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Cauchy horizon stability in self-similar collapse: Scalar radiation
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The stability of the Cauchy horizon in spherically symmetric self-similar collapse is studied by determining
the flux of scalar radiation impinging on the horizon. This flux is found to be finite.
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I. INTRODUCTION

Perhaps the richest source of examples of space-time
mitting naked singularities is the class of spherically sy
metric self-similar space-times. There is an extensive lite
ture on the topic; the recent review of self-similarity
general relativity by Carr and Coley@1# provides a suitable
bibliography. Of particular note in this class are the perf
fluid solutions studied by Ori and Piran@2#, the massless
scalar field solutions studied by Christodoulou@3# and by
Brady @4# and theSU(2) sigma model solutions studied b
Bizon and Wasserman@5#. We mention these because~i! the
matter model has particular interest for either physical
mathematical reasons and~ii ! these self-similar solutions ar
of interest in studies of critical phenomenon@6#. More gen-
erally, self-similar solutions admitting naked singularities a
of interest because of what they may tell us about cos
censorship. Intriguingly, the evidence is not all in one dire
tion. Recent work has indicated the stability of perfect flu
admitting naked singularities in the class of perfect flu
space-times@7#, while for the case of the massless sca
field, generic spherical perturbations of self-similar init
data which correspond to naked singularities will lead
censored singularities@8#. Also, within the class of self-
similar spherically symmetric space-times, the sectors co
sponding to censored and to naked singularities are both
pologically stable@9#.

With these results in mind, the aim here is to begin
comprehensive study of the stability of Cauchy horizons
self-similar collapse. In the case of charged rotating bla
holes, the instability of the Cauchy~or inner! horizon has
been firmly established~see@10# for a review!. This instabil-
ity is in one way easily understood; an observer crossing
inner horizon views the entire history of the external u
verse in a finite amount of proper time, and so tim
dependent perturbations of the exterior suffer an infin
blueshift on crossing the horizon. This instability mechani
which can be ‘‘read off’’ the conformal diagram does n
have a counterpart in self-similar collapse which leads
globally naked singularities~see Figs. 1 and 2!. At best, one
can speculate that the curvature at the regular center w
diverges in the limit as the scaling origin is approach
makes itself felt by perturbations approaching the Cau
horizon. This is by no means convincing, and so a rigor

*Electronic address: brien.nolan@dcu.ie
†Electronic address: thomas.waters2@mail.dcu.ie
0556-2821/2002/66~10!/104012~10!/$20.00 66 1040
d-
-
-

t

r

e
ic
-
s

r
l

e-
o-

a
n
k

e
-
-
e

o

ch
d
y
s

analysis is required. We begin this analysis here by study
the propagation of scalar radiation in a fixed backgrou
~spherically symmetric, self-similar! space-time which ad-
mits a Cauchy horizon.

In Sec. II we define the class of space-times of inter
and obtain some useful relations for the metric functio
thereof. We consider spherically symmetric space-times
mitting a homothetic Killing vector field whose energy
momentum tensor obeys the dominant energy condition~A
complete account of energy conditions in spherical symm
try is given in the Appendix.! For generality, no further re-
strictions are imposed at this stage, although some diffe
tiability conditions at the past null cone of the scaling orig
and at the Cauchy horizon will be imposed. Using coor
nates adapted to the homothety and to the past null cone
the central world-line, simple conditions can be given on
metric which determine the visibility or otherwise of the si
gularity at the scaling originO. This allows a simple way of
identifying both the past null coneN of O and the Cauchy
horizon H. In Sec. III, we determine the behavior of com
pletely general time-like geodesics~i! crossingN and ~ii !

FIG. 1. A portion of the conformal diagram of the maximal
extended Reissner-Nordstro¨m space-time. The observerOR falls
through the event horizon~double line! and into the black hole. On
crossing the Cauchy horizon~dashed! into a new asymptotically flat
region,OR receives in finite time all the radiation emitted byOE

during its infinite history.
©2002 The American Physical Society12-1
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crossing the Cauchy horizon. These are used to calcu
fluxes of the scalar field at the respective surfaces. The m
mally coupled scalar wave equation is studied in Sec. IV
mode decomposition relying on the Mellin transform is us
and the asymptotic behavior of the general solution atN is
determined. This is used to impose the boundary condi
that an arbitrary observer with unit time-like tangentva mea-
sures a finite fluxva¹aFuN . We also demand that the influ
at J 2 be finite. The modes not ruled out by these bound
conditions are then allowed to evolve up to the Cauchy
rizon and the fluxva¹aFuH is calculated. Our principal resu
is that this flux is finite for all the cases we consider.

II. SELF-SIMILAR SPHERICALLY SYMMETRIC
SPACE-TIMES ADMITTING A NAKED

SINGULARITY

We will consider the class of space-times which have
following properties. Space-time (M,g) is spherically sym-
metric and admits a homothetic Killing vector field. The
symmetries pick out a scaling originO on the central world
line r 50 ~which we will refer to as the axis!, wherer is the
radius function of the space-time. We assume regularity
the axis to the past ofO and of the past null coneN of O.
We will use advanced Bondi coordinates (v,r ) wherev la-
bels the past null cones ofr 50 and is taken to increase int
the future. Translation freedom inv allows us to situate the

FIG. 2. Conformal diagram for an example of a self-simi
space-time admitting a globally naked singularity. We use the
vanced Bondi coordinatesv andr described in Sec II. The Cauch
horizon is shown dashed, the event horizon as a double line an
apparent horizon as a bold curve.N is the past null cone of the
scaling origin. Other structures can arise; there may be no appa
or event horizon; the censored portion of the singularity may
null; the naked portion of the singularity may be time-like. There
evidence that the naked singularity is generically globally nak
See@9# for details. In every case for which the singularity is nake
the conformal diagram fails to display an obvious mechanism
which the Cauchy horizon may be destroyed, in contrast to the
illustrated in Fig. 1.
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scaling origin at (v50,r 50) and identifiesv50 with N.
The homothetic Killing field is

jW5v
]

]v
1r

]

]r
.

The line element may be written

ds2522Fe2cdv212ecdvdr1r 2dV2, ~1!

where dV2 is the line element of the unit 2-sphere. Th
homothetic symmetry implies thatF(v,r )5F(x),c(v,r )
5c(x) wherex5v/r . The only coordinate freedom remain
ing in Eq. ~1! is v→V(v); this is removed by takingv to
measure proper time along the regular centerr 50.

We will not specify the energy-momentum tensor
(M,g), but will demand that it satisfies the dominant ener
condition. A complete description of energy conditions
spherical symmetry is given in the Appendix. Of these,
following will be used@these are equations~A7!, ~A8! and
~A12!, respectively#:

xc8<0, ~2!

ec~F81xF2ecc8!<0, ~3!

122F12x~F81Fc8!>0. ~4!

We impose the following regularity conditions at the ax
As previously mentioned, we takev to be proper time along
the axis forv,0. Noting thatx→2` on this portion of the
axis, Eq.~1! then gives

lim
x→2`

2Fe2c51. ~5!

The other regularity condition that we use is that all curv
ture invariants are finite onr 50,v,0. In the present case
the ~invariant! Misner-Sharp mass is given by

E5
r

2
~122F !.

Then E/r 3 is a curvature invariant; this term has the sam
units as, e.g.R andC2. Demanding thatE/r 3 be finite on the
axis yields

lim
x→2`

F5
1

2
. ~6!

Combining Eqs.~5! and~6! gives these regularity conditions

F~2`!5
1

2
, c~2`!50. ~7!

We define theinterior region Mint of space-time to be the
interior of N, i.e. the interior of the causal past ofO. The
exterior region Mext is defined to by M
5MintøNøMext . ~These definitions are in line with thos
of @3#.! We assume that the metric is regular througho
MintøN—this set does not includeO—by which we mean
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F,cPC2(2`,0#. As a Cauchy horizon can only form i
Mext , we assume further thatF,cPC2(2`,x* ) for some
x* .0. As we will see, if a Cauchy horizon develops, it mu
be of the formx5xc for somexc.0. Our assumption is tha
the metric is regular at least up until the Cauchy horizon

Since we are studying collapse, our assumptions mus
clude some statement of regularity—in the sense of the
sence of trapped surfaces—of an initial configuration. T
2-sphere (v,r ) is trapped if and only if

x~v,r !ªgab¹ar¹br ,0.

In the present case, this is equivalent toF,0, and implies
that the condition for an apparent horizon isF50. So in
order to express the notion that the matter is initially in so
non-extreme state, we rule out trapped or marginally trap
surfaces in the interior regionMint . We will also demand
thatN is not foliated by marginally trapped surfaces, and
we take

F~x!.0 for all xP~2`,0#.

Next, we point out the inevitability of there being a cu
vature singularity atO. Any curvature invariant which ha
units L22 is of the formc(x)r 22. For example,

E

r 3
5

122F

2r 2
.

This term diverges as we approachO along the null linex
50 unlessF(0)5 1

2 . But subject to the assumption thatF
.0 for x,0, we see that the surfacesx5xc,0 are time-
like. So we may also approachO along x5xc,0, and we
then see thatE/r 3 diverges unlessF[ 1

2 on (2`,0#. Apply-
ing the same reasoning to the invariant

E

r 3
1C21

R

12
5

1

2r 2
@122F12x~F81FC8!#,

regularity atO would requireC[0 on (2`,0# @we have
used the boundary condition~7! here#. HenceMint is a por-
tion of flat space-time. So avoiding the trivial case impli
the existence of a curvature singularity atO.

Let us now prove the assertion above regarding
Cauchy horizon.

Proposition 1. Let xc be the first positive root of G(x)
ªFec51/x, if such exists, and xc51` otherwise. Then
there are no future pointing outgoing radial null curves em
nating fromO in the region xP(0,xc).

Proof. The outgoing radial null curves of Eq.~1! satisfy

dr

dv
5F~x!ec~x!5G~x!. ~8!

Let (v i ,r i) be a point on a solution curveg i of Eq. ~8! in the
region 0,x,xc . Then xi5v i /r i,xc , and so G(xi)
,1/xi . If xc is finite, we note thatx5xc is a solution of Eq.
~8!, and so by uniqueness,g i cannot crossx5xc away from
O, i.e. for v.0. Thus
10401
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dv U
g i

5
1

r
~12xG!.0

for vP(0,v i #. Note that this inequality is immediate whe
xc51`. So the inequality applies generally and says tha
v↓0, x decreases and is bounded below by 0. Hence
limit

xl5 lim
v↓0

x~v !ug i
,xc

exists and is non-negative. Thus eitherr→r * .0 asv↓0—in
which case the singularity is avoided—orr→0 in the limit.
In this case,

xl5 lim
v↓0

v
r

5 lim
v↓0

1

r 8~v !

5 lim
v↓0

1

G~x!
5

1

G~xl !
,

where all limits are taken alongg i and l’Hopital’s rule is
used in the second line. The conclusion thatxl,xc is a root
of xG51 contradicts minimality ofxc and completes the
proof. h

Corollary 1. If G(x),1/x for all x.0, then the singular-
ity O is censored. h

Corollary 2. If G(x)51/x for some values of x.0, then
x5xc is the Cauchy horizonH of the space-time, where xc is
the smallest positive root of xG51. h

These results show an advantage of describing s
similar collapse in the coordinatesv and r: the visibility of
the singularity atO ~and indeed the presence of an appar
horizonF50) can be read off from the metric. More acc
rately, the presence of a naked singularity can be determ
by tracking the evolution of metric functions, and witho
having to integrate geodesic equations.

An apparent horizon may form either before or after t
Cauchy horizon. This horizon must be space-like, and
region lying to its future is trapped.

Proposition 2. If F(xa)50 for some xa.0, then x5xa is
space-like and the region x>xa is trapped or marginally
trapped.

Proof. Restricting toSa :$v5xar % in Eq. ~1! gives

ds2uSa
52xaec(xa)@12xaG~xa!#dr21r 2dV2,

which has spatial signature atG5F50 whenxa.0. From
Eq. ~3!, we see thatF8<0 at an apparent horizon. Henc
F(x)<0 for x>xa . h

We conclude this section with a lemma which will play
central role in determining the stability ofH with respect to
scalar radiation.

Lemma 1. G8,0 prior to the formation of a Cauchy ho
rizon.
2-3
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Proof. We note first that the results of Propositions 1 a
2 show that 0,xG,1 for xP(0,xc). Then Eq.~2! gives

xGFc85xF2ecc8.Fc8,

and using Eq.~3! we get

F81Fc8,F81xF2ecc8<0,

i.e. G8(x),0 for xP(0,xc). h

Corollary 3. G8(xc)<0. h

We note that ifG8(xc)50, thenRabk
akbuH50, whereka

is tangent to the outgoing radial null direction. This impli
that there is no ingoing radiative flux of energy-momentu
crossing the Cauchy horizon. We rule out this situation
being physically unrealistic and so we will assume th
G8(xc),0.

III. TIME-LIKE GEODESICS CROSSING N AND H
The stability of the Cauchy horizon will be studied fro

the point of view of the behavior of the flux of scalar radi
tion measured by an observer crossing the horizon. This
is F5va¹aF, whereF is the scalar field andva is the unit
tangent to an arbitrary time-like geodesic. Thus we will ne
to determine the behavior of the tangentva for such arbitrary
geodesics at the Cauchy horizon. Since we will impo
boundary conditions onF in terms of the fluxes atN, we
will need to do the same at this surface. The full set
equations governing time-like geodesics may be written
the form

v̈2
1

r
@x~G81Gc8!2c8#v̇22

e2c

r 3
L250, ~9!

22Gecv̇212ecv̇ ṙ 1
L2

r 2
521, ~10!

V̇5
L

r 2
, ~11!

where the overdot represents differentiation with respec
proper timet, L is the conserved angular momentum andV
is an azimuthal angular variable. Equation~11! plays no fur-
ther role below, but is given for completeness. It is con
nient to rewrite Eqs.~9! and ~10! as a first order system
Defining X5(r ,v,u)T whereuª v̇, these equations may b
written as

Ẋ5H~X!5S e2c

2u S 2Gecu22
L2

r 2
21D

u

1

r
@x~G81Gc8!2c8#u21

L2

r 3
e2c

D .

~12!
10401
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A future-pointing time-like geodesic crossingN corresponds
to a solution of Eq.~12! with initial values r 0.0, v050,
u0.0. The assumptions of the preceding section indic
that H is C1 in a neighborhood of (r 0 ,v0 ,u0)PR3, and so
standard theorems imply the existence of aC1 solution forX
which exists for~at least! finite duration. Note that this im-
plies that bothv and r @via Eq. ~10!# are C2 functions of
proper timet in a neighborhood ofN. Thus we can apply
Taylor’s theorem and write@11#

v~t!5uot1v2t21O~t3!,

r ~t!5r 01r 1t1O~t2!,

where the coefficientsv2 ,r 1 can be given in terms of the
initial data and metric functions and we have sett50 atN.
From this we may write down the following result whic
will be required below.

Proposition 3. For any future-pointing time-like geodes
crossingN, we have

v;u0t, v̇;u0 , ~13!

x;
u0

r 0
t, ẋ;

u0

r 0
, ~14!

as t→0 wheret50 on the geodesic atN. h
Obtaining equivalent results at the Cauchy horizon

more difficult, as this corresponds to a singular point of t
geodesic equations. Two things must be established: the
istence of time-like geodesics crossing the horizon and
limiting values of the components of the tangent vector at
horizon. The proof below requires an assumption on the le
of differentiability at the horizon which it would be desirab
to remove.

Proposition 4. Suppose that G andc are differentiable at
x5xc . Then all radial time-like geodesics whose initi
points are sufficiently close to the Cauchy horizon will cro
the horizon in finite time. For any time-like geodesic cross

the horizon, the components of the tangent x˙ and v̇ have
finite non-zero values at the horizon which, denoting them

ẋc and v̇c respectively, satisfy the relation

v̇c5
1

2

xc
2

vcẋc

e2cc, ~15!

where the subscript refers to the value of a quantity a
5xc .

Proof. ~i! First, we establish a first order non-autonomo
system for the geodesics. Ifja is the homothetic Killing
vector field andua is tangent to a time-like geodesic, then

d

dt
~jaua!521,

wheret is proper time along the geodesic~see, e.g. Appen-
dix C of @12#!. Integrating yields
2-4
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gabj
aub52

v
x

ec~12xG!v̇2
v2

x2
ecẋ5k2t,

for somek which is constant along the geodesic. Combini
with

2

x
ec~12xG!v̇22

2

x2
ecvv̇ ẋ52S 11

L2

r 2 D ~16!

@which is Eq.~10! written in terms ofv andx] we obtain the
first order system

ẋ56
x2

v2
e2cY1/2, ~17!

v̇5
1

2

x

v
e2c~12xG!21@2~t2k!6Y1/2#, ~18!

where

Y5~t2k!212
v2

x
~12xG!ecS 11

L2

r 2 D .

We choose the upper sign, which corresponds to futu
pointing geodesics.

~ii ! For radial (L50) time-like geodesics, Eq.~9! be-
comes

v̈5@x2G81xc8~xG21!#
v̇2

v
.

Since G8(xc),0, the coefficient on the right-hand side
negative for values ofx,xc sufficiently close toxc . Hence a
geodesic with initial valuex05x(t0) sufficiently close toxc

in this sense satisfiesv̈,0 for t>t0, and sov cannot di-
verge to infinity in finite time.

~iii ! Next, we establish that ifv→` as t→` along a
geodesic which does not cross the Cauchy horizon, thex
→xc ast→`. From Eq.~16!, we can write

v̇
v

,
ẋ

x~12xG!
.

Integrating both sides yields and takingv5v0 at some 0
,x0,xc , we get

v,v0expS E
x0

x dy

y~12yG! D
for x0,x. Thus if v diverges to1`, then so too must the
integral. This can only occur if the integrand diverges, i.e
x→xc . Now we show that provided a geodesic has an ini
point sufficiently close tox5xc , it cannot behave in this
way.

~iv! Consider a radial time-like geodesic for whichv
→` andx→xc ast→`. We have from Eq.~9!
10401
e-

f
l

vv̈

v̇2
→xc

2G8~xc!52k2,0

as t→`. Integrating and reusing this relation yields th
asymptotic relations

v̇;c1v2k2
, ~19!

v̈;2k2c1v22k221 ~20!

ast→` for somec1.0. Using these and Eq.~16! we obtain

ẋ;c2vk221 ~21!

ast→` for somec2.0. We must haveẋ→0 ast→`, for
otherwiseẋ is positive and bounded away from zero for a
infinite amount of time and sox reachesxc in finite time. Our
present assumption is that this does not happen, so we
havek2,1.

The geodesic equations yield

2Av̈1vBẍ12A8ẋv̇1vB8ẋ250, ~22!

where

A~x!5
2

x
ec~12xG!, B52

2

x2
ec.

Using the assumption that these terms are differentiabl
the Cauchy horizon, we have from Eqs.~19!–~21! @11#

2Av̈;22Ak2c1
2v22k2215o~v22k221!,

2A8ẋv̇;2A8c1c2v215O~v21!,

vB8ẋ2;B8v2k221.

Comparing these with Eq.~22!, we see that we must have

lim
v→`

v ẍ52 lim
v→`

v
B8

B
ẋ2.

We have

B8

B
522x211c8.

Using the energy condition~2!, we see that this term is
strictly negative at the Cauchy horizon, and so this impl
that ẍ is positive for sufficiently large values oft. However,
this contradicts the fact thatẋ(t).0 with ẋ→0 as t→0.
Hence the geodesic cannot extend to arbitrarily large va
of v without first crossing the Cauchy horizon.

~v! To conclude, it has been established that~at least
some! radial geodesics cross the horizon in finite time and
with a finite valuevc of v. For any such geodesic, includin
2-5
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non-radials, we can read off from Eq.~17! the non-zero and
finite limiting value of ẋ and from Eq.~16! we obtain Eq.
~15!.

h

IV. THE SCALAR FIELD ON THE CAUCHY HORIZON

Now we are in a position to examine the stability of t
Cauchy horizon by measuring the flux of the scalar field
different regions of the space-time. In order to measure
flux F5va¹aF we need first the solution of the scalar wa
equation,

hF5~2g!21/2]a @~2g!1/2gab]bF#50.

We exploit the spherical symmetry of the space-time a
split the scalar field,

F~v,x,u,f!5T~v,x!A~u,f!,

where we use the advanced null coordinatev, the homothe-
tic coordinatex, and the standard angular coordinatesu,f.
Then the line element in these coordinates reads

ds252ecS 1

x
2GDdv22

2ecv

x2
dvdx1

v2

x2
dV2.

By using separation of variables we arrive at a partial diff
ential equation~PDE! in v,x:

2x2S 1

x
2GDT,xx12vT,xv22x2G8T,x22vT,v2recT50

~23!

wherer5 l ( l 11) is the separation constant,l 50,1,2 . . . is
the multipole mode number, and the prime denotes differ
tiation with respect tox. The complementary PDE. inu,f
reduces to a form of Legendre’s equation and is solved
the spherical harmonic functions,Pl

m(u,f). We can perform
a Mellin transformation on the field, defined by

M $T%~x,n!5Hn~x!5E
0

`

T~v,x!vn21dv

which amounts to replacingT(v,x) with vnHn(x), wheren
is an as yet unconstrained complex parameter. Equation~23!
thus reduces to an ordinary differential equation~ODE! in
H(x):

2x2S 1

x
2GDH91~2n22x2G8!H82S 2n

x
1recDH50

~24!

where we have suppressed the subscriptn. Performing the
inverse Mellin transform on the solution of this ODE over
contour in the viable range ofn will return the solution to Eq.
~23!. This ODE has a number of singular points, namelyx
50 and the roots ofxG51, the lowest of which we have
defined to bexc . The canonical form of a second order line
ODE in a neighborhood ofx5x0 is
10401
e
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~x2x0!2H91~x2x0!q~x!H81p~x!H50,

and when we write Eq.~24! in its canonical form in the
neighborhood ofx50, we find

q~x!5
n2x2G8

12xG
, p~x!52

2n1recx

2~12xG!
.

Since q(x) and p(x) are bothC1 in a neighborhood ofx
50 we can use the method of Frobenius to solve Eq.~24! on
N @13# ~see, e.g. Chap. 3 of@14#!. The indicial exponents are
1,2n. As it stands we cannot make any assumptions aboun,
however later analysis shows if2Re(n)>1 the flux of the
scalar field will be always infinite onN, thus we only con-
sider2Re(n),1.

It is possible for 1 and2n to differ by an integer and so
the method of Frobenius yields the following expression
the solution to Eq.~24! in a neighborhood ofx50,

H~x!5c1 (
m50

`

amxm111c2H k ln x (
m50

`

amxm11

1 (
m50

`

bmxm2nJ . ~25!

In this expression,c1 and c2 are arbitrary constants,a0
5b051 with k50 if 1 and2n do not differ by an integer,
a051,b050 with k51 if 1 and 2n are equal, anda05b0
51 with kÞ0 if 11n5m for some positive integerm.

After some rearranging and some cancellations, the
pression for the flux onN is

F1~v,r !5 v̇ (
m50

`

am~m1n11!
vn1m

r m11
2 ṙ

3 (
m50

`

am~m11!
vm1n11

r m12
~26!

F2~v,r !5 v̇ (
m50

`

bm11~m11!
vm

r m2n11
2 ṙ (

m50

`

bm~m2n!

3
vm

r m2n11
2 ṙ k (

m50

` F11~m11!lnS v
r D G

3am

vn1m11

r m12
1 v̇k (

m50

` F11~m1n11!lnS v
r D G

3am

vm1n

r m11
, ~27!

where the 1 subscript denotes thec1 part, and likewise the 2
subscript. The components of the velocity have been sho
to be finite onN in Proposition 3, and we see that for the flu
to have a finite measure onN, that is whenv50, we require

Re~n!.0.
2-6
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Under this condition we let the scalar field evolve towar
H, and examine its flux there.Note: A scalar field coming
from past null infinity will have a finite flux thereon i
Re(n)<1. While this physically desirable condition shou
be imposed, it does not play any role in later analysis.

When we write Eq.~24! in its canonical form aroundx
5xc , we find the coefficients are

q~x!5S x2xc

x D S n2x2G8

12xG D

p~x!5S x2xc

x D 2S n1
recx

2

12xG
D .

Now we reach an important distinction, whetherG(x) has a
unique lowest root ormultiple lowest roots. We distinguish
the two cases in the following.

Lemma 2. When xG51 has a unique lowest root,

xc
2G8~xc!11.0.

When xG51 has a multiple lowest root,

xc
2G8~xc!1150. h

The two cases will lead to very different analyses, thus
treat them separately.

~i! The first case leads toq(x),p(x) beingC1 on x5xc ,
thusxc is a regular singular point and hence we can use
method of Frobenius. The indicial exponents are 0,12q0
where

q05
xc

2G8~xc!2n

xc
2G8~xc!11

.

Since n.0, Lemma 1 and 2 tell usq0,0, hence 12q0
.0, which gives us

H~x!5C1 (
m50

`

Amzm112q0

1C2H k ln z (
m50

`

Amzm112q01 (
m50

`

BmzmJ
~28!

wherez5x2xc , and the coefficients have the same stru
ture as Eq.~25!. From this we calculate the flux,

F15 ẋvnC1 (
m50

`

~m112q0!Amzm2q0

1 v̇nvn21C1 (
m50

`

Amzm112q0 ~29!
10401
s

e

e
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F25 ẋvnC2Fk (
m50

`

Am@ ln z~m112q0!11#zm2q0

1 (
m50

`

Bmmzm21G1 v̇nvn21C2

3F (
m50

`

Bmzm1k ln z (
m50

`

Amzm112q0G . ~30!

Using the finiteness ofv̇,ẋ given in Proposition 4, we see
that if q0,0, that is ifn.0, this expression is finite onH,
i.e. whenx2xc5z50. Thus in the case ofxG51 having a
unique lowest root, a scalar field measuring a finite flux e
tering the region will measure a finite flux on the Cauc
horizon.

~ii ! If xc
2G8(xc)1150, xc is an irregular singular point o

Eq. ~24!. Note that this is a special case which one wou
expect to correspond to a set of measure zero in the clas
space-times under consideration. We labelh5xc2x and ex-
amine solutions to the ODE in the asymptotic limith↓0 ~see,
e.g. Chap. 3 of@14#!. We assume the solution to Eq.~24! can
be written in the form

H~h!5eS(h),

reducing Eq.~24! to an ODE. inS. Now we assume the
common property near irregular singular points,

S̈5o~Ṡ2!, h↓0

where the overdot denotes differentiation with respect toh.
Equation~24! becomes a quadratic inṠ,

Ṡ2$~xc2h!2~xc2h!2G%2~n1~xc2h!2Ġ!Ṡ

;
n

xc2h
1

rec

2
, h↓0. ~31!

If we considerxG51 to have a lowest root of multiplicityk,
then we can write its Taylor series aroundh50 as

12~xc2h!G~h!5P~h!5hk
P(k)~0!

k!
1O~hk11!.

This means if the lowest root is of multiplicityk, we need the
metric functions to beCk. This is not too much of a restric
tion, however, since the class of functions with roots of m
tiplicity k becomes very small ask increases, meaning we ar
dealing with a very special case in this analysis.

We can make the approximation

n1~xc2h!2Ġ;n11, h↓0,

and since we assume the metric coefficients are at leastC2,
we can approximateec by the first term in its expansion,c0,
in the limit h↓0. Thus we arrive at a quadratic inS,
2-7
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hk~Ṡ!22aṠ;b, h↓0,

a5
k! ~n11!

xcP
(k)~0!

, b5
k!

xcP
(k)~0!

S n

xc
1

rc0

2 D ~32!

wherea,b.0 @if Re(n).0] and constant in the limith↓0,
andk.1. This quadratic has two solutions corresponding
two linearly independent solutions of Eq.~24!, which are

S1;2
a

~k21!
h12k1O~h!

S2;2
b

a
h1

b2

a3

hk11

~k11!
1O~h2k11!, h↓0.

At this point we verify our earlier assumption: namely,

S̈5o~Ṡ2!, h↓0.

Thus we have constructed two solutions to Eq.~24!:

H1~h!5hkexpH 2
a

~k21!
h12k1O~h!J , ~33!

H2~h!5exp$O~h!%. ~34!

Both of these functions and their derivatives are finite in
limit h↓0, x→xc if Re(n).0, and thus the resulting expre
sions for the flux are finite, where again we use Proposit
4. We summarize as follows.

Proposition 5. Let space-time(M,g) satisfy the require-
ments of Sec. II and admit a Cauchy horizon x5xc . Assume
also that gabPC2 at x5xc . Then a scalar field which has
finite flux onN, the past null cone ofO, will also have a
finite flux on the Cauchy horizon, H.

V. CONCLUSIONS

We have shown that the Cauchy horizon formed by c
lapse in a self-similar, spherically symmetric space-time
stable with respect to scalar radiation. This space-time
very general, the only other constraints being that the fi
satisfies the dominant energy condition, and, other than
special case discussed in Sec. IV~ii !, we require the metric
functions to beC2 on N andH. These differentiability con-
ditions are stronger than one would like to assume~cf. theC0

Cauchy horizons appearing in the collapse of wave m
@5#!, but are as low as one can go without having to resor
a generalized solution concept for the wave equation.

The next step is to examine whether linear perturbati
of the metric functions will lead to an unstable Cauchy h
rizon, as is seen, for example, in the Reissner-Nordst¨m
solution. Such an examination would be more significan
considering cosmic censorship. Is it difficult to anticipate t
general outcome of such an examination. One expect
observe instability for the case of a massless scalar field@8#,
but stability for ~some sectors of! perfect fluid collapse@7#.
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The present results and the Cauchy horizon stability con
ture would lead one to expect stability in general@15#.
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APPENDIX: ENERGY CONDITIONS IN SPHERICAL
SYMMETRY

1. Spherical symmetry

We write the line element in double null coordinates:

ds2522e22 fdudv1r 2dV2,

wheref 5 f (u,v), r 5r (u,v) anddV2 is the line element on
the unit 2-sphere. The non-vanishing Ricci tensor terms

Ruu522r 21~r uu12r uf u!,

Rvv522r 21~r vv12r v f v!,

Ruv522r 21~r uv2r f uv!,

Ruu5csc2uRff52
E

r
12e2 f rr uv ,

whereE is the Misner-Sharp mass,

E5
r

2
~112e2 f r ur v!.

Subscripts onf ,r denote partial derivatives. The only non
vanishing Weyl tensor term is

C252
1

3

E

r 3
1

1

3
e2 f~ f uv1r 21r uv!

52
E

r 3
2

1

12
gABRAB1

Ruu

3r 2
,

wherexA are coordinates in the Lorentzian 2-space.

2. The strong energy condition

Our aim is to write down a set of conditions on the cu
vature terms listed above which are equivalent to the str
energy condition:

Rabv
avb>0

for all ~future-pointing! causal vectorsvW .

a. Null vectors

The radial null directions aredu
a ,dv

a . These give

Ruu>0, Rvv>0.
2-8
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At any point, the general non-radial null direction may
written as

va5adu
a1bdv

a1gdf
a . ~A1!

The null condition is

ab52r 2e2 fg2.

We find

Rabv
avb5a2Ruu1b2Rvv12abS 2 f uv12

E

r 3
e22 f D .

This is non-negative for all non-radial null vectors if an
only if it is non-negative for all values ofa,b with ab
.0. In turn, this is true if

min
m.0

Q~m!>0,

wherem5a/b.0 and

Q~m!5m2Ruu12mS 2 f uv12
E

r 3
e22 f D 1Rvv .

If Ruu5Rvv50, this is simply

f uv1
E

r 3
e22 f>0.

If Ruu50 andRvvÞ0, the condition is equivalent to

2mS 2 f uv12
E

r 3
e22 f D 1Rvv>0

for all m.0. This is satisfied iff uv1(E/r 3)e22 f>0. If
f uv1(E/r 3)e22 f,0, then the condition will be violated fo
sufficiently large values ofm ~which can always be chosen!.
The same holds forRuuÞ0,Rvv50. Thus ifRuuRvv50, the
strong energy condition holds for null directions if and on
if

f uv1
E

r 3
e22 f>0.

So now assume thatRuu.0, Rvv.0. The quadratic
Q(m) has a global minimum at

m* 522Ruu
21S f uv1

E

r 3
e22 f D ,

while Q(0)5Rvv.0. ThusQ(m).0 for m.0 if and only
if either m* <0 or m* .0 andQ(m* )>0.

m* <0 if and only if f uv1(E/r 3)e22 f>0.
m* .0 if and only if f uv1(E/r 3)e22 f,0. In this case,
10401
Q~m* !524Ruu
21S f uv1

E

r 3
e22 f D 2

1Rvv>0

⇔U f uv1
E

r 3
e22 fU

<
1

2
~RuuRvv!1/2

⇔ f uv1
E

r 3
e22 f

>2
1

2
~RuuRvv!1/2.

Combining these results, we can sayRabv
avb>0 for all

null va if and only if

Ruu>0 ~A2!

Rvv>0 ~A3!

1

2
~RuuRvv!1/21 f uv1

E

r 3
e22 f>0. ~A4!

b. Time-like vectors

Again we write

va5adu
a1bdv

a1gdf
a ,

and we can use the time-like conditiongabv
avb521, so

that

g25r 22~2e22 fab21!>0.

So in this case we are minimizing over the setab> 1
2 e2 f .

We do this by minimizing over the hyperbolaab5c and
then minimizing over all hyperbolasc> 1

2 e2 f . This yields the
conditions above and the extra condition

1

2
~RuuRvv!1/21 f uv2r 21r uv>0. ~A5!

3. The weak energy condition

The weak energy conditionTabv
avb>0 for all causalva

can be written, using Einstein’s equation, asRabv
avb

>eR/2, where e5gabv
avb. (R5 Ricci scalar.! Thus the

only extra work to do is for time-like vectors. The algeb
involved in the previous section only needs minute chang
and we can show that the weak energy condition is equ
lent to Eqs.~A2!–~A4! and

1

2
~RuuRvv!1/21r 21r uv1

E

r 3
e22 f>0. ~A6!
2-9
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4. The dominant energy condition

This states that for every future-pointing time-likeva, the
vector 2Tabvb is non-space-like and future-pointing, an
Tabv

avb>0. Using the usual general form forva, we again
have quadratic inequalities for the parametersa andb which
can be treated in the usual way.@The non-space-like condi
tion is gacT

abTcdvbvd<0; the left-hand side is homoge
neous of degree 2 in (a,b) and so quadratic inm.# The
future-pointing condition is simple to examine by assum
that u,v increase into the future. The resulting inequaliti
are

Ruu>0,

Rvv>0,

E

r 3
e22 f1r 21r uv>0,

1

2
~RuuRvv!1/21

E

r 3
e22 f1r 21r uv>u f uv2r 21r uvu.

Using the first three of these, we see that the left-hand sid
the fourth is non-negative, and so the fourth is equivalen
the two inequalities

1

2
~RuuRvv!1/21

E

r 3
e22 f12r 21r uv2 f uv>0,

1

2
~RuuRvv!1/21

E

r 3
e22 f1 f uv>0.

Note how ~as expected! some of these are the same
some of the strong and weak energy conditions.
la

10401
of
o

5. Summary: Covariant form of the energy conditions

The energy conditions are given here in terms that user uv
and f uv . A more transparently covariant form is obtained
usingR andC2 instead of these two. Then the results are
follows ~we note that the signs ofRuu , Rvv and the term
e4 fRuuRvv are invariants—the last of these is defined
terms of contractions of Ricci with the two invariantly de
fined radial null directions!: The strong energy condition i
equivalent to

Ruu>0, ~A7!

Rvv>0, ~A8!

1

2
e2 f uRuuRvvu1/212

E

r 3
12C22

R

12
>0, ~A9!

1

2
e2 f uRuuRvvu1/21

E

r 3
1C22

R

6
>0. ~A10!

The weak energy condition is equivalent to Eqs.~A7!,
~A8!, ~A9! and

1

2
e2 f uRuuRvvu1/21

E

r 3
1C21

R

12
>0. ~A11!

The dominant energy condition is equivalent to~A7!,
~A8!, ~A9! and

E

r 3
1C21

R

12
>0, ~A12!

1

2
e2 f uRuuRvvu1/21

R

4
>0. ~A13!
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