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Abstract — This paper presents a model order re-
duction (MOR) algorithm for the volume integral
equation formulation of electromagnetic wave scat-
tering. We apply the Arnoldi algorithm to circum-
vent the computational complexity associated with
the numerical solution of such formulations. An ap-
proximate extension of the Arnoldi algorithm to the
problem of wave scattering from an inhomogeneous
body is introduced and implemented. Numerical ex-
amples are presented to demonstrate the accuracy of
our approximate extension.

1 INTRODUCTION

Inverse scattering problems involve the determina-
tion of the shape, location and constitutive para-
meters of an object from measurements of the scat-
tered wave field generated by the illumination of an
object by an incident wave field. An iterative solu-
tion to the inverse problem for high contrast cases
can require the solution of multiple forward prob-
lems where the shape and location of the object is
known. However, due to the inherent high compu-
tational cost of full-wave simulation for scattering
from large structures possessing high contrast, a
variety of approaches have been developed, which
use various approximations to allow rapid simula-
tions [1]. The primary difficulty of full-wave meth-
ods, such as integral equation based solvers, is the
computational complexity of dense matrix manip-
ulations. These require the use of iterative solver
techniques such as the Conjugate Gradient method
(CG) which requires O (

n2
)

operations per itera-
tion, where n is the number of basis functions used
to discretise the problem. This computational cost
becomes increasingly problematic when one must
solve for a range of source locations, frequencies and
contrasts. Accelerated techniques such as the Con-
jugate Gradient Fast Fourier Transform (CG-FFT)
and the Fast Multipole Method (FMM) methods
are capable of reducing the cost of a matrix vector
multiplication to O (nlog2n) and O (n) operations,
respectively.

An alternative approach is to develop a reduced
order model which approximates the behavior of
the original system. In this paper, we apply a MOR
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technique to the problem of efficiently performing
scattering computations over a wide range of con-
trasts. In orthogonalised Krylov subspace model
reduction approaches, such as the Arnoldi algo-
rithm, a reduced order matrix model is constructed
from a set of vectors that span the Krylov subspace.
By imposing an orthogonality relation among the
vectors, linear independence can be maintained
and hence high order approximations can be con-
structed [2]. This circumvents the numerical insta-
bility associated with MOR algorithms based on
explicit moment matching techniques, such as the
Asymptotic Waveform Evaluation (AWE) [2]. Re-
cently, the Arnoldi algorithm has been presented
as a means of speeding up solutions of problems in-
volving scattering from a homogeneous body over
a range of contrasts [3, 4]. The primary contribu-
tion of this work is the approximate extension of
the Arnoldi algorithm to scattering from inhomo-
geneous bodies.

2 CONFIGURATION

The Volume Electric Field Integral Equation (VE-
FIE) formulation is commonly applied to the prob-
lem of wave scattering from inhomogeneous objects.
The work presented in this paper examines a 2-D
TMz time-harmonic configuration which is invari-
ant in the z-direction. The scattering body is char-
acterized by its permittivity ε (r), conductivity σ
and permeability μ. An expression for the total
wave-field can be generated in terms of a convo-
lution between the total wave-field and a suitable
Greens function [1]. We assume that the problem
is discretised using the method of moments with
suitable basis functions. The object is illuminated
by a line source x and the scattered field e can be
express as [3]:

e = (I + GA)−1 x (1)

where I is a n × n identity matrix and G is a n ×
n matrix containing coupling information between
the basis functions. A is a n × n diagonal matrix
whose diagonal elements contain the contrast:

ζ =
ε(r′)
εb

− 1 (2)
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at each point. Equation 1 can be solved for e to de-
termine the fields Esc

z (r) throughout the scatterer.

3 THE ARNOLDI ITERATION

The Arnoldi algorithm outlined in Table 1 builds
an orthogonal basis for the Krylov subspace Kk:

Kk (G,q) = span
[
q Gq G2q · · · Gk−1q

]
. (3)

Generation of the Krylov sequence of vectors
qk employs a modified Gram-Schmidt with re-
orthogonalisation (MGSR) process [3, 5]. The vec-
tors qk are mutually orthonormal and have the
property that the generated Q matrix:

Qk = [q1 q2 · · · qk] (4)

spans the Krylov subspace Kk. We can compute
as many leading columns of Qk as are needed to
obtain an accurate solution. After k iterations, we
have the following summarising equation [3, 5]:

GQk = QkHk + hk+1,kqk+1eT
k (5)

where ek is the kth column of the k × k identity
matrix Ik, hk+1,k is the (k + 1, k) entry of the Hes-
senberg matrix Hk. The vector hk+1,kqk+1 is the
Arnoldi residual fk of the k-step Arnoldi factori-
sation and is orthogonal to the columns of Qk.
Using the identity QH

k Qk = Ik and the fact that
Qkqk+1 = 0, an expression for Hk can be derived:

Hk = QH
k GQk (6)

where Hk is a upper Hessenberg matrix of order
k. It can be shown that Hk is the orthogonal pro-
jection of G onto a k-dimensional subspace, whose
leading eigenvalues are approximations to those of
G [3, 5]. The modified Gram-Schmidt procedure
present in Table 1 orthonormalises each vector se-
quentially by computing the orthogonal projection
of wj onto, span{q1 q2 · · · qj}. This projection is
subtracted from the original vector and the result
is normalised to obtain qj+1. This is by construc-
tion orthogonal to all previously computed Arnoldi
vectors q1,q2, . . . ,qj with unit norm [3, 5].

4 MOR FOR SCATTERING FROM AN
INHOMOGENEOUS BODY

The MOR technique outlined in [4, 3] is applied
to wave scattering from homogeneous bodies. This
section extends the MOR technique to the case of
scattering from inhomogeneous bodies. Solution of
the scattering problem over a range of contrasts
therefore necessitates the ability to compute the
quantity:

e = (I + GA)−1 x. (7)

Input: Matrix G, number of steps k, initial vector q1 = x/‖x‖2

and orthogonalisation parameter η = 1/
√

2,
For j = 1, . . . , k

wj = Gqj

βj = ‖wj‖2

For i = 1, . . . , j
αi,j = qH

i wj

wj = wj − qiαi,j

End i
If ‖wj‖2 < η ∗ βj

For i = 1, . . . , j
hi,j = qT

i wj

wj = wj − qihi,j

End i
hj,j = hj,j + αj,j

EndIf
hj+1,j = ‖wj‖2

If hj+1,j = 0 Quit
qj+1 = wj/hj+1,j

End j.
H = h (1 : k, :)

Table 1: Arnoldi - modified Gram-Schmidt algo-
rithm with re-orthogonalisation (MGSR).

After k steps of the Arnoldi algorithm an approx-
imation uk, to e, can be made in terms of the k
orthonormal vectors generated by the Arnoldi al-
gorithm for a range of A, specifically [3]:

uk = α1q1 + α2q2 + . . . αkqk = Qkak (8)

where ak = [α1 α2 · · · αk]T is a vector of expan-
sion coefficients. The residual rk that corresponds
to this approximation is introduced as:

rk = x − (I + GA)uk. (9)

The reduced order model chooses a starting vector
q1 and an expansion vector ak, to ensure this resid-
ual has components in the Krylov space Kk+1, by
making all βi vanish except for βk+1, where β is
defined in Equation 13. Specifically we note:

rk = x − Qkak − GAQkak (10)
≈ x − Qkak − GQkÃak (11)
≈ x − Qkak − QkHkÃak

− hk+1,kqk+1eT
k Ãak (12)

where Ã = QH
k AQk. Choosing the first Arnoldi

vector to be q1 = ‖x‖−1x yields:

rk ≈ Qk

(
‖x‖2e1 −

(
Ik + HkÃ

)
ak

)
−

hk+1,kqk+1eT
k Ãak ≈ Qkβk − βk+1qk+1. (13)
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We set

ak = ‖x‖2

(
Ik + HkÃ

)−1

e1 (14)

then the residual becomes rk = −βk+1qk+1 as re-
quired with rk ∈ Kk+1. The reduced order model
for uk is thus:

uk = ‖x‖2Qk

(
Ik + HkÃ

)−1

e1. (15)

Substituting this into Equation 1 yields the reduced
order model for the total field:

ẽ = Qk‖x‖2

(
Ik + HkÃ

)−1

e1. (16)

It should be noted that Equation 11 is exact only
if the range R (Qk) of Qk is an invariant subspace
of A. However, due to the independence of the
columns of Qk imposed by the re-orthogonalisation
process, Equation 11 can be shown to be a valid
approximation. As prescribed in [6], if the columns
of Qk are independent and the norm of the residual
matrix:

R = AQk − QkS (17)

has been minimised for some S, then the columns of
Qk define an approximate invariant subspace of A.
The selection of S = QT

k AQk = Ã results in the
Frobenius norm of the residual being minimised:

min‖AQk − QkS‖F = ‖ (
I − QkQH

k

)
AQk‖F .

(18)
As such Equation 11 becomes an valid approxima-
tion with the property, that as k → n, we procure
a better approximation. This is validated numer-
ically in the results section. Note when k = n,
Equation 11 is an exact approximation as:

QHQ = QQH = I. (19)

As a corollary of creating the Krylov subspace Kk in
terms of G instead of GA, Equation 16 can be used
to solve any inhomogeneous domain with the same
dimension and discretisation. It should be noted
that Equation 16 is posed for an explicit source lo-
cation and as such would require the generation of
a new Krylov vector Qk for any deviation of source
location. This procedure results in an efficient solu-
tion which requires O (

4n2k
)

flops to generate the
initial Krylov matrix Qk and once stored can be ap-
plied to any inhomogeneous domain with the same
configuration [5]. All subsequent solutions for do-
mains with different contrast configuration require
only the formation of a new Ã. It can be shown
that an additional worst case scenario of O (

k2n
)

flops is required to form Ã = QH
k AQk, where A

is a n × n diagonal matrix and Qk is a n × k ma-
trix. This computational cost can be shown to be
significantly reduced to O (

k2m
)
, for m � k, for

scenarios whereby we restrict our analysis to ob-
jects where we assume the shape of the object is
known a priori and only the contrast is varying
in a weakly inhomogeneous body. The resultant
matrix equation can be solved using any iterative
solver requiring the inversion of a matrix of order
k � n. The main drawback of this approach is the
initial computational cost to generate the Krylov
matrix Qk, but once generated and stored, it can
be applied to any scattering problems as outlined
above.

5 RESULTS

In the first example, an inhomogeneous circular
cylinder composed of four concentric regions cen-
tred at the origin with radii r1 = 2λ, r2 =
1.5λ, r3 = λ and r4 = λ/2. The cylinder is il-
luminated by waves emanating from a line source
located at (−10, 0), radiating at a frequency of
f = 300 MHz and assumed to be embedded in
free space. The cylinder was discretised using
n = 2000 cells and the mono-static backscattered
field Esc

z was computed over a range of contrast val-
ues ζ4 = 0 : 6 while keeping ζ3 = 3, ζ2 = 4, ζ1 = 5
constant exactly and using the MOR techniques de-
scribed in this paper. The bi-static field was also
computed for a fixed value of contrast and for a
varying observation angle φ = 0 : 360. Figures 1
and 2 shows the results obtained in comparing the
MGSR Arnoldi algorithm against the exact solu-
tion for varying k values. In both cases, the MGSR
procedure shows a 90% reduction in n for both the
mono-static and bi-static setup, incurring an ap-
proximate relative error of 0.7% and 1% respec-
tively for the calculated scattered field. Figure 3
substantiates the argument for the approximation
of Equation 11, clearly showing that this approxi-
mation converges to working precision linearly as k
increases with a 0.6% relative error for a 90% reduc-
tion. The second example used a completely inho-
mogeneous domain where the contrast ζn = 0 : 6,
is chosen randomly for each basis domain. As seen
in Figure 4, the MGSR Arnoldi expansion closely
matches the exact results, executing a 87.5% reduc-
tion in n with a 10% relative error in the scattered
field.

6 CONCLUSION

The contribution of this paper is to extend the use
of the Arnoldi MOR algorithm to inhomogeneous
structures using the volume electric field integral
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Figure 1: Esc
z magnitude for mono-static scatter-

ing over range of contrast ζ4 = 0 : 6, ζ3, ζ2, ζ1 =
constant.
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Figure 2: Esc
z magnitude for bi-static scattering

over range of angle φ = 0:360, ζ4 = 1, ζ3 = 3, ζ2 =
4, ζ1 = 5.
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Figure 3: Equation 11 rk approximation.

equation formulation. Through implicitly matching
the moments of the original system we are able to
obtain a reduced model without the need to directly
calculate the moments. Hence, we do not suffer
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Figure 4: Esc
z magnitude for bi-static scattering

over range of angle φ = 0:360, completely inhomo-
geneous domain for ζn = 0 : 6.

from the same numerical ill-conditioning that is as-
sociated with direct moment matching algorithms.
Notably, we have demonstrated that a significant
reduction in system size can be achieved for an in-
homogeneous structure while still resulting in an
accurate approximation over a wide contrast range.
The computational expense for any subsequent sim-
ulation with an alternative contrast distribution is
reduced to the formation of a revised Ã and the
inversion of a matrix of order k � n.
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