
Power-Constrained Block-Test List Scheduling

Valentin Mureşan, Xiaojun Wang
Dublin City University, Ireland

muresanv@eeng.dcu.ie

Valentina Mureşan, Mircea Vlăduţiu
”Politehnica” University of Timişoara, România

vmuresan@cs.utt.ro

Abstract

A list scheduling approach is proposed in this paper to
overcome the problem of unequal-length block-test schedul-
ing under power dissipation constraints. An extended tree
growing technique is also used in combination with the list
scheduling algorithm in order to improve the test concur-
rency having assigned power dissipation limits. Moreover,
the algorithm features a power dissipation balancing pro-
vision. Test scheduling examples are discussed highlighting
further research steps towards an efficient system-level test
scheduling algorithm.

1 INTRODUCTION

VLSI devices running in test mode can consume 100 -
200% higher power than when running in normal mode [1].
The heat dissipated during test application is lately one of
the major considerations in test scheduling. Test schedul-
ing is strongly related to test concurrency. Test concurrency
is a design property which strongly impacts testability and
power dissipation. To satisfy high fault coverage goals with
reduced test application time under certain power dissipa-
tion constraints, the testing of all components on the system
should be performed in parallel to the greatest extent possi-
ble.

The current paper brings under focus the high-level
power-constrained block-test scheduling problem which
lacks of practical solutions. An efficient scheme for over-
laying the block-tests, called extended tree growing tech-
nique is employed together with the list scheduling, to
search for power-constrained block-test schedule profiles in
a polynomial time. The algorithm fully exploits test paral-
lelism under power dissipation constraints. This is achieved
by overlaying the block-test intervals of compatible subcir-
cuits to test as many of them as possible concurrently so
that the maximum accumulated power dissipation does not
go over the given limit. A constant additive model is em-
ployed for the power dissipation estimation throughout the
algorithm.

2 TEST SCHEDULING PROBLEM

The components which are required to perform a test
(test control logic, test pattern generators, signature analy-
zers, test buses) are known as test resources and they may
be shared among the blocks under test (BUT). Each activity
or the ensemble of activities requiring a clock period during
the test mode and occurring in the same clock period, can
be considered as a test step. A block test is the sequence
of test steps that correspond to a specific part of hardware
(block). The testing of a VLSI system can be viewed as the
execution of a collection of block tests. The steps in a step
sequence belonging to the same block test can be pipelined
and steps from different block tests can be executed concur-
rently, obviously if there are no resource conflicts between
the steps. Two major types of test parallelism approaches
have been identified in the literature thus far:

� block-test scheduling, which deals with tests for blocks
of logic [2]. These potentially consist of many test
vectors and are regarded as indivisible entities for test
scheduling. It deals with more abstract descriptions
(from register transfer (RT) to system levels);

� test pipelining, which deals with test steps that need
to be applied and resources to be utilized in a specific
temporal order [3]. It is applied at lower levels of ab-
straction, where the structure of the datapath is known
in detail (logic or RT level);

Block tests and test steps have their resource sets used
to build up their test plans. Depending on the test design
methodology selected, once a resource set is compiled for
each test ti, then it is possible to determine whether they
could run in parallel without any resource conflict. A pair
of tests that cannot be run concurrently is said to be incom-
patible. Each application of time compatible tests is called a
test session, and the time required for a test session is often
referred to as test length. From this point of view, circuits
fall, in general, into two classes:

� circuits in which all tests are equal in length;

� circuits in which the tests are unequal in length.

0-7695-0668-2/00 $10.00 � 2000 IEEE
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:44:20 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 POWER-CONSTRAINED BLOCK-TEST
SCHEDULING

3.1 PROBLEM FORMULATION

In practical circuits (e.g., MCMs) only a few blocks or
modules are activated at a certain moment, under normal
system operation, while other blocks are in the power-down
mode to minimize the power dissipation. Under testing en-
vironment, however, in order to test the system in the short-
est possible time, it is desirable to concurrently activate as
many blocks as possible provided that the power dissipation
limit of the system is not exceeded.

The instantaneous power, p(t), is the power dissipation
at any time instant t: p(t) = i(t)�v(t), where i(t) and v(t)
are the instantaneous current and voltage in the circuit. If
p(ti) is the power dissipation during test ti and p(tj) is the
power dissipation during test tj , then the power dissipation
of a test session consisting of just these two tests is the sum
of the instantaneous powers of test ti and tj . Usually this
instantaneous power is constrained to not exceed the max-
imum power dissipation limit, PDmax, if they were meant
to be executed in the same test session. However, in reality
the instantaneous power for each test vector is hard to ob-
tain at high-levels since it depends, e.g., in a CMOS circuit
on the number of zero-to-one and one-to-zero transitions,
which in turn could be dependent on the order of execution
of test vectors. Consequently, different test schedules will
result in different instantaneous power dissipation profiles
for the same test.

A constant additive model is employed here. For high-
level approaches the power dissipation P (ti) of a test ti
could be estimated in three ways. Firstly, P (ti) can be de-
fined as the average power dissipation over all test vectors
in ti. This definition might be overly optimistic in the analy-
sis of power dissipation when many test vectors are applied
simultaneously, since the average value cannot reflect the
instantaneous power dissipation of each test vector. Hence,
it might lead to an undesirable test schedule which exceeds
the power dissipation allowance of the device at some time
instants. Secondly, P (ti) can be defined as the maximum
power dissipation over all test vectors in ti. This is the up-
per bound power dissipation in ti and its definition is pes-
simistic in this case since it disallows two tests ti and tj ,
whose peak powers occur at different time instants, from
being scheduled in the same test session. However, the test
schedule obtained with this definition guarantees the max-
imum power dissipation allowance of the device to be ob-
served at all time instants. Thirdly, an RMS power dissipa-
tion can be used when the instantaneous power dissipation
is prone to power spikes and a more accurate estimation is
sought. The engineer has the freedom to choose any of the
above ways to be run with the algorithm proposed here.

3.2 PREVIOUS WORK VS CURRENT WORK

Power dissipation during test scheduling was seldom un-
der research so far. [4] proposes for the first time only a
theoretical analysis of this problem at IC level. It is, basi-
cally, a compatible test clustering, where the compatibility
among tests is given by test resource and power dissipation
conflicts at the same time. Unfortunately, from an imple-
mentation point of view the identification of all cliques in
the graph of compatible block-tests belongs to the class of
NP-hard problems. Instead, a greedy approach is proposed
in this paper. It has a polynomial complexity, which is very
important for the success of a fast system-level test sche-
duling solution. A list scheduling together with a tree grow-
ing technique are employed here to generate the block-test
schedule profile at the node level, within a test hierarchy.

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

GAP1

t2
t3

t1

t2 t3
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

GAP1 - t4

t4

t1

t2
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

xxxxxxxxx

t3

t1

GAP1

xxxxxxxx

t2 t3 t4

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

t1

GAP1 - t4

t3

(a) (b)

Figure 1. Merging Step Example

The proposed algorithm is an unequal-length block-test
scheduling one [2] because it deals with tests for blocks of
logic, which do not have equal test lengths. It is meant to be
part of a system-level block-test approach to be applied on
a modular view of a test hierarchy. The modular elements
of this hierarchy could be given at any of the high-level
synthesis (HLS) domains, between the system and RT lev-
els: subsystems, backplanes, boards, MCM’s, IC’s (dies),
macro blocks and RTL transfer blocks. The lowest level
block the test hierarchy accepts is the RTL one, but at this
level it is assumed that a test-step level scheduling has al-
ready been taken into consideration and applied. Generally
speaking any node in hierarchy (apart from leaves) has dif-
ferent subnodes as children. Every test node t i is character-
ized by a few parameters, which it was previously assigned
with, after the test scheduling optimization has been applied
on it. These features are the following: test application time
Ti, power dissipation Pi, and test resource set RES:SETi.
This approach assumes a bottom-up traversing of the hier-
archical test model within a divide et impera optimization
style. Thus, at a certain moment the subnodes of a certain
node are considered for optimization in order to get an opti-
mal or near optimal sequencing or overlaying of them com-
plying with the power dissipation constraints.

0-7695-0668-2/00 $10.00 � 2000 IEEE
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:44:20 UTC from IEEE Xplore. Restrictions apply.

4 TREE GROWING TECHNIQUE

Since the block-test set in a complex VLSI circuit is
huge, it is possible to schedule some short tests to begin, if
they are resource compatible, when subcircuits with shorter
testing time have finished testing, while other subcircuits
with longer testing time have not. The tree growing tech-
nique given in [5] is very productive from this point of
view. That is because it is used to exploit the potential of
test parallelism by merging and constructing the concurrent
testable sets (CTS). This was achieved by means of a binary
tree structure (not necessarily complete), called compati-
bility tree, which was based on the compatibility relations
among the tests.

Nevertheless, a big drawback in [5] is that the compati-
bility tree is a binary one. This limits the number of children
test nodes that could be overlapped to the parent test node to
only two. In reality the number of children test nodes can be
much bigger, as in the examples depicted in figures 1 and 2.
Therefore, an extended compatibility tree (ECT), given by
means of a generalized tree, is proposed here to overcome
this problem. Figure 2 gives the test schedule chart and the
ECT for the power-test scheduling chart example depicted
in figure 3(a) and presented in section 6. The sequence of
nodes contained in the same tree path represents an expan-
sion of the CTS. Given a partial schedule chart of a CTS,
a test t can be merged in this CTS if and only if there is
at least one tree path P in the corresponding compatibility
tree of CTS, such that every test contained in the nodes of P
is compatible to t. The compatibility relation here has three
components. Firstly, tests have to be compatible from a con-
flicting resources point of view. Secondly, the test length of
the nodes in a tree path have to be monotonously growing
from leaf to root. Thirdly, the power dissipation accumu-
lated on the above tree path is less than or equal to PDmax.

A merging step example is given in figure 1. Partial test
schedule charts are given at the top, while partially grown
compatibility trees are given at the bottom. Suppose tests
t2, t3 and t4 are compatible to t1, while they are not com-
patible to each other. Suppose T1, T2, T3 and T4 are, re-
spectively, the test lengths of tests t1, t2, t3 and t4, and say
T2 + T3 < T1. Suppose now, a new test t4 has to be sched-
uled in parallel to the partial test schedule depicted in figure
1(a). As can be seen, there is a gap GAP1 given by the
following test length difference: GAP1 = T1 � (T2 + T3).
Thus a merging step can be achieved, if T4 � GAP1, by in-
serting t4 in the partial test schedule and its associated ECT
in figure 1(b).

The process of constructing CTSs can be implemented
by expanding (growing) the ECT from the roots to their leaf
nodes. The root nodes are considered test sessions, while
the expanded tree paths are considered their test subses-
sions. When a new test has to be merged with the CTS,

t9

t2

t17

t16 t14

t8

t15
t19

t5

t6
t7

t9

t12 t3 t10
t20

t2
t4

t1

t11

t13

t18

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx xxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

t1 t6

t3

t8

t4 t7

t5 t11

t10 t18

t11

t14

t20t12

t15 t19

t17

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

t16

Rest (Hatched) Gap

Twin Gap

t i

t i

twiShaded Gap

Normal Node

Figure 2. Tree Growing Example

the algorithm should avail of all possible paths in the ECT.
In order to keep track of the available tree paths and to avoid
the complexity of the generalized tree travel problem, a list
of potentially expandable tree paths (ETP) is kept. This
list is kept by means of special nodes that are inserted as
leaf nodes within each ETP of ECT. These leaf nodes are
called gaps and are depicted as hatched or shaded nodes
in figures 1 and 2. There are two types of gaps. The first
set of gaps (hatched) are those ”rest gaps” left behind each
merging step, like it was the case of GAP1 and GAP1 � t4

in the above example. They are similar to the uncomplete
branches of the binary tree from [5]. The second set of gaps
(shaded), are actually bogus gaps generated as the superpo-
sition of the leaf nodes and their twins as in the bottom-right
equivalence given in figure 2. The twin gaps are generated
in order to keep track of ”non-saturated” tree paths, which
are also potential ETP’s. By ”non-saturated” tree path is
meant any ETP who’s accumulated power dissipation is still
under the given power dissipation limit. The root nodes (test
sessions) are considered by default ”shaded” gaps before
any test subsession is generated below them. Finally, the
test scheduling chart (figure 2) can easily be expanded to a
power-test scheduling chart (figures 3) to asses the power
dissipation distribution over the test schedule.

5 POWER-CONSTRAINED BLOCK-TEST
LIST SCHEDULING

The biggest achievement of the tree growing technique
is that HLS algorithms proved to be efficient can be eas-
ily applied on the power-constrained test scheduling (PTS)

0-7695-0668-2/00 $10.00 � 2000 IEEE
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:44:20 UTC from IEEE Xplore. Restrictions apply.

POWER
DISSIPATION

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

2 TIME

10 20 30 40 50

16

1

4

9

17 19

15

12

14

5

3

2

20

7

6

11

10 18

13

8

TOTAL TIME = 41TEST APPLICATION

MAXIMAL POWERNO DISSIPATION CONSTRAINT
POWER DISSIPATION max = 29

t t t

t t
t t

t

t

t
t

t t

t

t

t

t
t

t

t

(a) Without Power Dissipation Constraints

4

6

8

10

12

14

16

18

20

2

POWER
DISSIPATION

TIME
10 20 30 40 50

1

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

2

4 9

15

1712

2

3

5

20

6

7

14
8 10

11 16

13

18t

MAXIMAL POWER = 15DISSIPATION CONSTRAINT

TOTAL TIME = 49TEST APPLICATION

t

t

t t

t

t

t
t

t

t

t

t

t

t

t

t

t t

19t

(b) With Maximal Power Dissipation Constraint = 15

Figure 3. Power-Test Scheduling Charts Of The List Scheduling Approach

problem modeled as an extended tree growing process.
This is due to the high degree of similarities between the
HLS tasks, e.g. HLS scheduling, and power-constrained
block-test scheduling modeled as a growing tree prob-
lem. Classical HLS approaches like the left-edge algo-
rithm for HLS register allocation have already been success-
fully applied on power-constrained block-test scheduling in
[7]. In this paper the efficiency of the HLS list schedul-
ing algorithm (HLS-LS) in test scheduling is presented
and is named power-constrained block-test list scheduling
(PTS-LS). Moreover, the same tree growing technique is
currently experienced in combination with other classical
HLS scheduling algorithms like the force-directed based
ones : force-directed scheduling, improved force-directed
scheduling, and force-directed list scheduling.

In the HLS-LS approach [6], operations were sorted in
topological order by using control and data dependencies.
The set of operations that could be placed in a control step
(c-step) were then evaluated. These operations were called
ready operations. If the number of ready operations of a sin-
gle type exceeded the number of hardware modules avail-
able to perform them, then one or more operations had to
be deferred. In previous list scheduling algorithms, the se-
lection of the deferred operations was determined by a local
priority function such as mobility or urgency.

Since every block-test ti in our approach has a test length
Ti and a power dissipation Pi, a local priority function
called test mobility TMi can also be defined for ti as the in-
verse of the product between its test length Ti and its power
dissipation Pi: TMi =

1

Ti�Pi
. Intuitively, the probability

of scheduling a block-test into a test subsession is higher
the higher block-test’s mobility TMi is. The mobility of
a block-test ti is inverse proportional with its dimensions.
The dimension of a block-test ti is given by the rectangle
area having its test length Ti and its power dissipation Pi as

sides. That is, bigger is the area of the rectangles associated
with the block-tests, smaller mobility they get. Though, in
the tree growing approach the block-tests in an ETP are mo-
notonously growing in terms of test length. A block-test
cannot be scheduled in an ETP, where the leaf’s test length
is shorter than the test length of the block-test to be sched-
uled. This is due to the fact that the block-tests have to be
scheduled in an ETP in the order of their test lengths. There-
fore the mobility in the PTS-LS approach is split into two,
its test length component and its power dissipation compo-
nent. Thus, in PTS-LS, the block-tests are sorted in topo-
logical order by using the test length as primary key to order
in descending order, and the power dissipation as secondary
key, to order the block-tests having the same test length in
descending order as well.

A clear parallel between the HLS scheduling problem
and the PTS problem is given by the similarities between
the c-steps from HLS and the test sessions (test subses-
sions) in PTS, between operations (HLS) and block-tests
(PTS), and between hardware resource constraints (HLS)
and power dissipation constraints (PTS). Therefore, there
is an obvious coincidence between the process of assigning
operations to c-steps (HLS scheduling) and the process of
assigning block-tests to test (sub)sessions (PTS). In the cur-
rent PTS-LS algorithm the block-tests are initially ordered
(as described above) before being scheduled. The sorted
block-tests are then iteratively scheduled into the available
test (sub)sessions (ETPs). When the power dissipation is
exceeded the block-tests to be currently scheduled are de-
ferred for the other test (sub)sessions (ETP) left for further
expansion. In terms of test scheduling, the list scheduling
approach given here (PTS-LS) resembles the first algorithm
of the PTS approach given in [7]. An iterative tree growing
technique was also proposed there to minimize the total test
application time by searching for every block-test an ETP to

0-7695-0668-2/00 $10.00 � 2000 IEEE
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:44:20 UTC from IEEE Xplore. Restrictions apply.

be assigned to. The assignment was achieved if and only if
the accumulated power dissipation in the just expanded tree
path was not exceeding the given power dissipation con-
straint.

The PSEUDOCODE of the PTS-LS ALGORITHM:
-sort all the block-tests by their mobility in two steps (test length,
power consumption);
-initialize the GrowingTree, the BlockTestList and the GapsList;
-initialize the time constraint to the initial number of test subsessions;
-GapsList is ordered by its gaps’ power consumption;
-while (there are unscheduled block-tests) do:
/*BlockTestList is not empty*/ f

� if (GapsList is empty) then f

– CurTest = head of BlockTestList;

– insert CurTest as the tail of GrowingTree roots (new
test section);

– make CurTest ”used”;

– remove CurTest from BlockTestList;

– generate a TwinGap gap as the twin of CurTest;

– insert TwinGap into GapsList g;

� else f

– CurGap = the head of GapsList;

– CurTest = the head of Comp:ListCurGap;

– while (TCurTest > TCurGap OR
PDCurGap + PDCurTest > PDmax OR
CurTest ”used”) do: f

� CurTest = CurTest �!next

(next in the Comp:ListCurGap);g /*while*/

– if (TCurTest � TCurGap AND
PDCurGap + PDCurTest � PDmax AND
CurTest NOT ”used”) then

� SCHEDULE(CurTest,CurGap,
GrowingTree,GapsList,BlockTestList);

– else remove CurGap from GapsList;

-g/*while*/

The complexity of this approach is O(n2). The
data structures used in it are: the Growing Tree to
model the ECT, GapsList to model the ordered list of
potentially expandable gaps (shaded and hatched gaps),
BlockTestList to keep the ordered but not yet merged
block-tests. CurTest is the block-test to be merged at a
certain iteration. CurGap is the gap under focus at a cer-
tain iteration to see whether it is expandable (compatible)
with theCurTest. In the pseudocode ”used” means that the
block-test has already been merged in the ECT. TwinGap
is the newly generated shaded gap at every iteration and it
will not be inserted in the GapsList anymore after its gen-
eration, if its resulting compatibility list is null, i.e. it will
not be an ETP. RestGap is meant to keep the hatched gap
generated at every iteration if it is not null, i.e. CurTest

covers completely CurGap.
The algorithm is iterative. Every iteration looks for the

block-test with biggest test length and lowest mobility to

be scheduled in the test subsession (ETP) having the low-
est accumulated power dissipation. Thus, CurGap (cur-
rent gap) is assigned all the time with the first gap from
the GapsList, which is the one with the lowest accumu-
lated power dissipation. Next, CurGap0s compatibility
list is crossed from the block-test with the lowest mobil-
ity to the one with the highest mobility. The first block-
test (CurTest) which is found assignable (compatible from
all points of view) to the CurGap is scheduled in the cur-
rent gap. Another pair of gaps (twin and rest) are gener-
ated and they have to be inserted in the GapsList so that
the list is still ordered by gaps’ accumulated power dissi-
pation. If no block-test is found for further scheduling in
the CurGap0s compatibility list, then CurGap is removed
from the GapsList and the algorithm continues with the
new head of the list. Otherwise, the new head of GapsList
is considered for expansion. When all the gaps from the
GapsList are removed a new test session is generated ex-
actly like at the beginning of the algorithm during the ini-
tialization of the GapsList. Namely, the GapsList is set
to the first (biggest test length) block-test left unused in
the sorted BlockTestList. The SCHEDULE procedure
carries out the insertion of block-test to be merged into
the GrowingTree and subsequently its removal from the
BlockTestList. For space reasons it is not detailed in this
paper. As can be seen in figure 1, the merging step implies
the generation of shaded and hatched gaps. The SCHED-
ULE procedure in the above pseudocode is similar to the
SCHEDULE procedures of the other tree growing based ap-
proaches [7], but the current one features a power dissipa-
tion balancing provision. It keeps the gaps in the GapsList
in a increased order of their accumulated power dissipation.
This is implemented in order to select at every iteration for
further expansion the test subsessions with lower accumu-
lated power dissipation. Thus, there is a higher probability
of decreasing the power dissipation difference between the
test subsessions (ETPs) of the growing tree. Consequently,
the power dissipation would be more balanced.

6 EXPERIMENTAL RESULTS

The following example should provide a deeper insight
into how this algorithm works and its results. Suppose the
following block-tests are to be scheduled and their parame-
ters specified in the order: power dissipation, test length and
their compatibility list. For simplicity reasons, the block
tests are already ordered by test length and test mobility as
described in section 5.

t1 (3; 12; ft4; t5; t8; t9; t10; t12; t15; t16; t17; t19; t20g)
t2 (5; 11; ft3; t4; t5; t9; t12; t13; t14; t17; t19; t20g)
t3 (9; 9; ft2; t5; t7; t10; t11; t12; t13; t14 ; t17; t18g)
t4 (12; 8; ft1; t2; t7; t9; t11; t14; t15; t17; t19g)
t5 (4; 8; ft1; t2; t3; t6; t7; t8; t12; t15; t17; t18; t20g)

0-7695-0668-2/00 $10.00 � 2000 IEEE
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:44:20 UTC from IEEE Xplore. Restrictions apply.

t6 (2; 8; ft5; t7; t9; t11; t14; t17; t20g)
t7 (1; 8; ft3; t4; t5; t6; t9; t12; t14; t15; t16; t18; t19; t20g)
t8 (7; 6; ft1; t5; t9; t10; t11; t14; t16; t17; t19; t20g)
t9 (6; 6; ft1; t2; t4; t6; t7; t8; t11; t12; t15; t17; t19g)
t10(7; 5; ft1; t3; t8; t11; t15; t16; t17; t18g)
t11(5; 5; ft3; t4; t6; t8; t9; t10; t14; t16; t18; t20g)
t12(11; 4; ft1; t2; t3; t5; t7; t9; t13; t14; t16; t19g)
t13(2; 4; ft2; t3; t12; t15; t16; t17; t18; t19g)
t14(3; 3; ft2; t3; t4; t6; t7; t8; t11; t12; t16; t18; t20g)
t15(1; 3; ft1; t4; t5; t7; t9; t10; t13; t16; t17; t18g)
t16(5; 2; ft1; t7; t8; t10; t11; t12; t13; t14; t15; t17; t19; t20g)
t17(4; 2; ft1; t2; t3; t4; t5; t6; t8; t9; t10; t13; t15; t16; t18; t19 ; t20g)
t18(12; 1; ft3; t5; t7; t10; t11; t13; t14; t15; t17; t19; t20g)
t19(8; 1; ft1; t2; t4; t7; t8; t9; t12; t13; t16; t17; t18; t20g)
t20(7; 1; ft1; t2; t5; t6; t7; t8; t11; t14; t16; t17; t18; t19g)

In figure 3 the results of the PTS-LS algorithm are given
both with (figure 3(a)) and without (figure 3(b)) power dis-
sipation constraints (PDmax = 15). Table 1 gives the re-
sults of the PTS-LS algorithm for a randomly generated 50
block-tests set. Their degree of resource compatibility has
been increased within a range from low to high: low (L)
10%, average-low (AL) 30%, average (AV) 50%, average-
high (AH) 70% and high (H) 90%. The following abbrevia-
tions have been used in the table: test length (TL), maximal
accumulated power dissipation (MPD), average power dis-
sipation (APD) and the total power dissipation dispersion
(PDD). TL represents the total test application time of the
test scheduling solutions. MPD is the maximal power dissi-
pation over the power dissipations accumulated in all ETPs
of the final ECT (growing tree). APD is considered the ideal
MPD when all the ETP’s would exhibit the same accumu-
lated power dissipation, that is the power dissipation would
be fully balanced over the power-test scheduling chart. It is
calculated as the ratio between the power-test area, taken up
by the chart (see figure 3) of the ECT, and the TL. The rect-
angle given by APD and TL would be the ideal power-test
scheduling chart and, therefore, the ideal test schedule pro-
file. PDD is direct proportional to the accumulated power
dissipation dispersion over the power-test scheduling chart,
which is considered here to be given by the power-test area
left unused inside the power-test rectangle given by MPD
and TL. PDD is calculated as the difference between MPD
and APD. The smaller the PDD values of the PTS-LS solu-
tions are the better representativeness the MPD value gets.

It can be seen in figure 3(b) and table 1 that a tighter
power dissipation constraint forces the test scheduling to a
more balanced power dissipation throughout the test appli-
cation time. At the same time obvious power dissipation
spikes could be seen in figure 3(a) due to the lack of power
dissipation constraints. That means the power dissipation is
less balanced when it is loosely constrained. On the other
hand when there are tighter power dissipation constraints
(see table 1), the total test application time increases. Thus,
the PTS-LS problem turned out to be a trade-off problem to
be solved with more complex algorithms.

PDmax LIMIT = 200 PDmax LIMIT = 50

TL MPD APD PDD TL MPD APD PDD

L 401 33 15.9 17.1 401 33 15.9 17.1
AL 301 41 21.3 19.7 301 41 21.3 19.7
AV 204 79 31.4 47.6 224 50 28.6 21.4
AH 154 94 41.6 52.4 167 50 38.4 11.6
H 99 197 62.3 134.7 151 50 42.5 7.5

Table 1. Power-Test List Scheduling Results

7 CONCLUSIONS

This novel greedy unequal-length block-test scheduling
approach is based on the classical list scheduling algo-
rithm applied to an extended tree growing technique and
its polynomial complexity is beneficial to the system-level
test scheduling problem. Thus, this fast algorithm is very
suitable to be part of a HLS methodology meant to obtain
rapid system prototyping solutions. Even though it does not
guarantee optimal block-test scheduling solutions, its final
result can be used as a starting point by near-optimal block-
test scheduling approaches (i.e., simulated annealing, ge-
netic algorithms, tabu search) to get an improved solution.

References

[1] Y. ZORIAN: A Distributed BIST Control Scheme for
Complex VLSI Devices - Proceedings of The 11th IEEE
VLSI Test Symposium, pp. 4-9, Apr, 1993.

[2] G.L. CRAIG, C.R. KIME, K.K. SALUJA: Test Schedul-
ing and Control for VLSI Built-In Self-Test - IEEE Trans-
actions on Computer, Vol. 37, No. 9, pp. 1099–1109, Sep,
1988.

[3] M. ABADIR, M. BREUER: Test Schedules for VLSI Cir-
cuits Having Built-in Test Hardware - IEEE Transactions
on Computer, Vol. C-35, No. 4, pp. 361–368, Apr, 1986.

[4] R.M. CHOU, K.K. SALUJA, V.D. AGRAWAL: Scheduling
Tests for VLSI Systems Under Power Constraints - IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems, Vol. 5, No. 2, pp. 175–185, Jun, 1997.

[5] W.B. JONE, C. PAPACHRISTOU, M. PEREIRA: A
Scheme for Overlaying Concurrent Testing of VLSI Cir-
cuits - Proceedings of the 26th Desing Automation Confer-
ence, pp. 531-536, 1989.

[6] S. DAVIDSON et al: Some Experiments in Local Mi-
crocode Compaction for Horizontal Machines - IEEE
Transactions on Computers, Vol. C-30, No. 7, pp. 460–477,
Jul, 1981.

[7] V. MURESAN, X. WANG, V. MURESAN, M. VLADU-
TIU: The Left Edge Algorithm and the Tree Growing
Technique in Power-Constrainted Block-Test Scheduling
- Proceedings of the 18th IEEE VLSI TEST SYMPOSIUM,
2000, accepted paper, Montreal, May, 2000.

0-7695-0668-2/00 $10.00 � 2000 IEEE
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:44:20 UTC from IEEE Xplore. Restrictions apply.

