
Path Allocation in a Three-Stage Broadband Switch with Intermediate
Channel Grouping

Martin Collier and Tommy Curran

School of Electronic Engineering,
Dublin City University, Glasnevin, Dublin 9, Ireland.

Abstract

A method for path allocation is described for use with
three-stage ATM switches which feature multiple
channels between the switch modules in adjacent
stages. The method is suited to hardware
implementation using parallelism to achieve a very
short execution time. This allows path allocation to be
performed anew in each time slot. A detailed
description of the necessary hardware is presented.
This hardware counts the number of cells requesting
each output module, allocates a path through the
intermediate stage of the switch to each cell, and
generates a routing tag for each cell, indicating the
path assigned to it.

1: Introduction.

A range of designs has been proposed for broadband
switching (e.g., [14]). Many of these proposals are
only practical in the design of small switches. For
example, the number of switch elements in the
Sunshine switch [3) becomes excessive as the switch
size increases [5]. A different approach must be taken
to the design of large switches.

An obvious method of implementing a large switch,
given these constraints on switch size, is to design the
switch with multiple stages, where each stage consists
of smaller switch modules. The Clos network [6]
exemplifies a switch of this type. This solution
typically introduces a new problem whereby multiple
paths from source to destination become available.
Thus, even if the individual switch modules possess the
self-routing feature, this feature is not retained by the
overall switch. Some method of path allocation is then
necessary, to select among the available paths from
source to destination.

We distinguish between two time scales over which
paths may be allocated. In one approach, all cells
belonging to a virtual circuit are allocated the same
path. Thus path allocation is performed at call setup
time, and this path is allocated for the duration of the
call. In the second approach, path allocation i s
performed independently in each time slot, and so the
path is allocated for the duration of one time slot only.
We refer to these two approaches as path allocation at
call level, and path allocation at cell level,
respec lively.

We consider below the problem of implementing a
cell-level algorithm for path allocation in the channel-
grouped three stage network of Fig. 1. The hardware
implementation must be such that the resulting
circuitry is not required to operate at a prohibitively
high speed. In practice, this means that the parallelism
in the hardware must be maximised. Our motive for
adopting a channel-grouped architecture is that it
reduces the execution speed required of the path
allocation hardware. The use of channel grouping can
also improve performance in ATM switches [7,8]. The
path allocation algorithm and the hardware necessary to
implement it are described below.

2:
level.

An algorithm for path allocation at cell

2.1:
algorithm.

The objectives of a path allocation

There are S1 routes from each input module to each
intermediate switch module. There are S2 routes from
each intermediate switch module to each output
module. We must choose, for every input cell (if
possible) an intermediate switch module through which
to pass on the way to the selected destination, such that

8b.l .I
0743-166W93 $03.00 0 1993 IEEE 927

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:41:33 UTC from IEEE Xplore. Restrictions apply.

no input module attempts to route more than SI cells
via any intermediate switch module, and no
intermedhk switch module attempts to route more
than S2 cells to any output module, in any one time
slot.

Note that, in this problem, an attempt is made to
reserve bandwidth for each input cell, such that it can
pass through the intermediate stage without blocking.
An alternative, and simpler, strategy would not test for
the availability of a path from the intermediate stage to
the output stage, and would select intemxhte stage
modules based on some simpler criterion (e.g. random
selection). The former strategy is preferred for a
number of reasons:

(i) no queueing occurs in the intermediate stage:
thus the delay through the intermediate stage is
uniform, regardless of the path taken; this makes
it possible to presene cell sequence on a virtual
circuit:

(U) the intermediate stage can never be congested,
(iii) intermediate stage modules can be of simple

design, since contention cannot occur.

22:
allocation.

Existing algorithms for cell-level path

A number of solutions to this problem have been
p"!, in the special case where SI = S2 = 1 [9-111.
These algorithms typically use one bit to represent
each channel in the switch. Thus the number of bits
being processed by the path allocation algorithm is
large for a large switch. The algorithm in (91 was
adapted to handle atchitectm with intermediate
channel grouping in (81. This adaptation i n c m the
complexity, and thus the execution time, of the
algorithm.

It is possible to reduce the execution time of the
path allocation algorithm, for a given intermediate
stage bandwidth, through the use of intermediate
channel grouping, as demonstrated below.

3: A new algorithm for path allocation.

3.1: Basic principles.

A new and efficient algorithm will now be
described. It is suitable for use in a channel-grouped
three-stage switch and requires only knowledge
obtainable at the input si& of the switch. The key to its
high performance is the encoding of data concerning
the availability of paths into binary words (thereby
reducing the number of bits to be processed by the

algorithm for a given switch size) and the extensive use
of pdlelism. It operates on the following quantities:

Ah : the number of channels available from input
module i to intermediate switch module r,

Brj : the number of channels available 6rom
intermediate switch module r to output module j:

Kij : the number of requests from input module i for
output module j.

Note that Ah and Kij need only be local to the input
module. The B$s must be forwarded to each input
module in turn. This is performed by a ring structure
connecting each input module. Such an arrangement is
shown in Fig. 2, where each row is located at an input
module. Let Rirj be the number of cells to be routed
from input module i to output module j via
intermediate switch module r. The values of A h B
and Kij are updated using the procedure ufomic(is3
described below:

R* =min(Kii,Bd,A,,)

This procedure is 'atomic' in the sense that it is the
basic building block from which the path allocation
algorithm is constructed. The procedure determines the
capacity available from input module i to output
module j via intermediate switch module r (i.e. the
minimum of Ah and Brj). The number of quests
which can be satisfied is equal to the minimum of the
number of requests outstanding (Kij) and the available
capacity.

A sequential implementation of the path &cat ion
algorithm requires the repeated execution of
utomic(is,j) on a single processor for all possible

number of requests from input module i for output
module j (which number is obtained by examining the
requests at the switch module inputs), Ah is set equal
to SlandB -issetequaltoS2

A &el implementation requires multiple
processors, each executing the atomic() procedure for a
Merent set of procedure parametem, subject to the
following constraints:

0 No two prfxessors shall simultaneously
require access to the Same quantity. For example,
utom.~(2,0,0) uses A20. Bm and KB SO that
utomic(2,0X), afom'c(2,X,O) and atomic(X,O,O) cannot
be executed concurrently with utomic(2,0,0) for any X

values Of i s and j. Initidly Kij is set equal to the total

8b.l.2
928

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:41:33 UTC from IEEE Xplore. Restrictions apply.

The data required by a processor for the next
iteration of the algorithm should be available locally, or
from adjacent processors.

An implementation satisfying these two constraints
will now be described.

33: Implementation of the algorithm

The algorithm requires a total of L1.L2 processors.
The detailed operation of the algorithm depends on the
number of switch modules in each stage. The simplest
case, where L1= L2 = m, is described here, but only
minor modifications to this algorithm will be required
if the values of L1. L2. and m are not equal.

Processor Xjj is initialised by loading the following
three values:

(i) the initial value of Kii;

(iii) the initial value of B(i+j) mod m~ (i.e.,

The algorithm then requires m iterations (iterations
zero through m-1). Processor X-- executes atom'c(i,
(i+j-k) mod m, j) during iteration k . After each
iteration Xij fowards the updated value of B . to

mod m, j and of ~ i r to xi, Q+l) mod m *rJand
retams Kij.

The mechanism for passing information to an input
cell concerning the path allocated to it will be
described in section 3.5. The hardware layout for the
case where m = 4 is shown in Fig. 2, which illustrates
the array of sixteen processors required, and the
contents of their registers during iteration zero of the
algorithm. Each row in Fig. 2 contains four processors,
which are co-located with the corresponding input
module. Each column in Fig. 2 processes requests for a
single output module. Thus, for example, the processor
in row one and column two of the array handles
requests for cells to be routed from input module one to
output module two. A total of 64 paths is available
through the switch (four for each input-output module
pair). The sixteen processors attempt to allocate cells to
sixteen of these paths during each iteration. After each
iteration, the updated value of Air is passed to the
adjacent processor in the same row, and the updated
value of Brj is passed to the adjacent processor in the
same column. The directions of data flow are indicated
by arrows in Fig. 2. No two processors can allocate a
path sharing a channel in the same iteration.
Nevertheless, after four iterations, all possible paths
have been allocated.

s2J

'I

33: The processing element.

The processor must execute the arom'co procedure,

1.
2. Perform three subtractions.
Fig. 3 shows a possible implementation of the

processing element, which uses bit-serial arithmetic.
Determination of the minimum requires values to be
presented most significant bit first, while bit-serial
subtraction requires values which are presented least
significant bit first. Hence the processor must be able to
perform bit reversal on the quantities processed. A bit-
parallel implementation avoids this difficulty. at the
cost of increased complexity.

The processor design will involve a trade-off of
circuit complexity against operating speed, since there
is an upper bound on the permissible execution time.

The time within which the algorithm is required to
execute depends on whether cells losing contention are
discarded or are queued until the next time slot.

Consider the case where cells losing contention join
an input queue. The queue controller, when it submits a
cell to the path allocation process, retains a copy in the
input buffer. It then awaits an acknowledgement signal
from the path allocation hardware, indicating whether
the cell has been allocated a path through the switch, or
has been discarded. It then submits the copy cell (if the
original cell was discarded) or it purges the copy cell
and submits the next cell in the input buffer (if the first
cell was successfully routed). The acknowledgement
must be returned within the duration of one time slot so
that cells can be submitted to the switch in successive
time slots. Hence the time taken for the path allocation
process to execute should be less than the duration of
one time slot. This stringent requirement could be
relaxed if preservation of cell sequence was not
mandatory, since a cell losing contention could then
rejoin the queue in a later time slot.

No acknowledgements are required if there is no
input queueing. Hence the path allocation process need
not execute within one time slot. However, it must still
be possible to submit cells to the switch in successive
time slots. Additional copies of the path allocation
hardware are required to ensure this, equal in number
to the execution time of the path allocation process in
time-slots. For example, if the path allocation process
has an execution time of two time slots, cells arriving
during even-numbered time slots will be processed by
one copy of the hardware, and cells arriving during
odd-numbered time slots will be processed by another.
Hence a tradeoff may be performed during switch

and thus must perform two types of operation:
Find the minimum of three numbers.

8b.l.3
929

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:41:33 UTC from IEEE Xplore. Restrictions apply.

'I I

design between processor speed and the number of
procewm requid. Omitting the input queues has the
additional advantage that no hardware is required to
generate the acknowledgements.

3.4: Counting requests

Hardware is also needed in each input module to
perform the following tasks before and during the path

to count the number of requests for each
output module so as to obtain the initial values of the

to forward a routing tag based on the results of

allocationprocess:

Kij'S;

path allocation to each input cell.

The counting of requests can be performed by the
hardware of Fig. 4. This merges the input cells with a
set of control packets, one for each input module, in a
Batcher sorter (with nl+m inputs and outputs), in the
manner described in [12). Idle inputs submit an inactive
packet to the sorter. The sorter output contains
(Starting at the lowest-numbered output in Fig. 4) the
control packet for output module 0, followed by all the
data cells intended for output module 0, followed by
the control packet for output module 1, etc. The
inactive packets are sorted to the highest-numbered
outputs.

The address generaton in Fig. 4 serve different
purposes during the counting of requests and in routing
tag assignment. When counting requests, they
determine the type of packet which is present at the
corresponding output of the Batcher network, and
generate a bit (the identity bit) which is 1 for a control
packet or an inactive packet and 0 for a data packet
(cell). A copy of the identity bit is stored in a one-bit
register which is connected to its neighbours in
adjacent address generaton in such a way as to form a
shift register.

Thm bits zue shifted nl+m times (in the direction
shown in Fig. 4) from address generator to address
generator, and hence into a counter of wordlength

rlog,(m)l which is reset upon receiving a 1 (a control
packet or inactive packet) and incremented on receipt
of a 0 (data cell). Each time a 1 is received the counter

etc. After nl+m shifts the appropriate values are stored

35: Routing tag assignment

contents rotated into Kj, Ki,o is rotated into Ki,i,

in the Kij registers.

The algorithm used for muting tag assignment is
best described by means of an example. We assume

that there are four intermediate switch modules,
labelled rSMo to ISM3 and consider how to assign
routing tags to the cells from input module zero
which have requested output module one (OM1).

Let us assume that four cells from IMo have
requested output module zero (OMg), and that seven
cells from have requested OM1. Hence, the fM
thirteen outputs of the Batcher sorter are as shown in
Fig. 5, after the data cells have been merged with
control packets, as discussed in section 3.4.2.
The results of the path allocation process for cells

from requesting OM1 are produced by processor
Xol. Some means must be found to forward these
results to the relevant cells, which ap- at sorter
outputs six through twelve. We assume that paths are
allocated in the order shown in Table I. Thus one cell
loses contention.

Note that a connection has already been established
from processor (via the routing packet generator
for OM1) to sorter output five, as shown in Fig. 5. 'Ihus
the relevant routing information may be easily
forwarded to sorter output five. The problem remains
of how to relay this information to the data cells at
sorter outputs six through twelve.

The solution to this problem would be trivial if all
seven cells were to be allocated a route via the Same
intermediate switch module. The address generator at
sorter output five could generate seven tokens, each
granting access to that intermediate switch module.
These seven tokens would be forwarded to sorter output
six, where one would be seized. The remaining six
tokens would be forwarded to sorter output seven. After
seven iterations of this procedure, al l seven data cells
would possess the necessary token, stored in the
associated addms generator.

This token passing algorithm is wi ly implemented
in hardware. Each address generator stores data
concerning tokens as a routing packet containing two
fields, which are the token address (indicating the
address of the intermediak switch module to which
access is being granted) and the token count (indicating
the number of such tokens). Routing packets are
received by the address generators associated with
control packets (such as that at output five in our
example), from the appropriate routing packet
generator. Other address generators receive a routing
packet from their neighbouts at the start of each
iteration of the algorithm. If the token count is zero,
this muting packet is discarded. Otherwise the token
count is decremented, and the routing packet is stored
in the address generator, and is forwarded to the
adjacent generator at the start of the next iteration.

The hardware required is thus very simple, with a

8bml m 4
930

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:41:33 UTC from IEEE Xplore. Restrictions apply.

unidirectional flow of data from address generator to
address generator. Once all the tokens have been
distributed (after seven iterations), subsequent
iterations of the algorithm cause no changes in the
route assignments, so that the number of iterations
performed is not critical, provided it is not too low.

The same hardware may be used to solve the
problem of assigning routing tags to the data cells when
paths through more than one intermediate switch
module have been allocated. The technique is to
execute multiple passes of the above algorithm, each
for a different token address, and each with an
appropriately chosen value for the token count. An
address generator may then receive a succession of
routing packets, each with a different token address.
However, only the last such packet received will
contain the c o m t token.

Five passes of the algorithm suffice to supply all the
data cells with the correct token in the example of Fig.
5, as shown below.

Pass One: Seven tokens are received for ISMI. At
the end of this pass, all seven cells have been assigned
a route through ISMI.

Pass Two: Four (i.e., 7-3) tokens are received for
IS&. At the end of this pass, four cells have been
assigned a route through IS%. Three cells (i.e., those
at sorter outputs ten through twelve) have retained their
tokens for ISMI.

Thus, at the end of Pass Two, the correct number of
cells has been assigned a route through ISMI.

Pass Three: Three (i.e.. 7-3-1) tokens are received
for ISM3.

Pass Four: Three (i.e., 7-3-1-0) tokens are received
for ZSM2.
Pass Five: One (i.e., 7-3-1-0-2) null token is

received, indicating that one cell has lost contention.

At the end of Pass Five, a route through each
intermediate switch module has been assigned to the
correct number of cells, as shown in Fig. 5. In
particular, no route is assigned via ISM3. The key to
achieving the required result was the correct choice of
token count for each pass of the algorithm. The
sequence chosen was (7,4,3,3,1). This is identical to
the sequence of Ko1 values generated by processor
during the path allocation process, i.e., it is equal to the
number of cells not yet allocated a path after each cycle
of path allocation. Thus, the necessary sequence of
token counts may be obtained from the TCout output of
the processor, shown in Fig. 3.

Each pass of the algorithm can commence after the
frrst iteration of the preceding pass. Hence the

execution time increases only slowly with the number
of passes. Routing tag assignment can thus be carried
out as follows.

The routing packet generator associated with
processor Xij generates a routing packet, concurrently
with each iteration of the path allocation algorithm.
The token address is the value of r. the intermediate
switch module through which the processor is
attempting to route cells. This value can be easily
generated by a counter decremented after every
iteration of the path allocation algorithm. The token
count is set to the value of Kij. This routing packet is
forwarded to the address generator associated with
control packet j through the Batcher network in Fig. 4.

Each address generator performs the actions
illustrated in Fig. 6 after every iteration of the path
allocation algorithm. Upon completion of the path
allocation algorithm, the value of Kij is equal to the
number of cells which have lost contention. This is
forwarded to the relevant cells in a special routing
packet, whose token address field indicates that these
are null tokens, which flag the corresponding cells as
having lost contention.

Upon completion of this process, the token address
and token count values stored by each address
generator comprise a unique routing tag, which is then
prefixed to the associated data cell. The cell is
submitted to the first stage of the switch, and is thereby
routed to the appropriate intermediate switch module.

The operation of this algorithm for the example
considered earlier is shown in Table 11. The data stored
in each address generator at the end of each iteration of
the algorithm are shown. After nine iterations, the
routing tags have been successfully assigned.

This routing assignment algorithm has the benefit of
simplicity but its execution time is quite long.
However, it operates in parallel with the path allocation
process, although it takes longer to execute, because of
the delay in propagating routing packets through the
address generators.

4: A design example.

A 3072 x 8192 switch can be constructed by
choosing L1= L2 = m = 32, n1= 96. n2 = 256, Si = 4
and S2 = 8 in the switch shown in Fig. 1. The
probability of cell loss due to non-allocation of paths
through this switch has been obtained by simulation.
The simulation model assumes that all switch inputs
have a 100% load, that traffic is uniformly distributed
among the output modules, and that cells not allocated
paths on the first attempt are discarded. The resulting
figure for cell loss probability is below The

8b.l.5
93 1

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:41:33 UTC from IEEE Xplore. Restrictions apply.

I I '

performance of this type of switch will be considered in
greater detail in a future paper.

The input module dimensions are 128 x 128. At
most 96 of the 128 inputs carry active data The
dimensions of the intermediate and output stage

of VLSI technology in the shoat tenn, &wing a switch
with a throughput of 400 Gb/s to be constructed.

References

modules are 128 x 256, and 256 x 256 respectively.
The input and intermediate switch modules can be of
simple design, since they are contention-free. Thus the
only stage of the switch which rep"& a major
design challenge is the output stage, wheze the 256 x
256 switch modules should also introduce a low cell
loss probability.

We now estimate the speed required of the path
allocation hardware. The counting of requests r e q h
a Batcher network with 128 inputs, and requires 128
(i.e., n1 + m) clock cycles to execute. One execution of
the atomic() procedure, if implemented using the
technique of fig. 3, requires appmximately 15 clock
cycles, depending on the implementation. Thus perhaps
480 (i.e., 15.32) cycles will be needed to test all
possible paths. The number of processors required is
1024 (i.e., 32.32). but the IC count should be relatively
low because of the simplicity of the ~processar design.
The route allocation process will add at most (964.2 =
184 cycles to the execution time, assuming that two
cycles are required to popagate routing packets
through the address generators (at least 4 cells will be
allocated a path). This represents a total of 792 clock
cycles. Thus the clock rate required for the complete
algorithm to execute within one time slot is appmx.

good propagation delays). The required clock speed
could be reduced using a more complex procesror
design (e.g., using bit-parallel arithmetic). An
alternative is to construct two copies of the hardwait,
which process requests in alternate time-slots. The
clock rate required in this case should be below 150
MHZ.

5: Conclusions.

290 MHZ (neglecting any speed-up required to make

A new algorithm for path allocation in three-stage
broadband networks has been described. A complete
hardware implementation of this algorithm has been
presented, including a method for generating the initial
data required by the algorithm, and far farwarding the
results to each cell at the input si& of the switch, in the
form of a routing tag. The operating speed required of
the design (E 150 MHz) appears within the capabilities

[l] J.S. b e r , "Design of a koedcrut packet switching
network", IEEE Trans. G"., Vol. COM-36, m. 6,
pp. 734-743, Juas 1988.

[2] A. Huang a d S. IGuuer, "SLUlitc: 8 wideband digital
switch". Globrcom '84 CarJcnncc Record, pp. 121-
125. Nov. 1984

[3] J.N. Giacopelli. W.D. S i c and M. Littlewood,

packet switch architechua", Proc. 4 the Intemiional
Switching S y " , Stockholm. 1990, vol. III, pp.

[4] H. Kuwahara, N. EnQ. M. O g h and T. KO&, "A
shared buffer munary switcb f a an ATM exchange".
Proc. ICC '89. pp. 118-122.

(51 T.T. Lee, "A modular architecture f a very large packet
switches", IEEE Trans. Cmvnun., Vol. COM-38, rm.

[q C. Clos. "A study of na-blocking switching networks",
Bell Systems Tech. l ourd . vol. 32. M. 2. pp. 406
424. Mar. 1953.

broadband packet switch", IEEE J. Sekct. Areas

1988.
[8] K.Y. Eng ud C-L I. "Performance analysis of a

growable architecture f a brodbaod packet (ATM)
switching", Globecam '89 Ca@rence Record, pp.

[91 ICY. Eng, MJ. Karol and YS. Yeh. "A growable
packet (ATM) switch architecture: design principles
and applicaiims". Globecom '89 Covrfeence Record.

[lo] A. C i e r o s . "Large packet switch and contention
resolution device", Proc. (4 the In temat id
Switching Symposium, Stockholm, 1990, vol. IH, pp.

(111 R. Proctor md T. Maddan, "Synchronous ATM
switching fabrics", Proc. qf the lnternatlionol
Switching SympoSum, Stockholm. 1990, vol. IV, pp.

[12] C. Day, J. Giacopelli and J. Hickey. "ApplicatiOM of
self-muting switches to LATA fiber optic I1ctwoI1Es".
Proc. ISS '87, pp. 519-523.

"Sunchine: a high paform8nce ~- fou t ing brordbrrnd

123-129.

7, pp. 1097-1106, Jdy 1990.

[7] A. PaurVina, "Multi~hurnel bandwidth d o d o n h 8

C m . . Vol. SAC-6, no. 9, pp. 1489-1499, Dac.

1173-1180.

pp. 1159-1165.

77-83.

109-1 14.

932
8b.l.6

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:41:33 UTC from IEEE Xplore. Restrictions apply.

V: channel rate (155 Mb/s)
L1 (L2> : the number of input (output) modules
n1 (n2) : the number of input (output) ports per input
(output) module
m: the number of intermediate switch modules
S1 (S2) : the number of channels in the channel group
connecting each input (output) module to each
intermediate switch module

Fig. 1: A three-stage switch with intermediate channel grouping.

routingvia ISM1 IsMO ISM3 ISM2
no. of paths

Table I: An example of path allocation.

c

Fig. 2: Processor contents during iteration 0.

MUX : Multiplexor
D: Synchronisation Delays

B R Bit Reversal
TC: Token Count

Fig. 3: The afomicO processor implementation.

8b.l.7

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:41:33 UTC from IEEE Xplore. Restrictions apply.

fbnvudrd
<n m inputm)

X,&
AG: AddmrOMerptor

Proceuor (input module i. output module j)
Routing PackaOenerator

Fig. 4: Request count, routing tag generation.

7

Fig. 6: Address generator (AG) operations
during routing tag assignment.

Ea& column npnrcntr (LO iteration of 1& algorithm. Each tow

rrpruents the contents of (LO d d m s gmerptor after it lm KM a

token. Ao 'x' indicates a null token.

Fig. 5: An example of route assignment. Table II : An example of routing tag assignment

8b.l.8
934

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:41:33 UTC from IEEE Xplore. Restrictions apply.

