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Cauchy horizon stability in self-similar collapse: Scalar radiation
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The stability of the Cauchy horizon in spherically symmetric self-similar collapse is studied by determining
the flux of scalar radiation impinging on the horizon. This flux is found to be finite.
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[. INTRODUCTION analysis is required. We begin this analysis here by studying
the propagation of scalar radiation in a fixed background

Perhaps the richest source of examples of space-times a@pherically symmetric, self-similarspace-time which ad-
mitting naked singularities is the class of spherically sym-mits a Cauchy horizon.
metric self-similar space-times. There is an extensive litera- In Sec. Il we define the class of space-times of interest
ture on the topic; the recent review of self-similarity in and obtain some useful relations for the metric functions
general relativity by Carr and Coldyl] provides a suitable thereof. We consider spherically symmetric space-times ad-
bibliography. Of particular note in this class are the perfecimitting a homothetic Killing vector field whose energy-
fluid solutions studied by Ori and Pirdr2], the massless momentum tensor obeys the dominant energy conditian.
scalar field solutions studied by Christodoul®] and by  complete account of energy conditions in spherical symme-
Brady [4] and theSU(2) sigma model solutions studied by try is given in the Appendiy.For generality, no further re-
Bizon and Wassermdib]. We mention these becauégthe  strictions are imposed at this stage, although some differen-
matter model has particular interest for either physical otiability conditions at the past null cone of the scaling origin
mathematical reasons afid) these self-similar solutions are and at the Cauchy horizon will be imposed. Using coordi-
of interest in studies of critical phenomenf®]. More gen- nates adapted to the homothety and to the past null cones of
erally, self-similar solutions admitting naked singularities arethe central world-line, simple conditions can be given on the
of interest because of what they may tell us about cosmienetric which determine the visibility or otherwise of the sin-
censorship. Intriguingly, the evidence is not all in one direc-gularity at the scaling origi®©. This allows a simple way of
tion. Recent work has indicated the stability of perfect fluidsidentifying both the past null con&” of © and the Cauchy
admitting naked singularities in the class of perfect fluidhorizon . In Sec. lll, we determine the behavior of com-
space-timeq 7], while for the case of the massless scalarpletely general time-like geodesi€® crossing " and (ii)
field, generic spherical perturbations of self-similar initial
data which correspond to naked singularities will lead to
censored singularitie§8]. Also, within the class of self-
similar spherically symmetric space-times, the sectors corre-
sponding to censored and to naked singularities are both to-
pologically stablg9].

With these results in mind, the aim here is to begin a
comprehensive study of the stability of Cauchy horizons in
self-similar collapse. In the case of charged rotating black
holes, the instability of the Cauchfpr innej horizon has
been firmly establishetbee[10] for a review. This instabil-
ity is in one way easily understood; an observer crossing the
inner horizon views the entire history of the external uni-
verse in a finite amount of proper time, and so time-
dependent perturbations of the exterior suffer an infinite
blueshift on crossing the horizon. This instability mechanism
which can be “read off” the conformal diagram does not
have a counterpart in self-similar collapse which leads to
globally naked singularitietsee Figs. 1 and)2At best, one
can speculate that the curvature at the regular center which
diverges in the limit as the scaling origin is approached
makes itself felt by perturbations approaching the Cauchy g 1. A portion of the conformal diagram of the maximally
horizon. This is by no means convincing, and so a rigorougxtended Reissner-Nordstnospace-time. The observedy falls

through the event horizofdouble ling and into the black hole. On

crossing the Cauchy horizddashedginto a new asymptotically flat
*Electronic address: brien.nolan@dcu.ie region, Og receives in finite time all the radiation emitted 6t
TElectronic address: thomas.waters2@mail.dcu.ie during its infinite history.
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r=0,v>0 scaling origin at {=0,=0) and identifiesv =0 with A
The homothetic Killing field is

J J
+r—.
Jv ar

The line element may be written
ds’=—2Fe?*’dv?+2e’dvdr+r?dQ?, 1)

where dQ? is the line element of the unit 2-sphere. The
homothetic symmetry implies thaf(v,r)=F(x),¢(v,r)
=(x) wherex=v/r. The only coordinate freedom remain-
ing in Eq. (1) is v—V(v); this is removed by taking to
measure proper time along the regular centef.

We will not specify the energy-momentum tensor of
(M,qg), but will demand that it satisfies the dominant energy
condition. A complete description of energy conditions in
spherical symmetry is given in the Appendix. Of these, the
FIG. 2. Conformal diagram for an example of a self-similar following will be used[these are equation#7), (A8) and

space-time admitting a globally naked singularity. We use the ad(A12), respectively.
vanced Bondi coordinatas andr described in Sec Il. The Cauchy

- . . ) Xy'<0 2
horizon is shown dashed, the event horizon as a double line and the !
apparent horizon as a bold curw’ is the past null cone of the o 2.
scaling origin. Other structures can arise; there may be no apparent e"(F'+xF°e"y")<0, )
or event horizon; the censored portion of the singularity may be 1-2F + 2x(F' +Fy')=0. (4)

null; the naked portion of the singularity may be time-like. There is

evidence that the naked singularity is generically globally naked. We impose the following regularity conditions at the axis.
See[9] for details. In every case for which the singularity is naked,AS reviouslv mentioned. we taketo be proper time alon
the conformal diagram fails to display an obvious mechanism by, P y ' prop 9

which the Cauchy horizon may be destroyed, in contrast to the castg? axis fory <0. Noting thatx— —¢ on this portion of the

illustrated in Fig. 1. axis, Eq.(1) then gives

lim 2Fe?’=1. (5)

X— — 00

crossing the Cauchy horizon. These are used to calculate
fluxes of the scalar field at the respective surfaces. The mini-
mally coupled scalar wave equation is studied in Sec. IV. AThe other regularity condition that we use is that all curva-
mode decomposition relying on the Mellin transform is usediure invariants are finite on=0p<0. In the present case,
and the asymptotic behavior of the general solutiowats  the (invariany Misner-Sharp mass is given by

determined. This is used to impose the boundary condition
that an arbitrary observer with unit time-like tangeftmea-
sures a finite fluw?V,®|,,. We also demand that the influx
at 7~ be finite. The modes not ruled out by these boundary . ) _ _
conditions are then allowed to evolve up to the Cauchy holTNeNE/r™is a curvature invariant; this term has the same
rizon and the flux2V,® |, is calculated. Our principal result Units as, e.gRand¥,. Demanding thaE/r* be finite on the

:
E=5(1-2F).

is that this flux is finite for all the cases we consider. axis yields
1
Il. SELF-SIMILAR SPHERICALLY SYMMETRIC lim F=—=. (6)
SPACE-TIMES ADMITTING A NAKED X— — 00 2
SINGULARITY

Combining Eqs(5) and(6) gives these regularity conditions:
We will consider the class of space-times which have the

following properties. Space-timeMl,g) is spherically sym- 1
metric and admits a homothetic Killing vector field. These F(—)= 2 Y(—=)=0. @
symmetries pick out a scaling origifl on the central world
line r=0 (which we will refer to as the axiswherer is the  We define thanterior region M,,; of space-time to be the
radius function of the space-time. We assume regularity ofnterior of AV, i.e. the interior of the causal past 6% The
the axis to the past aP and of the past null con&/ of O. exterior region M,y is defined to by M
We will use advanced Bondi coordinates,() wherev la- = M;,;UNUM,,. (These definitions are in line with those
bels the past null cones of=0 and is taken to increase into of [3].) We assume that the metric is regular throughout
the future. Translation freedom in allows us to situate the M;,;UN—this set does not includ®—by which we mean
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CAUCHY HORIZON STABILITY IN SELF-SIMILAR . ..

F,ye C?(—=,0]. As a Cauchy horizon can only form in
My, We assume further thdk, e C?(—=,x,) for some
X, >0. As we will see, if a Cauchy horizon develops, it must
be of the formx=x. for somex.>0. Our assumption is that
the metric is regular at least up until the Cauchy horizon.

Since we are studying collapse, our assumptions must infc=

PHYSICAL REVIEW D 66, 104012 (2002

dx

dv

1
= ~(1-xG)>0

for v € (Op;]. Note that this inequality is immediate when
+. So the inequality applies generally and says that as

clude some statement of regularity—in the sense of the a9, X decreases and is bounded below by 0. Hence the
sence of trapped surfaces—of an initial configuration. TheiMit

2-sphere ¢,r) is trapped if and only if
X(v,r):=gabVaerr<0.

In the present case, this is equivalentRer0, and implies
that the condition for an apparent horizonks=0. So in
order to express the notion that the matter is initially in som
non-extreme state, we rule out trapped or marginally trappe
surfaces in the interior regioM;,;. We will also demand

that V' is not foliated by marginally trapped surfaces, and so

we take

F(x)>0 forall xe(—0,0].
Next, we point out the inevitability of there being a cur-
vature singularity atD. Any curvature invariant which has

unitsL 2 is of the formc(x)r ~2. For example,

1-2F

E —
2r?

3

r

This term diverges as we approa¢halong the null linex
=0 unlessF(0)=%. But subject to the assumption that
>0 for x<0, we see that the surfaces=x.<0 are time-
like. So we may also approaah alongx=x.<0, and we
then see thaE/r® diverges unles§=3 on (—«,0]. Apply-
ing the same reasoning to the invariant

E3+\If2+ %[1—2F+2x(F’+F\If’)],

r 2r

regularity at©® would require¥=0 on (—,0] [we have
used the boundary conditidi@) herd. HenceM;; is a por-
tion of flat space-time. So avoiding the trivial case implies
the existence of a curvature singularity@t

X =limx(v)|, <xc
v]|0

exists and is non-negative. Thus eithesr >0 asv | 0—in
which case the singularity is avoided—o#0 in the limit.

ejn this case,

d
.U
X;=lim—
v]|0

1

=lim -
viol (U)

1 1

~IMGx G’

v]|0

where all limits are taken along; and I'Hopital’s rule is
used in the second line. The conclusion tkat x. is a root
of xG=1 contradicts minimality ofx, and completes the
proof. [
Corollary 1. If G(x)<1/x for all x>0, then the singular-
ity O is censored O
Corollary 2. If G(x)=1/x for some values ofx0, then
X=X, is the Cauchy horizofi{ of the space-time, where is
the smallest positive root of x&l. O
These results show an advantage of describing self-
similar collapse in the coordinatesandr: the visibility of
the singularity a0 (and indeed the presence of an apparent
horizonF=0) can be read off from the metric. More accu-
rately, the presence of a naked singularity can be determined
by tracking the evolution of metric functions, and without
having to integrate geodesic equations.
An apparent horizon may form either before or after the
Cauchy horizon. This horizon must be space-like, and the

Let us now prove the assertion above regarding theegion lying to its future is trapped.

Cauchy horizon.

Proposition 1. Let X be the first positive root of (X)
:=Fe’=1/x, if such exists, and =+ otherwise. Then
there are no future pointing outgoing radial null curves ema-
nating fromQ in the region x (0,x.).

Proof. The outgoing radial null curves of E€l) satisfy

dr 3 .
4 ~F0e’()=G(x). ®

Let (v;,r;) be a point on a solution curvg of Eq. (8) in the
region O<x<X.. Then xj=v;/ri<x., and so G(X;)
<1k . If x. is finite, we note thak=x. is a solution of Eq.
(8), and so by uniqueness; cannot crosx= X, away from
O, i.e. forv>0. Thus

Proposition 2. If {x,)=0 for some x>0, then x=x, is
space-like and the region=xx, is trapped or marginally
trapped

Proof. Restricting toX,:{v=X,r} in Eq. (1) gives

d32|28= 2Xae‘”(xa)[1—xaG(xa)]dr2+ erQZ,

which has spatial signature &=F=0 whenx,>0. From
Eqg. (3), we see thaF'<0 at an apparent horizon. Hence
F(x)=<0 for x=x,. O

We conclude this section with a lemma which will play a
central role in determining the stability @f with respect to
scalar radiation.

Lemma 1. G<O0 prior to the formation of a Cauchy ho-
rizon.
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Proof. We note first that the results of Propositions 1 andA future-pointing time-like geodesic crossirg corresponds

2 show that 6xG<1 for xe (0,x;). Then Eq.(2) gives to a solution of Eq.(12) with initial valuesry>0, v¢=0,
ug>0. The assumptions of the preceding section indicate
XGFy' =xF?e/y' >Fy/', thatH is C* in a neighborhood ofr(,v,,Up) € R3, and so
standard theorems imply the existence @& asolution forX
and using Eq(3) we get which exists for(at least finite duration. Note that this im-
plies that bothv andr [via Eq. (10)] are C? functions of
F'+Fy' <F'+xF%ey’'<0, proper timer in a neighborhood ofV. Thus we can apply
_ Taylor's theorem and writgl1]
i.e. G'(x)<0 for xe (0x.). O
Corollary 3. G'(x¢)<O0. O v(7)=UgT+ 0,72+ 0(7),
We note that ifG’(x,) =0, thenR,,k?kP"|,,=0, wherek?
is tangent to the outgoing radial null direction. This implies F(7)=rg+rym+0(72),

that there is no ingoing radiative flux of energy-momentum
crossing the Cauchy horizon. We rule out this situation agyhere the coefficients,,r; can be given in terms of the
being physically unrealistic and so we will assume thatiisia| data and metric functions and we have set0 at\'.

G'(xc)<0. From this we may write down the following result which
will be required below.
Il. TIME-LIKE GEODESICS CROSSING N AND ‘M Proposition 3. For any future-pointing time-like geodesic

The stability of the Cauchy horizon will be studied from COSSINg/\: we have

the point of view of the behavior of the flux of scalar radia-

tion measured by an observer crossing the horizon. This flux v~ Uo7, vUo, (3
is F=vV,®, whered is the scalar field and?® is the unit
tangent to an arbitrary time-like geodesic. Thus we will need Yo . Uo

_ : ' X T, X , (14
to determine the behavior of the tangeftfor such arbitrary ro ro
geodesics at the Cauchy horizon. Since we will impose
boundary conditions o in terms of the fluxes atV, we as7—0 wherer=0 on the geodesic a\. O

will need to do the same at this surface. The full set of Obtaining equivalent results at the Cauchy horizon is

equations governing time-like geodesics may be written irmore difficult, as this corresponds to a singular point of the

the form geodesic equations. Two things must be established: the ex-
istence of time-like geodesics crossing the horizon and the

1 e limiting values of the components of the tangent vector at the
v— F[X(G' +Gy')— ¢ - —3L2= 0, (99 horizon. The proof below requires an assumption on the level
r of differentiability at the horizon which it would be desirable
to remove.
L? Proposition 4. Suppose that G agdare differentiable at

"2 . —

—2Ge"v*+2e"vr + 2 1, (10  x=x,. Then all radial time-like geodesics whose initial
points are sufficiently close to the Cauchy horizon will cross
the horizon in finite time. For any time-like geodesic crossing

QZL, (11y  the horizon, the components of the tangenand v have
2 finite non-zero values at the horizon which, denoting them by

) o ] Xc and v respectively, satisfy the relation
where the overdot represents differentiation with respect to

-

proper timer, L is the conserved angular momentum &hd 1 %2
is an azimuthal angular variable. Equatidd) plays no fur- V== C eV, (15)
ther role below, but is given for completeness. It is conve- 2 v eXg

nient to rewrite Egs(9) and (10) as a first order system.
Defining X=(r,v,u)” whereu:=v, these equations may be where the subscript refers to the value of a quantity at x

written as c - . ,
Proof. (i) First, we establish a first order non-autonomous

e ¥ L2 system for the geodesics. § is the homothetic Killing
2_( 2Ge’u2— _2_1) vector field andu? is tangent to a time-like geodesic, then

u r
- 3 d
X=H(X)= u . d—(gaua)=—l,

1 L2 T

—[X(G'+Gy')—y'Ju*+ —e ¥ . . .
r r3 where 7 is proper time along the geodesiee, e.g. Appen-
(120  dix C of [12)). Integrating yields
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ab_ AV v . v? o VY ., ,
QanU"=2, (1= xGu — geix=k-m, 5 —X8G! (x0) = k<0
X v

for somek which is constant along the geodesic. Combiningas 7—o. Integrating and reusing this relation yields the

with asymptotic relations
2 L2 2 b~ 19
—e/(1-xG)v?— —e’vox=—| 1+ — (16) R 19
X X2 r2 ) )
v~—k?cp 1t (20)
[which is Eqg.(10) written in terms ofv andx] we obtain the
first order system as7T— oo for somec;>0. Using these and E{L6) we obtain
o2 X~ Cov<° 1 (21)
x=*—e" ylz, (17
v as 7— o for somec,>0. We must have&—0 asr— o, for
1x otherwisex is positive and bounded away from zero for an
v=>5-€ Y(1—xG) Y —(r—k)=Y¥?, (18 infinite amount of time and soreaches, in finite time. Our
v present assumption is that this does not happen, so we must
havek?<1.
where The geodesic equations yield
v? L2 . . .. .
Y=(r—k)2+2—(1-xG)e!| 1+ —|. 2Av +vBXx+2A’'xv +vB'x?=0, (22)
X r
where
We choose the upper sign, which corresponds to future-
pointing geodesics. 2 2
(i) For radial L=0) time-like geodesics, Eq9) be- A(x)=;e¢(l—xG), B=——e".
comes X
5 Using the assumption that these terms are differentiable at
v=[x2G’ +Xz//’(xG—1)]v—. the Cauchy horizon, we have from Eq$9)—(21) [11]
1%

_ - , o 2A0 ~ — 2AK2c2y ~ 21 (2L,
Since G’ (x.) <0, the coefficient on the right-hand side is

negative for values of<x. sufficiently close to.. Hence a
geodesic with initial valuexy=x(7y) sufficiently close tox,
in this sense satisfies<0 for 7=, and sov cannot di-
verge to infinity in finite time.

(i) Next, we establish that it —« as 7— along a
geodesic which does not cross the Cauchy horizon, then

2A'xv~2A'ciCv  1=0(v ),
vB'>-(2~B'02k271.

Comparing these with Eq22), we see that we must have

— X, as7—o0. From Eq.(16), we can write B’

_ _ lim vx=— lim v —x2.

v X v—® v—> B

<.

1_

v X(1-xG) We have
Integrating both sides yields and taking=v, at some 0 B’
<Xp<Xc, we get —=—2x"1+y.

<veert| [ s )
v <<vgeX i iti i i
0 . Y(1—yG) Using the energy conditiori2), we see that this term is

strictly negative at the Cauchy horizon, and so this implies

for xo<x. Thus ifv diverges to+, then so too must the thatx is positive for sufficiently large values of However,
integral. This can only occur if the integrand diverges, i.e. ifthis contradicts the fact that(7)>0 with x—0 as 7—0.
x—X.. Now we show that provided a geodesic has an initiaHence the geodesic cannot extend to arbitrarily large values
point sufficiently close tax=x., it cannot behave in this of v without first crossing the Cauchy horizon.

way. (v) To conclude, it has been established tkatt least
(iv) Consider a radial time-like geodesic for which  some@ radial geodesics cross the horizon in finite time and so
—oo andx—X. ast—«. We have from Eq(9) with a finite valuev . of v. For any such geodesic, including
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non-radials, we can re_ad off from E(L7) the non-zero and (X—Xg)?H"+ (X—Xg)q(X)H' + p(x)H=0,
finite limiting value ofx and from Eq.(16) we obtain Eq.
(15). and when we write Eq(24) in its canonical form in the

O neighborhood ok=0, we find
n—x2G’ 2n+ pe’x
IV. THE SCALAR FIELD ON THE CAUCHY HORIZON q(x)= p(x)=—
. " . - 1-xG "’ 2(1-xG)"
Now we are in a position to examine the stability of the
Cauchy horizon by measuring the flux of the scalar field ingjnce q(x) and p(x) are bothC! in a neighborhood ok
different regions of the space-time. In order to measure the- g we can use the method of Frobenius to solve(E4). on
equation, 1,—n. As it stands we cannot make any assumptions aiout
_ however later analysis shows #Re(n)=1 the flux of the
_(_ 1/2 _ ~\1/2~ab _
D®=(=9) " [(=9)" g P]=0. scalar field will be always infinite oV, thus we only con-

We exploit the spherical symmetry of the space-time andider —Rem)<1.

split the scalar field, It is possible for 1 and-n to differ by an integer and so
the method of Frobenius yields the following expression for
D(v,X,0,0)=T(v,X)A(6,9), the solution to Eq(24) in a neighborhood ok=0,
where we use the advanced null coordinatehe homothe- ~ o “ )
tic coordinatex, and the standard angular coordinates. H(x)=c¢, 20 amX™" 4 Co) kinx ZO amx™
Then the line element in these coordinates reads m= m=
1 2e’y v? + > bpx™ . 2
ds’=2e" ——G)dvz— dvdx+ —dQ2. mE:O " ] 29
X x2 x2

. . . ) .. In this expressionc,; and c, are arbitrary constants,
By using separation of variables we arrive at a partial differ-_ be=1 with k=0 if 1 and—n do not differ by an integer,

ential equationPDE) in v,x: ag=1by=0 with k=1 if 1 and —n are equal, ané,=b,
=1 with k#0 if 1+n=m for some positive integem.

1 . -
2x2 ——G)T,XXJF 20T,y — 2X°G'T,,—2vT,,— pe’T=0 After some rearranging and some cancellations, the ex-
X pression for the flux ooV is
(23)
wherep=I(1+1) is the separation constaht0,1,2 ... is p"r

. : . Fiv,r)=v >, ap(m+n+1 —r
the multipole mode number, and the prime denotes differen- 1(v.1) vmzzo l )rm+1
tiation with respect toc. The complementary PDE. if, ¢

reduces to a form of Legendre’s equation and is solved by - pmintl

the spherical harmonic functionB{"(, ). We can perform me:O am(m+1) pm+2 (26)

a Mellin transformation on the field, defined by
- . o0 Um ) o0

M{T}(x,n)=Hn(x)=f T(v,x)v" tdv fz(v,r)=vaO B+ 1(M+ l)m_r;o Dm(m—n)

0 = =

which amounts to replacing(v,x) with v"H,(x), wheren o™ - v

is an as yet unconstrained complex parameter. Equéiin X monel rkaO 1+(m+Din| -

thus reduces to an ordinary differential equati@DE) in

H(x): pntm+l *

. 2 v
XamrrTIT'i‘Ukm:O 1+(m+n+1)In v

1 2n
2x2(——G)H”+(2n—2x2G’)H’— —+pe’/’)H=0
X X m+n
(24) X g (27)
mrm+1'

where we have suppressed the subsanipPerforming the

inverse Mellin transform on the solution of this ODE over awhere the 1 subscript denotes thepart, and likewise the 2
contour in the viable range ofwill return the solution to Eq.  subscript. The components of the velocity have been shown
(23). This ODE has a number of singular points, namely to be finite on\ in Proposition 3, and we see that for the flux
=0 and the roots okG=1, the lowest of which we have to have a finite measure oxi, that is wherv =0, we require
defined to bet.. The canonical form of a second order linear

ODE in a neighborhood af=xg is Re(n)>0.
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Under this condition we let the scalar field evolve towards _ >
‘H, and examine its flux theréNote A scalar field coming Fr=x0"Cy| k > Ay[In(m+1—qg)+1]m %
from past null infinity will have a finite flux thereon if m=0
Re(n)=<1. While this physically desirable condition should %
be imposed, it does not play any role in later analysis. + E B,m¢™ | +vnv"1C,
When we write Eq(24) in its canonical form around =0

=X., we find the coefficients are

, X| D Bpd™+kIng D, An™ 1 %], (30)
X—Xc| [ n—xG’ m=0 m=0
q(x)—( X ) 1-xG .
Using the finiteness of,x given in Proposition 4, we see
pe’x that if qy<<0, that is ifn>0, this expression is finite oM,
(x| 2 n+ 5 i.e. whenx—x.=¢=0. Thus in the case ofG=1 having a
p(x)=< C) . unigue lowest root, a scalar field measuring a finite flux en-
X 1-xG tering the region will measure a finite flux on the Cauchy
horizon.
Now we reach an important distinction, whetl&¢x) has a (i) If ng'(xC) +1=0, X; is an irregular singular point of
uniquelowest root ormultiple lowest roots. We distinguish Eq. (24). Note that this is a special case which one would
the two cases in the following. expect to correspond to a set of measure zero in the class of
Lemma 2. When x&1 has a unique lowest ropt space-times under consideration. We lahelx.—x and ex-
amine solutions to the ODE in the asymptotic limif 0 (see,
X2G'(x¢)+1>0. e.g. Chap. 3 of14]). We assume the solution to E@4) can

be written in the form

When xG=1 has a multiple lowest ropt
H(n):es(”),
21

x:G' (%) +1=0.
G'(%) reducing Eq.(24) to an ODE. inS. Now we assume the

The two cases will lead to very different analyses, thus we ommon property near imegular singular points,

treat them separately.
(i) The first case leads t(x),p(x) beingC?* on x=x.,

thusx. is a regular singular point and hence we can use the ) o )
method of Frobenius. The indicial exponents are-Qy3 where the overdot denotes differentiation with respecito

$=0($%), 70

where Equation(24) becomes a quadratic B,
X2G'(Xg)—n S (X.— 1) = (Xc— 7)°G}— (n+ (x.— 7)?G)S
qO: 2~ .
XeG'(Xc)+1 N pe’
~ +T, 7]l0 (31)
Sincen>0, Lemma 1 and 2 tell ugy<<0, hence *q Xe™ 7

>0, which gives us . s
g If we considerxG=1 to have a lowest root of multiplicitly,

o then we can write its Taylor series aroune=0 as
H(X):C12 Am§m+17qo p() 0)
m=0
) ) 1= (%= 1) G(7) =P(7) = 7—g—+0(#").
+Co{ kINZ Y, Ap™ 1 %+ > B ™
2 m=0 m=0 This means if the lowest root is of multiplicityy we need the

(28) metric functions to beC*. This is not too much of a restric-
tion, however, since the class of functions with roots of mul-
tiplicity k becomes very small dsincreases, meaning we are
dealing with a very special case in this analysis.

We can make the approximation

where {=x—X., and the coefficients have the same struc
ture as Eq(25). From this we calculate the flux,

oo

Fi=xv"Cy D, (M+1—(gg)An™ % n+(x.—7)?G~n+1, 7.0,
m=0
o and since we assume the metric coefficients are at @3st
+ono"ic, 2 A L™ L% (29 ~ Wecan approximate” by the first term in its expansion,,
m=0 in the limit | 0. Thus we arrive at a quadratic 8
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(82— aS~B, 7.0, The present results and the Cauch_y. hqrizon stability conjec-
ture would lead one to expect stability in gendrib].
kl(n+1) k! n pcCo
a=————, B=——|—+—F (32 ACKNOWLEDGMENTS
x:P®(0) xPW(0)\ X 2
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wherea, 3>0 [if Re(n)>0] and constant in the limiy|0,  2001/199.
andk>1. This quadratic has two solutions corresponding to

two linearly independent solutions of E@4), which are APPENDIX: ENERGY CONDITIONS IN SPHERICAL
SYMMETRY
o
Si~— = 7 ¥+ 0(7) 1. Spherical symmetry

We write the line element in double null coordinates:

B ,82 77k+1

PP ds?=—2e 2fdudv +r2dQ?,
ST S kD)

+0(7**h),  nlo.

wheref=f(u,v), r=r(u,v) anddQ? is the line element on

At this point we verify our earlier assumption: namely, the unit 2-sphere. The non-vanishing Ricci tensor terms are
S= O(SZ), 7] 0. Ruu= _Zril(ruu"_zrufu)a
Thus we have constructed two solutions to E2f): R,,=—2r }r,,+2r,f,),
a Ruw=—2r Yry,—rfu),
Hi(7)= nkexp{ T A I PR T " R

E
Rps=CSCOR,=2—+2€*"rr,,
Ha(7)=exp{O(7)}. (34) 00 $6= 2y u

Both of these functions and their derivatives are finite in thewhereE is the Misner-Sharp mass,

limit |0, x—X. if Re(n)>0, and thus the resulting expres-

sions for the flux are finite, where again we use Proposition T

4. We summarize as follows. E= 2
Proposition 5. Let space-timgM,qg) satisfy the require-

ments of Sec. Il and admit a Cauchy horizoax. . Assume  Subscripts onf,r denote partial derivatives. The only non-

also that g, C? at x=x,. Then a scalar field which has a vanishing Weyl tensor term is

finite flux on, the past null cone 0®, will also have a

(1+2€%r,r,).

finite flux on the Cauchy horizoft. 1E 1 o .
Wo=—3 T3¢ (fup+r7ry)
V. CONCLUSIONS
We have shown that the Cauchy horizon formed by col- =— E_ igABRAB M
lapse in a self-similar, spherically symmetric space-time is r3 12 3r?

stable with respect to scalar radiation. This space-time is

very general, the only other constraints being that the fielavherex” are coordinates in the Lorentzian 2-space.
satisfies the dominant energy condition, and, other than the

special case discussed in Sec.(IM, we require the metric 2. The strong energy condition
functions to beC? on A/ andH. These differentiability con-
ditions are stronger than one would like to assuofethe C°
Cauchy horizons appearing in the collapse of wave map¥
[5]), but are as low as one can go without having to resort t&
a generalized solution concept for the wave equation.

The next step is to examine whether linear perturbations
of the metric functions will lead to an unstable Cauchy ho-
rizon, as is seen, for example, in the Reissner-Nordstro
solution. Such an examination would be more significant in
considering cosmic censorship. Is it difficult to anticipate the
general outcome of such an examination. One expects to The radial null directions aré, 5. These give
observe instability for the case of a massless scalar [{&|d
but stability for (some sectors dfperfect fluid collaps¢7]. R..=0, R,,=0.

Our aim is to write down a set of conditions on the cur-
ature terms listed above which are equivalent to the strong
nergy condition:

Rabvavb>0
for all (future-pointing causal vectors.

a. Null vectors

104012-8
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At any point, the general non-radial null direction may be 2

. E
written as Q(uy)=—4R,}H fu+ r—3e*2f +R,,=0
vi=ady+ B+ yoy. (A1)
. E
The null condition is eyt r_3€
aB=2r%e?"y?,
. 12
We find = E(Ruuva)
b_ 2 2 E o E
Rapv®v°= a“Ryy+ R, +2ap| 2f,, +2—e . ofy,+—e
r (3

This is non-negative for all non-radial null vectors if and
only if it is non-negative for all values of,B with af

1
=— E(RuuRvu)llz-
>0. In turn, this is true if

Combining these results, we can SRy, =0 for all

min =0, ! ¢
M>0Q(M) null v2 if and only if
whereu=«a/B>0 and Ry.=0 (A2)
E R,,=0 (A3)
Q(M):ﬂzRuu+2M 2fuu+2_3672f TRy,
r
1 E
o = (RyuRyy) Y2+ f, + =€ 2=0. (A4)
If R,w=R,,=0, this is simply 2 r3

b. Time-like vectors

E - ;
fuy T 3 =0. Again we write

o : A= @85+ B+ v,
If R,,=0 andR,,# 0, the condition is equivalent to vi=adyt fo,t Yoy

and we can use the time-like conditi@yw®®=—1, so

YR =0 that

v =

2

E
2fy, +2— e
r
y’=r"?(2e ?fap—-1)=0.
for all x>0. This is satisfied iff,+(E/r%)e 2'=0. If o o Lo
f, +(E/r3)e 2'<0, then the condition will be violated for SO in this case we are minimizing over the sg=ze"".
sufficiently large values of. (which can always be chosen We do this by minimizing over the hyperbolag=c and
The same holds foR,,#0,R,,=0. Thus ifR,,R,,=0, the  then minimizing over all hyperbolas=3e?'. This yields the
strong energy condition holds for null directions if and only conditions above and the extra condition
if 1
. 5 (RuuRy, )24 fy, =11, =0. (A5)
qu+ —39_2f>0.
r

3. The weak energy condition

So now assume thaR,,>0, R,,>0. The quadratic

n The weak energy conditiof, v =0 for all causak?
Q(w) has a global minimum at

can be written, using Einstein’s equation, &u°
=eR/2, wheree=g,w%". (R= Ricci scalan. Thus the
only extra work to do is for time-like vectors. The algebra

' involved in the previous section only needs minute changes,
and we can show that the weak energy condition is equiva-

while Q(0)=R,,>0. ThusQ(x)>0 for x>0 if and only 'ent to Eqs.(A2)—~(A4) and
if either u, <0 or u, >0 andQ(u,)=0.

E
71 —
M*:_ZRuu fuv+r_3€ 2t

u,<0 if and only if f,+ (E/r¥)e 2'=0.
wy, >0 if and only if f,,+ (E/r®)e 27<0. In this case,

104012-9
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4. The dominant energy condition 5. Summary: Covariant form of the energy conditions

This states that for every future-pointing time-lik&, the The energy conditions are given here in terms thatryse
vector —T2%, is non-space-like and future-pointing, and andf,, . A more transparently covariant form is obtained by
T P=0. Using the usual general form fof, we again  usingR andV', instead of these two. Then the results are as
have quadratic inequalities for the parametei@nd B which  follows (we note that the signs &®,,, R,, and the term
can be treated in the usual wgfhe non-space-like condi- e*'R,,R,, are invariants—the last of these is defined in
tion is g,.T3°T°%w4=0; the left-hand side is homoge- terms of contractions of Ricci with the two invariantly de-
neous of degree 2 ina(B) and so quadratic inx.] The fined radial null directions The strong energy condition is
future-pointing condition is simple to examine by assumingequivalent to
that u,v increase into the future. The resulting inequalities

are Ryu=0, (A7)
Ruu=0, R,,=0, (A8)

R,,=0, 1 E R
€% [RuR,, [ Y2+ 2572V, 50, (A9)

E

—e 2+r7hr, =0,
r 1 2f 1/2 E R

Ee |RuuRvu| +r—3+\]:'2—g?0. (A].O)

E
- 12, — ao=2f, -1 -1
Z(R“”R””) +r36 = The weak energy condition is equivalent to E@AY),

(A8), (A9) and
Using the first three of these, we see that the left-hand side of
the fourth is non-negative, and so the fourth is equivalent to 1, 1, E R
the two inequalities 57 [RuuRy, [+ e +Wot 15=0. (A11)

The dominant energy condition is equivalent (&7),

1 E
= 12, = —of -1, _
3 (RudRop) o 574 2r oy, = £, 0, (A8), (A9) and

1 E £ +W,+ R =0 (A12)
5 (RuuRy,) 2+ r—ae‘2f+qu>0. 3 2T
Note how (as expectedsome of these are the same as 1 2of 172 R
i —e”'|Ry Ry, |Y“+ —=0. (A13)
some of the strong and weak energy conditions. 2 4
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