
ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

THE LEFT EDGE ALGORITHM IN BLOCK TEST SCHEDULING UNDER POWER
CONSTRAINTS

Valentin Mureyan, Xiaojun Wang

Dublin City University, Ireland
muresanv@eeng.dcu.ie

ABSTRACT

A left-edge algorithm approach is proposed in this paper to
deal with the problem of unequal-length block-test scheduling un-
der power dissipation constraints. An extended tree growing tech-
nique is also used in combination with the left-edge algorithm in
order to improve the test concurrency under power dissipation li-
mits. Test scheduling examples and experiments are discussed
highlighting further research directions toward an efficient system-
level test scheduling algorithm.

1. INTRODUCTION

As the device technologies such as VLSI and MCM become ma-
ture, and larger and denser memory ICs are called for by the high-
performance digital systems, the power dissipation becomes a cri-
tical factor and can no longer be ignored either in normal operation
of the system or under testing conditions. VLSI devices running
in test mode consume more power than when running in normal
mode [l]. Thus, one of the major considerations in test schedu-
ling is the fact that the heat dissipated during test application is
significantly higher than during normal mode (sometimes 100 -
200 % higher). Test scheduling is strongly related to test concur-
rency. Test concurrency is a design property which strongly im-
pacts testability and power dissipation. To satisfy high fault cove-
rage goals with reduced test application time under certain power
dissipation constraints, the testing of all components on the system
should be performed in parallel to the greatest extent possible.

The current paper brings under focus the high-level power-
constrained block-test scheduling problem which lacks of practi-
cal solutions. An efficient scheme for overlaying the block-tests,
called extended tree growing technique is employed successfully
together with classical greedy algorithms, e.g. left-edge algorithm,
to search for power-constrained block-test schedule profiles in a
polynomial time. The algorithm fully exploits test parallelism un-
der power dissipation constraints. This is achieved by overlaying
the block-test intervals of compatible subcircuits to test as many of
them as possible concurrently so that the maximum accumulated
power dissipation does not go over the given limit.

2. TEST SCHEDULING PROBLEM

The components which are required to perform a test (test con-
trol logic, test buses, test pattern generators, signature analyzers,
blocks under test (BUT), and any intervening logic) are known as
test resources and they may be shared among BUT’S. Each acti-
vity or the ensemble of activities requiring a clock period during

Valentina Mureyan, Mircea Vliidufiu

”Politehnica” University of Timigoara, Romsnia
vmuresan@cs.utt.ro

the test mode and occurring in the same clock period, can be con-
sidered as a test step. A block test is the sequence of test steps that
correspond to a specific part of hardware (block). The testing of
a VLSI system can be viewed as the execution of a collection of
block tests. The steps in a step sequence belonging to the same
block test can be pipelined and steps from different block tests can
be executed concurrently, obviously if there are no resource con-
flicts between the steps.

Block tests and test steps have their resource sets used to build
up their test plans. Depending on the test design methodology se-
lected, once a resource set is compiled for each test ti, then it is
possible to determine whether they could run in parallel without
any resource conflict. A pair of tests that cannot be run concur-
rently is said to be incompatible. Each application of time com-
patible tests is called a test session, and the time required for a test
session is often referred to as test length. Moreover, if PD(ti) is
the power dissipation during test ti and PD(t j) is the one dur-
ing test t j , then the power dissipation of a test session, consisting
of just these two tests, is the sum of the instantaneous power dis-
sipation of test ti and t,. These two tests cannot run their tests
in parallel (are not compatible) if PD(ti) + PD(t,) > PD,,,
(the maximal accepted power dissipation). Pi will be the power
dissipation considered in the current work as the maximum power
dissipation over all test vectors applied in test t,. It is a pessimistic
and simplistic definition, but it does not lead to undesirable test
schedules which exceed the power dissipation allowance.

3. BLOCK-TEST SCHEDULING

The proposed algorithm deals with tests of blocks of logic, which
do not have equal test length. Thus, it is an unequal-length block-
test scheduling. It is meant to be part of a system-level block-test
approach to be applied on a modular view of a test hierarchy. The
modular elements of this hierarchy could be: subsystems, back-
planes, boards, MCM’s, IC’s (dies), macro blocks and RTL trans-
fer blocks. Every test node t , is characterized by a few parameters,
which it has previously been assigned with, after the test schedul-
ing optimization has been applied on it. These features are: test
application time Ti, power dissipation E , and test resource set
RESSET, .

4. PROPOSED ALGORITHM

Power dissipation during test scheduling was seldom under re-
search so far. Approaches like [2] tackle the power dissipation
problem during test application at gate-level. These approaches

0-7803-5482-6/99/$10.00 ‘2000 IEEE

1-35 1

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:43:31 UTC from IEEE Xplore. Restrictions apply.

are not efficient at high levels. A theoretical analysis of this pro-
blem at IC level was proposed in [3]. It is, basically, a compatible
test clustering, where the compatibility among tests is given by test
resource and power dissipation conflicts at the same time. Unfor-
tunately, from an implementation point of view the identification
of all cliques in the graph of compatible block tests belongs to
the class of NP-complete problems. Instead, a greedy approach is
proposed in this paper. It has a polynomial complexity, which is
very important for the success of the system-level test scheduling
problem. A left-edge algorithm together with a tree growing tech-
nique are employed here to generate the block-test schedule pro-
file at the node level, within the test hierarchy. The contribution
of this paper is to solve for the first time the application of a poly-
nomial complexity algorithm to the problem of power-constrained
test scheduling from the time [3] defined it as belonging to the
class of NP-complete problems.

4.1. TREE GROWING TECHNIQUE

In complex VLSI circuit designs, the block-test set is huge and
ranges in test lengths. Thus it is possible to schedule some short
tests to begin, if they are resource compatible, when subcircuits
with shorter testing time have finished testing, while other subcir-
cuits with longer testing ti,me have not. The tree growing tech-
nique given in [4] is very productive from this point of view. That
is because it is used to exploit the potential of test parallelism by
merging and constructing the concurrent testable sets (CTS). This
was achieved by means of a binary tree structure (not necessarily
complete), called compatibility tree, which was based on the com-
patibility relations among the tests.

t l --
t z t3 GAP, t 2 t3 t, GAP,- t 4

Figure 1: Merging Step Example

Nevertheless, a big drawback in [4] is that the compatibility
tree is a binary one. This limits the number of children test nodes
that could be overlapped to the parent test node to only two. In
reality the number of children test nodes can be much bigger, as
in the examples depicted in figures 1 and 2. Therefore an ex-
panded compatibility tree (ECT), given by means of a generu-
lized tree, is proposed here to overcome this problem. Figure 2
gives the test schedule chart and the ECT for the test scheduling
example presented in section 5 and depicted in figure 3(a). The
sequence of nodes contained in the same tree path represents an
expansion of the CTS. Given a partial schedule chart of a CTS,
a test t can be merged in this CTS if and only if there is at least
one tree path P in the corresponding compatibility tree of CTS,
such that every test contained in the nodes of P is compatible to
t . The compatibility relation here has three components. Firstly,
tests have to be compatible from a conflicting resources point of
view. Secondly, the test length of the nodes in a tree path have
to be monotonously growing from leaf to root. Thirdly, if power

dissipation constraint (I'D,,,) is given, the accumulated power
dissipation on the above tree path should be less than or equal to

A merging step example is given in figure 1. Partial test sche-
dule charts are given at the top, while partially grown compatibility
trees are given at the bottom. Suppose tests tz, t3 and t4 are com-
patible to t l , while they are not compatible to each other. Suppose
T I , Tz, T3 and T4 are, respectively, the test lengths of tests t l , t 2 ,

t3 and t4, and say T2 + T3 < T I . Suppose now, a new test t4 has
to be scheduled in parallel to the partial test schedule depicted in
figure l(a). As can be seen, there is a gap GAP1 given by the t'est
length difference: GAP1 = TI - (Tz + T3). Thus a merging step
can be achieved, if T4 5 GAPI , by inserting t4 in the partial test
schedule and its associated ECT in figure l(b).

P D m a z .

tA t12

t,

tl 1 - t18

Rest (Hatched) Gap

..A-

= Shaded Gap-**-'-'

Figure 2: Tree Growing Example

The process of constructing CTS's can be implemented by ex-
panding (growing) the ECT from the roots to their leaf nodes. The
root nodes are considered test sessions, while the expanded tree
paths are considered their test subsessions. When a new test has to
be merged with the CTS, the algorithm should avail of all possible
paths in the ECT. In order to keep track of the available tree paths
and to avoid the complexity of the generalized tree travel problem,
a list of potentially expandable tree paths (ETP) is kept. This list
is kept by means of special nodes that are inserted as leaf nodes
within each ETP of ECT. These leaf nodes are called gaps and are
depicted as hatched or shaded nodes in figures 1 and 2. There are
two types of gaps. The first set of gaps (hatched) are those "rest
gaps" left behind each merging step, like it was the case of GAP1
and GAP1 - t4 in the above example. They are similar to the
uncomplete branches of the binary tree from [4]. The second set
of gaps (shaded), are actually bogus gaps generated as the super-
position of the leaf nodes and their twins as in the bottom-right
equivalence given in figure 2. They are generated in order to keep
track of "non-saturated" tree paths, which are also potential ETP's.
By "non-saturated" tree path is meant any ETP who's accumulated
power dissipation is still under the given power dissipation limit.
The root nodes (test sessions) are considered by default "shaded"
gaps before any test subsession is generated inside them.

1-352

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:43:31 UTC from IEEE Xplore. Restrictions apply.

1'011 b I1

POWER DISSIPATION CONSTR4INT
POWLI< DISSIPATION mal = 29

TOTAL TEST APPLICATION TIME = 41

(a) Without Power Dissipation Constraints
Figure 3: Power-Test Schedulin

4.2. A PARALLEL TO THE LEFT-EDGE ALGORITHM

The high level of similarities between the register allocation pro-
blem given in [5] and the node-level test scheduling problem faced
by the authors, led to the application of the left-edge algorithm to
the block-level test scheduling of a single node within a test hier-
archy. The input to the left-edge algorithm given in [5] , is a list
of variables to be allocated registers. A lifetime interval, with start
t h e and end time, is associated with each variable. The list of
variables is sorted on two keys: the start time ofthe variables as
the primary key to sort them in ascending order, and the end time
as the secondary key to sort in descendkg order the variables with
the same start time. The algorithm makes several passes over the
list of variables until all variables have been assigned to registers.
In the test scheduling algorithm proposed here, block tests take
the place ofvariables. while the test sessions (subsessions) are the
registers. The input to our algorithm is a list of block tests to be
allocated to different test sessions (subsessions) with the goal to
minimize the total test time. keeping the power dissipation within
the given limits. The "variables list" in this algorithm has to be a
list of block tests sorted by the following two keys: their test appli-
cation time as the primary key to sort the list in a descending order,
and their estimated power dissipation as the secondary key to sort
the block tests with the same test application time in a descend-
ing order as well. During each pass over the list, block tests are
assigned to test sessions (subsessions) using the tree growing tech-
nique and generating other test subsessions in order to obtain better
packing density. Throughout the algorithm, the power dissipation
accumulated along each test session (subsession) has to comply
with the given maximal power dissipation constraint. There are
three travel approaches to be followed through the test session list:

1. traveling down the block-test list once for every newly gene-
rated gap (hatched or shaded, see subsection 4.1) until no
hrther merging can be perfomied to it. This uses exactly
the list travel approach from the left-edge algorithm. Ev-
ery newly generated gap is coilsidered a newly "allocated
register" and represents a test subsession;

2. allocating a new test session anytime a test from the list
cannot be assigned to the existing gaps (hatched or shaded).
Every newly generated gap is coilsidered a newly "allocated
register" as well;

3. an intennediate approach would be to consider only the test
"allocated registers". In this case the algorithm

VISSII'* l lO\

POWER DISSIPATION CONSTKAINI' = 15

TWE'AL I'ES'I' AYPLlCATlON TIME = 49

(b) With Maximal Power Dissipation Constraint = 15

g Charts Of The First Approach

travels down the block-test list once for every allocated test
session. A new test session is allocated only when there
are 110 more block-tests in the list compatible to the gaps
belonging to the current test session.

The complexities of these approaches are O(,I?). For space
reasons, only the pseudocode of the first approach is given below
in this paper. The data structures used in it are: the Gro.wirzg T r e e
to model the ECT, GupsList to model the list ofpotentially ex-
pandable gaps (shaded and hatched gaps), BlockTestList to keep
the ordered but not yet merged block-tests. C(uTTt'.st is the block-
test to be merged at a certain iteration. C ~ ~ r G n j i is the gap under
focus at a certain iteration to see whether it is expandable (coni-
patible) with the CtwTest. In the pseudocode "used" means that
the block-test has already been merged in the ECT. F w i , i d h p is
the newly generated shaded gap at every iteration and it will not be
inserted in the GupsList anymore after its generation, if its result-
ing compatibility list is null, i.e. it will not be an ETP. RestGup
is meant to keep the hatched gap generated at every iteration if it
is not null, i.e. CurTest covers completely CurGap.

The PSEUDOCODE of the FIRST ALGORITHM:
-initialize the Gmwzriy'l'ree and the G[~psLisl;
-while there are unscheduled block-tests
l*Ulock'l'eslList is not empty*/ {

if(L'uj0sLisl is empty) then {

- C.isrTesl= head of BlockTestLial;
- insert C:urTest as the tail of G ~ u u ~ Z n y T r e e roots (new

test section);

- make CurTesl "usedn;

- remove CurTest from BlockTesbLisl;
- generate a ~ w z ~ i c ' u ~ i gap as the twin of C'u~Test;

- insert T~w27Gup into Gup.sL,isl};

else {

- C r r r T e s l = head of BlockTeslLisC;

- C.irrC?up = head of C'upsLisl.;

- while C u ~ G u p is the head of C;upsLzst AKD
the C~riip.Li.sl~:, , .G,,p is NOT empty {

* if (TC:~ , . . I .~~~ 5 T ~ u r ~ u p AiVD
P C C : ~ ~ ~ ; ~ ~ i - P C ~ ' u r y ~ s (5 P C n i ~ x AND
Cu7.Tesi. NOT "used") then

1-353

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:43:31 UTC from IEEE Xplore. Restrictions apply.

-

}; /*while*/

5.

. generate JteslC'ap = C:urG'ap - Cur'l'esl
if Y&st(:,ri, is not null;

r .
. ' I k c s l L ' u p = T i ' u ~ L ' a p - I C ' u r T e b t ;

' f ' D ~ t a t ~ : c i y = P D ~ ! u r ~ . u p ;
. C : c n r y J . L i s t Kts 1 cUJ, = C u m p . List(,,, I.

. generate ?1wi8riGup as the twin gap ofC.urTes1;
;

. 7i7w;r,&J, = 2'C.ulTFat;

' ~ D l ~ , , , ~ l , c ; u ~ , = P ~ C ~ I L I . T e & t ;
. C u r r l ~ J . L i . s l ~ , , , , ~ , I , = Co1llp.Lz

' reniove C~1.Gup from the G'rowirry'l'~ee;
. insert CvrTes l and Itesl,C'ap (if 1 ~ ~ ~ ~ (; ~ , , , is

not zero) in the place of C w G u p inside the

. insert ' I " U J i ' l l . ~ U p into the C h o ~ c i n y T ~ e e as
the unique offspring of C:urY'est.;

. remove CwCu.p from the GupsLisl;

. inscrt ILeslG'up (if I R ~ ~ (c ~ ~ is not null) as
the head of G'upsLiut;

G'r'UWi71y?','C!e;

. make C,'ur'l'esl "used";

. reniove Cur'l'est. from Uloc:kTe.stList >;/*it*/
* else C:vT'l"t = GurT'es t - +llerl

(next in the C O ~ I ~ ~ J . L Z S ~ ~ , , , ~ , , ,) };/*while*/

if (CurG'up is still the head of GupsLzuL) then
/*it means there are no compatible
block-tests left for CILT(;UJI */

* reniove C,'uiCup from the C'ap.sList };/*else*/

EXPERIMENTAL RESULTS

In figure 3 the results of the first approach are given both
with (figure 3(a)) and without (figure 3(b)) power dissipation coil-
straints (PD.,,tcLcc = 15). Table 1 gives the results of the same
algorithm for a 50 block-tests set. Their degree of resource com-
patibility has been increased within a range from low to high: low
(L) 10'%1, average-low (A-L) 30'1/0, average (AV) 50%. average-
high (A-H) 70% and high (H) 90%. The following abbreviations
have been used in the table: test length (TL). accumulated power
dissipation (APD). the number ofiterations of the first loop (1LNb)
and the second loop (2LNb) of the same algorithm. It can be seen
in figtue 3(b) that a tighter power dissipation constraint forces the
test scheduling to a more balanced power dissipation throughout
the test application time. At the same t h e obvious power dl,jsi-
pation spikes could be seen in figure 3(a) due to the lack of power
dissipation constraints. That means the power dissipation is less
balanced when it is loosely constrained. On the other hand when
there are tighter power dissipation constraints (see table I) . the
total test application time increases. Thus, it tumed out to be a
trade-off problem to be solved with more complex algorithms.

II

Table I ; Power-Test Scheduling Results Of The First Approach

6. CONCLUSIONS

This novel greedy unequal-length block-test scheduling approach
is based on the classical left-edge algorithm applied to an extended
tree growing technique and its polynomial complexity is benefi-
cial to the system-level test scheduling problem. Even though it
does not guarantee optimal block-test scheduling solutions. its fi-
nal result can be used as a starting point by near-optimal block-
test scheduling approaches (e.g, simulated annealing, genetic al-
gorithms, tabu search) to get an improved solution.

7. REFERENCES

Y. ZORIAN: A Distributed BlST Control Scheme for
Complex VLSI Devices - Procwdiiig-s of The 1 Iih. LEEE
VLSI Test S\~iirpo.ritrin. pp. 4-9, Apr. 1993.
V. DABHOLKAR, S. CHAKRAVARTY, I. POMERANZ, S.
REDDY Techniques for Minimizing Power Dissipation in
Scan and Combinational Circuits During Test Applica-
tion - IEEE Tron.voction.v o i i Coniputers, Vol. 17. No. 12, pp.
1325-1333, Dec, 1998.
R.M. CHOU, K.K. SALUJA, V.D. AGRAWAL; Scheduling
Tests for VLSI Systems Under Power Constraints - 1EEE
Triinsoctions on Pkni Lurge Scule Iirtecqrotion (VLSI) .yv.s-
tenzs. Vol. 5, No. 2. pp. 175-185, Jun, 1997.
W.B. JONE, C. PAPACHRISTOU, M. PEREIRA: A Scheme
for Overlaying Concurrent Testing of VLSl Circuits -
Proceedings qfihe 26[h Diving .4zrfomtr/ion Conjirencc~. pp.

F.J. KURDAHI, A.C. PARKER: REAL: A Program for
Register Allocation - Prowedings of The 24ih Dcsign Air-

/orntr/ioii Confirence, pp. 210-215, 1987.

S3 1-536, 1989.

1-354

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:43:31 UTC from IEEE Xplore. Restrictions apply.

