

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Energy Efficient Packet Classification Hardware Accelerator

Alan Kennedy, Xiaojun Wang
HDL Lab, School of Electronic Engineering,

Dublin City University, Dublin 9, Ireland
alan.kennedy@eeng.dcu.ie

Bin Liu
Department of Computer Science and Technology

Tsinghua University, Beijing P.R.China
 liub@tsinghua.edu.cn

Abstract

Packet classification is an important function in a

router’s line-card. Although many excellent solutions have
been proposed in the past, implementing high speed packet
classification reaching up to OC-192 and even OC-768 with
reduced cost and low power consumption remains a
challenge. In this paper, the HiCut and HyperCut
algorithms are modified making them more energy efficient
and better suited for hardware acceleration. The hardware
accelerator has been tested on large rulesets containing up
to 25,000 rules, classifying up to 77 Million packets per
second (Mpps) on a Virtex5SX95T FPGA and 226 Mpps
using 65nm ASIC technology. Simulation results show that
our hardware accelerator consumes up to 7,773 times less
energy compared with the unmodified algorithms running
on a StrongARM SA-1100 processor when classifying
packets. Simulation results also indicate ASIC
implementation of our hardware accelerator can reach OC-
768 throughput with less power consumption than TCAM
solutions.

1. Introduction

Packet Classification is increasingly being used by
networking devices such as routers, switches and firewalls
to implement policies like the blocking of unwanted internet
traffic. It is also used for services such as giving priority to
Voice over IP or IP-TV packets and the billing of traffic
based on network usage. As line rate goes up to OC-192 and
moves towards OC-768, which corresponds to 31.25 Million
packets per second (Mpps) and 125 Mpps in the worst case
when minimum sized packets (40 bytes each) arrive back to
back, it poses great pressure to the classifier in a router’s
line-card. Previous studies emphasize how to increase the
throughput while reducing the implementation cost, but
seldom address the power consumption. In fact, the power
control for the classifier is equally important while
designing the line-card due to its tight space budget and the
power supply.

Due to their large integration scale and high speed,
network processors deployed in typical network equipment
can consume more power than any other components in the
equipment (e.g, the Intel IXP2800 has a peak power
consumption of 30W). As a key attached component to the

network processor, the classifier is definitely required to be
designed power efficient. Analysis in [1] demonstrated that
up to 50% of ISP maintenance costs are power related,
including the electricity consumed by the routers and the
corresponding cooling systems and so on. Research by
Gupta and Singh [2] showed that in 2000 the amount of
energy used by various networking devices in the U.S.
accumulated to nearly the yearly output of a nuclear reactor
unit. So when we design a classifier, a multi-dimensional
metric should be considered including the power
consumption, besides throughput and cost.

Software approaches, for example the Packet
Classification algorithms in [3-11], have the advantage of
reduced cost but fail to operate at a very high speed due to
their low throughput and nondeterministic amount of clock
cycles when executing a packet lookup. Our recent research
results from [12] show that when Packet Classification
algorithms are implemented on devices such as the
StrongARM SA-1100 running at 200 Mhz, the maximum
achievable throughput from even the best performing
algorithms is only around 0.5 Mpps. For this reason
hardware methods for implementing Packet Classification
are essential to prevent it from becoming a bottleneck.

The popular hardware implementation at present is to
employ Ternary Content Addressable Memory (TCAM) due
to the fact that it can match the rules in an O(1) clock cycle.
This is achieved by carrying out parallel comparisons on all
the stored rules in one clock cycle plus the use of pipelining.
State-of-the-art technology such as the Cypress Ayama
10000 Network Search Engine [13] can perform 133 million
144-bit search key per second. This high lookup rate
however comes at a large cost of consuming between 4.86-
19.14 watts depending on the TCAM size. Besides the high
power consumption, another drawback for TCAM is its poor
storage efficiency of rulesets when using rules containing
ranges. Research on real world databases in [14] showed
that TCAM storage efficiency ranged between 16-53%, with
an average of 34%. TCAMs also take up large amounts of
die area with one bit requiring 10-12 transistors compared to
SRAM which only requires 4-6 transistors per bit. The
complexity of TCAMs also determines they can’t run at the
high clocking speed obtainable by SRAM. A search engine
implemented using this approach will require multiple chips
including a host ASIC, TCAMs and the corresponding
SRAMs.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:37:29 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rule Field0 Field1 Field2 Field3 Field4
R0 128-240 15-15 40-40 180-180 120-140
R1 90-100 0-80 0-200 190-200 130-132
R2 130-255 60-140 0-60 180-180 133-135
R3 90-92 200-200 40-40 180-180 136-138
R4 130-255 60-140 40-40 190-200 60-63
R5 140-150 60-140 0-255 0-255 140-255
R6 160-165 80-80 0-255 0-255 0-80
R7 48-50 0-80 40-40 0-255 0-10
R8 26-36 50-50 40-40 180-180 30-40
R9 40-40 40-70 40-40 0-255 0-60

Table 1: Ruleset containing 10 rules with 5 fields.

In this paper we present a hardware supported one chip
solution which can be implemented on an FPGA utilizing
the on-chip Block RAM or as an ASIC using on-chip
SRAM. The hardware accelerator achieves high lookup
rates by using multiple memory blocks in parallel taking full
advantage of the flexibility of an FPGAs RAM blocks and
the design flexibility of ASICs. High storage efficiency of
rulesets is achieved when compared with the memory
requirements of some typical Packet Classification
algorithms [12]. Compared with software solutions, the
hardware accelerator significantly increases the searching
speed and greatly reduces power consumption. So our
hardware accelerator exhibits an excellent feature when
attached to a network processor, either as an on-chip
executing unit or as an external component acting as a high
speed classifier.

The layout of the rest of this paper is as follows. Section
2 briefly explains two software algorithms HiCut and
HyperCut. Section 3 details the changes made to the
algorithms in order to make them better suited to hardware
acceleration and more energy efficient when building the
search structure. Section 4 presents detailed implementation
of the hardware accelerator while Section 5 gives the
simulation results and clarifies the parameters used to obtain
them. Section 6 concludes the paper.

2. Packet Classification Algorithms

In order to help better understand our hardware oriented
modification to the original software algorithms, in this
section we will explain two typical packet classification
algorithms, namely HiCuts and HyperCuts respectively.

2.1 Hierarchical Intelligent Cuttings (HiCuts)

 HiCuts by Gupta and McKeown [5] is a decision based
tree algorithm, which allows incremental updates to a
ruleset. It takes a geometric view of packet classification by
considering each rule in a ruleset as a hypercube in
hyperspace defined by the F fields of a packets header. The
algorithm constructs the decision tree by recursively cutting
the hyperspace one dimension at a time into sub regions.
These sub regions will contain the rules whose hypercube
overlap. Each cut along a dimension will increase the
number of sub regions with each sub region containing
fewer rules. The algorithm will keep cutting into the

hyperspace until none of the sub regions exceed a
predetermined number called binth.

Figure 1 shows a decision tree built from the ruleset in
Table 1. The more cuts performed to an internal node
(represented by an ellipse in Figure 1), the fatter and shorter
the decision tree. Too many cuts however will result in an
unacceptable amount of memory needed to store the
decision tree. For that reason the number of cuts np which
can be performed on a dimension at an internal node i is
limited using a predefined variable known as spfac. Each cut
will create child nodes, with the number of cuts always
starting with 2 and doubling each time the following
equation is satisfied:

 spfac*number of rules at i � � rules at each child of i + np (1)

The algorithm has many heuristics for choosing which
dimension should be cut. The method we chose is to record
the largest number of rules contained in a child after cutting
each dimension and pick the dimension which returns the
smallest number. Each time a packet arrives, the tree is
traversed from the root node until a leaf node (represented
by a rectangle in Figure 1) is found, which stores a small
number of rules limited by the binth value. Once a leaf node
is reached a small linear search of the rules contained within
it is performed to find the matching rule.

Figure 2 shows the cuts performed to the decision tree
in Figure 1. Field 0 is selected to cut the root node in 4. This
results in 4 child nodes of which 1 exceeds the binth value.
The node exceeding binth is split in 2 using Field 4 with
both child nodes equaling the predetermined binth value.

Figure 1: HiCuts Decision tree (binth 3).

Figure 2: Cuts Performed by HiCuts and
HyperCuts.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:37:29 UTC from IEEE Xplore. Restrictions apply.

2.2 Multidimensional Cutting (HyperCuts)

HyperCuts by Singh et al [6] is a modification of the
HiCuts algorithm, which also allows incremental updates.
The main difference from HiCuts is that HyperCuts
recursively cuts the hyperspace into sub regions by
performing cuts on multiple dimensions at a time. Figure 3
is an example of such a decision tree built from the ruleset
shown in Table 1. The algorithm takes a simple approach to
deciding which dimensions should be considered for cutting.
The number of distinct range specifications for each
dimension is calculated and the dimensions with a number
of distinct range specifications greater than or equal to the
mean number of range specifications is considered.
HyperCuts acts like HiCuts if only 1 dimension is chosen for
cutting. The algorithm also limits the number of cuts which
can be performed to an internal node i (represented by an
ellipse in Figure 3) using a space measure function in order
to prevent memory explosion. The maximum number of
child nodes created by the combination of cuts between the
chosen dimensions is bound by the following condition:

 max child nodes at i � spfac*sqrt(number of rules at i) (2)

The paper by Singh et al never made it clear how to
choose the best combination of cuts among the chosen
dimensions. Here we choose the combination which resulted
in the smallest number of max rules stored in a child node.
HyperCuts also takes advantage of extra heuristics, which
exploit the structure of the classifier such as region
compaction and pushing common rule subsets upwards.
Region compaction allows for more efficient cutting of a
dimension as it only cuts the region covered by the rules
rather than the full region. Pushing common rule subsets
upwards will reduce the replicated storage of rules by
storing rules common to all child nodes in their parent node.
If this option is chosen a linear search of rules stored in
internal nodes may need to be carried out as the decision
tree is traversed. HyperCuts and HiCuts reduce storage
further by merging child nodes which have associated with
them the same set of rules and removing child nodes which
contain no rules.

Figure 2 shows the cuts performed to the decision tree
in Figure 3. The root node is split in 4 by performing 2 cuts
to both field 0 and field 4. None of the child nodes created
exceed the binth value so no more cuts need to be
performed.

3. Algorithmic Changes Towards Hardware
Accelerating

In order to make the algorithms better suited to

hardware acceleration and consume less power during the
building of the search structure some modifications were
made. The first modification was to remove the region
compaction and push common rule subsets upwards
heuristics from the HyperCuts algorithm. The region
compaction heuristic was removed as it needed large
amounts of hardware resources in order to carry out the
floating point division required when calculating which path

Figure 3: HyperCuts Decision tree (binth 3).

to follow when traversing the decision tree. Floating point
division would also consume extra power. Pushing common
rule subsets upwards was removed as it meant the searching
of rules would have to be carried out while traversing the
decision tree, slowing down the hardware accelerator.

The number of cuts allowed to internal nodes for both
the HighCut and HyperCut algorithms is limited to 32, 64,
128 or 256 cuts. It was found through the testing of different
size and shaped rulesets generated using ClassBench [15]
that 32 cuts is a much better starting position than 2 as it
leads to a significant decrease in computation and makes an
insignificant increase to memory consumption. It was also
found that by capping the number of cuts to 256, savings are
made in memory consumption and computation with little
decrease in throughput. Reducing the amount of
computation will lead to power savings as less time is spent
building the search structure. For HiCuts the number of cuts
to an internal node starts at 32 and doubles each time the
following condition is met:

(spfac*number of rules at i � � rules at each child of i + np)
 &(np<129) (3)

HyperCuts considers dimensions for cutting with a
number of distinct range specifications greater than or equal
to the mean number of distinct range specifications for all
the five dimensions. All combination of cuts between the
chosen dimensions is considered if they obey the following
condition where spfac can be 1, 2, 3 or 4:

 (np�2(4+spfac))&(np�32) (4)

Capping the number of cuts to 256 also makes the
algorithms better suited to hardware acceleration as all the
information needed for an internal node can fit fully in one
memory word, which can be accessed in a single clock
cycle. The hardware accelerator uses 4800-bit wide memory
words. Each of the cuts to an internal node requires 1 bit for
indicating if the resulting child is an internal or leaf node, up
to 12 bits (depending on number of memory words) for the
memory location of the node in the search structure and 5
bits for indicating the starting position of the node at the
resulting memory location.

In order to calculate which cut the packet should
traverse to, the internal node stores 8-bit mask and shift
values for each dimension. The masks indicate how many
cuts are to be made to each dimension while the shift values
indicate each dimensions weight. The cut to be chosen is
calculated by ANDing the mask values with the
corresponding 8 most significant bits from each of the
packets 5 dimensions. The resulting values for each
dimension are shifted by the shift values with the results
added together giving the cut to be selected.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:37:29 UTC from IEEE Xplore. Restrictions apply.

Software Hardware No.
Rules HiCuts HyperCuts HiCuts HyperCuts
60 2,200 1,745 3,000 3,000
150 6,200 5,382 6,000 5,400
500 28,776 13,372 24,000 15,600
1000 43,020 25,592 35,400 28,800
1600 79,444 43,298 69,600 46,800
2191 110,704 56,161 97,200 61,800

Table 2: Memory needed for the search structure
and ruleset (bytes), spfac=4, speed=1.

Another modification made to the algorithms is to store
the actual rule in the leaf node rather than a pointer. This
was found during testing of the many rulesets created using
ClassBench to have only a small increase in memory
consumption for a large increase in throughput as data is
presented to the hardware accelerator one clock cycle
earlier. Each saved rule uses 160 bits of memory. The
Destination and Source Ports use 32 bits each with 16 bits
used for the min and max range values. The Source and
Destination IP addresses use 35 bits each with 32 bits used
to store the address and 3 bits for the mask. The storage
requirement for the mask has been reduced from 6 to 3 bits
by encoding the mask and storing 3 bits of the encoded
mask value in the 3 least significant bits of the IP address
when the mask is 0-27. The protocol number uses 9 bits
with 8 bits used to store the number and 1 bit for the mask.
The number of the stored rule uses 16 bits. Each 4800-bit
memory word can hold up to 30 rules, and it is possible to
perform a parallel search of these rules in one clock cycle.

In order to reduce memory consumption the nodes are
rearranged after the search structure has been built. All the
internal nodes are stored first followed by the leaf nodes.
This modification means that the leaf nodes can be saved
contiguously in the search structure improving the storage
efficiency of rules. To locate a leaf node the number of the
memory word where it is located and the starting position of
the leaf node within that memory word is needed.

Both the HiCut and HyperCut algorithms use
parameters known as spfac and binth to trade off speed
against memory consumption. A third parameter we use to
trade speed against memory consumption is called speed.
When the speed parameter is set to 0 the leaf nodes are
stored contiguously. This means the search structure is
saved in the most memory efficient way possible but will not
result in the highest possible throughput as the number of
clock cycles needed to classify a packet will be:

� � xposzcycles +++= 1)30/)((where: 0 � pos � 29, z � 0 (5)

The number of internal nodes traversed to reach the leaf
node is represented by x. The starting position of the leaf
node in a memory word is represented by pos and z is the
position of the matching rule in the leaf node. If the speed
parameter is set to 1 a leaf node is only stored in a memory
word with a staring position greater than 0 if:

 RulesStoredInLeaf+pos�30 (6)

This means there may be reduced storage efficiency as
the leaf nodes may no longer be stored contiguously.
.

Software Hardware No.
Rules HiCuts HyperCuts HiCuts HyperCuts
60 1.32E-02 9.58E-03 9.94E-03 4.65E-02
150 7.44E-02 1.00E-01 3.94E-02 8.81E-02
500 7.61E-01 2.44E-01 2.89E-01 4.20E-01
1000 2.47E+00 6.66E-01 1.00E+00 7.30E-01
1600 7.46E+00 1.65E+00 2.05E+00 1.34E+00
2191 3.79E+01 2.17E+00 3.20E+00 1.84E+00

Table 3: Energy used to build the search structure
(Joules), spfac=4, speed=1.

Database HiCuts HyperCuts
acl1_rules memory cycles memory cycles

300 7800 2 7800 2
1,200 30,600 2 30,600 2
2,500 63,600 2 63,600 2
5,000 127,200 4 127,200 4

10,000 254,400 4 254,400 4
15,000 384,000 4 384,000 4
20,000 471,600 4 468,600 5
24,920 589,200 5 589,200 5

fw1_rules memory cycles memory cycles
300 7200 2 7200 2

1,200 28,200 2 28,200 2
2,500 59,400 2 59,400 2
5,000 142,200 3 142,200 3

10,000 1,086,600 3 657,600 4
15,000 1,244,400 4 1,226,400 4
20,000 1,931,400 6 2,964,600 6
23,087 3,311,400 8 8,256,000 6

ipc1_rules memory cycles memory cycles
300 7200 2 7200 2

1,200 27,000 2 28,200 2
2,500 64,800 3 61,800 3
5,000 144,000 3 144,000 3

10,000 292,800 3 292,800 3
15,000 379,800 4 379,800 4
20,000 491,400 5 491,400 5
24,274 585,000 5 585,000 5

Table 4: Memory consumption (bytes) and worst
case number of clock cycles needed to classify a
packet for synthetic filter sets generated using
ClassBench, spfac=4, speed=1.

Reduced storage efficiency will however lead to an increase
in throughput as the number of cycles needed to classify a
packet will now be:

 � � xzcycles ++= 1)30/((7)

The hardware accelerator has been designed to handle
up to 1024 memory words which are 4800 bits wide. This
means that search structures up to 614,400 bytes can be
saved in memory. This could easily be doubled to 2048
memory words and implemented on devices such as the
Virtex XC5VLX330T which can store up to 1,458,000
bytes. The 4800 bit memory word is spread out over 134
memory blocks. Each memory word can save either 1
internal node or up to 30 rules. A memory word can be
accessed by the classifier in 1 clock cycle through a 4800-
bit wide data bus.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:37:29 UTC from IEEE Xplore. Restrictions apply.

�����
�����

����	
�
��
��	�
	���� ���

�������
��	��
��

�

�	

������	��

������	���
���
��
��
��	�
	����

�����

�����

�

���������

�

�

����������������	�

 ��!�

������

�������"�#����	� ����
����������	�

$��"�%&�	�

�

���	��
��	��
��

��� ���

� �

������	�

�

���	��
��	��
��

��� ���

��
��
����������

Figure 4: Hardware Accelerator Architecture.

The results in Tables 2,3,5,6,7 and 8 were generated

using acl1 rulesets and traces obtained from [16]. Table 2
shows the memory used by the search structure built for the
hardware accelerator using the modified HiCut and
HyperCut algorithms as well as the memory used by the
software implementation of the original algorithms. Table 3
compares the energy used to build the search structures for
the hardware accelerator with that of the search structure
implemented in software. The approach adopted by [12] was
used to get the energy figures with the algorithms simulated
running on a StongARM SA-1100 using Sim-Panalyzer
[17]. It can be seen that the storage efficiency of the search
structure for the hardware accelerator compares well with
that of the software approach, with HiCuts outperforming its
software counterpart and HyperCuts having only a slight
increase over its software counterpart. In terms of energy
used building the search structure the modified algorithms
show a large improvement when the rulesets increase in
size. The modified HiCuts algorithm uses 11.84 times less
energy than that of the unmodified software version when
building the search structure for 2191 rules.

Table 4 shows the memory consumption for acl1, fw1
and ipc1 rulesets generated using ClassBench. It can be seen
that the modified algorithms scale well to large rulesets both
in terms of memory consumption and worst case number of
clock cycles needed to classify a packet. The fw1 rulesets
consume more memory than the acl1 and ipc1 rulesets as
they contain many wildcard rules. The fw1 rulesets with
over 10,000 rules can still be strored in the FPGAs block
RAM by reducing spfac, trading off memory against
throughput.

4. Hardware Implementation Architecture

The hardware accelerator has been designed to traverse
an internal node of the decision tree in 1 clock cycle. It can
also do a parallel comparison of up to 30 rules contained
within a leaf node in 1 clock cycle. This is possible due to
the fact the hardware accelerator can access a 4800-bit
memory word every clock cycle. By storing the decision
trees root node information in a register separate from main
memory it is possible to traverse the root node for an
incoming packet while searching a leaf node for the
previous packet. Carrying out these tasks in parallel has the
effect of reducing the worst case number of clock cycles by
1. This means the hardware accelerator is able to classify a
packet every clock cycle if the worst case number of clock
cycles needed to classify a packet is 2.

Before any packets can be classified by the hardware
accelerator the first step is to save the preprocessed search
structure to memory. The hardware accelerator has a shared
interface used for both reading in packets and storing the
search structure. The memory banks are accessed using a
Write_enable signal. The write_address signal selects which
row is to be written to and is incremented after the selected
row on all RAM blocks has been filled. Incremental updates
to the search structure can be made if a copy of the search
structure is kept in off-chip memory for the control plane
processor to use when updating the search structure.

Figure 4 shows the architecture of the hardware
accelerator. The Flow Chart shown in Figure 5 explains its
operation. Once the Reset pin is set the hardware accelerator
transfers the decision trees root node information from main

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:37:29 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Hardware Accelerator Flow Chart.

memory to Reg A in 1 clock cycle. As explained in section 3
this information includes the starting position, memory
location and node type for each of the roots child nodes. It
also includes the 8-bit mask and shift values for each
dimension used for selecting which child the incoming
packet should go to.

On the next rising clock edge the hardware accelerator
begins scanning the Start pin. A Ready pin will go high to
indicate a new packet can be classified. When the Start pin
is set high the incoming packet to be classified is stored in
Reg B and the Ready pin is put low. An index value for each
dimension is created by ANDing the five 8-bit mask values
stored in Reg A with the 8 most significant bits from the
packets 5 dimensions stored in Reg B. The resulting indexes
are shifted using the 8-bit shift values stored in Reg A and
then added together to determine which node address should
be selected from Reg A. This node address is used to select
which memory word should be loaded from main memory
on the next rising clock edge. On this edge the hardware
accelerator checks if the node to be loaded from main
memory is an internal or leaf node.

If the node loaded from main memory is an internal
node then the hardware accelerator will use the internal
node information loaded to traverse to the next node. The
mask values from the internal node loaded are ANDed with
the packet values from Reg B. These values are shifted
using the shift values from the internal node loaded and then
added together. The result is used to determine which child
node should be loaded from main memory on the next rising
clock edge. If the selected child is still an internal node then
the process of traversing the internal nodes is repeated until
a leaf node is found. Each internal node to be traversed
takes 1 clock cycle.

The packet value in Reg B will transferred to Reg C if
the node loaded from main memory on a rising clock edge is
a leaf. The accelerator then uses 30 comparator blocks in
parallel to compare the packet value in Reg C with the leaf
nodes rule information loaded from main memory. While
this compare takes place the Start pin is again monitored
and the Ready pin goes high to indicate that a new packet
can be classified. If the Start pin does go high the new
packet information is saved in Reg B and the Ready pin is
put low. The mask and index values for the root node stored
in Reg A are used with the packet value in Reg B to

determine which child node should be loaded from main
memory once a matching rule has been found for the
previous packet.

On the next rising clock edge the hardware accelerator
checks if a matching rule has been found. The hardware
accelerator will continue searching the leaf node if a
matching rule has not been found. If a match has been found
then the Start pin is checked to see if it has been set. If it has
not been set meaning a new packet has not been read in,
then the hardware accelerator will continue monitoring the
Start pin until it is set. If the Start pin has been set meaning
a new packet has been read in, the hardware accelerator will
check if the resulting child node traversed to is an internal
node or a leaf node. An internal node will mean repeating
the process of searching for a leaf node while a leaf node
will mean repeating the process of loading the packet value
from Reg B to Reg C, carrying out a parallel compare on the
rules stored in the leaf node and putting the Ready pin high
to indicate a new packet can be read in.

5. Simulation Results

5.1 Simulation Parameters

The hardware accelerator was implemented in VHDL
and targeted at two technologies: a 65nm ASIC library by
Taiwan Semiconductor Manufacturing Company and a
Xilinx Virtex-5 FPGA. For the ASIC solution the hardware
accelerator was synthesized using Synopsys. Post place and
route timing analysis indicate a maximum theoretical
operating frequency of 226 MHz and a gate count of 51,488
for the hardware accelerator. In order to estimate the power
consumption the Synopsis Prime Power tool was used to
analyze the annotated switching information from a VCD
file. Simulations were run for both the HiCut and HyperCut
algorithms running on the hardware accelerator at 226 MHz.
This meant running 6 simulations for each algorithm using
the packet trace files corresponding to the 6 rulesets.

The hardware accelerator was synthesized using Xilinx
ISE for the FPGA. Post place and route timing analysis
indicate a maximum theoretical operating frequency of 77
MHz. The accelerator uses 3,280 of the FPGAS slices
(22%) and the memory banks for the search structure use
134 Block RAMs (54%). Post place and route simulations
were carried out on the netlist for subsequent VCD power
analysis with the Xilinx XPower FPGA power analysis tool.
The same 12 simulations ran for the ASIC were run for the
FPGA with the frequency set to 77 MHz.

Table 5 compares the performance figures for the
FPGA and ASIC solutions used to implement the hardware
accelerator to the StrongARM used to run the software
algorithms. The devices are running at different speeds
ranging from the ASIC operating at OC-768 speeds down to
the SA-1100 operating at less than OC-1. Since the
hardware accelerator and SA-1100 processor are
implemented in different technologies, a direct comparison
of power consumption would be unfair. For this reason we
use the approach adopted by [18] to normalize the power
.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:37:29 UTC from IEEE Xplore. Restrictions apply.

Device Virtex5SX95T ASIC SA-1100 Software
(running on SA-1100)

ASIC
(65 nm)

FPGA
(Virtex5SX95T)

Process [nm] 65 65 180

No.
Rules

HiCuts HyperCuts HiCuts HyperCuts HiCuts HyperCuts
Voltage [V] 1 1.08 1.8 60 4.60E-07 7.82E-07 7.58E-11 7.90E-11 2.39E-08 2.38E-08
Frequency [Mhz] 77 226 200 150 5.69E-07 1.09E-06 7.32E-11 7.55E-11 2.43E-08 2.41E-08
Power [mW] 1811 18.32* 42.45* 500 6.72E-07 1.28E-06 1.00E-10 1.21E-10 3.21E-08 3.09E-08
Area (Gates) 17,600,998 51,488 1000 8.62E-07 1.85E-06 1.24E-10 1.19E-10 3.94E-08 3.45E-08
Slices 3,280 (22%) 1600 1.09E-06 1.40E-06 1.81E-10 1.42E-10 4.89E-08 3.86E-08
Block RAMs 134 (54%)

 2191 1.09E-06 1.94E-06 2.07E-10 1.46E-10 5.22E-08 3.87E-08

 Table 5: Device comparison. Table 6: Average energy (normalized) needed to
 (normalized power*) classify a packet (Joules) , spfac=4, speed=1.

Software
(running on SA-1100)

ASIC
(65 nm)

FPGA
(Virtex5SX95T)

Software Hardware No.

Rules
HiCuts HyperCuts HiCuts HyperCuts HiCuts HyperCuts

No.
Rules

HiCuts HyperCuts HiCuts HyperCuts
60 88,125 51,794 226,000,000 226,000,000 77,000,000 77,000,000 60 17 22 2 2
150 71,181 37,323 221,919,129 226,000,000 75,609,614 77,000,000 150 27 38 3 2
500 60,245 31,721 164,389,580 171,530,362 56,008,839 58,441,760 500 29 52 3 3
1000 47,544 22,249 135,333,231 155,475,310 46,109,109 52,971,676 1000 46 103 4 4
1600 37,760 29,201 105,444,530 161,201,374 35,925,791 46,663,555 1600 58 70 5 4
2191 37,399 21,168 99,498,019 136,131,129 33,899,767 46,380,959 2191 58 114 5 4

 Table 7: Total number of packets classified in 1 second, Table 8: Worst case number of
 spfac=4, speed=1. memory acesses, spfac=4, speed=1.

figures for the hardware accelerator and processor so a fair
comparison can be made. The power has been normalized
so all devices are compared using 65nm technology with a
core voltage of 1V. The normalized power P� (indicated by
an asterisk in Table 5) is calculated using the following
equation where S is the scaling factor of the process
technologies and U is the scaling factor of the voltage:

 P' = P * S2 * U (8)

The ASIC and StrongARM only consider the power
consumption and area of the datapath logic whilst the FPGA
figures include the power consumption and area for both the
datapath logic and memory.

5.2 Throughput

The results in Table 8 show the worst case number of
memory accesses needed to classify a packet. For the
hardware accelerator this result also represents the worst
case number of clock cycles needed to classify a packet.
This means that the minimum bandwidth for a given ruleset
can be guaranteed under worst case operating conditions.
For the rulesets and packet traces used in Table 7 the
hardware accelerator can classify up to 546 times more
packets when implemented as an ASIC, than the best
performing software algorithm RFC tested in [12], when
running on a StrongARM SA-1100 processor. When
compared to the best performing software algorithm which
also supports incremental updates HiCuts, the hardware
accelerator can classify up to 4,269 times more packets. The
results show that after modification HyperCuts is now the
best performing algorithm in terms of both memory usage
and throughput. The reason for the increase in throughput is
that the modified HyperCuts algorithm allows more cuts to
internal nodes than the unmodified version meaning a
shorter linear search of leaf nodes is needed.

The area used by the accelerator is equivalent to the
area of 51,488 2-input NAND gates which means it could
compete with even the most basic RISC type processing
engines using no data or instruction cache. This means it
would make sense to implement the proposed approach as a
hardware accelerator attached on-chip or on-board network
processors to remove the burden of packet classification
from the network processors processing engines allowing it
achieve line speeds of up to OC-768. The figures also show
that OC-192 line speeds are obtainable if the proposed
approach is implemented on an FPGA.

5.3 Power Consumption

Table 6 compares the average normalized energy
needed to classify a packet for the two unmodified packet
classification algorithms running on a StrongARM SA-1100
processor to that of the hardware accelerator implemented
using ASIC and FPGA technology. The energy figures for
the FPGA include the energy used by both the memory and
datapath logic whilst the ASIC and RISC solutions only
include the energy used by the datapath logic. For this
reason it is fairer to compare the energy used by the
StrongARM SA-1100 with the energy used by the ASIC.

When the power consumption of the hardware
accelerator is compared with HiCuts, the most energy
efficient software algorithm tested in [12] which supports
incremental ruleset updates, the hardware accelerator shows
energy savings of up to 7,773 times on the rulesets tested in
Table 6. This massive energy saving shows the hardware
accelerator is ideally suited to low power packet
classification. The average power consumption of the
hardware accelerator when implemented on an FPGA with
614,400 bytes of memory is 1.8W when running at 77 MHz.
This shows a large power saving over one of the most

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:37:29 UTC from IEEE Xplore. Restrictions apply.

energy efficient commercial TCAM solutions the Cypress
Ayama 10128 Network Search Engine which consumes
2.9W when running at 77 MHz with 576,000 bytes of
memory [13].

The Cypress Ayama 10512 Network Search Engine can
classify at most 133 Mpps when running at its top speed of
133 MHz with 2.304 MB of memory. At this speed it
consumes 19.14 watts [13]. When implemented as an ASIC
the hardware accelerator consumes 11.65mW when running
at 133 MHz. This shows massive power savings are possible
when you consider that the CY7C1381D 2.304 MB SRAM
chip from Cypress consumes 693mW of power when
running at 133MHz with a core voltage of 3.3V [19]. When
running at 226 MHz the hardware accelerator consumes
19.79mW. The CY7C1370DV25 2.304 MB SRAM chip
from Cypress consumes 875mW of power when running at
250 MHz with a core voltage of 2.5V [20]. This shows its
possible for the hardware accelerator to classify packets at
higher speeds than TCAMs while using less power.

6. Conclusions

With ever increasing line speeds, packet classification
has become a bottleneck in wire speed processing for high
speed routers. Solutions for packet classification such as
software running on the processing engines of network
processors can not catch up with the high line rates due to
their low throughput. Existing hardware methods for high
speed packet classification such as TCAMs have the
drawbacks of high power consumption, large board area and
poor storage efficiency of rulesets.

In this paper we have introduced an energy efficient
packet classification hardware accelerator capable of
classifying packets at line rates exceeding OC-768 if
implemented using 65nm ASIC technology and at rates in
excess of OC-192 if implemented using a Xilinx Virtex5
95T FPGA. The architecture proposed would be ideally
suited to implementation as a hardware accelerator attached
on-chip or on-board network processors due to its low area
footprint, high throughput, low power consumption and high
storage efficiency of rulesets.

The hardware accelerator has throughput gains of up to
4,269 times and energy savings of up to 7,773 times when
compared with software algorithms implementing packet
classification on the processing engines of typical
programmable network processors. It also shows the
possibility for clock running speed gains of up to 1.7 times
and an obvious decrease in power consumption when
compared to existing state-of-the-art TCAM technology.

7. Acknowledgments

We would like to thank Kealan McCusker from the
Centre for Digital Video Processing, Dublin City University
for his help in the ASIC implementation of the hardware
accelerator. This work was co-funded by the Irish Research
Council for Science, Engineering and Technology, funded
by the National Development Plan, the China/Ireland

Science and Technology Collaboration Research Fund
(2006DFA11170) and the Cultivation Fund of the Key
Scientific and Technical Innovation Project, MoE, China
(705003).

8. References

[1] Anthony Gallo. Meeting Traffic Demands with Next-
Generation Internet Infrastructure. Lightwave, 18(5):118–123,
May 2001.
[2] M. Gupta and S. Singh, “Greening of the Internet” in ACM
SIGCOM 2003, pp. 19-26.
[3] F. Baboescu and G. Varghese, “Scalable packet
classification,” IEEE/ACM Trans. Netw., vol. 13, no. 1 pp. 2-14,
2005.
[4] P. Gupta and N. McKeown, “Packet classification on
multiple fields,” in ACM SIGCOMM 1999, pp.147-160
[5] P. Gupta and N. McKeown, “Packet classification using
hierarchical intelligent cuttings,” IEEE Micro, vol.20, no. 1, pp.
34-41, 2000.
[6] S. Singh, F. Baboescu, G. Varghese and J. Wang, “Packet
Classification Using Multidimensional Cutting” in ACM
SIGCOMM, 2003, pp.213-214
[7] F. Baboescu, S. Singh, and G. Varghese, “Packet
classification for core routers: Is there an alternative to CAMs?” in
IEEE INFOCOM, 2003, pp. 53-63.
[8] V. Srinivasan, S. Suri, and G. Varghese, “Packet
Classification using Tuple Space Search” in ACM SIGCOMM
1999, pp. 135-146.
[9] P. Gupta and N. McKeown, “Algorithms for packet
classification,” IEEE Network Mag., vol. 15, no. 2, pp.24-32, 2001
[10] T. Woo, “A modular approach to packet classification:
algorithms and results,” in IEEE INFOCOM, Mar. 2000, pp. 1213-
1222.
[11] P. C. Wang, C. T. Chan, C. L. Lee and H. Y. Chang
“Scalable Packet Classification for Enabling Internet
Differentiated Services” IEEE Trans. on Multimedia, vol. 8, no. 6,
pp. 1239-1249, 2006.
[12] A. Kennedy, D. Bermingham, X. Wang and L. Bin, “Power
analysis of packet classification on programmable network
processors” IEEE ICSPC, Nov. 2007, pp. 1231-1234.
[13] Cypress Ayama 10000 Network Search Engine,
http://download.cypress.com.edgesuite.net/design_resources/datas
heets/contents/cynse10256_8.pdf
[14] E. Spitznagel, D. Taylor, and J. Turner, “Packet
Classification Using Extended TCAMs,” Proc. 11th Int’l Conf.
Network Protocol (ICNP ’03), 2003.
[15] D. Hoffman and P. Strooper, “Classbench: A Framework for
Automated Class Testing,” Software Practice and Experience, vol.
27, no. 5, pp. 573-597, May 1997.
[16] ACL1 RuleSets and Packet traces [Online]. Available:
www.arl.wustl.edu/~hs1/PClassEval.html
[17] Sim-Panalyzer, The SimpleScalar-ARM Power Modeling
Project. [Online]. Available: www.eecs.umich.edu/~panalyzer/
[18] A. Kinane, “Energy Efficient Hardware Acceleration of
Multimedia Processing Tools” PhD thesis, Dublin City University,
May 2006.
[19] Cypress's high-speed synchronous SRAMs
http://download.cypress.com.edgesuite.net/design_resources/datas
heets/contents/cy7c1381d_8.pdf
[20] Cypress's high-speed synchronous SRAMs,
http://download.cypress.com.edgesuite.net/design_resources/datas
heets/contents/cy7c1370dv25_8.pdf

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:37:29 UTC from IEEE Xplore. Restrictions apply.

