
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978-1-4244-1694-3/08/$25.00 ©2008 IEEE 

Energy Efficient Packet Classification Hardware Accelerator 
 
 

Alan Kennedy, Xiaojun Wang 
HDL Lab, School of Electronic Engineering,  

Dublin City University, Dublin 9, Ireland 
alan.kennedy@eeng.dcu.ie  

 

Bin Liu 
Department of Computer Science and Technology   

Tsinghua University, Beijing P.R.China 
 liub@tsinghua.edu.cn

 
Abstract 

 
Packet classification is an important function in a 

router’s line-card. Although many excellent solutions have 
been proposed in the past, implementing high speed packet 
classification reaching up to OC-192 and even OC-768 with 
reduced cost and low power consumption remains a 
challenge. In this paper, the HiCut and HyperCut 
algorithms are modified making them more energy efficient 
and better suited for hardware acceleration. The hardware 
accelerator has been tested on large rulesets containing up 
to 25,000 rules, classifying up to 77 Million packets per 
second (Mpps) on a Virtex5SX95T FPGA and 226 Mpps 
using 65nm ASIC technology. Simulation results show that 
our hardware accelerator consumes up to 7,773 times less 
energy compared with the unmodified algorithms running 
on a StrongARM SA-1100 processor when classifying 
packets. Simulation results also indicate ASIC 
implementation of our hardware accelerator can reach OC-
768 throughput with less power consumption than TCAM 
solutions.  
 

1. Introduction 
 

Packet Classification is increasingly being used by 
networking devices such as routers, switches and firewalls 
to implement policies like the blocking of unwanted internet 
traffic. It is also used for services such as giving priority to 
Voice over IP or IP-TV packets and the billing of traffic 
based on network usage. As line rate goes up to OC-192 and 
moves towards OC-768, which corresponds to 31.25 Million 
packets per second (Mpps) and 125 Mpps in the worst case 
when minimum sized packets (40 bytes each) arrive back to 
back, it poses great pressure to the classifier in a router’s 
line-card. Previous studies emphasize how to increase the 
throughput while reducing the implementation cost, but 
seldom address the power consumption. In fact, the power 
control for the classifier is equally important while 
designing the line-card due to its tight space budget and the 
power supply.  

Due to their large integration scale and high speed, 
network processors  deployed in typical network equipment 
can consume more power than any other components in the 
equipment (e.g, the Intel IXP2800 has a peak power 
consumption of 30W). As a key attached component to the 

network processor, the classifier is definitely required to be 
designed power efficient. Analysis in [1] demonstrated that 
up to 50% of ISP maintenance costs are power related, 
including the electricity consumed by the routers and the 
corresponding cooling systems and so on. Research by 
Gupta and Singh [2] showed that in 2000 the amount of 
energy used by various networking devices in the U.S. 
accumulated to nearly the yearly output of a nuclear reactor 
unit. So when we design a classifier, a multi-dimensional 
metric should be considered including the power 
consumption, besides throughput and cost. 

Software approaches, for example the Packet 
Classification algorithms in [3-11], have the advantage of 
reduced cost but fail to operate at a very high speed due to 
their low throughput and nondeterministic amount of clock 
cycles when executing a packet lookup. Our recent research 
results from [12] show that when Packet Classification 
algorithms are implemented on devices such as the 
StrongARM SA-1100 running at 200 Mhz, the maximum 
achievable throughput from even the best performing 
algorithms is only around 0.5 Mpps. For this reason 
hardware methods for implementing Packet Classification 
are essential to prevent it from becoming a bottleneck. 

The popular hardware implementation at present is to 
employ Ternary Content Addressable Memory (TCAM) due 
to the fact that it can match the rules in an O(1) clock cycle. 
This is achieved by carrying out parallel comparisons on all 
the stored rules in one clock cycle plus the use of pipelining. 
State-of-the-art technology such as the Cypress Ayama 
10000 Network Search Engine [13] can perform 133 million 
144-bit search key per second. This high lookup rate 
however comes at a large cost of consuming between 4.86-
19.14 watts depending on the TCAM size. Besides the high 
power consumption, another drawback for TCAM is its poor 
storage efficiency of rulesets when using rules containing 
ranges. Research on real world databases in [14] showed 
that TCAM storage efficiency ranged between 16-53%, with 
an average of 34%. TCAMs also take up large amounts of 
die area with one bit requiring 10-12 transistors compared to 
SRAM which only requires 4-6 transistors per bit. The 
complexity of TCAMs also determines they can’t run at the 
high clocking speed obtainable by SRAM. A search engine 
implemented using this approach will require multiple chips 
including a host ASIC, TCAMs and the corresponding 
SRAMs. 
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Rule Field0 Field1 Field2 Field3 Field4 
R0 128-240 15-15 40-40 180-180 120-140 
R1 90-100 0-80 0-200 190-200 130-132 
R2 130-255 60-140 0-60 180-180 133-135 
R3 90-92 200-200 40-40 180-180 136-138 
R4 130-255 60-140 40-40 190-200 60-63 
R5 140-150 60-140 0-255 0-255 140-255 
R6 160-165 80-80 0-255 0-255 0-80 
R7 48-50 0-80 40-40 0-255 0-10 
R8 26-36 50-50 40-40 180-180 30-40 
R9 40-40 40-70 40-40 0-255 0-60 

 

Table 1: Ruleset containing 10 rules with 5 fields. 
 

In this paper we present a hardware supported one chip 
solution which can be implemented on an FPGA utilizing 
the on-chip Block RAM or as an ASIC using on-chip 
SRAM. The hardware accelerator achieves high lookup 
rates by using multiple memory blocks in parallel taking full 
advantage of the flexibility of an FPGAs RAM blocks and 
the design flexibility of ASICs. High storage efficiency of 
rulesets is achieved when compared with the memory 
requirements of some typical Packet Classification 
algorithms [12]. Compared with software solutions, the 
hardware accelerator significantly increases the searching 
speed and greatly reduces power consumption. So our 
hardware accelerator exhibits an excellent feature when 
attached to a network processor, either as an on-chip 
executing unit or as an external component acting as a high 
speed classifier. 

The layout of the rest of this paper is as follows. Section 
2 briefly explains two software algorithms HiCut and 
HyperCut. Section 3 details the changes made to the 
algorithms in order to make them better suited to hardware 
acceleration and more energy efficient when building the 
search structure. Section 4 presents detailed implementation 
of the hardware accelerator while Section 5 gives the 
simulation results and clarifies the parameters used to obtain 
them. Section 6 concludes the paper. 
 

2. Packet Classification Algorithms 
 

In order to help better understand our hardware oriented 
modification to the original software algorithms, in this 
section we will explain two typical packet classification 
algorithms, namely HiCuts and HyperCuts respectively.  
 
2.1 Hierarchical Intelligent Cuttings (HiCuts) 
 

 HiCuts by Gupta and McKeown [5] is a decision based 
tree algorithm, which allows incremental updates to a 
ruleset. It takes a geometric view of packet classification by 
considering each rule in a ruleset as a hypercube in 
hyperspace defined by the F fields of a packets header. The 
algorithm constructs the decision tree by recursively cutting 
the hyperspace one dimension at a time into sub regions. 
These sub regions will contain the rules whose hypercube 
overlap. Each cut along a dimension will increase the 
number of sub regions with each sub region containing 
fewer rules. The algorithm will keep cutting into the 

hyperspace until none of the sub regions exceed a 
predetermined number called binth. 

Figure 1 shows a decision tree built from the ruleset in 
Table 1. The more cuts performed to an internal node 
(represented by an ellipse in Figure 1), the fatter and shorter 
the decision tree. Too many cuts however will result in an 
unacceptable amount of memory needed to store the 
decision tree. For that reason the number of cuts np which 
can be performed on a dimension at an internal node i is 
limited using a predefined variable known as spfac. Each cut 
will create child nodes, with the number of cuts always 
starting with 2 and doubling each time the following 
equation is satisfied: 
 

  spfac*number of rules at i � � rules at each child of i + np     (1) 
 

The algorithm has many heuristics for choosing which 
dimension should be cut. The method we chose is to record 
the largest number of rules contained in a child after cutting 
each dimension and pick the dimension which returns the 
smallest number. Each time a packet arrives, the tree is 
traversed from the root node until a leaf node (represented 
by a rectangle in Figure 1) is found, which stores a small 
number of rules limited by the binth value. Once a leaf node 
is reached a small linear search of the rules contained within 
it is performed to find the matching rule. 

Figure 2 shows the cuts performed to the decision tree 
in Figure 1. Field 0 is selected to cut the root node in 4. This 
results in 4 child nodes of which 1 exceeds the binth value. 
The node exceeding binth is split in 2 using Field 4 with 
both child nodes equaling the predetermined binth value. 
 

 
 

Figure 1: HiCuts Decision tree (binth 3). 
 

      
 

Figure 2: Cuts Performed by HiCuts and 
HyperCuts. 
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2.2 Multidimensional Cutting (HyperCuts) 
 

HyperCuts by Singh et al [6] is a modification of the 
HiCuts algorithm, which also allows incremental updates. 
The main difference from HiCuts is that HyperCuts 
recursively cuts the hyperspace into sub regions by 
performing cuts on multiple dimensions at a time. Figure 3 
is an example of such a decision tree built from the ruleset 
shown in Table 1.  The algorithm takes a simple approach to 
deciding which dimensions should be considered for cutting. 
The number of distinct range specifications for each 
dimension is calculated and the dimensions with a number 
of distinct range specifications greater than or equal to the 
mean number of range specifications is considered. 
HyperCuts acts like HiCuts if only 1 dimension is chosen for 
cutting. The algorithm also limits the number of cuts which 
can be performed to an internal node i (represented by an 
ellipse in Figure 3) using a space measure function in order 
to prevent memory explosion. The maximum number of 
child nodes created by the combination of cuts between the 
chosen dimensions is bound by the following condition:  
 

      max child nodes at i  �  spfac*sqrt( number of rules at i)     (2) 
 

The paper by Singh et al never made it clear how to 
choose the best combination of cuts among the chosen 
dimensions. Here we choose the combination which resulted 
in the smallest number of max rules stored in a child node. 
HyperCuts also takes advantage of extra heuristics, which 
exploit the structure of the classifier such as region 
compaction and pushing common rule subsets upwards. 
Region compaction allows for more efficient cutting of a 
dimension as it only cuts the region covered by the rules 
rather than the full region. Pushing common rule subsets 
upwards will reduce the replicated storage of rules by 
storing rules common to all child nodes in their parent node. 
If this option is chosen a linear search of rules stored in 
internal nodes may need to be carried out as the decision 
tree is traversed. HyperCuts and HiCuts reduce storage 
further by merging child nodes which have associated with 
them the same set of rules and removing child nodes which 
contain no rules. 

Figure 2 shows the cuts performed to the decision tree 
in Figure 3. The root node is split in 4 by performing 2 cuts 
to both field 0 and field 4. None of the child nodes created 
exceed the binth value so no more cuts need to be 
performed. 
 

3. Algorithmic Changes Towards Hardware 
Accelerating 

 
In order to make the algorithms better suited to 

hardware acceleration and consume less power during the 
building of the search structure some modifications were 
made. The first modification was to remove the region 
compaction and push common rule subsets upwards 
heuristics from the HyperCuts algorithm. The region 
compaction heuristic was removed as it needed large 
amounts of hardware resources in order to carry out the 
floating point division required when calculating which path 

 
 

Figure 3: HyperCuts Decision tree (binth 3). 
 
to follow when traversing the decision tree. Floating point 
division would also consume extra power. Pushing common 
rule subsets upwards was removed as it meant the searching 
of rules would have to be carried out while traversing the 
decision tree, slowing down the hardware accelerator. 

The number of cuts allowed to internal nodes for both 
the HighCut and HyperCut algorithms is limited to 32, 64, 
128 or 256 cuts. It was found through the testing of different 
size and shaped rulesets generated using ClassBench [15] 
that 32 cuts is a much better starting position than 2 as it 
leads to a significant decrease in computation and makes an 
insignificant increase to memory consumption. It was also 
found that by capping the number of cuts to 256, savings are 
made in memory consumption and computation with little 
decrease in throughput. Reducing the amount of 
computation will lead to power savings as less time is spent 
building the search structure.  For HiCuts the number of cuts 
to an internal node starts at 32 and doubles each time the 
following condition is met: 

 

(spfac*number of rules at i � � rules at each child of i + np) 
                                         &(np<129)                                          (3) 

 

HyperCuts considers dimensions for cutting with a 
number of distinct range specifications greater than or equal 
to the mean number of distinct range specifications for all 
the five dimensions. All combination of cuts between the 
chosen dimensions is considered if they obey the following 
condition where spfac can be 1, 2, 3 or 4: 

 

                  (np�2(4+spfac))&(np�32)                               (4) 
 

Capping the number of cuts to 256 also makes the 
algorithms better suited to hardware acceleration as all the 
information needed for an internal node can fit fully in one 
memory word, which can be accessed in a single clock 
cycle. The hardware accelerator uses 4800-bit wide memory 
words. Each of the cuts to an internal node requires 1 bit for 
indicating if the resulting child is an internal or leaf node, up 
to 12 bits (depending on number of memory words) for the 
memory location of the node in the search structure and 5 
bits for indicating the starting position of the node at the 
resulting memory location. 

In order to calculate which cut the packet should 
traverse to, the internal node stores 8-bit mask and shift 
values for each dimension. The masks indicate how many 
cuts are to be made to each dimension while the shift values 
indicate each dimensions weight. The cut to be chosen is 
calculated by ANDing the mask values with the 
corresponding 8 most significant bits from each of the 
packets 5 dimensions. The resulting values for each 
dimension are shifted by the shift values with the results 
added together giving the cut to be selected. 
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Software Hardware No. 
Rules HiCuts HyperCuts HiCuts HyperCuts 
60 2,200 1,745 3,000 3,000 
150 6,200 5,382 6,000 5,400 
500 28,776 13,372 24,000 15,600 
1000 43,020 25,592 35,400 28,800 
1600 79,444 43,298 69,600 46,800 
2191 110,704 56,161 97,200 61,800 

 

Table 2: Memory needed for the search structure 
and ruleset (bytes), spfac=4, speed=1. 
 

Another modification made to the algorithms is to store 
the actual rule in the leaf node rather than a pointer. This 
was found during testing of the many rulesets created using 
ClassBench to have only a small increase in memory 
consumption for a large increase in throughput as data is                
presented to the hardware accelerator one clock cycle             
earlier. Each saved rule uses 160 bits of memory. The 
Destination and Source Ports use 32 bits each with 16 bits 
used for the min and max range values. The Source and 
Destination IP addresses use 35 bits each with 32 bits used 
to store the address and 3 bits for the mask. The storage 
requirement for the mask has been reduced from 6 to 3 bits 
by encoding the mask and storing 3 bits of the encoded 
mask value in the 3 least significant bits of the IP address 
when the mask is 0-27. The protocol number uses 9 bits 
with 8 bits used to store the number and 1 bit for the mask. 
The number of the stored rule uses 16 bits.  Each 4800-bit 
memory word can hold up to 30 rules, and it is possible to 
perform a parallel search of these rules in one clock cycle. 

In order to reduce memory consumption the nodes are 
rearranged after the search structure has been built. All the 
internal nodes are stored first followed by the leaf nodes. 
This modification means that the leaf nodes can be saved 
contiguously in the search structure improving the storage 
efficiency of rules. To locate a leaf node the number of the 
memory word where it is located and the starting position of 
the leaf node within that memory word is needed. 

Both the HiCut and HyperCut algorithms use 
parameters known as spfac and binth to trade off speed 
against memory consumption. A third parameter we use to 
trade speed against memory consumption is called speed. 
When the speed parameter is set to 0 the leaf nodes are 
stored contiguously. This means the search structure is 
saved in the most memory efficient way possible but will not 
result in the highest possible throughput as the number of 
clock cycles needed to classify a packet will be:  

� � xposzcycles +++= 1)30/)((   where: 0 � pos � 29,     z � 0    (5) 
 

The number of internal nodes traversed to reach the leaf 
node is represented by x. The starting position of the leaf 
node in a memory word is represented by pos and z is the 
position of the matching rule in the leaf node. If the speed 
parameter is set to 1 a leaf node is only stored in a memory 
word with a staring position greater than 0 if: 
 

                 RulesStoredInLeaf+pos�30                              (6) 
 

This means there may be reduced storage efficiency as 
the leaf nodes may no longer be stored contiguously.             
. 
 

Software Hardware No. 
Rules HiCuts HyperCuts HiCuts HyperCuts 
60 1.32E-02 9.58E-03 9.94E-03 4.65E-02 
150 7.44E-02 1.00E-01 3.94E-02 8.81E-02 
500 7.61E-01 2.44E-01 2.89E-01 4.20E-01 
1000 2.47E+00 6.66E-01 1.00E+00 7.30E-01 
1600 7.46E+00 1.65E+00 2.05E+00 1.34E+00 
2191 3.79E+01 2.17E+00 3.20E+00 1.84E+00 

 

Table 3: Energy used to build the search structure 
(Joules), spfac=4, speed=1. 
 

Database HiCuts  HyperCuts 
acl1_rules memory cycles  memory cycles 

300 7800 2  7800 2 
1,200 30,600 2  30,600 2 
2,500 63,600 2  63,600 2 
5,000 127,200 4  127,200 4 

10,000 254,400 4  254,400 4 
15,000 384,000 4  384,000 4 
20,000 471,600 4  468,600 5 
24,920 589,200 5  589,200 5 

fw1_rules memory cycles  memory cycles 
300 7200 2  7200 2 

1,200 28,200 2  28,200 2 
2,500 59,400 2  59,400 2 
5,000 142,200 3  142,200 3 

10,000 1,086,600 3  657,600 4 
15,000 1,244,400 4  1,226,400 4 
20,000 1,931,400 6  2,964,600 6 
23,087 3,311,400 8  8,256,000 6 

ipc1_rules memory cycles  memory cycles 
300 7200 2  7200 2 

1,200 27,000 2  28,200 2 
2,500 64,800 3  61,800 3 
5,000 144,000 3  144,000 3 

10,000 292,800 3  292,800 3 
15,000 379,800 4  379,800 4 
20,000 491,400 5  491,400 5 
24,274 585,000 5  585,000 5 

 

Table 4: Memory consumption (bytes) and worst 
case number of clock cycles needed to classify a 
packet for synthetic filter sets generated using 
ClassBench, spfac=4, speed=1.  

 
Reduced storage efficiency will however lead to an increase 
in throughput as the number of cycles needed to classify a 
packet will now be: 
 

                  � � xzcycles ++= 1)30/(                             (7)  
                             

The hardware accelerator has been designed to handle 
up to 1024 memory words which are 4800 bits wide. This 
means that search structures up to 614,400 bytes can be 
saved in memory. This could easily be doubled to 2048 
memory words and implemented on devices such as the 
Virtex XC5VLX330T which can store up to 1,458,000 
bytes. The 4800 bit memory word is spread out over 134 
memory blocks. Each memory word can save either 1 
internal node or up to 30 rules. A memory word can be 
accessed by the classifier in 1 clock cycle through a 4800-
bit wide data bus. 
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Figure 4: Hardware Accelerator Architecture. 

 
The results in Tables 2,3,5,6,7 and 8 were generated 

using acl1 rulesets and traces obtained from [16]. Table 2 
shows the memory used by the search structure built for the 
hardware accelerator using the modified HiCut and 
HyperCut algorithms as well as the memory used by the  
software implementation of the original algorithms. Table 3 
compares the energy used to build the search structures for 
the hardware accelerator with that of the search structure 
implemented in software. The approach adopted by [12] was 
used to get the energy figures with the algorithms simulated 
running on a StongARM SA-1100 using Sim-Panalyzer 
[17]. It can be seen that the storage efficiency of the search 
structure for the hardware accelerator compares well with 
that of the software approach, with HiCuts outperforming its 
software counterpart and HyperCuts having only a slight 
increase over its software counterpart. In terms of energy 
used building the search structure the modified algorithms 
show a large improvement when the rulesets increase in 
size. The modified HiCuts algorithm uses 11.84 times less 
energy than that of the unmodified software version when 
building the search structure for 2191 rules.  

Table 4 shows the memory consumption for acl1, fw1 
and ipc1 rulesets generated using ClassBench. It can be seen 
that the modified algorithms scale well to large rulesets both 
in terms of memory consumption and worst case number of 
clock cycles needed to classify a packet. The fw1 rulesets 
consume more memory than the acl1 and ipc1 rulesets as 
they contain many wildcard rules. The fw1 rulesets with 
over 10,000 rules can still be strored in the FPGAs block 
RAM by reducing spfac, trading off memory against 
throughput. 

4. Hardware Implementation Architecture 
 

The hardware accelerator has been designed to traverse 
an internal node of the decision tree in 1 clock cycle. It can 
also do a parallel comparison of up to 30 rules contained 
within a leaf node in 1 clock cycle. This is possible due to 
the fact the hardware accelerator can access a 4800-bit 
memory word every clock cycle. By storing the decision 
trees root node information in a register separate from main 
memory it is possible to traverse the root node for an 
incoming packet while searching a leaf node for the 
previous packet. Carrying out these tasks in parallel has the 
effect of reducing the worst case number of clock cycles by 
1. This means the hardware accelerator is able to classify a 
packet every clock cycle if the worst case number of clock 
cycles needed to classify a packet is 2. 

Before any packets can be classified by the hardware 
accelerator the first step is to save the preprocessed search 
structure to memory. The hardware accelerator has a shared 
interface used for both reading in packets and storing the 
search structure. The memory banks are accessed using a 
Write_enable signal. The write_address signal selects which 
row is to be written to and is incremented after the selected 
row on all RAM blocks has been filled. Incremental updates 
to the search structure can be made if a copy of the search 
structure is kept in off-chip memory for the control plane 
processor to use when updating the search structure. 

Figure 4 shows the architecture of the hardware 
accelerator. The Flow Chart shown in Figure 5 explains its 
operation. Once the Reset pin is set the hardware accelerator 
transfers the decision trees root node information from main  
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Figure 5: Hardware Accelerator Flow Chart. 

 
memory to Reg A in 1 clock cycle. As explained in section 3 
this information includes the starting position, memory 
location and node type for each of the roots child nodes. It 
also includes the 8-bit mask and shift values for each 
dimension used for selecting which child the incoming 
packet should go to. 

On the next rising clock edge the hardware accelerator 
begins scanning the Start pin. A Ready pin will go high to 
indicate a new packet can be classified. When the Start pin 
is set high the incoming packet to be classified is stored in 
Reg B and the Ready pin is put low. An index value for each 
dimension is created by ANDing the five 8-bit mask values 
stored in Reg A with the 8 most significant bits from the 
packets 5 dimensions stored in Reg B. The resulting indexes 
are shifted using the 8-bit shift values stored in Reg A and 
then added together to determine which node address should 
be selected from Reg A. This node address is used to select 
which memory word should be loaded from main memory 
on the next rising clock edge. On this edge the hardware 
accelerator checks if the node to be loaded from main 
memory is an internal or leaf node.  

If the node loaded from main memory is an internal 
node then the hardware accelerator will use the internal 
node information loaded to traverse to the next node. The 
mask values from the internal node loaded are ANDed with 
the packet values from Reg B. These values are shifted 
using the shift values from the internal node loaded and then 
added together. The result is used to determine which child 
node should be loaded from main memory on the next rising 
clock edge. If the selected child is still an internal node then 
the process of traversing the internal nodes is repeated until 
a leaf node is found. Each internal node to be traversed 
takes 1 clock cycle. 

The packet value in Reg B will transferred to Reg C if 
the node loaded from main memory on a rising clock edge is 
a leaf. The accelerator then uses 30 comparator blocks in 
parallel to compare the packet value in Reg C with the leaf 
nodes rule information loaded from main memory. While 
this compare takes place the Start pin is again monitored 
and the Ready pin goes high to indicate that a new packet 
can be classified. If the Start pin does go high the new 
packet information is saved in Reg B and the Ready pin is 
put low. The mask and index values for the root node stored 
in Reg A are used with the packet value in Reg B to 

determine which child node should be loaded from main 
memory once a matching rule has been found for the 
previous packet.  

On the next rising clock edge the hardware accelerator 
checks if a matching rule has been found. The hardware 
accelerator will continue searching the leaf node if a 
matching rule has not been found. If a match has been found 
then the Start pin is checked to see if it has been set. If it has 
not been set meaning a new packet has not been read in, 
then the hardware accelerator will continue monitoring the 
Start pin until it is set. If the Start pin has been set meaning 
a new packet has been read in, the hardware accelerator will 
check if the resulting child node traversed to is an internal 
node or a leaf node. An internal node will mean repeating 
the process of searching for a leaf node while a leaf node 
will mean repeating the process of loading the packet value 
from Reg B to Reg C, carrying out a parallel compare on the 
rules stored in the leaf node and putting the Ready pin high 
to indicate a new packet can be read in.    
 

5. Simulation Results 
 
5.1 Simulation Parameters 
 

The hardware accelerator was implemented in VHDL 
and targeted at two technologies: a 65nm ASIC library by 
Taiwan Semiconductor Manufacturing Company and a 
Xilinx Virtex-5 FPGA. For the ASIC solution the hardware 
accelerator was synthesized using Synopsys. Post place and 
route timing analysis indicate a maximum theoretical 
operating frequency of 226 MHz and a gate count of 51,488 
for the hardware accelerator. In order to estimate the power 
consumption the Synopsis Prime Power tool was used to 
analyze the annotated switching information from a VCD 
file. Simulations were run for both the HiCut and HyperCut 
algorithms running on the hardware accelerator at 226 MHz. 
This meant running 6 simulations for each algorithm using 
the packet trace files corresponding to the 6 rulesets. 

The hardware accelerator was synthesized using Xilinx 
ISE for the FPGA. Post place and route timing analysis 
indicate a maximum theoretical operating frequency of 77 
MHz. The accelerator uses 3,280 of the FPGAS slices 
(22%) and the memory banks for the search structure use 
134 Block RAMs (54%). Post place and route simulations 
were carried out on the netlist for subsequent VCD power 
analysis with the Xilinx XPower FPGA power analysis tool. 
The same 12 simulations ran for the ASIC were run for the 
FPGA with the frequency set to 77 MHz.  

Table 5 compares the performance figures for the 
FPGA and ASIC solutions used to implement the hardware 
accelerator to the StrongARM used to run the software 
algorithms. The devices are running at different speeds 
ranging from the ASIC operating at OC-768 speeds down to 
the SA-1100 operating at less than OC-1. Since the 
hardware accelerator and SA-1100 processor are 
implemented in different technologies, a direct comparison 
of power consumption would be unfair. For this reason we 
use the approach adopted by [18] to normalize the power       
.  
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Device Virtex5SX95T ASIC SA-1100  Software 
(running on SA-1100) 

ASIC 
(65 nm) 

FPGA 
(Virtex5SX95T) 

Process [nm] 65 65 180  

No. 
Rules 

HiCuts HyperCuts HiCuts HyperCuts HiCuts HyperCuts 
Voltage [V] 1 1.08 1.8  60 4.60E-07 7.82E-07 7.58E-11 7.90E-11 2.39E-08 2.38E-08 
Frequency [Mhz] 77 226 200  150 5.69E-07 1.09E-06 7.32E-11 7.55E-11 2.43E-08 2.41E-08 
Power [mW] 1811 18.32* 42.45*  500 6.72E-07 1.28E-06 1.00E-10 1.21E-10 3.21E-08 3.09E-08 
Area (Gates) 17,600,998 51,488  1000 8.62E-07 1.85E-06 1.24E-10 1.19E-10 3.94E-08 3.45E-08 
Slices 3,280 (22%)  1600 1.09E-06 1.40E-06 1.81E-10 1.42E-10 4.89E-08 3.86E-08 
Block RAMs 134 (54%) 

 
 

 2191 1.09E-06 1.94E-06 2.07E-10 1.46E-10 5.22E-08 3.87E-08 
 

                Table 5: Device comparison.                     Table 6: Average energy (normalized) needed to  
                      (normalized power*)                                classify a packet (Joules) , spfac=4, speed=1. 

 

Software 
(running on SA-1100) 

ASIC 
(65 nm) 

FPGA 
(Virtex5SX95T) 

 
Software Hardware No. 

Rules 
HiCuts HyperCuts HiCuts HyperCuts HiCuts HyperCuts  

No. 
Rules 

HiCuts HyperCuts HiCuts HyperCuts
60 88,125 51,794 226,000,000 226,000,000 77,000,000 77,000,000  60 17 22 2 2 
150 71,181 37,323 221,919,129 226,000,000 75,609,614 77,000,000  150 27 38 3 2 
500 60,245 31,721 164,389,580 171,530,362 56,008,839 58,441,760  500 29 52 3 3 
1000 47,544 22,249 135,333,231 155,475,310 46,109,109 52,971,676  1000 46 103 4 4 
1600 37,760 29,201 105,444,530 161,201,374 35,925,791 46,663,555  1600 58 70 5 4 
2191 37,399 21,168 99,498,019 136,131,129 33,899,767 46,380,959  2191 58 114 5 4 

 

    Table 7: Total number of packets classified in 1 second,                Table 8: Worst case number of  
                                    spfac=4, speed=1.                                             memory acesses, spfac=4, speed=1.

figures for the hardware accelerator and processor so a fair 
comparison can be made. The power has been normalized 
so all devices are compared using 65nm technology with a 
core voltage of 1V.  The normalized power P� (indicated by 
an asterisk in Table 5) is calculated using the following 
equation where S is the scaling factor of the process 
technologies and U is the scaling factor of the voltage: 
 

                             P' = P * S2 * U                                      (8) 
 

The ASIC and StrongARM only consider the power 
consumption and area of the datapath logic whilst the FPGA 
figures include the power consumption and area for both the 
datapath logic and memory. 
 

5.2 Throughput 
 

The results in Table 8 show the worst case number of 
memory accesses needed to classify a packet. For the 
hardware accelerator this result also represents the worst 
case number of clock cycles needed to classify a packet. 
This means that the minimum bandwidth for a given ruleset 
can be guaranteed under worst case operating conditions. 
For the rulesets and packet traces used in Table 7 the 
hardware accelerator can classify up to 546 times more 
packets when implemented as an ASIC, than the best 
performing software algorithm RFC tested in [12], when 
running on a StrongARM SA-1100 processor. When 
compared to the best performing software algorithm which 
also supports incremental updates HiCuts, the hardware 
accelerator can classify up to 4,269 times more packets. The 
results show that after modification HyperCuts is now the 
best performing algorithm in terms of both memory usage 
and throughput. The reason for the increase in throughput is 
that the modified HyperCuts algorithm allows more cuts to 
internal nodes than the unmodified version meaning a 
shorter linear search of leaf nodes is needed. 

The area used by the accelerator is equivalent to the 
area of 51,488 2-input NAND gates which means it could 
compete with even the most basic RISC type processing 
engines using no data or instruction cache. This means it 
would make sense to implement the proposed approach as a 
hardware accelerator attached on-chip or on-board network 
processors to remove the burden of packet classification 
from the network processors processing engines allowing it 
achieve line speeds of up to OC-768. The figures also show 
that OC-192 line speeds are obtainable if the proposed 
approach is implemented on an FPGA. 
 
5.3 Power Consumption 
 

Table 6 compares the average normalized energy 
needed to classify a packet for the two unmodified packet 
classification algorithms running on a StrongARM SA-1100 
processor to that of the hardware accelerator implemented 
using ASIC and FPGA technology. The energy figures for 
the FPGA include the energy used by both the memory and 
datapath logic whilst the ASIC and RISC solutions only 
include the energy used by the datapath logic. For this 
reason it is fairer to compare the energy used by the 
StrongARM SA-1100 with the energy used by the ASIC.  

When the power consumption of the hardware 
accelerator is compared with HiCuts, the most energy 
efficient software algorithm tested in [12] which supports 
incremental ruleset updates, the hardware accelerator shows 
energy savings of up to 7,773 times on the rulesets tested in 
Table 6. This massive energy saving shows the hardware 
accelerator is ideally suited to low power packet 
classification. The average power consumption of the 
hardware accelerator when implemented on an FPGA with 
614,400 bytes of memory is 1.8W when running at 77 MHz. 
This shows a large power saving over one of the most 
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energy efficient commercial TCAM solutions the Cypress 
Ayama 10128 Network Search Engine which consumes 
2.9W when running at 77 MHz with 576,000 bytes of 
memory [13].  

The Cypress Ayama 10512 Network Search Engine can 
classify at most 133 Mpps when running at its top speed of 
133 MHz with 2.304 MB of memory. At this speed it 
consumes 19.14 watts [13]. When implemented as an ASIC 
the hardware accelerator consumes 11.65mW when running 
at 133 MHz. This shows massive power savings are possible 
when you consider that the CY7C1381D 2.304 MB SRAM 
chip from Cypress consumes 693mW of power when 
running at 133MHz with a core voltage of 3.3V [19]. When 
running at 226 MHz the hardware accelerator consumes 
19.79mW. The CY7C1370DV25 2.304 MB SRAM chip 
from Cypress consumes 875mW of power when running at 
250 MHz with a core voltage of 2.5V [20]. This shows its 
possible for the hardware accelerator to classify packets at 
higher speeds than TCAMs while using less power.   
 
6. Conclusions 
 

With ever increasing line speeds, packet classification 
has become a bottleneck in wire speed processing for high 
speed routers. Solutions for packet classification such as 
software running on the processing engines of network 
processors can not catch up with the high line rates due to 
their low throughput. Existing hardware methods for high 
speed packet classification such as TCAMs have the 
drawbacks of high power consumption, large board area and 
poor storage efficiency of rulesets.   

In this paper we have introduced an energy efficient 
packet classification hardware accelerator capable of 
classifying packets at line rates exceeding OC-768 if 
implemented using 65nm ASIC technology and at rates in 
excess of OC-192 if implemented using a Xilinx Virtex5 
95T FPGA. The architecture proposed would be ideally 
suited to implementation as a hardware accelerator attached 
on-chip or on-board network processors due to its low area 
footprint, high throughput, low power consumption and high 
storage efficiency of rulesets. 

The hardware accelerator has throughput gains of up to 
4,269 times and energy savings of up to 7,773 times when 
compared with software algorithms implementing packet 
classification on the processing engines of typical 
programmable network processors. It also shows the 
possibility for clock running speed gains of up to 1.7 times 
and an obvious decrease in power consumption when 
compared to existing state-of-the-art TCAM technology. 
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