrate the software supporting the agents work. Special
attention to the Calculate Loan Offer activity is required, since it is one of the potential
bottleneck activities in the process.

Second business scenario (B2). The internal rules to comply with loan manage-
ment regulations define that after direct sales agents visit their clients, they must re-
port these visits to their supervisors and sign a document registering them. After
implementing mobile access to banking application functionalities, the previous pro-
cess on the direct sales agent side is modified to the process illustrated in Figure 7.4.
In the new process version, the agent can remotely report to the supervisor using a
mobile device. In that way, she/he is only required to sign a physical document at
the office.

Figure 7.4: Loan Management process variation.

150

7.2. ALMA-based Analysis of Case Studies

First technical scenario (T1=B1). In order to respond to the first business scenario
and given the criticality of the Calculate Loan Offer activity, the first target applica-
tions to be integrated are those allowing to calculate the loan offer, these are the
SALES and PLANNING applications. IT architects of the bank discussed the Re-
mote Procedure Invocation pattern (RPI-PAT) [Hohpe 2004] as a well-known strategy
to communicate between two different applications. They applied the pattern and a
direct communication channel between SALES and PLANNING was created. Figure
7.5.a illustrates this situation.

Second technical scenario (T2). As a result of the changes in T1, agents could cal-
culate loan offers easier and quicker. Managers at the bank asked the IT architects if
they could do the same for all the applications used by the phone sales agents. The
dedicated connection created between the SALES and PLANNING applications was
a non-standard communication solution that tightly coupled the two applications. If
the same strategy were used with the rest of the applications, the amount of dedi-
cated connections complexity could increase to an upper limit of n(n− 1), where n is
the number of involved applications. Maintainability of the overall solution could be
degraded. IT architects decided to tackle the problem, but trying to avoid point-to-
point connections whose updates could significantly increase costs of maintenance
due to the constant application upgrades that were taking place. The new integration
strategy would try decouple applications while providing some communication so-
lution. They looked at the Service Messaging (SM-PAT) and Legacy Wrapper (LW-PAT)
patterns [Erl 2008] as design solutions to enable messaging oriented communication
and to benefit from loose coupling between application functionality 4.

The new architecture design involved the creation of a messaging communication
schema between applications and the addition of a new central component (CMM)
to persist and manage messages. The intention of the IT architects was to provide a
more reliable communication, independent from particular applications. Loose cou-
pling was addressed by wrapping the legacy applications and offering their relevant
functionality as services. The interaction between services was coordinated through
messages managed in the CMM component.

Additionally, given the high level of operation of the three sequential tasks in-
volved with Offer Loan to Client activity, a dedicated (composed) service was designed
to serve the composed activity. Figure 7.5.b illustrates the main elements of the new
architecture.

4SM-PAT and LW-PAT patterns can be seen as predecessors of the Messaging pattern in [Hohpe 2004]
and the Adapter pattern in [Gamma 1995], respectively.

151

Chapter 7. Evaluation of LABAS Framework

Figure 7.5: Architecture model evolution.

152

7.2. ALMA-based Analysis of Case Studies

Third technical scenario (T3). After adopting a service-centric strategy to integrate
applications and support processes, a new requirement regarding availability of ser-
vices imposed an additional change on the service architecture. The service exposing
functionality from the BANK-ACC application was reused in several other activities
and the increasing demand on it caused an unsatisfactory performance level. More-
over, managers indicated to the IT architects that there were plans to expand the
organisation that would create a growing demand for the already over-requested
service.

The IT architects discussed the strategy of the Redundant implementation (RI-PAT)
pattern [Hohpe 2004] and decided to apply the pattern for the service exposed by the
BANK-ACC application (S-BANK-ACC) with the aim to improve availability of the
service. The service would have a redundant implementation with five infrastructure
components and one redundant infrastructure manager (REDU-MNG) component
supporting it. The resultant architecture is illustrated in Figure 7.5.c. A negative
consequence of applying RI-PAT was that REDU-MNG became a unique point of
failure.

Fourth technical scenario (T4). Over time, the IT architects noticed a decreasing
demand on the service exposed by the S-BANK-ACC (S-BANK-ACC), and increas-
ing demand on the service exposed by the SALES application (S-SALES). Due to the
unsatisfactory performance of the S-SALES service, the managers asked IT archi-
tects to solve the problem, but to keep maintenance and operational costs as low as
possible.

The IT architects decided to redistribute the five nodes implementing the re-
dundant implementation for S-BANK-ACC and to apply the RI-PAT pattern on the
S-SALES service. The final configuration left three nodes for the S-BANK-ACC and
two nodes for S-SALES as shown in Figure 7.5.d. On the other hand, the CMM,
Service Provider and REDU-MNG components from Figure 7.5.c were replaced by
a new infrastructure component, an Enterprise Service Bus (ESB). The ESB would
jointly manages the redundant components, messaging tasks and service exposition.
They aimed at lowering the operational costs of maintaining the two architecture
components to manage messages separated from the access to services. There was
still a single point of failure, in this case the ESB.

Fifth technical scenario (T5=B2). In response to the second business scenario, mo-
bile access to the S-BANK-ACC is provided to direct sales agents. The responsibility of
proving mobile support was directed to the ESB component. There were no chances
to models in Figure 7.5.d. However, compliance to regulations required a revision at
business level.

153

Chapter 7. Evaluation of LABAS Framework

7.2.2.4 Scenario Evaluation

After scenarios and related architectures have been described, the modification ef-
forts from one scenario to the other are analysed. The analysis focuses on modifiabil-
ity and analysability regarding traceability, pattern coverage-based complexity and
functional compliance. See Appendix B for a description of quality characteristics
and associated metrics. Table 7.2 summarises the scenario evaluation. The rest of
the section describes how these results were obtained and it discusses the advan-
tages of the proposed framework and techniques in comparison to an unsupported
(hand-crafted) and more human-centric approach.

Table 7.2: Scenarios evaluation - LM case study

LABAS MANUAL
B1=T1 T2 T3 T4 T5=B2 B1=T1 T2 T3 T4 T5=B2

Traceability 1 1 1 1 1 0.4 0.7 0.8 0.4 0.4

Complexity
Q1 (pattern coverage) + + + + + ± ± ± ± ±
Q2 (pattern coverage) + + + + + ± ± ± ± ±
Q3 (affected properties) ± ± ± ± ± ± ± ± ± ±
Changeability
Q4 (changeability) + + + + + − − − − −
Q5 (modifiability) ± ± ± ± ± − − − − −
Q6 (scalability) ± ± ± ± ± − − − − −
Functional compliance
Q7 (documentation) + + + + + + + + + +
Q8 (automation) + + + + + − − − − −
Q9 (quantification) + + + + + ± ± ± ± ±

+, ± and − indicate direct support, indirect support and non-support, respectively.

Q1: What patterns are instantiated in architecture and process models?
Q2: What pattern roles fulfill determined elements in models?
Q3: What properties are affected by a change in a pattern instance?
Q4: Can individual costs of adding/eliminating components be registered and maintained?
Q5: Can costs of modifiable transition mechanisms be obtained automatically?
Q6: Can costs of scalable transition mechanisms be obtained automatically?
Q7: Can process regulations be documented?
Q8: Can compliance pattern instances be identified in actual processes automatically?
Q9: Can be compliance pattern support be quantified?

Traceability. Traceability is a characteristic that can indicate the effectiveness of
documentation and design structure mapping functions from requirements to im-
plementation (see Appendix B). Enterprise process and integration systems are com-
plex systems that involve a large number of interrelated elements in different layers.
The risk of poor requirements satisfaction due to insufficient or incorrect analysis in
large system is likely when there is no awareness of the impact of changes in related
elements from other layers [Lankhorst 2005], [Land 2007].

A traceability model relating elements of the integration problems in different

154

7.2. ALMA-based Analysis of Case Studies

layers can be obtained by following the suggested steps in the LABAS framework to
create models in the BAIL layer (see Section 3.2.1 for details). The model in Figure 7.6
illustrates trace links between process steps (top), domain model elements (middle)
and applications (bottom) involved in the integration problem of scenario T1. The
illustrated models focus on the phone sales agent role.

Figure 7.6: The Loan Management Process for the Phone Sales Agent role.

According to Equation B.4 (Appendix B), traceability would equal one for all
scenarios T1 to T4. This considers the ratio between the number of effectively traced
elements (∑i ETEi) and the total number of traceable elements for such a model
(∑i TEi), excluding trace links between applications and their interfaces. Table C.1 in
Appendix C details the model-to-model trace links for model elements in different
layers for scenarios T1 to T4 and phone sale agent role. Newly added elements in each
scenario are associated to new trace links. For T5, there are no changes in models or
new created trace links.

An approach that does not consider any kind of traceability support can make
the analysis of a system a very complex task and can consequently negatively affect
its analysability characteristics and therefore, maintainability. Without traceability
support, any possible relation between model elements has to be manually analysed.
During modifications, this can increase the costs of maintenance. This can happen
to the models in Figures 7.1, 7.2, 7.3, which are the only available documentation

155

Chapter 7. Evaluation of LABAS Framework

during modifications of the supporting LM process architecture.

If an unsupported/hand-crafted approach approach is assumed for the LM case,
trace links would be established each time a new modification during scenarios T1
to T4 is required. Table 7.2 indicates the variations for estimated values of traceabil-
ity in scenarios T1 to T4. These values assume that new trace links are manually
established after analysing models in each scenario.

• At the beginning of T1, there are no established trace links between model
elements. Traceability is initially considered equal to 0, where [∑i ETEi =

0]/[∑i TEi = 5 + 6 + 5]. New trace links are created after analysing the Calcu-
late Loan Offer activity. Trace links are established between the activity and the
BankAccount, Sales and Loan Offer domain model elements. In turn, these do-
main model elements are traced to the SALES and PLANNING applications.
Traceability is then increased from zero to [1 + 3 + 3]/[5 + 6 + 5] ≈ 0.4.

• For T2, new relations associated to the CMM component and services S-
EMAIL-MNG, S-CRM, S-BANK-ACC, S-SALES, S-PLANNING and S-LOAN-
CLIENT have to be created. Traceability would change from 0.4 to [5 + 6 +

5]/[5 + 6 + 6 + 6] ≈ 0.7.
• Similarly, traceability in T3, where the REDU-MNG and N1 to N5 components

are added, would be [5 + 6 + 6 + 6]/[5 + 6 + 6 + 7 + 5] ≈ 0.8.
• Finally, for T4, CMM and REDU-MNG are not longer part of the architecture

and, therefore, all trace links from services to CMM should not exist. Also,
N4 and N5 changed their relations from BANK-ACC to SALES application
and their associated trace links should be updated. An estimated value for
traceability would be [5 + 6 + 0 + 0]/[5 + 6 + 6 + 6 + 5] ≈ 0.4.

• For T5, there are no changes in models. Hence, traceability is still 0.4.

Complexity. Software complexity refers to the characteristics of a software that
makes it easier or more difficult to understand and maintain. As described in
Section B.4.2, analysing architectural complexity in terms of pattern coverage can
complement less reliable metrics based on coupling and cohesion or fan-in and fan-
out [Kazman 1998]. Architecture complexity based on pattern coverage can be also
extended to process-centric models [Gruhn 2006], [Mendling 2007], [Hirzalla 2009].
During architecture and process model modifications in change scenarios, some rel-
evant questions related to pattern coverage are
Q1: What patterns are instantiated in architecture and process models?
Q2: What pattern roles fulfill determined elements in models?
Q3: What properties are affected by a change in a pattern instance?
Table 7.2 indicates how answers to these questions Q1 to Q3 could be supported by

156

7.2. ALMA-based Analysis of Case Studies

the LABAS framework and an unsupported (hand-crafted) and more human-centric
approach.

An unsupported (hand-crafted) and more human-centric approach does not rely
on tools providing pattern manipulation support, instead answers to the questions
above rely on the architects’ knowledge and possible existing pattern documenta-
tion. A common problem is that over time, different people are analysing models
in the different scenarios, and awareness that a pattern(s) has been instantiated in a
previous scenario is very unlikely. This situation not only affects analysability when
assessing complexity of a system based on its pattern coverage, but also decreases
the possibility of reusing encapsulated design knowledge in the form of patterns
[Land 2007].

The LABAS framework proposes a range of facilities for pattern support. It goes
from pattern documentation, pattern identification to pattern-based model trans-
formation and combination. This thesis in particular addresses automated pattern
identification (Chapters 5 and 6). The support of the framework to the questions
above considers the wide range of proposed facilities, going beyond those specifi-
cally implemented in this work and evaluated in the next chapter. The framework
involves a more comprehensive perspective than the scope of the pattern identifica-
tion techniques.

Throughout the LM case’s change scenarios, several patterns were considered
during architecture modifications. From one scenario to the other, questions such as
Q1 to Q3 were asked. Questions Q1 and Q2 can be answered using the proposed
pattern matching techniques. These help to identify patterns instances and their el-
ements in models (Chapter 5). Question Q3 would require documentation efforts
to associate architecture properties to patterns. This information can be maintained
in pattern templates from a pattern catalogue in LABAS (see Section 3.2.2). Effects
on instantiated patterns due to architecture modifications are of particular inter-
est, especially if (possibly) negative effects on quality attributes have to be analysed
[Harrison 2007], [Harrison 2008]. Table 7.3 provides an example of how relations
between patterns and a number of architecture properties can be utilised to analyse
the impact of changes on architectures. The example involves scenarios T1 to T4
and RPI-PAT, LW-PAT, SM-PAT, RM-PAT, RI-PAT and ESB-PAT patterns. The rela-
tions in Table 7.3 indicate if a pattern has a positive, negative or neutral effect on an
architecture property.

Modifiability and Scalability (sub-characteristics of changeability). Changeabil-
ity, as described in Section B.4.1 involves modifiability and scalability. Modifiability
can be calculated as the number of possible paths allowing the transit from a de-
termined design to possible designs that have an attribute added to or subtracted

157

Chapter 7. Evaluation of LABAS Framework

Table 7.3: Relations between architecture properties and patterns.
Arch. property RPI-PAT LW-PAT SM-PAT RM-PAT RI-PAT ESB-PAT

ap1 ↑ ↑ ↑ − − ↑
ap2 ↓ ↑ − − − −
ap3 ↓ − − − − ↑
ap4 − − ↑ ↑ − ↑
ap5 − − − − ↑ −
ap6 − − − − ↑ ↓
ap7 ↓ ↑ − − ↓ ↑

↑ : positive contribution, ↓ : negative contribution, − : neutral

ap1: communication between applications
ap2: standardised access to applications
ap3: decoupling between applications
ap4: messaging reliability
ap5: performance – throughput of processed messages
ap6: availability of offered functionality
ap7: maintainability

from its attribute set, but whose transition mechanism cost less than an acceptability
threshold. On the other hand, scalability refers to raising or lowering the value of an
attribute from a architecture design whose transition mechanism cost less than an
acceptability threshold. A basic requirements for a tool aiming to support architec-
ture changeability calculation is that it should be able to answer questions such as
Q4: Can individual costs of adding or eliminating architecture components be reg-
istered and maintained?
Q5: Can costs of modifiable transition mechanisms be obtained automatically?
Q6: Can costs of scalable transition mechanisms be obtained automatically?

An unsupported (hand-crafted) and more human-centric approach to calculate
the transition mechanism cost would include the costs of analysing, designing and
implementing the modification. Assuming that implementation costs would be
equal between a hand-crafted or LABAS-based approach, then costs of analysis and
design would be the ones varying.

Consider the change scenarios T1 and T4. To calculate costs of integration, the
first step is to identify what data is being processed in the Calculate Loan Offer activ-
ity, then to identify what applications store or process this data, and subsequently
sketch an abstract architecture (early design solution) focused on the identified data
flow. In the manual-based approach, there are no explicit relations between model
elements. Also, costs estimation starts with the costs of individual modifications and
then these are (manually) aggregated to cover them all and to obtain an integrated
cost figure. Modelling support in LABAS for traces and model elements can con-
tribute directly to Q4, and can increase automation during the aggregation activity
referred to in Q5. Support for Q5 is not directly implemented in the proposal, and it

158

7.2. ALMA-based Analysis of Case Studies

would require extensions to the modelling framework in Section 3.2.1.1. Extensions
would consist of adding tagged values to model-to-model trace links and model
elements in layers. For instance, in scenario T2, individual costs to encapsulate ap-
plication functionality as services and the cost of establishing communication with
the CMM component can be captured in tagged values. Subsequently, these values
can be aggregated to obtain an integrated cost figure. In Table 7.2, modifiability sup-
port in regard with questions Q4 to Q5 refers to the previously explained arguments
and they are indicated as direct and indirect support for Q4 and Q5, respectively. For
scalable transition costs (question Q6), the scenario T4 provides a good example. Re-
dundant infrastructure components are reassigned from the BANK-ACC application
to the SALES application. Q6 can be answered in a similar way as Q5. The transi-
tion cost of an scalable change can be derived from aggregating costs of individual
modifications. In the example, adding the costs of implementing two redundant in-
frastructure components for SALES and substracting the costs of keeping the same
to redundant infrastructure for BANK-ACC.

Functional compliance. Functional compliance, as described in Section B.3 in-
volves the capabilities of a system to adhere to standards, conventions or regula-
tions in laws and similar prescriptions relating to functional suitability. For process
and application integration systems, an important aspect of functional compliance
is compliance to process regulations [Daniel 2009], [Kharbili 2008] – or compliance
process patterns [Ghose 2008]. The identification of non-compliant processes can be
a good indicator of possible future failures and increased costs to correct software
systems [Lu 2008].

In the second business scenario (B2), it was indicated that process regulations
determine that when direct sales agents the return to the bank after visits to their
clients, they must report those visits to supervisors and sign a document registering
visits. For the Loan Management process in Figure 7.1 and its variation in Figure 7.4
the rules indicate that
- The Visit Client activity (A) should precedes the Report to Supervisor activity (B).
- The Visit Client activity (A) should precedes the Sign Visit Client Doc activity (C).

If the previous process regulations need to be checked automatically, it would
require a mechanism to check if A precedes B and also A precedes C in the initial
situation of Figure 7.1 and after changes to the process, which are shown in Figure
7.4. According to the regulations above, it is not relevant if activities B and C are
performed in parallel (as shown in Figure 7.7.a) or in sequence (as shown in Figures
7.7.b and 7.7.c) while they always precede activity A. Even if some other tasks are
performed between activities (as shown in Figure 7.7.d) the process would be com-
pliant. Exact and inexact pattern matching as described in Chapter 5 can be used to

159

Chapter 7. Evaluation of LABAS Framework

provide support for this type of process-level pattern compliance checking.

Figure 7.7: Pattern constraining the Loan Management process and its variation in
Figure 7.4.

Traceability in LABAS can also provide support to functional compliance. In this
case, trace links created between pattern roles and their instances (see Section 3.4)
are not modified after changes to the Loan Management process. Because they are
not modified, an evaluation of rules sensing changes in the model does not trigger
change actions on trace links, and elimination of modification of pattern roles do
no occur, and pattern instances are not eroded. This indicate that the process is
still compliant to regulatory patterns. The example illustrated here is simple, but
automated support becomes relevant when small and distributed modifications to
pattern instances take place on large and interrelated models. The costs of analysing
the impact of changes on these pattern instances can be significantly increased with
the amount of non-traced elements.

The following questions mention some elemental facilities that tools offering
functional compliance support should be able to answer.
Q7: Can process regulations be documented?
Q8: Can compliance pattern instances be identified in actual processes automati-
cally?
Q9: Can be compliance pattern support be quantified?
Answers to these questions using LABAS and a manual-based approach are indi-
cated in Table 7.2.

7.2.3 Electronic Bill Presentment and Payment (EBPP) Case

7.2.3.1 Analysis goals

The previous case study (Section 7.2.2) focused on analysability (traceability and
complexity), functional compliance and changeability (modifiability and scalability).

160

7.2. ALMA-based Analysis of Case Studies

The analysis goal in this case study is to assess the capabilities of the proposed frame-
work to provide improved suitability, robustness-based changeability and reusabil-
ity. The reason to consider two case studies is twofold, to address a wider business
domain perspective (for instance, here it is included an organisational merger) and
also to maintain the cases manageable in terms of the architecture and process mod-
els illustrated in the figures. Larger and more complex models are less suitable to
be presented in a textual form, for these cases the use of appropriate CASE tools is
preferred. Similar to the previous case, the LABAS framework is compared to an
unsupported (hand-crafted) and more human-centric approach. The differences in
effort regarding maintainability (robustness and reusability) are discussed through
the different change scenarios. The same scenarios are used to analyse suitability.
The change scenarios involve the merger of a number of organisations and a process-
wide application architecture migration from a legacy-centric to a service-oriented
architecture. The analysis is a post-mortem analysis; therefore, there is no need to
normalise the weights of each change scenario [Bengtsson 2004].

7.2.3.2 Processes and software architecture

This case study involves a billing and payment process, common to utility compa-
nies. The process is a good example where customers and businesses interact and it
represents a typical process in the e-commerce domain [NACHA 2010]. The process
describes the presentment of bills from a number of utility companies to their cus-
tomers. The payment of bills is simplified to a single payment method that consist
of a bank transfer. A network of banking institutions is also involved in the payment
process. The case illustrates an organisational merger between utility companies.
The merger is simplified to focus on one of the critical activities in the process. The
activity is implemented differently across organisations. The organisations are iden-
tified as a main utility company and two new regional subsidiaries acquired during
the merger. The case describes the integration challenges in terms of automating
several process steps, integrating isolated applications and merging the processes
(and supporting software) from the main utility company and the recently acquired
regional subsidiaries.

Figure 7.8 shows a high level view of the bills presentment and payment pro-
cess. The model in the figure hides the differences across organisations5. Three
participants (roles) are exhibited at this level: customer, bank network, and utility
company. Periodically, a utility company bills customers with an amount of money
corresponding to the consumption of the delivered services. Customers receive their
bills and decide if they will pay or become indebted. A payment on the due date will

5Differences in processes are illustrated later in the section in lower level process models.

161

Chapter 7. Evaluation of LABAS Framework

eliminate the debt of the customer, otherwise the debt is accumulated. After the pay-
ment transaction is completed, the bank network sends the remittance information
to the customer and the biller.

Figure 7.8: Billing and payment process modelled in BPMN [OMG 2008b].

An extract of a domain model with business object connections is shown in Fig-
ure 7.9. Figure 7.10 shows the applications supporting the EBPP process in the main
utility company. To a great extent, these applications work in an isolated way. The
flow of information throughout the process is mostly integrated by means of actions
performed by human participants of the process. If there are connections between
applications, these are point-to-point connections. The utility company utilises (for
the EBPP process) a Customer Relationship Management system (CRM), Enterprise
Resource Planning system (ERP) and two custom-built applications for creating in-
voices (bills) and measuring consumption, the BILLING and METER, respectively.
The ERP system manages rules applied to constantly changing tariffs. The METER
application manages customer consumption information. The CRM system contains
information of customers that is used to maintain the relationship between them and
the company. The applications supporting processes in the two recently acquired re-
gional subsidiaries are identified in 7.10 with the participant roles: utility company
A and B.

162

7.2. ALMA-based Analysis of Case Studies

Figure 7.9: Extract of domain model for EBBP process.

7.2.3.3 Change scenarios elicitation

A number of business and technical requirements constitute the basis for change
scenario elicitation. The next paragraphs detail these scenarios.

First business scenario (B1). A main utility company acquires two regional util-
ity companies, which become subsidiaries of the main utility company. After the
merger, one of the first requirements is to standardise the generation and present-
ment of bills for customers in all the organisations, while trying to diminish costs
and to simplify the set of applications supporting the process. Figure 7.11 illustrates
differences for generating bills among the three organisations. The companies’ roles
are indicated as utility Company, utility Company A and utility Company B, referring
to the main utility company and its two new subsidiaries, respectively.

Second business scenario (B2). Central directions from the main utility company
have indicated that activities from the subsidiary companies should follow the pro-
cess structure of the main utility company. Changes to send bill and payment activities
in the main utility company were not desired since corporate contracts with a cus-
tomer service provider (for invoice presentment) and with the bank network (for
bank transfers) should remain unchanged at this stage. However, managers asked
to IT architects to analyse the situation with the current process-wide applications

163

Chapter 7. Evaluation of LABAS Framework

Figure 7.10: Applications associated to different roles participating in the EBBP pro-
cess.

Figure 7.11: Variations between Generate Bill activities across utility companies.

164

7.2. ALMA-based Analysis of Case Studies

architecture. They expected to improve the operation of the entire EBPP process
by integrating its supporting applications. Since more organisational mergers were
envisioned, it was requested to prepare the process-wide application architecture
to future changes at application level, while maintaining the alignment to the main
utility company processes.

Technical scenario (T1). In order to respond to the first business scenario, the team
of IT architects from the different utility companies have to review the Generate Bill
activity and supporting software and to decide how the different applications would
be integrated and consolidated. Initially, they decided to move the cost of integration
to the Customer Service Provider (CSP) presenting final invoices to customers in the
main utility company. The company already had the contract with the CSP, and a
change would only shift the recipient of invoices sent by the acquired utility com-
panies A and B from final customers to the CSP. The CSP would distribute invoices
from all utility companies to all customers.

Technical scenario (T2). In order to respond to the second business scenario, IT
architects in the main utility company decided to migrate the current legacy-based
application architecture to a service-based architecture. The new architecture would
add one level of abstraction between legacy applications and processes. The idea
was to abstract processes from changes at the application level, while maintaining
alignment to the processes in the main utility company.

7.2.3.4 Scenario Evaluation

After describing the scenarios and associated architectures in the EBPP case, the
modification efforts from one scenario to the other are analysed. The analysis focuses
on suitability, robustness-based changeability and reusability. Appendix B describes
these system sub-characteristics and associated metrics. Table 7.4 summarises the
scenario evaluation. The rest of the section describes how these results were ob-
tained and it discusses the advantages of the proposed framework and techniques
in comparison to a manual-based approach.

Suitability. Suitability refers to the adequacy of a software system in terms of its
coverage of user needs and correctness of implementation. For integration systems,
functional suitability focuses on coverage and correctness of integration needs.

An estimation of functional suitability can be derived using Equation B.1 (Ap-
pendix B). The measure is based on a metric of functional completeness for process-

centric integration solutions f cint =

(
1− RIPi−DIPi

RIPi

)
and the number of applications

165

Chapter 7. Evaluation of LABAS Framework

Table 7.4: Scenarios evaluation - EBPP case study

LABAS DIRECT / MANUAL
B1=T1 B2=T2 B1=T1 B2=T2

Suitability 0.2 1 0 0

Reusability 0.3 0.2 0 0

Robustness + + − −

directly involved with process elements requiring integration Aint =

(
∑j Aj(RIPi)

{A}

)
,

with suitability = f cint · Aint. Process-level integration needs are indicated by data
flow elements connecting process elements supported by different application archi-
tecture components. DIP captures process elements that require integration but only
if they have been explicitly related to their supporting applications. RIP identifies
integration needs at process level even if they do not have explicit connections to
elements in lower level elements.

In the first and second technical scenarios, a number of integration needs are
identified. These involve integration and consolidation of applications supporting
the generate bill activity, as well as the integration and abstraction from business
levels for the rest of applications supporting other activities in the EBPP process.

An unsupported (hand-crafted) and more human-centric approach would quan-
tify the required integration points by manually identifying data flows connecting
process steps supported by different applications. Considering the models from Fig-
ures 7.8 to 7.11, IT architects would be required to manually identify what data is
being processed in each activity, what applications are sources of this data or if they
are performing some processing steps on the data. In this manual-based case, DIP
is equal to zero, since explicit relations between process models elements and appli-
cation architecture components do not exist. To obtain a value for the total amount
of RIPs, architects would count manually, obtaining {RIP} = 14 (if false positives
and negatives can be avoided). The total amount of RIPs will be clarified later, when
the calculation of DPIs is explained. In terms of analysability, the time spent during
a manual-based analysis is significantly increased when traceability information is
poor or does not exist.

In the LABAS approach, additional information of relations between elements
involved in the integration problem is available. Section C.1 in Appendix C pro-
vides models in the LABAS’s BAIL layer. Using the traceability information from
these models, {DIP} can be calculated as follows. For every two consecutive pro-
cess model elements (x, y) connected through a path, it is verified if the number of
domain model elements connected to x and y is linked to more than one application.

166

7.2. ALMA-based Analysis of Case Studies

If the latter is true, then a DIP is quantified for that (x, y) pair. In other words,
for every (x, y) ∈ E(P) and x, y ∈ V(P), {RIP} = ∑i,j(x, dxi, Aj) ∪ (y, dyi, Aj), with
{DIP} > 1 and dx, dy ∈ V(D), Aj ∈ V(App). Note that P, D and App are graphs6

representing the flattened process model, domain model and application architec-
ture model.

Consider the example of the generate bill and send bill activities, which are disag-
gregated into lower level process models in Figures C.3 to C.7 of Appendix C. For
these two activities there are ten DPIs among flows between activities and applica-
tions associated through domain model elements (three DPIs are associated to the
send bill activity are identified in the first scenario, and the remaining six DPIs in
the second scenario). DPIs in these activities are related to application architecture
elements by domain model elements as follows.

• Internal flows of generate bill activity:

- get customer number and get current debt→ CRM and BILLING through Customer and Debt.

- get unitary tariff and calculate current debt→ ERP and BILLING through Tariff and Debt.

- get customer number and get old debt→ CRM and ERP through Customer and Debt.

- get customer number and get customer billing info→ CRM and BILLING through Customer.

- receive customer address and request consumption location→ CRM, BILLING and METER

through Customer and Consumption.

• Flow between generate bill and send bill) activities:

- generate bill info and get bill info→ BILLING and BILL-PRES through Invoice.

• Internal flows of send bill activity7:

+ customer service provider on behalf of utility Company (Main):

- create bill presentation and send bill document→ BILL-PRES and EMAIL through Invoice-Doc.

+ Utility Company A:

- create bill presentation and send bill document→ BILLING-A and EMAIL through Invoice-Doc.

+ Utility Company B:

- create bill presentation and send bill document→ BILLING-B and EMAIL through Invoice-Doc.

For the entire EBPP process, there are four additional DPIs related to payment and
debt liquidation/accumulation activities. They involve the BANKING APPLICATION
B, C and CLEARING HOUSE system in the bank’s network role, the BILL-PRES
(bill presentment application) in the customer service provider role (on behalf of
the utility company), and the ERP system in the utility company role. Figure 7.12
illustrates graphically the fourteen identified DIPs, three for the first scenario and

6For details on the graph-based notation see Chapter 4.
7Note that utility companies A and B have been sending invoices through conventional mail ser-

vices. After the merger, this service is migrated to email notifications. DPIs between billing applica-
tions in subsidiary companies (BILLING-A,B) and the EMAIL in CSP were also considered.

167

Chapter 7. Evaluation of LABAS Framework

the remaining ones in the second scenario. Using these figures and Equation B.1, an
estimated value of suitability in B1 = T1 - in relation to the final RPIs in T2 - can be
calculated as [1− (3− 14)/14] · [14/14] ≈ 0.2, while for T2 = B2 suitability would be
equal to one. For a manual-based approach and no links relating process elements
to their supporting applications, suitability would be considered equal to zero.

Figure 7.12: DIPs at application architecture level.

Reusability. According to the standard ISO/IEC 25010, reusability refers to the de-
gree to which an asset can be used in more than one software system, or in building
other assets. As described in Appendix B, for large and distributed organisations,
a common situation in practice is that software systems created to solve a similar
problem, but in different times and locations, often do not share their design solu-
tions. The latter can be observed in a simplified way in scenarios B1,T1 where three
different approaches to generate and present bills were created in the main, A and B
utility companies.

As described in scenario T1, IT architects from the different utility companies de-

168

7.2. ALMA-based Analysis of Case Studies

cided to tackle the integration problem from the customer (when bills are presented)
to then go backwards until bills in the three different organisations are generated. A
first solution considered the utility companies A and B sending their bill documents
to the Customer Service Provider (CSP) role (Figure C.7).

After requirements in the second scenario (B2,T2) a migration from the previous
legacy-based application architecture to a service-based architecture was adopted.
Two approaches were considered to design new services. One takes each activity in
the EBPP process and consider them as service candidates. The other encouraged
the reuse of documented process-level design knowledge to design services, in this
case according to standard bill presentment and payment activities.

The first approach tries to illustrate service design strategies that directly trans-
late business process level descriptions to process-centric service descriptions, which
are later refined to meet technical requirements, e.g. [Gardner 2003], [Ouyang 2009].
A shortcoming of these approaches is the assumption that software services have a
one-to-one relationship with activities in business process models; however, software
services can involve more than one business activity or can even be more granular
than a business activity [Koehler 2006].

Also, possible redundancies at process model level should be reviewed be-
fore considering any refinements to service levels. As several authors have
indicated, business level integration should precede technical level integration
[Puschmann 2004], [Janssen 2005] and [Lam 2005]. Reuse at business level can be
illustrated with the organisational merger in the first scenarios. In this scenario the
same business operation (generation of bills) is implemented in three different pro-
cess variations (Figure 7.11). If three services for generating bills would be directly
derived from models in Figure 7.11, they would likely become redundant. In this
example, the pattern discovery technique proposed in this work (Chapter 6) can be
used to discover frequent process sections in large and complex models. In this case,
there are several models in different levels of abstraction involved. After flattening
the models into the lowest level, the pattern discovery technique can be applied to
find inexact and partial structures that frequently occurs in models. For the three
different versions of the Generate Bill activity, this could be done adjusting the size of
expansion steps of the pattern discovery algorithm (see Section 8.6.1 for an example
of how the algorithm works) and utilising an approach of semantically enhanced
vertex matching (see Section 8.5 for an example).

The second approach to design services is based on a standard reference model
and associated process-level patterns for Electronic Bill Presentment and Payment
(EBPP) in [NACHA 2010]. The reference model included composite activities for bill
creation, bill presentment and payment. A biller role, a customer role and intermedi-
aries between customers and billers are the relevant roles in the reference model. Due

169

Chapter 7. Evaluation of LABAS Framework

to the central role of customer and activities bill creation, bill presentment and payment
in the case study, the IT architects considered them as candidates to be implemented
as services.

The three different implementations of the bill creation activity in the three util-
ity companies are analysed before designing a service that offers the results of their
operation. In this case, instead of using the pattern discovery technique, as de-
scribed above, the pattern matching technique can be used to compare the standard
description of the bill creation activity in the EBPP reference model with the three
implementations shown in Figure 7.11. Also, the standard definitions of processes
(process patterns) in the EBPP reference model could be compared to processes in
the main utility company. The transfer money activity (Figure 7.8) can be related to
the bank transfer option among the payment activities in the EBPP reference model.
In this case, inexact pattern matching could assist the analyst or architect by relating
the payment in the EBPP reference model, that contains more abstract concepts, to
the specific payment process made through a bank transfer in the case study.

Note that in large models, analysts and architects may not know that there is
more than one implementation of an activity. Using the patterns in a reference
model to look for possible instances can also help identify possible redundancies in
process models.

The payment activity in EBPP is decomposed into three lower level activities that
describe the payment initiated by the customer, a clearing activity (performed to man-
age taxes and other charges related to transactions between financial institutions)
and the settlement of bank accounts for each participant in bank transfer transaction.
Based on these activities, three services were defined to create a composed payment
service: a transfer service, a clearing service and a settlement service. The particu-
lar implementations of these services were related to the actual process steps and
software support described for the case.

The customer service in the final solution is a data-centric service that abstracts
customer information from different data sources in the biller side. In order to
know where this information is located and processed, explicit trace links relating
applications to the customer concept are utilised. In this case, the applications are the
CRM, ERP, BILLING and METER applications.

Two technical services, tariff and meter services were designed to encapsulate the
rules for tariffs embedded into the ERP and the information regarding customer con-
sumption managed in the METER, BILLING-A and BILLING-B applications. Even
though the final invoice documents are generated with the two last applications, they
may be replaced in the future with applications used by the main utility company.
The replacement would avoid functional redundancy at application level.

Figures C.13 to C.17 in Appendix C illustrate the models in the LABAS BAIL

170

7.2. ALMA-based Analysis of Case Studies

layer (process model, domain model and application architecture elements related)
with their associated new services. The resultant architecture composed of appli-
cation and service architecture elements is illustrated in Figure 7.13. So far, the
presentment and meter services were reused in the generate bill and send bill activi-
ties for each utility company, resulting in 11 services composing the final service
architecture for the EBPP process (Figure 7.13). If separate services for bill genera-
tion and presentment in the three utility companies were considered, this number
would rise to 15, which is the total service utilisation in the EBPP process. Using
Equation B.5, an estimated value of reusability for each of the two services is as
follows, reusabilityj

i = (∑k[sk|sk = si, sk ⊂ Pj])/(∑k[sk|sk ⊂ Pj]) = 3/15 = 0.2, with
i = presentment, meter services and j the EBPP process. For scenario T1, a single
meter service was used instead of three services, hence reusability in T1 using the
expression above would be 1/3 ≈ 0.3.

In this case study, new services were created based on the reuse of process-level
design knowledge from the EBPP reference model and associated patterns. Patterns
at lower level can also benefit the architecture solution depicted in Figure 7.13. For
instance, instead of maintaining separate messaging communication between ser-
vices from the utility company and other participant roles, a central element manag-
ing communication and messages routing could be incorporated. This is addressed
by the well-known Enterprise Service Bus (ESB) pattern [Zdun 2006], [Erl 2008]. In
[Gacitua-Decar 2008a], the application of the ESB pattern to the architecture in the
EBPP case study is described. The result is the architecture illustrated in Figure 7.14.
Note that to simplify the figure, applications that do not interact with customers are
not shown. This example attempts to illustrate that reusing design knowledge in
the form of patterns can improve architecture design quality, in this last case, im-
proved maintainability. Chapters 5 explains how a technique for pattern matching
can be used to identify partial instances of patterns in a target (architecture) model.
The model can be modified to complete partial instances with the entire pattern
configuration. Also, the description of a frequent problem as a pattern could be
used to identify whether the problem is occurring in the target model, and later, to
study solutions that can already be available (e.g., the solutions to anti-patterns in
[Koehler 2007]).

Robustness (sub-characteristic of changeability). Robustness refers to the capabil-
ity of a system to be insensitive under changing conditions regarding its perceived
value. Appendix B explains that passive value robustness can be achieved by systems
that may have excess capability or a large set of latent value, thus increasing the like-
lihood of satisfying new requirements without changing the system [Ross 2009]. In
the EBPP case study, the rationale behind the design of services based on previously

171

Chapter 7. Evaluation of LABAS Framework

Figure
7.13:A

pplications
and

services
architecture.

172

7.2. ALMA-based Analysis of Case Studies

Figure 7.14: Service architecture with instantiated ESB pattern.

173

Chapter 7. Evaluation of LABAS Framework

documented process-level pattern aims to provide a more robust service design (i.e.,
defining more stable business-level services that can rely in other lower level, more
technical, services). These lower level services can be modified more often and have
a greater active value robustness [Ross 2009]. The separation of business level and
more technical level services follows the principles pursued by service-based archi-
tecture patterns such as the service virtualization pattern in [Erl 2008] and service
layers pattern in [Zdun 2006]. These patterns implement separation of concerns and
benefit reuse of services in upper layers of abstraction. The objective is to reduce
change associated problems of conventional service design. Services that follow
a bottom-up design approach often fulfill particular project requirements within a
domain. When any of these services becomes a candidate for reuse in a different
context, it usually requires modifications or extensions. Also, services that follow
a top-down design approach often must be changed (specialised) to fit in particu-
lar contexts. Pattern-based service designs for abstract level services would have
increased robustness.

In Table 7.4, robustness is qualitatively assessed and compared to an approach
were services are directly8 defined from activities in process models (e.g., in
[Gardner 2003], [Ouyang 2009]). An explicit contribution to robustness is indicated
with a + symbol, suggesting that pattern-based design is reinforced. A neutral con-
tribution is indicated with a − symbol, suggesting that designs with robustness in
mind would rely on the IT architect’s criteria.

7.3 Tool Support

7.3.1 LABAS Profile

A UML profile was developed to create concrete models using the abstract syntax
specified for models in the different layers of the LABAS framework. Models can be
created in a standard UML tool. Modelling elements of each layer are organised in
different toolboxes. The BML toolbox allows the creation of business processes us-
ing the BPMN notation [OMG 2008b] and domain models using the standard UML
notation [OMG 2007]. Application architectures can be created using the AAL tool-
box and service architecture models can use the SAL toolbox or alternatively the
profile for Service oriented architecture Modeling Language (SoaML) [OMG 2009b]
for the UML modelling tool - Enterprise Architect [SparxSystems 2010]. Trace links,
which follow the traceability metamodel specified in chapter 3, use the TRACES
toolbox. Figure 7.15 shows a snapshot of the LABAS toolboxes implemented in a

8Indicated in Table 7.4 as DIRECT.

174

7.3. Tool Support

standard UML modelling tool - Enterprise Architect [SparxSystems 2010] and Fig-
ure 7.16 shows the graphical specification for toolboxes in the framework.

Pattern configurations associated to a specific layer and model perspective are
modelled with the same notation adopted to models in that layer and perspective.
Additional information is captured in the pattern template as described in Section
3.2.3. Pattern templates can be implemented in the same tool used to implement the
LABAS profile [SparxSystems 2010]. Several pattern templates can be organised in
a pattern repository and instantiated on models. Figure 7.17 shows a snapshot of a
pattern template implemented in Enterprise Architect [SparxSystems 2010].

Figure 7.15: Snapshot of LABAS toolboxes in standard UML tool

7.3.2 Model to Graph Transformation

Process models and patterns created with the LABAS profile and pattern documen-
tation support in a standard CASE tool [SparxSystems 2010] can be exported as XML
(XMI 2.1) documents, which can afterwards be transformed to files describing graphs
used as input for the pattern matching and discovery techniques in LABAS. Figure
7.18 shows a simple transformation from the schema used to store process models
with the LABAS profile to two data structures storing the adjacency matrix and la-
bel vector providing the information to describe process graphs representing process
models. This particular transformation was created using Altova Mapforce 2008 r.2
[Altova 2008]. For composite process models a previous flattening step is required.

175

Chapter 7. Evaluation of LABAS Framework

Figure 7.16: LABAS toolboxes diagram

Figure 7.17: Snapshot of pattern template in standard UML tool

176

7.4. Summary

An automated flattening facility has not yet been fully implemented and is planned
to focus on the next version of the business process modelling notation (BPMN v2.0)
(which is compliant to the future version of the Business Process Definition Meta-
model – BPDM 1.x, specified by OMG). More details on the current LABAS profile
in Appendix section 7.3.1.

Figure 7.18: LABAS process model to graph adjacency matrix and label vector trans-
formation.

7.4 Summary

The case studies presented in this section were used to illustrate the benefits of the
proposed framework and techniques in relation to maintainability and functional
suitability and compliance. A the beginning of the chapter (Section 7.1.3), a number
of challenges (problems) P1 to P5 affecting maintainability and functional suitability
and compliance were explained. The scenarios in this chapter illustrate how IT ar-
chitects could use the modelling and pattern-based support provided in the LABAS
framework to tackle challenges P1 to P4. P5 (which is related to challenges regarding
processing time and errors) is addressed in the next chapter, where the effectiveness

177

Chapter 7. Evaluation of LABAS Framework

and efficiency of techniques to automate pattern matching and discovery are evalu-
ated.

The problems associated to maintaining separate models for process, domain
and architecture descriptions (P1) is addressed with modelling support for intercon-
nected layers of the LABAS framework (Chapter 3). Corrections in models due to
misalignment between process and architecture levels after changes (P2) is assisted
through explicit trace links of the traceability model (Section 3.4). Ineffective or
inefficient use of design knowledge (P3) is addressed by encouraging pattern identi-
fication and application. Automated pattern identification is supported with pattern
matching and discovery techniques (Chapters 5 and 6). Lack of automated support
for checking regulatory process compliance (P4) can be addressed with the help
of the pattern matching techniques by comparing actual models against regulatory
patterns.

As any effort emphasising architecture analysis, costs associated to models and
architectural abstractions documentation and maintenance are increased. These costs
should be balanced in the context of the integration problems being addressed. Deal-
ing with simple and small models may only require a hand-crafted and human-
centred approach. However, integration of processes and applications in large and
distributed organisations can be benefited by an explicit and automated support to
analyse architectures, models and associated abstractions. The simplified examples
in the case studies presented in this chapter attempted to illustrate that even simple
models can be complex to analyse. In real scenarios, automated support and an or-
ganised framework can be critical for a more suitable, compliant and maintainable
integration solution.

178

Chapter 8

Evaluation of Matching and
Discovery Techniques

Contents
8.1 Overview . 179

8.2 Definition and Planning . 180

8.2.1 Type of Experimental Evaluation 180

8.3 Experiments - Matching Graph Structure 182

8.4 Experiments - Processing Time of Pattern Matching 191

8.5 Case - Adding Type and Attribute Vertex Matching 194

8.6 Experiments - Frequent Subgraph Discovery 198

8.6.1 Case to explain the algorithm’s results 198

8.6.2 Effects of Varying the Size of the Vertex Descriptors’ Set 202

8.7 Tool Support . 210

8.7.1 Matlab Functions for Matching, Discovering and Experimental
Environment . 211

8.7.2 Label Similarity . 211

8.7.3 Graphs Generation and Visualisation 211

8.8 Summary . 212

8.1 Overview

The previous chapter focused on the overall framework and its architectural and
modelling support during the development of process-centric and service-based in-
tegration systems. This chapter describes an experimental evaluation that attempt
to measure the effectiveness and efficiency of the proposed pattern matching and
discovery techniques. The chapter also contains substantial illustrations (including
case studies) regarding the feasibility, applicability and practical relevance of the
techniques. Tool support associated to the implementation of the techniques and the
environment for the experimental evaluation are described towards the end of the
chapter.

Chapter 8. Evaluation of Matching and Discovery Techniques

8.2 Definition and Planning

The experimental evaluation described in this chapter considers a strategy for a sin-
gle product and team [Basili 1996], where a researcher is interested in better un-
derstanding the quality of a product (software/technique) using an a priori set of
variables for observation. The evaluation considers a number of experiments and
cases to investigate the effectiveness and efficiency of the proposed pattern match-
ing and discovery techniques in different conditions of model and pattern graphs.
The aspects of the evaluation include

• Effectiveness. An evaluation of the techniques’ effectiveness in terms of accuracy
in the obtained results when using the algorithms described in Chapters 5 and
6. Trends in accuracy measures during the matching and discovery process are
studied while increasing the size and other parameters of model and pattern
graphs.

• Efficiency. An evaluation of the pattern matching algorithm’s processing time.
Trends in the processing time obtained from experimental results using ran-
domised model and pattern graphs of different sizes are used to experimen-
tally estimate the time complexity of the algorithm.

• End user intervention. Tool support for the involvement of end users in the
process to match and discover patterns in model graphs is described. This
includes the implementation of a UML profile and functionality to transform
a process model description (using the profile in a standard CASE tool) to the
generic graph representation used in the implemented prototype tool. Also,
pattern documentation support is illustrated.

8.2.1 Type of Experimental Evaluation

A comparative experimental evaluation assessing the strengths and weaknesses
of different techniques requires a common corpus of freely available models
[Sartipi 2001], [Koschke 2000]. Unfortunately, to the best of the author’s knowledge,
that is not the case for matching and discovery techniques for process-centric descrip-
tions (e.g., process-centric service architectures and business process descriptions).
Private corpuses such as the SAP reference model were excluded from this work due
to difficulties in accessing the data. Instead, an alternative experimental evaluation
involving the techniques and a pre-validated benchmark was used. The benchmark
consists of a set of pre-defining models with known instantiated patterns. The exper-
imental evaluation aims to explore the effectiveness and efficiency of the matching
and discovery algorithms used in the proposed techniques.

• Effectiveness of the matching and discovery algorithms is studied by measur-

180

8.2. Definition and Planning

ing accuracy of their results while varying specific parameters (e.g., the num-
ber, size and structure of instantiated patterns). Accuracy of the results is
expressed in terms of recall- and precision measures.

• Efficiency is studied measuring the algorithms’ processing time throughout a
set of tests using randomly generated process graphs.

Process graphs used to study the efficiency of algorithms are more structured
than purely random graphs. They have source and sink vertices and vertices with a
bounded in/out-degree, common to process models [Golani 2003]. Graphs with cy-
cles and non-free of deadlocks are allowed. The latter attempts to represent process-
centric models that can contain errors if they are executed. This can occur in models
available in early stages of systems development, which are the stages of interest in
this work.

A correlational study varying relevant parameters associated to model and pat-
tern graphs is used to explore trends in the quality of results. Quality of results
refers to accuracy and time complexity of the graph matching and discovery algo-
rithms. Among the manipulated parameters are the number of pattern instances,
pattern overlaps, size and in/out-degree of vertices in model and pattern graphs,
the structure of patterns and semantic characteristics of graph vertices.

When human intervention is involved in the study of a (semi-automatic) tech-
nique, costs and organisational constraints can be the causes of a poor experimental
setting. Experimental studies in software engineering often involve a very small
number of subjects, resulting in experiments with insufficient statistical power to
investigate variations and obtain accurate measures. A limited but manageable ex-
perimental environment is used here to emulate human intervention during the util-
isation of the proposed techniques. This intervention is modelled through defining
variations in parameters that are available to end users in the implemented pro-
totype tool. In particular, these parameter variations capture changes in threshold
levels for semantic matching and the number of elements for pattern instances to
be discovered. When semantic matching includes natural language processing tech-
niques, this thesis refers to a demonstrator case described in [Gacitua-Decar 2009a]
and revisited in Section 8.5. A comprehensive evaluation of this (semantic) aspect,
which can involve natural language processing techniques, is out of the scope of
this work. For similarity between vertex labels, specific label (sentence) similarity
techniques investigated in [Li 2003], [Li 2006] were adopted in this work. Here, their
results are used as a reference to the quality of the sentence similarity techniques
that can be used in the proposed algorithms.

181

Chapter 8. Evaluation of Matching and Discovery Techniques

8.3 Experiments - Matching Graph Structure

Positive and negative sample subgraphs were used to test the matching technique
on model graphs with different sizes. A positive sample is a subgraph that always
occurs in the model graph and is referred to as a positive pattern sample. Similarly,
a negative sample is a subgraph that never occurs in the model graph and is referred
to as a negative pattern sample. The matching technique was tested using positive
and negative sample patterns of small size (between three and nine vertices) and
model graphs of different sizes (i.e., 10, 50, 100 and 1000 vertices). An extract of the
samples and model graphs is shown in Appendix D.

In order to generate positive and negative sample patterns, the function
genPosSample and genNegSample were used (see Appendix D). The former creates
a subgraph of a model graph centered on a specified vertex and expanded with its
neighbours a determined number of times to create the positive sample. The lat-
ter derives all connections that do no exist between vertices in a model graph and
extracts a subset of a specified size. This subset and a number of non-existent connec-
tions define a negative pattern sample. An example of positive and negative samples
for a model graph with 10 vertices is shown is Figure 8.1. In this example, vertex
matching is simplified to label matching, where labels are numbers. The three vertex
labels of the positive pattern sample and their structure are matched in the model.
In the graph model, the instance of the positive sample is highlighted in green. The
number of vertices and edges included in the instance is shown in brackets (six). A
number one between brackets indicates that only the label of a vertex was matched.
This is the situation of the negative sample, where only the vertices are matched but
not the entire structure of the negative sample.

Figure 8.1: Graph Model with instances of positive and negative pattern samples.

Directed and undirected versions of positive and negative sample patterns were
matched with directed and undirected versions of model graphs, respectively. The
aim of the test is to estimate how effective the matching algorithm is by taking ran-

182

8.3. Experiments - Matching Graph Structure

dom sample patterns and verify if the results are relevant or not. Effectiveness of the
automated matching technique in comparison to a manually performed matching
can be associated to the effort that an end user has to do to modify a match result
into an intended result, i.e., a correct result. In [Melnik 2002], the authors introduced
a match accuracy metric to test a proposed schema matching algorithm. The metric
can be adopted for pattern matching in process graphs. The metric estimates the
effort of an end user to modify a pattern match result into an actual pattern instance
in the model graph. The match accuracy metric (mA) adopted from [Melnik 2002] and
the typical accuracy (A) metric are described, as follows.

A =
tp + tn

tp + fp + fn + tn
(8.1)

mA = 1− (n− c) + (m− c)
m

=
c
m

(
2− n

c

)
(8.2)

mA = Recall
(

2− 1
Precision

)
(8.3)

Where,

• m indicates the number of operations that an end user has to perform to man-
ually identify a pattern instance and no mistakes are done. The result of these
operations define the intended result of a match, i.e. (tp + fn). Each operation
would check if a vertex in the model graph has to be considered as part of a
correct matched pair. This pair contains a vertex in the pattern sample (pat-
tern role) and a checked vertex in the model graph that correspond to an exact
pattern role instance from a complete pattern instance.
m can be seen as a function of the model graph size, pattern graph size and
maximum out-degree (maxOutDeg) of vertices in the model and pattern graph.
In the worst case, an end user would check all neighbours of vertices in pattern
and model graphs for each vertex in the model graph matched to a vertex in
the pattern graph, i.e., ([maxOutDeg(v) ·maxOutDeg(u)] · [V(P) ·V(M)]), with
u ∈ V(M), v ∈ V(P) and V(M), V(P) the sets of model and pattern graph
vertices. It was considered that the effort to match all pairs of pattern role and
pattern role instances from pattern and model graph vertices is V(P) · V(M)

vertices – the worst case scenario.
• c refers to the number correctly suggested vertices in the result of a structural

match, i.e., correctly identified pattern role instances (true positives tp).
• n refers to the number of all vertices suggested in a structural match result, ei-

ther if the are correct or incorrect suggestions (true positives plus false positives
[tp + fp]).

183

Chapter 8. Evaluation of Matching and Discovery Techniques

• (m − c) indicates the number operations that an end user has to perform to
add the missing vertex matches to the structural match result (false negatives
fn).

• (n − c) indicates the number of operations required to remove erroneous
matches from the structural match result (false positives fp).

• P (Precision) refers to the fraction of correct matched pairs (pattern role, pattern
role instance) among pairs from match results (i.e., c/n that relates to tp

tp+ fp
).

• R (Recall) refers to the fraction of correct matched pairs (pattern role, pattern
role instance) among pairs of intended match results (i.e., c/m that relates to

tp
tp+ fn

).

Table 8.1 presents the results of matching different pattern samples in a set of
model graphs. The results are calculated considering exact and complete matches
(i.e., a true positive is counted only if the matched vertex belongs to an exact and
complete pattern instance). Exact and partial matches may be detected, but in this
test they are counted as false positives. Note that partial matches in other tests can
be considered true positives if the intention is, for instance, measuring accuracy for
exact complete and exact partial matches. If matched vertices from partial instances
are considered true positives and surjection is allowed, then the accuracy for all
samples in this test would be equal to one. The latter is represented in column
mA(c/p− E/S) of Table 8.1, which shows the values for the match accuracy metric
considering as true positives not only complete instances but partial instances and
instances whose elements can hold a surjective relation with elements in the pattern
sample.

As described previously, models are directed versions of random process graphs
with sizes varying from 10 – 1000 vertices. Considering observations from real pro-
cess descriptions and characteristics of process models synthetically generated in
studies such as [Golani 2003], reasonable values for the maximum and minimum
in/out-degree of vertices are between four and one. This values were considered
when creating random graphs in this and other tests described in the chapter. Ver-
tices have only a label associated since the test is intended to reflect the estimated
accuracy of the structural matching and not the vertex matching. Vertex matching,
including semantic label matching is demonstrated in a subsequent section. Labels
in graph vertices were assigned randomly (uniformly distributed) from a set of 200
numeric labels (1,..., 200).

Results of the matching are obtained using the testSample function, which pro-
vides results for the directed and undirected versions of sample and model graphs.
Undirected versions consider edges of the directed graphs as vertices of the undi-
rected graph versions. The testSample function uses the pattern matching algorithm

184

8.3. Experiments - Matching Graph Structure

Table 8.1: Experimental evaluation of structural matching – directed and undirected
graphs

Type: Type of pattern graph sample, positive or negative.
sample: sample number.
ID test: identification of positive and negative tests for each model graph.
V(M): number of vertices in model graph.
V(P): number of vertices in pattern graph.
mo(M): maximum out-degree for vertices from model graph.
mo(P): maximum out-degree for vertices from pattern graph.
m/effort(tp+fn); (n-c)/effort(fp); (m-c)/effort(fn); match accuracy (mA); accuracy (A); recall
(R) and precision (P) are explained with Equation 8.2.

185

Chapter 8. Evaluation of Matching and Discovery Techniques

implemented in the MatchPattern function and generates a .dot file to visualise the
results in GraphViz. See Appendix D for details of these functions. The experiments
were run on a Intel machine 2 GHz and 4GB RAM on WinVista.

Figures 8.2, 8.5, 8.6 were derived based on the data from Table 8.1.
Figure 8.2 shows the sampled and accumulated efforts for matching patterns in

the directed and undirected1 versions of target graphs. Efforts are associated to the
number of operations that an end user has to perform to identify a given pattern
manually (m) and to the number of operations required to transform a match result
(obtained automatically by using the pattern matching algorithm) into the intended
matching result ((n− c) + (m− c)) (i.e., adding missing vertices and deleting erro-
neously matched vertices from the automatically generated result). As explained
previously, the intended results are those belonging to the class of exact and com-
plete pattern instances, but where surjection is not allowed2. For example, sample 7
in Table 8.1 has one false positive, which corresponds to a vertex that illustrates the
surjective condition. Figure 8.3 illustrates the latter. In the figure, the result of the
matching process in the model graph containing 50 vertices and using the positive
pattern sample (S2 in Figure 8.4 and ID test = 2 in Table 8.3) are shown. The target
graph shown in Figure 8.3 has two instances of S2: a complete instance and a partial
instance. The partial instance consists of a single vertex labelled with a ”97”3 and
the complete instance has a vertex labelled with a ”174” connected to two vertices
labelled with a ”97”. These two latter vertices are mapped to the single vertex la-
belled with a ”97” in S2 (Figure 8.4), which illustrates the surjection condition. This
is also indicated in the eighth row of Table 8.1, where one of the two vertices labelled
with ”97” is considered a false positive (fp = 1). Note that if surjection is allowed,
the algorithm is able to find instances where such a condition holds, which can be
frequent and desirable to detect.

Figures 8.5 and 8.6 show values of match accuracy (mA - Equation 8.2) for ex-
act matching of positive and negative samples in two cases, when (1) surjection is
allowed and complete and partial instances are part of the valid results (true posi-
tives); and when (2) only exact and complete pattern instances and no-surjection are
allowed. For the latter condition (2), values for the accuracy measure (A in Equation
8.1) are also shown. For condition (1), the accuracy value is equivalent to the ideal
value i.e., an end user does no need to transform the result obtained automatically
with the matching algorithm to obtain the intended result because all the results au-
tomatically obtained are 100% accurate. Note that matching of types and attributes is

1The undirected versions of graph consider the arcs from the directed versions as vertices. This
allows the algorithm to detect information associated with arcs, such as direction.

2This condition allows that more than one model graph vertex can be mapped to a single pattern
graph vertex (pattern role). See more details in Section 5.2.1.

3Note that the vertices labelled with a ”97” have also a thicker red line framing them.

186

8.3. Experiments - Matching Graph Structure

Figure 8.2: Estimation of the accumulated effort to match patterns in directed and
undirected versions of target graphs.

not considered here, only structural matching. Accuracy of the algorithm allowing
partial matches and surjection, but with complex types and attributes (for exam-
ple described in natural language) will perform according to the type and attribute
matching results. Type and attribute matching here was simplified to matching of
simple labels (with a 100% accuracy) in order to isolate results of the structural
matching process.

The results of calculating accuracy for matching of positive and negative sam-
ples were separated to illustrate the two different trends for these pattern sample
conditions. The effort of modifying (if needed) the results of the algorithm for neg-
ative samples versus the effort of verifying that the negative sample is not in the
graph decreases with the size of the pattern. In small graphs this can be easily done
by simple visual inspection. In larger graphs the inspection process requires many
more operations than correcting the automated result. Note that corrections are only
needed if vertices associated to a surjection condition and partial matches are con-
sidered as false positives, otherwise the algorithm performs with the ideal value of
match accuracy (mA).

In the case of the accuracy measure (A), for positive and negative samples and
when condition (2) holds (i.e., surjection and partial matches are not allowed), the
trend of A is opposite to the trend of mA. The larger the graph, the less accurate
match results are. This situation can be associated to the probability of a label to ap-

187

Chapter 8. Evaluation of Matching and Discovery Techniques

Figure 8.3: Match result for graph M50 and positive pattern sample S2.

188

8.3. Experiments - Matching Graph Structure

Figure 8.4: Second positive pattern sample (S2).

Figure 8.5: Estimation of match accuracy and accuracy for exact pattern matching of
positive samples.

189

Chapter 8. Evaluation of Matching and Discovery Techniques

Figure 8.6: Estimation of match accuracy and accuracy for exact pattern matching of
negative samples.

190

8.4. Experiments - Processing Time of Pattern Matching

pear simultaneously several times in the model graph. Partial matches of one vertex
size are more likely to occur in larger graphs, and similar – with less probability –
for partial matches of two or more vertices. For instance, for a graph whose size is
10 vertices and there are 200 possible labels the probability of a specific label to be
repeated is less than 0.0015. Similar, for graphs of 50, 100 and 1000 vertices and the
same 200 possible labels, the probability of having two vertices with the specific label
varies (considering the cumulative binomial probability) from 0.002 to 0.014 and to
0.875, respectively. These results indicate that for process models containing many
similar elements and only exact and complete matches are required, accuracy A will
decrease with the size of the graph, however match accuracy mA will increase.

8.4 Experiments - Processing Time of Pattern Matching

Processing time of the exact and partial matching algorithms is evaluated in a set of
experiments considering seven specific patterns over arbitrary random graphs with
approximate sizes of 60; 450; 1300; 1800; 3200 and 5000 vertices. The experiments
were run on a Intel machine 2GHz and 2GB RAM on WinXP-SP3. For patterns and
random graphs three different types of labels are considered, A, B or C. Pattern
structures involve four close-walks of two, three, four and six vertices; two line-like
patterns of three and four vertices and a star-like pattern of four vertices (Figure 8.7).
Line-like structures represent typical sequences of activities in processes. Star-like
structures represent points of decision or where the flow of information needs to be
split. Close-walks represent cycles or iterations in a process. This type of structure
is known to be more complicated to detect in the case of matching approaches con-
sidering the possible states of a process. The literature review section (Section 2)
provides more details.

Figure 8.7: Pattern structures used in the experiment.

191

Chapter 8. Evaluation of Matching and Discovery Techniques

Figure 8.8: Average response time of exact - complete and partial - matching on
arbitrary random graphs for different pattern structures (top) and different sizes of
a pattern with close-walk structure (bottom).

192

8.4. Experiments - Processing Time of Pattern Matching

Figure 8.8 (top) shows the average response time of matching algorithm when
matching three patterns with different structures and the same number of vertices.
The line-like pattern requires less time in comparison to the star-like and close-walk
patterns. It indicates that the structure of matched patterns influences the response
time. Figure 8.8 (bottom) shows the average response time of the matching algorithm
for patterns with the same structure (close-walk in this case) and different number
of vertices. The number of vertices in the pattern also influences the time response.
In order to visualise the time response trend more clearly, the time required by
the algorithm to compute a solution was divided by the ratio between the number
of vertices in the random graph (target graph) and the number of vertices in the
pattern. Figure 8.9 (left side) illustrates the trend of the normalised response time
for all different patterns considered in the experiment. The right side of Figure 8.9
illustrates the trend of the normalised time response for two patterns with the same
structure (close-walk) and different number of vertices (two and six).

The trend lines in Figure 8.8 indicate that the time to solve the problem increases
quadratically with the number of vertices in the target graph. The constant 6−7

suggest advantageous performance characteristics regarding the response time of
the algorithm for small and medium size graphs. The trends in Figure 8.8 indicate
that the processing time increases with the size of the pattern and close-walk (or
cycles) can be harder to compute. Also, for a same structure of a pattern and target
model, the processing time increases linearly with the size of the pattern.

Figure 8.9: Trend of the normalised response time of the matching algorithm on
arbitrary random graphs and patterns with different structures.

193

Chapter 8. Evaluation of Matching and Discovery Techniques

8.5 Case - Adding Type and Attribute Vertex Matching

Previous sections showed results of the pattern matching process focusing on struc-
tural aspects. Matching at vertex label was simplified to a syntactic matching be-
tween labels consisting of simple strings (between one and three characters). Actual
graph-based process-centric models can contain rich vertex descriptions involving
complex vertex types and attributes. Vertex matching beyond syntactic matching
can involve a semantic comparison of vertices descriptions. Section 5.5 explains the
followed approach for semantic vertex matching. This section demonstrates with
a case study how the approach for semantic vertex matching can be applied. The
case presented here is based on a publicly available case study provided in the 2008
Workshop on Service- and Process-Oriented Software Engineering4. Statistically sig-
nificant data would require several cases, which were not publicly available at the
time of this work to the knowledge of the author. As mentioned previously, a com-
prehensive evaluation can be considered as part of the future work. A prerequisite
would be the creation or adoption of a corpus containing numerous process models
and pattern graphs with rich vertex descriptions.

The NRA case. The National Revenue Agency (NRA) is a governmental revenue
collection agency which has grown significantly in size and complexity. During its
growth, the agency has faced many operational challenges that have triggered ra-
tionalization efforts to standardise on emergent process-centric best practices and
to reduce operational complexities. The agency has decided to initiate a project to
support the spreading and implementation of best practices across the institution.
Process-centric best practices are documented as process patterns and they defined
an ideal case for processes implementation. Process patterns would lead the defini-
tion of new reusable software services. If possible, services would be implemented
by exposing functionality of existing software support. The identification of process
pattern instances in the actual NRA’s processes and their associated legacy applica-
tions is the starting point of the rationalization effort. The effort attempts to elimi-
nate redundant legacy applications and to enable best practices automation through
software services implementation.

Figure 8.10 illustrates the target processes from NRA. A referential letter u and
number next to each element in the process are used to facilitate the explanations.
Figure 8.11 illustrates an example of process pattern configurations capturing rec-
ommended best practices. They involve the Validate Form, Process Financial Form and
Process Non-Financial Form processes. A letter v and number next to each process pat-
tern role is used as a reference throughout the case. The process model and pattern

4http://www.dsl.uow.edu.au/sopose/content/files/main/SOPOSE-CaseStudy.pdf.

194

8.5. Case - Adding Type and Attribute Vertex Matching

configurations are modelled using the BPMN 1.1 notation [OMG 2008b].

Figure 8.10: NRA process model.

Figure 8.11: Best practices documentation as process pattern configurations.

The pattern matching task involves essentially two stages, one focused on vertex
matching and the other on structural matching. The rest of the section is mainly
focused on vertex matching. As described in Section 5.5, the vertex matching stage
checks if the types of a pattern graph vertex v and a model graph vertex u are equal
or the type of u subsumes the type of v - assuming the attributed type graphs of

195

Chapter 8. Evaluation of Matching and Discovery Techniques

pattern and model graphs are the same - and if common attributes describing the
two vertices are equal or similar within a specified similarity threshold. Attribute
values would not necessarily satisfy a subsumption relation and they might not
always be hierarchically organised.

In the NRA case, a first step would reduce the model graph to vertices whose
types have a subsumer type among the types of the pattern graph vertices. In Fig-
ure 8.10 these are vertices of activity and decision types. Subsequently, similarity
between every two graph vertices u and v (with u a model graph vertex, and v a
pattern graph vertex) is calculated by comparing their attribute vectors ~u and ~v. The
comparison only concerns the attributes describing v. Other attributes in ~u are de-
liberately omitted since they do not concern the pattern. The choice of the attributes
describing a pattern is made by considering both its intended application and also its
potential users. In this example, existence of a common set of attributes describing
vertices from the pattern and the model graph is assumed. Similarity between the
attribute vectors ~u and ~v is calculated based on Equation 5.1 (Section 5.5), which is
re-written below.

sim(~u,~v) = 1−
(
|δi · dis(~ui,~vi)|p

)1/p , 1 ≤ i ≤ |~v| (8.4)

dis(~ui,~vi) is the normalised dissimilarity between ~u and ~v in the attribute i and δi

is a weighting factor to emphasize or deemphasize the ith attribute value. For this
example attributes are assumed independent of each other. p is chosen equal to 2,
defining that vertex similarity would be based on Euclidean distance.

One of the most common attributes for vertices in process graphs is the label,
which often is a sentence described in natural language. Matching labels requires
a complex calculation involving the semantics associated to concepts referred by
words in labels. Since matching labels is one example of a complex case associated
to vertex matching, the NRA case focuses on matching labels of vertices. Aggrega-
tion of another attributes and types associated to vertices was already explained in
Section 5.5.

Matching of labels uses the sentence similarity measure described in [Li 2006]. It
is sufficient in this context since the elements required to evaluate the measure are
dynamically generated using only the information from the words contained in the
two labels. The measure considers the semantic similarity between words in the
two sentences (labels), which is derived from a Lexical Knowledge Base (LKB) and a
corpus, and the word order on the sentence meaning. LKBs are frequently organised
as a hierarchy of words defining concepts (for example, WordNet5 or other more
specific LKBs targeting particular business domains). Semantic similarity between

5Available at http://wordnet.princeton.edu/

196

8.5. Case - Adding Type and Attribute Vertex Matching

words is calculated based on the length of the path connecting the words in the
hierarchy and their depth in it. By observing the direction (from bottom to top)
of the path connecting two words in the hierarchy, it is possible to discriminate
between abstraction or refinement of concepts. The latter can be used as indication
that a vertex label is an abstraction of another vertex label.

The explanation of vertex label similarity calculation is simplified by avoiding
word disambiguation, which requires the analysis of the context where the word
appears, abbreviations expansion and acronyms replacement.

The label similarity measure described in Equation 5.2 (Section 5.5) is used to
identify vertex labels in the model graph similar to vertex labels in the pattern graph.
Label similarity is a weighted measure between the similarity of lexical and word
order vectors of two vertices u and v (Equation 5.3 and 5.7). The three metrics
mentioned before are re-written here to illustrate how label similarity is calculated
between one vertex from the pattern graph and three similar vertices from the model
graph.

simlabel(`(u), `(v)) = ρ · sim(~w(u), ~w(v)) + (1− ρ) · sim(~o(u),~o(v)) (8.5)

sim(~w(u), ~w(v)) =
~w(u) · ~w(v)
‖~w(u)‖‖~w(v)‖ (8.6)

sim(~o(u),~o(v)) = 1− ‖~o(u)−~o(v)‖‖~o(u) +~o(v)‖ (8.7)

Consider now the vertex label `(v3): Update Client Register from the process
pattern configuration in Figure 8.11, and the vertex labels `(u25): Update Client
Register Document, `(u38): Update Customer Register and `(u52): Update Client Register
from Fig. 8.10. We want to calculate the similarity between `(v3) and the mentioned
labels `(u25), `(u38) and `(u52). The associated joint word sets are:
W(v3,u25) = {Update Client Register Document},
W(v3,u38) = {Update Client Register Customer},
W(v3,u52) = {Update Client Register}

The lexical semantic vectors associated to each joint word set are shown below:
W(v3,u25): ~w(v3) = [1 1 1 0], ~w(u25) = [1 1 1 1]
W(v3,u38): ~w(v3) = [1 1 1 0.8182], ~w(u38) = [1 0.8182 1 1]
W(v3,u52): ~w(v3) = [1 1 1], ~w(u52) = [1 1 1]
See Section 5.5.4 for a detailed explanation of lexical semantic vector derivation.
The WordNet::Similarity service6 was used to obtain the path length between the

6Available at http://wn-similarity.sourceforge.net/

197

Chapter 8. Evaluation of Matching and Discovery Techniques

compared words and depth of the common subsumer, and replaces those in Section
5.7.

Word order vectors were obtained as in the following example. Consider the
joint word set W(v3,u38) = {Update Client Register Customer} and its associated joint
word order vector ~O(v3,u38) = [1 2 3 4]. The word order vector for v3 is ~o(v3) =

[1 2 3 2]. The first three entries in ~o(v3) relate to words in `(v3), the last entry
(associated to the word Customer) is not in `(v3), but the most similar word is Client,
and consequently the last entry in ~o(v3) is the index of Client in ~O. Analogously for
u38, ~o(u38) = [1 4 3 4]. After calculating the lexical semantic vector similarities and
word order vector similarities, the label similarity between `(v3) from the pattern
Validate Form in Figure 8.11 and each of the ”matched” labels associated with vertices
in the process model from Figure 8.10 was calculated according to Equation 5.2. It
was considered a ρ = 0.85 according to the experimental findings in [Li 2006]. Thus,
simlabel(`(v3), `(u25)) = 0.8154,
simlabel(`(v3), `(u38)) = 0.9523, and
simlabel(`(v3), `(u52)) = 1.0000.

After repeating all previous steps for all vertices in the model and pattern graphs,
successful individual vertex matches start an expansion stage in a breadth first search
manner until the final (complete or partial) pattern instances are identified in the
model graph. Elements in the model from Figure 8.11 highlighted in light-grey and
dark-grey are the initial matched vertices. The same case explained here is also
described in [Gacitua-Decar 2009a], for more details see the previous reference.

8.6 Experiments - Frequent Subgraph Discovery

Pattern matching aims to identify instances of a known pattern in a model. Graph-
based pattern discovery aims to find frequent subgraphs within a given graph. For
process-centric models, Chapter 6 proposes a frequent subgraph discovery algorithm
based on the graph pattern matching algorithms in Chapter 5. This section is divided
into two. First, an example to explain the type of results generated by the algorithm
is given and second, a description of an experiment exploring the influence of the
number of available labels for the frequent subgraph discovery task is provided.
In the experiment, random labels from a fixed number of different labels can be
assigned to vertices in the target processes.

8.6.1 Case to explain the algorithm’s results

Consider the process model and associated graph in Figure 8.12, the target graph of
the pattern discovery algorithm. The model contains two maximum substructures

198

8.6. Experiments - Frequent Subgraph Discovery

repeated more than two times. The frequency of the substructures indicates an op-
portunity for potential reuse (at process level or the underlying software support).
For a graph of this size, finding substructures by simple inspection of the model
could be less complicated, but for models with numerous elements and hierarchi-
cally arranged substructures, automated support could be required.

Figure 8.12: Process model and associated graph (process) model.

The proposed algorithm, implemented in function FindPatterns4 in Appendix
D, automates the task by taking the model (M), generating temporal (potential) pat-
terns based on the expansion of each vertex in M, and matching them with the rest of

199

Chapter 8. Evaluation of Matching and Discovery Techniques

the model. The function testDiscovery1 in Appendix D (that uses FindPatterns4)
allows us to discover frequent patterns and to visualise the results in a graph model.
The results are two matrices – ScoreFoundPatterns (SFPM), FreqMatrix (FM) – and
two graphical representations of the model - a directed and an undirected version -
with the discovered patterns highlighted.

The rows in both matrices (SFPM and FM) indicate the indexes of vertices in
the undirected version of the graph model. Columns in SFPM indicate size scores
of discovered patterns. A particular entry in the matrix would indicate the size
score of a vertex u in M for a particular pattern size. This size score refers to
the number of vertices of the discovered pattern where u belongs. If u is not an
element of a discovered pattern, then the score equals zero. Two input parame-
ters modulate the search of frequent subgraphs in M. In function FindPatterns4,
they are indicated as stepsPattern and Threshold. The former defines the size
of the discovered pattern by indicating the amount of times a temporal pattern
is expanded to initiate a search across the model graph. The latter indicates a
threshold value for the vertex matching step. This is especially relevant in se-
mantic vertex matching. For tests ran in this example, the threshold was set to
one (indicating only exact vertex matches are allowed) and the stepsPattern vari-
able was varied from one to four – i.e., the tests would indicate if patterns of
size between 1 · min[In/Out − degree(u), u ∈ M] and 1 · max[In/Out − degree(u)]
to 4 · min[In/Out− degree(u), u ∈ M] and 4 · max[In/Out− degree(u)] would exist
in M. Columns in FM indicate the relative frequency of different size patterns cre-
ated from each vertex in the model. A particular entry of the matrix, associated to a
vertex u in the model, refers to how many times a pattern originated in u and with a
size relative to the number of expansion steps (regulated with stepsPattern) occurs
in the model. For instance, for the entry indicating a frequency equal to two, for a
vertex u in a specific row of matrix FM and fourth column, it would mean that a
pattern created from u, which is expanded three times (fourth column), is two times
in the model.

Figure 8.13 shows the results indicated in FM for subgraphs (potential patterns)
centered on each model graph vertex. For zero expansion steps (i.e., a potential
pattern would contain only one vertex) all vertices appear in FM with at least a
value equal to one. For four expansion steps, there are no vertices that can derive a
pattern which would appear more than two times. The closest are the vertices from
the undirected version of the model representing the edges connecting G4 to T20
and G4 to T10, which are more or less in the graph centre. Given the size of the
model and the restriction of four expansion steps, patterns which are created from
the graph centre are more likely to be at least two times in the graph.

Figure 8.14 shows only those vertices that can generate patterns occurring more

200

8.6. Experiments - Frequent Subgraph Discovery

Figure 8.13: Frequency of subgraphs (potential patterns) centered in each model
graph vertex.

201

Chapter 8. Evaluation of Matching and Discovery Techniques

than two times in the model and whose size would be defined by one, two or three
steps of expansion. The results indicate that there are three instances of a subgraph
generated by expanding in one step a vertex from the undirected version of the
model representing the edge connecting T3 to T6 (named here Pattern A), and two
instances of a subgraph generated by expanding in three steps a vertex from the
undirected version of the model representing the edge connecting T7 to T8 (named
here Pattern B). The graphic also indicates that subgraphs of the Pattern B centred
in T7, T8 created with two expansion steps would occur two times in the model.
The same holds for subgraphs of the Pattern B created with one expansion step and
centered in the edges connecting T4 to T7, G3 to T4 and T8 to G3.

Results of the pattern discovery algorithm for one expansion step and frequency
of discovered patterns greater than two is visualised in Figure 8.15. If the discovered
patterns would have been known beforehand, the pattern matching algorithm ex-
plained in the previous sections could be used to match them automatically. Results
of matching four given patterns (see Figure 8.16), including the discovered Pattern A
and B are shown in Figure 8.17.

8.6.2 Effects of Varying the Size of the Vertex Descriptors’ Set

The discovery of frequently occurring substructures on large scale graphs represent-
ing process-centric models can be used as an instrument to guide the definition of
reusable process sections as early designs of process-centric services. Explicit (trace)
links between discovered frequent process patterns and existing software compo-
nents can provide information of potential reuse at software levels. Process-centric
services, as architecture elements between process and software layers can be de-
signed taking the guidelines of the discovered (frequent) process patterns to enhance
services reuse. For example, see Figure C.18 in Appendix C illustrating a possible
implementation of the Loan to Client pattern (from the LM case study in the previous
section) as a service that is based on functionality available from existing applica-
tions.

One of the aspects to consider when designing services is the favorable (or unfa-
vorable) characteristics they have when they are composed with other services. For
instance, the influence of a single service on the performance of a service composi-
tion. Composite services involving numerous granular services tend to have a worse
performance than those composed of less and more granular services. If frequent
process patterns are considered as guidelines to design reusable services, the size
and frequency of them are two relevant aspects to take into account. The more fre-
quently a pattern occurs, the more chances it will be considered as a guideline to
design a potentially more reusable service. Also, the higher the frequency of the

202

8.6. Experiments - Frequent Subgraph Discovery

Figure 8.14: Frequency results for subgraphs appearing more than two times in the
graph model.

203

Chapter 8. Evaluation of Matching and Discovery Techniques

Figure 8.15: Visualisation - in GraphViz, Section 8.7.3 - of pattern discovery algo-
rithm results. One expansion step and frequency greater than two.

Figure 8.16: Sample patterns, including discovered Pattern A and B.

204

8.6. Experiments - Frequent Subgraph Discovery

Figure 8.17: Results of matching known patterns, including those discovered.

205

Chapter 8. Evaluation of Matching and Discovery Techniques

pattern, the more probable it is that the granularity of the service derived from this
pattern would be smaller. When using this strategy to define all services (services
based on highly frequent patterns whose size is probably small), it can be expected
that the global performance of a service composition involving several of these fine
granular services is worse than a composition involving a few coarse grained ser-
vices. A tradeoff between reusability and performance should be decided by the
architect. Thus, s/he can decide the values for the size and frequency parameters of
the pattern discovery algorithm.

The following figures show how the frequency of discovered patterns varies with
the number of expansion steps in the discovery algorithm and with the label set size.
Variations of the number of expansion steps are used to investigate the influence
of the patterns size over their frequency. The finding regarding the influence of
changing the label set size over the frequency of discovered patterns is used as an
example of the effects in the patterns’ frequency due to variations in the size of the
sets containing vertex types and attributes.

Figures 8.18 and 8.19 show the results in the frequency matrix for each vertex
in process graphs of 50 and 100 vertices and with label set sizes varying between
10, 20, 50 and 100 different labels. Only frequencies greater than one are shown.
A frequency greater than one indicates that a subgraph derived from expanding
a vertex with its neighbours occurs more than one time in the graph model. A
frequency equal to two indicates that the subgraph occurs two times. A frequency
between one and two, indicates that there is one partial instance of the subgraph
occurring somewhere else in the model graph. In general, when the value of the
frequency is a fraction, it indicates that the subgraph (potential pattern) has one or
more partial instances in the graph model or one (or more) of its instances contain
more than one pattern role instance. The latter refers to the surjection condition that
has been mentioned several times throughout the chapter. From Figures 8.18 and
8.19, it can be estimated that if the the set of possible labels is smaller, there are more
chances of finding more frequent substructures. At the same time, the smaller the
size of the subgraphs (i.e., less expansion steps in the algorithm) the more chances
for the subgraphs (potential patterns) to appear more frequently in the target graph.

Figures 8.20 and 8.21 show the average frequency and +/- values for a 95% confi-
dence interval of potential patterns in two graphs. One graph has 50 vertices and the
other one has 100 vertices. The label set sizes for both graphs vary between 10, 20, 50
and 100 different labels. The figures indicate that patterns with a size greater than
one vertex and appearing more than two times in the graph only occur (in average)
for the target graph having 100 vertices and with the algorithm running with one
expansion step. For algorithm running with two expansion steps, patterns appear in
the graph (on average) less than two times. Note that these results refer to average

206

8.6. Experiments - Frequent Subgraph Discovery

Figure 8.18: Graph M50 - frequency matrix (FM) results greater than one, with
one/two expansion steps.

207

Chapter 8. Evaluation of Matching and Discovery Techniques

Figure 8.19: Graph M100 - frequency matrix (FM) results greater than one, with
one/two expansion steps.

208

8.6. Experiments - Frequent Subgraph Discovery

Figure 8.20: Average frequency of potential patterns. Graph size = 50, 95% confi-
dence interval.

Figure 8.21: Average frequency of potential patterns. Graph size = 100, 95% confi-
dence interval.

209

Chapter 8. Evaluation of Matching and Discovery Techniques

values. Absolute values were already shown in Figures 8.18 and 8.19.

8.7 Tool Support

This section focuses on the implementation and experimental set-up of the pattern
matching and discovery algorithms. Figure 8.22 illustrates an overview of the soft-
ware components used to implement and evaluate the proposed techniques. The pat-
tern matching and discovery techniques are implemented as Matlab functions. Mod-
elling support, model pre-processing steps and pattern documentation facilities are
implemented as a UML-based profile, facilities in a standard CASE tool and model-
to-graph transformation component (see Section 7.3.1 for more details). Graph gen-
eration is implemented in Matlab functions. Graph visualisation support considers an
external tool (GraphViz). Elements framed as extensions illustrate the capabilities to
extend the current tool support. Components framed in dotted lines are concrete
examples of new components extending the framework. A lexical semantic network
(WordNet) and the word similarity service (Wordnet::Similarity) are external com-
ponents used during the evaluation.

Figure 8.22: Tool chain support.

210

8.7. Tool Support

8.7.1 Matlab Functions for Matching, Discovering and Experimental En-
vironment

The proposed techniques (algorithms) are implemented as a set of Matlab functions
available as m-files7. Appendix D describes the main m-files pattern matching and
discovery functions. A number of complementary functions to manipulate matrices
and to provide the experimental environment are also described in the appendix.
For example, they provide functionality to get the neighbours of a subgraph, to
transform a graph from directed to undirected or vice versa or to visualise the results
of a matching or discovery process.

8.7.2 Label Similarity

Semantic matching of label vertices is used during vertex matching. This func-
tionality is external to Matlab. Initial experiments used WordNet::Similarity
[Pedersen 2008] to obtain information about words (concepts) contained in a lexi-
cal semantic network (Wordnet [Miller 1995]) and for calculating similarity between
words. Currently an extension using OntoLancs [Gacitua 2008] is being developed
and its use is discussed in Section 10.3.2. OntoLancs allows to compose different NLP
techniques in a single framework, which is suitable for several approaches that can be
required during vertex matching in the LABAS framework. OntoLancs uses graphs
described in GraphML [GraphML 2010], which allows a simple XML representation
that includes attributes and types for graph vertices. The next section describes a
function to generate random process graphs. The function, matrand2, was written in
a Matlab script. For graphs generated with matrand2, a basic function to transform
graphs created with matrand2 to graphs described using the GraphML format was
created for initial experimentations. The transformation function, GraMat_to_GraML,
is included in Appendix D.

8.7.3 Graphs Generation and Visualisation

Part of the experimental evaluation uses randomly generated graphs. These are a
special type of graphs whose vertices have a bounded in/out-degree and they have
source and sink vertices representing initial and end process events. These type of
graphs are so-called random process graphs in this work. A Matlab function (matrand2)
generates random process graphs based on created adjacency matrices and type and
attribute vectors representing process graphs. The function implements different
ways to create edges between vertices. The default alternative creates an edge be-
tween each pair of vertices with probability 1− (1/sz), where sz is the number of

7www.computing.dcu.ie/~vgacitua/Thesis/mFiles.zip

211

www.computing.dcu.ie/~vgacitua/Thesis/mFiles.zip

Chapter 8. Evaluation of Matching and Discovery Techniques

graph vertices. The function does not ensure dead-lock free graphs and in some
rare cases it mights generate disconnected graphs. Graphs involving disconnected
subgraphs are discarded. Cycles that can be potentialy dead-locks represent behav-
ioral errors of actual process descriptions. It is relevant for a graph-based matching
algorithm to be able to detect patterns on graphs that may contain this kind of error
(non-deadlock free cycles) – likely to occur in reality [Awad 2008c].

An external graph visualisation tool can be used to graphically explore the ran-
domly generated process graphs, pattern graphs and matched or discovered patterns
in target graphs. In order to visualise the matched and discovered patterns in graphs
maintained in the Matlab environment, the matches_to_dot, testDiscovery1 and
graph_to_dot5 are used. matches_to_dot and testDiscovery1 use graph_to_dot5

to transform adjacency matrices and attribute/type vectors to a readable format for
GraphViz (.DOT files). graph_to_dot5 is adapted from the existing Matlab script
(graph_to_dot) and it adds facilities to highlight matched edges and vertices in
graphs. Details of the functions graph_to_dot5, matches_to_dot and references are
in Appendix D. Figure 8.15 shows an example of matched patterns in a model graph
visualised in GraphViz.

8.8 Summary

This chapter showed a set of experiments used to evaluate the effectiveness and
efficiency of the proposed techniques for pattern matching and discovery, and a
number of cases to demonstrate the support for end users and semantic aspects that
strengthens the usability and feasibility of the techniques.

Experimental Evaluation. In Section 8.3, the accuracy of the structural aspect of
the pattern matching technique (basis the discovery pattern technique) is evaluated.
Pure accuracy based on the matching results and match accuracy [Melnik 2002] based
on the number of required adjustments in the algorithm results are investigated.
The results show that when trying to identify exact and complete instances of pat-
terns in graph models (where partial matches are not allowed and only a one-to-one
relationship between pattern roles and their instances are allowed) the algorithm’s
match accuracy for positive and negative samples converges to the ideal value (one)
with the increase in size of the target graph, but (pure) accuracy decreases in value.
However, since the algorithm is designed to identify partial matches and to allow a
one-to-many relationship between pattern roles and their instances, in such condi-
tions, the algorithm’s accuracy and match accuracy meet the ideal value (equal to one).
Nevertheless, it is important to note that both measures can be downgraded by the
vertex matching step, where semantic matching can become relevant.

212

8.8. Summary

Section 8.4 described an experiment to derive an estimated measure of the pat-
tern matching algorithm’s processing time. The results showed that the algorithm’s
required time to solve the matching problem increases quadratically with the num-
ber of vertices in the target (undirected) graph (i.e., vertices and edges in a directed
graph). The structure of matched patterns also influences the algorithm’s perfor-
mance. The results suggest the algorithm has advantageous performance charac-
teristics for small and medium size graphs – up to 2000 vertices – that could be
considered for run-time requirements, and it can handle patterns with cycle-like
(or closewalk-like) structures, which are often difficult to detect within a reasonable
processing time otherwise (see details in Sections 2.4, 2.5, 2.6 in the literature review
chapter).

In practice, the results from Section 8.3 indicate that the proposed techniques can
be accurate and simplify the pattern identification tasks that analysts and architects
would otherwise perform in a hand-crafted fashion. Thus, the implementation of the
techniques in tools can assist end users with automated support when performing
pattern identification tasks during process model analysis and pattern-based ser-
vices design. Moreover, considering the results from Section 8.4, it is expected that
the techniques present advantageous performance characteristics for models whose
size fall in the category of sizes for common process-centric models in organisations.
For simple process element descriptions, the processing time could be considered
for run-time requirements. However, complex process element descriptions would
require additional efforts to create efficient semantically enhanced vertex matching
techniques. Additionally, the algorithm required modest time to process pattern
structures that are often considered rather time demanding such as cycle-like struc-
tures. This characteristics make the proposed techniques sufficient for design-time
scenarios and promising for run-time scenarios.

Case for Semantic Vertex Matching. Section 8.5 presents a case to illustrate how
the approach can handle the complexity of the vertex matching step when semantics
is considered. An example involving the matching of labels described in natural
language was presented. In general, to determine if a vertex in a model graph se-
mantically matches a vertex in a pattern graph, the types of the vertices should be
semantically matched and the similarities between common attributes of vertices
should be aggregated. The case in Section 8.5 demonstrates how additional compo-
nents adding semantic support to match vertices can strengthen the feasibility of the
pattern matching and discovery techniques.

Tool Support. Section 8.7 provides an overview of the tool support provided for
the matching and discovery techniques in the context of the LABAS framework.

213

Chapter 8. Evaluation of Matching and Discovery Techniques

Models and patterns created with the LABAS profile and pattern documentation
facilities can be transformed to model graphs and pattern graphs used by the algo-
rithms (see Section 7.3.1). Different modelling languages can be used adding addi-
tional model-to-graph transformation components. Each of these components takes
a model described in a specific modelling language and transforms it into the graph
representation used by the proposed algorithms. Also, additional structural pattern
matching and discovery algorithms can be added to the tool chain support, as well
as external support for semantically enhanced vertex matching and new components
for pre/post-processing models. There are more opportunities to add additional el-
ements to the proposed modelling and techniques environment. This provides a
fertile base to continue with not only theoretical research but experimental research
for graph-based architecture descriptions.

214

Chapter 9

Interviews: State-of-the-Practice in
Process Analysis

Contents
9.1 Overview . 215

9.2 Results of Closed Questions . 216

9.2.1 Profile of Interviewees and Organisations 216

9.2.2 Process and Process Constraints Documentation and Notation . 217

9.2.3 Compliance with and Type of Process Constraints - Including
Process Patterns) . 222

9.2.4 State and Relevance of Automated Process Analysis 224

9.3 Results of Open Questions . 224

9.3.1 Factors Influencing Non-compliance with Process Constraints
(Question 14) . 225

9.3.2 Comments on general benefits of automating process analysis
activities (Question 21) . 227

9.3.3 Specific comments on benefits of automating pattern matching
and discovery (Question 22) . 227

9.3.4 Comments on other relevant activities that can be automated in
the context of process analysis (Question 23) 229

9.3.5 Open and general comments regarding process analysis (Ques-
tion 24) . 230

9.4 Summary . 231

9.1 Overview

A complementary assessment looks at aspects of the state-of-the-practice with re-
gard to process analysis activities. Process analysis activities are critical to design
solutions for enterprise process and application integration. The assessment consists
of a set of interviews with practitioners whose roles are software architects, business
analysts or managers in the IT domain. From results of the interviews, it is expected

Chapter 9. Interviews: State-of-the-Practice in Process Analysis

to obtain a practitioner’s opinion regarding the relative importance of process pat-
terns and pattern identification techniques and tools to support them in the context
of process analysis and systems design.

The interviews were conducted with IT professionals and a total of 19 valid inter-
view forms were completed. While the interviewees are from a single country, their
background and organisations are diverse (partly with strong international links);
hence, the geographic bias that may affect the generality of results is diminished.
Bias originated to a specific geographic scenario. Valid forms encompass informa-
tion of 34 different organisations where the interviewees are or were working for.
Organisations cover diverse industry domains, involving mining, health care, infor-
mation technologies, government, professional services, insurance and retail.

The interview form, developed with the support of professional experienced in
business and software process modelling, can be reviewed in Appendix E. The inter-
view process involved a 15 minute presentation used to explain the purpose of the
interview and to clarify the semantic of concepts mentioned in the interview form.
The conduction of interviews was completed at the end of March, 2010. Quantita-
tive results are associated to answers to a number of closed questions in the inter-
view form. Note that results are biased to the interviewees’ opinions and therefore,
given the number of interviews, the assessment provides an opinion type of result.
Open questions provide qualitative information and suggestions to the overall con-
text where this work is positioned.

The next section explains the results of the interview process separated in results
of closed and open questions.

9.2 Results of Closed Questions

The following figures and associated explanations refer to the results of closed ques-
tions. Some closed questions contain space to comments used to clarify the selected
answers.

9.2.1 Profile of Interviewees and Organisations

Interviewee’s profile. Figure 9.1.B shows a summarised profile of the interviewees
containing their roles within organisations (question 1) and the results of an auto-
assessment regarding their expertise for modelling processes and process constraints
(questions 4 and 5). Interviewees are mostly managers and business analysts with
medium- to advanced process-modelling knowledge, including process patterns.
Note that it was agreed during the interview process that the term process constraints
was an umbrella term capturing the ideas behind the concept of process pattern,

216

9.2. Results of Closed Questions

business process regulation, business process rule, best practices and procedure. The
term refers to constraints on how processes are structured, how process elements are
described (semantic) and constraints over data values associated to attributes from
process elements. This umbrella term was used to facilitate communication and it
captures the central concept of (process) patterns in this thesis.

Organisation’s profile. Figure 9.1.A shows the distribution of the organisations’
size and geographical locations (questions 2 and 3). The organisations are mostly
large (more than 5000 employees) and have global presence. The organisational units
where the interviewees belong to are directly (60%) or occasionally (40%) involved
with process model analysis activities. Common process model analysis activities
are explained to the interviewees prior to completion of the interview form.

Relation of the interviewee with process analysis activities. Figure 9.2 comple-
ments the previous Figure 9.1 with information regarding the interviewees’ famil-
iarity to (question 7) and involvement with (question 19) specific process analysis
activities. Beyond the activities mentioned in the interview form, the interviewees
referred to other activities during the analysis of process descriptions, among the
most mentioned are process simulation and tests as feedback to process re-design.
Process patterns were often related to best practices, to means for documenting pro-
cedures and to common rules and regulations across processes.

Relative importance of process analysis and design activities in organisations.
Figure 9.3 indicates if the organisations consider or do not consider dedicated roles
or activities to analyse and design processes and process constraints.

9.2.2 Process and Process Constraints Documentation and Notation

Sources of process model documentation. Figure 9.4 shows activities and initia-
tives that are sources of process documentation in the organisations where the in-
terviewees are working or previously worked (question 8). Besides the options in
the interview form, some interviewees commented that the design of new business
processes, process externalisation and certification are other sources of process docu-
mentation. Given the nature of the documentation sources, it is expected that process
model documents are at a high level of abstraction (further from implementation).

Textual versus graphical documentation. Figure 9.5 shows to the percentages of
textual versus graphical processes and process constraints documentation. A Likert
scale type from one to five is utilised – where one indicates only textual and five

217

Chapter 9. Interviews: State-of-the-Practice in Process Analysis

Figure 9.1: Organisation and interviewees profiles.

218

9.2. Results of Closed Questions

Figure 9.2: Interviewees’ familiarity to and involvement with process analysis activ-
ities.

Figure 9.3: Existence of dedicated roles/activites for process analysis and design.

219

Chapter 9. Interviews: State-of-the-Practice in Process Analysis

Figure 9.4: Sources of process documentation.

indicates only graphical. The results show that often there is a mixture between tex-
tual and graphical documentation, where textual documentation predominates over
graphical one. This results suggest that the techniques proposed in this work should
reinforce the semantic analysis aspect to support analysis of textual documentation.

Figure 9.5: Textual versus graphical documentation of processes and process con-
straints.

220

9.2. Results of Closed Questions

Graphical modelling notations. Graphical documentation can involve the use of
different process modelling notations. Figure 9.6 indicates the percentages of utilised
modelling notations (questions 10 and 17). Among the options are BPMN, UML
activity diagrams, EPC, IDEF0/3, graphical support for WS-BPEL. Enhancements to
these notations to capture process constraints were provided as part of the options
for process constraints documentation. Beside the options provided in the interview
form, the interviewees indicated that they also use more informal graphical notations
based on boxes (representing process elements) and arrows to connect them. For
all indicated notations, there are ways to transform them to graph-based process
documentation.

Figure 9.6: Modelling notation for processes and process constraints documentation.

Complexity of graphical process models in terms of its size and number. Figure
9.7 refers to estimations in the amount of activities per process model document and
the amount of process model documents in the organisations where the interviewees
are working or previously worked. More than 75% of the organisations have between
5 and 50 process model documents, while only 15% have more than 100 process
model documents. Almost 60% of the organisations have process model documents

221

Chapter 9. Interviews: State-of-the-Practice in Process Analysis

containing between 5 and 15 activities, while almost 40% have more than 15 activities
per process model document. The results indicate that, in general, the complexity
of process models in organisations is relatively moderate with commonly 5 to 20
process model documents with 5 to 10 activities per document. For this work, target
organisations for the proposed techniques would be those in the upper results – i.e.,
organisations with (approximately) more than 100 process model documents and
more than 15 activities per document – involving approximately 1500 elements (at
the minimum) to be analysed.

Figure 9.7: Estimated number of process model documents and activities per docu-
ment.

9.2.3 Compliance with and Type of Process Constraints - Including Pro-
cess Patterns)

Obligation to comply with process constraints. Figure 9.8 refers to the estimated
frequency (from a daily basis to never) to which employees are required to comply
with process constraints.

Types of process constraints. Figure 9.9 shows the percentage of process con-
straints types considered by the interviewees. Four types of constraints were in-
dicated in the interview form. Structural constraints, involving for example the
ordering of process elements; constraints in data values associated to attributes in
process elements, for instance, the cost of an activity cannot be more than a speci-
fied amount; time constraints, for example, an activity or decision can not be longer
than a specified time period; and semantic constraints, restricting the meaning of
process element types and attributes according to specific domains. The latter can
be associated to the type- and attribute- sets limited to and structured according to
a determined ontology.

222

9.2. Results of Closed Questions

Figure 9.8: Obligation to comply with process constraints.

Figure 9.9: Type of process constraints.

223

Chapter 9. Interviews: State-of-the-Practice in Process Analysis

9.2.4 State and Relevance of Automated Process Analysis

Automated process analysis activities. Figure 9.10 shows the degree of automation
of analysis activities performed by interviewees. A Likert scale type from one to five
indicates completely automated to completely manual, respectively. While most of
the activities are manually performed, process model verification and auditing are in
a few cases completely automated. Two answers indicate usage of pattern matching
and discovery with a high degree of automated support. One of answers refers to
specific sets of process constraints related to security risks that can be interpreted
as domain-specific process patterns. For the other answer, the interviewee did not
provide comments on how automation was achieved. Also, process simulation was
one of the additional activities seen by the interviewees as an activity possible to
automate, providing scores between three and five.

Figure 9.10: Degree of automation in process analysis activities.

Finally, Figure 9.11 shows the interviewees’ opinion regarding the possibility to
automate (to some degree) the previously mentioned process analysis tasks. While
most interviewees strongly agree, some of them indicated that in the organisations
where they work or previously worked, there is not enough maturity and exper-
tise regarding concepts related to process modelling, and therefore they think tools
would be useful only after people in the organisation have the expertise to use them.

9.3 Results of Open Questions

The next sections refer to answers for questions 14 and 21 to 24 in the interview
form. They involve comments regarding the factors influencing non-compliance with
process constraints – including gaps between process patterns and models (question

224

9.3. Results of Open Questions

Figure 9.11: Utility of automating process analysis activities.

14), comments on general benefits of automating process analysis activities (question
21), specific comments on benefits of automating pattern matching and discovery
(question 22), comments on other relevant activities that can be automated in the
context of process analysis (question 23) and open and general opinions regarding
process analysis (question 24).

9.3.1 Factors Influencing Non-compliance with Process Constraints
(Question 14)

Most interviewees referred to business rules and best practices at the process level
at the time of using the umbrella term process constraints. The umbrella term in-
cludes the concept of process pattern as defined in this work. Best practices can
be documented as process patterns (see for example the case study in Section 8.5).
Business rules can refer to constraints in the process structure, the semantic of pro-
cess elements and attribute values [Lu 2008], [Awad 2009]. For instance, constraints
to attribute values in process elements such as decision points – controlling the flow
of information in a process – are commonly related to the business rules term. Busi-
ness rules applying to business processes in the context of process compliance can
be associated to process patterns and anti-patterns [Kharbili 2008] (e.g., the com-
pliance patterns in [Ghose 2008], and the patterns/anti patterns for compliance in
[Awad 2010]). Hence, the comments in this section apply to the process pattern
notion of this work.

Almost half of the interview think that process constraints are often defined in-

225

Chapter 9. Interviews: State-of-the-Practice in Process Analysis

formally and not enforced or embedded in existing processes, even those already
automated (e.g., in workflows). Also, even if process constraints are in some way
documented or more formally enforced, changes affecting them are not always im-
plemented opportunely and, therefore, the original enforced constraints tend to lose
their utility. A representative answer for this generalised opinion is one from a
project manager from the IT industry:

Almost all process constraints are implicit in the organisation culture or defined
as informal best practices among employees; they are commonly overlooked or
satisfied on an ad-hoc basis. Few process constraints are defined formally and
they sometimes introduce delays in the process due to increased workload. In
some cases the cost of non-compliance is comparable or less than the cost of
delaying the process.

Note that some other answers indicated that there are justifications for maintain-
ing process constraint documentation informal. For example, the opinion from a
manager in the mining industry:

Some process constraints may have exceptions to be satisfied, which are defined
in an ad-hoc manner by high-level roles in the organisation. This is normally not
documented or embedded in automated processes. They (exceptions) often have a
strategic origin.

Other two frequently mentioned factors for non-compliance (more than a third
of the interviewees mentioned them) are:

• There is a believe among employees that there is a high correlation between
increase in workload and increase of compliance level with best practices and
business rules. Non-compliance is justified by reductions in process delays and
improvements of the process performance.

• Existing process constraints were defined without a deep understanding of the
actual processes and, therefore, they can be often more restrictive than what
can possibly be implemented in practice. This is common to process constraints
defined by organisational roles or units that do not perform the process. It is
relevant to identify the root causes for non-compliance.

Other mentioned factors indicate that:

• For automated processes, a non-adequate integration between the process ex-
ecution engine and the business rule engine can influence the satisfaction of
implemented business rules negatively.

• Time constraints are often violated in some health care institutions due to exe-
cution of redundant tasks.

226

9.3. Results of Open Questions

• In some organisations, constraints are associated to roles instead to processes.
Compliance with constraints would depend on incentives and sanctions de-
fined for organisational roles in relation to the satisfaction and violation of
constraints.

• Process constraints that are not enforced in processes and rely on the employees
responsibility to comply with them, normally create increased costs of training
in organisation with high levels of staff rotation and low levels of compliance.

• Frequent changes in business rules and non-automatic updates make them
more difficult to enforce in implemented processes.

9.3.2 Comments on general benefits of automating process analysis activ-
ities (Question 21)

A generalised opinion is that tool support helping to automate process analysis ac-
tivities can reduce time and human errors. Emphasis on model verification and
auditing was frequent among the answers. Also, more than half of the intervie-
wees indicated that there is a lack of process documentation in organisations and
therefore tool support for analysis activities would be more appreciated when large
volumes of documentation are available. Specific comments on pattern matching
and discovery activities were discussed in more details in the next question.

9.3.3 Specific comments on benefits of automating pattern matching and
discovery (Question 22)

This question specifically target the opinion of the interviewees with regard to the
benefits of automating pattern matching and discovery tasks. The benefits frequently
mentioned among interviewees, ordered from higher to lower frequency, are:

• Automating pattern matching can help to identify deviations from norms and
procedures defined as process patterns. This was specially emphasised for reg-
ulations in health care institutions (AUGE) and several organisations involved
in certification processes that involve compliance to standard processes (e.g.,
ISO, ITIL).

• Automating pattern matching and discovery can help to identify opportunities
of reuse at high- and low-level processes. This can reduce costs of support-
ing software by avoiding redundant implementations. The domain of reuse
ranges between different abstraction levels. It was mentioned that there are
common business processes across organisational units, also similar low level
implemented processes (e.g., similar composite services across software devel-
opment projects) and similar processes trying to implement a standard process

227

Chapter 9. Interviews: State-of-the-Practice in Process Analysis

(best practice) across companies in the same industry domain. Among the
domains mentioned by interviewees were mining, health care, retail and insur-
ance domains.

• Automated pattern matching and discovery was defined as a critical element
to facilitate process improvement through re-design. In several occasions, it
was mentioned that tool support to simulate or analyse the impact of changes
on a pattern-based re-designed process would be of great utility. Process sim-
ulation would provide early information about possible process re-designs. A
re-designed process would incorporate patterns that previously were only par-
tially instantiated and possibly would involve the elimination of redundant
process sections associated with discovered patterns. Feedback between a pat-
tern matching and discovery stage and a simulation stage would converge to
an improved process design.
One interviewee mentioned a process re-design initiative based on discovered
patterns – in that case named frequent sub-processes – that took a significant
amount of human resources and time. Tool support after process documenta-
tion would have been clearly appreciated.
Another interviewee mentioned that reuse of automated low-level processes (in
this case implemented as web services) across software development projects
was important in the selection of strategic partners for software development.
The organisation works with external companies to develop the software sup-
port for the business operation. External software development companies
could receive a higher payment if they do not reuse previously implemented
services and charge for new implementations. Companies willing to reuse pre-
viously implemented (process-centric) services by arguing they could improve
delivery times were considered of a higher strategic value. So, process-centric
service reuse was seen as an strategic value for the partnership and the long-
term relationship between provider and client companies.

• The interviewees referred to the identification of bad practices (or anti-patterns)
an activity as relevant as the identification of best practices. However, there was
no specific agreement on how these bad practices (or anti-patterns) could be
discovered.

• Automated pattern matching and discovery should be accompanied by tool
support for patterns storage and organisation.

• Pattern discovery could help to identify internal best practices, but also redun-
dancies.

• The more complex and large the processes being analysed are, the more useful
the tool support for automated pattern matching and discovery is.

• It would be more useful to discover recurrent process events associated to im-

228

9.3. Results of Open Questions

proved business objectives (e.g., sales, reduced costs) than discovering redun-
dant process structures.

• It would be helpful to obtain automated suggestions for where else a recently
implemented pattern could be applied.

• It could be possible misleading if the documented processes were not correct
or far removed from reality.

9.3.4 Comments on other relevant activities that can be automated in the
context of process analysis (Question 23)

Comments indicate other relevant activities that can be automated in the context of
process analysis but that were not mentioned in the interview form (see mentioned
activities in Figure 9.2). Comments, ordered from higher to lower frequency, are
indicated below.

• Process simulation facilities to investigate changes in processes before imple-
mentation. Also, feedback from possibly monitored processes.

• Monitoring of key variables associated to processes and the consolidation of
these variables in aggregated reports that summarise the dynamic of process
variables in determined periods of time. A special emphasis was viewed for re-
ports associated to process costing and its utility to define budgets for software
support and development. A desired characteristic for process monitoring fa-
cilities is the possibility of monitoring multi-dimensional goals.

• Automated evaluation of risk at process level by dynamically identifying events
patterns.

• Automated process discovery by tracing back relevant steps to create prod-
ucts. Instrumentation would focus on steps relevant to the products creation
more than all transactions associated to information flows in processes. This
could reduce the amount of logs used to discover processes, but could loose
information that can reveal process inefficiencies, such as frequent cycles.

• Support to increase automation during the refinement of high level processes
to implementation (executable processes).

• Automated generation of interrelated process steps influencing the values of
specified process metrics.

• Support to increase automation to transform process constraints specifications
to implemented process constraints in automated processes (e.g., in work-
flows). A standard language closer to natural language is needed to express
process constraints if the organisation wants to make them widely understand-
able among employees.

229

Chapter 9. Interviews: State-of-the-Practice in Process Analysis

9.3.5 Open and general comments regarding process analysis (Question
24)

This last question allows interviewees openly express ideas regarding their general
view on process analysis, even if they were not related to automation or tool support
for process-centric software design. Comments are in no particular order:

• A detailed methodology for process modelling is missing. Recommendations
that define, for example, until what level of abstraction it is necessary to doc-
ument a process in order to be helpful to the final goals (e.g., process imple-
mentation as a workflow, process re-design to reduce costs).

• Documentation of processes is scarce in many organisations. Also, the quality
of documented process models is not always sufficient. Often a process model
reflects a desired process more than the actual process and hence, the identifi-
cation of weaknesses and strengths in the process can be erroneously derived
and interpreted.

• Process analysis tools should be available at low cost and designed not only
for business analysts and architects but for the actual performers of processes.
A widespread use of these type of tools would increase the amount of process
documentation and, even more important, the provision of automated support
for process analysis.

• In some organisations, the cost of generating process documentation is un-
fortunately too high to be justified in comparison to other needs. This is the
situation for several health care institutions.

• Documentation for a single process but generated by different participants re-
quires tools that help with their consolidation into a single process model.

• Several software development projects have a more expensive domain analysis
stage than a developing stage. Automated support to reduce time and costs
in the domain analysis stage is critical for this type of project. This includes
process analysis.

• Automation of any type of process analysis activity would be relevant in organ-
isations that are more process-oriented. A number of organisations are more
role-oriented and the analysis occurs at functional level. Less emphasis is given
to flows of information or processes.

• Automated upgrades of process models after changes are basic to maintain
the value of process documentation. A few non-upgraded models render the
entire set of process models invalid.

• It would be useful to integrate two different kinds of process modelling tools,
one covering information flow-based processes and other targeting physical
process modelling (e.g., modelling of fluids, chemical reactions, material trans-

230

9.4. Summary

portation). This is important in industries that have interrelated productive
and administrative processes, such as in the mining industry.

• Identified patterns (or best practices) require an effective medium to be shared
and reused. Similar to the ideas of service directories, process-level patterns
should have a (central or distributed) location were they can be published and
reused.

• The execution of automated processes separate from business rules enforce-
ment can be relevant to improve the impact of changes in business rules over
the maintenance of implemented processes.

9.4 Summary

This chapter provides the results of a complementary assessment consisting of con-
ducted interviews to a number of analysts, IT architects and managers in the IT
domain.

Interviewees and organisations profile. This work mainly targets large and dis-
tributed organisations that can more likely have challenges regarding processes and
applications integration and possible considering service-centric integration solu-
tions. Most of the interviewees are working or have worked for large and distributed
organisations, where the software support is heterogeneous and where needs for
process automation and compliance to regulations exists.

In general, the interviewees were familiar or directly involved with process anal-
ysis activities. Although their expertise in process matching and discovering tasks
were less than other activities such as process model verification, they recognised
the benefits of performing (and automating) these tasks.

Process and process constraints models. The existence of graphical process model
documentation was not always predominant in contrast to textual support, making
more difficult any attempt to automate process model analysis tasks. However, the
interviewees referred to the increased interest of documenting processes graphically,
for instance, to facilitate the comparison to standards or recommended (process)
practices, and the opportunities that process discovery tools can provide to trace
back relevant process steps to create products – which also generates graphical, often
large, process model documentation.

The graphical notation used to model processes are all graph-based notations
and it is possible to translate them to the graph-based representations referred in
previous chapters. This supports the feasibility of the proposed approach in real
scenarios. The complexity and size of process models can be considered medium,

231

Chapter 9. Interviews: State-of-the-Practice in Process Analysis

with most organisations dealing with at most 750 activities in process models (50
models with 15 activities). However, they recognised that the process models often
were related to high abstraction levels and implementation levels involved many
more process elements that were not documented. This supported the opinion that
process documentation should be improved.

Summary of comments to open questions. From the negative and positive opin-
ions related to the open questions, several aspects can be distinguished.

Negative comments in question 14 have possible solutions. This provides an
opportunity to deliver findings and proposals in academia to the industrial envi-
ronment. For example, a more rigorous and formal documentation of process con-
straints (for instance, in the form of process patterns and anti-patterns) can help to
define more unambiguously process constraints. Its implementation and enforce-
ment in processes can go from high-level designs used in the strategic definition
of the business operation to lower implementation levels. At this level, mentioned
problems such as a deficient integration between the process execution engine and
business rule engine is a purely technical problem that can be addressed at appli-
cation integration level. Maintaining processes and their constraints enforced can
be facilitated with process automation and run-time detection of process constraints
violation. Automated process (anti-)pattern identification can assist the detection of
process constraints violation and also foreground opportunities to apply a desired
pattern. The future work section (Section 10.3.2) refers to extensions of the pro-
posed pattern identification techniques to a run-time scenario. Here the focus was
on design-time concerns. Additionally, updating process constraints automatically
can be supported by an adequate environment for process constraints documen-
tation, with linkages and mediums to propagate changes across involved process
elements and its software support.

A generalised opinion in question 21 is that tool support for automating process
analysis activities can reduce time and human errors. This support the hypothesis
and proposed approach of automating some of the process analysis activities (pro-
cess pattern matching and discovery) to benefit maintainability by reducing human
errors and time during process analysis.

Specific comments with regard to the benefits of automating pattern matching
and discovery tasks (question 22) strongly support the hypothesis of this work, spe-
cially when related to compliance and reusability. For example, the interviewees
mentioned that by automating these tasks they could be assisted during the identifi-
cation of process deviations from norms and procedures, they could obtain sugges-
tions for where else a recently implemented pattern could be applied, and if there is
redundant software support associated to similar processes helping to reduce costs.

232

9.4. Summary

The answers from question 23 provide comments on other relevant activities that
can be automated in the context of process analysis were provided. An interesting
line of future research based on these comments would be pattern-based process
simulation and monitoring in a close-loop involving process analysis with simula-
tions, process modification, implementation, monitoring and analysis again. This
could be considered in a design-time setting but also in a run-time scenario, where
process adaptation towards a desired process state could be assisted. More details
are provided in the future work section of the next chapter.

Thanks. The information provided in this chapter was possible thanks to - in
alphabetical order - Paula Aceituno, Alicia Balbontin, Miguel Barrera, Jorge Car-
vallo, Fabiola Castillo, Maricel Contreras, Felipe Cors, Cristian Diaz, Sandra Estay,
Medardo Folch, Carolina Martinez, Pamela Montanares, Patricio Moya, Ezequiel
Munoz, Ramiro Pinedo, Claudia Reinoso, Viviana Silva, Romina Torres and Hernan
Vidal.

233

Chapter 10

Conclusions

Contents
10.1 Overview . 235

10.2 Summary of the Contribution . 235

10.2.1 Relevance and Focus . 235

10.2.2 Achievements and Practical Implementation 236

10.2.3 Reference to Background Research and Related Work 237

10.2.4 Detailed Contribution . 238

10.3 Discussion and Future Work . 238

10.3.1 Discussion . 239

10.3.2 Future Work . 240

10.1 Overview

This chapter explains the main conclusions of this work and it is separated into two
parts. First, a summary of the contribution is provided, including references to the
aim and focus, the probe of the hypothesis and practical implementation. Second,
a discussion with references to the assumptions taken into consideration, extensions
and application of the achievements to other domains and descriptions of possible
further research are provided.

10.2 Summary of the Contribution

10.2.1 Relevance and Focus

With the increasing need to integrate applications and enterprises as a response to
globalisation building up on interoperability platforms, the focus has been recently
on integrating BPM and SOA in an effort to provide a joint view on business activi-
ties and their underlying IT architecture.

The aim of this work is to contribute techniques to automate and support the
reuse of process-centric architecture and model abstractions to improve the current

Chapter 10. Conclusions

approaches for enterprise SOA design and integration. Guidelines and techniques
supporting enterprise SOA design for processes and applications integration has a
practical impact in organisations, especially benefitting those that have to deal with
the complexity of large and heterogeneous enterprise-wide application architectures
that support their internal and inter-organisational processes. Business operation
(processes) improvement is the visible result of solving the integration problems
and it is what organisations are interested in. Focusing on processes and linking
them to software levels directly targets the organisations’ concerns. Automation and
abstraction were the principles followed to contribute to improved SOA design and
integration methods and techniques. Abstraction at a process level was central in
this work and it was realised in the form of process patterns. Automation of process
pattern matching and discovery provides concrete support that can be implemented
in tools assisting analysts and architects during the development of enterprise SOA
design and integration solutions.

10.2.2 Achievements and Practical Implementation

Throughout the development of the proposed LABAS framework and pattern-based
techniques, and the use of a scenario-based method with case studies and the con-
ducted experimental evaluation, the initial hypothesis was demonstrated. It was
shown that pattern-based techniques used in layered service process models can
benefit maintainability, functional suitability/compliance and traceability of service-
based systems for enterprise processes and application integration. It was demon-
strated in an experimental evaluation that process pattern matching and discovery
can be automated while being effective and efficient. Cases showing how the tech-
niques handle semantic descriptions of process elements and the implemented tool
support strengthened aspects of feasibility and usability. Finally, interviews con-
ducted with practitioners from diverse industry domains reaffirmed the relevance of
the overall focus on processes and automated support during process analysis and
process-centric design.

On the other hand, the pattern matching and discovery techniques, which in this
work were implemented as a prototype chain tool, are possible to implement as part
of open source or commercial tools. A concrete example is the development of a
plug-in for Enterprise Architect tool [SparxSystems 2010]. The tool can be used with
the LABAS framework and patterns can be documented and maintained in a repos-
itory managed by the tool. The plug-in would extend the tool’s functionalities with
support to match patterns from the repository in working models and to discover
new ones from these or other stored models.

236

10.2. Summary of the Contribution

10.2.3 Reference to Background Research and Related Work

The background research and related work in Chapter 2 described approaches and
findings from where this thesis builds up on. Existing SOA design approaches
such as SOMA [Arsanjani 2004] and MSOAM [Erl 2004] can be considered as guide-
lines that structured the proposed LABAS framework. They can benefit from mod-
elling support and explicit traceability provided in LABAS (similar to the work in
[Zhang 2008]) and also from the solutions to document, identify and exploit process
patterns as a medium to reuse design knowledge, complementing the use of solution
patterns as in [Zhang 2009].

Since decades, literature related to process reengineering and management has
considered the idea of reusable process designs associated to recurrent problems in
the operation of businesses (see e.g. [Malone 2003]). Process patterns in this thesis
capture such an idea in the form of reusable modelling (and architecture) elements
at the process model level. Only recently, patterns at this level (processes) have
acquired relevance in software engineering. This is emphasised in the context of
process-centric SOA and BPM.

A number of recent contributions defining business process level abstractions
such as action patterns, workflow patterns, activity patterns were described in Section
2.3.2.2. The concepts of activity patterns based on recurrent functions in [Thom 2009]
and actions patterns in [Smirnov 2009] are close to the concept of process pattern in this
work. Additionally, the work in [Smirnov 2009] provides a solution for uncovering
action patterns in large data collections using association rule mining techniques and
considering information in activity labels. Their aim is to facilitate the use of patterns
to suggest additional actions for a process model.

Reuse of process patterns is a central aspect of this thesis. A solution to identify
process patterns in concrete process models was used to aid the definition of new ser-
vices. Graphs, as a natural representation for process models [Aguilar-Saven 2004],
[Corradini 1996], were the basis to formalise the problem of identifying known and
unknown process patterns in concrete process models. Attributed typed graphs
abstract process models and patterns allowing a process pattern identification solu-
tion to be independent of concrete models and graph vertices to be typed and in-
clude several attributes (e.g., a label, cost, processing time). The problem of pattern
identification (matching and discovery) is thus abstracted to a problem of subgraph
matching and frequent subgraph discovery. Previous works on these two general
problems on graphs provide a foundation to the proposed pattern matching and
discovery algorithms. Section 2.6 describes a number of existing graph matching
and frequent subgraph discovery techniques. The algorithms proposed in this thesis
extend structural-oriented solutions such as in [Bunke 1997] and [Valiente 1997] with

237

Chapter 10. Conclusions

semantic matching at vertex level. This is necessary to capture complex descriptions
of process model elements. Additionally, this thesis considers inexact matching and
pattern elements to be related to more than a single element in a process (beyond
isomorphism).

10.2.4 Detailed Contribution

This work contributes techniques for pattern matching and discovery as a mean to
provide automated support for the identification of process-centric abstractions in-
volved in enterprise SOA design and integration. The focus has been on the analysis
of process-centric models. A pattern-based and layered architectural framework was
proposed to organise and maintain aligned modelling elements involved in the anal-
ysis and design stages of enterprise processes and applications integration projects
based on service architectures. In detail, this work proposed:

• A layered architecture (LABAS) to organise modelling elements and patterns
involved in the integration of enterprise processes and applications. Patterns
can be documented using pattern templates containing graphical models of
pattern configurations. Techniques for using patterns at different layers of the
framework are introduced – pattern recommendation, comparison, modifica-
tion, instantiation, combination, matching, discovery and pattern-based model
refinement. Pattern matching and discovery are further developed.

• A UML profile to model processes, service architectures, application architec-
tures and their interrelations in the context of the LABAS framework.

• A traceability model to maintain trace links between models elements and be-
tween model and pattern elements.

• A graph representation for process and process patterns used by the proposed
algorithms for pattern matching and discovery.

• An algorithm for exact process pattern matching able to find complete and
partial matches in process graphs.

• An algorithm for inexact process pattern matching able to find complete and
partial matches in process graphs.

• An algorithm for hierarchical process pattern matching in process graphs.
• An algorithm for process pattern discovery in process graphs.

10.3 Discussion and Future Work

The previous section referred to the contribution of this work to assist the develop-
ment of service systems for process and application integration systems with auto-
mated support for pattern matching and discovery. There are assumptions (which

238

10.3. Discussion and Future Work

can become possible limitations) and several directions to complement and extend
the results in this work. This section describes some of them.

10.3.1 Discussion

Assumptions. Some of the assumptions that researchers can take when focusing on
models, architectures and solutions to automate tasks related with model analysis
are that models are available, they share a common way to represent their elements
and they are possibly large and complex. Since this work aims to be applied in a
business enterprise environment, the target models are those available in organisa-
tions. Although the experience collected from a number of practitioners in industry
(Chapter 9) indicates that currently the availability of models in enterprises is rather
limited (in terms of the amount of available models, their formality and complexity),
opinions of the interviewed practitioners and observations from industrial reports
such as [Palmer 2009] and [Oracle 2008] indicate that there are positive trends for
an increasing availability of models and a more active use of these models as in-
struments to plan and lead the design and maintenance of enterprise architectures.
Moreover, the increasing availability of tools for monitoring and storing information
about the actual operation of enterprises - e.g., process mining tools [Aalst 2007],
[Aalst 2009a], [Hill 2009] make process models (that can be large and complex) more
and more available.

In addition to model availability, this work assumed the existence of archi-
tecture and model abstractions represented in the form of patterns. The focus
was on process-centric patterns. Even though the use of process-level patterns
has been notably emphasised in recent years, e.g. [Barros 2007], [Thom 2009],
[Smirnov 2009], tools providing support to work with process-level patterns is lim-
ited [Gschwind 2008]. This work proposes a framework for service-centric processes
and applications integration in which patterns receive a central role. Patterns can be
documented, identified and explicitly traced to elements in concrete models where
they are instantiated. However, more effort needs to be made to create the necessary
pattern documentation. This work assumes the existence of documented patterns
and the adoption of modelling facilities to create more pattern documentation in or-
ganisations. The complexity of pattern descriptions and their possible heterogeneity
would influence the effectiveness of the proposed pattern matching and discovery
techniques. In particular, heterogeneous descriptions of model and pattern elements
and the complexity of their semantics would affect the accuracy of the matching
algorithms and the associated processing time.

239

Chapter 10. Conclusions

Extensions and Application to other Domains. The conducted interviews to prac-
titioners from diverse industry domains confirmed the relevance of this work in a
wide organisational spectrum. Opinions from practitioners regarding process anal-
ysis tasks beyond the objectives of this thesis - for instance, process monitoring and
simulation - provide opportunities to extend the scope of this work to problems
whose solutions also have a practical impact.

Other visualised extensions during the development of this work are explained in
the future work section later on this chapter. They involve behaviour-based pattern
instance verification, dynamic pattern matching and discovery, graph clustering for
pattern discovery, pattern-based model augmentation and transformation, extended
semantic similarity for vertex matching and the development of a process model
generator.

The results obtained for the proposed (graph-based) pattern matching and dis-
covery techniques can be transferred to other domains that use graph representations
for models. Graphs are a more intuitive and powerful representation that have been
used in numerous domains. Beyond the focus on processes and application integra-
tion problems, there are other technologies and paradigms such as cloud computing,
programming by demonstration and ontology evolution where the use of graphs and
techniques for pattern matching and discovery could provide beneficial results. Pat-
terns in these domains can represent common and successful service compositions
(cloud computing), knowledge from users recorded in computer-user interactions
(programming by demonstration) and common ontology changes (ontology evolu-
tion). The suggested benefits are reuse and scalability through exploiting the prin-
ciples of abstraction and automation. The main challenges would be addressing the
dynamic nature of graphs in these domains and the semantic involved with graph
elements descriptions.

10.3.2 Future Work

This section describes some directions of future work categorised as ideas for:

• Improved semantic matching and application of patterns - extension of pattern
matching with enhanced semantic vertex matching, pattern-based model aug-
mentation and transformation, behaviour-based pattern instances verification
and the development of a process model generator to provide a publicly avail-
able corpus of process-centric models for comparative analysis;

• Dynamic pattern matching and discovery - adaptation and extension of ap-
proaches for community detection, diffusion in networks and classical graph
clustering techniques to an scenario of dynamic processes; and

240

10.3. Discussion and Future Work

• Process simulation and monitoring - process monitoring with adequate instru-
mentation, application of patterns in models capturing real processes, simulat-
ing processes to predict levels of monitored variables and closing the loop with
constant monitoring to adjust predictions.

10.3.2.1 Extensions for Matching and Application of Patterns

Behaviour-based Pattern Instances Verification. Assuming that patterns and mod-
els are available, the proposed pattern matching algorithms in Chapter 5 can be com-
plemented in the context of the proposed framework with additional verification
functionalities. The idea behind is to check if found pattern instances really behave
as specified in their pattern descriptions. This is particularly interesting when work-
ing with executable process descriptions and patterns guiding the definition of new
services. Considering that the identification of partial instances of process patterns
can suggest the replacement of those partial instances by complete instances and
their associated service-based implementations in processes, it would be interesting
to verify if the complete pattern instances would behave as expected in the particu-
lar process models where they are instantiated. The focus would be on exploring
if a process model can be safely transformed to incorporate a complete instance of
a process pattern. One approach to check safety and adequate pattern instantiation
is to analyse the ability of the transformed process model to be executed without
deadlocks and according to the behaviour described in the pattern documentation.

One idea to check these properties on service-centric process models is to focus
on the interaction perspective of services. This assumes that a participant interacting
in a process is interested in other participants’ behaviour. The boundary defined by
a process pattern instance in a process model can be seen as a boundary defining the
process performed by a special participant – so-called pattern performer. The pattern
performer would be in charge of the execution of the pattern instance. In concrete
models, this pattern performer would represent the set of participants executing the
process steps abstracted by the process pattern configuration and implemented in
the process pattern instance. It is expected for the pattern performer to simulate the
behaviour indicated in its related process pattern configuration.

For executable process models, a process pattern can identify a process-centric
service description. Because process models can identify an infinite set of possible
states, to verify if the behaviour of a service is safe, it would be convenient to have a
finite representation. The concept of an operating guideline (og) in [Lohmann 2007]
can be used for these purposes. The behaviour of compatible process-centric services
to a given service s can be captured in the operation guideline og(s) associated to
the service s. An og is represented by a deterministic annotated automaton, which

241

Chapter 10. Conclusions

simulates all services S = {s1, ..., sn} that can interact safely with s. Suppose a
generic service sP is derived from a process pattern P, and the operating guideline
ogP identifies a set of compatible services SP to the service sP. A set of instances
{PI} of P in a process model would describe a set of services - say {sPI} - which
are variations of the generic service sP. It is expected for any service variation sPIx

in {sPI} to identify a set of compatible services SPIx such that any participant safely
interacting with sP would also interact safely with sPIx. Since operating guidelines
can be represented as a graphs, to check the latter, a graph matching algorithm
could identify if ogP ⊆ ogPIx, indicating that the interactive perspective of a pattern
instance PIx - an its associated service variation SPIx - can simulate the behaviour
indicated by the generic pattern configuration P.

Exploration of the ideas in [Aalst 2010], [Aalst 2009b] and previous work in
[Massuthe 2005], [Lohmann 2007], [Massuthe 2007] are the basis for future work to
verify pattern instances used to guide the definition of new services.

Pattern-based Model Augmentation and Transformation. Business model and
service architecture augmentation, and business model to service architecture trans-
formation were suggested as part of the pattern-based techniques in the proposed
framework (Section 3.3). To implement these techniques, concrete tools for hori-
zonal and vertical model transformations are central. There is a significant amount
of work for graph-based model transformations that can be adapted for processes
and process-centric service architectures. For vertical transformation, direct transla-
tions from business process models to service descriptions are not straightforward,
and existing errors – from the execution point of view – in business process models
should be solved first. Tool support allowing end user interaction may be needed
[Koehler 2008a]. In [Gacitua-Decar 2009b], transformation templates containing pat-
tern dependant transformations are proposed to control and ensure safe transfor-
mation from business process model levels to software (service-centric) architecture
levels. The idea is to provide transformation templates that are consistent with busi-
ness level patterns and associated lower-level service architecture configurations.
A similar approach is described in [Baresi 2006], but extended to a transformation
from the entire (platform independent) business level architecture to a service-based
architecture. The advantages of using a template transformation approach is that
they can be reused across models. Patterns identified in process models can be
directly transformed into sections of a service architecture without requiring the de-
velopment of an specific transformation. However, an incremental integration of
individual pattern-centric transformations should take place. Exploration of how
transformation templates can be combined to create an integrated result expressed
in a coherent service architecture can be a matter of future work. Ideas from pat-

242

10.3. Discussion and Future Work

tern and styles combination, pattern languages [Pahl 2009a], [Buschmann 2007] and
combination of model transformations [Kleppe 2006], [Koehler 2008c] can be inves-
tigated and adapted to transformation template combination.

Semantic Similarity Between Graph Vertices. The proposed pattern matching
techniques involve two main steps, vertex matching and iterative expansion steps.
Vertex matching can involve complex semantic similarity calculations. In this work,
one approach that involved natural language processing was presented. There are
a number of natural language processing techniques that can be investigated in re-
lation to their feasibility in process models. Process elements contain descriptions
that include labels consisting of short sentences and possibly acronyms and abbrevi-
ations. On top of that, these sentences use concepts that are specific to determined
domains. The use of a framework to experiment with ontology learning techniques
[Gacitua 2008] to study different techniques for vertex similarity and abstraction ex-
traction are considered as part of future work.

Process Model Generator. The evaluation of the proposed process pattern match-
ing and discovery techniques or any other technique for process model analysis
would benefit from advanced tools to generate experimental data emulating real
scenarios of process models. A solution to generate graphs whose structure resem-
bles aspects of the structure of process models is suggested in Section 8.7.3. Further
development of a process graph generator could assist in the creation of a public
repository of specialised graphs used to benchmark process model analysis tech-
niques. The generator should have a set of parameters that allow the adjustment of
structural characteristics of process models, a visualisation environment, functional-
ities for statistical analysis and the possibility to incorporate different process model
analysis techniques. Some advances have been provided for architectural models
such in [Varro 2005] and process mining techniques in [Li 2009], [ProM 2009].

10.3.2.2 Dynamic Pattern Matching and Discovery

Clusters detection and spread of information. Matching and discovery of pat-
terns in this work was mainly addressed for static process models. A dynamic en-
vironment would benefit from additional aspects considering run-time changes of
models (graphs). New techniques for dynamic pattern matching can take advan-
tage of both the central ideas proposed for graph-based static pattern matching in
this work and concepts borrowed from spread activation methods in information
retrieval [Crestani 1997], [Cohen 1987], [Faloutsos 1995]. The idea behind it is that
newly found elements to complete a match are identified using information that

243

Chapter 10. Conclusions

is related to already matched elements in partial pattern instances. The relations
between elements in models and their relevance, including those elements already
matched, are dynamic and determined at run time.

Some organisations may not be willing to invest in analysis and documentation
efforts to built a repository with patterns capturing best practices or proven and
successful process-centric designs across projects. However, they can be interested
in monitoring their processes, for instance, to improve key performance indicators
in business operations. Process monitoring tools can report when key performance
indicators in processes are at a desired level, however it is very difficult to determine
what participants of the process, doing what actions, influencing whom and how, are
the critical factors that take the process to a desired performance level or other qual-
ity measurements. The identification of critical configurations in processes that can
lead to desired levels of performance can be seen as a problem of pattern identifica-
tion. There are studies for detecting clusters (or communities) and for studying diffu-
sion in networks [Girvan 2002], [Clauset 2004], [Jure 2010], [Gomez-Rodriguez 2010]
that can be adapted to this scenario of pattern identification.

Community detection in networks considers the communities (or clusters) as
groups of nodes with more and/or better interactions amongst its members than
between its members and the remainder of the network. Approaches studying dif-
fusion in networks attempt to observe the underlying network over which diffusions
and propagations spread. These kind of studies could provide clues to identify the
configurations in processes that could lead to desired levels of performance and
the definition of process-level patterns. Network clusters often present character-
istics of high cohesion and loose coupling [Dongen 2000], which are desired for
(process-centric) services. Studies on diffusion and spreading of information can be
an interesting model to be applied to the identification of critical roles in process
patterns dynamically created in constantly evolving processes. These patterns could
help to re-structure processes and services in adaptable process-centric service ar-
chitectures. In [Jure 2010], the authors focus on the study of information diffusion
and virus propagation. They provide techniques to trace the paths of diffusion and
influence through networks and inferring the networks over which contagions prop-
agate. Given the times when nodes of the network adopt pieces of information or
become infected, they identify the optimal network that best explains the observed
infection times. In a similar fashion, an optimal configuration of process elements
could best explain the dynamics of a desired process phenomenon captured in a
process pattern.

Graph clustering. The proposed solutions for process pattern matching can take
a process model and a process pattern and identify the instances of the process

244

10.3. Discussion and Future Work

pattern in the process model. Instead, pattern discovery addresses the problem of
finding frequently occurring substructures on large-scale process models. A pat-
tern matching-based solution to pattern discovery was proposed in Chapter 6. Al-
ternative graph clustering approaches proposed in other fields can be used to tar-
get improved performance – e.g., [Dongen 2000], [Kuramochi 2005], [Ketkar 2005],
[Schaeffer 2007] in a graph-transaction setting. Such a scenario can become relevant
when the interest is on finding a frequent pattern in a set of graph transactions.
These graphs can refer, for example, to recorded modifications in models, events or
transactions in processes and dynamically created service compositions.

10.3.2.3 Process Simulation and Monitoring

The interviews conducted to complement the evaluation of this work provided ideas
of future work that can result in a practical impact. Process improvement and com-
pliance to process regulations are two relevant activities related to process analysis
and design. When analysing processes and considering the application of patterns
that capture best practices or process regulations, analysts are interested in knowing
the effect of applying the patterns before their implementation. Process simulation
would be central for this task. Prior to that, actual processes can monitored to un-
derstand and register the values of the main variables, inputs and outputs to the
processes. Monitoring requires adequate instrumentation in executable processes or
software supporting operation of organisations. Process simulation involving a pro-
cess model and real values of the main variables associated to the actual process and
its inputs/outputs provide an as-is view of an actual process. Applying a pattern
into a process model generates a modified process model. Simulating the modified
model with the same variables and inputs/outputs of the original process can be
exploited to provide predictions for the behaviour of the process before the imple-
mentation of modifications. After actually applying a pattern that modifies the real
process, process monitoring can provide new information to confirm the predictions
or to adjust the model. Process monitoring and model discovery has been recently
considered by research groups, commercial spin-offs, and companies in the IT sector
such as [ProM 2009], [Futura 2010] [Fujitsu 2008], giving promising opportunities to
apply research associated to pattern-based analysis with monitoring and simulation
in practice.

245

Bibliography

[Aalst 2003] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, vol. 14, no. 1, pages 5–51, 2003.
19

[Aalst 2006] W. M. P. van der Aalst, A. de Medeiros and A. Weijters. Process Equivalence:
Comparing Two Process Models Based on Observed Behavior. In Business Process Man-
agement, pages 129–144. 2006. 30

[Aalst 2007] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F. van Dongen,
A. K. Alves de Medeiros, M. Song and H. M. W. Verbeek. Business process mining: An
industrial application. Inf. Syst., vol. 32, no. 5, pages 713–732, 2007. 30, 147, 239

[Aalst 2009a] W. M. P. van der Aalst. Process-Aware Information Systems: Lessons to Be Learned
from Process Mining. In Transactions on Petri Nets and Other Models of Concurrency
II, volume 5460 of Computer Science, pages 1–26. Springer Berlin - Heidelberg, 2009.
239

[Aalst 2009b] W. M. P. van der Aalst, Arjan Mooij, Christian Stahl and Karsten Wolf. Service
Interaction: Patterns, Formalization, and Analysis. In Formal Methods for Web Services,
volume 5569, pages 42–88. Springer, 2009. 54, 242

[Aalst 2010] W. M.P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl and K. Wolf. Multi-
party Contracts: Agreeing and Implementing Interorganizational Processes. The Computer
Journal, vol. 53, pages 90–106, 2010. 242

[Agrawal 1994] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining As-
sociation Rules in Large Databases. In Proceedings of the 20th International Conference
on Very Large Data Bases. Morgan Kaufmann Publishers Inc., 1994. 20, 39

[Aguilar-Saven 2004] R. S. Ruth Sara Aguilar-Saven. Business process modelling: Review and
framework. International Journal of Production Economics, vol. 90, no. 2, pages 129–
149, 2004. 73, 137, 237

[Aizenbud-Reshef 2006] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin and Y. Shaham-Gafni.
Model traceability. IBM Syst. J., vol. 45, no. 3, pages 515–526, 2006. 69

[Aizenbud-Reshef 2007] Netta Aizenbud-Reshef, Ksenya Kveler and Inbal Ronen. Service
Identification using Combined Structured and Unstructured Legacy Code Analysis. In IBM
Programming Languages and Development Environments Seminar, IBM Haifa Labs,
Israel, 2007. 26

[Aizenbud-Reshef 2009] Netta Aizenbud-Reshef, Ksenya Kveler and Inbal Ronen. Service
Identification in Legacy Source Code Using Structured and Unstructured Analyses (Patent
Application Number 20090222429), 2009. 26

Bibliography

[Albani 2006] A. Albani, J. Dietz and J. Zaha. Identifying Business Components on the Basis of
an Enterprise Ontology. In D. Konstantas, J-P. Bourrieres, M. Leonard and N. Boudjl-
ida, editors, Interoperability of Enterprise Software and Applications, pages 335–347.
Springer, 2006. 26, 129

[Alexander 1977] Christopher Alexander, Sara Ishikawa and Murray Silverstein. A pattern
language: towns, buildings, construction. Oxford University Press, 1977. 16

[Allen 1997] Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Trans. Softw. Eng. Methodol., vol. 6, no. 3, pages 213–249, 1997. 53

[Alonso 2004] G. Alonso, F. Casati, H. Kuno and V. Machiraju. Web services: Concepts,
architectures and applications. Springer Verlag, 2004. 53

[Altova 2008] Altova. MapForce - Graphical Data Mapping, Conversion, and Integration Tool,
2008. Available from: http://www.altova.com/mapforce.html. 175

[Ambler 1998] Scott W. Ambler. Process patterns: Building large scale systems using object
technology, volume 15 of Managing Object Technology. Cambridge Univ. Press, 1998.
19

[Arsanjani 2004] Ali Arsanjani. Service-oriented modeling and architecture, 2004. Avail-
able from: http://www-128.ibm.com/developerworks/webservices/library/

ws-soa-design1/. 13, 14, 237

[Avgeriou 2005] P. Avgeriou and U. Zdun. Architectural patterns revisited - a pattern language.
In 10th European Conference on Pattern Languages of Programs (EuroPlop), pages
1–39, Irsee, Germany, 2005. 17, 19

[Awad 2008a] Ahmed Awad, Gero Decker and Mathias Weske. Efficient Compliance Checking
Using BPMN-Q and Temporal Logic. In Business Process Management, volume 5240,
pages 326–341. Springer, 2008. 32

[Awad 2008b] Ahmed Awad, Artem Polyvyanyy and Mathias Weske. Semantic Querying
of Business Process Models. In 12th International IEEE Enterprise Distributed Object
Computing Conference (EDOC’08), pages 85–94. IEEE Computer Society, 2008. 32,
125

[Awad 2008c] Ahmed Awad and Frank Puhlmann. Structural Detection of Deadlocks in Busi-
ness Process Models. In Business Information Systems, volume 7 of Lecture Notes in
Business Information Processing, pages 239–250. Springer, 2008. 212

[Awad 2009] Ahmed Awad, Matthias Weidlich and Mathias Weske. Specification, Verification
and Explanation of Violation for Data Aware Compliance Rules. In 7th International Con-
ference on Service Oriented Computing, ICSOC-SERVICE WAVE’09, volume 5900 of
LNCS, pages 500–515. Springer, 2009. 225

[Awad 2010] Ahmed Awad and Mathias Weske. Visualization of Compliance Violation in Busi-
ness Process Models. In Business Process Management Workshops. Part 2, volume 43
of LNBIP, pages 182–193. Springer, 2010. 225

248

http://www.altova.com/mapforce.html
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/

Bibliography

[Babar 2004] M. A. Babar. Scenarios, quality attributes, and patterns: capturing and using their
synergistic relationships for product line architectures. In 11th Asia-Pacific Software En-
gineering Conference (APSEC’04), pages 574–578. IEEE, 2004. 59, 62

[Bae 2006] Joonsoo Bae, Ling Liu, James Caverlee and William B. Rouse. Process Mining,
Discovery, and Integration using Distance Measures. In Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS’06), pages 479–488. IEEE Computer Society,
2006. 29, 147

[Baresi 2006] Luciano Baresi, Reiko Heckel, Sebastian Thone and Daniel Varro. Style-based
modeling and refinement of service-oriented architectures. Software and Systems Model-
ing, vol. 5, no. 2, pages 187–207, 2006. 37, 242

[Barros 2007] Oscar Barros. Business process patterns and frameworks: Reusing knowledge in
process innovation. Business Process Management Journal, vol. 13, no. 1, pages 47 –
69, 2007. 19, 20, 54, 143, 239

[Basili 1996] V. R. Basili. The role of experimentation in software engineering: past, current, and
future. In 18th International Conference on Software Engineering (ICSE’96), pages
442–449. IEEE, 1996. 180

[Bass 2004] Len Bass, Paul Clements and Rick Kazman. Software architecture in practice.
Addison-Wesley Professional, second édition, 2004. 51

[Beaver 2005] J. M. Beaver, G. A. Schiavone and J. S. Berrios. Predicting software suitability us-
ing a Bayesian belief network. In Fourth International Conference on Machine Learning
and Applications, pages 82–88. IEEE, 2005. 280

[Beeri 2008] Catriel Beeri, Anat Eyal, Simon Kamenkovich and Tova Milo. Querying business
processes with BP-QL. Information Systems, vol. 33, no. 6, pages 477–507, 2008. 29, 31

[Bengtsson 2004] PerOlof Bengtsson, Nico Lassing, Jan Bosch and Hans van Vliet.
Architecture-level modifiability analysis (ALMA). Journal of Systems and Software,
vol. 69, no. 1-2, pages 129–147, 2004. 141, 143, 144, 146, 147, 161

[Bernus 2003] P. Bernus, L. Nemes and G. Schmidt. Handbook on enterprise architecture.
International Handbooks on Information Systems. Springer, 2003. 24

[Bhatti 2005] Shahid Nazir Bhatti. Why quality?’: ISO 9126 software quality metrics (Functional-
ity) support by UML suite. SIGSOFT Softw. Eng. Notes, vol. 30, no. 2, pages 1–5, 2005.
280

[Blondel 2004] Vincent D. Blondel, Anahi Gajardo, Maureen Heymans, Pierre Senellart and
Paul Van Dooren. A Measure of Similarity between Graph Vertices: Applications to Syn-
onym Extraction and Web Searching. SIAM Review, vol. 46, no. 4, pages 647–666, 2004.
97

[Bottoni 2009] Paolo Bottoni, Esther Guerra and Juan de Lara. Formal Foundation for Pattern-
Based Modelling. In Fundamental Approaches to Software Engineering (FASE’09),
volume 5503 of LNCS, pages 278–293. Springer, 2009. 56

249

Bibliography

[Brahe 2007] Steen Brahe. BPM on Top of SOA: Experiences from the Financial Industry. In
Business Process Management, volume 4714, pages 96–111. Springer, 2007. 12

[Brian 2006] Berenbach Brian and Borotto Gail. Metrics for model driven requirements devel-
opment. In 28th international conference on Software engineering (ICSE’06), pages
445–451, Shanghai, China, 2006. ACM. 280

[Briand 2006] L. C. Briand, Y. Labiche, L. O Sullivan and M. M. Sowka. Automated impact
analysis of UML models. Journal of Systems and Software, vol. 79, no. 3, pages 339–352,
2006. 67

[Bringmann 2008] Bjorn Bringmann and Siegfried Nijssen. What Is Frequent in a Single
Graph?’. In Advances in Knowledge Discovery and Data Mining, volume 5012 of
LNCS, pages 858–863. Springer, 2008. 39, 137

[Bunke 1997] H. Bunke. On a relation between graph edit distance and maximum common sub-
graph. Pattern Recognition Letters, vol. 18, no. 8, pages 689–694, 1997. 31, 36, 237

[Bunke 2005] Horst Bunke, Christophe Irniger and Michel Neuhaus. Graph Matching - Chal-
lenges and Potential Solutions. In Image Analysis and Processing - ICIAP’05, volume
3617 of LNCS, pages 1–10. Springer, 2005. 34, 35, 92

[Buschmann 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal.
Pattern-oriented software architecture: a system of patterns. John Wiley and Sons,
Inc. New York, NY, USA, 1996. 17

[Buschmann 2003] Frank Buschmann and Kevlin Henney. Beyond the Gang of Four. Tutorial at
OOPSLA’03, 2003. Available from: http://www.two-sdg.demon.co.uk/curbralan/

papers/jaoo/BeyondTheGangOfFour.pdf. 57

[Buschmann 2007] Frank Buschmann, Kevlin Henney and Douglas C. Schmidt. Pattern-
oriented software architecture: On patterns and pattern languages. Wiley and Sons,
2007. 17, 22, 55, 56, 63, 143, 144, 243, 288

[Cardoso 2006] J. Cardoso, J. Mendling, G. Neumann and H. Reijers. A Discourse on Com-
plexity of Process Models. In Business Process Management Workshops, volume 4103,
pages 117–128. Springer, 2006. 286

[Cha 2007] Sung-Hyuk Cha. Comprehensive Survey on Distance-Similarity Measures between
Probability Density Functions. International Journal of Mathematical Models and Meth-
ods in Applied Sciences, vol. 1, no. 1, pages 300–307, 2007. 124

[Chen 2005] Hong-Mei Chen, Rick Kazman and Aditya Garg. BITAM: An engineering-
principled method for managing misalignments between business and IT architectures. Sci-
ence of Computer Programming, vol. 57, no. 1, pages 5–26, 2005. 143

[Clauset 2004] A. Clauset, M. E. J. Newman and C. Moore. Finding community structure in
very large networks. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),
vol. 70, no. 6, pages 66111–1, 2004. 244

[Cohen 1987] Paul R. Cohen and Rick Kjeldsen. Information retrieval by constrained spreading
activation in semantic networks. Information Processing & Management, vol. 23, no. 4,
pages 255–268, 1987. 138, 243

250

http://www.two-sdg.demon.co.uk/curbralan/papers/jaoo/BeyondTheGangOfFour.pdf
http://www.two-sdg.demon.co.uk/curbralan/papers/jaoo/BeyondTheGangOfFour.pdf

Bibliography

[Coleman 1994] Don Coleman, Dan Ash, Bruce Lowther and Paul Oman. Using Metrics to
Evaluate Software System Maintainability. Computer, vol. 27, no. 8, pages 44–49, 1994.
282

[Conte 2004] D. Conte, P. Foggia, C. Sansone and M. Vento. Thirty Years of Graph Match-
ing in Pattern Recognition. International Journal of Pattern Recognition & Artificial
Intelligence, vol. 18, no. 3, pages 265–298, 2004. 34, 92, 93, 97, 98, 109

[Cook 1995] Jonathan E. Cook and Alexander L. Wolf. Automating Process Discovery through
Event-Data Analysis. In 17th International Conference on Software Engineering
ICSE’95, pages 73–82. ACM, 1995. 40

[Corradini 1996] A. Corradini, U. Montanari and F. Rossi. Graph processes. Fundam. Inf.,
vol. 26, no. 3-4, pages 241–265, 1996. 73, 237, 269, 272

[Corrales 2006] Juan Corrales, Daniela Grigori and Mokrane Bouzeghoub. BPEL Processes
Matchmaking for Service Discovery. In On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE, pages 237–254. 2006. 27, 28, 31

[Corrales 2008] J. C. Corrales, D. Grigori, M. Bouzeghoub and J. E. Burbano. BeMatch: a plat-
form for matchmaking service behavior models. In 11th Int. Conf. on Extending Database
Technology: Advances in Database Technology, volume 261, pages 695–699, Nantes,
France, 2008. ACM. 27

[Crestani 1997] F. Crestani. Application of Spreading Activation Techniques in Information Re-
trieval. Artificial Intelligence Review, vol. 11, no. 6, pages 453–482, 1997. 138, 243

[Curry 2008] E. Curry and P. Grace. Flexible Self-Management Using the Model-View-Controller
Pattern. Software, IEEE, vol. 25, no. 3, pages 84–90, 2008. 18

[Daniel 2009] F. Daniel, F. Casati, V. D’Andrea, S. Strauch, D. Schumm, F. Leymann, E. Mulo,
U. Zdun, S. Dustdar, A. Sebahi, F. de Marchi and M. Hacid. Business Compliance Gov-
ernance in Service-Oriented Architectures. In 23th Int. Conf. on Advanced Information
Networking and Applications (AINA’09), pages 113–120, Bradford, United Kingdom,
2009. IEEE. 140, 144, 159, 282, 288

[De Antonellis 2003] V. De Antonellis, M. Melchiori and P. Plebani. An approach to Web
Service compatibility in cooperative processes. In Symposium on Applications and the
Internet Workshops, pages 95–100. IEEE, 2003. 29

[de Lara 2007] Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike
Prange and Gabriele Taentzer. Attributed graph transformation with node type inheri-
tance. Theoretical Computer Science, vol. 376, no. 3, pages 139–163, 2007. 76

[Diestel 2005] R. Diestel. Graph theory. Springer, 2005. 82

[Dijkman 2004] R.M. Dijkman and M. Dumas. Service-oriented Design: A Multi-viewpoint
Approach. International Journal of Cooperative Information Systems (IJCIS). Special
Issue on Service Oriented Modeling, vol. 13, no. 4, pages 337–368, 2004. 24

[Dijkman 2009a] Remco Dijkman, Marlon Dumas and Luciano Garcia-Banuelos. Graph
Matching Algorithms for Business Process Model Similarity Search. In Business Process
Management, volume 5701 of LNCS, pages 48–63. Springer, 2009. 30, 31

251

Bibliography

[Dijkman 2009b] R.M. Dijkman, B.F. van Dongen, M. Dumas, R. Kaarik and J. Mendling.
Similarity of Business Process Models: Metrics and Evaluation. Technical report, Eind-
hoven University of Technology, 2009. 30, 31, 125

[Dong 2007] Jing Dong, Yajing Zhao and Tu Peng. Architecture and Design Pattern Discovery
Techniques - A Review. In International Conference on Software Engineering Research
and Practice (SERP), pages 621–627, USA, 2007. 24

[Dongen 2000] Stijn van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht, 2000. 244, 245

[Dongen 2008] Boudewijn F. van Dongen, Remco Dijkman and Jan Mendling. Measuring
Similarity between Business Process Models. In Advanced Information Systems Engi-
neering, volume 5240, pages 450–464. Springer, 2008. 30, 31, 125

[Dorr 1995a] Heiko Dorr. The abstract machine for graph rewriting - supporting a fast implemen-
tation. In Efficient Graph Rewriting and Its Implementation, volume 922 of LNCS,
pages 123–162. Springer, 1995. 39

[Dorr 1995b] Heiko Dorr. UBS-Graph rewriting systems - matching subgraphs in constant time.
In Efficient Graph Rewriting and Its Implementation, volume 922 of LNCS, pages
35–89. Springer, 1995. 39

[Dustdar 2005] Schahram Dustdar and Wolfgang Schreiner. A Survey on Web Services Compo-
sition. International Journal of Web and Grid Services, vol. 1, no. 1, pages 1–30, 2005.
27

[Ehrig 1997] H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner and A. Corra-
dini. Algebraic approaches to graph transformation. Part II: single pushout approach and
comparison with double pushout approach. In Grzegorz Rozenberg, editor, Handbook
of graph grammars and computing by graph transformation, volume I. foundations,
pages 247 – 312. World Scientific Publishing Co., Inc., 1997. 73, 276

[Ehrig 1999a] H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg, editors. Handbook of
graph grammars and computing by graph transformation, volume 2: Applications,
languages and tools. World Scientific, 1999. 269

[Ehrig 1999b] H. Ehrig, M. Gajewsky and F. Parisi-Presicce. Handbook of graph grammars
and computing by graph transformation, volume 3: Concurrency, parallelism, and
distribution. World Scientific, 1999. 32

[Ehrig 2004] Hartmut Ehrig, Ulrike Prange and Gabriele Taentzer. Fundamental Theory for
Typed Attributed Graph Transformation. In Graph Transformations, volume 3256, pages
161–177. Springer, 2004. 269

[Ehrig 2006a] H. Ehrig, K. Ehrig, U. Prange and G. Taentzer. Fundamentals of algebraic
graph transformation. Monographs in Theoretical Computer Science. An EATCS
Series. Springer Berlin Heidelberg, 2006. 37, 89, 275

[Ehrig 2006b] Hartmut Ehrig and Karsten Ehrig. Overview of Formal Concepts for Model Trans-
formations Based on Typed Attributed Graph Transformation. ENTCS, vol. 152, pages 3–22,
2006. 76, 269, 275

252

Bibliography

[Ehrig 2007] Marc Ehrig, Agnes Koschmider and Andreas Oberweis. Measuring Similarity be-
tween Semantic Business Process Models. In John F. Roddick and Annika Hinze, editors,
4th Asia-Pacific Conf. on Conceptual Modelling (APCCM’07), volume 67 of CRPIT,
pages 71–80, Ballarat, Australia, 2007. ACS. 31

[Ehrig 2008] H. Ehrig, K. Ehrig, C. Ermel and U. Prange. Generalized Typed Attributed Graph
Transformation Systems based on Morphisms Changing Type Graphs and Data Signatures.
Technical report, TU Berlin, 2008. 74

[EPN 2010] EPN and NACHA, 2010. Available from: http://www.electronicpayments.

org/. 59

[Eriksson 1998] Hans-Erik Eriksson and Magnus Penker. Business modeling with uml: Busi-
ness patterns at work. John Wiley and Sons, Inc., 1998. 19

[Erl 2004] Thomas Erl. Service-oriented architecture: Concepts, technology, and design.
Prentice Hall, 2004. 13, 25, 49, 93, 129, 237, 284

[Erl 2008] Thomas Erl. Soa design patterns. Prentice Hall - Pearson, 2008. 65, 66, 151, 171,
174, 299

[Ermel 1999] C. Ermel, M. Rudolf and G. Taentzer. The AGG approach: language and environ-
ment. In Handbook of graph grammars and computing by graph transformation: vol.
2: applications, languages, and tools, pages 551–603. World Scientific Publishing Co.,
Inc., 1999. 38

[Erradi 2006] A. Erradi, S. Anand and N. Kulkarni. Evaluation of Strategies for Integrating
Legacy Applications as Services in a Service Oriented Architecture. In A. Sriram, editor,
IEEE Int. Conf. on Services Computing (SCC’06)., pages 257–260. IEEE, 2006. 12

[Eshuis 2007] Rik Eshuis and Paul Grefen. Structural Matching of BPEL Processes. In W. Zim-
mermann, B. Koenig-Ries and C. Pahl, editors, Proceedings of the Fifth European
Conference on Web Services, pages 171–180, Halle, Germany, 2007. IEEE Computer
Society. 28

[Fagan 1976] M. E. Fagan. Design and code inspections to reduce errors in program development.
IBM Syst. J., vol. 15, no. 3, pages 182–211, 1976. 19

[Fahmy 2000] H. Fahmy and R. C. Holt. Software architecture transformations. In Interna-
tional Conference on Software Maintenance (ICSM’00), pages 88–96. IEEE Computer
Society, 2000. 82, 120

[Faloutsos 1995] Christos Faloutsos and Douglas W. Oard. A survey of Information Retrieval
and Filtering Methods. CS-TR-3514. Technical report, University of Maryland, 1995.
138, 243

[Fernandez 2001] Mirtha-Lina Fernandez and Gabriel Valiente. A graph distance metric com-
bining maximum common subgraph and minimum common supergraph. Pattern Recogni-
tion Letters, vol. 22, no. 6-7, pages 753–758, 2001. 36

[Fiala 2005] Jiri Fiala and Daniel Paulusma. A complete complexity classification of the role
assignment problem. Theoretical Computer Science, vol. 349, no. 1, pages 67–81, 2005.
271

253

http://www.electronicpayments.org/
http://www.electronicpayments.org/

Bibliography

[Fiala 2007] Jiri Fiala. Structure And Complexity of Locally Constrained Graph Homomorphisms.
PhD thesis, Charles University, Faculty of Mathematics And Physics, 2007. 269, 272

[Fiala 2008] Jiri Fiala and Jan Kratochvil. Locally constrained graph homomorphisms–structure,
complexity, and applications. Computer Science Review, vol. 2, no. 2, pages 97–111,
2008. 95, 108, 271

[Forgy 1982] Charles L. Forgy. Rete: A fast algorithm for the many pattern-many object pattern
match problem. Artificial Intelligence, vol. 19, no. 1, pages 17–37, 1982. 36

[Fujaba 2010] Fujaba. Fujaba Tool Suite, 2010. Available from: http://www.fujaba.de. 37

[Fujitsu 2008] Fujitsu. Interstage BPM - Business Process Discovery and Visualisation,
2008. Available from: http://www.fujitsu.com/global/services/software/

interstage/bpm/apd.html. 245

[Futura 2010] Futura. Futura Process Intelligence, 2010. Available from: http://www.

futuratech.nl. 245

[Gacitua-Decar 2008a] Veronica Gacitua-Decar and Claus Pahl. Business model driven Service
Architecture Design for Enterprise Application Integration. In Int. Conf. on Business In-
novation and Information Technology. ICBIIT’08, pages 74–85, Dublin, Ireland, 2008.
Logos Verlag. 171

[Gacitua-Decar 2008b] Veronica Gacitua-Decar and Claus Pahl. Towards Pattern-Based Service
Identification. In W. Binder and S. Dustdar, editors, 3rd Workshop on Emerging Web
Services Technology - WEWST’08., pages 15–30, Dublin, Ireland, 2008. 103

[Gacitua-Decar 2009a] Veronica Gacitua-Decar and Claus Pahl. Automatic Business Process
Pattern Matching for Enterprise Services Design. In IEEE World Conference on Services
- II. SERVICES -2’09, pages 111–118. IEEE, 2009. 70, 103, 181, 198

[Gacitua-Decar 2009b] Veronica Gacitua-Decar and Claus Pahl. Ontology-based Patterns for the
Integration of Business Processes and Enterprise Application Architectures. In G. Mentzas,
T. Bouras, P. Gouvas and A. Friesen, editors, Semantic Enterprise Application Inte-
gration. IGI Publishers, Ltd., 2009. 52, 242

[Gacitua-Decar 2009c] Veronica Gacitua-Decar and Claus Pahl. Towards Reuse of Business
Processes Patterns to Design Services. In W. Binder and S. Dustdar, editors, Emerging
Web Services Technology, volume III of Whitestein Series in Software Agent Technologies
and Autonomic Computing, pages 15–36. Springer - Birkhauser, 2009. 64, 70, 74

[Gacitua 2008] Ricardo Gacitua, Pete Sawyer and Paul Rayson. A flexible framework to experi-
ment with ontology learning techniques. Knowledge-Based Systems, vol. 21, no. 3, pages
192–199, 2008. 211, 243

[Gallagher 2006a] Brian Gallagher. Matching structure and semantics: A survey on graph-based
pattern matching. In AAAI Fall Symposium on Capturing and Using Patterns for
Evidence Detection (AAAI FS’06), pages 45–53, Washington, DC, 2006. AAAI Pres.
34, 35

254

http://www.fujaba.de
http://www.fujitsu.com/global/services/software/interstage/bpm/apd.html
http://www.fujitsu.com/global/services/software/interstage/bpm/apd.html
http://www.futuratech.nl
http://www.futuratech.nl

Bibliography

[Gallagher 2006b] Brian Gallagher. The State of the Art in Graph-Based Pattern Matching. Tech-
nical report, Center for Applied Scientific Computing. Lawrence Livermore National
Laboratory, 2006. 34, 98, 109

[Gamma 1993] Erich Gamma, Richard Helm, Ralph E. Johnson and John M. Vlissides. De-
sign Patterns: Abstraction and Reuse of Object-Oriented Design. In Oscar M. Nierstrasz,
editor, 7th European Conference on Object-Oriented Programming, volume 707 of
LNCS, pages 406 – 431, Kaiserslautern, Germany, 1993. Springer. 22, 143

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design
patterns: Elements of reusable object-oriented software. Addison-Wesley Professional
Computing Series, 1995. ix, 16, 17, 79, 80, 151

[Gardner 2003] Tracy Gardner. UML Modelling of Automated Business Processes with a Mapping
to BPEL4WS. In First European Workshop on Web Services and Object Orientation
(EOOWS03), in conjunction with ECOOP03, Darmstadt, Germany, 2003. 14, 169, 174

[Garlan 2006] David Garlan and Bradley Schmerl. Architecture-driven Modelling and Analysis.
In Tony Cant, editor, SCS06, volume 248 of ACM International Conference Proceeding
Series, pages 3–17. Australian Computer Society, Inc., Melbourne, Australia, 2006. 53,
58

[Ghose 2008] Aditya Ghose and George Koliadis. Auditing Business Process Compliance. In
Service-Oriented Computing - ICSOC’07, volume 4749, pages 169–180. Springer,
2008. 144, 159, 225, 282

[Giesecke 2007] Simon Giesecke, Wilhelm Hasselbring and Matthias Riebisch. Classifying
architectural constraints as a basis for software quality assessment. Adv. Eng. Inform.,
vol. 21, no. 2, pages 169–179, 2007. 18, 19

[Girvan 2002] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences of the United States of
America, vol. 99, no. 12, pages 7821–7826, 2002. 244

[Glenn 1988] E. Krasner Glenn and T. Pope Stephen. A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. J. Object Oriented Program., vol. 1,
no. 3, pages 26–49, 1988. 18

[Golani 2003] Mati Golani and Shlomit Pinter. Generating a Process Model from a Process Audit
Log. In Business Process Management, pages 1020–1020. 2003. 39, 137, 181, 184

[Gomes 2003] Maria Cecilia Gomes, Omer F. Rana and Jose C. Cunha. Pattern operators for
grid environments. Sci. Program., vol. 11, no. 3, pages 237–261, 2003. 23

[Gomes 2008] M. C. Gomes, Omer Rana and J. C. Cunha. Extending Grid-Based Workflow Tools
with Patterns/Operators. The International Journal of High Performance Computing
Applications, vol. 22, no. 3, pages 301–318, 2008. 23

[Gomez-Rodriguez 2010] M. Gomez-Rodriguez, J. Leskovec and A. Krause. Inferring Net-
works of Diffusion and Influence. In Proceedings of the 16th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’10), pages 1–10.
ACM, 2010. 244

255

Bibliography

[Gorton 2004] I. Gorton and A. Liu. Architectures and technologies for enterprise application
integration. In A. Liu, editor, 26th International Conference on Software Engineering.
ICSE 2004., pages 726–727, 2004. 12

[GraphML 2010] Working Group GraphML. The GraphML File Format, 2010. Available from:
http://graphml.graphdrawing.org. 211

[Greco 2005] Gianluigi Greco, Antonella Guzzo, Giuseppe Manco and Domenico Sacca.
Mining and Reasoning on Workflows. IEEE Trans. on Knowl. and Data Eng., vol. 17,
no. 4, pages 519–534, 2005. 39, 40, 138, 147

[Greco 2008] Gianluigi Greco, Antonella Guzzo and Luigi Pontieri. Mining taxonomies of
process models. Data Knowl. Eng., vol. 67, no. 1, pages 74–102, 2008. 40

[Gregory 1995] D. Abowd Gregory, Allen Robert and Garlan David. Formalizing style to
understand descriptions of software architecture. ACM Trans. Softw. Eng. Methodol.,
vol. 4, no. 4, pages 319–364, 1995. 18

[Gruhn 2006] Volker Gruhn and Ralf Laue. Complexity Metrics for Business Process Models.
In W. Abramowicz and H.C. Mayr, editors, 9th International Conference on Business
Information Systems (BIS’06), volume 85 of LNI, pages 1–12, Klagenfurt, Austria,
2006. 156, 287

[Gschwind 2008] Thomas Gschwind, Jana Koehler and Janette Wong. Applying Patterns Dur-
ing Business Process Modeling. In M. Dumas, M. Reichert and M.-C. Shan, editors,
Business Process Management (BPM 2008), volume 5240, pages 4–19. Springer, 2008.
16, 19, 239

[Guceglioglu 2005] A. Selcuk Guceglioglu and Onur Demirors. Using Software Quality Char-
acteristics to Measure Business Process Quality. In Business Process Management, vol-
ume 3649 of LNCS, pages 374–379. Springer, 2005. 280, 286

[Gunay 2007] Akin Gunay and Pinar Yolum. Structural and Semantic Similarity Metrics for
Web Service Matchmaking. In E-Commerce and Web Technologies, volume 4655, pages
129–138. Springer, 2007. 31, 32

[Han 2007] Jiawei Han, Hong Cheng, Dong Xin and Xifeng Yan. Frequent pattern mining:
current status and future directions. Data Mining and Knowledge Discovery, vol. 15,
no. 1, pages 55–86, 2007. 39, 137

[Harrison 2007] Neil Harrison and Paris Avgeriou. Leveraging Architecture Patterns to Satisfy
Quality Attributes. In Software Architecture, volume 4758 of LNCS, pages 263–270.
Springer, 2007. 59, 62, 157

[Harrison 2008] N. B. Harrison and P. Avgeriou. Analysis of Architecture Pattern Usage in
Legacy System Architecture Documentation. In Seventh Working IEEE/IFIP Conference
on Software Architecture (WICSA’08), pages 147–156. IEEE, 2008. 157

[Heckel 1995] Reiko Heckel and Annika Wagner. Ensuring Consistency of Conditional Graph
Grammars - A Constructive Approach. ENTCS, vol. 2, pages 118–126, 1995. 88, 89, 277

256

http://graphml.graphdrawing.org

Bibliography

[Heckel 2002] Reiko Heckel, Jochen Kuster and Gabriele Taentzer. Confluence of Typed At-
tributed Graph Transformation Systems. In Graph Transformation, volume 2505 of
LNCS, pages 161–176. Springer Berlin Heidelberg, 2002. 269, 274

[Heckel 2006] R. Heckel. Graph Transformation in a Nutshell. ENTCS, vol. 148, pages 187–198,
2006. 37

[Hell 2004] P. Hell and J. Nesetril. Graphs and Homomorphisms. Oxford Lecture Series in
Mathematics and Its Applications, vol. 28, 2004. xi, 269, 270, 272

[Henderson 1993] J. Henderson and N. Venkatraman. Strategic alignment: Leveraging infor-
mation technology for transforming organizations. IBM Systems Journal, vol. 32, no. 1,
pages 4–16, 1993. 143

[Hentrich 2006] C. Hentrich and U. Zdun. Patterns for process-oriented integration in service-
oriented architectures. In 11th European Conference on Pattern Languages of Programs
(EuroPLoP 2006), pages 141–198, Irsee, Germany, 2006. 22

[Hevner 2004] A.R. Hevner, S.T. March, J. Park and S. Ram. Design science in information
systems research. MIS Quarterly, vol. 28, no. 1, pages 75–105, 2004. 5

[Hevner 2010] Alan Hevner and Samir Chatterjee. Design science research in information
systems: Theory and practice. Integrated Series in Information Systems. Springer,
2010. xiii, 5, 7

[Hill 2009] Janelle B. Hill, Michele Cantara, Marc Kerremans and Daryl C. Plummer. Magic
Quadrant for Business Process Management Suites. Technical report, Gartner Inc., 2009.
144, 145, 239

[Hirzalla 2009] Mamoun Hirzalla, Jane Cleland-Huang and Ali Arsanjani. A Metrics Suite
for Evaluating Flexibility and Complexity in Service Oriented Architectures. In Service-
Oriented Computing Workshops (ICSOC’08), volume 5472, pages 41–52. Springer,
2009. 156, 287

[Hohpe 2004] G. Hohpe and B. Woolf. Enterprise integration patterns. Addison-Wesley
Boston, 2004. 96, 140, 151, 153

[Huang 2004] Kui Huang, Zhaotao Zhou, Yanbo Han, Gang Li and Jing Wang. An Algorithm
for Calculating Process Similarity to Cluster Open-Source Process Designs. In Grid and
Cooperative Computing - GCC’04 Workshops, volume 3252 of LNCS, pages 107–114.
Springer, 2004. 29

[Inokuchi 2005] Akihiro Inokuchi, Takashi Washio and Hiroshi Motoda. A General Framework
for Mining Frequent Subgraphs from Labeled Graphs. Fundamenta Informaticae, vol. 66,
no. 1/2, pages 53–82, 2005. 40, 132

[Intan 2002] Rolly Intan and Masao Mukaidono. Degree of Similarity in Fuzzy Partition. In
Advances in Soft Computing, volume 2274 of LNCS, pages 99–107. Springer, 2002. 29

[Janssen 2005] Marijn Janssen and Anthony M. Cresswell. An enterprise application integration
methodology for e-government. Journal of Enterprise Information Management, vol. 18,
no. 5, pages 531–547, 2005. 169, 280, 287

257

Bibliography

[Johannesson 2001] Paul Johannesson and Erik Perjons. Design principles for process modelling
in enterprise application integration. Information Systems, vol. 26, no. 3, pages 165–184,
2001. 12, 142

[Jon 1999] M. Kleinberg Jon. Authoritative sources in a hyperlinked environment. J. ACM, vol. 46,
no. 5, pages 604–632, 1999. 23

[Jones 2005] Steve Jones. A Methodology for Service Architectures. Technical report, OASIS,
2005. 13

[Jung 2006] Jae-Yoon Jung and Joonsoo Bae. Workflow Clustering Method Based on Process
Similarity. In Computational Science and Its Applications - ICCSA’06, volume 3981
of LNCS, pages 379–389. Springer, 2006. 33, 39, 137

[Jung 2008] Jae-Yoon Jung, Joonsoo Bae and Ling Liu. Hierarchical Business Process Clustering.
In IEEE International Conference on Services Computing (SCC’08), volume 2, pages
613–616, Honolulu, HI, 2008. IEEE. 33

[Jurack 2009] Stefan Jurack, Leen Lambers, Katharina Mehner, Gabriele Taentzer and Gerd
Wierse. Object Flow Definition for Refined Activity Diagrams. In Fundamental Ap-
proaches to Software Engineering (FASE), volume 5503 of LNCS, pages 49–63.
Springer, 2009. 70

[Jure 2010] Leskovec Jure, J. Lang Kevin and Mahoney Michael. Empirical comparison of al-
gorithms for network community detection. In 19th International Conference on World
Wide Web, Raleigh, North Carolina, USA, 2010. ACM. 244

[Kampffmeyer 2007] Holger Kampffmeyer and Steffen Zschaler. Finding the Pattern You Need:
The Design Pattern Intent Ontology. In Model Driven Engineering Languages and
Systems, volume 4735, pages 211–225. Springer, 2007. 56

[Kavianpour 2009] Mansour Kavianpour. SOA and Large Scale and Complex Enterprise Trans-
formation. In Service-Oriented Computing - ICSOC’07, volume 4749 of LNCS, pages
530–545. Springer, 2009. 25

[Kazman 1998] R. Kazman. Assessing architectural complexity. In Proceedings of the Second
Euromicro Conference on Software Maintenance and Reengineering, pages 104–112,
1998. 156, 286, 287

[Kazman 2000] R. Kazman, M. Klein and P. Clements. Atam: Method for architecture evalu-
ation (CMU/SEI-2000-TR-004). Software Engineering Institute (SEI), Carnegie Mellon
University, 2000. 141, 142

[Ketkar 2005] N. S. Ketkar, L. B. Holder and D. J. Cook. Subdue: Compression-based Frequent
Pattern Discovery in Graph Data. In 1st Int. Workshop on Open Source Data Mining:
Frequent Pattern Mining Implementations, pages 71–76, Chicago, IL, 2005. ACM. 245

[Kharbili 2008] M. El Kharbili, A. K. Alves de Medeiros, S. Stein and W. M. P. van der
Aalst. Business Process Compliance Checking: Current State and Future Challenges. In
Modellierung betrieblicher Informationssysteme (MobIs), volume 141 of LNI, pages
107–113, Saarbrucken, Germany, 2008. GI. 140, 144, 159, 225, 282

258

Bibliography

[Kim 2007] Dae-Kyoo Kim and Charbel El Khawand. An approach to precisely specifying the
problem domain of design patterns. Journal of Visual Languages and Computing, vol. 18,
no. 6, pages 560–591, 2007. 22, 62

[Kim 2008] Soon-Kyeong Kim and David Carrington. A formalism to describe design patterns
based on role concepts. Formal Aspects of Computing, vol. 21, no. 5, pages 397–420,
2008. 56

[Klein 2004] M. Klein and A. Bernstein. Toward high-precision service retrieval. IEEE Internet
Computing, vol. 8, no. 1, pages 30–36, 2004. 32

[Kleppe 2006] Anneke Kleppe. Proceedings of the First European Workshop on Composition of
Model Transformations - CMT’06. Technical Report TR-CTIT-06-34. Technical report, Cen-
tre for Telematics and Information Technology, University of Twente, Enschede, 2006.
243

[Koehler 2006] J. Koehler, R. Hauser, J. Kuster, K. Ryndina, J. Vanhatalo and M. Wahler. The
Role of Visual Modeling and Model Transformations in Business driven Development. In
R. Bruni and D. Varro, editors, GT-VMT 2006, ENTCS, Vienna, Austria, 2006. 14, 169

[Koehler 2007] J. Koehler and J. Vanhatalo. Process anti-patterns: How to avoid the common traps
of business process modeling. Part 1-2. IBM WebSphere Developer Technical Journal,
vol. 10, no. 2-4, 2007. 171

[Koehler 2008a] J. Koehler, T. Gschwind, J. Kuster, C. Pautasso, K. Ryndina, J. Vanhatalo and
H. Volzer. Combining Quality Assurance and Model Transformations in Business-Driven
Development. In Int. Workshop and Symposium on Applications of Graph Transfor-
mation with Industrial Relevance, volume 5088 of LNCS, pages 1–16. Springer, 2008.
242

[Koehler 2008b] Jana Koehler, Rainer Hauser, Jochen Kuster, Ksenia Ryndina, Jussi Van-
hatalo and Michael Wahler. The Role of Visual Modeling and Model Transformations in
Business-driven Development. ENTCS, vol. 211, pages 5–15, 2008. 12, 14, 64, 69

[Koehler 2008c] Jana Koehler, Jochen M. Kuester, Ksenia Ryndina, Jussi H. Vanhatalo,
Michael S. Wahler and Olaf W. Zimmermann. Automatic Compostion of Model Trans-
formations (Patent Application Number 20080229276), 2008. 243

[Koschke 2000] R. Koschke and T. Eisenbarth. A framework for experimental evaluation of
clustering techniques. In 8th International Workshop on Program Comprehension
(IWPC’00), pages 201–210. IEEE, 2000. 180

[Kuramochi 2005] Michihiro Kuramochi and George Karypis. Finding Frequent Patterns in a
Large Sparse Graph. Data Min. Knowl. Discov., vol. 11, no. 3, pages 243–271, 2005. 39,
40, 130, 132, 137, 245

[Kuster 2008] Jochen Kuster, Christian Gerth, Alexander Forster and Gregor Engels. Detect-
ing and Resolving Process Model Differences in the Absence of a Change Log. In Business
Process Management, volume 5240, pages 244–260. Springer, 2008. 27

[Lago 2009] Patricia Lago, Henry Muccini and Hans van Vliet. A scoped approach to traceability
management. Journal of Systems and Software, vol. 82, no. 1, pages 168–182, 2009. 70

259

Bibliography

[Lam 2005] Wing Lam. Investigating success factors in enterprise application integration: a case-
driven analysis. European Journal of Information Systems, vol. 14, no. 2, pages 175–
187(13), 2005. 169, 280, 287

[Land 2003] R. Land and I. Crnkovic. Software systems integration and architectural analysis -
a case study. In International Conference on Software Maintenance (ICSM’03, pages
338–347. IEEE, 2003. 140, 282

[Land 2007] Rikard Land and Ivica Crnkovic. Software systems in-house integration: Archi-
tecture, process practices, and strategy selection. Information and Software Technology,
vol. 49, no. 5, pages 419–444, 2007. 12, 154, 157, 286

[Lankhorst 2005] Marc Lankhorst. Enterprise architecture at work. modelling, communica-
tion and analysis. The Enterprise Engineering Series. Springer, 2005. 70, 143, 154,
286

[Lanz 2009] Andreas Lanz, Barbara Weber and Manfred Reichert. Time Patterns for Process-
aware Information Systems: A Pattern-based Analysis - Revised version. Technical report,
University of Ulm, 2009. 54, 85

[Lawler 1980] E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan. Generating All Maxi-
mal Independent Sets: NP-Hardness and Polynomial-Time Algorithms. SIAM Journal on
Computing, vol. 9, no. 3, pages 558–565, 1980. 132

[Leicht 2006] E.A. Leicht, P. Holme and M.E. Newman. Vertex similarity in networks. Physical
review. E, Statistical, nonlinear, and soft matter physics, vol. 73, no. 2, pages 026120–
1:026120–10, 2006. 97

[Levi 2002] Keith Levi and Ali Arsanjani. A goal-driven approach to enterprise component iden-
tification and specification. Commun. ACM, vol. 45, no. 10, pages 45–52, 2002. 13

[Li 2003] Y. Li, Z. A. Bandar and D. McLean. An approach for measuring semantic similarity
between words using multiple information sources. IEEE Transactions on Knowledge and
Data Engineering, vol. 15, no. 4, pages 871–882, 2003. 127, 181

[Li 2006] Y. Li, D. McLean, Z. A. Bandar, J. D. O’Shea and K. Crockett. Sentence similarity
based on semantic nets and corpus statistics. Knowledge and Data Engineering, IEEE
Transactions on, vol. 18, no. 8, pages 1138–1150, 2006. 125, 126, 181, 196, 198

[Li 2008] C. Li, M. Reichert and A. Wombacher. On Measuring Process Model Similarity Based
on High-Level Change Operations. In 27th Int. Conf. on Conceptual Modeling (ER’08),
volume 5231 of LNCS, pages 248–264. Springer, 2008. 30

[Li 2009] Chen Li, Manfred Reichert and Andreas Wombacher. Discovering Reference Models
by Mining Process Variants Using a Heuristic Approach. In Business Process Manage-
ment, volume 5701 of LNCS, pages 344–362. 2009. 30, 31, 243

[Linthicum 2000] David S. Linthicum. Enterprise application integration. Addison-Wesley
Professional, 2000. 12, 142, 143

[Linthicum 2004] David S. Linthicum. Next generation application integration: From simple
information to web services. Addison-Wesley, 2004. 12

260

Bibliography

[Lohmann 2007] N. Lohmann, P. Massuthe and K. Wolf. Operating Guidelines for Finite-State
Services. In Petri Nets and Other Models of Concurrency (ICATPN’07), volume 4546,
pages 321–341. Springer, 2007. 241, 242

[Lu 2008] Ruopeng Lu, Shazia Sadiq and Guido Governatori. Measurement of Compliance
Distance in Business Processes. Inf. Sys. Manag., vol. 25, no. 4, pages 344–355, 2008.
140, 159, 225, 282

[Luftman 1999] J. Luftman and T. Brier. Achieving and sustaining business-IT alignment. Cali-
fornia management review, vol. 42, no. 1, pages 109–122, 1999. 143

[Malone 2003] T. W. Malone, K. Crowston and G. A. Herman. Organizing business knowl-
edge: the mit process handbook. MIT press, 2003. 54, 237

[Massuthe 2005] P. Massuthe and K. Schmidt. Operating guidelines - an automata-theoretic foun-
dation for the service-oriented architecture. In Fifth International Conference on Quality
Software, 2005. (QSIC’05)., pages 452–457. IEEE, 2005. 242

[Massuthe 2007] Peter Massuthe and Wolf Karsten. An algorithm for matching non-
deterministic services with operating guidelines. International Journal of Business Process
Integration and Management, vol. 2, no. 2, pages 81–90, 2007. 28, 242

[McGuinness 2000] D. L. McGuinness, R.Fikes, J. Rice and S. Wilder. An Environment for
Merging and Testing Large Ontologies. In 7th Int. Conf. on Principles of Knowledge Rep-
resentation and Reasoning, pages 483–493, Breckenridge, CO, 2000. Morgan Kauf-
mann. 122

[McKay 1981] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,
vol. 30, pages 45–87, 1981. 34

[Medvidovic 2000] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans. Softw. Eng.,
vol. 26, no. 1, pages 70–93, 2000. 18

[Melnik 2002] S. Melnik, H. Garcia-Molina and E. Rahm. Similarity Flooding: A Versatile
Graph Matching Algorithm and its Application to Schema Matching. In 18th Int. Conf. on
Data Engineering (ICDE’02), pages 117–128, San Jose, CA., 2002. IEEE. 36, 183, 212

[Mendling 2007] Jan Mendling, Gustaf Neumann and Wil van der Aalst. On the correlation
between process model metrics and errors. In Tutorials, posters, panels and industrial
contributions at the 26th int. conf. on Conceptual modeling, volume 83, pages 173–
178, Auckland, NZ, 2007. Australian Computer Society, Inc. 156, 287

[Messmer 2000] Bruno T. Messmer and Horst Bunke. Efficient Subgraph Isomorphism Detec-
tion: A Decomposition Approach. IEEE Trans. on Knowl. and Data Eng., vol. 12, no. 2,
pages 307–323, 2000. 36, 137

[Miller 1995] George A. Miller. WordNet: a lexical database for English. Commun. ACM,
vol. 38, no. 11, pages 39–41, 1995. 211

[Mitra 2005] Tilak Mitra. Business-driven Development, 2005. Available from: http://

www-128.ibm.com/developerworks/webservices/library/ws-bdd/index.html. 14

261

http://www-128.ibm.com/developerworks/webservices/library/ws-bdd/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-bdd/index.html

Bibliography

[Monroe 1997] Robert T. Monroe, Andrew Kompanek, Ralph Melton and David Garlan.
Architectural Styles, Design Patterns, and Objects. IEEE Software, vol. 14, no. 1, pages
43–52, 1997. 13

[NACHA 2010] NACHA. The Electronic Payments Association (NACHA), 2010. Available
from: http://www.nacha.org. 59, 161, 169

[Navigli 2009] Roberto Navigli. Word sense disambiguation: A survey. ACM Comput. Surv.,
vol. 41, no. 2, pages 1–69, 2009. 125

[Noy 2003] Natalya F. Noy and Mark A. Musen. The PROMPT suite - interactive tools for
ontology merging and mapping. International Journal of Human Computer Studies,
vol. 59, no. 6, pages 983–1024, 2003. 122

[OASIS 2007] OASIS. Web Services Business Process Execution Language version 2.0, 2007. Avail-
able from: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
14, 67, 69, 74

[OMG 2006] OMG. UML Profile and Metamodel for Services (UPMS) RFP, 2006. Available
from: http://www.omg.org/cgi-bin/doc?soa/06-09-09. 54

[OMG 2007] OMG. UML Version 2.1.2 (Normative). Infrastructure and Superstructure Specifica-
tion. OMG, 2007. Available from: http://www.omg.org/spec/UML/2.1.2/. 14, 52, 54,
174

[OMG 2008a] OMG. Business Process Definition MetaModel (BPDM), Version 1.0, 2008. Avail-
able from: http://www.omg.org/spec/BPDM/1.0/. 54

[OMG 2008b] OMG. Business Process Modeling Notation (BPMN) version 1.1. OMG, 2008.
Available from: http://www.omg.org/spec/BPMN/1.1/. x, 14, 52, 67, 69, 74, 162,
174, 195

[OMG 2009a] OMG. Business Process Model and Notation (BPMN). FTF Beta 1 for version 2.0,
2009. Available from: http://www.omg.org/spec/BPMN/2.0/. ix, 76, 77

[OMG 2009b] OMG. Service oriented architecture Modeling Language (SOAML). Specification for
the UML Profile and Metamodel for Services (UPMS). Version 1.0 Beta 1.0, 2009. Available
from: http://www.omg.org/spec/SoaML/1.0/Beta1/PDF/. 53, 174

[Oracle 2008] Oracle. State of the Business Process Management Market 2008. Technical report,
Oracle Corporation, 2008. 144, 145, 239

[Ouyang 2007] C. Ouyang, M. Dumas, A. H. M. ter Hofstede and W. M. P. van der Aalst.
Pattern-based translation of BPMN process models to BPEL web services. International
Journal of Web Services Research (JWSR), vol. 5, no. 1, pages 42–62, 2007. 14, 65, 69

[Ouyang 2009] Chun Ouyang, Marlon Dumas, M. P. Van Der Aalst Wil, Arthur H. M. Ter
Hofstede and Jan Mendling. From business process models to process-oriented software
systems. ACM Trans. Softw. Eng. Methodol., vol. 19, no. 1, pages 1–37, 2009. 169, 174

[Pahl 2006] Claus Pahl and Ronan Barrett. Layered Patterns in Modelling and Transformation of
Service-Based Software Architectures. In Software Architecture, volume 4344 of LNCS,
pages 144–158. Springer, 2006. 65

262

http://www.nacha.org
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/cgi-bin/doc?soa/06-09-09
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/spec/BPDM/1.0/
http://www.omg.org/spec/BPMN/1.1/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/SoaML/1.0/Beta1/PDF/

Bibliography

[Pahl 2007] Claus Pahl, Simon Giesecke and Wilhelm Hasselbring. An Ontology-based Ap-
proach for Modelling Architectural Styles. In First European Conference on Software
Architecture (ECSA’07), volume 4758 of LNCS, pages 60–75. Springer, 2007. 18, 56

[Pahl 2009a] Claus Pahl, Simon Giesecke and Wilhelm Hasselbring. Ontology-based modelling
of architectural styles. Information and Software Technology, vol. 51, no. 12, pages
1739–1749, 2009. 63, 243

[Pahl 2009b] Claus Pahl, Yaoling Zhu and Veronica Gacitua-Decar. A Template-driven Ap-
proach for Maintainable Service-oriented Information Systems Integration. International
Journal of Software Engineering and Knowledge Engineering, vol. 19, no. 7, pages
889–912, 2009. 65

[Palmer 2009] N. Palmer. 2009 BPM - State of the Markey Report. Technical report, Transf. &
Innov., BPM Educ. Assoc., BPM.com and the Workflow Management Coalition, 2009.
239

[Papazoglou 2006a] M. P. Papazoglou and W. J. van den Heuvel. Service-Oriented Design and
Development Methodology. Int. J. of Web Engineering and Technology (IJWET), vol. 2,
pages 412 – 442, 2006. 13, 20, 41

[Papazoglou 2006b] Mike Papazoglou and Benedikt Kratz. A Business-Aware Web Services
Transaction Model. In Service-Oriented Computing (ICSOC’06), volume 4294, pages
352–364. Springer, 2006. 20, 22, 41

[Papazoglou 2007] M. Papazoglou and W.-J. var den Heuvel. Service oriented architectures:
approaches, technologies and research issues. IJVLDB, vol. 16, no. 3, pages 389–415, 2007.
284

[Pedersen 2008] Ted Pedersen, Siddharth Patwardhan, Satanjeev Banerjee and Jason Miche-
lizzi. WordNet::Similarity, 2008. Available from: http://search.cpan.org/dist/

WordNet-Similarity/doc/intro.pod. 211

[Pinzger 2005] Martin Pinzger, Harald Gall and Michael Fischer. Towards an Integrated View
on Architecture and its Evolution. ENTCS, vol. 127, no. 3, pages 183–196, 2005. 120

[ProM 2009] ProM. Process Mining - Research Tools Application, 2009. Available from: http:
//www.processmining.org. 243, 245

[Puschmann 2004] Thomas Puschmann and Rainer Alt. Enterprise application integration sys-
tems and architecture - the case of the Robert Bosch Group. Journal of Enterprise Informa-
tion Management, vol. 17, no. 2, pages 105 – 116, 2004. 169, 280, 287

[Rabhi 2007] Fethi Rabhi, Hairong Yu, Feras Dabous and Sunny Wu. A service-oriented ar-
chitecture for financial business processes. Information Systems and E-Business Manage-
ment, vol. 5, no. 2, pages 185–200, 2007. 132

[Ralyte 2008] Jolita Ralyte, Manfred A. Jeusfeld, Per Backlund, Harald Kuhn and Nicolas
Arni-Bloch. A knowledge-based approach to manage information systems interoperability.
Information Systems, vol. 33, no. 7-8, pages 754–784, 2008. 16, 18

263

http://search.cpan.org/dist/WordNet-Similarity/doc/intro.pod
http://search.cpan.org/dist/WordNet-Similarity/doc/intro.pod
http://www.processmining.org
http://www.processmining.org

Bibliography

[Rapanotti 2004] L. Rapanotti, J. G. Hall, M. Jackson and B. Nuseibeh. Architecture-driven
problem decomposition. In 12th Int. Requirements Eng. Conf., pages 80–89. IEEE, 2004.
16, 18

[Rech 2009] Jorg Rech and Christian Bunse. Model-driven software development: Integrat-
ing quality assurance. IGI Global, 2009. 282

[Reichert 1998] Manfred Reichert and Peter Dadam. Adeptflex - Supporting Dynamic Changes
of Workflows Without Losing Control. Journal of Intelligent Information Systems, vol. 10,
no. 2, pages 93–129, 1998. 30

[Riehle 1996] Dirk Riehle and Heinz Zullighoven. Understanding and using patterns in software
development. Theor. Pract. Object Syst., vol. 2, no. 1, pages 3–13, 1996. 16

[Rising 2007] Linda Rising. Understanding the Power of Abstraction in Patterns. IEEE Softw.,
vol. 24, no. 4, pages 46–51, 2007. 57

[Ross 2008a] A. M. Ross and D. H. Rhodes. Architecting Systems for Value Robustness: Research
Motivations and Progress. In IEEE Systems Conference, pages 1–8. IEEE, 2008. 284

[Ross 2008b] A. M. Ross, D. H. Rhodes and D. E. Hastings. Defining changeability: Reconcil-
ing flexibility, adaptability, scalability, modifiability, and robustness for maintaining system
lifecycle value. Systems Engineering, vol. 11, no. 3, pages 246–262, 2008. 283

[Ross 2009] A. M. Ross, D. H. Rhodes and D. E. Hastings. Using Pareto Trace to determine
system passive value robustness. In IEEE Systems Conference, pages 285–290. IEEE,
2009. 171, 174, 285

[Rozenberg 1997] G Rozenberg, editor. Handbook of graph grammars and computing by
graph transformation, volume 1: Foundations. World Scientific Publishing Co., 1997.
37

[Sadiq 2000] Wasim Sadiq and Maria E. Orlowska. Analyzing process models using graph re-
duction techniques. Information Systems, vol. 25, no. 2, pages 117–134, 2000. 74, 269

[Sartipi 2001] K. Sartipi and K. Kontogiannis. A graph pattern matching approach to software
architecture recovery. In K. Kontogiannis, editor, 17th IEEE International Conference
on Software Maintenance (ICSM’01), pages 408–419. IEEE, 2001. 23, 180

[Schaeffer 2007] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, vol. 1,
no. 1, pages 27–64, 2007. 245

[SEI 2010] SEI. Software Engineering Institute - Carnegie Mellon University, 2010. Available
from: http://www.sei.cmu.edu/. 5

[Shaw 1996a] M. Shaw and D. Garlan. Software architecture. Prentice Hall, Upper Saddle
River, NJ, 1996. 144, 145

[Shaw 1996b] Mary Shaw. Some patterns for software architectures. In Pattern languages of
program design. Volume 2, pages 255–269. Addison-Wesley Longman Publishing Co.,
Inc., 1996. 18

264

http://www.sei.cmu.edu/

Bibliography

[Shaw 2002] M. Shaw. What Makes Good Research in Software Engineering?’. International
Journal of Software Tools for Technology Transfer, vol. 4, no. 1, pages 1–7, 2002. 3

[Smirnov 2009] Sergey Smirnov, Matthias Weidlich, Jan Mendling and Mathias Weske. Ac-
tion Patterns in Business Process Models. In Service-Oriented Computing, volume 5900,
pages 115–129. Springer, 2009. 16, 19, 20, 41, 54, 98, 237, 239

[Spanoudakis 2010] George Spanoudakis and Andrea Zisman. Discovering Services during
Service-Based System Design Using UML. IEEE Transactions on Software Engineering,
vol. 36, no. 3, pages 371–389, 2010. 15, 28, 31

[SparxSystems 2010] SparxSystems. Enterprise Architect, 2010. Available from: http://www.
sparxsystems.com/products/ea/. 174, 175, 236

[Steen 2005] M. W. A. Steen, P. Strating, M. M. Lankhorst, H. ter Doest and M. E. Iacob.
Service-Oriented Enterprise Architecture. In Z. Stojanovic and A. Dahanayake, editors,
Service-Oriented Software System Engineering: Challenges and Practices, pages 132–
154. Idea Group, 2005. 24

[Taentzer 2004] Gabriele Taentzer. AGG: A Graph Transformation Environment for Modeling
and Validation of Software. In Applications of Graph Transformations with Industrial
Relevance, volume 3062, pages 446–453. Springer, 2004. 38

[Taentzer 2005] Gabriele Taentzer and Arend Rensink. Ensuring Structural Constraints in
Graph-Based Models with Type Inheritance. In Fundamental Approaches to Software
Engineering, volume 3442 of LNCS, pages 64–79. Springer, 2005. 76, 89, 269, 272

[Tandon 2007] R. Tandon. The Role of Solution Architects in Systems Integration. IT Professional,
vol. 9, no. 2, pages 26–33, 2007. 141

[Taylor 1996] R. N. Taylor, N. Medvidovic, K. M. Anderson, Jr. Whitehead E. J., J. E. Robbins,
K. A. Nies, P. Oreizy and D. L. Dubrow. A component- and message-based architectural
style for GUI software. IEEE TSE, vol. 22, no. 6, pages 390–406, 1996. 18

[Themistocleous 2004] M. Themistocleous. Justifying the decisions for EAI implementations: a
validated proposition of influential factors. Journal of Enterprise Information Manage-
ment, vol. 17, no. 2, pages 85–104, 2004. 12, 283

[Thom 2007] L. H. Thom, C. Iochpe and M. Reichert. Workflow Patterns for Business Process
Modeling. In B. Pernici and J.A. Gulla, editors, 8th Int’l Workshop on Business Pro-
cess Modeling, Development, and Support (BPMDS’07), in: CAISE’06 Workshops,
volume 1, Trondheim, Norway., 2007. Tapir Academic Press. 16, 19, 20

[Thom 2009] L. H. Thom, M. Reichert and C. Iochpe. Activity patterns in process-aware in-
formation systems: basic concepts and empirical evidence. Int. J. of Business Process In-
tegration and Management, vol. 4, no. 2, pages 93–110, 2009. 20, 41, 54, 98, 237,
239

[Tran 2006] Hanh Tran, Bernard Coulette and Bich Dong. A UML-Based Process Meta-model
Integrating a Rigorous Process Patterns Definition. In Product-Focused Software Process
Improvement, volume 4034 of LNCS, pages 429–434. Springer, 2006. 16, 19

265

http://www.sparxsystems.com/products/ea/
http://www.sparxsystems.com/products/ea/

Bibliography

[Tran 2007] Hanh Nhi Tran, Bernard Coulette and Dong Thi Bich Thuy. Broadening the Use
of Process Patterns for Modeling Processes. In 19th Int. Conf. on Software Engineering
& Knowledge Engineering (SEKE’2007), pages 57–62, Boston, MA, 2007. Knowledge
Systems Inst. Grad. School. 16, 19

[Tsantalis 2006] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and S. T. Halkidis. Design
Pattern Detection Using Similarity Scoring. IEEE Transactions on Software Engineering,
vol. 32, no. 11, pages 896–909, 2006. ix, 23, 42, 43, 44

[Ullmann 1976] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. J. ACM, vol. 23, no. 1,
pages 31–42, 1976. 35

[Umar 2009] Amjad Umar and Adalberto Zordan. Reengineering for service oriented architec-
tures: A strategic decision model for integration versus migration. Journal of Systems and
Software, vol. 82, no. 3, pages 448–462, 2009. 12

[Valiente 1997] Gabriel Valiente and Conrado Martinez. An Algorithm for Graph Pattern-
Matching. In 4th South American Workshop on String Processing. Int. Informatics
Series, volume 8, pages 180–197, 1997. 36, 237

[Vanderfeesten 2007] I. Vanderfeesten, J. Cardoso, J. Mendling, H. Reijers and W. van der
Aalst. Quality Metrics for Business Process Models. In L. Fischer, editor, 2007 BPM I&
Workflow Handbook, pages 179–190. WfMC, Lighthouse Point, FL, 2007. 287

[Vanetik 2002] N. Vanetik, E. Gudes and S. E. Shimony. Computing frequent graph patterns
from semistructured data. In IEEE Int. Conf. on Data Mining (ICDM’02), pages 458–
465, 2002. 131

[Vanhooff 2007] B. Vanhooff, S. Van Baelen, W. Joosen and Y. Berbers. Traceability as Input
for Model Transformations. In 3rd ECMDA Traceability Workshop, pages 37–46, Haifa,
Israel, 2007. SINTEF. 69

[Varro 2002] Daniel Varro, Gergely Varro and Andras Pataricza. Designing the automatic
transformation of visual languages. Science of Computer Programming, vol. 44, no. 2,
pages 205–227, 2002. 38

[Varro 2005] Gergely Varro, Andy Schurr and Daniel Varro. Benchmarking for Graph Trans-
formation. In IEEE Symposium on Visual Languages and Human-Centric Computing
(VLHCC’05), pages 79–88, Washington, USA, 2005. IEEE. 38, 243

[Varro 2006a] Gergely Varro, Katalin Friedl and Daniel Varro. Adaptive Graph Pattern Match-
ing for Model Transformations using Model-sensitive Search Plans. ENTCS, vol. 152, pages
191–205, 2006. 38

[Varro 2006b] Gergely Varro, Katalin Friedl and Daniel Varro. Implementing a Graph Trans-
formation Engine in Relational Databases. Software and Systems Modeling, vol. 5, no. 3,
pages 313–341, 2006. 38

[Vokac 2004] M. Vokac, W. Tichy, D. I. K. Sjoberg, E. Arisholm and M. Aldrin. A Controlled
Experiment Comparing the Maintainability of Programs Designed with and without Design
Patterns - A Replication in a Real Programming Environment. Empirical Software Engi-
neering, vol. 9, no. 3, pages 149–195, 2004. 144

266

Bibliography

[Wang 1995] J. T. L. Wang, K. Zhang and D. Shasha. Pattern matching and pattern discovery
in scientific, program, and document databases. In M. Carey and D. Schneider, editors,
ACM SIGMOD Int. Conf. on Management of Data, volume 24, page 487, San Jose,
CA, 1995. ACM. 39, 137

[Weber 2007] Barbara Weber, Stefanie Rinderle and Manfred Reichert. Change Patterns and
Change Support Features in Process-Aware Information Systems. In Advanced Informa-
tion Systems Engineering, pages 574–588. 2007. 30

[Weber 2008] Barbara Weber, Manfred Reichert and Stefanie Rinderle-Ma. Change patterns
and change support features - Enhancing flexibility in process-aware information systems.
Data & Knowledge Engineering, vol. 66, no. 3, pages 438–466, 2008. 54

[Weyuker 1988] E. J. Weyuker. Evaluating software complexity measures. IEEE Transactions on
Software Engineering, vol. 14, no. 9, pages 1357–1365, 1988. 287

[White 2005] Stephen White. Using BPMN to Model a BPEL Process, 2005. Available from:
http://www.bpmn.org/Documents/MappingBPMNto20BPELExample.pdf. 14

[Wierzbicki 1982] Andrzej P. Wierzbicki. A mathematical basis for satisficing decision making.
Mathematical Modelling, vol. 3, no. 5, pages 391–405, 1982. 283

[Wombacher 2004] A. Wombacher, P. Fankhauser, B. Mahleko and E. Neuhold. Matchmaking
for business processes based on choreographies. In IEEE International Conference on e-
Technology, e-Commerce and e-Service - EEE ’04, pages 359–368, 2004. 27, 28, 31

[Wombacher 2006] A. Wombacher and M. Rozie. Evaluation of Workflow Similarity Measures
in Service Discovery. In M. Schoop, C. Huemer, M. Rebstock and M. Bichler, editors,
Service Oriented Electronic Commerce, volume 80, pages 51–71. GI, 2006. ix, 42, 43,
44

[Woodley 2005] T. Woodley and S. Gagnon. BPM and SOA: Synergies and Challenges. In Web
Information Systems Engineering (WISE’05), volume 3806 of LNCS, pages 679–688.
Springer, 2005. 12, 33

[WordNet 2010] WordNet. WordNet - A Lexical Database for the English Language, 2010. Avail-
able from: http://wordnet.princeton.edu/. 125

[WP 1999] WP. Workflow Patterns, 1999. Available from: www.workflowpatterns.com/. 54

[Zdun 2006] U. Zdun, C. Hentrich and W. M. P. van der Aalst. A survey of patterns for Service-
Oriented Architectures. International Journal of Internet Protocol Technology, vol. 1,
no. 3, pages 132–143, 2006. 65, 171, 174

[Zdun 2007a] U. Zdun. Systematic pattern selection using pattern language grammars and design
space analysis. Software Practice and Experience, vol. 37, no. 9, pages 983–1016, 2007.
21

[Zdun 2007b] Uwe Zdun and Schahram Dustdar. Model-driven and pattern-based integration of
process-driven SOA models. International Journal of Business Process Integration and
Management, vol. 2, no. 2, pages 109 – 119, 2007. 143

267

http://www.bpmn.org/Documents/Mapping BPMN to 20BPEL Example.pdf
http://wordnet.princeton.edu/
www.workflowpatterns.com/

Bibliography

[Zhang 2005] Zhuopeng Zhang, Ruimin Liu and Hongji Yang. Service Identification and Pack-
aging in Service Oriented Reengineering. In 7th International Conference on Software
Engineering and Knowledge Engineering (SEKE’07), pages 241–249, 2005. 26

[Zhang 2008] L. J. Zhang, N. Zhou, Y. M. Chee, A. Jalaldeen, K. Ponnalagu, R. R. Sindhgatta,
A. Arsanjani and F. Bernardini. SOMA-ME: a platform for the model-driven design of SOA
solutions. IBM Syst. J., vol. 47, no. 3, pages 397–413, 2008. 14, 25, 237

[Zhang 2009] Liang-Jie Zhang, Zhi-Hong Mao and Nianjun Zhou. Design Quality Analytics
of Traceability Enablement in Service-Oriented Solution Design Environment. In IEEE In-
ternational Conference on Web Services (ICWS’09)., pages 944–951, Los Angeles, CA,
2009. IEEE. 25, 237

[Zhao 2007] Chunying Zhao, Jun Kong, Jing Dong and Kang Zhang. Pattern-based design
evolution using graph transformation. Journal of Visual Languages and Computing,
vol. 18, no. 4, pages 378–398, 2007. 22

[Zimmermann 2007] Olaf Zimmermann, Jonas Grundler, Stefan Tai and Frank Leymann.
Architectural Decisions and Patterns for Transactional Workflows in SOA. In Service-
Oriented Computing (ICSOC’07), pages 81–93. 2007. 21, 22

[Zundorf 1996] A. Zundorf. Graph Pattern Matching in PROGRES. In H. Ehrig, G. Engels and
G. Rozenberg, editors, Selec. papers from the 5th Int. Workshop on Graph Gramars
and their Application to Comp. Sci., volume 1073, pages 454–468. Springer, 1996. 37,
38

268

Appendix A

Background on Graphs

Contents
A.1 Digraphs and Undirected Graphs . 269

A.2 Graph Homomorphisms . 271

A.3 Typed Graphs and Morphisms . 272

A.4 Attributed Graphs and Morphisms . 274

A.5 Attributed Typed Graph . 274

A.6 Graph Transformations . 275

Graphs emerge as a natural representation for process models
[Ehrig 1999a],[Sadiq 2000]. Graphs can capture both structure and behaviour,
and allow abstractions such as patterns to be related to process models. This
appendix provides an introduction to basic concepts of graphs. In particular, the
notions of typed attributed graph and graph homomorphism are used to formally
describe pattern instances and their relation to patterns and models. Graphs and
graph homomorphisms are introduced using the definitions from [Hell 2004] and
[Fiala 2007], and for attributed typed graphs, definitions from [Corradini 1996],
[Heckel 2002], [Ehrig 2004], [Taentzer 2005] and [Ehrig 2006b] are utilised.

A.1 Digraphs and Undirected Graphs

A digraph G is a finite set V = V(G) of vertices, together with a binary relation
E = E(G) on V. The elements (u, v) of E are called the arcs of G. A digraph is
symmetric, or reflexive, or irreflexive, if the relation E is symmetric, or reflexive, or
irreflexive, respectively. Symmetric digraphs are also referred as undirected graphs.
Formally, a graph G is a set V = V(G) of vertices together with a set E = E(G) of
edges, each of which is a two-element set of vertices. Edges that only consist of one
vertex are called loops. If every vertex in a graph has a loop, the graph is a reflexive
graph. Suppose G is a graph with loops allowed, the corresponding symmetric
digraph of G is obtained from G by replacing each edge {u, v} with the two arcs
(u, v), (v, u), and each loop {w} with the arc (w, w). Figure A.1 from [Hell 2004]
illustrates the relations between graph classes through examples.

Appendix A. Background on Graphs

Figure A.1: Digraphs and classes of graphs (from [Hell 2004]).

Walks, Cycles and Paths [Hell 2004]. A walk in a graph G is a sequence of vertices
v0, v1, · · · , vk of G such that vi−1 and vi are adjacent, for each i = 1, 2, · · · , k. A walk
is closed if v0 = vk. A path in G is a walk in which all the vertices are distinct.
The integer k is called the length of the walk, respectively the length of the path.
The graph with vertices 0, 1, · · · , k and edges {0, 1}, {1, 2}, · · · , {(k− 1), k} is called
the path Pk. Note that Pk has k + 1 vertices and k edges. A cycle in a graph G is a
sequence of distinct vertices v1, v2, · · · , vk of G such that each vi, i = 2, 3, · · · , k, is
adjacent to vi−1, and v1 is adjacent to vk. A graph with vertices 0, 1, · · · , k − 1 and
edges {i, (i + 1)} for i = 0, 1, · · · , k− 1 (with addition modulo k) is called the cycle
Ck. Ck has k vertices and k edges. A cycle is a closed walk, and thus the definition of
length is still applicable. Directed paths and cycles

−→
Pk and

−→
Ck are defined exactly as

the graphs Pk and Ck, only this time i(i + 1) are arcs and not edges.

A graph G is called connected if for every pair of distinct vertices u and v, there
exists a path connecting u and v.

Subgraph and Induced Subgraph. A graph G is a subgraph of H, and H is a su-
pergraph of G, if VG ⊆ VH and EG ⊆ EH. A graph G is called an induced subgraph
of H if G is a subgraph of H and it contains all the arcs (edges) of H amongst the
vertices in G. A clique in a graph G is a complete subgraph of G, i.e., for a clique in
the undirected graph G = (V, E), the set of vertices in the clique C ⊂ V is such that
for every two vertices in C there exists an edge connecting the two vertices in E.

Neighbourhood. For a vertex u in a graph G, the set of all vertices adjacent to u are
called the neighbourhood of u denoted by NG(u) and thus NG(u) = {v|{u, v} ∈ EG}.

270

A.2. Graph Homomorphisms

A.2 Graph Homomorphisms

Let G and H be any digraphs. A homomorphism of G to H, written as f : G → H,
is a mapping f : V(G) → V(H) such that f (u) f (v) ∈ E(H) whenever uv ∈ E(G).
Note that uv and f (u) f (v) denote an arc (or edge) in E(G) and E(H), respectively.
The composition f ◦ g of homomorphisms g : G → H and f : H → K is a homomor-
phism of G to K. Thus, the binary relation is homomorphic to on the set of digraphs
is transitive. Note that homomorphisms of graphs preserve adjacency, while homo-
morphisms of digraphs also preserve the directions of the arcs. Therefore, a homo-
morphism of digraphs G → H is also a homomorphism of the underlying graphs,
but not conversely.

A homomorphism f : G → H is a mapping of V(G) to V(H), but since it
preserves adjacency it also naturally defines a mapping f ′ of E(G) to E(H) by
setting f ′(uv) = f (u) f (v) for all uv ∈ E(G). A homomorphism f : G → H
is called vertex-injective, or vertex-surjective, or vertex-bijective, if the mapping
f : V(G) → V(H) is injective, or surjective, or bijective respectively. The same
homomorphism f : G → H is called edge-injective, or edge-surjective, or edge-
bijective, if the mapping f ′ : E(G) → E(H) is injective, or surjective, or bijective,
respectively. Thus, a homomorphism f is an injective homomorphism, or a surjec-
tive homomorphism or a bijective homomorphism, if it is both vertex- and edge-
injective, or surjective, or bijective, respectively.

Since graph homomorphisms are edge preserving vertex mapping between two
graphs, the mapping have the following property: if two vertices form an edge in
the source graph then their images form an edge in the target graph (which might
be the same graph) [Fiala 2005]. Thus, f : VG → VH is a graph homomorphism if
and only if (f (u), f (v)) ∈ EH for all pairs (u, v) ∈ EG.

Locally Constrained Graph Homomorphism (LCGH). LCGH is a special kind of
graph homomorphism where the image of the neighbourhood of a vertex in a source
graph is contained in the neighbourhood of the image of the vertex in the target
graph [Fiala 2008], i.e. f (NG(u)) ⊆ NH(f (u)) holds for every vertex u ∈ VG when-
ever f : VG → VH is a homomorphism from G to H.

If the neighbourhood of any vertex of the source graph is mapped bijectively,
injectively or surjectively to the neighbourhood of its image in the target graph,
the homomorphism is called locally bijective, injective or surjective, respectively
[Fiala 2008]. In particular,
• G B→ H if there exist a locally bijective homomorphism f : VG → VH that satisfies for
all u ∈ VG : f (NG(u)) = NH(f (u)) and | f (NG(u))| = |NG(u)|.
• G I→ H if there exist a locally injective homomorphism f : VG → VH that satisfies for

271

Appendix A. Background on Graphs

all u ∈ VG : | f (NG(u))| = |NG(u)|.
• G S→ H if there exist a locally surjective homomorphism f : VG → VH that satisfies
for all u ∈ VG : f (NG(u)) = NH(f (u)).

Note that for the mappings above, locally bijective homomorphism is both lo-
cally injective and surjective. The mappings are also known in the literature as (full)
covering projections (bijective), or as partial covering projections (injective), or as
role assignments (surjective). Additionally, any locally surjective homomorphism f
from a graph G to a connected graph H is globally surjective, and any locally injec-
tive homomorphism f from a connected graph G to a forest H is globally injective
[Fiala 2007].

Observation: Note that in concrete categories considered in universal algebra
such as groups, rings, modules, etc., morphisms are called homomorphisms.

Homomorphisms for Walks, Cycles and Paths [Hell 2004]. A mapping f :
V(Pk) → V(G) is a homomorphism of Pk to G if and only if the sequence
f (0), f (1), · · · , f (k) is a walk in G. Homomorphisms of G to H map paths in G
to walks in H, and hence do not increase distances. Thus, for dG(u, v) denot-
ing the distance (length of a shortest path) from u to v in G and f : G → H
an homomorphism, dH(f (u), f (v)) ≤ dG(u, v), for any two vertices u, v of G.
A mapping f : V(Ck) → V(G) is a homomorphism of Ck to G if and only if
f (0), f (1), · · · , f (k− 1) is a closed walk in G.

A.3 Typed Graphs and Morphisms

A typed graph G is defined by the graph G and a graph morphism between G and
a graph type TG. TG not only defines the types of G but also the relations between
types; and the morphism G → TG provides additional information than a simple
coloring function providing colors (or types) to G, since the structure of TG has to
be maintained in G [Corradini 1996].

The category having graphs as objects and graph morphisms as arrows is called
GRAPH and the category of graphs typed over a type graph TG, written as TG −
GRAPH, has typed graphs as objects and typed graph morphisms as arrows. Typed
graphs are pairs 〈G, m〉 where G is a graph and m : G → GT is a graph morphism.
Typed graph morphisms (arrows) f : 〈G, m〉 → 〈G′, m′〉 are graph morphisms f :
G → G′ such that m′ ◦ f = m [Corradini 1996].

Type Graph with Inheritance and Multiplicities [Taentzer 2005].
Type Graph with Inheritance. A type graph with inheritance is a triple
TGI = (TG, I, A) consisting of a type graph TG = (V(TG), E(TG), src, tar)

272

A.3. Typed Graphs and Morphisms

(with a set V(TG) of vertices, a set V(E) of edges, source and target functions
src, tar : E(TG) → V(TG)), an acyclic inheritance relation I ⊆ V(TG) × V(TG),
and a set A ⊆ V(TG), called abstract nodes. For each v1 ∈ V(TG), the inheritance
clan is defined by clanI(v1) = {v2 ∈ V(TG)|(v2, v1) ∈ I∗}, where I∗ is the reflexive-
transitive closure of I.

Flattening or Closure of Type Graphs with Inheritance to Ordinary Type Graphs. Let TGI =
(TG, I, A) be a type graph with inheritance, and let TG = (V(TG), E(TG), src, tar),
The abstract closure of TGI is the graph TGI = V(TG), E(TG), src, tar) with
E(TG) = {(v1, e, v2)|e ∈ E(TG), v1 ∈ clanI(src(e)), v2 ∈ clanI(tar(e))};
src((v1, e, v2)) = v1; tar((v1, e, v2)) = v2. The closure of TGI is the graph T̂GI =

TGI|V(TG)−A, where TGI|V(TG)−A denotes the subgraph TGIsub(V), TGIsub(E) =

{e ∈ E(TG)|src(e), tar(e) ∈ TGIsub}, src|TGIsub(E), tar|TGIsub(E) and TGIsub(V) =

V(TG)− A.

An abstract instance graph of a type graph with inheritance TGI is an instance
graph of TGI. Instance graphs can be typed over the type graph with inheritance by
a pair of functions, from nodes to node types and from edges to edge types, respec-
tively. The pair of functions is called clan morphism and uniquely characterizes the
type morphism into the flattened type graph.

Clan Morphism. Let TGI = (TG, I, A) be a type graph with inheritance. A clan mor-
phism from G to TGI is a pair ctp = (ctpV(G) : V(G) → V(TG), ctpE(G) : E(G) →
E(TG)) such that for all e ∈ E(G), ctpV(G) ◦ srcG(e) ∈ clanI(srcTG ◦ ctpE(G)(e)) and
ctpV(G) ◦ tarG(e) ∈ clanI(tarTG ◦ ctpE(G)(e)). (G, ctp) is called clan typed graph and
ctp is called concrete if ctp−1

V(G)
(A) = ∅.

Type Graph with Edge Inheritance. A type graph with edge inheritance is a tu-
ple (TG, I, A) where I ⊆ (TG(V) × TG(V)) ∪ (TG(E) × TG(E)) is an acyclic
relation such that TGI = (TG, I|TG(V), A) is a type graph with (vertex) inher-
itance, and (e, f) ∈ I ∩ (E(TG) × E(TG)) implies src(e) ∈ clanI(src(f)) and
tar(e) ∈ clanI(tar(f)). Thus, if a type edge e inherits from another type edge f , then
f can occur as an edge type only for concrete graph edges whose source and target
vertex types are not in the clan of the source type.

Type Graph with Multiplicities. Type graph with multiplicities allows to restrict the
class of correctly typed instance graphs to those satisfying additional constraints
concerning the number of nodes and edges for each type. These constraints are
expressed using multiplicities. Multiplicity is a pair [i, j] ∈ N × (N ∪ {∗}) with i ≤ j
or j = ∗ where ∗ indicates the number of vertices or edges is not constrained. The

273

Appendix A. Background on Graphs

set of multiplicities is denoted Mult. For an arbitrary finite set X and [i, j] ∈ Mult,
|X| ∈ [i, j] if i ≤ |X| and either j = ∗ or |X| ≤ j. A type graph with multiplicities is a
tuple TGM = (TGI, mTGI(V), msrc, mtar) consisting of a type graph with inheritance
TGI and additional functions mTGI(V) : TGI(V) → Mult, called node multiplicity
function, and msrc, mtar : TGI(E) → Mult, called edge multiplicity functions. The
satisfaction of multiplicity constraints is expressed by counting inverse images with
respect to the clan typing.

A.4 Attributed Graphs and Morphisms

The following definitions and notation are extracted from [Heckel 2002].

An attributed graph over Σ is a pair AG = 〈G, A〉 of a graph G and a Σ-algebra
A such that |A| ⊆ V(G), where |A| is the disjoint union of the carrier sets AS

of A, for all s ∈ S, and such that ∀e ∈ E(G) : src(e) /∈ |A|. Note that a many-
sorted signature Σ = 〈S, OP〉 consists of a set of sort symbols s ∈ S and a family
of sets of operation symbols op : s1 . . . sn → s ∈ OP indexed by their arities; and
G is a graph with srcG : E(G) → V(G) and tarG : E(G) → V(G), where srcG and
tarG are functions associating each arc to its source and target vertices. Let refer to
an attributed graph, associated attributes and algebra as Graph(AG) = G\(|A| +
Attr(AG)), Attr(AG) = {e ∈ E(G)|tar(e) ∈ |A| } and Alg(AG) = A. For attributes,
data values are represented as vertices of graphs, called data vertices d ∈ |A| to
distinguish them from graph vertices v ∈ V(G)\|A|. Graph vertices are linked to data
vertices by edges1 called attributes a ∈ E(G) with src(a) = v and tar(a) = d. Edges
between graph vertices are called links.

An attributed graph morphism f : 〈G1, A〉 → 〈G2, A〉 is a pair of a σ-
homomorphism fA = (fS)s∈S : A1 → A2 and a graph homomorphism fG : G1 → G2

such that | fA| ⊆
⋃

s∈S
fS.

Attributed graphs and graph morphisms form a category of Σ-attributed graphs.
Often, the data algebra A is fixed in advance, in that case, graphs and graph mor-
phisms are said attributed over A.

A.5 Attributed Typed Graph

The following definitions and notation are extracted from [Heckel 2002].

An attributed type graph over Σ is an attributed graph ATG = 〈TG, Z〉 over Σ
where Z is the final Σ-algebra Z having ZS = {s} for all s ∈ S. Elements of Z

1Note that throughout this thesis edge is used as a generic term to refer both, undirected edges and
directed edges (arcs), and at the minimum a distinction is required.

274

A.6. Graph Transformations

represent the sorts of the signature which are included in TG as types for data
vertices. In general, vertices and edges of TG represent vertex and arc types, while
attributes in ATG are actual attribute declarations. Given an attribute declaration
a ∈ ATG and an graph vertex v ∈ AG such that ag(v) = src(a), a(v) would denote
the set of a-values of vs {d ∈ |A| such that ∃e ∈ E(AG), src(e) = v ∧ tar(e) = d}.

An attribute instance graph 〈AG, ag〉 over ATG is an attributed graph AG, over
the same signature, together with an attributed graph morphism ag : AG → ATG.
Instance graphs are usually infinite because the set of instances of the data type is
infinite (e.g. the natural numbers) and each instance would be a separate vertex.

A morphism of typed attributed graphs h : 〈AG1, ag1〉 → 〈AG2, ag2〉 is a
morphism of attributed graphs which preserves the typing, that is ag2 ◦ h = ag1.

Attributed Typed Graph with Data Type Constraints [Ehrig 2006b]. Let
〈ATG, Constr〉 be an attributed typed graph with constraints, where Constr is a
suitable set of constraints and ATG an attributed typed graph. The authors of
[Ehrig 2006b] consider three types of constraints: graph, data type, and graph-OCL
constraints for expressing metamodels in visual languages, where the kind of con-
straints to consider depends on the specific visual language. Data type constraints
can be given by equations or first order formulas over the data type signature Σ of
ATG. An attributed graph AG = 〈G, Z〉 satisfies a data type constraint data-constr, if
the Σ-algebra Z satisfies data-constr.

A.6 Graph Transformations

The following definitions and notation are extracted from [Ehrig 2006a].
Graph transformations can capture the modifications of graph-based models. A

graph transformation step of a graph-based model G into a graph-based model H
can be captured through a production rule applied to G to obtain H. There are two
well-known approaches, DPO and SPO, to model rule-based graph transformations.
Before relating graph transformations to changes in pattern instances, a brief intro-
duction of the DPO and SPO approaches is provided. Figure A.2 illustrates DPO
and SPO.

Graph Transformations: the Double- and Single-Pushout Approaches. In the
DPO approach, a production p = (L ← K → R) is given by p = (L, K, R), where
L and R are the left- and right-hand side graphs and K is the intersection of L and
R. The left-hand side L represents the preconditions of the rule and the right-hand
side R, the postconditions. K describes the elements of the graph which has to exist

275

Appendix A. Background on Graphs

Figure A.2: Double- and single- pushout approaches to graph transformations.

to apply the rule. These elements are not changed. L \ K describes the graph ele-
ments which are deleted and R \ K describes the graph elements which are created.
In order to derive a transformation on a host graph G, first a match m between the
left-hand side L of the production p in the host graph G must to be found. The
mach m is must be structure-preserving. When a direct graph transformation with
a production p and a match m is performed, all the vertices and edges which are
matched by L \ K are removed from G. The the condition for m is that D should
not have dangling edges, therefore the remaining structure D := (G \m(L)) ∪m(K)
should be a graph. Thus, m has to satisfy a gluing condition such that the gluing of
L \ K and D is equal to G. The next step takes the graph D and glue it together with
R \ K to obtain the derived graph H. The morphisms from G to D and from D to H
derive the transformation step from G to H.

In the SPO approach, the production p = (L ← K → R) can be considered as
a partial graph morphism p : L → R with domain dom(p) = K. The horizontal
morphisms from L to R and from G to H are partial and the vertical ones (from L to
G and from R to H) are total. SPO and DPO differ in the deletion of elements in D
during the transformation step. If the match m : L → G does not satisfy the gluing
condition with respect to a production p : L ← K → R, then p is not applicable
inn DPO, but in SPO. SPO allows dangling edges to occur after the deletion of L \ K
from G but dangling edges in G are deleted, resulting a well-defined graph H.

A graph grammar G is a pair G= 〈(p : r)p∈Pr, G0〉 where (p : r)p∈Pr is a family of
production morphisms (of type p : (L r−→ R)) indexed by production names, and and
G0 is the start graph of the grammar. Production names are used for identification
purposes, so they should be unique. A direct derivation from a graph G0 to a graph
G1 with p1 : L → R at m1 : L → G is denoted by G0

p1,m1
==⇒ G1. A sequence of direct

derivations of the form G0
p1,m1
==⇒ . . .

pk ,mk
==⇒

∗
Gk constitute a derivation from G0 to Gk

by p1, . . . pk, briefly denoted by G0 ⇒∗ Gk. The graph language generated by a graph
grammar G is the set of all graphs Gk such that there is a derivation G0 ⇒∗ Gk using
productions of G [Ehrig 1997].

276

A.6. Graph Transformations

Application and Consistency Conditions [Heckel 1995].
A conditional constraint Cctr over a graph L is a pair consisting of a total morphism
x : L → X and a set Θ of total morphisms X

y−→ Y. A total morphism L m−→ G
satisfies a constraint Cctr over L, denoted by m |=L Cctr, if for all total injective
morphisms n : X → G with n ◦ x = m there is a total injective morphism o : Y → G
with o ◦ y = n for at least one y ∈ Θ. A conditional application condition AL over
L is a set of conditional constraints. A total morphism L m−→ G satisfies an AL

over L, denoted by m |=L AL if m |=L Cctr for all Cctr ∈ AL. Let r : L → R be
a graph transformation rule. An application condition A(r) = (AL, AR) for r is
given by a precondition AL and a postcondition AR being conditional applications
over L and R, respectively. Then r̂ = (r, A(r)) is called a conditional rule. A direct
derivation G r,m

=⇒ H with co-match R m∗−→ H is a direct conditional derivation
G r̂,m

=⇒ H based on r̂ if m |=L AL and m∗ |=R AR. Constraints in pre- and post-
conditions of a rule are referred to as left- and right-sided constraints, respec-
tively. A consistency condition Ccnd is a set of total morphisms named graphical
consistency constraints. A consistency constraint c : P → Q is satisfied by a graph G
(G |= c) if for all total morphisms p : P → G there is a total morphism q : Q → G
such that q ◦ c = p. G satisfies Ccnd (G |= Ccnd) if G satisfies all constraints c ∈ Ccnd.

277

Appendix B

Quality Sub-characteristics

Contents
B.1 Overview . 279

B.2 Suitability . 279

B.3 Functional Compliance . 281

B.4 Maintainability: Changeability and Analysability 282

B.4.1 Changeability . 282

B.4.2 Analysability . 285

B.5 Reusability . 287

B.1 Overview

Quality sub-characteristics follow the categorisation from the ISO/IEC 9126 stan-
dard and its corresponding update in the ISO/IEC 25000 standard series. Table B.1
identifies quality characteristics and sub-characteristics in the ISO/IEC 9126 quality
model. A start symbol is added to new characteristics in the ISO/IEC 25010 stan-
dard (Software product Quality Requirements and Evaluation [SQuaRE] – Quality
model). Emphasised in italic and bold are the targeted sub-characteristics in this
investigation, they are derived from functionality and maintainability characteristics.

• functionality refers to the capability of a software system to provide functions
which meet stated and implied needs when the system is used under specified
conditions;

• maintainability refers to the capability of the software system to be modified
– where modification may include corrections, improvements and functional
specifications.

B.2 Suitability

Suitability refers to the adequacy of the software system in terms of its coverage
of user needs and correctness of implementation. In the case of systems aiming at

Appendix B. Quality Sub-characteristics

Table B.1: Quality characteristics in ISO/IEC 9126 quality model

Quality Characteristic Sub-characteristic
Functionality Suitability

Accuracy
Interoperability
Security
Compliance

Reliability Maturity
Availability (∗)
Fault tolerance
Recoverability
Compliance

Usability Understandability
Learneability
Operability
Attractiveness
Compliance
Technical accessibility (∗)

Efficiency Time behaviour
Resource utilisation
Compliance

Maintainability Modularity (∗)
Reusability (∗)
Analysability
Changeability
Stability
Testeability
Compliance

Portability Adaptability
Installability
Co-existence
Replaceability
Compliance

integration of processes and applications, suitability focuses on coverage and cor-
rectness of integration needs. At the requirements and design stages, models are
central. Integration needs are related to connected process steps that are supported
by different systems, and hence requiring an integration effort. Process integration
points are identified from data flows connecting process steps supported by dif-
ferent application architecture components. As several authors are pointed out as
a factor of success [Puschmann 2004], [Janssen 2005], [Lam 2005], the assumption
is that business integration precedes application integration. The suitability metric
presented here follows a similar approach as previous metrics of functional ade-
quacy and completeness regarding functional suitability [Brian 2006], [Bhatti 2005],
[Guceglioglu 2005], [Beaver 2005]. The principle behind is that lack of explicit knowl-
edge of integration points can degrade suitability of an integration system design via
functional incompleteness.

280

B.3. Functional Compliance

In this work, suitability is calculated as an estimated measure of functional com-
pleteness as is presented in ISO/IEC 9126.3. Equation B.1 refers to the suitabil-
ity metric. An estimation of functional completeness-based suitability considers the
number of documented process integration points (DIP) and the number of required
process integration points (RIP). The different between DIPs and RIPs is that DIPs
capture only process elements requiring integration that have an explicit relation to
their supporting applications, instead RIPs only identify integration needs at process
level without explicit connections to software levels.

The expression
(

1− RIPi−DIPi
RIPi

)
in Equation B.1 indicates an estimated measure

for the degree of functional completeness of the process-centric integration solution.
A value closer to one would indicate an almost complete process-centric functional
specification. This expression is adapted from the functional implementation complete-
ness metric in the ISO/IEC TR 9126-3, which is calculated as f ic = 1− (A/B), where
A is the number of missing functions detected in an evaluation and B is the number
of functions described in requirement specifications.

Suitability as in Equation B.1 also considers applications explicitly. It takes into
account the ratio between the number of applications directly involved with process
elements needing integration (∑j Aj(RIPi)) and the total number of applications in-
volved in the whole scenario ({A}). In general, an integration scenario can span
several processes in different organisations, but it can also be framed within a sin-
gle organisation. In that case, {A} would account for all applications spanning the
enterprise-application landscape. The ratio ∑j Aj(RIPi)

{A} scales the estimated measure
of functional completeness described above according to the importance of each in-
tegration point. The larger the number of involved applications at an integration
point, the greater the influence over the suitability measure. If an integration point
involved all applications in the scenario, the ratio would equal to one.

suitability = ∑
i

[(
1− RIPi − DIPi

RIPi

)
·

∑j Aj(RIPi)

{A}

]
(B.1)

where i indicates a control flow connector from a process requiring integration, and
j an specific application connected to process elements from an integration point.

B.3 Functional Compliance

Considering functional characteristics of a software, compliance refers to the degree
to which the software product adheres to standards, conventions or regulations in
laws and similar prescriptions relating to functional suitability.

For process-centric integration systems, an important aspect of functional com-

281

Appendix B. Quality Sub-characteristics

pliance is compliance to process regulations [Daniel 2009], [Kharbili 2008]. The ca-
pabilities to identify non-compliance at process levels can indicate failures from the
business point of view [Lu 2008] and therefore benefit analysability characteristics
of a process-centric system.

A number of approaches have indicated the benefits of checking process-level
compliance through the identification of regulatory process structures (or process
compliance patterns [Ghose 2008]). Similar to how design and architectural patterns
constrain software architectures, these process patterns would act as regulatory con-
straints on concrete process models.

B.4 Maintainability: Changeability and Analysability

Organisations are in disadvantage if their capacity to change quickly and reliably is
low. This include changes on their software systems. Software systems no longer
evolve as separate entities but evolve integrated with each other in a complex inter-
related system [Land 2003]. Maintainability characteristics of integration solutions
are central to assess an organisation’s capacity to change.

Generally speaking, maintainability is associated to the effort required to make
specified modifications to a software system. Changeability and analysability are
two sub-characteristics of maintainability.

• Changeability refers to the ease of changing the system and

• Analysability refers to the ease of understanding the system design.

Classic metrics for software maintainability have focused on code levels
[Coleman 1994], however maintenance activities for process-centric integration sys-
tems concentrate a significant initial effort on analysing the involved architecture and
process models. This is especially true with the increasing adoption of Model-driven
Development (MDD) [Rech 2009]. Even though the abstraction level has increased
with the advent of MDD, models continue to change, and hence, they would need
to be constantly analysed. In that context, analysability becomes relevant and obser-
vations regarding changeability should shift the focus towards model levels.

B.4.1 Changeability

Changeability refers to the degree to which the product enables a specified modifi-
cation to be implemented, more precisely, it refers to the ease with which a software
product can be modified to meet specific requirements. Implementation can include
coding, designing and documenting changes. Changes can also include installation
of updates and upgrades. Analysability can influence changeability.

282

B.4. Maintainability: Changeability and Analysability

During requirements and design stages of an integration project, changeability
can be related to changes on models containing the processes and applications to
be integrated. To consider changeability at these stages, the quantification approach
proposed in [Ross 2008b] is utilised. This approach is generic to large scale systems
and considers quantitative metrics of derived characteristics related to changeability.
In [Ross 2008b], the authors quantify changeability in relation to three aspects: change
agents, change effects and change mechanisms. According to change effects, derived
quality characteristics include modifiability, scalability and robustness. Because the
main interest here is on change effects (due to their implications on maintenance
costs) a revision of those concepts is provided below.

B.4.1.1 Modifiability

Modifiability of a system design i in one of its attributes m ∈ {X}i is calculated as the
number of possible paths allowing the transit from the design i to possible designs
that have the attribute m added to or subtracted from its attribute set {X}i, but
whose transition mechanism cost less than an acceptability threshold Ĉ. Equation
B.2 indicates modifiability of design i to adding or substracting attribute Xm.

modi f iabilitym
i : ∑

j
[FXM({DV}i) ∩ FXM({DV}j) = Xm, Tijk < Ĉ, ∀j ∈ S, k ∈ R] (B.2)

with FXM : {DVN} → {XM} and fC : {DVN} → C ; fU : {XM} → U, and
fC : design variable to cost mapping function.
DVN : set of N design variables.
C : cost (it can be instantiated through cost models, e.g. as suggested in

[Themistocleous 2004]).
fU : attribute to utility mapping function (for instance, considering

[Wierzbicki 1982]).
XM : set of M attributes (it corresponds to the parametrisation of perceived

value).
Tijk : accessibility tensor of size R× S× S. The ijk entry identifies the tran-

sition cost from design y ({DV}i) to design j ({DV}j) by means of
transition rule k.

S : set of designs.
R : set of transition rules.

The transition from a design i to a design j is through the mechanism k and it
is captured by the accessibility tensor Tijk. Designs and design transitions belong to

283

Appendix B. Quality Sub-characteristics

a tradespace network capturing the representations of designer-controlled technical
parameters ({DV}, having a measurable cost) and stakeholder-perceived value pa-
rameters ({X}, having a measurable utility). For instance, a stakeholder-perceived
value parameter for an integration system could be its capability for reviewing se-
curity credentials of users sending messages in particular processes. A designer-
controlled technical parameter associated to that stakeholder-perceived value pa-
rameter can be associated to the verification of digital signatures of SOAP messages
signed using X.509 certificates. This stakeholder-perceived value parameter (associ-
ated to a utility value) versus designer-controlled technical parameter (associated to
a cost) defines a point in a tradespace network that relates cost to utility points.

In an scenario of service-based integration systems, services can be used as inter-
mediary architecture elements to abstract process and application integration levels.
An additional level of indirection can generate additional costs of implementation
and maintenance. However, given the potential of services to be reused at different
integration points, service-based integration systems can potentially reduce costs of
operation and maintenance (including modifications) in the medium and long term,
especially for large systems [Erl 2004]. However, if the design of the service-based
system involves services with functional redundancy, benefits can be reduced by in-
creased cost of development and maintenance [Papazoglou 2007]. In this work, ser-
vices with functional redundancy are identified through the identification of similar
process structures being supported by different services. This is also an indication of
possible redundant application support and it represents an opportunity to software
level component rationalisation.

B.4.1.2 Scalability

Scalability refers to the capability of a system to increase the value of its attributes.
Scalability of a design i to raising or lowering the value of attribute Xm can be
calculated using Equation B.3. Scalability is only discussed in the case study of
Section 7.2. Further evaluation is not within the scope of this work.

scalabilitym
i : ∑

j
[[FXM({DV}i)]

m− [FXM({DV}j)]
m 6= 0, Tijk < Ĉ, ∀j ∈ S, k ∈ R] (B.3)

B.4.1.3 Robustness

Robustness refers to the capability of a system to be insensitive under changing con-
ditions regarding its perceived value. A system whose attributes can satisfy new
requirements created over time is considered value robust [Ross 2008a]. This charac-
teristic can be achieved through passive or active means. Active value robustness can

284

B.4. Maintainability: Changeability and Analysability

be achieved by designs with increased changeability and accessibility. Passive value
robustness can be achieved by systems that may have excess capability or a large set
of latent value, thus increasing the likelihood of satisfying new requirements with-
out changing the system [Ross 2009]. Passive value robustness can be assessed by
evaluating the system’s capabilities to satisfy desired attributes in different scenar-
ios. To instantiate this type of evaluation, the authors in [Ross 2009] suggest the use
of epoch-era analysis. In this type of analysis the system’s lifetime is divided into
epochs, which define scenarios that span a determined time when significant design
characteristics, requirements and context variables are fixed. Multiple sequentially
related epochs can identify an era, which can capture a longer period on the system’s
lifetime.

B.4.2 Analysability

Analysability refers to the effort or resources spent when a system requires diagno-
sis or analysis during maintenance activities. Analysability metrics should provide a
medium to predict and measure the spent effort or spent resources in trying to diag-
nose for deficiencies or causes of failure, or for identification of parts to be modified
in a software. Enterprise (processes and applications) integration solutions cover dif-
ferent abstraction layers, including processes, services and applications. Metrics to
measure analysability of an integration system should cover all of these layers and
their interconnections.

Additional to metrics directly associated to characteristics and sub-
characteristics, there are pure internal metrics1 that can be used to measure certain
attributes of the software design (and code) that can influence all of the overall soft-
ware characteristics. Pure internal metrics that can be used to indirectly measure
analysability, and also maintainability, are the metrics of traceability and complexity.

B.4.2.1 Traceability

Traceability, as defined in the ISO/IEC 9126-3, aims to provide a medium to measure
the effectiveness of documentation and design structure and code of software prod-
uct in mapping functions from requirements to implementation. However, trace-
ability in an integration solution, which involves different layers, requires support
to trace dependencies between elements in different layers, specially when changes
need to take place. For instance, if an application is being updated, it is necessary
to know what other applications and what processes are being affected. A simi-
lar situation occurs when changes at process level can influence the modification

1Review annex in ISO/IEC TR 9126-3 regarding pure internal metrics.

285

Appendix B. Quality Sub-characteristics

of the underlying software architecture (including software services and application
components).

Equation B.4 is a simple measure of traceability based on the pure internal metric
of traceability from ISO/IEC 9126-3. It indicates the ratio between effectively traced
elements in a model (∑i ETEi) and the total number of traceable elements for such
a model (∑i TEi). The closer the metric is to one, the better. Note that even though
more information regarding dependencies between different elements of the integra-
tion problem and its changes over time can be beneficial, this would normally imply
an increased cost of maintaining traces (or trace links). But, as almost the norm in
any system design, tradeoffs between different characteristics should be balanced
according to the needs.

traceability =
∑i ETEi

∑i TEi
(B.4)

Traceability support can greatly benefit analysability but to the cost of maintain-
ing trace links. The argument to invest in trace links maintenance is that they could
save greater costs generated during modifications to large enterprise processes and
applications integration systems. The risk of poor requirements satisfaction due to
insufficient or incorrect analysis is likely when there is no awareness of the impact
of changes in related elements from other layers [Lankhorst 2005], [Land 2007].

B.4.2.2 Complexity

Beside computational complexity that allows to classify problems addressed by soft-
ware according to its difficulty to be solved and resources utilised, software com-
plexity refers to the characteristics of a software that make it easier or more difficult
to understand and maintain.

As mentioned previously, the design of process-centric integration systems based
on services covers different abstraction layers. For software architecture layers, it is
proposed that large systems with a regular substructure are simple to create and
maintain, whereas systems created in an ad hoc fashion quickly become unmaintain-
able [Kazman 1998]. Since measures of coupling and cohesion, or fan-in and fan-out
have been considered less reliable to be correlated with architectural complexity,
measures of architectural regularity have been used to assess architecture complexity.
In particular, metrics for architecture’s pattern coverage have been utilised to inves-
tigate critical design aspects of architectures (for instance, occurrence of cyclic pat-
terns such as mutual recursion). For process and process-centric service layers, several
measures of complexity have been proposed in analogy to metrics of software com-
plexity such as LOC (Lines Of Code), cyclomatic complexity, control-flow complex-
ity, and Halstead-based metrics, among others [Guceglioglu 2005], [Cardoso 2006],

286

B.5. Reusability

[Vanderfeesten 2007]. However, these metrics in the software context have been crit-
icised, for example, for being not sensitive enough to rank different software or
because the amount of time required to create software code is difficult to pre-
dict [Weyuker 1988]. Following the proposal in [Kazman 1998] and suggestion-
s/evidences in [Gruhn 2006], [Mendling 2007], [Hirzalla 2009], here complexity of
process-centric service architectures and process models is assessed through mea-
suring coverage of structural regularities in model and architecture descriptions, in
particular, pattern coverage.

During initial stages of process and application integration system development,
analysability characteristics regarding architecture and process models influence the
capacity to assess the complexity of systems. A lower capacity to assess complexity
could increase the effort of analysing the system’s design and future modifications.

B.4.2.3 On the relation between modifiability and analysability

Consider a modification to a enterprise process and application integration system
in an attribute m is required. Process integration points not linked (traced) to ap-
plication components would require – in the worst case – a revision of the entire
enterprise-wide application architecture model in order to find possible ways to
transit from an original design i to a new design j. The cost of analysing a change
at model level would be increased and; therefore, analysability would be negatively
affected. The cost would vary from the cost of reviewing only application compo-
nents (Ac) related to attribute m in design i, to the cost of reviewing all architecture
components in the enterprise-wide (or process-wide) application architecture.

B.5 Reusability

According to the standard ISO/IEC 25010, reusability refers to the degree to which
an asset can be used in more than one software system, or in building other assets.

Reusability has been considered one of the basic principles in service-oriented
architectures. When considering process and application integration systems using
services as intermediary elements to mediate between process and application inte-
gration layers, reuse of services can have at least two connotations. These two refer
to reuse at business and software levels. As pointed out in several integration case
studies such as [Puschmann 2004], [Janssen 2005] and [Lam 2005], business process
integration should precede technology integration. Considering this evidence, even
though the application architecture level is a relevant part of the approach proposed
in this work, the developed techniques concentrate efforts on business process and
process-centric service levels.

287

Appendix B. Quality Sub-characteristics

On the other hand, for large and distributed organisations, a common situation in
practice is that software systems created to solve a similar problem, but in different
times and locations, often do not share their design solutions. Design knowledge
reuse and utilisation of architectural abstractions like patterns have been considered
central to reduce the complexity of architecture designs and to facilitate their analysis
[Buschmann 2007] [Daniel 2009], thus improving maintainability.

Focusing on process patterns, reusability would be assessed through the capac-
ity to identify sections in concrete process models where instances of patterns can
be identified and defined as potential new reusable services (see Section 3.3.2 for de-
tails). A metric for reusability may need more than a simple counting of how many
times a service was reused. For example, while a payment service is likely to be
reused within particular business domains (e.g., e-commerce or financial domains),
an authentication service could be used (broadly) in several business domains, but in
a specific technical domain (such as security). Thus, a metric to assess reusability of
services would need the definition of a certain context where the services are being
reused. Considering a service defined on the basis of a process pattern, Equation B.5
describes a metric to estimate the potential reuse of a service si within the context
of a particular process Pj, where sk indicates an instance of service utilisation. The
greater is the reusability measure, the better. In an extreme, if all utilised services in
Pj are si, the metric is equal to one.

reusabilityj
i =

∑k[sk|sk = si, sk ⊂ Pj]

∑k[sk|sk ⊂ Pj]
(B.5)

288

Appendix C

Complementary Information for
Case Studies

Contents
C.1 EBPP Case Study’s Complementary Information 289

C.1.1 Business and Application Level Models 289

C.1.2 Intermediary Services between Business and Application Level
Models . 290

C.2 LM Case Study’s Complementary Information 299

C.1 EBPP Case Study’s Complementary Information

C.1.1 Business and Application Level Models

This section illustrates models used in the EBPP case study in Section 7.2.3. Models
refer to the main utility company and they follow the guidelines suggested for the
LABAS’s BAIL layer. Process level elements are connected through trace links with
business model elements and application architecture elements. Subsequent steps
involved in the framework generate new models that add information regarding new
services. Services are the building blocks of a service-based architectural solution to
integrate the EBPP’s processes and applications. Figure C.1 shows the high level
EBPP process with associated domain model and application architecture elements.
The EBPP process is disaggregated and presented in a number of figures as follows:

• banks network: Figure C.2 shows the transfer money activity performed by the banks
network role and associated domain model and application architecture elements. The
role is further divided into the utility company’s bank, the client’s bank and an inter-
mediary role corresponding to a clearing house.

• utility company: Figures C.3 to C.8 show activities, tasks, domain model and application
architecture elements supporting activities performed by the utility company role (i.e.,
the generate bill, send bill, liquidate debt and accumulate debt activities).
- Two activities from generate bill activity, which are get customer number and get current
debt, are further decomposed in Figures C.5 and C.4.
- In turn, the activity get customer consumption from get current debt is shown in Figure
C.6.

Appendix C. Complementary Information for Case Studies

- The send bill activity is performed by a customer service provider role on behalf of the
utility company role.

• customer: the activities receive bill and pay bill performed by the customer role are not
detailed since their relation to domain model and application architecture elements is
illustrated in Figure C.1.

Figure C.1: EBPP process from Figure 7.8 in BAIL layer.

Two additional figures, Figure C.9 and C.10, illustrate the generate bill activity in
the two new subsidiary companies of the main utility company.

C.1.2 Intermediary Services between Business and Application Level
Models

This section adds information from the service architecture to BAIL layer models.
These models are derived from architecture decisions in the second scenario of the
EBPP case study.

290

C.1. EBPP Case Study’s Complementary Information

Figure C.2: transfer money activity in BAIL layer.

Figure C.3: generate bill activity in BAIL layer.

291

Appendix C. Complementary Information for Case Studies

Figure C.4: get current debt activity in BAIL layer.

Figure C.5: get customer number activity in BAIL layer.

292

C.1. EBPP Case Study’s Complementary Information

Figure C.6: get customer consumption activity in BAIL layer.

Figure C.7: send bill activity (customer service provide role on behalf of main utility
company) in BAIL layer.

293

Appendix C. Complementary Information for Case Studies

Figure C.8: accumulate and liquidate debt activities in BAIL layer.

Figure C.9: generate bill activity in BAIL layer for Utility Company A.

294

C.1. EBPP Case Study’s Complementary Information

Figure C.10: generate bill activity in BAIL layer for Utility Company B.

Figure C.11: send bill activity (customer service provide role on behalf of main utility
company) in BAIL layer and associated services.

295

Appendix C. Complementary Information for Case Studies

Figure C.12: accumulate and liquidate debt activities in BAIL layer and associated ser-
vices.

Figure C.13: EBPP process from Figure 7.8 in BAIL layer and associated services.

296

C.1. EBPP Case Study’s Complementary Information

Figure C.14: transfer money activity in BAIL layer and associated services.

Figure C.15: generate bill activity in BAIL layer and associated services.

297

Appendix C. Complementary Information for Case Studies

Figure C.16: get current debt activity in BAIL layer and associated services.

Figure C.17: get customer consumption activity in BAIL layer and associated services.

298

C.2. LM Case Study’s Complementary Information

C.2 LM Case Study’s Complementary Information

Trace Links. The main model-to-model trace links for elements in different layers
involving the LM process (from the point of view of the phone sale agent role from
Figure 7.1) and associated domain model elements and architecture components are
indicated in Table C.1. Note that if there is a trace link connecting two elements
in one of the technical scenarios described in Section 7.2.2.3, for example the first
scenario, then a T1 is annotated in the cell relating those two elements in the table.
Similarly, T2, T3 and T4 are used to denote the existence of a trace link in subsequent
scenarios: two, three and four.

Table C.2 provides a reference of the existing trace links between pattern roles
and model elements. The columns in the table show the pattern names (first row),
pattern roles (second row) and the scenarios described in the previous section (T1
to T4 in the third row). Different pattern instances are identified as P1 to P16 in
the table. Note that a pattern role might be fulfilled by different model elements
in different scenarios. For instance, the message coordinator role in the reliable
messaging pattern [Erl 2008] is fulfilled in the second and third scenarios (T2, T3) by
the CMM component, and by the ESB component in the fourth scenario (T4) in the
same pattern instance – P14 in Table C.2.

Figure C.18 illustrates one implementation of the Loan to Client pattern as a ser-
vice based on functionality available from existing applications.

299

Appendix C. Complementary Information for Case Studies

Table
C

.1:M
odel-to-m

odelTrace
Links

R
eference.

300

C.2. LM Case Study’s Complementary Information

Ta
bl

e
C

.2
:M

od
el

-t
o-

pa
tt

er
n

Tr
ac

e
Li

nk
s

R
ef

er
en

ce
.

301

Appendix C. Complementary Information for Case Studies

Figure C.18: Loan to Client pattern traced to its associated service and implementa-
tion.

302

Appendix D

Main Source Code for Algorithms

Contents
D.1 Matlab Code for Structural Matching and Discovery 303

D.2 Matlab Code Experiments and Visualisation Functions 310

D.3 Graph Models and Samples . 327

D.1 Matlab Code for Structural Matching and Discovery

This section provides the matlab code for functions used in matching and discovery
algorithms from Chapters 5 and 6. Functions names, inputs, outputs and dependen-
cies are described first. Afterwards, the Matlab code are provided in the same order
functions were exposed. Figure D.1 indicates the function dependencies.

MatchPattern

Function MatchScore = MatchPattern(GraphMatrix, GraphLabels, PatternMatrix, PatternLabels)

Input:
Graph Matrix (adjacency matrix of undirected graph model, size = m x m)
Graph Label (labels of vertices and edges from graph model, column vector, length = m)
Pattern Matrix (adjacency matrix of undirected graph pattern, size = n x n)
Pattern Label (labels of vertices and edges of graph pattern, column vector, length = n)

Output:
Indexed matches for Graph Label (column vector, length = m)

Depdendencies:
GetAmebaElementList
GetAmebaNeighbors3
MatchVertex

∗ Observation: The simplest case for MatchVertex function is consider the strcmp function to
compare strings describing two vertices. Types and attributes comparison between vertices are
discussed in Chapter 5.5.

Appendix D. Main Source Code for Algorithms

Figure D.1: Function dependencies for matching and discovery (find) algorithms.

GetAmebaElementList

Function Amembers=GetAmebaElementList(amebaIndex, AmebaList)

Input:
amebaIndex (number in AmebaList)
AmebaList (row-vector of numbers with arbitrary length, numbers can represent positions of vertices
in a graph label vector)

Output:
Amembers

Dependencies:
none

cleanList3

Function CleanLista=cleanList3(Lista)

Input:
Lista (column-vector, e.g. [1; 2; 3; 3; 4; 4; 4])

Output:
CleanLista (clean column-vector without repeated elements, answer from example above [1; 2; 3; 4])

Dependencies:
none

FindPatterns4

Function [ScoreFoundPatterns, FreqMatrix]=FindPatterns4(GraphMatrix, GraphLabels, stepsPattern,

304

D.1. Matlab Code for Structural Matching and Discovery

Threshold)

Input:
GraphMatrix
GraphLabels
stepsPattern
Threshold (approximate match ratio Rt)

Output:
ScoreFoundPatterns
FreqMatrix

Dependencies:
GetUndirectedGraph
MatchPattern
GenerateAmebaFromUG2
IndexList2Graph
IndexList2GraphLabels

GetUndirectedGraph

Function [uGraph, uLabelsGraph]=GetUndirectedGraph(graph, labelsGraph)

Input:
Graph
labelsGraph

Output:
uGraph
uLabelsGraph

Dependencies:
none

GenerateAmebaFromUG2

Function AmebaIndexList=GenerateAmebaFromUG2(Graph,GraphLabels,iAmebaIndexList,steps)

Input:
Graph
GraphLabels
iAmebaIndexList
steps

Output:
AmebaIndexList

305

Appendix D. Main Source Code for Algorithms

Dependencies:
GetAmebaNeighbors3

IndexList2Graph

Function GraphFromIndexList=IndexList2Graph(IndexList,Graph)

input:
IndexList
Graph

output:
GraphFromIndexList

depdendencies:
none

IndexList2GraphLabels

Function GraphLabelsFromIndexList=IndexList2GraphLabels(IndexList,GraphLabels)

input:
IndexList
GraphLabels

output:
GraphLabelsFromIndexList

depdendencies:
none

1 function nMatchScore=MatchPattern(GraphMatrix, GraphLabels,

2 PatternMatrix, PatternLabels)

3
4 tic;

5 MatchScore = zeros(size(GraphLabels));

6
7 for indexP=1:length(PatternLabels)

8 for indexG=1:length(GraphLabels)

9 if MatchVertex(PatternLabels(indexP),GraphLabels(indexG))==1 %*Observation

10 MatchScore(indexG)=1;

11 end

12 end

13 end

14
15 AmebaList=zeros(size(MatchScore));

16 for i=1:length(MatchScore)

17 if MatchScore(i)==1

18 AmebaList(i)=sum(MatchScore(1:i));

19 LastAmebaIndex=AmebaList(i);

20 end

21 end

22
23
24 for n=1:LastAmebaIndex

25 amebaIndex=n;

306

D.1. Matlab Code for Structural Matching and Discovery

26 flag=1;

27 while flag==1

28 change=0;

29 Amembers=GetAmebaElementList(amebaIndex, AmebaList);

30 vacia=isempty(Amembers);

31 if vacia6=1
32 Aneighbors=GetAmebaNeighbors3(GraphMatrix,Amembers);

33 for j=1:length(AmebaList)

34 if (AmebaList(j)6=0) && (AmebaList(j)6=amebaIndex)
35 for k=1:size(Aneighbors,1)

36 if j==Aneighbors(k)

37 AmebaList(j)=amebaIndex;

38 change=1;

39 end

40 end

41 end

42 end

43 end

44 if (change==0)

45 flag=0;

46 end

47 end

48 end

49
50
51 AmebaWeights=zeros(LastAmebaIndex,1);

52
53 for n=1:LastAmebaIndex

54 for j=1:length(AmebaList)

55 if AmebaList(j)==n

56 AmebaWeights(n)=AmebaWeights(n)+1;

57 end

58 end

59 end

60
61
62 MatchScore=AmebaList;

63 nMatchScore=AmebaList;

64
65 for n=1:LastAmebaIndex

66 if AmebaWeights(n)6=0
67 for j=1:length(MatchScore)

68 if MatchScore(j)==n

69 nMatchScore(j)=AmebaWeights(n);

70 end

71 end

72 end

73 end

74
75 time=toc

1 function Amembers=GetAmebaElementList(amebaIndex, AmebaList)

2
3 Amembers=0;

4
5 for i=1:length(AmebaList)

6 if AmebaList(i)== amebaIndex

7 Amembers=[Amembers; i];

8 end

9 end

10
11 Amembers=Amembers(2:length(Amembers));

1 function CleanLista=cleanList3(Lista)

2
3 sz=size(Lista(:,1));

4 CleanLista=0;

5
6 for n=1:sz

7 flag=0;

307

Appendix D. Main Source Code for Algorithms

8 for m=1:length(CleanLista)

9 if (CleanLista(m)==Lista(n,1)) flag=1; end

10 end

11 if (flag==0) CleanLista=[CleanLista; Lista(n,1)]; end

12 end

13
14 CleanLista=CleanLista(2:size(CleanLista(:,1)));

1 function [ScoreFoundPatterns, FreqMatrix]=FindPatterns4(GraphMatrix, GraphLabels, stepsPattern, Threshold)

2
3 [uGraphMatrix, uGraphLabels]=GetUndirectedGraph(GraphMatrix, GraphLabels);

4
5 for i=1:size(uGraphMatrix,1)

6
7 AmebaIndexList(i,1)={[i]};

8 tmp2=IndexList2Graph(AmebaIndexList{i,1}',uGraphMatrix);

9 uPatternMatrix(i,1)={tmp2};

10 tmp3=IndexList2GraphLabels(AmebaIndexList{i,1}',uGraphLabels);

11 uPatternLabels(i,1)={tmp3};

12 tmp=MatchPattern(uGraphMatrix, uGraphLabels, uPatternMatrix{i,1}, uPatternLabels{i,1});

13 ScoreFoundPatterns(i,1)={tmp};

14 aux1=ScoreFoundPatterns{i,1}./length(uPatternLabels{i,1});

15
16 cnt1=0;

17 for k=1:length(aux1)

18 if aux1(k)≥Threshold
19 cnt1=cnt1+1;

20 end

21 end

22
23 estimateFreq1=cnt1/length(uPatternLabels{i,1});

24 FreqMatrix(i,1)=estimateFreq1;

25
26 if stepsPattern>0

27 for j=1:stepsPattern

28 tmp4=GenerateAmebaFromUG2(uGraphMatrix,uGraphLabels,AmebaIndexList{i,j}',1);

29 AmebaIndexList(i,j+1)={tmp4};

30 tmp2=IndexList2Graph(AmebaIndexList{i,j+1}',uGraphMatrix);

31 uPatternMatrix(i,j)={tmp2};

32 tmp3=IndexList2GraphLabels(AmebaIndexList{i,j+1}',uGraphLabels);

33 uPatternLabels(i,j)={tmp3};

34 tmp=MatchPattern(uGraphMatrix, uGraphLabels, uPatternMatrix{i,j}, uPatternLabels{i,j});

35 ScoreFoundPatterns(i,j+1)={tmp};

36 aux2=ScoreFoundPatterns{i,j+1}./length(uPatternLabels{i,j});

37
38 cnt2=0;

39 for m=1:length(aux2)

40 if aux2(m)≥Threshold
41 cnt2=cnt2+1;

42 end

43 end

44
45 estimateFreq2=cnt2/length(uPatternLabels{i,j});

46 FreqMatrix(i,j+1)=estimateFreq2;

47 end

48 end

49
50 end

1
2 function [uGraph, uLabelsGraph]=GetUndirectedGraph(graph, labelsGraph)

3
4 uLabelsGraph={['0']};

5 for i=1:length(labelsGraph)

6 uLabelsGraph=[uLabelsGraph; labelsGraph(i)];

7 end

8
9

10 for i=1:length(labelsGraph)

11 for j=1:length(labelsGraph)

308

D.1. Matlab Code for Structural Matching and Discovery

12 uGraph(i,j)=0;

13 end

14 end

15
16 count=0;

17 for i=1:length(labelsGraph)

18 for j=1:length(labelsGraph)

19 if graph(i,j)==1

20 count=count+1;

21 uLabelsGraph=[uLabelsGraph; strcat(labelsGraph(i),'_',labelsGraph(j))];

22 % added: '_' to separate numeric labels

23 uGraph(i,(length(labelsGraph)+count))=1;

24 uGraph(j,(length(labelsGraph)+count))=1;

25 uGraph((length(labelsGraph)+count),i)=1;

26 uGraph((length(labelsGraph)+count),j)=1;

27 uGraph((length(labelsGraph)+count),(length(labelsGraph)+count))=0;

28 end

29 end

30 end

31
32 uLabelsGraph=uLabelsGraph(2:length(uLabelsGraph));

1
2 function AmebaIndexList=GenerateAmebaFromUG2(Graph,GraphLabels,iAmebaIndexList,steps)

3
4 AmebaIndexList=iAmebaIndexList;

5 AmebaNeighborList=GetAmebaNeighbors3(Graph,AmebaIndexList);

6
7 for i=1:steps %Ameba grow 'n' steps

8 for j=1:size(AmebaNeighborList,1)

9 AmebaIndexList=[AmebaIndexList AmebaNeighborList(j,1)];

10 end

11 AmebaNeighborList=GetAmebaNeighbors3(Graph,AmebaIndexList);

12 end

13
14 AmebaIndexList=AmebaIndexList';

15 AmebaNeighborList;

1
2 function GraphFromIndexList=IndexList2Graph(IndexList,Graph)

3
4 for i=1:size(IndexList,2)

5 for j=1:size(IndexList,2)

6 GraphFromIndexList(i,j)=Graph(IndexList(1,i),IndexList(1,j));

7 end

8 end

1
2 function GraphLabelsFromIndexList=IndexList2GraphLabels(IndexList,GraphLabels)

3
4 for i=1:size(IndexList,2)

5 GraphLabelsFromIndexList(i)=GraphLabels(IndexList(i));

6 end

7
8 GraphLabelsFromIndexList=GraphLabelsFromIndexList';

309

Appendix D. Main Source Code for Algorithms

D.2 Matlab Code Experiments and Visualisation Functions

This section describes the matlab code for complementary functions used in Chapter 8. Functions
names, inputs, outputs and dependencies are described first. Afterwards, the Matlab code are provided
in the same order functions were exposed.

genPosSample

Function [sizePattern,PatternIndexList,TESTAdjP,TESTLabP,uTESTAdjP,uTESTLabP]=

genPosSample(AdjM,LabM,index,steps)
Input:
AdjM: Adjacency model graph matrix (directed graph).
LabM: Vector with labels for model graph vertices (directed graph).
index: index of vertex from where the positive pattern sample is generated after expansion steps with
neighbours.
steps: number of expansion steps.

Output:
sizePattern: number of vertices in the pattern sample.
PatternIndexList: List with indexes of vertices in pattern sample. TESTAdjP: Adjacency pattern graph
matrix (directed graph). TESTLabP: Vector with labels for pattern graph vertices (directed graph).
uTESTAdjP: Adjacency pattern graph matrix (undirected graph). uTESTLabP: Vector with labels for
pattern graph vertices (undirected graph).
Dependencies:
GenerateAmebaFromUG2
GetUndirectedGraph

genNegSample

Function [AdjSum,LabSum,antiPAdj,antiPLab,InvantiPAdj,rowInvantiPLab,colInvantiPLab,NegPAdj,
NegPLabRow,NegPLabCol]=genNegSample(Adj,Lab,szP,index)
Input:
Adj: Adjacency model graph matrix (directed graph).
Lab: Vector with labels for model graph vertices (directed graph).
szP: number of vertices in pattern graph.
index: index in matrix without repeated labels (derived from adjacency matrix) where the adjacency
matrix of the negative sample pattern is derived from.
Output:
AdjSum: Adjacency matrix without repeated labels derived from input adjacency matrix (Adj).
LabSum: Vector with only different labels derived from input vector with labels (Lab).
InvantiPAdj: Preparatory negative sample pattern matrix from where is extracted NegPAdj (it is not
an adjacency matrix). NegPAdj: Negative sample pattern matrix (it is not an adjacency matrix). Neg-
PLabRow: Vector with row labels for pattern graph. NegPLabCol: Vector with column labels for
pattern graph.
Dependencies:
none

310

D.2. Matlab Code Experiments and Visualisation Functions

testSample1

Function testSample1(AdjM, LabM, AdjP, LabP, uAdjM, uLabM, uAdjP, uLabP, Type, Sample)
Input:
AdjM: Adjacency model graph matrix (directed graph).
LabM: Vector with labels for model graph vertices (directed graph).
AdjP: Adjacency pattern graph matrix (directed graph).
LabP: Vector with labels for pattern graph vertices (directed graph).
uAdjM: Adjacency model graph matrix (undirected graph).
uLabM: Vector with labels for model graph vertices (undirected graph).
uAdjP: Adjacency pattern graph matrix (undirected graph).
uLabP: Vector with labels for pattern graph vertices (undirected graph).
TYPE: string ’POS’ or ’NEG’ for positive and negative samples.
SAMPLE: string indicating the sample number.

Output:
Creates .DOT files with directed and undirected versions of the target graphs and results of the
matching process. The files can be opened in GraphViz and the pattern matching results visualised.
Matched vertices and edges are coloured in green.
Dependencies:
MatchPattern
IndexList2GraphLabels
GetSourceTargetFromEdge
graph_to_dot5

testDiscovery1

Function [ScoreFoundPatterns, FreqMatrix,ARCLABEL]=testDiscovery1(GraphMatrix, GraphLabels,
varargin)
Input:
GraphMatrix: Adjacency model graph matrix (directed graph).
GraphLabels: Vector with labels for model graph vertices (directed graph).
varargin: arguments for variables stepsPattern, Threshold, FreqInterest and NameModel. See
comments on source code.
Output:
ScoreFoundPatterns: Score found patterns matrix (SFPM). See Section 8.6 for details. FreqMatrix:
Frequency matrix (FM). See Section 8.6 for details. ARCLABEL: Matrix indicating the arcs between
vertices of the discovered patterns. It is used for to create the .DOT files for visualisation purposes.
testDiscovery1 also creates .DOT files with the undirected version of the target graph and the results
of the discovery process. The files can be opened in GraphViz and the pattern discovery results
visualised (both files have coloured vertices, only one with coloured edges).
Dependencies:
GetUndirectedGraph
FindPatterns4
GenerateAmebaFromUG2
IndexList2GraphLabels
GetSourceTargetFromEdge
graph_to_dot5

311

Appendix D. Main Source Code for Algorithms

rndExp1

Function [Match,uMatch]=rndExp1(szM,LszM,szP,LszP)

The function generates a random graph model and a random graph pattern, then it performs
the pattern matching function with the randomly generated pattern and model. Later, it writes the
matches on the graph model as a .dot file that can be visualised with graphviz.

Input:
szM: integer representing the number of vertices of the graph model.
LszM: integer representing the number of different labels for graph model vertices. A label in this case
is a "number" converted to string.
szP: integer representing the number of vertices of the graph pattern.
LszP: integer representing the number of different labels for graph pattern vertices. A label in this
case is a "number" converted to string.

Output:
Match: match result (vector associated to each vertex’s index) with the amount of matched vertices
indicated with an integer. The matching is for the "directed" version of the graph. Example: if 3
vertices belong to a match, and these vertices are 4, 23 and 15, then Match(4)=3, Match(23)=3 and
Match(15)=3.
uMatch: match result (vector associated to each vertex’s index) with the amount of matched vertices
indicated with an integer. The matching is for the ’UNdirected’ version of the graph. Example: if
2 vertices belong to a match, and these vertices are 4, 5 (and 4-5) the match would preserves the
direction of edges, and Match(4)=3, Match(4-5)=3 and Match(5)=3.

Dependencies:
matrand2
matrand2Pattern
MatchPattern
graph_to_dot5
GetUndirectedGraph

matrand2

Function [MR,LMR]=matrand2(sz2,Lsz)

The function generates a random "process" graph. This type of graph contains a source and sink
vertices and all vertices have a bounded in/out-degree. The function does not ensure dead-lock free
graphs and in some rare cases it mights generate disconnected graphs. This type of graph can be
discarded by other functions processing the graph.

Input:
sz2: integer representing the number of vertices of the graph model.
Lsz: integer representing the number of different labels for graph model vertices.

312

D.2. Matlab Code Experiments and Visualisation Functions

Output:
MR: A matrix representing the connectivity between vertices of the random "process" graph.
LMR: A vector containing labels for vertices of the random "process" graph. Labels can be alternatively
generated for different external functions. In this case it is illustrated with internal steps generating
random numbers between 1 and Lsz, which are then converted to strings to represent labels.

rndMatchModel

Function [Match,uMatch]=rndMatchModel(szM,LszM,adjP,LP)

The function generates a random graph model and uses a given pattern with adjacency matrix =
adjP and label vector = LP. Later a pattern matching step is performed and finally the function writes
the resultant matches over the graph model. They can be visualised using GraphViz. LszM allows
labelling with numbers between 1 and LszM. LP must refer to numbers.

Input:
szM: integer representing the number of vertices of the graph model
LszM: integer representing the number of different labels for graph model vertices. A label in this case
is a "number" converted to string.
adjP: adjacency matrix of the graph pattern
LP: labels vector of the graph pattern. Each label is a "number" converted to string.

Output:
Match: match result (vector associated to each vertex’s index) with the amount of matched vertices
indicated with an integer. The matching is for the ’directed’ version of the graph. Example: if 3
vertices belong to a match, and these vertices are 4, 23 and 15, then Match(4)=3, Match(23)=3 and
Match(15)=3.
uMatch: match result (vector associated to each vertex’s index) with the amount of matched vertices
indicated with an integer. The matching is for the ’UNdirected’ version of the graph. Example: if
2 vertices belong to a match, and these vertices are 4, 5 (and 4-5) the match would preserves the
direction of edges, and Match(4)=3, Match(4-5)=3 and Match(5)=3.

Dependencies:
matrand2
MatchPattern
graph_to_dot5
GetUndirectedGraph
(use PatternSamples1 : only if using predefined patterns in this file)

matches-to-dot

Function matches-to-dot(M,LM,P,LP)

Initially this function performs the pattern matching function between M and P. Later, it generates
.dot files for M (M.dot), P (P.dot) and the matched M (Matches.dot). The same is done for the
undirected version of M and P (uM and uP). The matched model is represented in the uMatches.dot
file. All .dots files can be visualised with GraphViz.

313

Appendix D. Main Source Code for Algorithms

Output (no in Matlab enviroment): M.dot, uM.dot, P.dot, uP.dot, Matches.dot, uMatches.dot

∗ Observation: Copyrights to authors in Matlab Code graph_to_dot5.

graph_to_dot5

Modified version of graph-to-dot (2004) by Dr. Leon Peshkin, pesha @ ai.mit.edu / pesha.
See Matlab Code in listings at the end of the section.

GraMat_to_GraML

Function GraMat_to_GraML(adj, attrName, attrType, attr, varargin)

Input:
adj: graph adjacency matrix
attrName: vector with n entries representing the names of attributes for each graph vertex.
attrType: vector with n entries representing the types of attributes for each graph vertex.
attr: cell matrix with attribute values for each vertex. Rows represent the vertices of the graph,
columns represent the attribute values.
varargin: used to change the default name of the output file (GraphML.xml).

Output:
A GraphML file (XML-based format). More details in http://graphml.graphdrawing.org/.

1
2 function [sizePattern,PatternIndexList,TESTAdjP,TESTLabP,uTESTAdjP,uTESTLabP]=genPosSample(AdjM,

3 LabM,index,steps)

4
5 %generate a positive pattern sample

6 PatternIndexList=GenerateAmebaFromUG2(AdjM,LabM,index,steps);

7 %PatternIndexList is the index list in adjacency matrix 'AdjM'

8
9 sizePattern = length(PatternIndexList);

10
11 for i=1:sizePattern

12 Ind = PatternIndexList(i);

13 LabP(i)=LabM(Ind);

14 end

15
16 for i=1:sizePattern

17 for j=1:sizePattern

18 IndI = PatternIndexList(i);

19 IndJ = PatternIndexList(j);

20 AdjP(i,j)=AdjM(IndI,IndJ);

21 end

22 end

23
24 TESTAdjP=AdjP;

25 TESTLabP=LabP';

26 [uAdjP,uLabP]=GetUndirectedGraph(AdjP, LabP);

27 uTESTAdjP=uAdjP;

28 uTESTLabP=uLabP;

1
2 function [AdjSum,LabSum,NegPAdj,NegPLabRow,NegPLabCol]=genNegSample(Adj,Lab,szP,index)

314

http://graphml.graphdrawing.org/

D.2. Matlab Code Experiments and Visualisation Functions

3
4 %use this to review all temporal outputs:

5 %[AdjSum,LabSum,antiPAdj,antiPLab,InvantiPAdj,rowInvantiPLab,colInvantiPLab,NegPAdj,

6 %NegPLabRow,NegPLabCol]

7
8 SumRowAdj=Adj;

9 SumRowLab=Lab;

10 flagRow = zeros(length(Lab),1);

11
12
13 for i=1:length(Lab) % recorre columns

14 for j=1:length(Lab) % recorre rows

15 if (i6=j) && (strcmp(Lab(j),Lab(i))==1) && (flagRow(i)==0)

16 SumRowAdj(i,:)=Adj(j,:)+Adj(i,:); % add rows i and j

17 flagRow(i)=1; % manterner sumada

18 flagRow(j)=2; % eliminar

19 end

20 end

21 end

22
23 TflagRow=flagRow;

24 cnt=0;

25 for k=1:length(TflagRow)

26 if flagRow(k)6=2
27 cnt=cnt+1;

28 end

29 end

30
31 nSumRowAdj=zeros(cnt,length(Lab));

32 nSumRowLab=cell(cnt,1);

33 for k=1:length(TflagRow)

34 if flagRow(k)6=2
35 %k;

36 nSumRowAdj(k,:)=SumRowAdj(k,:);

37 nSumRowLab(k)=SumRowLab(k);

38 end

39 end

40
41 SumColAdj=nSumRowAdj;

42 SumColLab=nSumRowLab;

43 flagCol = zeros(length(SumColLab),1);

44 k2=size(nSumRowAdj,1); % number of rows

45 k3=size(nSumRowAdj',1); % number of columns

46
47 for i=1:k2 % recorre rows

48 for j=1:k3 % recorre columns

49 if (j6=i) && (strcmp(nSumRowLab(i),Lab(j))==1) && (flagCol(i)==0)

50 %j;

51 %i;

52 SumColAdj(:,i)=nSumRowAdj(:,i)+nSumRowAdj(:,j);

53 % add columns i and j

54 flagCol(i)=1; %manterner sumada

55 flagCol(j)=2; % eliminar

56 end

57 end

58 end

59
60 TflagCol=flagCol;

61 cnt2=0;

62 for m=1:length(TflagCol)

63 if flagCol(m)6=2
64 cnt2=cnt2+1;

65 end

66 end

67
68 nSumColAdj=zeros(length(nSumRowLab),cnt2);

69 nSumColLab=cell(cnt2,1);

70 for m=1:length(TflagCol)

71 if flagCol(m)6=2
72 %m;

73 nSumColAdj(:,m)=SumColAdj(:,m);

74 nSumColLab(m)=SumColLab(m);

75 end

76 end

77

315

Appendix D. Main Source Code for Algorithms

78 AdjSum=nSumColAdj;

79 LabSum=nSumColLab;

80
81 %%%

82
83 %index;

84 j2=size(nSumColAdj,1); %number of rows matrix without repeated labels

85 antiPAdj=zeros(szP,j2);

86 antiPLab=cell(szP,1);

87 if (index > j2−szP)==1
88 %ee = j2−szP+1;
89 e = 'error: invalid index (index must be ≤ (Adj rows − szP),

90 change to default index = 1)'

91 index=1;

92 end

93 j3=index+szP;

94 for i=1:szP

95 antiPAdj(i,:)=nSumColAdj(index+i,:);

96 antiPLab(i)=nSumColLab(index+i);

97 end

98
99 l2=size(antiPAdj,1); %number of rows

100 l3=size(antiPAdj',1); %number of columns

101 InvantiPAdj=zeros(l2,l3);

102 for i=1:l2

103 for j=1:l3

104 if antiPAdj(i,j)==1

105 InvantiPAdj(i,j)=0;

106 end

107 if antiPAdj(i,j)==0

108 InvantiPAdj(i,j)=1;

109 end

110 end

111 end

112
113 rowInvantiPLab=antiPLab; % labels in rows

114 colInvantiPLab=SumColLab; % lables in columns

115
116 NegPAdj=InvantiPAdj(1:szP,1:szP);

117 NegPLabRow=rowInvantiPLab;

118 NegPLabCol=colInvantiPLab(1:szP);

1
2 function testSample1(AdjM, LabM, AdjP, LabP, uAdjM, uLabM, uAdjP, uLabP, Type, Sample)

3
4 %TYPE = POS or NEG, for positive and negative samples, negative sample

5 %indicate a pattern that does not exist in the graph.

6 %Write 'POS' or 'NEG' as string

7
8 %SAMPLE indicate the number of the sample, write '1' as a string to

9 % indicate it is the first sample, '2', the second sample, etc.

10
11 %the matching

12 Match=MatchPattern(AdjM, LabM, AdjP, LabP);

13 uMatch=MatchPattern(uAdjM, uLabM, uAdjP, uLabP);

14
15 %steps to add labels and weights in each vertex of the 'match'

16 uS_Match=cell(length(uMatch),1);

17 S_Match=cell(length(Match),1);

18
19 uMatch_labels=cell(length(uMatch),1);

20 Match_labels=cell(length(Match),1);

21
22 for i=1:length(uMatch)

23 uS_Match(i)={num2str(uMatch(i))};

24 S_i={num2str(i)};

25 uMatch_labels(i)=strcat(uLabM(i),' [',uS_Match(i),']',',i=',S_i);

26 end

27 for i=1:length(Match)

28 S_Match(i)={num2str(Match(i))};

29 S_i={num2str(i)};

30 Match_labels(i)=strcat(LabM(i),' [',S_Match(i),']',',i=',S_i);

316

D.2. Matlab Code Experiments and Visualisation Functions

31 end

32
33 %%%

34 % write to "Directed" and "Undirected" graphs without colouring edges

35
36 UdotFileName = strcat('uRESULT−M',num2str(length(LabM)),'−P',num2str(length(LabP)),'−',
37 Type,'−S',Sample,'.dot');
38
39 dotFileName = strcat('RESULT−M',num2str(length(LabM)),'−P',num2str(length(LabP)),'−',
40 Type,'−S',Sample,'.dot');
41
42 graph_to_dot5(uAdjM,'filename',UdotFileName,'node_label',uMatch_labels,'matches',uMatch);

43 graph_to_dot5(AdjM,'filename',dotFileName,'node_label',Match_labels,'matches',Match);

44
45 %%%

46 % write to "Directed" graph colouring edges

47
48 % uGraphLabels is vector with undirected graph labels

49 % from 1 to size of directed graph [i.e length(GraphLabels)], labels are the same

50 % as directed graph labels.

51
52 Edges=length(uLabM)−length(LabM);
53 Edge_Labels=cell(Edges,1);

54 SourceLabel=cell(Edges,1);

55 TargetLabel=cell(Edges,1);

56
57 arc_label=zeros(length(LabM)); % for graph_to_dot4 −> write color to edge in directed graph

58
59 for i=1:length(LabM)

60 Edge_Labels(i,1)={'0'};

61 SourceLabel(i,1)={'0'};

62 TargetLabel(i,1)={'0'};

63 end

64
65 for i=length(LabM)+1:length(uLabM)

66 if uMatch(i)>0

67 Edge_Labels(i,1)=IndexList2GraphLabels(i,uLabM);

68 indexEdge=i;

69 [IndexSource,IndexTarget]=GetSourceTargetFromEdge(indexEdge,uLabM,uAdjM);

70 arc_label(IndexSource,IndexTarget)=1;

71 STLabels=textscan(Edge_Labels{i,1},'%[^_]%1c%s');

72 SourceLabel{i,1}=STLabels{1,1};

73 TargetLabel{i,1}=STLabels{1,3};

74 else

75 Edge_Labels{i,1}='0';

76 SourceLabel{i,1}='0';

77 TargetLabel{i,1}='0';

78 end

79 end

80
81 ARCLABEL=arc_label;

82
83 DirectMatch=uMatch(1:length(LabM));

84
85 dotFileName2 = strcat('MATCHING−D−−M',num2str(length(LabM)),'−P',num2str(length(LabP)),'−',
86 Type,'−S',Sample,'.dot');
87
88 graph_to_dot5(AdjM,'filename',dotFileName2,'node_label',uLabM,'edgeColor',ARCLABEL,

89 'matches',DirectMatch);

1
2 function [ScoreFoundPatterns, FreqMatrix,ARCLABEL]=

3 testDiscovery1(GraphMatrix, GraphLabels, varargin)

4
5 % Default: stepsPattern, Threshold, FreqInterest, NameModel

6 stepsPattern = 1; % one expansion step

7 Threshold = 1; % exact vertex matching

8 FreqInterest = 2; % pattern at least two times in the model

9 NameModel = []; % no name

10
11 % Selection: stepsPattern, Threshold, FreqInterest, NameModel

12 for i = 1:3:nargin−1 % optional args

317

Appendix D. Main Source Code for Algorithms

13 switch varargin{i}

14 case 'stepsPattern', stepsPattern = varargin{i+1};

15 case 'Threshold', Threshold = varargin{i+1};

16 case 'FreqInterest', Threshold = varargin{i+1};

17 case 'NameModel', NameModel = varargin{i+1};

18 end

19 end

20
21 %'NameModel' is a string indicating the name of the model

22 % identical to v7 test discovery with comments

23
24 [uGraphMatrix, uGraphLabels]=GetUndirectedGraph(GraphMatrix, GraphLabels);

25 %the discovery

26 [ScoreFoundPatterns, FreqMatrix]=FindPatterns4(GraphMatrix, GraphLabels,

27 stepsPattern, Threshold);

28
29 sp=stepsPattern+1;

30 MatchDisc1=zeros(length(FreqMatrix(:,sp)),1);

31
32 if stepsPattern≤1 % 1 step of expansion or less

33 for i=1:length(FreqMatrix(:,sp))

34 if FreqMatrix(i,sp)>1 % discovered pattern is at least 2 times in the model

35 MatchDisc1(i)=FreqMatrix(i,sp);

36 else

37 MatchDisc1(i)=0;

38 end

39 end

40 else

41 for i=1:length(FreqMatrix(:,sp)) % more than 1 step of expansion

42 if FreqMatrix(i,sp)≥FreqInterest % FreqInterest = 2 means

43 % discovered pattern is atleast 2 times in the model

44 MatchDisc1(i)=FreqMatrix(i,sp);

45 else

46 MatchDisc1(i)=0;

47 end

48 end

49 end

50
51 MatchDisc2=MatchDisc1;

52 for i=1:length(MatchDisc1)

53 if MatchDisc1(i)6=0
54 iAmebaIndexList=i;

55 AmebaIndexList=GenerateAmebaFromUG2(uGraphMatrix,uGraphLabels,iAmebaIndexList,sp);

56 for j=1:length(AmebaIndexList)

57 indexNeigbour=AmebaIndexList(j);

58 if MatchDisc1(indexNeigbour)≥2
59 MatchDisc2(indexNeigbour)=MatchDisc1(indexNeigbour);

60 else

61 MatchDisc2(indexNeigbour)=1;

62 end

63 end

64 end

65 end

66
67 MatchDisc3=MatchDisc2;

68 cnt=zeros(length(MatchDisc2),1);

69 for i=1:length(MatchDisc2)

70 for j=1:length(MatchDisc2)

71 if MatchDisc2(i)==1

72 if MatchDisc2(j)==1

73 LabelFromIndex_i=IndexList2GraphLabels(i,uGraphLabels);

74 LabelFromIndex_j=IndexList2GraphLabels(j,uGraphLabels);

75 if strcmp(LabelFromIndex_i,LabelFromIndex_j)==1 % verify if the

76 % label is more than one time in Model

77 cnt(i)=cnt(i)+1;

78 cnt(j)=cnt(j)+1;

79 end

80 end

81 end

82 end

83 end

84
85 for i=1:length(cnt)

86 if cnt(i)>2

87 MatchDisc3(i)=1;

318

D.2. Matlab Code Experiments and Visualisation Functions

88 else

89 MatchDisc3(i)=0;

90 end

91 end

92
93 MatchDisc4=MatchDisc3+MatchDisc1;

94
95 S_stepsPattern=num2str(stepsPattern);

96
97 % write to "Undirected" graph

98 UdotFileName = strcat('DISCOVERY−U−',NameModel,'−M',
99 num2str(length(GraphLabels)),'−steps',S_stepsPattern,'.dot');

100
101 %graph_to_dot3(uGraphMatrix,'filename',UdotFileName,'node_label',

102 uGraphLabels,'matches',MatchDisc4);

103
104 graph_to_dot5(uGraphMatrix,'filename',UdotFileName,'node_label',

105 uGraphLabels,'matches',MatchDisc4);

106
107
108 % write to "Directed" graph

109
110 % uGraphLabels is vector with undirected graph labels

111 % from 1 to size of directed graph [i.e length(GraphLabels)],

112 % labels are the same as directed graph labels.

113
114 Edges=length(uGraphLabels)−length(GraphLabels);
115 Edge_Labels=cell(Edges,1);

116 SourceLabel=cell(Edges,1);

117 TargetLabel=cell(Edges,1);

118
119 arc_label=zeros(length(GraphLabels));

120
121 for i=1:length(GraphLabels)

122 Edge_Labels(i,1)={'0'};

123 SourceLabel(i,1)={'0'};

124 TargetLabel(i,1)={'0'};

125 end

126
127 for i=length(GraphLabels)+1:length(uGraphLabels)

128 if MatchDisc4(i)>0

129 Edge_Labels(i,1)=IndexList2GraphLabels(i,uGraphLabels);

130 indexEdge=i;

131 [IndexSource,IndexTarget]=GetSourceTargetFromEdge(indexEdge,

132 uGraphLabels,uGraphMatrix);

133 arc_label(IndexSource,IndexTarget)=1;

134 STLabels=textscan(Edge_Labels{i,1},'%[^_]%1c%s');

135 SourceLabel{i,1}=STLabels{1,1};

136 TargetLabel{i,1}=STLabels{1,3};

137 else

138 Edge_Labels{i,1}='0';

139 SourceLabel{i,1}='0';

140 TargetLabel{i,1}='0';

141 end

142 end

143
144 ARCLABEL=arc_label;

145
146 DirectMatchDisc=MatchDisc4(1:length(GraphLabels));

147
148 dotFileName = strcat('DISCOVERY−D−',NameModel,'−M',num2str(length(GraphLabels)),
149 '−steps',S_stepsPattern,'.dot');
150
151 graph_to_dot5(GraphMatrix,'filename',dotFileName,'node_label',uGraphLabels,

152 'edgeColor',ARCLABEL,'matches',DirectMatchDisc);

1
2 function [IndexSource,IndexTarget]=GetSourceTargetFromEdge(indexEdge,LabelsGraph,Graph)

3
4 at = find(LabelsGraph{indexEdge} == '_');

5 if at6=0
6 AmebaIndexList=GenerateAmebaFromUG2(Graph,LabelsGraph,indexEdge,1);

319

Appendix D. Main Source Code for Algorithms

7 if length(AmebaIndexList)==2 %self−loop
8 IndexSource=AmebaIndexList(2,1);

9 IndexTarget=AmebaIndexList(2,1);

10 else

11 s=textscan(LabelsGraph{indexEdge},'%[^_]%1c%s');

12 if strcmp(LabelsGraph(AmebaIndexList(2,1)),s{1,1})==1

13 IndexSource=AmebaIndexList(2,1);

14 IndexTarget=AmebaIndexList(3,1);

15 else

16 IndexSource=AmebaIndexList(3,1);

17 IndexTarget=AmebaIndexList(2,1);

18 end

19 end

20 end

1
2 function Index=IndexFromLabel(Label,GraphLabels)

3
4 % provide Index vector indicating index of the vertex in

5 % GraphLabels that equals the 'Label' Index=zeros(length(GraphLabels),1);

6
7 for i=1:length(GraphLabels)

8 if strcmp(Label,GraphLabels(i))==1

9 Index(i)=i;

10 end

11 end

1
2 function [Match,uMatch]=rndExp1(szM,LszM,szP,LszP)

3 %szM : size of the graph model

4 %szP : size of the graph pattern

5
6 % Better name: RndMatchModelPattern

7
8 %Generates random graph model and random graph pattern

9 %then it does the pattern matching step

10 % and writes the matches on the graph model

11
12 %added LszM and LszP 01 Dic. (it allows labelling with numbers between 1 and LszX, X=P,M)

13
14 [MR,LMR]=matrand2(szM,LszM);

15 [PR,LPR]=matrand2Pattern(szP,LszP);

16
17 %directed

18 Match=MatchPattern(MR, LMR, PR, LPR);

19 %add label with 'label' and weight of the 'match'

20 S_Match=cell(length(Match),1);

21 Match_labels=cell(length(Match),1);

22 for i=1:length(Match)

23 S_Match(i)={num2str(Match(i))};

24 Match_labels(i)=strcat(LMR(i),'(',S_Match(i),')');

25 end

26
27 graph_to_dot5(MR,'filename','MR.dot','node_label',LMR);

28 graph_to_dot5(PR,'filename','PR.dot','node_label',LPR);

29 graph_to_dot5(MR,'filename','MatchResult.dot','node_label',Match_labels,'matches',Match);

30
31 %undirected

32 [uMR, uLMR]=GetUndirectedGraph(MR, LMR);

33 [uPR, uLPR]=GetUndirectedGraph(PR, LPR);

34 uMatch=MatchPattern(uMR, uLMR, uPR, uLPR);

35 %add label with 'label' and weight of the 'match'

36 uS_Match=cell(length(uMatch),1);

37 uMatch_labels=cell(length(uMatch),1);

38 for i=1:length(uMatch)

39 uS_Match(i)={num2str(uMatch(i))};

40 uMatch_labels(i)=strcat(uLMR(i),'(',uS_Match(i),')');

41 end

42 graph_to_dot5(uMR,'filename','uMR.dot','node_label',uLMR);

43 graph_to_dot5(uPR,'filename','uPR.dot','node_label',uLPR);

320

D.2. Matlab Code Experiments and Visualisation Functions

44 graph_to_dot5(uMR,'filename','uMatchResult.dot','node_label',uMatch_labels,'matches',uMatch);

1
2 function [MR,LMR]=matrand2(sz2,Lsz) % equivalent to matrand2Pattern

3
4 % this function generates random "process" graphs. This type of graphs contain source and sink vertices

5 % and vertices have a bounded in/out−degree. The function does not ensure dead−lock free graphs and in

6 % some rare cases it mights generate disconnected graphs

7
8 sz=sz2−2; %graph size, less source and sink vertices

9 MRtemp=rand(sz);

10 MR=zeros(sz);

11
12 LMRtemp=rand(sz,1);

13 LMR=cell(sz,1);

14
15 sumColumn=zeros(sz,1)';

16 sumRow=zeros(sz,1)';

17
18 tmp1=0;

19 tmp2=0;

20
21 for j=1:sz

22 for i=1:sz

23 tmp1 = sumColumn(j);

24 tmp2 = sumRow(i);

25 tmp = tmp1 + tmp2;

26
27 p1 = 1−1/sz;
28 p2 = 1−(exp(−0.05*sz)); % (p1, p2, ...) are different functions to create edges.

29 % p1 is used in this case. An edge is created with probability 1−1/sz
30 % in small graphs vertices have more changes to connect to other vertices

31 % in large graphs connections are less likely, and the in−out/degree results balanced

32 % for different graph sizes

33
34 if MRtemp(i,j)≥p1
35 if tmp≤3 % max in/out−degree = 4, if fixed probability is considered (e.g 0.5 instead p1)

36 MR(i,j)=1;

37 else

38 MR(i,j)=0;

39 end

40 sumColumn = sum(MR);

41 sumRow = sum(MR');

42 end

43
44 end

45 end

46
47 % add row and column for source

48 t1=length(MR)+1;

49 MR(t1,:)=zeros(1,length(MR));

50 MR(:,length(MR))=zeros(length(MR),1);

51 iSource=t1;

52 %add row and column for sink

53 t2=length(MR)+1;

54 MR(t2,:)=zeros(1,length(MR));

55 MR(:,length(MR))=zeros(length(MR),1);

56 iSink=t2;

57 % add edges from source to all nodes without ingoing edges

58 for i=1:t2 % t2 = length(MR), goes through columns

59 sumColumn_i = sum(MR(:,i));

60 if (sumColumn_i==0) || ((sumColumn_i==1)&&(MR(i,i)==1)); % all nodes without ingoing edges OR

61 % without ingoing edges except

62 % selfloop

63 MR(t1,i)=1;

64 LMR(t1)={'Source'}; % uses SourcePattern for matrand2Pattern

65 end

66 end

67 % add edges from all nodes without outgoing edges to the sink

68 for i=1:t2 % t2 = length(MR), goes through rows

69 sumRow_i = sum(MR(i,:));

70 if (sumRow_i==0) || ((sumRow_i==1)&&(MR(i,i)==1)); % all nodes without outgoing edges OR

321

Appendix D. Main Source Code for Algorithms

71 % without outgoing edges except

72 % selfloop

73 MR(i,t2)=1;

74 LMR(t2)={'Sink'}; % uses SinkPattern for matrand2Pattern

75
76 end

77 end

78 % eliminate selfloops in source and sink

79 MR(t1,t1)=0;

80 MR(t2,t2)=0;

81
82 % provide final out/in degrees for each node, the last two elements are source and sink (in this order)

83 sumColumn = sum(MR);

84 sumRow = sum(MR');

85
86 % alternative labellings. Here only illustrated for numbers as labels

87 rndnumber=ceil(Lsz.*rand(sz,1)); % Lsz −−> numbers between 1 and Lsz can be labels

88 %rndlabel = cell(sz,1);

89 for j=1:sz

90 LMR(j,1)={num2str(rndnumber(j))};

91 end

1
2 function [Match,uMatch]=rndMatchModel(szM,LszM,adjP,LP)

3 %szM : size of the graph model

4 %szP : size of the graph pattern

5
6 % Generates random graph model and uses given pattern (adjP and LP are the

7 % adjancency matrix and labels for pattern elements)

8 % The function does the pattern matching step

9 % and writes the matches on the graph model

10
11 %added LszM and LszP 01 Dic. (it allows labelling with numbers between 1 and LszX, X=P,M)

12
13 [MR,LMR]=matrand2(szM,LszM);

14 % % [PR,LPR]=matrand2(szP,LszP);

15
16 PR = adjP;

17 LPR = LP;

18
19 %directed

20 Match=MatchPattern(MR, LMR, PR, LPR);

21 %add label with 'label' and weight of the 'match'

22 S_Match=cell(length(Match),1);

23 Match_labels=cell(length(Match),1);

24 for i=1:length(Match)

25 S_Match(i)={num2str(Match(i))};

26 Match_labels(i)=strcat(LMR(i),'−−',S_Match(i));
27 end

28
29 graph_to_dot5(MR,'filename','MR.dot','node_label',LMR);

30 graph_to_dot5(PR,'filename','PR.dot','node_label',LPR);

31 graph_to_dot5(MR,'filename','MatchResult.dot','node_label',Match_labels,'matches',Match);

32
33 %undirected

34 [uMR, uLMR]=GetUndirectedGraph(MR, LMR);

35 [uPR, uLPR]=GetUndirectedGraph(PR, LPR);

36 uMatch=MatchPattern(uMR, uLMR, uPR, uLPR);

37 %add label with 'label' and weight of the 'match'

38 uS_Match=cell(length(uMatch),1);

39 uMatch_labels=cell(length(uMatch),1);

40 for i=1:length(uMatch)

41 uS_Match(i)={num2str(uMatch(i))};

42 uMatch_labels(i)=strcat(uLMR(i),'−−',uS_Match(i));
43 end

44 graph_to_dot5(uMR,'filename','uMR.dot','node_label',uLMR);

45 graph_to_dot5(uPR,'filename','uPR.dot','node_label',uLPR);

46 graph_to_dot5(uMR,'filename','uMatchResult.dot','node_label',uMatch_labels,'matches',uMatch);

1

322

D.2. Matlab Code Experiments and Visualisation Functions

2 function matches_to_dot(M,LM,P,LP)

3
4 Match=MatchPattern(M, LM, P, LP);

5 %add label with 'label' and weight of the 'match'

6 S_Match=cell(length(Match),1);

7 Match_labels=cell(length(Match),1);

8 for i=1:length(Match)

9 S_Match(i)={num2str(Match(i))};

10 Match_labels(i)=strcat(LM(i),'−',S_Match(i));
11 end

12
13 graph_to_dot5(M,'filename','M.dot','node_label',LM);

14 graph_to_dot5(P,'filename','P.dot','node_label',LP);

15 graph_to_dot5(M,'filename','Matches.dot','node_label',Match_labels,'matches',Match);

16
17 %undirected

18 [uM, uLM]=GetUndirectedGraph(M, LM);

19 [uP, uLP]=GetUndirectedGraph(P, LP);

20 uMatch=MatchPattern(uM, uLM, uP, uLP);

21 %add label with 'label' and weight of the 'match'

22 uS_Match=cell(length(uMatch),1);

23 uMatch_labels=cell(length(uMatch),1);

24 for i=1:length(uMatch)

25 uS_Match(i)={num2str(uMatch(i))};

26 uMatch_labels(i)=strcat(uLM(i),'−',uS_Match(i));
27 end

28 graph_to_dot5(uM,'filename','uM.dot','node_label',uLM);

29 graph_to_dot5(uP,'filename','uP.dot','node_label',uLP);

30 graph_to_dot5(uM,'filename','uMatches.dot','node_label',uMatch_labels,'matches',uMatch);

1
2 function graph_to_dot5(adj, varargin)

3
4 %show match

5
6 % graph_to_dot(adj, VARARGIN) Creates a GraphViz (AT&T) format file representing

7 % a graph given by an adjacency matrix.

8 % Optional arguments should be passed as name/value pairs [default]

9 %

10 % 'filename' − if omitted, writes to 'tmp.dot'

11 % 'arc_label' − arc_label{i,j} is a string attached to the i−j arc [""]

12 % 'node_label' − node_label{i} is a string attached to the node i ["i"]

13 % 'width' − width in inches [10]

14 % 'height' − height in inches [10]

15 % 'leftright' − 1 means layout left−to−right, 0 means top−to−bottom [0]

16 % 'directed' − 1 means use directed arcs, 0 means undirected [1]

17 %

18 % For details on dotty, See http://www.research.att.com/sw/tools/graphviz

19 %

20 % by Dr. Leon Peshkin, Jan 2004 inspired by Kevin Murphy's BNT

21 % pesha @ ai.mit.edu /¬pesha
22
23 node_label = [];

24 arc_label = []; % set default args

25 width = 10;

26 height = 10;

27 leftright = 0;

28 directed = 1;

29 filename = 'tmp.dot';

30 % added

31 matches = zeros(length(adj)); %till here

32 % added

33 edgeColor = zeros(length(adj)); %till here

34
35
36 for i = 1:2:nargin−1 % get optional args

37 switch varargin{i}

38 case 'filename', filename = varargin{i+1};

39 case 'node_label', node_label = varargin{i+1};

40 case 'arc_label', arc_label = varargin{i+1};

41 case 'width', width = varargin{i+1};

42 case 'height', height = varargin{i+1};

323

Appendix D. Main Source Code for Algorithms

43 case 'leftright', leftright = varargin{i+1};

44 case 'directed', directed = varargin{i+1};

45 case 'matches', matches = varargin{i+1}; % added

46 %till here

47 case 'edgeColor', edgeColor = varargin{i+1}; % added

48 %till here

49
50 end

51 end

52 fid = fopen(filename, 'w');

53 if directed

54 fprintf(fid, 'digraph G {\n');

55 arctxt = '−>';
56 if isempty(arc_label)

57 labeltxt = '';

58 color = '[color="green"]'; %added

59 else

60 labeltxt = '[label="%s"]';

61 color = '[color="green"]'; %added

62 end

63 else

64 fprintf(fid, 'graph G {\n');

65 arctxt = '−−';
66 if isempty(arc_label)

67 labeltxt = '[dir=none]';

68 color = '[color="green"]'; %added

69 else

70 %labeltext = '[label="%s",dir=none]';

71 labeltxt = '[label="%s",dir=none]';

72 color = '[color="green"]'; %added

73 end

74 end

75 fprintf(fid, 'center = 1;\n');

76 fprintf(fid, 'size=\"%d,%d\";\n', width, height);

77 if leftright

78 fprintf(fid, 'rankdir=LR;\n');

79 end

80
81 Nnds = length(adj);

82 for node = 1:Nnds % process NODEs

83 if isempty(node_label)

84 fprintf(fid, '%d;\n', node);

85 else

86 %% added

87 if matches(node)6=0
88 fprintf(fid, '%d [label = "%s", style ="%s", color ="%s"];\n', node,

89 node_label{node},'filled','green');

90 end

91 %% till here

92 fprintf(fid, '%d [label = "%s"];\n', node, node_label{node});

93 end

94 end

95
96
97
98 edgeformat = strcat(['%d ',arctxt,' %d ',labeltxt,';\n']);

99 edgeformat2 = strcat(['%d ',arctxt,' %d ',labeltxt, color,';\n']);

100
101 for node1 = 1:Nnds % process ARCs

102 if directed

103 arcs = find(adj(node1,:)); % children(adj, node);

104 else

105 arcs = find(adj(node1,node1+1:Nnds)) + node1; % remove duplicate arcs

106 end

107 for node2 = arcs

108 if isempty(arc_label) % thanks to Nicholas Wayne Henderson nwh@owlnet.rice.edu

109 if edgeColor(node1, node2)==1 % added

110 fprintf(fid, edgeformat2, node1, node2); %% added

111 else %added

112 fprintf(fid, edgeformat, node1, node2);

113 end

114 else

115 fprintf(fid, edgeformat, node1, node2, arc_label{node1,node2});

116 end

117 end

324

D.2. Matlab Code Experiments and Visualisation Functions

118 end

119 fprintf(fid, '}');

120 fclose(fid);

1
2 function GraMat_to_GraML(adj, attrName, attrType, attr, varargin)

3
4 % adj is the graph adjacency matrix

5 % attrName is a vector(n,1) with n entries representing the names of

6 % attributes for each graph vertex (e.g. "Label", "Cost",

7 % "Duration", etc. −−> attrName={'nodeID';'id'; 'Label'; 'Cost'; 'Duration'})

8 % attrType is a vector(n,1) with n entries representing the types of

9 % attributes for each graph vertex (e.g. "int", "string", etc.

10 % attr is a cell matrix with the values of attributes for each vertex,

11 % attr's rows represent the vertices of the graph, and attr's columns

12 % represent the values of the attributes.

13 % e.g. attr={1 11 'A' 20 50; 2 22 'B' 30 60; 3 33 'C' 40 70}

14 %

15 % GraMat_to_GraML(adj, attrName, attrType, attr, 'filename','pattern.xml')

16 %

17 % GraphML is XML a graph format. See details here

18 % http://graphml.graphdrawing.org/

19 %

20
21 filename = 'GraphML.xml';

22
23 for i = 1:size(varargin,2)

24 switch varargin{i}

25 case 'filename', filename = varargin{i+1};

26 end

27 end

28
29 fid = fopen(filename, 'w');

30
31 fprintf(fid, '<?xml version="1.0" encoding="UTF−8" ?> \n');

32 fprintf(fid, '<!−− An excerpt of an egocentric social network −−> \n');

33 fprintf(fid, '<graphml xmlns="http://graphml.graphdrawing.org/xmlns"> \n');

34 fprintf(fid, '<graph edgedefault="undirected"> \n \n');

35
36 fprintf(fid, '<!−− data schema −−> \n');

37
38 m=size(attrName);

39 [attrf,attrc] = size(attr);

40 nodeID = zeros(attrf,1);

41 attrNameT=attrName';

42 attrTypeT=attrType';

43 for i=1:m

44 ii = cell2mat(attrName(i));

45 jj = cell2mat(attrType(i));

46 if (strcmp(ii,'nodeID')==1)

47 nodeID = attr(:,i);

48 nodeID = cell2mat(nodeID);

49 attrNoID = attr;

50 attrNoID(:,i) = []; %attr / attrName / attrType without NodeID

51 attrNameT(:,i) = [];

52 attrTypeT(:,i) = [];

53 else

54 fprintf(fid, '<key id="%s" for="node" attr.node="%s" attr.type="%s" /> \n',ii,ii,jj);

55 end

56 end

57
58 fprintf(fid, '\n <!−− nodes −−> \n');

59 [attrNoIDf,attrNoIDc] = size(attrNoID);

60
61 for k=1:attrf

62 fprintf(fid, '<node id="%d"> \n',nodeID(k,1));

63 for j=1:attrNoIDc %changed attrf+1

64 arg1 = cell2mat(attrNameT(j));

65 arg2 = cell2mat(attrNoID(k,j));

66 arg2 = mat2str(arg2);

67 fprintf(fid, ' <data key="%s">%s</data> \n',arg1,arg2);

68 end

325

Appendix D. Main Source Code for Algorithms

69 fprintf(fid, '</node> \n');

70 end

71
72 [adjr,adjc]=size(adj);

73 fprintf(fid, '\n <!−− edges −−> \n');

74 for i=1:adjr

75 for j=1:adjc

76 if adj(i,j)==1

77 fprintf(fid, '<edge source="%d" target="%d"></edge> \n',i,j);

78 end

79 end

80 end

81
82 fprintf(fid, '\n </graph> \n');

83 fprintf(fid, '\n </graphml> \n');

326

D.3. Graph Models and Samples

D.3 Graph Models and Samples

This section illustrates some of the sample patterns and graph models used for the
experimental evaluation of pattern matching and discovery techniques. Directed
random graph models of 10, 50, 100 and 1000 vertices are shown in Figures D.2 to
D.5. Details of vertices are not relevant in these figures, the intention is to illustrate
the overall structure of the generated random graph process models.

Figure D.2: Directed random graph model – ten vertices.

Figure D.3: Directed random graph model – fifty vertices.

Figure D.4: Directed random graph model – hundred vertices.

327

Appendix D. Main Source Code for Algorithms

Figure
D

.5:D
irected

random
graph

m
odel–

thousand
vertices.

328

Appendix E

Interview Form

 Questionnaire

Pattern Matching and Discovery

for Process-centric Systems Design

Institution:

Software and System Engineering Group.

School of Computing, Dublin City University, Ireland.

General Instructions:

 Please complete with a cross in the field indicated as [] with the alternatives satisfy your

opinion the most (i.e., you are allowed to mark more than one alternative).

 Answers to open questions can be written or recorded. If you prefer to be recorded please

ask the interviewer before start the questionnaire.

 Please ask for clarifications anytime when answering the questionnaire, either if you don’t

understand something or you want to comment some issue related with the questionnaire.

Interviewee Profile (PART I)

Name (optional) __

Company name (optional) ___

1. Role:

 [] Business analyst
 [] Business unit manager
 [] Project manager
 [] IT/enterprise/software architect
 [] Software engineer / developer

 Other:

2. Organisation size:

 [] Less than 50 employees
 [] Between 51 and 250 employees
 [] Between 251 and 500 employees
 [] Between 501 and 5000 employees
 [] More than 5000 employees

3. Organisation distribution:
 [] Local to city
 [] Local to country
 [] Global

4. In a scale from 1 to 5, where 1 is “I am an expert” and 5 is “No knowledge/expertise”,

please refer to your knowledge about business process modelling

[] [] [] [] []
 1 2 3 4 5

(I am an expert) (No knowledge/expertise)

5. In a scale from 1 to 5, where 1 is “I am an expert” and 5 is “No knowledge/expertise”,

please refer to your knowledge about any of the following concepts: process regulations /
business process rules / process patterns / best practices / procedures.

[] [] [] [] []

 1 2 3 4 5
(I am an expert) (No knowledge/expertise)

6. Consider the term process constraints as an umbrella term capturing the ideas behind process
regulations (business process rules) / process patterns / best practices / procedures. Process
constraints would restrict how processes are structured; their semantic and they identify
constraints over data values associated to attributes of process elements.

 Are you part of a team whose functions include analysing/designing organisation processes
in regard to process constraints?

 [] Yes
 [] No
 [] Occasionally

 Other/Comments: __

7. Please mark with a cross if you are familiar with any of the activities listed below. Note that

listed activities are common activities performed during the analysis/design of processes
regarding process constraints.

 [] Process model verification
 [] Process model transformation
 [] Process model auditing
 [] Process model comparison
 [] Process pattern matching/identification
 [] Process pattern discovery
 [] Process model discovery

 Please provide your comments regarding other activities performed during process

analysis/design:

Business processes documentation (PART II)

8. In your organisation or the organisations you work(ed), what projects/activities generate

graphical process documentation?

 [] Process reengineering/improvement project
 [] Process automation project
 [] Analysis/design stages in IT project
 [] Service-based architecture initiative
 [] Process monitoring
 [] Organisations merging
 [] Organisations benchmark

 Other:
 __
 __
 __
 __
 __
 __
 __

9. In your organisation or the organisations you work(ed), in a scale from 1 to 5, where 1 is

“only textual documentation” and 5 is “only graphical documentation”, please refer to how
processes are documented.

[] [] [] [] []

 1 2 3 4 5
 (only textual) (only graphical)

 Go to (13) Go to (10)

 Before Go to 13/10 IF ANY, please score other organisation(s) you work(ed), and

indicate their size and distribution. Size and distribution range is indicated in questions 2 and
3, respectively.

 Organisation 2: score _____ size: _____ Distribution : _____
 Organisation 3: score _____ size: _____ Distribution : _____

 Comments:
 __
 __
 __
 __
 __
 __

10. What (graphical) process modelling notation are you used/using?

 [] Business Process Modelling Notation (BPMN)
 [] UML activity diagrams
 [] Event-driven process chain (EPC)
 [] IDEF 0 / IDEF 3
 [] Some graphical notation for WS-BPEL

Other:
 __
 __
 __
 __
 __
 __

11. In your opinion, on average, how many tasks would you say a common (graphical) business

process model contains?

[] [] [] [] []
 1 5 10 15 >15

Comments (if any):
__
__
__
__
__
__
__
__
__
__
__
__

12. In the context of your organisation, can you estimate how many graphically documented
process models exist?

[] [] [] [] []

 1 to 4 5 to 20 21 to 50 51 to 100 > 100

 IF ANY, please score other organisation(s) you work(ed), and indicate their size and

distribution. Size and distribution range is indicated in questions 2 and 3, respectively.
 Organization 2: score _____ size: _____ distribution: _____
 Organization 3: score _____ size: _____ distribution: _____

Other organisations? (if any):
__
__
__
__
__
__
__

Comments? (if any):
__
__
__
__
__
__
__
__
__

Business process constraints (PART III)

Remember that the term process constraints is considered as an umbrella term capturing the ideas
behind process regulations / business process rules / process patterns / best practices /
procedures. Process constraints would restrict how processes are structured; their semantic and
they identify constraints over data values associated to attributes of process elements.

13. In your organisation, considering a scale where 1 is “daily basis” and 5 is “not at all”, to what

extent employees are required to use/satisfy process constraints?

[] [] [] [] []
 1 2 3 4 5
 (daily basis) (not et al)

 Go to (15) Go to (14)

 Before Go to 14/15 IF ANY, please score other organisation(s) you work(ed), and

indicate their size and distribution. Size and distribution range is indicated in questions 2 and
3, respectively.

 Organisation 2: score _____ size: _____ Distribution : _____
 Organisation 3: score _____ size: _____ Distribution : _____

 Other organisations? :
 __
 __
 __
 __

 Comments (if any)? :
 __
 __
 __
 __
 __
 __

14. Please mention some factors you believe could influence the non-use/satisfaction of process

constraints?

15. In your organisation or the organisations you work(ed), considering a scale where 1 is
“strongly agree” and 5 is “strongly disagree”,

 Are there dedicated roles (and activities) for analysing/designing the organisation’s processes
in regard to process constraints?

[] [] [] [] []

 1 2 3 4 5
 (strongly agree) (strongly disagree)

 Go to (16) Go to (18)

 Before Go to 16/18 IF ANY, please score other organisation(s) you work(ed), and

indicate their size and distribution. Size and distribution range is indicated in questions 2 and
3, respectively.

 Organisation 2: score _____ size: _____ Distribution : _____
 Organisation 3: score _____ size: _____ Distribution : _____

 Comments? :
 __
 __
 __
 __
 __
 __

16. In your organisation or the organisations you work(ed), considering a scale from 1 to 5,

where 1 is “only textual documentation” and 5 is “only graphical documentation”, please
refer to how process constraints are documented in relation to graphically documented
processes? Remember that process constraints restrict aspects of processes.

[] [] [] [] []

 1 2 3 4 5
 (only textual) (only graphical)

 Go to (18) Go to (17)

17. What notation are you using (or used) to document process constraints?

 [] (Enhanced) Business Process Modelling Notation (BPMN)
 [] (Enhanced) UML activity diagrams
 [] (Enhanced) Event-driven process chain (EPC)
 [] (Enhanced) IDEF 0 / IDEF 3
 [] (Enhanced) Graphical BPEL
 [] Declarative/Rule/Constraint language (such as OCL, SWRL)

Other? :
 __
 __
 __
 __
 __
 __

18. What type of constraints process constraints impose over processes in organisations?

 [] Structural constraints (ordering of process elements)
 [] Constrains on data values associated to attributes in process elements
 [] Time constraints
 [] Constraints associated to the semantic of process elements

 Others? / Comments? :
 __
 __
 __
 __
 __
 __
 __
 __

19. If you participate(d) in activities/projects involving the analysis/design of processes
regarding process constraints, please mark with a cross if you performed any of the tasks listed
below. Please also refer to other relevant activities in “other tasks?”

 [] Process model verification
 [] Process model transformation
 [] Process model auditing
 [] Process model comparison
 [] Process pattern matching/identification
 [] Process pattern discovery
 [] Process model discovery

 Other relevant tasks?

20. If you participate(d) of activities/projects involving the analysis/design of processes

regarding process constraints,
 In a scale where 1 is “mostly automated” and 5 is “only manual”, to what extent the tasks

listed below were automated? Please mark [N/A] if you believe automation is not applicable
to any of the tasks listed below.

 [N/A] [1] [2] [3] [4] [5] Process model verification
 [N/A] [1] [2] [3] [4] [5] Process model transformation
 [N/A] [1] [2] [3] [4] [5] Process model auditing
 [N/A] [1] [2] [3] [4] [5] Process model comparison
 [N/A] [1] [2] [3] [4] [5] Process pattern matching/identification
 [N/A] [1] [2] [3] [4] [5] Process pattern discovery
 [N/A] [1] [2] [3] [4] [5] Process model discovery

Please also refer to other tasks – which are not been mentioned above – where you have
been involved and if they have been automated to some degree:

 Score: [1] [2] [3] [4] [5] Task: ___
 Score: [1] [2] [3] [4] [5] Task: ___
 Score: [1] [2] [3] [4] [5] Task: ___
 Score: [1] [2] [3] [4] [5] Task: ___
 Score: [1] [2] [3] [4] [5] Task: ___

21. For you organisation or other organisations you work(ed), in a scale where 1 is “strongly
agree” and 5 is “disagree”, Do you believe that you could benefit from tools for automating any
of the tasks listed above or other tasks you frequently perform during the analysis/design of
process constraints?, and Why?

[] [] [] [] []

 1 2 3 4 5
 (strongly agree) (strongly disagree)

22. Assume a software tool would be able to identify (match) and discover process patterns in business

process models, in general (not necessarily in your daily work), would you consider this a
useful idea? Why?

Could this tool specifically benefit your work? How?

23. What other tasks during the analysis/design of processes regarding process constraints would

you consider important to automate? Please provide comments for other tasks different to
pattern matching and discovery.

 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __
 __

24. Please feel free to openly comment about any aspects of analysis/design of processes in
regard to process constraints.

WE THANK YOUR PARTICIPATION IN THIS INTERVIEW.

YOUR CONTRIBUTION WILL BE INCLUDED IN A STUDY OF TECHNIQUES AND

TOOLS FOR AUTOMATED PROCESS PATTERN MATCHING AND DISCOVERY.

IF YOU ARE INTERESTED, YOU CAN RECEIVE OR ACCESS THE FINAL STUDY
INDICATING YOUR INTEREST TO THE INTERVIEWER.

337

	Introduction
	Motivation
	Overview of Problems with the State of the Art
	Contribution
	Hypothesis and Research Questions
	Proposal

	Research Approach and Evaluation Methodology
	Organisation of the Thesis

	Literature Review
	Overview
	Introduction to Enterprise SOA, EAI and BPM
	Architectural Abstractions in Enterprise SOA
	Enterprise SOA Design Approaches
	Architectural Abstractions
	Pattern-based Techniques
	Traceability in SOA Modelling

	Service Identification
	Identifying New Services
	Identifying Existing Services

	Process Models Comparison and Querying
	Graph-based Pattern Matching and Discovery
	Graph Matching
	Frequent Subgraph Discovery

	Summary

	A Framework for Processes and Applications Integration
	Motivation
	Layered Architecture for Business, Applications and Services
	Layers in LABAS
	Patterns in LABAS
	Pattern Description for End Users

	Pattern-based Techniques
	Business model augmentation
	Service identification
	Business model to service architecture transformation
	Service architecture augmentation

	Traceability in LABAS
	Types of Trace Links
	Traceability Metamodel
	Trace Link Generation

	Summary

	Graph-Based Process Models and Patterns
	Process Models as Graphs
	Process Model Graph
	Process Pattern Configuration Graph
	Process Pattern and its Instances
	Process Pattern Instance Graph
	Overlapping and Edge-disjoint Instances
	Model vs Pattern Attributed Type Graphs

	Changes in Pattern Instances
	Recorded Models and Atomic Modifications
	Pattern-Instance Change
	Conditions for Derived Pattern Instances

	Summary

	Pattern Matching
	Overall Approach
	Structural Matching
	Exact and Complete Process Pattern Matching
	Exact and Partial Process Pattern Matching
	Inexact and Complete Process Pattern Matching
	Inexact and Partial Process Pattern Matching
	A Comprehensive Pattern Matching Framework

	Algorithms for Structural Matching
	Matrix-based Structure for Process and Pattern Graphs
	Complete/Partial & Exact Pattern Matching Algorithm
	Complete/Partial & Inexact - Pattern Matching Algorithm (CP-I-PM)

	Hierarchical Pattern Matching
	Semantic Matching
	Semantic Vertex Matching
	Type Vertex Similarity
	Attribute Vertex Similarity
	The Label Attribute and Label Similarity Calculation

	Summary

	Pattern Discovery
	Motivation to a Pattern Discovery Solution
	Matching versus Discovering Patterns in Graphs
	Frequent Pattern Discovery in Process Graphs

	Matching-based Algorithm for Pattern Discovery
	Summary

	Evaluation of LABAS Framework
	Overview
	Influenced System Quality Characteristics
	Evaluation Strategy
	Specific Challenges, Solutions and Evaluation Methods

	ALMA-based Analysis of Case Studies
	Architecture-level Modifiability Analysis Method
	Loan Management (LM) Case
	Electronic Bill Presentment and Payment (EBPP) Case

	Tool Support
	LABAS Profile
	Model to Graph Transformation

	Summary

	Evaluation of Matching and Discovery Techniques
	Overview
	Definition and Planning
	Type of Experimental Evaluation

	Experiments - Matching Graph Structure
	Experiments - Processing Time of Pattern Matching
	Case - Adding Type and Attribute Vertex Matching
	Experiments - Frequent Subgraph Discovery
	Case to explain the algorithm's results
	Effects of Varying the Size of the Vertex Descriptors' Set

	Tool Support
	Matlab Functions for Matching, Discovering and Experimental Environment
	Label Similarity
	Graphs Generation and Visualisation

	Summary

	Interviews: State-of-the-Practice in Process Analysis
	Overview
	Results of Closed Questions
	Profile of Interviewees and Organisations
	Process and Process Constraints Documentation and Notation
	Compliance with and Type of Process Constraints - Including Process Patterns)
	State and Relevance of Automated Process Analysis

	Results of Open Questions
	Factors Influencing Non-compliance with Process Constraints (Question 14)
	Comments on general benefits of automating process analysis activities (Question 21)
	Specific comments on benefits of automating pattern matching and discovery (Question 22)
	Comments on other relevant activities that can be automated in the context of process analysis (Question 23)
	Open and general comments regarding process analysis (Question 24)

	Summary

	Conclusions
	Overview
	Summary of the Contribution
	Relevance and Focus
	Achievements and Practical Implementation
	Reference to Background Research and Related Work
	Detailed Contribution

	Discussion and Future Work
	Discussion
	Future Work

	Bibliography
	Background on Graphs
	Digraphs and Undirected Graphs
	Graph Homomorphisms
	Typed Graphs and Morphisms
	Attributed Graphs and Morphisms
	Attributed Typed Graph
	Graph Transformations

	Quality Sub-characteristics
	Overview
	Suitability
	Functional Compliance
	Maintainability: Changeability and Analysability
	Changeability
	Analysability

	Reusability

	Complementary Information for Case Studies
	EBPP Case Study's Complementary Information
	Business and Application Level Models
	Intermediary Services between Business and Application Level Models

	LM Case Study's Complementary Information

	Main Source Code for Algorithms
	Matlab Code for Structural Matching and Discovery
	Matlab Code Experiments and Visualisation Functions
	Graph Models and Samples

	Interview Form

