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Abstract 

Metastatic melanoma is highly chemotherapy resistant but the use of targeted 

therapies alone and in combination with chemotherapy may improve response. 

 

We examined expression of ABC transporters and their relationship to chemo-

sensitivity in melanoma cell lines.  We found that melanoma cell lines showed better 

responses to chemotherapy drugs, such as taxotere, than has been reported in the 

clinical setting. This may be related to altered expression of ABC transporters in cell 

lines compared to in vivo tumours.  

 

We tested dasatinib and found that it had anti-proliferative and anti-invasive effects in 

melanoma cell lines.  Combinations of dasatinib with temozolomide or with sorafenib 

and temozolomide were more effective than testing single agents alone.  We studied 

the effect of dasatinib on the protein levels and phosphorylation status of the dasatinib 

targets SRC and EphA2, and on downstream signalling pathways including FAK, 

MAPK and AKT.  Our results demonstrated that FAK inhibition by dasatinib may 

correlate with inhibition of migration and invasion whilst EphA2 expression may 

correlate with dasatinib sensitivity.   

 

We found that the combined expression of ANXA1, CAV-1 and EphA2 predicted 

response to dasatinib in melanoma cell lines.  Expression of both SRC and CAV-1 

was also examined by immunohistochemical staining in tumours from 120 melanoma 

patients. SRC was detected in 73 % of tumours and CAV-1 was detected in 44 %. 

 

Two phosphoproteomic approaches were used to identify phosphoproteins associated 

with dasatinib response/resistance in melanoma cell lines.  Dasatinib altered levels of 

31 unique phosphoproteins in WM-115 cells and 5 unique phosphoproteins in WM-

266-4 cells.  ANXA2 phosphoproptein levels were altered in WM-115 cells but not in 

WM-266-4 cells.  We used siRNA transfection to examine the effect of ANXA2 

knockdown on proliferation in both WM-115 and WM-266-4 cell lines and found 

ANXA2 plays a role in proliferation and may play a role in mediating response to 

dasatinib in WM-115 cells. 
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Chapter 1 

1. Introduction and background 
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Metastatic melanoma in its disseminated form is largely untreatable by cytotoxic 

chemotherapy and the prognosis is almost certainly fatal.  The incidence of melanoma 

has increased over the last four decades, with current rates varying between 15-60 per 

100,000 [1].  In 2006 there were 60,000 new cases of cutaneous melanoma, in the 

European Union, resulting in 13,000 deaths (www.europeancancerleagues.org).   

 

Melanoma has become a more prevalent cancer over the past twenty years.  This can 

be explained by work and social practices; people are spending more time outside, in 

direct contact with the sun.  The associated exposure to powerful sunshine has been 

identified as a major cause of melanoma development [2].  Sunlight is made up of 

UV-rays and can be separated into two UV classes, UV-A, which is the more 

abundant, and UV-B, which has been shown to have a strong association with 

melanoma development.  However, both UV-A and UV-B have been proven to have 

links with melanoma progression [3, 4]. 

 

Localised disease can be effectively treated by wide excision, however upon 

metastasis the rate of survival drops dramatically.  Patients with advanced disease, 

such as those with lymph node involvement, have a 30 % survival rate over 5 years.  

However, those with Stage IV disease which includes distant metastasis have only a 

10 % chance of surviving more than 5 years [5, 6], and cure rates are reported in less 

than 1 % of advanced melanoma patients [2]. 

 

The reason for the poor prognosis of this disease may be related to the limited effect 

of chemotherapy.  Metastatic melanoma is largely untreatable and over the past 30 

years alkylating drugs such as dacarbazine and more recently temozolomide, have not 
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changed the long-term prognosis of the disease.  Analysis of the response to drugs 

rather than their survival rates revealed that no more than 10 % to 15 % of patients 

demonstrated any benefit from drug chemotherapy [7].  

 

The advent of newer therapies, such as those targeting kinases or signalling pathways 

alone or in combination with chemotherapy offer hope of better tolerated, more 

efficient therapies. 

 

1.1 The structure and function of skin 

The human skin is made up of two distinct layers, the epidermis and the dermis, 

which are separated by the basement membrane.  The dynamic interactions that occur 

between the melanocytes and the microenvironment of the skin, which include 

keratinocytes, fibroblasts, endothelial cells and the extra cellular matrix maintain a 

balance between the various components of the skin [2] (Figure 1.1). 

 

 

Figure 1.1: The structure of the human skin [8]. 

 

Keratinocytes are found in the epidermal layer.  These keratinocytes provide a barrier 

to the outside environment by self-renewal.  They can control the proliferation and 
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differentiation of the un-differentiated basal cells, and can help form a stratified 

multilayered cohesive tissue.  This tissue is then able to produce molecules that are 

involved in cell growth and the maintenance of the skin’s defence [8]. 

 

Melanocytes, which are pigment synthesising cells, are part of the neural crest 

lineage.  The neural crest lineage undergoes epithelial/mesenchymal conversion and 

migrates below the epidermis where they give rise to melanocytes.  This entire 

process is closely regulated by multiple, perhaps sequential receptor tyrosine kinases 

[9]. During normal growth melanocytes inhabit and are confined to the basal layer, 

above the basement membrane, and are interspersed along every 5-10 keratinocytes.  

The ratio of keratinocytes to melanocytes is 35: 1 and is tightly controlled in normal 

skin.  Melanocytes have dendritic processes, which can spread out and contact the 

keratinocytes.  These dendritic processes allow the melanocytes to transfer pigment-

containing melanosomes to the keratinocytes.  These melanosomes once in the 

keratinocytes protect the skin from UV radiation by absorbing and scattering the solar 

radiation [8].  The pigment melanin protects the skin from the negative effects of the 

sun.  Melanin is a free oxygen radical scavenger which prevents damage of the DNA 

of keratinocytes and melanocytes during cell division [10].  Melanin is produced in 

melanocytes by the conversion of tyrosine into dopa and subsequently to dopaquinone 

via the bi-functional enzyme tyrosinase which is then oxidised into melanin [10]. 

 

The relationship between keratinocytes and melanocytes is one of importance in the 

development of melanoma.  Despite the dynamic environment of the normal 

epidermal layer, the number of melanocytes in the basal layer is controlled only by 

the basal keratinocytes.  This was confirmed by Hsu and Meier, (2004) who showed 
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that neither fibroblasts nor carcinoma cells could reinstate control over the 

melanocytes when keratinocytes are removed [8]. 

 

1.2 Skin Cancer 

Skin cancer is increasing in its prevalence and is now the most frequent form of 

cancer found in young people.  Whilst melanoma skin cancer occurs worldwide at a 

rate of 132,000 cases each year [11], non-melanoma skin cancer makes up the 

majority of recorded cases with between 2 to 3 million cases diagnosed each year 

(www.who.int).  Non-melanoma skin cancer includes basal cell carcinoma, actinic 

keratosis, squamous cell carcinoma in situ and squamous cell carcinoma.  However, 

the most dangerous form of skin cancer is melanoma.  Treatment options for non- 

melanoma skin cancer include excision surgery which in greater than 90 % of cases 

results in adequate removal of low risk tumours [12]. 

 

Non-melanoma skin types are divided into four sub-types which are classified 

according to the specific type of cells which become cancerous. 

 

1.2.1 Basal Cell Carcinoma 

Basal cell carcinoma (BCC) is the most common form of skin cancer in the Caucasian 

population.  It accounts for nearly 80 % of all non-melanoma skin cancer cases, and at 

present its incidence is increasing in Australia at a rate of 1 - 2 % per year, with a 30 

% chance of BCC occurring in a person’s lifetime [13].  It is rare to see a sporadic 

case of BCC occurring before the age of 20 and the recorded rate of mortality of BCC 

is low due to its limited ability to metastasise [14, 15]. 
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BCC is caused mainly by UV-B radiation from the sun and normally occurs de novo 

without a precursor.  Certain phenotypic traits can increase susceptibility to the 

disease, such as fair skin, blue or green eyes, and fair or red hair.  Also at higher risk 

are people who are immuno-suppressed or have a familial history of skin cancer [16]. 

 

80 % of BCCs are found on the head or neck, with the remainder occurring on the 

limbs or trunk [16].  BCC is typically a slow growing tumour that can be treated by 

surgery such as Mohs micrographic surgery (MMS), radiotherapy, cryotherapy and 

the use of topical ointments containing 5-fluoro-uracil (5-FU) [12].  Patients with a 

history of BCC have an increased chance of developing recurrent BCC [13] or even 

progressing to squamous cell carcinoma (SCC) [14]. 

 

1.2.2 Actinic Keratosis 

Actinic keratosis (AK) is not a malignancy but can be a precursor to SCC.  

Progression from a single AK to an invasive SCC ranges from 0.25 % to 20 % per 

year [17]. It occurs on photo-damaged skin and is related to exposure to UV-B 

sunlight.  AK is recognised as a partial thickness atypia of the keratinocytes, which 

begins at the basal layer but does not reach the granular layer [18].  Actinic keratosis 

is a serious condition in Australia, with a 60% incidence in the population over the 

age of 40 years [18]. 
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1.2.3 Squamous cell carcinoma in situ 

Intra-epidermal squamous cell carcinoma, also commonly known as Bowen’s disease, 

is the next stage in the progression of AK to SCC [19].  Bowen’s disease may arise de 

novo or may be associated with human papilloma virus (HPV) [20].  Lesions normally 

appear on skin that is sun exposed such as the trunk, legs, neck and head.  Its 

appearance is slightly keratocytic with a barely elevated plaque.  SCC in situ is 

usually treated with topical creams such as 5-FU or cryotherapy [16]. 

 

1.2.4 Squamous cell carcinoma 

SCC occurs 5 times less frequently than BCC [19] and is more common in men than 

women.  It has a low mortality rate; however when tumours appear on the scalp or lip 

the chance of metastasis is increased.  50 % of SCC occur on the head and neck, and 

are recognisable by a keratocytic papule, which commonly ulcerates [19].  

Histologically, keratinocytes invade the dermal layer, with some keratinocytes 

detaching from the overlying dermis.  SCC incidence has been linked to immuno-

suppression, arsenic exposure, radiation and chronic ulceration [19].  Due to the 

propensity of SCC to metastasise, treatment options are more aggressive than for 

BCC.  Therefore, advanced tumours are commonly treated by microsurgery and 

lymph node dissection [21].  Depending on the severity of the cancer, SCC can be 

treated with either excision and topical creams, but with deeply invasive SCC 

adjuvant therapies may be considered [12]. 
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1.2.5 Melanoma skin cancer 

Melanomas can be classified according to location, stage and progression and are 

defined in 5 stages.   

 

1.2.5.1 Aquired melanocytic nevus 

The common acquired melanocytic nevus (AMN) which is  a benign growth, is 

assumed to be the earliest hyperplastic melanocytic lesion and is common in humans 

[8].  They are usually recognisable as brown areas on the skin of varying size and 

shape.  This pigmented nevus, which is commonly called a mole, develops as a 

proliferation of melanocytes which are clumped into nests rather than being placed 

singly along the basement membrane [10]. 

 

AMN are commonly divided into three groups depending on the position they occupy 

in the skin.  They can be junctional nevi, which are situated along the dermal-

epidermal junction, compound nevi, which are in the dermal epidermal junction and 

the dermis, or intra-dermal nevi, which are in the dermal layer. 

 

AMN, however, can also be classified by age of appearance.  There are two classes, 

the congenital nevi, which appear within the first six months after birth, and the 

acquired nevi, which appear when the patient is over 1 year of age.  The difference 

and clinical importance of this classification is that congenital nevi are thought to be 

more likely to become malignant in life [22].  This can be related to the fact that 

congenital nevi, whilst clustered at the dermal-epidermal junction, go deeper into the 

dermis than acquired nevi.  They tend to have more neural differentiation and can 

invade blood vessels, nerves and erector pilli muscles [10]. 
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AMN grows in a consistent manner, with a regular progression.  The cells proliferate 

at the dermal junction and with time invade the upper dermis.  This stage is called the 

compound stage and after time the cells lose contact with the dermal junction and 

become an intra-dermal nevus.  

 

1.2.5.2 Dysplastic nevus 

The second stage described as the dysplastic nevus (DN) has increased abnormal 

growth compared to the common acquired nevus.    The risk of developing DN is 

estimated to be around 7 - 18 % in a lifetime [23].  They are commonly found on the 

trunk and have irregular asymmetrical borders.   The clinical importance of DN is that 

in some cases they are thought to represent a precursor to cutaneous melanoma [23]. 

 

The nevi are associated with an increased risk of progressing to melanoma.  The 

presence of DN or a familial history of the disease can cause a 7 - 20 fold increase 

risk of developing the disease [23].  It is estimated that 22 - 36 % of malignant 

melanomas found on patients originated as DN [23].  However, it is important to state 

that not all DN become melanoma, as most DN do not progress or become malignant 

[24].  Because DN is phenotypically flexible it has been suggested that melanocytic 

transformation is not genetically controlled, but this phenotypical flexibility can cause 

the loss of control by the keratinocytes, which is secondary to spatial growth [23]. 
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1.2.5.3 Radial Growth Phase 

The third stage, radial growth phase (RGP), is the first recognisable malignant stage.  

During RGP the cells remain confined to the epidermis.  They can be locally invasive 

but do not have the ability to rapidly divide or metastasise [24].  The cells in RGP are 

still dependant on exogenous growth factors supplied by the keratinocytes, and are 

incapable of anchorage independent growth [8]. 

 

1.2.5.4 Vertical Growth Phase 

The fourth stage is called the vertical growth phase (VGP) in which the melanoma 

cells are able to invade and infiltrate as an expanding mass into the dermal layer and 

below the basement membrane, with an obvious risk of systemic dissemination [8].  

The cells have now fully escaped growth control by keratinocytes.  They establish a 

close network with fibroblasts and are able to acquire growth factors and grow 

without anchorage (Figure 1.2). 

 

Figure 1.2: The different stages of melanoma skin cancer development, [8]. 
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1.2.6 Classification of cutaneous malignant melanoma 

Four major types of malignant melanoma are currently clinically recognised, 

superficial spreading melanoma, nodular melanoma, lentigo maligna melanoma and 

amelanocytic melanoma. 

 

Superficial spreading melanoma (SMM) accounts for over 70 % of all cutaneous 

malignant melanoma, and usually arises from a pre-existing dysplatic nevus [5].  

Diagnosis of SMM mainly occurs in patients’ 4th or 5th decade and is equally 

prevalent in both men and women.  SMM initially displays a radial growth phase in 

patients where it is confined to the epidermal layer.  It then progresses to the vertical 

phase of growth whereby the lesion expands into the dermis.  The development of 

SMM usually occurs over a period of 7 years [5]. 

 

Nodular melanoma accounts for between 15 – 30 % of malignant melanoma cases.  It 

is the most aggressive form of melanoma and clinically affects men mainly in their 5th 

decade [5].  Nodular melanoma usually arise de novo; however it can also develop 

from a pre-existing nevus.  Nodular melanoma lacks a radial growth phase, meaning it 

is more aggressive and offers a worse prognosis.  This is related to the fact that the 

vertical growth phase is more difficult to diagnose [25]. 

 

Lentigo maligna melanoma or melanoma in situ, occurs on extremely sun damaged 

skin, and is the least aggressive and least common melanoma type, accounting for 5 % 

of melanoma cases [5].  The benign precursor of melanoma in situ, lentigo maligna 

grows slowly for 3 – 15 years achieving a final size of 3 – 6 cm.  Less than 5 % of 

melanoma in situ cases display any vertical growth phase.  Interestingly despite 
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melanoma in situ accounting for only 5 % of all melanoma cases, it accounts for 

between 35 - 65 % of all cases of melanoma in darkly pigmented populations (e.g. 

African Americans, Asians, etc.) [5]. 

 

Amelanocytic melanomas which do not contain any pigment, account for between 2 – 

8 % of all malignant melanoma cases.  They usually go undiagnosed due to their 

uncharacteristic appearance [26].  For example desmoplastic melanoma, a rare 

amelanocytic melanoma variant, is usually not diagnosed due to it being mistaken as 

scar tissue. 

 

There are also a group described as acral lentiginous melanoma which account for 

less than 5 % of the toal case numbers.  This type is most commonly found on the 

palms of the hands and soles of the feet or around the big toenail. It can also grow 

under the nails. It is much more common on the feet than on the hands and is the most 

common type of melanoma in dark skinned people [27]  Melanomas from acral 

lentiginous, mucosal, and chronic sun-damaged sites frequently harbor activating 

mutations and/or increased copy number in the KIT tyrosine kinase receptor gene, 

which are very rare in the more common cutaneous tumors [28]. 

 

1.2.7 Clinical variables and prognostic markers in malignant melanoma 

The melanoma tumour, node, metastasis system (TNM) categorises and stages 

melanoma cases from over 60,000 cases in 17 cancer centres.  This system can be 

used to determine the outcome of patients with cutaneous melanoma [29].   The 
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staging system looks at clinical factors such as tumour thickness, ulceration, mitotic 

activity and lymph node metastasis. 

 

In stage IV melanoma several factors have been clinically linked to survival.  The 

location of the metastasis significantly influences the prognosis of the disease.  For 

example visceral site metastasis excluding lung metastasis have been associated with 

poorer 1 year survival rates compared to tumours that metastasise to the skin [6].   

 

Ulceration of the tumour has also been linked with worse outcome.  Ulceration may 

directly affect the local environment of the tumour which may favour melanoma 

progresson.  However ulceration may also provide melanoma cells with an effective 

way of interutping keratinocyte mediated control, leading to far greater proliferation 

rates [30].    

 

The biological significance of a melanoma cells mitotic activity has been previously 

associated with disease progression.  Most genes associated with metastasis are linked 

to DNA repair or replication.  Melanomas with poorer outcome have overexpression 

of genes associated replication origins firing (ROF), whilst expression of mini-

chromosome maintenance protein 4 (MCM4) and MCM6 have been associated with 

metastasis free survival.  The importance of both ROF and MCM genes is that even 

when age, sex, location of the primary tumour, thickness of tumour and ulceration are 

taken into account, their predictive value remains strong [30]. 

 

Factors such as the thickness of the tumour and the number of metastasis at distant 

sites have also been associated with poorer outcome.  However the current AJCC 
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staging of melanoma does not include these in these in their system.  A lack of a 

definite link between these factors and patient outcome means that whilst they may 

have some clinical relevance, they are not robust enough markers [29]. 

   

Prognostic markers provide an essential tool in the early detection of melanoma.  

Many markers have been studied in both melanoma tumour and serological samples.  

The aim is to identify either one protein or a panel of protein markers that will allow 

the reproducible identification of different forms of melanoma. 

 

For the diagnosis of melanoma there are a small panel of melanocytic lineage markers 

(S100, MART-1 and gp100/HMB45) which are used to distinguish melanoma from 

non-melanocytic cancers [31].  These markers however, cannot distinguish all types 

of melanoma from other cancer types.  Ki67 remains the most useful adjunct to the 

melanocytic lineage markers in distinguishing benign from malignant melanocytic 

tumours [31].    

 

It remains difficult to obtain one true prognostic tissue marker for melanoma due to 

the cumulative genetic alterations that are associated with disease.  The expression of 

several molecules has been associated with impaired prognosis of melanoma.  These 

include increased levels of c-Kit and p-AKT [32, 33] and decreased levels of PTEN 

and E-cadherin [34, 35].  However, none of these have been validated as prognostic 

markers for clinical use.  

 

Serological markers have several advantages over tissue sample biomarkers, including 

the ease to obtain samples and the numerous methods that can be used to detect them.  
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The melanocytic lineage differentiation markers S100-beta and melanoma inhibitory 

activity (MIA) are frequently used for early detection of melanoma [31].  Both S100-

beta and MIA detect melanoma based on the tumour load.  S100-beta levels are also 

elevated in melanoma patient sample sera [36].  When MIA and S100-beta are 

compared, S100 beta is the stronger serological marker, as it can provide early 

indication of tumour progression, relapse or metastasis.  However both markers fail to 

provide prognostic information in early stages of melanoma especially in patients who 

are tumour free after surgical resection [37]. 

 

In advanced metastatic melanoma the strongest prognostic serum marker is lactate 

dehydrogenase (LDH) which can determine high tumour load in several cancer types 

including melanoma.  Due to its prognostic significance and the multiple detection 

methodologies, it is currently the only marker included in the current melanoma 

staging classification system of the American Joint Committee on Cancer (AJCC) 

[31].  YKL40 a heparin and chitin binding lectin secreted by macropahages and 

neutrophils in the late stage of differentiation is another marker of poor survival in 

breast, kidney and lung cancer [30].  In 234 melanoma patients the level of YKL-40 at 

the time of diagnosis was an independant prognostic factor for overall survival.  

Despite these findings YKL-40 has not been cleared by the Food and Drug 

Administration as a biomarker for cancer [30]. 
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1.3 From melanocyte to melanoma, the road to metastasis 

1.3.1 Cadherin expression in melanoma progression 

The genetic and cellular differences that result in progression from RGP to VGP are 

not fully understood however, one factor crucial to the progression to melanoma is a 

change in cadherin expression [2].  Cadherins are a family of cell surface 

glycoproteins that promote calcium dependant cell-cell adhesion.  E-cadherin acts as a 

mediator between keratinocytes and normal melanocytes.  Expression of E-cadherin 

plays a key role in melanoma development and is lost during melanoma metastasis.  

Upon losing expression of E-cadherin, cells have increased mobility and invasiveness 

and keratinocytes no longer control melanocytes [38]. 

 

The motile melanoma cells express N-cadherin, which acts as a survival factor for the 

melanoma cells as they move through the dermis allowing them to change cellular 

partners and develop gap junctions with fibroblasts, which can allow electrolyte 

transport [2]. 

 

N-cadherin also allows melanoma cells adhere to each other. Co-receptors like 

melanoma cell adhesion molecule (MCAM) facilitate cluster formation.  Increased 

expression of N-cadherin leads to the increased association of melanoma cells with 

stromal fibroblasts and endothelial cells and changes the expression of cell surface 

receptors.  For example, expression of vitronectin receptor αVβ3 can facilitate binding 

of 11 other matrix proteins involved in cell-to-cell adhesion, which influences 

migration of melanoma cells [2].   
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Metastasis is the final stage of melanoma development.  At this point the melanoma 

cells are able to establish a tumour at a secondary site.  This is the stage where 

treatment is most difficult, due to the genotypic and phenotypic changes that the cells 

have gone through.  In fact the development of melanoma, whilst certainly due to 

cumulative genetic events, is also related to disruptions in the normal molecular 

dialogue between the two epidermal layers which may indirectly cause these 

phenotypic and genotypic changes [8].   

 

1.3.2 Growth factor dependence in melanoma development 

Normal melanocytes are relatively inactive in growth factor production even after 

stimulation.  Nevus cells are known to produce basic fibroblast growth factor (bFGF) 

and hepatocyte growth factor (HGF) [39].   

 

When melanocytes undergo transformation to melanoma cells they show an increase 

in growth factor receptors and cytokine receptors.  Ruiter et al, (2002) [40] proposed 

that growth factor production by melanoma cells is the driving force for progression 

from RGP to VGP.  Autocrine growth factors such as bFGF, platelet derived growth 

factor A (PDGF-A) and Interleukin-8 (IL-8) are associated with proliferation and 

migration of melanoma cells [39].  Paracrine growth factors such as vascular 

endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) are 

associated with modulation of the microenvironment, especially stromal fibroblasts.  

This modulation of the microenvironment favours the malignant cell and is associated 

with invasion and metastasis. 
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bFGF is the most significant autocrine growth factor in melanoma progression.  

Blocking bFGF can stop melanoma proliferation.  bFGF binds to matrix proteins such 

as heparin sulphate proteoglycan, which then stimulates fibroblasts and endothelial 

cells.  bFGF not only plays a role in the survival of melanoma cells but is also 

involved in regulating motility by up-regulating serine proteinases and 

metalloproteinases [41]. 

 

PDGF-A plays an important role in tumour angiogenesis and stromal formation [41].  

By organising the stroma and inducing VEGF it is able to orchestrate angiogenesis.  

VEGF is important in the progression from RGP to VGP because of its strong 

angiogenic properties.  VEGF can stimulate endothelial cell growth, migration and 

invasion [40]. 

 

TGF-β is constitutively expressed in melanoma cells and its expression can be a 

biological marker of melanoma progression in situ [41]. TGF-β exerts a negative 

control on cell proliferation of normal melanocytes, however advanced melanoma 

becomes resistant to its anti-proliferative effects.  TGF-β can also promote growth 

through paracrine regulation; by regulating melanogenesis, inducing angiogenesis and 

potentiating the effects of bFGF [41]. 

 

1.3.3 Role of receptor tyrosine kinases in melanoma progression 

Receptor tyrosine kinases (RTK) play a pivotal role in the normal regulation of all 

basic cellular functions, including cell proliferation, differentiation, migration and 

survival.  RTKs are trans-membrane polypeptides that contain both an extra-cellular 

ligand binding domain and a cytoplasmic tyrosine kinase domain, which has the 
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ability to regulate signalling via a number of key pathways, including the Ras/MAPK 

and the PI3/AKT pathways.  An increasing number of RTK stimulated pathways are 

implicated in melanocyte development, which reflects the unique cooperative role 

they have in melanoma [42]. 

 

RTKs and the components of their signalling pathways are common targets for 

transformation (Figure 1.3). RTKs can stimulate the production of growth factors 

such as fibroblast growth factor and platelet-derived growth factor, which exert their 

influences on the microenvironment around the melanoma through paracrine 

signalling processes.  The association of RTKs with processes including angiogenesis, 

matrix degradation and adhesive interactions have accounted for the association of 

active RTKs and melanoma development [42]. 

 

 

Figure 1.3:  Receptor signalling pathways in melanocytic transformation [43] 
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Hepatocyte growth factor/scatter factor (HGF) acts through its tyrosine kinase 

receptor (C-Met), which is present on epithelial cells and melanocytes.  HGF 

stimulates proliferation and motility of melanoma cells in culture [44].   However, it 

has also been implicated in the disruption of adhesion between melanocytes and 

keratinocytes via down regulation of E-cadherin and demoglein-1 [9].  The 

decoupling of melanocytes to keratinocytes is involved in the deregulation of 

proliferation and scattering of melanocytes.  Studies performed in mice with 

ubiquitous expression of HGF showed induction of various tumours including 

subcutaneous melanoma [9]. 

 

Stimulation of the C-Kit receptor tyrosine kinase by its ligand, stem cell factor (SCF), 

leads to activation of intracellular signalling pathways including Ras/Raf/MAPK, 

SRC and PI3K/Akt signalling [45].  It is expressed at high levels in normal 

melanocytes [46] and is essential for normal melanocyte development and 

homeostasis [47]. Until recently it was believed that C-Kit expression was lost with 

melanoma progression [48].  However recent studies have shown that C-Kit is over-

expressed in a small percentage of melanoma patients [46, 49-51].  Patients who have 

mutated c-Kit are generally not V-raf murine sarcoma viral oncogene homolog B1 

(BRAF) mutated and are defined as being mucosal, acral or chronic sun damaged [52-

54].     

 

The biological functions of IGF1 are mediated by the ligand induced activation of 

IGF1R a trans-membrane tyrosine kinase linked to the Ras-Raf mitogen activated 

protein kinase (MAPK) and PI3K/AKT signal transduction pathways [55].  It is 
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constitutively active in nearly every cell [56] and shares approximately 70 % 

homology with insulin receptor [57]. 

 

IGF1R is important for developing the malignant phenotype [58] and IGF1R 

expression increases with tumour progression [59].  Down regulation of IGF1R 

expression or activity causes growth arrest and apoptosis in melanoma cell lines [60].  

In melanoma IGF1R increases sensitivity of mouse melanoma cells to radiotherapy, 

and IGF is able to promote resistance to apoptosis by the up regulation of anti-

apoptotic members of the BCL-2 family and the IAP survivin [55].  Silencing of 

IGF1R in melanoma caused significant inhibition of survival, enhanced apoptosis and 

increased by 2 fold the sensitivity of melanoma cells to cisplatin and temozolomide.  

These effects were independent of BRAF status and were also associated with a 

decrease in AKT and MAPK activity [61]. 

 

1.3.4 Mitogen activating protein kinase pathway (MAPK) 

The MAPK pathway regulates cell proliferation, differentiation and survival.  

Activation of the MAPK pathway is a frequent and early event in melanoma [44].   

 

The MAPK pathway is activated via sequential phosphorylation of a number of 

kinases, which alter cellular behaviour in response to diverse environmental stimuli 

(Figure 1.4).  The extra cellular signal regulated kinases (ERK1 and ERK2) belong to 

one branch of the cascade that is responsible for sensing external stimuli such as UV 

light.  Stimuli of the RAS family of proto-oncogenes cause the activation of the RAF 

family of serine/threonine kinases (e.g. BRAF, CRAF and ARAF).  RAF then 
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phosphorylates the MAPK kinase MEK, which can lead to activation of the MAPKs, 

ERK1 and ERK2.  

 

Activation of the RAS/RAF/MAPK pathway is a frequent and early event in 

melanoma [44].  BRAF, a key player in the pathway, is mutated in 60-70 % of 

melanoma cases [62].  The mutation valine-600-glutamic acid (V600E) accounts for 

approximately 80 % of BRAF mutations [63]. Analysis of BRAF mutation status 

showed that the presence of the mutated BRAF in primary tumours (n=114) did not 

impact on prognosis or survival but was associated with a significantly poorer 

prognosis (n=86) when detected in metastatic melanomas [64]. 

 

 

Figure 1.4: The mitogen activated protein kinase pathway (MAPK) [9] 

 

RAS mutations, particularly NRAS, are also associated with melanoma.  Studies have 

found that approximately 10-12 % of all melanoma mutations are Ras mutations [9].  
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Oncogenic RAS is involved in the activation of the RAF and PI3K cascades.  BRAF 

and NRAS mutations appear to be equivalent in MAPK activation with mutations 

generally found to appear separately in a cell.  However one study recorded that 

coupled BRAF and NRAS mutations have been identified in 6 out of 1300 melanoma 

specimens [44]. 

 

1.3.5 AKT Pathway 

Constitutive activation of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway has 

been implicated in chemoresistance in many human cancers, including melanoma 

[65]. Although PI3K itself is rarely mutated [66] or overexpressed [67] in melanoma, 

activation of downstream signalling components, e.g. AKT, have been implicated in 

melanoma progression [68]. In one study, phosphorylated AKT was detected in 17, 

43, 49, and 77% of normal nevi (n=12), dysplastic nevi (n=58), primary melanoma 

(n=170) and melanoma metastases (n=52), and strong p-AKT staining correlated 

inversely with overall and 5-year survival of patients with primary melanoma (p < 

0.05) [33].   

 

The AKT pathway stimulates cell cycle progression by controlling G1 progression, 

cell proliferation and inhibition of apoptosis.  Phosphatase and tension homolog 

(PTEN) is a tumour suppressor gene, which encodes a lipid/protein phosphatase with 

dual specificity.  With the lipid phosphatase activity PTEN can down-regulate the 

AKT pathway.  However, PTEN has also been implicated in the MAPK pathway. 

Studies have revealed that the protein phosphatase activity of PTEN can inhibit 

MAPK signalling [44, 69]. 
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Figure 1.5: The Phosphoinositide 3-kinase (PI3/AKT) pathway [70]. 

 

Loss or mutation of PTEN has been found in approximately 30-40% of melanoma cell 

lines [9].  Loss of PTEN expression is associated with activation of the AKT pathway.  

Consistent with the in vitro results phosphorylated AKT is detected in most metastatic 

melanomas but not in nevi [9].  Loss of PTEN can also cooperate with inactivation of 

the INK4A pathway, which can induce melanoma neoplasia.  These roles of PTEN 

help to confirm the role of the AKT pathway in the development of metastatic 

melanoma.  Studies by Rodolfo et al (2004) [44] indicated that PTEN mutations may 

occur early in melanoma development.   

 

1.4 Current therapies for metastatic melanoma 

1.4.1 Chemotherapy 

Systemic cytotoxic chemotherapy is a common treatment for patients with advanced 

disseminated metastasis. The success with chemotherapy treatment varies in 
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metastatic melanoma, depending on where the cancer exists.  Patients with metastatic 

tumours in the subcutaneous skin or distant lymph node have a better survival rate 

than those whose disease occurs in any other anatomic site. [6, 71]. 

 

The classical mono-chemotherapeutic regimen used in the treatment of metastatic 

melanoma is dacarbazine.  Dacarbazine (DTIC) is a non-classical alkylating agent.  It 

is inactive when administered to the patient but undergoes activation in the liver via 

oxidative metabolism to methyl-triazeno imidazole carboxiamide (MTIC).  The 

response rate for dacarbazine in patients is around 10-20 % with an estimated 

complete response rate of around 0 % [71]. 

 

DTIC, however, has advantages over other chemotherapeutics in that it is cheap, easy 

to administer and well tolerated by the patient.  It however, does cause side effects 

such as neutropenia, thrombocytopenia, nausea and vomiting, but these are dose 

dependent and not cumulative. 

 

Other drugs have been tested in melanoma in an attempt to improve response rates in 

patients.  The most successful of these in monotherapy is temozolomide.  

Temozolomide (TMZ) is an imidazotetrazine pro-drug that is spontaneously activated 

at physiological pH to MTIC.  This spontaneous activation is of great advantage in the 

use of TMZ, as the drug does not need hepatic activation and can be orally 

administered [71]. 

 

TMZ acts by methylating DNA producing three adducts, N7-methylguanine, N3-

methyladenine and O6-methylguanine.  O6-Methylguanine is the cytotoxic lesion, as 
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during replication it is incorrectly paired with thymine by DNA polymerase.  This 

incorrect pairing is recognised by the DNA mismatch repair system, which leads to 

the activation of apoptosis [72].  The DNA repair protein O6-alkylguanine-DNA 

alkyltransferase (AGT) is the primary defence against O6-methylguanine adducts and 

is a recognised mechanism of resistance to TMZ.  AGT directly removes the O6-

methyl adduct from the O6 position of guanine in a suicde reaction that reduces the 

toxicity of TMZ [72].  Another important mechanism of resistance to TMZ is DNA 

repair mediated by the damage-reversal suicide enzyme O6-methylguanine-DNA 

methyltransferase (MGMT). It repairs the pre-toxic DNA lesion O6-methylguanine by 

transfer of the methyl group from guanine to an own cysteine residue. This causes, in 

an expression-dependent manner, resistance to methylating agents that produce O6 –

Methyl guanine [73].  No dosing schedule of TMZ or DTIC has been clinically 

proven to be more effective than a single administration of either drug [74], however 

current treatments still favour a 5-day schedule [75]. 

 

In patients the response to TMZ is similar to that of dacarbazine but its use is 

associated with fewer side effects [76], such as nausea and vomiting which are easily 

treatable.  TMZ is also able to cross the blood brain barrier, where it converts to 

MTIC, and gains its alkylating activity. As it is found in higher levels in the 

cerebrospinal fluid, it may be more effective at treating melanomas that have 

metastasised to the brain [75], however no direct evidence to support this hypothesis 

has been found to date. 

 

Several other chemotherapeutic agents have been tested in melanoma cells due to 

their effects in other cancer types.  Cytotoxic agents such as the nitrosoureas group, 
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which include carmustine (BCNU), lomustine (CCNU) and fotemustine, give 10-20 

% response rates in melanoma [71, 77, 78].   

 

Fotemustine is a nitrosourea agent that has been associated with a consistent response 

to melanoma in the central nervous system.  It gives a 6-60 % response rate in patients 

with central nervous system melanoma [79].  Fotemustine has an amino acid 

phosphoryl adduct, which makes it lipophillic and allows it to easily cross the blood 

brain barrier.  However the drug has strong side effects, with leukopenia and 

thrombocytopenia occurring in 15-45 % of patients and associated problems with the 

gastro intestinal tract including serious vomiting and nausea commonly occurring 

[79]. 

 

Taxanes have also been tested in melanoma, however they only achieve response 

rates of 12-18 % [71].  They act by stabilising the polymerised microtubules, which 

results in mitotic arrest in G2 and M phases of the cell cycle.  These drugs are also 

associated with severe toxicity such as neuropathy, neutropenia and acute 

hypersensitivity.   

 

Whilst many mono-chemotherapy regimes have been tested, one group joined the 

mediocre responses of dacarbazine and cisplatin into the Dartmouth regime.  Initial 

testing of this combination, which comprised DTIC, cisplatin, carmustine and 

tamoxifen, yielded responses of 40-50 % in stage IV melanoma.  This regime became 

so popular that in certain centres in the USA it was the common treatment for 

metastatic melanoma [71].  Further testing and randomised trials however tell a 

different story.  The trials have shown that the Dartmouth regime has actually little or 
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no benefit compared to the single agent dacarbazine treatment.  The associated 

toxicity with the treatment is so severe that high fatality rates were recorded.  The 

response rate of the regimen was short and long-term remissions from the disease 

were rare [71].  As a result no reported clinical trials testing the Dartmouth regime in 

melanoma have been identified since the year 2000. 

 

Finally TMZ was combined with thalidomide in 6 phase I and phase II trials.  

Responses ranged from 8-42 % with complete responses in 0–11 % and median 

survival of 4 – 12.3 months [75].  Because of the favourable results a phase II trial 

including greater than 60 patients was undertaken, but failed to demonstrate any 

benefit [80]. 

1.5 Drug resistance in melanoma 

Melanoma is known to be very resistant to common chemotherapeutics, and the 

disease is very difficult to treat once it has metastasised.  Resistance to chemotherapy 

in melanoma may be caused by intrinsic or acquired resistance. The ATP binding 

cassette (ABC) family of transporters have been implicated in chemotherapy 

resistance due to their ability to efflux specific substrate drugs out of cancer cells. 

  

1.5.1 Multi-drug resistance protein (MRP) and P-glycoprotein (P-gP) 

The ABC super family is the largest most broadly expressed super family known in 

humans [81].  Most of the ABC transporters are ATP dependant, that is, the binding 

and hydrolysis of ATP is required to provide energy for the transport of the substrate 

across the membrane. 
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Chemo-resistance has been observed in many different cancer types and originally P-

gP was identified as the major cause of drug resistance, but the isolation of a second 

distantly related member of the ABC family, multi-drug resistance protein (MRP) 

which is also involved in drug efflux, led to the discovery of 9 more genes, 7 of which 

are involved in drug transport mechanisms [81, 82].   MRP1, MRP2 and P-gP are also 

expressed in non-malignant tissues and are involved in the protection of the cells from 

xenobiotic accumulation. 

 

P-gP, a product of the multi-drug resistance (MDR) associated protein gene MDR-1, 

is a 170-kDa trans membrane glycoprotein which is over expressed in various 

tumours.  P-gP functions as an energy dependant transmembrane efflux pump and is 

responsible for removing compounds from the cell and it also plays an important role 

in the blood brain barrier.  P-gP is able to transport several classes of compounds 

including anthracyclines, epipodophyllotoxin, taxanes and vinca alkaloids.  However, 

P-gP is rarely expressed in melanoma cell lines [83], despite being previously 

detected in melanoma tumour samples (unpublished data).  Treatment with 

chemotherapeutics has not been reported to increase the expression of P-gP in 

melanoma [84]. 

 

MRP1 is a 190-kDa trans-membrane glycoprotein which acts as an energy dependant 

efflux pump, decreasing the intracellular concentration of cytostatic agents.  MRP1 

was detected immunohistologically in almost 50 % of primary and metastatic 

melanoma specimens but studies are conflicting over whether treatment with 

chemotherapeutics increases the levels of MRP-1 expression [85].  Helmbach et al, 

(2001) [84] stated that in the cell lines tested no real increase was found after 
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chemotherapy treatment. However, in the cell lines tested by Ichihashi et al (2001) 

[86] treatment with various chemotherapeutics, including dacarbazine, increased 

MRP1 mRNA expression.   

 

MRP2 and MRP1 share  49 % amino acid homology [81].  MRP2 is synthesised in 

the endoplasmic reticulum, processed in the Golgi apparatus and translocated to the 

apical plasma membrane [87].  Interestingly, MRP2 like P-gP has a more limited 

tissue distribution than MRP1 but expression of MRP2 has been found in brain 

endothelial cells, the liver and the kidney [82, 88].  MRP2 has the ability to export a 

spectrum of drugs from the cell including endobiotics and xenobiotics.  Cell lines 

which express high levels of MRP2 can transport chemotherapeutics such as cisplatin 

[89].  This effect has also been noted in melanoma cell lines [90].   

 

ABCG2 or breast cancer resistance protein (BCRP) is a half size ABC transporter that 

is usually found as a dimer [89].  BCRP is usually localised in the liver, intestinal 

epithelium and the blood brain barrier, but has also been found to be expressed in 

stem cell populations [91].  Expression of BCRP has also been identified in melanoma 

cell lines [92].  Up regulation of BCRP has been implicated in causing drug 

resistance.  BCRP has a broad spectrum of substrates such as irinotecan, taxanes, 

mitoxantrone and has recently been implicated in the transport of tyrosine kinase 

inhibitors (TKIs) imatinib and gefitinib [91]. Both gefitinib and imatinib are 

transported at low concentrations by BCRP.  However at higher concentrations the 

TKIs inhibit the function of BCRP [91].  Therefore, expression of BCRP may 

significantly alter the absorption, metabolism and toxicity of these TKIs. 
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ABCB5 is a novel human ABC transporter and was the third identified member of the 

P-gP family next to its structural paralogs ABCB1 and ABCB4.  ABCB5 acts as an 

energy dependant drug efflux transporter for the fluorescent probe rhodamine-123.  In 

studies on physiological progenitor cells, ABCB5 acted to maintain membrane hyper 

polarisation, which meant it was able to act as a negative regulator of cell fusion, 

culture growth and differentiation [93].  ABCB5 was further shown to be a major 

efflux mediator of doxorubicin in melanoma cell lines [93]. 

 

There are other potential mechanisms of resistance in particular alterations in 

apoptosis proteins such as inhibitor of apoptosis proteins (IAPs) and the BCL family 

of proteins.   

 

BCL-2 has been well studied in melanoma but results have been conflicting.  Whilst 

certain studies have noted an up regulation of BCL-2, others have noticed a down 

regulation of BCL-2 in melanoma, and some have even stated that BCL-2 levels did 

not change during melanoma development [94].  This has led to a lot of confusion of 

the role of BCL-2 in melanoma development.  BCL-2 expression is not solely linked 

to melanoma development as it is expressed in normal melanocytes as well as 

melanoma cells.  However, BCL-2 may instead be a marker of tumour resistance to 

chemotherapy, radiation and common treatments in melanoma [95]. 
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IAPs have been found to suppress apoptosis induced by a variety of stimuli including 

TNF, UV Radiation and the Fas ligand [95].  IAP are able to block apoptosis mainly 

through their ability to bind specific caspases [96].  

 

Survivin, a member of the IAP family, has been detected in melanoma cell lines but is 

absent from most normal adult tissues [97].  Its expression has been detected early in 

melanoma development and it is thought that survivin expression is an important early 

step in melanocyte transformation.  Livin like survivin is normally associated with the 

cytoskeleton and nucleus and is required for melanoma cell viability.  It is localised 

predominantly in the nucleus and in a filamentous pattern throughout the cytoplasm 

[98].  Livin like survivin is an anti-apoptotic protein.  There is a correlation between 

livin over-expression, in vitro drug resistance and patient clinical response [96].  

Hussein et al., (2003) stated that livin had anti-apoptotic effects that were more robust 

than those of survivin.  However Satyamoorthy et al., (2001) suggested that survivin 

and livin whilst not redundant are distinct factors in apoptosis, and that they could 

both be playing an important role in apoptosis. 

 

1.6 Immuno-therapy 

With the elucidation of T-cell and antigen presentation pathways, it has become clear 

that melanoma cells are not only immunogenic [99], but probably one of the most 

immunogenic of all solid tumours [100].  T-cells are essential for anti-tumour 

responses as they recognise tumour antigens after presentation and processing by 

professional antigen presenting cells (APC). 
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The presence of tumour antigen specific cytotoxic T cells in the peripheral blood of 

melanoma patients has been previously identified [101] and the ability of the T 

lymphocytes especially CD8 T cells to prevent tumour formation is well documented 

[102].  To achieve maximum benefit from immunotherapy, an effective anti tumour 

CD8 T-cell response must be initiated. This requires sufficient numbers of anti-

tumour specific CD8 cells; the CD8 T cells generated must be able to permeate the 

tumour and finally the CD8 T cells must be sufficiently activated within tumours 

[103]. 

 

Multiple approaches to stimulating CD8 T cells are currently being investigated.  We 

will focus on the non-specific stimulation of anti-tumour immune responses by agents 

such as interleukin-2 and interferon-α, and the use of anti-cytotoxic T-lymphocyte 

antigen-4 antibodies which are currently being tested in metastatic melanoma.  

 

1.6.1 Interleukin-2 therapy 

Interleukin-2 (IL-2) was the first immunotherapeutic treatment to demonstrate a 

durable clinical response in metastatic melanoma.  IL-2 is important in 

immunotherapy as it promotes proliferation, differentiation and recruitment of 

immature T and B cells, as well as innate response cells such as natural killer cells.  It 

is also involved in the initiation of cytolytic activity in a subset of lymphocytes 

mediating interactions between the immune system and malignant cells [99].   

 

IL-2 is known for its potent ability to activate CD8 T lymphocytes and natural killer 

cells, which results in the development of  lymphokine-activated killer cells [103].  



 48

Analysis of 8 trials of high dose IL-2 performed between 1985 and 1993 on 270 

metastatic melanoma patients reported objective responses in 16 % of patients and 

complete responses in 6 % of patients [104].  Of the patients who had a complete 

response, 86% of those remained in complete remission for 39-148 months and many 

were cured permanently [99]. The obvious benefit of this therapy was that patients 

could maintain a durable response unlike that seen with chemotherapy [105].  A 

recent high dose bolus IL-2 regimen was tested in 33 previously treated melanoma 

patients.  Objective durable responses were seen in 12.5 % of patients.  2 melanoma 

patients with mixed responses remain disease free after 23 and 29 months respectively 

[106]. 

 

IL-2 has been tested with variable doses and schedules, however the original National 

Cancer Institute (NCI) trial, which gave intermittent high doses of IL-2 [104] to 

patients has proven to be the most effective and is still used in clinical trials to this 

day.  The benefits of IL-2 (Proleukin) led to its approval for use in metastatic 

melanoma in the USA in 1998.  It has yet to be granted a licence for treatment OF 

melanoma in Europe [107].  The cost of IL-2 therapy; the limitations of its use to only 

patients with good organ function and the associated toxicities that the therapy causes 

including hypotension, cardiovascular and neurological problems limit its use in 

metastatic melanoma [108].   However, IL-2 therapy remains one of the few therapies 

which yield remission in metastatic disease.  Further studies to elucidate the causes of 

resistance or sensitivity to IL-2 therapy in melanoma will potentially increase the 

response rate to the therapy in a subset of patients [109]. 
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1.6.2 Interferon-α therapy 

Interferon α2b (IFN-α2b) is a pleiotropic cytokine, which has a variety of modulating 

effects in the inflammatory response and can alter STAT signalling in melanoma 

[110].  IFN-α2b therefore can impact the effector immune response and  play a role in 

effecting tumour progression [111]. 

 

IFN-α2b is commonly used as an immunotherapy option in early to mid-stage 

melanoma patients.  In high risk patients with early stage melanoma IFN-α2b reduces 

the risk of recurrence by almost 26 % [112].  A review of clinical data for IFN-α2b 

published in 2008 showed that it can significantly improve 5 year survival rates by 

almost 3 % in melanoma patients [111]. 

   

However, IFN-α2b is rarely used as a single agent in advanced melanoma, but when 

tested has achieved response rates of between 10-15 % regardless of dose and 

schedule [107, 113].  The limitations of this therapy include the associated toxicity, 

the short half life and the selection criteria for trials [107, 114].  Newer generation 

drugs though such as pegylated IFN-α (PEG-IFN-α2b) have improved half-lives and 

better bioavailability.  Pegylation is the covalent binding of polyethylene glycol to 

IFN-α, which can reduce the immunogenicity of IFN-α and also prolong its lifetime 

in the patients circulation.  Phase I studies have shown that PEG-IFN-α2b showed 

dose-dependent response rates in the range 6–12% and in combination with TMZ 

showed response rates of 18 % [107].  Combinations of PEG-IFN-α2b and IL-2 have 

also failed to produce improvements in response rates [115]. 
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1.6.3 CTLA-4 therapy 

Activation of a T-cells immune response requires recognition of the antigen by T cell 

receptors and the presence of co-stimulatory signals.  For full T-cell activation, co-

stimulatory B7 molecules on the APC must also be bound to their ligand CD28 on the 

T-cell [116].  This results in a signal cascade and initiation of the immune response.  

Following antigen stimulation of the T-cells, cytotoxic T-lymphocyte associated 

antigen 4 receptors (CTLA-4) are up-regulated and move to the surface of the cell.  

CTLA-4 receptors have a greater affinity for B7 molecules than CD28 and once 

CTLA-4 receptors have bound B7 molecules a decrease in the immune response 

occurs (Figure 1.5) [117]. Therefore, CTLA-4 receptors can act as negative regulators 

of T-cell activation and can control the immune response returning T-cells to 

homeostasis.   

 
 

Figure 1.5:  The receptors and ligands involved in the initiation and control of an 

immune response.  Adapted from [117]. 

 
 
Monoclonal antibodies to CTLA-4 act to block the binding of CTLA-4 receptors to 
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can then be used to provide an anti-tumour response.   Two monoclonal antibodies 

ipilimumab and tremelimumab have been designed to target CTLA-4 and have been 

tested alone and in combination in several melanoma clinical trials. 

 

Anti-CTLA-4 mono-therapy using either ipilimumab or tremelimumab in Phase I or 

Phase II trials has achieved response rates of between 7-15 % in heavily pre-treated 

patients with metastatic melanoma [103].  In trials of ipilimumab approximately 10 % 

of patients tested were alive between 2 to 4 years after therapy [103].  The studies of 

ipilimumab also reported immune related adverse effects including diarrhoea and 

dermatitis.  However, the induction of manageable auto-immunity as a result of 

ipilimumab therapy may be a marker of objective and durable response [107].  

Tremelimumab was tested in comparison to chemotherapy (DTIC or TMZ) in a Phase 

III randomised trial.  However, the trial was stopped for futility and conclusions were 

drawn that the antibody failed to improve overall response when compared to 

chemotherapy [107]. 

 

It was disappointing to find that mono-therapy using tremelimumab did not improve 

overall survival rates when compared to DTIC or TMZ, however future testing of 

CTLA-4 therapy in combination with chemotherapy is ongoing 

(www.clincaltrials.gov). 

  

1.6.4 Chemotherapy combined with immunotherapy 

Combined treatment with TMZ and immunotherapy is an option for melanoma.  TMZ 

has been combined with IFN-α2b in 6 trials to date.  The response rates of the 

combination have ranged between 13-23 % with complete responses in 3-7 % of 
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patients.  Median survival ranges from 8.5 to 12 months [75].  A phase III trial of 

IFN-α2b and TMZ compared to TMZ alone showed that the combination produced 

higher response rates, however overall survival was the same for both treatments 

[118].     

 

Two Phase II trials of PEG-IFN-α2b combined with either dacarbazine [119] or TMZ 

[120] produced response rates of 24 % and 18 % respectively, however no change in 

overall survival was observed.   

 

Phase III trials which combine IL-2 and chemotherapy, including dacarbazine and 

cisplatin, have failed to improve the effectiveness of IL-2 therapy.  Combinations did 

not improve either the response rate or the survival rates when compared to IL-2 

therapy on its own [76].   

 

Biochemotherapy which combines IL-2 or IFN-α with chemotherapy such as 

dacarbazine, TMZ, or cisplatin failed to produce any benefit over single agent 

treatment and has been associated with increased toxicity [121]. The combination 

using DTIC, tamoxifen and cisplatin with or without IL-2 and IFN-α2b was assessed.  

Initial response rates were found to be around 44 % to 27 % in favour of the 

biochemotherapy arm, however overall survival was improved in the chemotherapy 

arm compared to biochemotherapy [122]. Therefore it is thought that PEG-IFN-α2b 

combined with chemotherapy or other immuno-therapies would not be recommended 

for metastatic melanoma. 
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1.7 Targeted therapies for melanoma treatment 

Several novel targets are currently being investigated in melanoma. Our increasing 

knowledge of the molecular alterations associated with melanoma progression 

provides rational druggable targets for development of novel therapeutic strategies, 

including alterations in key intracellular signalling pathways and growth factor 

receptors. 

 

At present, the best studied kinase is BRAF which is frequently mutated in melanoma. 

A multi-target tyrosine kinase inhibitor, sorafenib, which targets BRAF and CRAF, 

has shown promising activity in preclinical studies.  Sorafenib is being tested in 

combination with chemotherapy in patients with metastatic disease but so far has 

shown only limited response [123].  In addition to BRAF, therapies which target other 

components of the RAF/RAS/MAPK pathway are being investigated. Other novel 

targets currently being investigated include components of the PI3/AKT pathway and 

tyrosine kinases (Figure 1.6).  

 

1.7.1 Targeting the RAS/RAF/MAPK Pathway in Melanoma 

A number of BRAF inhibitors are currently in clinical development (Table 1.1).  

Sorafenib (BAY43-9006, Bayer) is a bi-aryl urea small molecule inhibitor of vascular 

endothelial growth factor receptor (VEGFR) and RAF kinase, which also has activity 

against C-Kit and platelet derived growth factor receptor beta (PDGFR-

β).  Preclinical studies demonstrated that sorafenib can inhibit BRAF in melanoma 

cell lines resulting in blocking of MAPK activity and inhibition of melanoma cell 

growth in vitro and in vivo [124]. Sorafenib also exerts anti-angiogenic effects by 

blocking RAS/RAF/MAPK signalling in endothelial cells [125]. Sorafenib showed no 
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significant anti-tumour activity as a single agent in advanced melanoma [126], 

however, a recent randomised phase II study of sorafenib in combination with 

dacarbazine produced significantly improved progression free survival (21.1 weeks 

versus 11.7 weeks, hazard ratio (HR), 0.619) compared to dacarbazine alone. No 

improvement in overall survival was observed [127]. The addition of sorafenib to 

paclitaxel and carboplatin as second line treatment for advanced melanoma did not 

improve progression free survival or overall response rates [128]. This regimen is 

currently being evaluated in a phase III trial in chemotherapy-naïve advanced 

melanoma. Several phase II trials of sorafenib in combination with chemotherapy or 

with other targeted agents are currently ongoing (www.clinicaltrials.gov). 

 

Two specific mutant BRAF inhibitors, PLX-4032 and PLX-4720 (Plexxikon Inc.) 

have been developed and are being tested in melanoma.  PLX-4720, a 7-azaindole 

derivative, reduced MAPK activation in V600E mutated melanoma cell lines but did 

not alter MAPK activation in BRAF wild type cell lines suggesting that PLX-4720 

has the ability to specifically target cancer cells with mutant BRAF.  In vivo studies 

confirmed the inhibition of melanoma cell growth and no toxicity was reported [129].  

RAF-265 (Novartis) a pan RAF inhibitor is currently recruiting patients for phase I 

trials in metastatic melanoma.  

 

PLX-4032 recently completed Phase I studies in 55 cancer patients which included 24 

BRAF mutation positive melanoma patients.  Results are promising with 4 patients 

achieving minor responses with tumour size reducing by 10-30 %.  A further 9 

patients achieved partial responses with treatment reducing tumour size by greater 

than 30 %.  Overall PLX-4032 resulted in a degree of tumour size reduction in 
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metastatic melanoma patients.  Patients who responded to PLX-4032 treatment had 

stable disease for up to 14 months with an interim progression free survival of 6 

months. PLX-4032 is currently recruiting patients for Phase II studies in melanoma 

(http://www.medicalnewstoday.com/articles/152309.php). 

 

MEK (MAPK/ERK kinase), downstream of BRAF may be a potential target in 

melanoma. BRAF-induced hyperactivation of MEK has been implicated in melanoma 

[130].  A number of MEK inhibitors are being investigated in solid tumours, 

including RO5126766 (Hoffman-La Roche), and AZD6244 (AstraZenca) which has 

been shown to be cytostatic as monotherapy, and cytotoxic in combination with 

docetaxel in preclinical evaluation in melanoma [6]. AZD6244 was tested in Phase I 

studies and reported stable disease in 9 out of 51 patients for greater than 5 months 

including tumour shrinkage in 1 melanoma patient  [131].  AZD6244 was also tested 

in a Phase II trial which compared its efficacy against TMZ in advanced melanoma 

patients. Despite achieving partial response in some patients, overall survival was 

similar for both treatments [132]. 

 

1.7.2 Targeting the PI3/AKT Pathway in Melanoma 

Constitutive activation of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway 

(Figure 1.5) has been implicated in chemo-resistance in many human cancers, 

including melanoma [65]. Although PI3K itself is rarely mutated [52] or over 

expressed [67] in melanoma, activation of downstream signalling components, e.g. 

AKT, have been implicated in melanoma progression [124]. In one study, 

phosphorylated AKT was detected in 17%, 43%, 49%, and 77% of normal nevi 

(n=12), dysplastic nevi (n=58), primary melanoma (n=170) and melanoma metastases 
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(n=52), and strong p-AKT staining correlated inversely with overall and 5-year 

survival of patients with primary melanoma (p < 0.05) [33], however these results 

have not been corroborated as yet.   

 

Increased AKT activation can be caused by mutation or loss of phosphatase and 

tensin homolog (PTEN), a tumour suppressor which can down-regulate the AKT 

pathway [133]. Loss of PTEN reduces apoptosis and promotes cell survival and 

thereby promotes melanoma tumour development, and has been reported in 20-40 % 

of melanomas [134, 135]. Increased mTOR (mammalian target of rapamycin) 

activation has also been implicated in melanoma cell growth. Proliferation of 

melanoma cells lines was blocked by the mTOR inhibitor rapamycin [136]. mTOR is 

a downstream target of the PI3K/AKT kinase signalling pathway and regulates cancer 

cell growth and metabolism [137, 138].   

 

Rapamycin (sirolimus) and its analogs, temsirolimus (CCI-779, Wyeth 

Pharmaceuticals), everolimus (RAD-001, Novartis) and deforolimus (AP23573, 

ARIAD Pharmaceuticals, Inc. and Merck & Co., Inc.), which inhibit mTOR have 

shown promising activity in several cancers [139]. Rapamycin has been shown to 

inhibit melanoma cell growth in vitro and in vivo, and synergistically enhances 

apoptosis and chemo-sensitivity in melanoma cells [140-143].  Temsirolimus also 

inhibits growth and enhances response to dacarbazine and cisplatin in melanoma cell 

lines and mouse models of melanoma [144, 145]. Temsirolimus did not demonstrate 

any clinical benefit as a single agent in the treatment of metastatic melanoma [146].  

Phase II trials of temsirolimus and everolimus in combination with chemotherapy or 

other targeted agents, are currently recruiting patients (www.clinicaltrials.gov).   
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The pan-PI3K inhibitor, LY294002, which has been restricted to preclinical studies 

[139], showed anti-tumour activity in preclinical models of melanoma [147, 148], 

demonstrating the potential benefits of targeting the PI3K/AKT pathway in 

melanoma. Although specific PI3K inhibitors have not yet been tested in melanoma 

patients, a number of inhibitors are undergoing trials in other solid tumours and may 

be potential therapies for melanoma.  For example NVP-BEZ 235, a dual 

PI3K/mTOR inhibitor, has shown anti-proliferative effects in glioblastoma, multiple 

myeloma and breast cancer cell lines [149-151], and is currently in phase I/II trials in 

solid tumours and breast cancer (www.clinicaltrials.gov). XL765 (Exelixis) has 

recently completed Phase I trials in 19 patients.  XL765 was well tolerated and 

resulted in stable disease in two patients for greater than 6 months.  It also resulted in 

the reduction of the proliferation marker Ki67 [152].  Several other PI3K inhibitors 

are also in phase I trials, including SF1126 (Semofore), XL147 (Exelixis Inc.) and 

GDC-0941 (Genentech). 

 

Perifosine (AOI Pharma Inc. and Keryx Biopharmaceuticals), an alkylphosphocholine 

analogue, inhibits phosphorylation of AKT, which results in the blocking of AKT 

membrane translocation [139]. A phase II trial of single-agent perifosine as first line 

treatment in metastatic melanoma patients produced no objective responses [153]. 

Further trials of perifosine in combination with chemotherapy and targeted agents in 

other solid tumours are ongoing.  

 

Targeting either the MAPK or AKT pathway individually may be beneficial, but there 

is substantial preclinical evidence to support targeting both pathways simultaneously 
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in melanoma [143, 154].  Indeed, Cheung et al showed that AKT3 and mutant BRAF 

cooperate to promote melanoma development [129]. Dual inhibition of MAPK and 

PI3K/AKT/mTOR has shown anti-tumour activity in melanoma cell lines [143, 154, 

155]. The combination of MAPK and AKT inhibitors completely suppressed invasive 

growth of melanoma cells in regenerated human skin [156]. A phase I/II trial of 

combined BRAF and mTOR inhibition by sorafenib and temsirolimus, is currently 

recruiting melanoma patients (www.clinicaltrials.gov). 

 

1.7.3 Novel tyrosine kinase targets in melanoma 

1.7.3.1 C-Kit receptor 

Imatinib mesylate (Gleevec, Novartis), which targets c-Kit in addition to Bcr-Abl, 

inhibited proliferation in melanoma cell lines due to cell cycle arrest in the G2M phase 

[157].  Imatinib had been tested in phase II trials in metastatic melanoma patients 

without success [158].  A recent study of 21 melanoma patients who had tumours 

which expressed greater than 25 % positivity for c-Kit were selected for imatinib 

therapy.  Patients were treated with 400 mg twice daily for 6 weeks.  Results were 

poor however with 4 patients achieving stable disease for 12 weeks and 1 patient 

achieving a partial response for 12.8 months.  In most cases though disease 

progressed quickly and as a  result the trial was stopped [159]. Trials which target 

acral melanoma patients who have c-Kit over expression, exclusive of BRAF 

mutation, are underway [53].  However it is the presence of mutated form of c-Kit 

that is important for imatinib therapy and trials which selected for this have not yet 

been initiated. 
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1.7.3.2 SRC Kinase 

Members of the SRC kinase family have been implicated in melanoma progression 

[160-164] and both SRC and Yes are reported to be elevated in melanoma cells 

compared to normal melanocytes [160, 165]. The many functions of SRC kinase may 

be attributable to its relationships with several oncogenes such as the non receptor 

tyrosine kinase, focal adhesion kinase (FAK) and Stat3 [166]. SRC kinase regulates 

Stat3 which is active in melanoma but not in normal or benign melanocytes [167]. 

Blocking SRC kinase leads to inhibition of Stat3, and as a result induction of 

apoptosis in melanoma cells [168].  

 

Dasatinib, a multi-target tyrosine kinase inhibitor, which targets BCR-Abl, SRC 

kinases, C-Kit, PDGFR and ephrin-A receptor kinases, is the most potent SRC kinase 

inhibitor currently in clinical development with an IC50 of 0.5 nM for SRC kinase 

(IC50 of < 30 nM for the other targets) [169]. In melanoma cell lines, dasatinib has 

shown anti-proliferative effects and significantly reduced tumour cell migration and 

invasion [170]. Dasatinib has also shown preclinical activity in prostate cancer [171], 

triple negative breast cancer [172] and colon cancer cells [173]. Dasatinib is currently 

being tested in phase I trials in metastatic melanoma. 

 

AZD0530 (AstraZeneca), a selective SRC kinase inhibitor, reduced tumour formation 

in a skin carcinogenesis model [174], and reduced tumour growth in a SRC-

transfected 3T3-fibroblast xenograft model [175].  A phase II clinical trial of 

AZD0530, as a single agent, is currently recruiting patients with stage III/IV 

melanoma.  SKI-606, a SRC/Abl kinase inhibitor has shown anti-tumour effects in 

breast cancer in vitro and in vivo [176], but has not yet been tested in melanoma. 
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1.8 Summary 

Metastatic melanoma is at present one of the fastest growing cancers in Europe and is 

almost certainly fatal.  One reason for melanomas high mortality rate is the failure of 

the disease to respond to the available treatments.  Several factors including 

cumulative genetic mutations and the alteration of key signalling pathways have been 

implicated in melanoma progression and drug resistance. 

 

Targeted therapies which are undergoing testing in metastatic melanoma may lead to 

improvements in prognosis for this aggressive disease.  The use of newer targeted 

therapies alone and in combination with chemotherapy might also offer new hope of 

improving response to treatment.   

 

Challenges for the future of novel targeted therapies in melanoma include 

identification of the key molecular alterations which predict sensitivity to a particular 

targeted agent, to ensure appropriate patient selection, and optimisation of 

combinations of targeted therapies either with chemotherapy or with other targeted 

therapies. 
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Table 1.1. Molecularly targeted agents currently being evaluated in malignant 

melanoma. 

Drug name Targets Clinical trials 
statusa 

Sorafenib B-Raf, VEGF, PDGFR, c-Kit, Phase III 

RAF-265 Raf, VEGFR Phase I 

PLX-4032 Mutant B-Raf Phase II 

RO5126766 MEK Phase I/II 

Perifosine AKT Phase II 

Rapamycin mTOR Phase II 

Temsirolimus mTOR Phase II 

Everolimus mTOR Phase II 

Deforolimus mTOR Phase I 

Imatinib 
mesylate c-Kit, BCR-Abl, PDGFR Phase II 

Sunitinib VEGFR, PDGFR, c-Kit, FLT3, CSF-1R,  RET Phase II 

Dasatinib BCR-Abl, Src, c-KIT, PDGFR, Ephrin-A 
receptors Phase II 

AZD0530 Src, Abl Phase II 
a Clinical trial status obtained from www.clinicaltrials.gov. (5th November 2009) 
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Figure 1.5: Signalling pathways and molecules that are potential targets for melanoma therapy. 
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Chapter 2 

2. Materials and Methods 
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2.1 Cells and Reagents 

Melanoma cell lines were obtained from the Department of Developmental 

Therapeutics, National Cancer Institute, the American Type Culture Collection 

(ATCC) and the European Association Culture Collection (Table 2.1).  All cell lines 

were maintained at 37 oC with 5 % CO2 and medium requirements for each cell line 

are detailed in Table 2.1.  Cell lines were centrally tested for possible Mycoplasma 

contamination every three months approximately, using the Hoechst indirect staining 

procedure [177].   

 

Table 2.1: Details of the melanoma cell lines including the source and growth 

medium.  

Cell name Cancer 
type Source Media + % Serum 

HT144 Melanoma ATCC McCoys 5A + 10 % FCS 
Lox-IMVI Melanoma NCI RPMI + 10 % FCS 
Malme-3M Melanoma NCI RPMI + 10 % FCS 

M14 Melanoma NCI RPMI + 10 % FCS 
Sk-Mel-5 Melanoma NCI RPMI + 10 % FCS 
Sk-Mel-28 Melanoma NCI RPMI + 10 % FCS 

WM-115 Melanoma ECACC MEM + 2 mM L-Glut, 1 mM NEAA, 
1 mM Sodium Pyruvate + 10 % FCS 

WM-266-4 Melanoma ECACC MEM + 2 mM L-Glut, 1 mM NEAA, 
1 mM Sodium Pyruvate + 10 % FCS 

DLKP-
Mitox Lung NCTCC ATCC + 5 % FCS 

MRP2-
2008 Ovarian 

University 
Hospital 

Amsterdam 
RPMI + 10 % FCS 

 

The chemical compounds listed in Table 2.2 were prepared as stock solutions in 

dimethyl sulfoxide (Sigma). 
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Table 2.2:  Sources and stock concentrations of chemotherapy drugs and inhibitors 

used in this project. 

Drug Name Source Stock Conc. 

Dasatinib Sequoia Chemicals 10 mM 

Sorafenib Sequoia Chemicals 10 mM 

Epirubicin Department of Pharmacy 
Saint Vincent’s University Hospital 3.43 mM 

Fumitremorgin C Sigma 10 mM 

Imatinib Novartis 16.9 mM 

MK571 Calbiochem 9.3 mM 

Mitoxantrone SVUH 4.5 mM 

MTIC NCI 50 mM 

PP2 Calbiochem 10 mM 

Taxotere SVUH 11.6 mM 

Temozolomide NCI 50 mM 

Vincristine SVUH 1.21 mM 
 

2.2 Invasion assays    

Invasion and migration assays were performed using the Boyden chamber method as 

previously described [178].  We used 1x105 cells in 1mg / ml matrigel-coated (Sigma) 

24-well invasion inserts for invasion assays and uncoated inserts for migration assays. 

To test the effects of dasatinib in invasion/migration, cells were incubated for 6 hours 

before dasatinib treatment to allow cells to attach and then incubated at 37 oC with 

dasatinib at varying concentrations for 24 hours. Cells were stained with 0.5 % crystal 

violet (Sigma) and the number of invading/migrating cells was estimated by counting 

10 fields of view at 200 X magnification.  The average count was multiplied by the 

conversion factor 140 (growth area of membrane divided by field of view area, 

viewed at 200 X magnification) to determine the total number of invading/migrating 

cells.  All assays were performed in triplicate.   
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2.3 Proliferation assay   

Proliferation was measured using an acid phosphatase assay.  1 x 103 cells/well were 

seeded in 96-well plates, except for HT144 and Malme-3M which were seeded at 2 x 

103 cells/well.  Plates were incubated overnight at 37 oC followed by addition of drug 

at the appropriate concentrations and incubated for a further 5 days until wells were 

80 % to 90 % confluent. All media was removed and the wells were washed once 

with PBS (Sigma).  10 mM paranitrophenol phosphate substrate (Sigma-Aldrich) in 

0.1 M sodium acetate buffer with 0.1 % Triton X (Sigma) pH 5.5 was added to each 

well and incubated at 37 oC for 2 hours. 50 µl of 1 M NaOH was added and the 

absorbance was read at 405 nM (reference – 620 nM), as previously described [179]. 

 

2.4 RNA Extraction   

RNA extraction was achieved using Tri reagent (Sigma-Aldrich).  Cells were grown 

until confluent in a 90 mm petri-dish.  Media was removed and the cells washed twice 

with PBS.  1 ml of Tri reagent was added to the cells and the resulting lysate passed 

through a pipette to create a homogenous mixture.  The lysate was transferred to a 

sterile eppendorf and 200 µl of chloroform was added.  The sample mixed vigorously 

for 30 seconds by vortexing, then allowed to stand for 15 minutes followed by 

centrifugation at 12,000 g for 15 minutes at 4 oC.  The upper layer containing the 

RNA was removed to a clean eppendorf and 0.5 ml isopropanol added.  The sample 

was incubated at -20 oC overnight.  The samples were centrifuged at 12,000 g for 10 

minutes at 4 oC.  The supernatant was removed and the RNA pellet washed with 1 ml 

75 % ethanol.  The RNA was air dried, then resuspended in 20 µl of diethyl 

pyrocarbonate (DEPC)-treated dH2O (Sigma).  RNA was quantified 

spectrophotometrically at 260nm and 280nm using the NanoDrop® (ND-1000 
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spectrophotometer). The ND-1000 software automatically calculated the quantity of 

RNA in the sample based on an OD260 of 1 being equivalent to 40mg/mL RNA. The 

software simultaneously measured the OD280 of the samples allowing the purity of the 

sample to be estimated from the ratio of OD260/OD280. This was typically in the range 

of 1.8-2.0. A ratio of <1.6 indicated that the RNA may not be fully in solution. RNA 

samples were stored at -80 oC.  

 

2.5 Reverse Transcriptase Reaction 

To synthesise cDNA, 2 μl oligo dT18 (0.5 μg/ μl) (Sigma), 1 μl DEPC water and 1 μl 

RNA (1 μg) were heated to 72 oC for 10 min and then cooled to 37 oC.  2 μl 10x 

MMLV-RT Buffer (Sigma), 0.5 μl RNAsin (40 U/ μl) (Sigma), 1.0 μl 10 mM dNTPs 

(Sigma), 11 μl DEPC water and 0.5 μl Moloney murine leukaemia virus reverse 

transcriptase (MMLV-RT) (40,000 U/ μl) (Sigma) were added and the reaction 

incubated at 37 oC for 1 hour.  The cDNA samples were then stored at -20 oC until 

use. 

 

2.6 Polymerase Chain Reaction (PCR) 

PCR amplification of target genes was performed using 1 μl of cDNA, 1.5 μl MgCl2 

(Sigma), 2.5 μl PCR buffer (Sigma), 9.0 μl DEPC water and 0.5 μl of both the 

forward and reverse primers and 10 μl of the Taq mixture consisting of 0.5 μl 10mM 

dNTPs (10 mM of each dNTP, 0.25 μl of 5U/ μl Taq DNA Polymerase enzyme and 

9.25 μl of dH2O).  Primers were designed and purchased from Eurofins MWG 

Operon.  The PCR amplifications conditions for each primer set are listed in Table 

2.3.   
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Table 2.3: Oligonucleotide sequences and annealing temperatures for primers for RT-

PCR analysis of the ABC transporters MRP1, MRP2, BCRP, PgP, ABCB5 and the 

endogenous control GAPDH. 

Oligo Name Forward and Reverse 
Sequence Program settings Annealing 

temp 

ABCC1 
(MRP1) 

For: AGT GGA ACC 
CCT CTC TGT TTA AG 
Rev: CCT GAT ACG TCT 
TGG TCT TCA TC 

Step 1:  94 oC  2 mins 
Step 2:  94 oC for 30 secs 
             55 oC for 30 secs 
             72 oC for 30 secs 

68 

ABCC2 
(MRP2) 

For: TCC TTG CGC AGC 
TGG ATT ACA T 
Rev: TCG CTG AAG 
TGA GAG TAG ATT G 

Step 1:  94 oC  2 mins 
Step 2:  94 oC for 30 secs 

58 oC for 30 secs 
72 oC for 30 secs 

66 

ABCG2 
(BCRP) 

For: CCG CGA CAG TTT 
CCA ATG ACC T 
Rev: GCC GAA GAG 
CTG CTG AGA ACT 
GTA 

Step 1:  94 oC  2 mins 
Step 2:  94 oC for 30 secs 

55 oC for 30 secs 
72 oC for 30 secs 

68 

ABCB1 
(PgP) 

For: GTT CAA ACT TCT 
GCT CCT GA 
Rev: CCC ATC ATT GCA 
ATA GCA GG 

Step 1:  94 oC  2 mins 
Step 2:  94 oC for 30 secs 

55 oC for 30 secs 
72 oC for 30 secs 

58 

ABCB5 
Alpha/Beta 

For: AAT GCT TCT CGG 
CCT TTT GGC TAA G 
Rev: GGG CTA TTG 
CGA AGG TTT CAA 
AGT G 

Step 1:  94 oC  2 mins 
Step 2:  94 oC for 30 secs 

60 oC for 30 secs 
72 oC for 30 secs 

72 

GAPDH 

For: GCC TCA AGA 
TCA TCA GCA A 
Rev: CAG AAT C CATC 
CTT TAG GGT CAC A 

Step 1:  94 oC  2 mins 
Step 2:  94 oC for 30 secs 

58 oC for 30 secs 
72 oC for 30 secs 

56 

 
PCR samples were separated on a 1.5 % agarose gel (1.5% agarose (Sigma) in 1 X 

TBS buffer with 0.00002 % ethidium bromide (Sigma)) and run at 100 V for 20 

minutes.  PCR products were visualised using the Epi Chemi II Darkroom gel 

documentation system (UVP).  
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2.7 Real-Time PCR 

RNA was extracted and cDNA synthesised as per Section 2.4. Taqman® Real Time 

PCR analysis was performed using the Applied Biosystems Assays on Demand PCR 

kits (TaqMan® gene expression assays) for ANXA1, CAV1, CAV2, EPHA2, PTRF, 

IGFBP2, BCRP and MRP-2 on a 7900 fast real-time PCR instrument (Applied 

Biosystems).   

 

Real-Time PCR was performed by adding 22.5 μl of qPCR master mix to the relevant 

wells of a 96-well PCR plate.  qPCR master mix consists of 12.5 μl of  2X TaqMan 

universal PCR mastermix (Applied Biosystems), 1.25 μl of 20X gene expression 

assay mix (Applied Biosystems) and 8.75 μl of RNase free water.  5 μl of each cDNA 

sample was added to give a final reaction volume of 25 μl. Each cDNA sample was 

analysed in triplicate for measurement of target gene expression and endogenous 

control (GAPDH).   

 

For analysis of the dasatinib 6 gene marker set, expression of each gene was 

standardized using GAPDH as a reference gene, and relative expression levels for the 

panel of cell lines were quantified by calculating 2– C
T, where CT is the 

difference in CT between target and reference genes.  Control pooled samples 

consisting of equal volumes of mRNA of each cell line tested were also prepared.  

The control pool allowed us to compare the relative expression of a target gene in a 

target cell line against the average expression of all the cell lines. 
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2.8 Establishing temozolomide resistant cell lines 

Malme-3M cells were seeded at a density of 2.5 x 104 cells in a 75 cm2 flask.  After 

24 hours the medium was replaced with medium containing 300 µM temozolomide.  

The cells were treated for 6 hours and the medium replaced with drug-free medium.  

Cells were allowed to grow until confluent, then trypsinised and reseeded at a density 

of 2.5 x 104 cells per flask.  Treatment was repeated 6 times. 

 

HT144 cells were seeded at a density of 2.5 x 104 cells in a 75 cm2 flask.  After 24 

hours medium was replaced with 300 µM temozolomide.  The cell were treated for 6 

hours, the medium was replaced and the cells were incubated at 37 oC overnight.  The 

next day the cells were treated again with 300 µM temozolomide for 6 hours.  This 

treatment was repeated for 7 days.  After 7 days the drug was removed and replaced 

with fresh drug-free medium.  Cells were allowed to grow until confluent, then 

trypsinised and seeded at a density of 2.5 x 104 cells in a 75 cm2 flask.  This treatment 

was repeated four times. 

 

2.9 Establishing taxotere resistant cell line  

Malme-3M cells were seeded at a density of 2.5 x 104 cells in a 75 cm2 flask.  After 

24 hours the medium was replaced with fresh medium containing 1 nM taxotere.  

After 6 hours the medium was replaced with fresh medium.  Cells were allowed to 

grow until confluent, then trypsinised and reseeded at a density of 2.5 x 104 cells.  

Treatment was repeated 6 times.   
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2.10 Terminal DNA transferase-mediated dUTP nick end labelling (TUNEL) 

assay 

 The Guava® TUNEL Assay detects apoptosis-induced DNA fragmentation through a 

quantitative fluorescence assay. Terminal deoxynucleotidyl transferase (TdT) 

catalyzes the incorporation of bromo-deoxyuridine (BrdU) residues into the 

fragmenting nuclear DNA at the 3'-hydroxyl ends by nicked end labeling. A TRITC-

conjugated anti-BrdU antibody can then label the 3'-hydroxyl ends for detection by a 

Guava System.  2.5 x 104 cells were seeded per well in 24-well plates and incubated 

overnight at 37oC, followed by addition of drug at the appropriate concentrations. 

After 72 hours, media was collected and the wells washed once with PBS.  Cells were 

trypsinised and added to the media collected for each sample. Cells were centrifuged 

at 300 x g for 5 minutes and the medium was aspirated. The pellet was re-suspended 

in 150 µl of PBS and transferred to a round bottomed 96 well plate.  50 µL of 4% 

para-formaldehyde (Sigma) made up in PBS was added to the wells and mixed. Cells 

were incubated at 4 oC for 60 minutes. The plate was centrifuged at 300 x g for 5 

minutes and the supernatant aspirated leaving approximately 15 µL in each well. The 

remaining volume was used to resuspend the cells and 200 µL of ice cold 70 % 

ethanol (Fluka) was added to the cells. The plates were then stored at – 20 oC for 2 

hours.  After fixation, the cells including positive and negative controls were spun at 

300 g for 5 minutes.  The supernatant was aspirated, and the cells washed with 200 

µL of wash buffer and then spun again at 300 g for 5 minutes.  The wash buffer was 

aspirated and 25 µL of DNA labelling mix was added to each well and the cells 

mixed.  The plates were covered with parafilm and incubated for 60 minutes at 37 oC.  

200 µL of rinsing buffer were then added to each well and the plates spun at 300 g for 

5 minutes.  The supernatant was aspirated and 50 µL of anti-BrdU staining mix added 
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to each well, with the plate stored in the dark at room temperature for 30 minutes.  At 

the end of the incubation 150 µL of rinsing buffer was added to each well. Cells were 

analysed on the Guava EasyCyte (Guava Technologies).  Positive and negative 

controls were performed with each assay. 

 

2.11 Cell Cycle Assays 

The Guava Cell Cycle Assay uses the nuclear DNA stain, propidium iodide (PI), to 

measure cell cycle. Resting cells (G0/G1) contain two copies of each chromosome. 

Cycling cells synthesize chromosomal DNA (S phase), which results in increased 

fluorescence intensity. When all chromosomal DNA has doubled (G2/M phase), cells 

fluoresce with twice the intensity of the initial population.  2.5 x 104 cells were seeded 

per well in 24-well plates and incubated overnight at 37oC.  After 24 hours cells were 

synchronised by removing the media and replacing it with serum free medium (SFM) 

for a further 24 hours.  SFM was removed and the cells incubated for 6 hours in media 

containing serum before the drug was added at the appropriate concentrations. Plates 

were then incubated at 37 oC for a further 24 hours.  Media was collected and the 

wells washed once with PBS.  Cells were trypsinised and added to the media collected 

for each sample. Cells were centrifuged at 300 x g for 5 minutes and the media was 

aspirated. The cell pellet was re-suspended in 150 µL PBS and transferred to a round 

bottomed 96 well plate.  The plate was centrifuged at 300 x g for 5 minutes and the 

supernatant aspirated leaving approximately 15 µL in each well. The remaining 

volume was used to resuspend the cells and 200 µL of ice cold 70 % ethanol was 

added. The plates were then stored at – 20 oC for 2 hours.  After fixing the cells were 

spun at 450 x g for 5 minutes, the supernatant removed, washed with 200 µL of PBS 
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and spun again at 450 g.  The PBS was then removed and 200 µL of Guava Cell 

Cycle reagent were added to the plates.  The cells were mixed by pipetting and stored 

at room temperature shielded from the light for 30 minutes. Cells were analysed on 

the Guava EasyCyte and the data was analysed using Modfit LT software (Verity). 

 

2.12 Protein Extraction and Western blotting 

500 µL RIPA buffer (Sigma-Aldrich) with 1 X protease inhibitors, 2 mM 

phenylmethanesulphonylfluoride (PMSF) and 1 mM sodium orthovanadate (Sigma-

Aldrich) was added to cells and incubated on ice for 20 minutes. Following 

centrifugation at 16,000 g for 5 minutes at 4oC the resulting lysate was stored at -

80oC.  Protein quantification was performed using the Bicinchoninic acid (BCA) 

assay (Pierce).  40 µg of protein in sample buffer (2.5 ml 1.25 M Tris HCl; 1 g  

Sodium dodecyl sulphate (SDS); 2.5ml betamercaptoethanol; 5.8 ml glycerol; 0.1% 

bromophenol blue made up to 20 ml with dH2O) was heated to 95 oC for 5 minutes 

and proteins were separated on 7.5 or 10 % gels (Lonza). The protein was transferred 

to Hybond-ECL nitrocellulose membrane (Amersham Biosciences) using a semi-dry 

transfer unit (Atto). The membrane was blocked with 5 % milk powder (Biorad) in 

0.1 % PBS-Tween at room temperature for 1 hour, then incubated overnight at 4 oC in 

primary antibody (Table 2.4) with 0.1 % PBS-Tween in 5 % milk powder. The 

membrane was washed three times with 0.5 % PBS-Tween and then incubated at 

room temperature with secondary antibody (Table 2.4) in 5 % milk powder with 0.5 

% PBS-Tween for 1 hour. The membrane was washed three times with 0.5 % PBS-

Tween followed by one wash with PBS alone. Detection was performed using 

Luminol (Santa Cruz Biotechnology).  
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Table 2.4: Details of antibodies used, including phosphorylation sites, suppliers, host 

species and concentration of primary and secondary antibodies used.   

Antigen Phospho 
Site Supplier 2o Ab 

Species
1o Ab 
µg/ml 

2o Ab 
µg/ml 

Caveolin-1 n/a Millipore Mouse 1 1.0 

EPHA2 n/a Millipore Mouse 1 1.0 

p-FAK Y 861 Biosource Mouse 1 1.0 

p-FAK Y 397 Biosource Rabbit 1 0.3 

FAK n/a Biosource Rabbit 1 0.3 

p-SRC Y 418 Biosource Rabbit 2 0.3 

SRC n/a Millipore Mouse 1 1.0 

Akt n/a Cell Signalling Technology Rabbit 1 0.3 

p-AKT Ser 473 Cell Signalling Technology Rabbit 1 0.3 

MAPK n/a Cell Signalling Technology Rabbit 1 0.3 

p-MAPK Y 42 / 44 Cell Signalling Technology Rabbit 1 0.3 

HSP-60 n/a Millipore Mouse 1 1.0 

ERP-29 n/a AbCam Rabbit 1 0.3 

p-Tyrosine n/a Millipore Mouse 1 1.0 

p-Serine n/a Millipore Mouse 1 1.0 

Annexin-2 n/a BD Biosciences Mouse 1 1.0 

Annexin-1 n/a BD Biosciences Mouse 1 1.0 

PTRF n/a AbCam Rabbit 1 0.3 

IGFBP2 n/a AbCam Mouse 1 1.0 

α-tubulin n/a Sigma-Aldrich Mouse 1 1.0 

Caveolin-2 n/a BD Biosciences Mouse 1 1.0 
 

2.13 Immunoprecipitation 

Immunoprecipitation was performed using the Catch and Release® reversible 

immunoprecipitaion system (Millipore). Briefly, spin columns were washed 3 times 
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with 400 µl of 1 X Catch and Release wash buffer.  500 µg of cell lysate was added to 

the column together with 2-3 µg of antibody per sample, 10 µl of Catch and Release 

antibody ligand and the final volume was made up to 500 µl with 1X wash buffer.  

Capped sample columns were then incubated overnight on a shaker at 4 oC.  The caps 

were removed and sample columns spun at 2000 g for 30 seconds to remove all 

unbound protein and antibody.  The column was then washed with 400 µl of 1X wash 

buffer.  The column was centrifuged again at 2000 g for 30 seconds and the 

supernatant removed.  This process was repeated twice.  To elute protein in its 

denatured form 70 µl of denaturing elution buffer with 5 % beta-mercaptoethanol was 

added to the sample column and incubated for 5 minutes.  The column was then 

centrifuged for 1 minute at 2000 g.  This procedure was repeated three times and each 

eluent collected into a separate tube.   Samples were then heated to 95 oC for 5 

minutes and the sample stored at - 20 oC until used. 

 

2.14 Immunohistochemistry  

All immunohistochemical (IHC) staining was performed using the DAKO 

Autostainer (DAKO). Deparaffinisation and antigen retrieval was performed using 

Epitope Retrieval 3-in-1 Solution (pH 6) (DAKO) and the PT Link system (DAKO) 

for EphA2, Src kinase and Annexin-A1.  For Caveolin-1 deparaffinisation and antigen 

retrieval was performed using Epitope Retrieval 3-in-1 Solution (pH 9) (DAKO) and 

the PT Link system (DAKO).  For epitope retrieval, slides were heated to 97 oC for 20 

minutes and then cooled to 65 oC. The slides were then immersed in wash buffer 

(DAKO). On the Autostainer (DAKO) slides were blocked for 10 minutes with 200 

µL HRP Block (DAKO).  Cells were washed with 1X wash buffer and 200 µL of 

antibody added to the slides for 30 minutes.  Slides were washed again with 1X wash 
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buffer and then incubated with 200 µL Real EndVision (DAKO) for 30 minutes.  

Slides were washed again with 1X wash buffer and then stained with 200 µL AEC 

substrate chromagen (DAKO) for 10 minutes and this procedure was repeated twice.  

A positive control slide was included in each staining run.  A negative control was 

also tested for each sample, using antibody diluent without the primary antibody, to 

allow for evaluation of non-specific staining. All slides were counterstained with 

haematoxylin (DAKO) for 5 minutes, and rinsed with deionised water, followed by 

wash buffer. Once staining was completed each slide was mounted with a coverslip 

using Faramount mounting solution (DAKO).  Staining was assessed by consultant 

Pathologist, Dr. Susan Kennedy.  Slides were assessed for both the percentage of 

tumour cells that were positive for staining (0 = not present; 1 = < 25 %; 2 = < 50 %; 

3 = >50 %) and for the intensity of the positive staining (0 = not present; 1 = weak; 2 

= moderate; 3 = intense).    

 

Table 2.5: Positive control tissue samples used for each antibody.  

Antigen Antibody supplier Positive control tissue 

Annexin-1 BD Biosciences Tonsil 
Caveolin-1 Cell signalling Head and Neck Cancer 

EphA2 Santa Cruz Biotechnology Metastatic Breast Cancer 
Src kinase Cell Signalling Head and Neck Cancer 

 

Table 2.6: Antibody concentrations used for immunohistochemical staining. 

Antigen Primary Antibody Conc. 

ANXA1 1: 200 
Cav-1 1: 150 
EphA2 1: 15 

Src kinase 1: 100 
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2.15 Phosphoprotein preparation 

WM-115 and WM266-4 cells were grown in 175 cm2 flasks until 90% confluent.  

Each cell line was then either treated for 6 hours with dasatinib at a concentration of 

100 nM or with control growth media. Triplicate samples of each treatment were 

prepared. Total protein was extracted and the phosphoprotein fragments were isolated 

using the PierceTM Phosphoprotein Enrichment Kit (Pierce Biotechnology). Cells 

were washed twice with cold HEPES buffer (50 mM, pH 7), and lysed using the 

Lysis/Binding/Wash buffer provided.  The lysis buffer was supplemented with 

CHAPS (0.25%), sodium dodecyl sulphate, 0.1% SDS, 1X Halt Protease Inhibitor 

EDTA-free and 1X Halt Phosphatase Inhibitor Cocktail (Pierce Biotechnology). After 

cell scraping the lysates were transferred to eppendorfs, and placed on ice for 45 

minutes, vortexing every 5 minutes with the resulting lysate being passed through an 

18-gauge needle. The lysate was centrifuged at 10,000 x g for 20 minutes at 4 oC and 

the supernatant collected and stored at -80 oC. After protein quantification by BCA 

assay, the concentration of each lysate was adjusted to 0.5 mg/ml and the 

phosphoprotein fraction of each was enriched using phosphoprotein enrichment 

columns supplied with the kit, according to the protocol provided. The eluted 

phosphoprotein fractions were then concentrated using iCON concentrators (Thermo 

scientific), yielding 100-150 µl of concentrated phosphoprotein for each sample.  The 

samples were stored at -80oC.  

 

2.16 Protein Precipitation and Quantification 

Cell lysates suspended in the 1x storage buffer were precipitated 

using the ReadyPrep 2-D Cleanup kit (Bio-Rad), following the manufacturer's 

instructions. The resulting pellet was resuspended in DIGE lysis buffer (7 
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M urea, 2 M thiourea, 4% CHAPS, and 30 mM Tris-HCl, pH 8.5). Total protein 

concentration was determined using the Quick start Bradford dye reagent (Bio-Rad). 

 

2.17 Protein labelling and two-dimensional differential gel electrophoresis 

(DIGE) 

All proteomic analysis detailed in this thesis was carried out under the supervision of 

Dr. Paul Dowling.  DIGE was performed using three CyDye DIGE Fluor Minimal 

dyes Cy3, Cy5 and Cy2 (GE Healthcare) [180].  In this technique, 25 µg of each 

phosphoprotein sample was added to microcentrifuge tubes and labelled with Cy3 or 

Cy5 dye (200 pico mole (pmol) in 1 µl anhydrous dimethylformamide (DMF)). Each 

tube was mixed by vortexing, and placed on ice for 30 minutes in the dark. Under 

these conditions approximately 1% of the lysine residues of the protein are covalently 

conjugated to the CyDyes. The reaction was quenched by the addition of a 50-fold 

molar excess of free lysine to the dye for 10 minutes on ice in the dark.  The labelled 

samples were stored at –80 oC. 

 

Each gel compared two samples, one labelled with Cy3 and the other with Cy5 (Table 

2.7). Triplicate gels were run for each comparison. A Cy2-labelled pool was prepared 

containing 12.5 µg of protein from each of the 18 samples. This pool was used on all 

gels as an internal standard to allow for accurate quantification [180]. A mix of each 

sample was also prepared to run on a preparative gel to facilitate protein identification 

after electrophoresis.   
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Table 2.7:  DIGE experimental design, showing gel number and the Cy dye used for 

each sample. Triplicate gels were run for each comparison.  

Gel no. Cy2 (50 µg) Cy3 (50 µg) Cy5 (50 µg) 
1 Cy2 pool WM-115 Ctrl WM-115 Dasat 
2 a Cy2 pool WM-115 Dasat WM-115 Ctrl 
3 Cy2 pool WM-115 Ctrl WM-115 Dasat 
4 Cy2 pool WM-266-4 Ctrl WM-266-4 Dasat 
5 a Cy2 pool WM-266-4 Dasat WM-266-4 Ctrl 
6 Cy2 pool WM-266-4 Ctrl WM-266-4 Dasat 

a Gel no.s 2 and 5 are examples of reverse labelling, and are introduced to avoid any 

slight bias caused because of the different molecular weights of the Cy dyes. 

 

An equal volume of 2x sample buffer (2.5 ml rehydration buffer stock solution (7 M 

urea, 2 M thiourea, 4 % CHAPS), pharmalyte broad range pH 4-7 (2%) (GE 

Healthcare), DTT (2%)) (Sigma) was added to the labelled protein samples. The 

mixture was incubated on ice for 10 minutes. 

 

The protein samples were then passively rehydrated into immobiline 24-cm linear pH 

gradient strips (IPG, pH 3-11) (GE Healthcare) using rehydration buffer solution (7 M 

urea, 2 M thiourea, 4 % CHAPS, 0.5% IPG buffer, 50 mM DTT). Each strip was 

overlaid with 3 ml IPG Cover Fluid (GE Healthcare) and allowed to rehydrate 

overnight at RT. Isoelectric focussing (IEF) was then performed using the IPGphor 

apparatus (40 kv/hr @ 20 oC with resistance set at 50mA) (GE Healthcare).  

 

For second dimension separation, the strips were equilibrated by incubating in 

equilibrium solution (50 mM Tris-HCL, pH 8.8, 6 M urea, 30% glycerol, 1% SDS) 

(All Sigma) containing 65 mM DTT for 20 minutes, followed by 20 minutes 

incubation in the same buffer containing 240 mM iodoacetamide (both at room 
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temperature). 12.5 % acrylamide gel solutions (acrylamide/bis 40 %, 1.5 M Tris pH 

8.8, 10 % SDS) (All Sigma) were prepared, and prior to pouring, 10 % ammonium 

persulfate (Sigma) and 100 μl TEMED (Sigma) were added. The gels were overlaid 

with 1 ml saturated butanol (BDH), and left to set for at least three hours at RT. 

Equilibrated IPG strips were transferred onto 24 cm 12.5% uniform polyacrylamide 

gels poured between low fluorescence glass plates. Strips were overlaid with 0.5% 

low melting point agarose (Sigma) in running buffer containing bromophenol blue 

(Sigma). Gels were run at 2.5 W/gel for 30 min and then 100 W total at 10 oC until 

the dye front had run off the bottom of the gels.   

 

2.18 Gel Imaging 

All of the gels were scanned using the Typhoon 9400 Variable Mode Imager (GE 

Heathcare) to generate gel images at the appropriate excitation and emission 

wavelengths from the Cy2-, Cy3- and Cy5-labelled samples. The resultant gel images 

were cropped using the ImageQuant software tool and imported into Decyder 6.5 

software. The biological variation analysis (BVA) module of Decyder 6.5 was used to 

compare the control versus test samples to generate lists of differentially expressed 

proteins. 

 

2.19 Spot digestion 

Preparative gels containing 400 mg of protein were fixed and then poststained with 

colloidal coomassie blue stain (Sigma). The subsequent gels were scanned using the 

Typhoon 9400 Variable Mode Imager (GE Heathcare) to generate gel images at the 

appropriate excitation and emission wavelengths for the colloidal CBB stain. 
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Preparative gel images were then matched to the Master gel image generated from the 

DIGE experiment. Spots of interest were selected and a pick list was generated and 

imported into the software of the Ettan Spot Picker robot (GE Healthcare). Gel plugs 

were placed into presiliconised microtitre plates and stored at 47 oC until digestion. 

Tryptic digestions were performed using the Ettan Digestor robot (GE Healthcare). 

Excess liquid was removed from each plug, and washed for three cycles of 20 min 

using 50 mM NH4HCO3 (Sigma) in 50% methanol (Romil) solution. The plugs were 

then washed for two cycles of 15 min using 70% Acetonitrile (ACN) (Fluka) and left 

to air dry for 1 h. Lyophilised sequencing grade trypsin (Promega) was reconstituted 

with 50 mM acetic acid (Fluka) as a stock solution and then diluted to a working 

solution with 40 mM NH4HCO3 in 10% ACN solution, to a concentration of 12.5 ng 

trypsin per mL. Samples were digested at 37ºC overnight and were then extracted 

twice with 50% ACN and 0.1% trifluoro acetic acid (TFA) (Sigma) solution for 20 

min each. All extracts were pooled and concentrated by SpeedVac (Thermo 

Scientific) for 40 min. 

 

2.20 MALDI-ToF-ToF Mass Spectrometry and Protein Identification 

One fifth of the peptide extract solution from the digest was added to a 384 spot 

MALDI sample plate (Applied Biosystems) and supplemented with 0.5 μl of a 5 

mg/ml solution of recrystalised α-cyano-4-hydroxy-trans-cinnamic acid matrix (Laser 

Biolabs) plus 10mM NH4H2PO4 in 50% acetonitrile/water containing 0.1% TFA and 

allowed to air dry prior to analysis. MALDI mass spectra were generated using a 4800 

TOF/TOF Proteomics Analyzer instrument (Applied Biosystems). An internal sample 

mix, Pep4 (Laser Biolabs) was also spotted onto target slides and used as an internal 

calibrant. All MS and MS/MS experiments were carried out in positive reflectron 
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mode. Ten precursor ions for MS/MS were selected automatically on the basis of 

intensity from the MS spectra. The MS and MS/MS data were combined and searched 

against a number of databases using GPS Explorer software (Applied Biosystems) 

and a local MASCOT (Matrix Science) search engine for protein identification. A 

mass window of 20 parts per million was set for database searching on all precursors.  

 

2.21 One dimensional (1D) reverse phase chromatography for simple protein 

mixtures 

Prior to analysis columns were equilibrated in Solvent A (2% acetonitrile in LC-MS 

grade water containing 0.1% formic acid (Sigma)) for 10 min and the column set to a 

temperatures of 25ºC using a column oven.  5 µL of digested protein samples in 

sample loading buffer (0.1 % TFA) was loaded using the injection pickup of the LC 

system onto a PepMap C18 trap cartridge (300 µm x 5 mm) (LC Packings/Dionex) at 

a flow rate of 25 μL/min for 5 min to desalt and concentrate the sample. 

 

Peptides from the trap column were eluted at a flow rate of 350 nL/min 

acetonitrile/water gradient (2-50% Solvent B (2% LC-MS grade water in acetonitrile 

containing 0.1% formic acid (Sigma)) in 30 min) onto a PepMap C18 capillary 

column (300 µm x 15 cm, 3 µm particles) directly into the electrospray tip. Peptides 

were eluted directly off the column into the LTQ Orbitrap XL mass spectrometer 

(Thermo Fisher Scientific).   

 

The columns were re-equilibrated in Solvent A for 10 minutes prior to analysis of the 

next sample.  The scan sequence of the MS is based on a data dependent method. The 

full scan was acquired in the Orbitrap at a resolution of 60,000 and we then acquired 
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subsequent MS/MS scans of the 5 most abundant peaks in the spectrum in the linear 

ion trap using dynamic exclusion to exclude multiple MS/MS of the same peptide. We 

set the dynamic exclusion to a repeat count of 1, a repeat duration of 30 s and an 

exclusion list of 500. The general MS conditions we used were: electrospray voltage 

of 1.6kV, ion transfer tube temperature of 200oC, collision gas pressure of 1.3 mTorr, 

normalised collision energy of 35%, and an ion selection threshold of 500 counts for 

MS2. An activation q-value of 0.25 and an activation time of 30 ms for MS2 

acquisitions were also used. 

 

We identified the peptides using the tandem mass spectrum (MS/MS) data generated 

by mass spectrometry. We searched each tandem mass spectrum against a database 

using database-searching software packages. Peptide identifications were reported in 

terms or XCorrelation scores and probability scores, as in the case for the SEQUEST 

algorithm (Thermo Fisher Scientific). If several statistically significant peptides were 

identified from the same protein then generally this protein identification is accepted. 

 

2.22 Pro-Q Diamond phosphostaining 

Fluorescent staining of 2-DE gels using Pro-Q Diamond phosphoprotein gel stain kit 

(Molecular Probes, Eugene, OR) was performed according to the manufacturer’s 

guidelines on WM-266-4 untreated and dasatinib treated cells. Briefly, the gels were 

fixed in 50% methanol, 10% acetic acid overnight, washed with three changes of 

deionized water for 15 min per wash, followed by incubation in Pro-Q Diamond 

phosphoprotein gel stain for 195 min. They were then destained with three changes of 

20% acetonitrile in 5 mM sodium acetate (pH 4.0) for 1 h. This was done three times. 

Useful images could be obtained at 3 h after staining. Images were acquired using a 
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TyphoonTM 9400 imager (Amersham Biosciences) with an excitation of 532 nm and 

an emission of 580 nm to determine the phosphostain reacting proteins. 

 

2.23 Bioinformatics analysis and literature mining  

Genes were annotated to Genbank gene symbols using an in-house annotation tool, 

yielding a total of 22 annotated transcripts on which ontology and literature mining 

analysis was carried out using PANTHER (Protein ANalysis THrough Evolutionary 

Relationships) (http://www.pantherdb.org/). Additionally we undertook literature 

mining analysis using Pathway Studio (Ariadne Genomics) on this list to determine 

previously-established links to productivity-related cell processes and analyses.  

 

2.24 Small interfering RNA (siRNA) transfection 

A siRNA molecule targeting kinesin, and a scrambled sequence siRNA molecule 

(Ambion) were used as positive and negative transfection controls.  Each siRNA 

molecule was transfected at a final concentration of 30 nM.  5x104 and 1.5x105 cells 

were resuspended in MEM media for 96-well and 6-well plates respectively and 

allowed to incubate overnight at 37 oC. Each siRNA and Lipofectamine 2000 

transfection agent (3 µl for 6 well plates; 0.75 µl for 24 well plates) were diluted in 

GibcoTM Opti-MEM reduced serum medium (Invitrogen), and incubated at room 

temperature (RT) for 5 minutes. Diluted Lipofectamine 2000 was then added to each 

diluted siRNA and incubated for a further 20 minutes at RT.  The transfection mix 

was then added to the cells.  After 24 hours, the transfection media was replaced with 

10 % MEM.  6-well plates were used to prepare lysates after 72 hours. Cells in 24-



 85

well plates were harvested after four days and counted using Guava Viacount 

(Millipore) on the Guava EasyCyte. 

 

Table 2.8. Sequences of three anti-SRC siRNA molecules, with the Ambion siRNA 

ID number, and the number (1-3) assigned to each. 

ID  No. Sense Antisense 

683 1 GGCUGAGGAGUGGUAUUUUtt AAAAUACCACUCCUCAGCCtg
684 2 GGCCCUUUGUGUAAGGUGUtt ACACCUUACACAAAGGGCCtt 
103417 3 GGUCAUGAAGAAGCUGAGGtt CCUCAGCUUCUUCAUGACCtg
 

Table 2.9: Sequences of the 4 individual anti ANXA2 siRNA molecules that comprise 

the ON-TARGETplus SMART pool. 

Product code Location Target Sequence 
J-010741-07 ORF CGACGAGGACUCUCUCAUU 
J-010741-08 3’ UTR AUCCAAGUGUCGCUAUUUA 
J-010741-09 3’ UTR AAAACCAGCUUGCGAAUAA 
J-010741-10 3’ UTR GGAAGAAAGCUCUGGGACU

 

2.25 Statistical analysis 

IC50 values were calculated using CalcuSyn software (BioSoft).  For Lox-IMVI, 

combination index (CI) values were calculated using CalcuSyn software. C.I. values 

were used to determine synergy in cell lines (Table 2.10) 
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Table 2.10: Recommended symbols for describing synergism or antagonism in drug 

combination studies analyzed with the Combination Index (CI) method 

Range of CI  Symbol  Description 
<0.1   +++++ Very strong synergism 
0.1-0.3   ++++ Strong synergism 
0.3-0.7   +++ Synergism 
0.7-0.85   ++ Moderate synergism 
0.85-0.90  + Slight synergism 
0.90-1.10   ± Nearly additive 
1.10-1.20   – Slight antagonism 
1.20-1.45   – – Moderate antagonism 
1.45-3.3  – – – Antagonism 
3.3-10 – – – – Strong antagonism 
>10  – – – – – Very strong antagonism 

 

CI values were not calculated for the other cell lines, as dasatinib did not achieve 50 

% inhibition of growth at concentrations up to 1 µM. The Student's t test was used to 

compare temozolomide IC50s alone and in combination with dasatinib in 

migration/invasion assays and cell cycle assays. P < 0.05 was considered statistically 

significant.   
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Chapter 3 

3. Characterisation of invasion and drug 

sensitivity in melanoma cell lines 
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3.1 Introduction 

In this study, we examined how the in vitro melanoma phenotype relates to the in vivo 

behaviour of metastatic melanoma, in particular with respect to melanoma cell 

invasion and drug resistance. Utilising the in vitro Boyden chamber invasion assay, 

we characterised the ability of our melanoma cell lines to migrate and invade.  By 

examining the sensitivity of the melanoma cell lines to common chemotherapeutics 

we aimed to determine how response to chemotherapy drugs in vitro relates to the 

chemo-resistant phenotype of the disease.  

 

We examined expression of a panel of ABC transporters and how they relate to 

chemo-sensitivity in the melanoma cell lines.  We also examined whether repeated 

exposure of melanoma cells to chemotherapy, in particular temozolomide and 

taxotere, results in the development of resistance in vitro and whether the ABC 

transporters play a role in the development of acquired resistance.  
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3.2 Invasion and motility of melanoma cell lines 

Invasion and migration assays were performed using matrigel-coated 24-well invasion 

inserts for invasion assays and uncoated inserts for migration assays (Figure 3.1 and 

Figure 3.2).   

 

All of the melanoma cell lines displayed the ability to migrate and invade in vitro.  

Apart from Sk-Mel-5 which shows a low level of migration, the remaining melanoma 

cell lines are highly migratory.  Lox-IMVI, Sk-Mel-28 and M14 are highly invasive 

cell lines, Malme-3M and HT144 less invasive, and Sk-Mel-5 is poorly invasive.  
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Figure 3.1:  Analysis of the level of invasion and migration in the melanoma panel.  

Error bars represent the standard deviation of triplicate assays. 
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 Cell Line Migration Invasion 

HT144 

 
Total number of cells 5241 ± 902 1778 ± 1036 

Lox-IMVI 

 
Total number of cells 8381 ± 1310 5805 ± 597 

Malme-3M 

 
Total number of cells 9497 ± 939 2403 ± 1364 

M14 

 
Total number of cells 7849 ± 4802 4447 ± 809 

Sk Mel 5 

 
Total number of cells 1503 ± 318 355 ± 45 

Sk Mel 28 

 
Total number of cells 16576 ± 3198 9086 ± 1043 

Figure 3.2: Visual analysis of the level of invasion and migration in the melanoma 

panel.  Numbers of cells ± the standard deviation are displayed. 

 



 91

3.3 Chemo-sensitivity 

3.3.1 Chemotherapy drug sensitivity in melanoma cell lines 

IC50 values for four chemotherapeutic drugs were determined in the melanoma cell 

line panel (Table 3.1). The melanoma cell lines tested are sensitive to epirubicin.  Sk-

Mel-5 was the most responsive cell line tested with an IC50 of 8.1 nM (± 0.9 nM) 

whilst Lox-IMVI was the most resistant, with an IC50 of 48.3 nM (± 7.0 nM).  Sk-

Mel-28 displayed the greatest resistance to temozolomide (TMZ) (IC50 = 791 µM (± 

153 µM).  Most of the cell lines displayed similar responses to TMZ and 5-(3-

methyltriazen-1yl)imidazole-4-carboximide (MTIC), the active form of TMZ, except 

Sk-Mel-28 which was significantly more resistant to MTIC than TMZ, (p = 0.04).  

Sk-Mel-28 has an IC50 of 1184 µM (± 168 µM) for MTIC, whilst Malme-3M and 

Lox-IMVI had more sensitivity to MTIC with IC50s of 271 µM (± 40 µM) and 313 

µM (± 76 µM) respectively.    Taxotere was also tested in the melanoma cell panel 

and all cell lines displayed sensitivity to taxotere with IC50s of less than 5 nM.  
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Table 3.1: IC50 values for epirubicin, temozolomide, MTIC and taxotere in the 

melanoma cell line panel.  Standard deviations for triplicate assays are presented.   

Cell line 
Epirubicin 

(nM) 

Temozolomide 

(µM) 

MTIC 

(µM) 

Taxotere 

(nM) 

HT144 
13.1 

± 3.5 

393 

± 2 

427 

± 60 

0.70 

± 0.02 

Lox-IMVI 
48.3 

± 7.0 

223 

± 55 

313 

± 76 

0.70 

± 0.10 

Malme-3M 
33.8 

± 4.3 

258 

± 46 

271 

± 40 

0.80 

± 0.06 

M14 
32.0 

± 22.0 

455 

± 51 

553 

± 50 

2.00 

± 0.33 

Sk-Mel-5 
8.1 

± 0.9 

263 

± 69 

363 

± 90 

0.70 

± 0.14 

Sk-Mel-28 
46.5 

± 4.8 

791 

± 153 

1184 

± 168 

0.70 

± 0.06 

 

3.3.2 Comparison of chemo-sensitivity in cancer cell lines 

A comparative review of in vitro sensitivity to chemotherapeutics was performed 

using data available in our laboratory for breast, glioma, lung and pancreatic cancer 

cell lines (Table 3.2).   
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Table 3.2: IC50 results for epirubicin, taxotere and temozolomide in lung, breast and 

pancreatic cancer cell lines and in glioma primary cell lines.  Standard deviations for 

triplicate assays are presented.  ND = not determined. 

Cancer type Cell line 
Epirubicin 

(nM) 

Temozolomide 

(µM) 
Taxotere (nM) 

DLKP 170.0 ± 0.8 ND 0.38 ± .02 
Lung 

A549 380.0 ± 4.5 ND 0.25 ± 0 .02 

893 ND 1167.0 ± 17.7 9.30 ± 0.70 

978 ND 1167.0 ± 1.0 3.00 ± 0.20 

152 ND 494.5 ± 1.4 0.50 ±  0.01 
Glioma 

314 ND 575.6 ± 7.1 24.80 ± 0.01 

MCF7 42.5  ± 6.5 ND 3.75 ± 1.41 

MDA-MB-231 16.0 ± 2.0 ND ND Breast 

MDA-MB-453 67.0 ± 4.4 ND 0.78 ± 0.03 

Mia-PaCa-2 25.8 ± 4.1 ND 0.50 ±  0.05 

BxPc-3 68.5 ± 12.3 ND 0.50 ±  0.06 Pancreatic 

KCI-MOH1 10.3 ± 1.3 ND 0.53 ±  0.12 

 

Melanoma cell lines display similar sensitivity to epirubicin as breast and pancreatic 

cancer cell lines, whilst the lung cancer cell lines display significant resistance to 

epirubicin.  Lung cancer and pancreatic cancer cell lines display a similar sensitivity 

to taxotere as the melanoma cell lines.  The glioma primary cell lines display less 

sensitivity to taxotere, although the IC50s are still in the nanomolar range.  TMZ IC50 

values are higher for primary glioma cell lines than for melanoma cell lines.  
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3.4 Expression of ABC transporters in melanoma cell lines 

Expression of MRP-2, ABCB5, MRP-1, P-gP, BCRP and GAPDH were analysed by 

conventional RT-PCR (section 2.6) (Figure 3.3) due to their involvement in drug 

resistance in cancer cells [91]. 

 

MRP-2 mRNA was not detected in normal melanocytes whereas the metastatic 

melanoma cell lines express low levels of MRP2.  ABCB5 mRNA is expressed in 

normal melanocytes and in 5 of the 6 melanoma cell lines.  Lox-IMVI is the only 

melanoma cell line that does not express ABCB5.  MRP-1 mRNA is expressed in the 

normal melanocytes, Sk-Mel-5 and Sk-Mel-28 but was not detected in HT144 and 

M14.   P-gP expression is low in the melanoma panel with only Sk-Mel-5 and M14 

showing detectable levels of P-gP mRNA.  BCRP mRNA was detected at very low 

levels in the normal melanocytes but BCRP mRNA was detected in all of the 

melanoma cell lines apart from Lox-IMVI. 

 

 

 

 

 

 

 

 

Figure 3.3: RT-PCR for the ABC transporters MRP-2, ABCB5, MRP-1, P-gP, BCRP 

and the endogenous control GAPDH in the melanoma cell lines and normal 

melanocytes. 
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3.5 Acquired temozolomide resistance in melanoma cell lines 

3.5.1 Induction of temozolomide resistance in pulse selected melanoma cells 

Malme-3M was ‘pulse selected’ in duplicate (A and B) using 5-daily pulse treatments 

to create temozolomide resistant Malme-3M cell lines (section 2.8).  The IC50 for 

temozolomide in Malme-3M is 306 µM (± 29 µM) (Figure 3.5).  Malme-TMZ (A) 

and Malme-TMZ (B) display significantly increased IC50s for temozolomide of 440 

µM (± 21 µM) (1.44 fold increase (p = 0.004)) and 515 µM (± 45 µM) (1.68 fold 

increase (p = 0.04)).  
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Figure 3.5: Effect of temozolomide in Malme-3M melanoma cell line and the 

temozolomide ‘pulse selected’ variants Malme-TMZ (A) and Malme-TMZ (B).  Error 

bars represent the standard deviation of triplicate assays.   

 

HT144 cells were ‘pulse selected’ with TMZ to establish a resistant cell line which 

could be used to investigate TMZ resistance in melanoma cell lines (section 2.8).  The 

IC50 for TMZ in HT144 cells is 338 µM (± 25 µM) (Figure 3.4).  In HT144-TMZ, the 
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pulse selected variant of HT144, the IC50 increased to 490 µM (± 15 µM) which 

represents a 1.45 fold increase in resistance to TMZ (p = 0.002). 
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Figure 3.4: Effect of temozolomide on growth of HT144 melanoma cell line and the 

temozolomide pulse selected variant HT144-TMZ.  Error bars represent the standard 

deviation of triplicate assays.  

 

3.5.2 Expression of ABC transporters in temozolomide resistant cell lines 

Levels of mRNA expression of ABC transporters were measured in the parent and 

resistant cell lines by conventional RT-PCR (section 2.6) (Figure 3.6).  Malme-3M 

expresses ABCB5, MRP-2 and MRP-1 mRNA but not BCRP or P-gP.  In Malme-

TMZ expression of ABCB5, MRP-2 and MRP-1 mRNA is reduced compared to the 

parent cell line, whilst BCRP expression remains unchanged and P-gP is slightly 

increased. 
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Figure 3.6: RT-PCR for the ABC transporters ABCB5, BCRP, MRP-2 P-gP and 

MRP-1 in Malme-3M and Malme-TMZ cell lines.   

 

3.5.3 Cross resistance of temozolomide pulse selected variants 

During drug selection of cell lines, cells can acquire altered sensitivity to other 

chemotherapeutic drugs.  The two temozolomide selected cell lines were tested with 4 

drugs to examine the chemo-sensitivity between the parent and the resistant cell lines. 

 

The melanoma cell line HT144 and the temozolomide selected variant HT144-TMZ 

display similar sensitivity to cisplatin, epirubicin and taxotere whilst the resistant cell 

line is significantly more sensitive to mitoxantrone (Table 3.3) (p = 0.02).  Malme-3M 

and the pulse selected cell line Malme-TMZ have similar IC50s for epirubicin and 

mitoxantrone.  Malme-TMZ is significantly more resistant to cisplatin (p = 0.001) and 

both HT144-TMZ and Malme-TMZ are significantly more resistant to taxotere than 

the parent cell lines Malme-3M and HT144 (p=0.02; p = 0.02), although the IC50 

values are still in the very low nanomolar range. 
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Table 3.3: IC50 values for cisplatin, epirubicin, mitoxantrone and taxotere in HT144 

and Malme-3M and in the temozolomide resistant cell lines HT144-TMZ and Malme-

TMZ. ‘*’ indicates p < 0.05. 

Cell name Cisplatin (nM) Epirubicin (nM) 
Mitoxantrone 

(nM) 

Taxotere 

(nM) 

HT144 

Parent 

724 

± 82 

8.2 

± 3.6 

39.7 

± 9.4 

0.94 

± 0.08 

HT144- 

TMZ 

996 

± 197 

10.5 

± 3.6 

6.7 * 

± 0.9 

1.31 * 

± 0.08 

Malme-3M 

Parent 

2843 

± 390 

33.8 

± 4.3 

27.6 

± 1.1 

0.74 

± 0.02 

Malme-

TMZ 

5678 * 

± 265  

26.6 

± 1.4 

36.3 

± 9.5 

0.90 * 

± 0.06 

 

3.6 Acquired taxotere resistance in melanoma cell lines 

3.6.1 Induction of taxotere resistance in melanoma cell lines 

HT144 cells were ‘pulse selected’ with taxotere to establish a resistant cell line which 

could be used to investigate taxotere resistance in melanoma cell lines (section 2.9).   

   

The IC50 for taxotere in HT144 is 1.27 nM (± 0.03 nM).  HT144-Tax (A) and HT144-

Tax (B), the duplicate taxotere pulse selected variants of HT144 have taxotere IC50s 

of 1.93 nM (± 0.28 nM) and 2.11 nM (± 0.32 nM) respectively (Figure 3.7). The IC50 
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for taxotere was not significantly increased in HT144-Tax A (p = 0.054) but was 

significantly increased in HT144-Tax (B) (p = 0.043)) compared to the parent cell 

line.   
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Figure 3.7: Effect of taxotere on the growth of HT144 melanoma cell line and the 

taxotere pulse selected variants HT144-Tax (A) and HT144-Tax (B).  Error bars 

represent the standard deviation of triplicate assays.   

 

3.6.2 Expression of ABC transporters in taxotere resistant cell lines 

HT144 cells express low levels of ABCB5, BCRP, MRP-2, P-gP and MRP-1 mRNA 

(Figure 3.8).  In the taxotere pulse selected cell line HT144-Tax (B) levels of BCRP, 

MRP-2 and MRP-1 are increased. 
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Figure 3.8: RT-PCR for the ABC transporters ABCB5, BCRP, MRP-2 P-gP and 

MRP-1 in HT144 and HT144-Tax cell lines.  

 

3.7 BCRP inhibition in melanoma cell lines 

BCRP mRNA was detected in 5 of the 6 melanoma cell lines and not in the normal 

melanocytes.  We tested BCRP inhibition in combination with mitoxantrone to 

determine if BCRP inhibition would enhance the response to chemotherapy in 

melanoma cells.  Two BCRP positive cells, Malme-3M and Sk-Mel-5 were selected 

for this analysis.  In addition DLKP-Mitox has been previously shown by western 

blotting to be positive for BCRP expression (Aoife Devery, unpublished data) and as 

such was used as positive control for BCRP expression. 

  

DLKP-Mitox is a lung cancer cell line that has been pulse selected with mitoxantrone 

a BCRP substrate.  DLKP-Mitox has an IC50 for mitoxantrone of 70.3 nM (± 11.4 

nM).  In combination with the BCRP inhibitor fumitremorgin C (FTC), DLKP-Mitox 

has an IC50 for mitoxantrone of 41.0 nM ± (9.3 nM).  Combination of a non-toxic 

combination of FTC and mitoxantrone in DLKP-Mitox reduced the IC50 of 

mitoxantrone, however the difference was not significant (p = 0.07). 
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Figure 3.10: Analysis of DLKP-Mitox sensitivity to mitoxantrone and in combination 

with 20 µM of fumitremorgin C.  Error bars represent the standard deviation of 

triplicate assays.   

 

Combination of FTC and mitoxantrone in Malme-3M did not increase the sensitivity 

of Malme-3M to mitoxantrone compared to cells tested with mitoxantrone alone 

(Figure 3.11).  In fact combination of FTC and mitoxantrone in Malme-3M increased 

the IC50 value of mitoxantrone (IC50 of mitoxantrone alone = 63 nM (± 17 nM); IC50 

of mitoxantrone in combination with FTC 119 nM (± 29 nM)). 
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Figure 3.11: Analysis of Malme-3M sensitivity to mitoxantrone and the combination 

of 20 µM of the specific BCRP inhibitor FTC and mitoxantrone.  Error bars represent 

the standard deviation of triplicate assays.   

 

The IC50 for mitoxantrone is 6.57 nM (± 0.69 nM) in Sk-Mel-5.  Mitoxantrone in 

combination with FTC yielded an IC50 value of 11.3 nM (± 3.5 nM) (p = 0.3) (Figure 

3.12).   
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Figure 3.12: Sk-Mel-5 sensitivity to mitoxantrone alone and in combination with 20 

µM of FTC.  Error bars represent the standard deviation of triplicate assays.   

 

3.8 MRP-2 inhibition in melanoma cell lines 

MRP-2 mRNA was detected in all 6 melanoma cell lines tested and not in normal 

melanocytes.  We tested MRP-2 inhibition in combination with an MRP-2 substrate 

drug vincristine, to determine if MRP-2 inhibition could improve response to 

chemotherapy in melanoma cells.  The combinations were also tested in Malme-3M.  

MRP-2 2008 an ovarian cancer cell line that over expresses MRP-2 was used as a 

positive control to study inhibition of MRP-2 [181] (Figure 3.13). 

 

The IC50 for vincristine in MRP-2 2008 cells is 12.8 nM (± 1.9 nM).  However the 

addition of the specific MRP-1/MRP-2 inhibitor MK-571 to the cells did not 

significantly reduce the IC50 of vincristine when tested in the MRP-2 2008 cells (10.1 

nM (± 2.0 nM)) (Figure 3.13). 
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Figure 3.13: Analysis of MRP-2-2008 sensitivity to vincristine alone and in 

combination with 7.5 µM of MK-571.  Error bars represent the standard deviation of 

triplicate assays.   

 

The IC50 for vincristine in Malme-3M cells is 0.53 nM (± 0.03 nM).  In combination 

with MK-571 vincristine had an IC50 of 0.46 nM (± 0.9 nM) (p = 0.32) (Figure 3.14).   
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Figure 3.14: Analysis of Malme-3M sensitivity to vincristine alone and in 

combination with 7.5 µM of MK-571.  Error bars represent the standard deviation of 

triplicate assays.   
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3.9 Summary   

Each member of the melanoma cell line panel displayed varying degrees of migration 

and invasion.   Drug sensitivity testing showed that melanoma cells are relatively 

resistant to TMZ treatment in vitro.  The melanoma cell lines displayed in vitro 

sensitivity to taxotere and epirubicin.  This is also the case for the pancreatic and 

glioma cell lines which display sensitivity to the taxanes. 

 

ABC transporters including BCRP and MRP-2 were found to be expressed in the 

melanoma cell line panel.  Despite inhibiting BCRP we found no alteration in 

mitoxantrone sensitivity in the melanoma cell lines.  Inhibition of MRP-2 with 

MK571 was ineffective even in the positive control cell line.   

 

We successfully established two in vitro models of temozolomide resistance.  

Although the taxotere selected cell lines display some resistance, the IC50s for the 

pulse selected cell lines were still in the low nanomolar range. 

 

TMZ is not known to be a substrate for any ABC transporter but the TMZ variant cell 

line Malme-TMZ did show alteration in the expression of some ABC transporters.  P-

gP expression is slightly increased which may account for the very small decrease in 

sensitivity to taxotere observed in this cell line.  The increase in BCRP levels 

observed in HT144-Tax may contribute to the slight decrease in sensitivity to taxotere 

observed as taxotere is also a substrate for BCRP.  
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Chapter 4 

4. In vitro evaluation of the effects of dasatinib in 

melanoma cells 
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4.1 Introduction 

Dasatinib, a multi-tyrosine kinase inhibitor which is currently licensed as a first line 

treatment for chronic myeloid leukaemia, was assessed for its efficacy as an anti-

proliferative/ pro-apoptotic agent in the melanoma cell line panel. 

 

We studied the effect of dasatinib on proliferation, cell cycle and apoptosis induction 

in a panel of melanoma cell lines (section 2.3, 2.10 and 2.11).  Previous studies 

revealed that dasatinib inhibits migration and invasion of other cancer cells [182, 

183], so using the Boyden chamber method we also determined the effect of dasatinib 

on motility and invasion in melanoma cell lines.   

 

Imatinib and dasatinib target similar kinases including PDGF-R, c-Kit and BCR-Abl.  

However, dasatinib also targets other kinases including ephrin A receptors and SRC 

kinase (section 1.7.3.2).  We studied the effect of dasatinib on the protein levels and 

phosphorylation status of the dasatinib targets SRC and EphA2, and on downstream 

signalling pathways including FAK, MAPK and Akt, by immunoblotting (section 

2.12). 

 

4.2 Sensitivity to dasatinib and imatinib 

The effect of dasatinib on proliferation was tested in a panel of ten melanoma cell 

lines (Figure 4.1 and Table 4.1) (section 2.3). The response to dasatinib varies 

significantly across the panel of cell lines.  Lox-IMVI and WM-115 display the 

greatest sensitivity to dasatinib with IC50 values of 35.4 nM (± 8.8 nM) and 79.3 nM 

(± 11.7 nM), respectively.  HT144 and Malme-3M also display some sensitivity to 
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dasatinib with maximum growth inhibition of 40 % and 25 %, respectively, achieved 

in these cell lines at 250 and 300 nM dasatinib respectively. Growth of WM266-4 and 

M14 appear to be unaffected by dasatinib, whilst growth of Sk-Mel-28 was 

substantially and Sk-Mel-5 slightly increased in response to dasatinib treatment. 
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Figure 4.1:   Percentage growth inhibition by dasatinib in a panel of melanoma cell 

lines. Error bars represent the standard deviation of triplicate experiments. 

 

Table 4.1: Percentage growth inhibition achieved when the melanoma cell line panel 

was treated with 300 nM dasatinib.  IC50 values are included where they are achieved. 

Cell line % Growth @ 300 nM 
HT144 50 %  

Lox-IMVI 10 %  
IC50 = 35.4 nM (± 8.8 nM) 

Malme-3M 75 % 
M14 87 % 

Sk-Mel-5 115 % 
Sk-Mel-28 150 % 

WM-115 40 %  
IC50 = 79.3 nM (± 11.7 nM)

WM-266-4 92 % 
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The effect of imatinib, which targets Bcr-Abl, C-Kit and PDGFR, on proliferation 

was also tested in HT144 and Lox-IMVI melanoma cell lines (Figure 4.2).  At 

concentrations up to 5 µM, imatinib did not inhibit proliferation in either cell line 

tested. 
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Figure 4.2:  Proliferation assay showing percentage growth of HT144 and Lox-IMVI 

cells treated with 1, 2 and 5 µM imatinib, relative to the control.  Error bars represent 

the standard deviation of triplicate experiments. 

 

4.3 Effect of dasatinib on invasion and migration 

Three cell lines were selected to test the effects of dasatinib on migration and invasion 

in the melanoma panel.  The cell lines were selected based on their invasive capacity; 

one which displayed a low level of invasion (HT144); one moderately invasive 

(M14); and one highly invasive (Sk-Mel-28) (section 3.2).  The three cell lines also 

represent varying degrees of sensitivity to dasatinib (Table 4.1).  The Boyden 

chamber assay was used to assess migration and invasion (section 2.2).  Dasatinib 

significantly decreased invasion and migration of HT144, M14 and Sk-Mel-28 cells 

(invasion: 25 nM dasatinib: HT144 p = 0.05; M14 p = 0.005; Sk-Mel-28 p = 0.016) 
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(Figure 4.3A), (migration: 25 nM dasatinib: HT144 p = 0.001; M14 p = 0.004; Sk-

Mel-28 p = 0.019) (Figure 4.3B). The concentrations of dasatinib used in the 

invasion/migration assays were non-toxic to the cells. 
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Figure 4.3: Effect of dasatinib on (A) invasion and (B) migration in HT144, M14 and 

Sk-Mel-28 melanoma cell lines.  Error bars represent the standard deviation of 

triplicate assays. ‘*’ indicates p < 0.05 for treated cells compared to controls, using 

the Student’s T-test. 
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4.4 Effect of dasatinib on apoptosis 

Apoptosis induction was measured in three dasatinib sensitive cell lines using a 

TUNEL assay (section 2.10) (Figure 4.4). With increasing concentrations of dasatinib, 

Lox-IMVI and Malme-3M cell lines display increasing apoptosis. However, in HT144 

cells dasatinib does not appear to induce apoptosis with concentrations up to 200 nM 

for 72 hours.  
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Figure 4.4: Measurement of dasatinib induced apoptosis in HT144, Lox-IMVI and 

Malme-3M after 72 hours of treatment using the TUNEL assay. Error bars represent 

the standard deviation of triplicate assays. 

 

4.5 Effect of dasatinib on cell cycle arrest 

The effect of dasatinib treatment on cell cycle arrest was analysed in the melanoma 

cell lines HT144, Lox-IMVI, Malme-3M and Sk-Mel-5.  After 24 hours treatment 

with dasatinib, the cells were analysed for G1 cell cycle arrest.  Images of cellular 

morphology were also acquired at 24 hours to assess if dasatinib, imatinib mesylate or 

PP2 (a SRC kinase inhibitor) altered cell appearance. 
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Treatment with 100 nM dasatinib for 24 hours altered cellular morphology of HT144, 

Lox-IMVI and Sk-Mel-28 cells resulting in a more ‘rounded’ morphology (Figure 

4.5).  This effect was not observed for Malme-3M cells. Treatment with either 

imatinib mesylate or PP2 inhibitor did not affect the cellular morphology after 24 

hours treatment. 

Cell 
Line Control D 100 nM I 200 nM PP2 500 nM 

HT144 
  

Lox-
IMVI 

  

Malme-
3M 

  

Sk-
Mel-5 

   
 

Figure 4.5:  Analysis of the change in cellular morphology of melanoma cell lines 

HT144, Lox-IMVI, Malme-3M and Sk-Mel-5 when treated with 100 nM dasatinib 

(D), 200 nM imatinib (I) or 500 nM PP2 inhibitor, compared to control untreated 

samples. 

 

Dasatinib treatment resulted in a slight increase in the percentage of cells in G1 in 

HT144 (p = 0.07) (Figure 4.6) and significantly increased G1 in Lox-IMVI (p = 

0.0045).  Dasatinib did not alter the percentage of cells in G1 phase in Malme-3M (p 

= 0.59) or Sk-Mel-5 (p = 0.97). In HT144 treatment with dasatinib resulted in a slight 

decrease in G2/M (D100: G2/M phase p = 0.08).  In Lox-IMVI, dasatinib at both the 
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50 nM (D50) and 100 nM (D100) caused a significant decrease in both G2/M and S-

phase (G2/M phase: D50: p = 0.01, D100: p = 0.02; S phase: D50: p = 0.01, D100: p 

= 0.01).  Treatment with imatinib and PP2 inhibitor did not affect the percentage of 

cells in G1, G2/M or S phase in any of the cells lines tested.  
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Figure 4.6: Percentage of A) HT144, B) Lox-IMVI, C) Malme-3M and D) Sk-Mel-5 

cells in the G1, S and G2/M phases of cell cycle. Cells were untreated or treated with 

dasatinib (50, 100, 200 nM), imatinib (200 nM) or PP2 (500 nM).  Error bars 

represent the standard deviation of triplicate assays and ‘*’ indicates p < 0.05 for 

treated cells compared to controls, using the Student’s T-test. 
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4.6 Dasatinib effects on cell signalling 

The effects of dasatinib on cell signalling were assessed by immunoblotting with 

antibodies for both total proteins and phospho-proteins, for the dasatinib targets SRC 

and EphA2, and the downstream signalling pathways FAK, MAPK and Akt.  

 

4.6.1 SRC kinase  

Total SRC kinase protein levels were unaffected by treatment with dasatinib, imatinib 

or PP2 (a specific SRC kinase inhibitor) (Figure 4.7).  Phosphorylated-SRC kinase (p-

SRC) was detected at low levels in all melanoma cell lines.  Treatment with 

increasing doses of dasatinib decreased the phosphorylation of SRC kinase in HT144, 

Lox-IMVI, Malme-3M and Sk-Mel-5 cell lines.  However, increasing doses of 

dasatinib up to 200 nM dasatinib only slightly reduced SRC kinase phosphorylation in 

Sk-Mel-28.  Both imatinib and PP2 reduced p-SRC in Lox-IMVI and Malme-3M but 

did not affect p-SRC in the remaining cell lines.  P-SRC was reduced in all cell lines 

after 30 minutes treatment with 100 nM dasatinib; in Sk-Mel-28 there was a slight 

reduction in p-SRC.  Results for western blotting of α-tubulin are displayed in figure 

4.7.  However, the α-tubulin blots represented are also relevant to the results obtained 

for EphA2, FAK, MAPK and AKT.  In all cases α-tubulin was unaffected by 

dasatinib treatment.   
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Figure 4.7: Western blotting for total SRC kinase, p-SRC kinase pY119 and α-tubulin 

in (A) HT144, Lox-IMVI, Malme-3M, Sk-Mel-5 and  Sk-Mel-28 untreated (control) 

or treated with increasing doses of dasatinib, imatinib (200 nM) or PP2 inhibitor (500 

nM) for 6 hours; and in (B) HT144, Lox-IMVI, Malme-3M Sk-Mel-5 and Sk-Mel-28 

untreated (control) or treated with 100 nM dasatinib for increasing duration (hours).  

 

4.6.2 EphA2  

Treatment with dasatinib reduced the level of EphA2 protein in Malme-3M, however, 

basal levels appear to be restored after 48 hours of treatment with 100 nM dasatinib. 

Treatment with either imatinib or PP2 did not affect the level of EphA2 protein.  

EphA2 levels were also reduced in Sk-Mel-28 when treated with 100 nM dasatinib for 

24 or 48 hours. 
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Figure 4.8: Western blotting for total EphA2 in the panel of melanoma cell lines; and 

in (A) HT144, Lox-IMVI, Malme-3M, Sk-Mel-5 and  Sk-Mel-28 untreated (control) 

or treated with increasing doses of dasatinib for 6 hours or imatinib (200 nM) or PP2 

inhibitor (500 nM) ; and in (B) HT144, Lox-IMVI, Malme-3M Sk-Mel-5 and Sk-Mel-

28 untreated (control) or treated with 100 nM dasatinib for increasing duration 

(hours). 

 

The effect of dasatinib on EphA2 phosphorylation was also analysed in Lox-IMVI by 

immunoprecipitation followed by blotting with a phosphotyrosine antibody (section 

2.13).  Treating cells with 100 nM dasatinib for up to 48 hours resulted in a slight 

increase in EphA2 phosphorylation compared to time zero controls (Figure 4.9).  

 

 

 

 

Figure 4.9: Western blotting for total EphA2 and phosphorylated EphA2 in Lox-IMVI 

melanoma cell line untreated or treated with dasatinib for increasing duration (hours). 
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4.6.3 Focal adhesion kinase  

Treatment with 200 nM dasatinib for 6 hours reduced FAK levels in HT144 and 

Malme-3M; however, FAK levels remain unchanged in all other cell lines tested both 

in the dose response and time course assays (Figure 4.10).  Both imatinib and PP2 

reduced FAK levels in HT144 and Malme-3M, but did not affect FAK levels in other 

cell lines tested.   

 

FAK has multiple phosphorylation sites of which FAK Y397 and Y861 are associated 

with proliferation and motility.  They have also both been identified as being 

important in SRC kinase signalling.  FAK Y397 is an auto-phosphorylation site and 

its activity is required for FAK to function, whilst FAK Y861 is directly 

phosphorylated by SRC kinase.  We therefore studied the effect of dasatinib treatment 

on both phosphorylation sites, to determine the effect on FAK activity. 

 

Dasatinib reduced phosphorylation of FAK Y861 in all cell lines tested and at 

concentrations as low as 5 nM in HT144 and Sk-Mel-28.  Treatment with imatinib 

reduced phosphorylation of FAK Y861 in HT144 and Sk-Mel-28, whilst PP2 reduced 

phosphorylation of FAK Y861 in HT144 and Lox-IMVI.   

 

Treatment with imatinib reduced phosphorylation of FAK Y397 in Malme-3M but 

increased phosphorylation in Sk-Mel-5.  PP2 reduced phosphorylation of FAK Y397 

in HT144 and Lox-IMVI but did not alter phosphorylation in the remaining cell lines. 

In HT144, treatment with up to dasatinib did not reduce phosphorylation of FAK 
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Y397.  In Sk-Mel-5 treatment with 100 nM dasatinib for greater than 30 minutes 

appears to increase FAK Y397 phosphorylation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Western blotting for total FAK, FAK pY 861 and FAK pY 397 in (A) 

HT144, Lox-IMVI, Malme-3M, Sk-Mel-5 and  Sk-Mel-28 untreated (control) or 

treated with increasing doses of dasatinib for 6 hours or imatinib (200 nM) or PP2 

inhibitor (500 nM); and in (B) HT144, Lox-IMVI, Malme-3M, Sk-Mel-5 and Sk-Mel-

28 untreated (control) or treated with 100 nM dasatinib for increasing duration 

(hours). 
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4.6.4 MAPK and AKT 

Dasatinib, imatinib and PP2 did not alter the level of MAPK in the melanoma cell 

lines (Figure 4.11).  Treatment with concentrations over 100 nM dasatinib resulted in 

a reduction in p-MAPK in HT144 and Lox-IMVI cell lines.  Treatment with imatinib 

or PP2 also reduced p-MAPK in Lox-IMVI.   

 

Treatment with 200 nM dasatinib slightly decreased levels of AKT in Malme-3M 

cells; however dasatinib treatment up to 200 nM did not significantly affect the levels 

of AKT in the other cell lines (Figure 4.11).  Phosphorylated-AKT (p-AKT) levels 

were low in HT144, Lox-IMVI and Sk-Mel-5. There was a reduction in the levels of 

p-AKT in response to dasatinib in Malme-3M and Sk-Mel-28.  Imatinib decreased p-

AKT in HT144, Lox-IMVI and Malme-3M cell lines whilst PP2 decreased p-AKT in 

Lox-IMVI, Sk-Mel-5 and Sk-Mel-28. 
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Figure 4.11: Western blotting for (A) total MAPK and p-MAPK and (B) total AKT 

and p-AKT in HT144, Lox-IMVI, Malme-3M, Sk-Mel-5 and  Sk-Mel-28 untreated 

(control) or treated with increasing doses of dasatinib for 6 hours or imatinib (200 

nM) or PP2 (500 nM). 

 

4.7 Summary  

Dasatinib inhibited growth of five of the 10 melanoma cell lines tested. In the 

dasatinib sensitive cell line, Lox-IMVI dasatinib treatment induced cell cycle arrest, 

whilst in HT144 dasatinib induced apoptosis.  Dasatinib also significantly inhibited 

cell migration and invasion in the three melanoma cell lines tested. 

 

Dasatinib testing reduced p-SRC in all cell lines tested apart from Sk-Mel-28 where 

p-SRC was unaffected by dasatinib.  Treatment with imatinib or PP2 only appeared to 

reduce p-SRC in dasatinib sensitive cell lines.   
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Dasatinib treatment resulted in the increase in phosphorylation of EphA2 in Lox-

IMVI, however this was in contrast with results seen in Malme-3M and Sk-Mel-28 

where dasatinib treatment reduced the total protein levels of EphA2.  

 

Dasatinib reduced phosphorylation of FAK Y861 in all cell lines regardless of their 

sensitivity to the drug.  In contrast, PP2 only reduced phosphorylation of FAK Y861 

in dasatinib sensitive cell lines, whilst imatinib only reduced phosphorylation of FAK 

Y861 in HT144.   

 

Increasing doses of dasatinib reduced p-MAPK in HT144 and Lox-IMVI only. 

Imatinib and PP2 also reduced p-MAPK in Lox-IMVI but had no affect on MAPK 

levels or phosphorylation in the remaining cell lines. Imatinib treatment reduced the 

phosphorylation of AKT in the dasatinib sensitive cell lines, whilst PP2 reduced 

phosphorylation in Lox-IMVI and the dasatinib resistance cell lines.   
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Chapter 5 

5. Evaluation of dasatinib in combination with 

current therapies in melanoma 



 124

5.1 Introduction 

In general, greater clinical benefit is observed with tyrosine kinase inhibitors when 

they are combined with other therapies, such as chemotherapy, radiotherapy or other 

targeted therapies.  Therefore, we tested dasatinib in combination with chemotherapy 

drugs and in combination with sorafenib, a B-Raf targeted therapy which is currently 

in clinical trials for melanoma. 

  

We tested dasatinib in combination with temozolomide (TMZ), taxotere and 

epirubicin in an attempt to identify synergistic combinations for melanoma treatment.  

We also tested dasatinib in combination with sorafenib in dasatinib sensitive cell 

lines, and the triple combination of dasatinib with TMZ and sorafenib. 

 

We have previously shown that our TMZ resistant cell lines have altered sensitivity to 

certain chemotherapy drugs compared to the parent cell lines (section 3.5.3). We also 

tested these TMZ resistant cell lines to determine if sensitivity to dasatinib was 

altered.  

 

5.2 Dasatinib in combination with chemotherapy 

The effect of dasatinib in combination with chemotherapy was examined in three 

dasatinib responsive cell lines, Lox-IMVI, HT144, Malme-3M, and in two dasatinib-

resistant cell lines, M14 and Sk-Mel-28. In Lox-IMVI, combination index (CI) values 

(section 2.25) revealed the combination of dasatinib and TMZ was nearly additive (CI 

value at Effective Dose 50 (ED50) = 0.88 ± 0.03) (Table 5.1, Figure 5.1).  CI values 

could not be calculated for the remaining cell lines as dasatinib alone did not achieve 
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an IC50 at the concentrations tested.  However, in both HT144 and Malme-3M, 

dasatinib enhanced response to TMZ (Table 5.1 and Figure 5.1). The IC50 for TMZ 

was significantly reduced when TMZ was tested in combination with dasatinib 

(HT144 p = 0.038; Malme-3M p = 0.024).  In M14, which shows the weakest 

response to dasatinib, there appears to be a significant enhancement of the effect of 

TMZ when combined with dasatinib (p = 0.001).  

 

Table 5.1: Comparison of the IC50 value of TMZ tested alone and in combination with 

dasatinib in the melanoma panel. p-values were determined using the Student’s t-test. 

Combination index (CI) values were determined in Lox-IMVI as IC50 values were 

achieved for both dasatinib and temozolomide 

Cell Line TMZ IC50 
TMZ IC50 when tested in 

combination with dasatinib 
p value 

HT144 359 ± 53 µM 227 ± 53 µM 0.038  

Lox-IMVI 204 ± 30 µM CI @ ED50 = 0.88 ± 0.03  n/a 

Malme-3M 274 ± 35 µM 170 ± 13 µM 0.024  

M14 519 ± 17 µM 351 ± 25 µM 0.001  

Sk-Mel-28 465 ± 19 µM 412 ± 45 µM 0.170 
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Figure 5.1: Combination assays testing dasatinib with TMZ at the specified ratios in 

(A) HT144 (ratio 1:1500), (B) Lox-IMVI (ratio 1:3000), (C) Malme-3M (ratio 1:800) 

and (D) M14 (ratio 1:800) cells.  Concentrations of TMZ are represented as a ratio of 

the dasatinib concentration. Error bars represent the standard deviation of triplicate 

experiments. 

  C Malme -3M D M14
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In Sk-Mel-28, which is resistant to dasatinib, TMZ combined with dasatinib produces 

a similar response to TMZ alone (Figure 5.2). 

 

 

  

 

 

 

 

 

Figure 5.2: Combination assay testing dasatinib with TMZ at the specified ratio in Sk-

Mel-28 (ratio 1:800) cells.  Concentrations of TMZ are represented as a ratio of the 

dasatinib concentration. Error bars represent the standard deviation of triplicate 

experiments. 

 

The effects of dasatinib in combination with epirubicin and taxotere were also 

examined in HT144, Lox-IMVI and M14 (Figure 5.3).  In HT144 dasatinib combined 

with epirubicin had a significantly greater inhibitory effect than either drug tested 

alone (Table 5.2).  However, the combination of taxotere and dasatinib did not 

significantly enhance inhibition compared to taxotere alone in HT144.  In Lox-IMVI, 

the combination of 25 nM dasatinib and 25 nM epirubicin significantly reduced 

growth compared to either drug alone; however at higher concentrations the 

combination was ineffective.  Finally, combining taxotere and dasatinib in Lox-IMVI 

did not significantly increase inhibition compared to testing either drug alone.  

Dasatinib had no effect on response to epirubicin or taxotere in M14 cells. 
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Figure 5.3: Combination assays of dasatinib (D) with epirubicin (E) or taxotere (T) in 

a) HT144, b) Lox-IMVI and c) M14. Drug concentrations are in nM.  Error bars 

represent standard deviations of triplicate experiments.  
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Table 5.2: Comparison of percentage growth inhibition caused by testing either 

epirubicin or taxotere alone and in combination with dasatinib in HT144 melanoma 

cell line. p-values were determined using the Student’s T-test.  

HT144 Chemo 
only 

200 nM 
dasatinib 

400 nM 
dasatinib 

dasatinib 
+ chemo p values 

Epirubicin 
100 nM 55.6 ± 4.0 58.5 ± 4.8 - 24.2 ± 6.0 

E vs DE 
p <  0.01 
D vs DE 
p < 0.01 

Epirubicin 
200 nM 48.5 ± 2.7 - 58.2 ± 3.9 14.2 ± 2.9 

E vs DE 
p <  0.01 
D vs DE 
p < 0.01 

Taxotere 
1.5 nM 63.9 ± 17.4 58.5 ± 4.8 - 58.1 ± 7.6 

T vs DT 
p = 0.63 
D vs DT 
p = 0.93 

Taxotere 3 
nM 46.0 ± 7.9 - 58.2 ± 3.9 33.4 ± 2.8 

T vs DT 
p =  0.15 
D vs DT 
p < 0.01 

Table 5.3: Comparison of the percentage growth inhibition caused by testing either 

epirubicin or taxotere alone and in combination with dasatinib in Lox-IMVI 

melanoma cell line. p-values were determined using the Student’s T-test.  

Lox-IMVI Chemo 
alone 

25 nM 
dasatinib 

50 nM 
dasatinib 

dasatinib 
+ chemo p values 

Epirubicin
25 nM 58.8 ± 5.0 57.5 ± 10.5 - 35.8 ± 5.8 

E vs DE 
p =  0.01 
D vs DE 
p = 0.05 

Epirubicin 
50 nM 45.3 ± 2.9 - 34.2 ± 6.5 23.8 ± 6.1 

E vs DE 
p = 0.01 
D vs DE 
p = 0.11 

Taxotere 
1.5 nM 84.0 ± 24.2 57.5 ± 10.5 - 48.1 ± 6.1 

T vs DT 
p = 0.12 
D vs DT 
p = 0.27 

Taxotere 3 
nM 78.8 ± 22.3 - 34.2 ± 6.5 17.0 ± 3.8 

T vs DT 
p =  0.19 
D vs DT 
p = 0.02 
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5.3 Sensitivity to sorafenib in melanoma cells 

Sorafenib, a multi-target tyrosine kinase inhibitor, is currently in clinical trials in 

combination with TMZ for the treatment of melanoma.  We tested sorafenib as a 

single agent, combinations of sorafenib with dasatinib and finally the triple 

combination of sorafenib, dasatinib and TMZ in melanoma cell lines. 

 

The response to sorafenib was similar across the panel of six melanoma cell lines 

tested.  Sk-Mel-5 displays the greatest sensitivity to sorafenib with an IC50 of 1.8 µM 

(± 0.3 µM).  HT144 and Sk-Mel-28 are the most resistant cell lines to sorafenib with 

IC50 values of 3.9 µM (± 0.6 µM) and 4.1 µM (± 0.4 µM), respectively. 

 

 

 

 

 

 

 

 

 

Figure 5.4: Percentage growth inhibition by sorafenib in the melanoma cell lines, 

HT144, Lox-IMVI, Malme-3M, M14, Sk-Mel-5 and Sk-Mel-28.  Error bars represent 

the standard deviation of triplicate experiments. 

 

In Lox-IMVI, the combination of dasatinib and sorafenib enhanced growth inhibition 

compared to either inhibitor tested alone (Figure 5.5).   CI values (CI @ ED25 = 1.21 
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± 0.08: CI @ ED50 = 1.11 ± 0.04: CI @ ED75 = 1.05 ± 0.10) revealed the combination 

of dasatinib and sorafenib was nearly additive at ED50 and ED75.  The combination of 

dasatinib and sorafenib was also tested in a single experiment in HT144 and M14; 

however the combination did not improve response compared to sorafenib or 

dasatinib alone. 

 

 

 

 

 

 

 

 

 

Figure 5.5: Combination assays of dasatinib with sorafenib at the specified ratio in 

Lox-IMVI (dasatinib: sorafenib 1:60) cells.  Concentrations of sorafenib are 

represented as a ratio of the dasatinib concentration. Error bars represent the standard 

deviation of triplicate experiments. 

 

The triple combination of dasatinib and sorafenib enhanced growth inhibition in Lox-

IMVI compared to either inhibitor or TMZ alone (Figure 5.6).  CI values revealed that 

at ED50 the combination of dasatinib, sorafenib and TMZ produced a nearly additive 

response (CI @ ED25 = 1.25 ± 0.17: CI @ ED50 = 0.97 ± 0.16: CI @ ED75 0.79 ± 

0.15) and at ED75 the combination produced a slightly synergistic affect.   
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Figure 5.6: Triple combination assays of dasatinib with sorafenib and TMZ at the 

specified ratio in Lox-IMVI (dasatinib: sorafenib: TMZ 1:60:3000) cells.  

Concentrations of sorafenib and TMZ are represented as a ratio of the dasatinib 

concentration.  Error bars represent the standard deviation of triplicate experiments.  

 

The combination of dasatinib, sorafenib and TMZ was also tested in Malme-3M 

(Figure 5.7).  The combination of drugs enhanced growth inhibition when compared 

to each of the drugs alone.  One-way ANOVA analysis confirmed that combinations 

of dasatinib, sorafenib and TMZ were more effective than each drug on its own at 

concentrations of 37.5 nM (p = 0.008), 75 nM (p = 0.001) and 150 nM (p = 0.002) 

dasatinib in Malme-3M cells. CI values were not calculated as dasatinib does not 

achieve greater than 50% growth inhibition in this cell lines, at the concentrations 

tested. 
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Figure 5.7: Triple combination assays of dasatinib with sorafenib and TMZ at the 

specified ratio in Malme-3M (dasatinib: sorafenib: TMZ 1:60:3000) cells.  

Concentrations of sorafenib and TMZ are represented as a ratio of the dasatinib 

concentration. Standard error bars represent the average result of triplicate assays.  ‘*’ 

indicates that the combination of dasatinib, sorafenib and TMZ is significantly more 

effective than testing dasatinib, sorafenib or TMZ on its own, as determined by one-

way ANOVA analysis. 

 

5.4 Sensitivity of TMZ resistant melanoma cell lines to dasatinib 

We have shown that dasatinib in combination with TMZ has a greater effect on 

proliferation of melanoma cells than either drug alone (section 5.2).  We examined 

whether the TMZ resistant cell lines displayed altered sensitivity to dasatinib (Table 

5.4) and secondly whether the combination of TMZ and dasatinib was effective in the 

resistant cell lines.   
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HT144-TMZ is approximately 3-fold more sensitive and Malme-TMZ is 

approximately 5-fold more sensitive to 1 µM dasatinib than the parental HT144 and 

Malme-3M cell lines (Table 5.4). 

 

Table 5.4:  Percentage inhibition of proliferation induced by dasatinib in HT144 and 

Malme-3M and the TMZ resistant variants HT144-TMZ and Malme-TMZ.  

Cell Line HT144 HT144-TMZ Malme-3M Malme-TMZ

Dasatinib 

(% inhibition @ 1 µM) 

23 

± 10 

70 

± 10 

14 

± 10 

70 

± 6 

 

Dasatinib, as previously described, enhanced response to TMZ in the parent cell line 

Malme-3M (section 5.2).  We compared the effect of dasatinib plus TMZ in Malme-

TMZ and Malme-3M (Figure 5.8 A+B).   

 

In the TMZ resistant cell line Malme-TMZ, the combination of dasatinib and TMZ 

resulted in a significant decrease in the IC50 for TMZ compared to testing TMZ alone 

(TMZ alone IC50 = 267 µM ± 29 µM; TMZ IC50 in combination with dasatinib = 68 

µM ± 24 µM (p=0.001)) (Figure 5.8A).  CI values showed that the combination of 

dasatinib and TMZ was synergistic in Malme-TMZ at ED25 and ED50 concentrations 

(C.I. @ ED25 = 0.56 ± 0.24: CI @ ED50 = 0.79 ± 0.28: CI @ ED75 = 1.40 ± 0.45) 

(Figure 5.8B).   

 

A direct comparison of the combination of dasatinib and TMZ in Malme-3M and 

Malme-TMZ showed that the combination was more effective in Malme-TMZ cells 

than in Malme-3M cells, at concentrations ranging from 3 nM to 62.5 nM dasatinib 

(Figure 5.8C). 
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Figure 5.8: Combination assays of dasatinib with TMZ at the specified ratio in A) 

Malme-3M and B) Malme-TMZ (ratio dasatinib:TMZ - 1:800).  C)  Comparison of 

the combination of temozolomide and dasatinib in both Malme-3M and Malme-TMZ.  

Concentrations of TMZ are represented as a ratio of the dasatinib concentration.  

Error bars represent the standard deviation of triplicate experiments.  ‘*’ indicates that 
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the combination of dasatinib and TMZ was significantly more effective in Malme-

TMZ than in Malme-3M at the displayed concentrations. 

 

To analyse why TMZ resistant cell lines display greater sensitivity to dasatinib we 

examined whether the TMZ exposure in the resistant cell lines altered the levels or 

phosphorylation of SRC kinase in the resistant cells compared to the parent cell lines. 

 

Using western blotting, we showed that exposure to TMZ had no effect on the basal 

levels of total SRC kinase protein in Malme-TMZ compared to Malme-3M (Figure 

5.9A).  However, TMZ exposure significantly increased p-SRC levels in Malme-TMZ 

compared to Malme-3M.  Treatment with increasing doses of dasatinib resulted in a 

decrease in the p-SRC levels in both Malme-3M and Malme-TMZ (Figure 5.9B). 
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Figure 5.9: Western blotting for total SRC kinase, p-SRC kinase Y119 and α-tubulin 

in (A) Malme-3M and Malme-TMZ; and in (B) Malme-3M and Malme-TMZ 

untreated (control) or treated with increasing doses of dasatinib (nM) for 6 hours. 

5.5 Summary 

Dasatinib in combination with TMZ showed significantly greater efficacy than testing 

either drug alone in HT144, Lox-IMVI, Malme-3M and M14.  Combinations of 

dasatinib with epirubicin significantly enhanced growth inhibition in two dasatinib 

sensitive cell lines; however combinations of dasatinib with taxotere only enhanced 

growth inhibition in Lox-IMVI. 

 

The IC50 values for sorafenib in the melanoma cell lines range from 1.8 µM – 4.1 µM.  

Thus, in dasatinib sensitive melanoma cell lines, dasatinib inhibits growth at 

significantly lower concentrations than sorafenib.  Dasatinib combined with sorafenib 

slightly enhanced growth inhibition in Lox-IMVI.  The triple combination of dasatinib 

and sorafenib with TMZ also showed improved response in Lox-IMVI and Malme-

3M.   

 

Intriguingly cell lines which have acquired TMZ resistance appear to have increased 

sensitivity to dasatinib compared to the parental cell lines.  The combination of 

dasatinib and TMZ was also more effective in TMZ resistant cell lines compared to 

the parent cell lines.  Phospho-SRC levels are increased in Malme-TMZ when 

compared to Malme-3M cells, and this may contribute to the TMZ resistance and the 

increased dasatinib sensitivity observed.  
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Chapter 6 

6. Biomarkers for dasatinib treatment in 
melanoma 
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6.1 Introduction 

Increasing numbers of novel therapies are emerging from pharmaceutical pipelines 

and entering clinical trials.  The success of such targeted therapies in particular patient 

subgroups will depend on the availability of appropriate predictive biomarkers to 

select patients most likely to respond to a specific therapy. Therefore, biomarkers are 

now of fundamental importance in the road map of drug development. 

 

Huang et al [184] identified and validated a six candidate marker genes which 

predicted response to dasatinib in breast cancer cells lines. Five genes, namely 

annexin-A1 (ANXA1), caveolin-1 (CAV-1), caveolin-2 (CAV-2), ephrin-A2 (EphA2) 

and polymerase I and transcript release factor (PTRF) were expressed at higher levels 

and insulin-like growth factor binding protein 2 (IGFBP2) was expressed at lower 

levels in dasatinib sensitive breast cancer cell lines.  We performed q-RT-PCR and 

western blotting in our panel of melanoma cell lines to determine whether the 6-gene 

predictive panel is also predictive of response to dasatinib in melanoma cells. We then 

selected genes whose expression at either the mRNA or protein level displayed the 

strongest correlation with dasatinib response in our melanoma cell line panel, and 

examined expression of these potential biomarkers in melanoma tumour samples 

using immunohistochemical staining. 

 

6.2 Evaluation of Src, EphA2 and FAK as biomarkers for dasatinib therapy in 

melanoma cell lines 

We have previously shown that EphA2, FAK and SRC kinase are expressed and 

phosphorylated in the panel of melanoma cell lines (Figure 6.1) and that dasatinib 
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treatment resulted in changes in phosphorylation status.  We therefore examined 

whether expression or phosphorylation of these proteins correlates with dasatinib 

sensitivity in the melanoma cell lines HT144, Lox-IMVI, Malme-3M, Sk-Mel-5 and 

Sk-Mel-28.  Of the 5 melanoma cell lines studied, each cell line expressed SRC 

kinase and had detectable levels of phosphorylation at Y418 (Figure 6.1).  However, 

there was no apparent association between either expression or phosphorylation of 

SRC kinase and sensitivity to dasatinib in the cell lines studied.  FAK expression and 

phosphorylation were also analysed in the melanoma panel however, again neither 

expression nor phosphorylation correlated with dasatinib response. Interestingly, 

EphA2 was expressed and phosphorylated at higher levels in HT144, Lox-IMVI and 

Malme-3M, which are more sensitive to dasatinib than Sk-Mel-5 and Sk-Mel-28.    

 

 

 

 

 

 

 

 

Figure 6.1: Western blotting for SRC kinase, phospho-SRC kinase, 

immunoprecipitated (IP) EphA2, phospho-EphA2, FAK, phospho-FAK Y861, and α-

tubulin in the panel of melanoma cell lines. (S) indicates that cell lines are sensitive to 

dasatinib and (R) indicates that cell lines are dasatinib resistant.  
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6.3 Evaluation of a 6-gene predictive biomarker panel by qRT-PCR 

Previous work performed by Huang et al [184] correlated microarray data and 

sensitivity to dasatinib in 23 breast cancer cell lines and identified a panel of 6 genes 

that predicted response to dasatinib. Their results indicated that five genes, ANXA1, 

CAV1, CAV2, EPHA2 and PTRF, are expressed at higher levels and one gene, 

IGFBP2, is expressed at lower levels in dasatinib-sensitive breast cancer cell lines 

compared to dasatinib-resistant cell lines.   Levels of mRNA were highest for CAV-1, 

CAV-2 and EphA2 as detected by qRT-PCR and Affymetrix GeneChip analysis.  

Levels of mRNA for IGFBP2 were significantly lower in dasatinib sensitive breast 

cancer cell lines.  In an attempt to correlate work by Huang et al, (2007) with our 

melanoma cell line panel, we firstly classified our cell lines as either dasatinib 

responsive or dasatinib resistant (Table 6.1).  The cell lines Lox-IMVI, WM-115, 

HT144 and Malme-3M were classified as dasatinib responsive as dasatinib treatment 

(300 nM) causes greater than 20 % inhibition of proliferation.  Sk-Mel-28, Sk-Mel-5, 

WM-266-4 and M14 were classified as dasatinib resistant as less than 20 % inhibition 

of proliferation was achieved when treated with 300 nM dasatinib.   

 

Table 6.1:  Classification of melanoma cell lines as dasatinib responsive or dasatinib 

resistant based on response to dasatinib at 300 nM.  

Dasatinib responsive Dasatinib Resistant 
Cell Line % inhibition @ 300 nM Cell Line % inhibition @ 300 nM 

Lox-IMVI 90 % Sk-Mel-28 - 50 % a 
WM-115 60 % Sk-Mel-5 - 15 % a 
HT144 50 % WM-266-4 13 % 

Malme-3M 25 % M14 8 % 
‘a’ recorded values represent that dasatinib resulted in increased levels of proliferation 

compared to untreated cells. 
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qRT-PCR analysis (section 2.7) was performed on the 8 melanoma cell lines to 

determine the mRNA levels of the 6 dasatinib predictive genes (Figure 6.2).  Cell 

lines were compared to a control sample (a pooled sample which consisted of an equal 

volume of mRNA from each of the cell lines used for analysis) which reflected the 

average mRNA expression of all the cell lines tested.  A result less than 1 indicates 

lower expression than the control whilst a result of greater than 1 indicates elevated 

expression relative to the control. qRT-PCR of the 6 gene predictive marker in the 

melanoma cell lines revealed that EphA2 mRNA levels are higher than the control in 

dasatinib-sensitive WM-115 and Lox-IMVI, whilst EphA2 mRNA is lower in the 

remaining cell lines.  CAV-1 mRNA levels are higher in Lox-IMVI and WM-115 

cells but are also found to be higher in dasatinib resistant M14 and WM-266-4 cells 

compared to the control.  The remaining cell lines have lower CAV-1 mRNA levels 

compared to the control.  ANXA-1 mRNA levels are higher in WM-115 and Lox-

IMVI but ANXA1 mRNA levels are also higher in the dasatinib resistant cell line 

M14.  ANXA1 mRNA levels are lower in the remaining cell lines compared to the 

control.  CAV-2 mRNA is higher in Malme-3M and WM-115 which are dasatinib 

sensitive cell lines but is lower in all other cell lines tested compared to the control.  

PTRF is lower in all dasatinib sensitive cell lines whilst it is higher in dasatinib 

resistant WM266-4 and M14 cell lines.  IGFBP2 mRNA levels are higher in dasatinib 

sensitive WM-115 and dasatinib resistant Sk-Mel-5 and WM266-4 but are lower in 

the remaining cell lines regardless of sensitivity to dasatinib. 
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Figure 6.2:  Relative expression levels of A) EphA2, B) CAV-1, C) ANXA1, D) 

CAV-2, E) IGFBP2 and F) PTRF mRNA measured by qRT-PCR.  Relative 

expression is measured compared to the control mix (a combination of equal amounts 

of mRNA from each cell line tested). Black bars represent dasatinib resistant cell 

lines; grey samples represent dasatinib responsive samples.  Error bars represent 

standard deviations for technical triplicates of samples. 
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We also averaged the expression of the 6 gene predictive marker at the mRNA levels 

in the dasatinib responsive and resistant cell lines to examine their relationship with 

response to dasatinib in the panel of cell lines.  Levels of CAV-1 and EphA2 mRNA 

were slightly higher and IGFBP2 mRNA levels were slightly lower in dasatinib 

responsive cell lines compared to dasatinib resistant cell lines (Figure 6.3), however 

these results were not significant (p = 0.446; p = 0.265; p = 0.639 respectively).  

CAV-2 mRNA levels were also lower in dasatinib resistant cell lines compared to 

dasatinib responsive cell lines but again the results were not significant (p = 0.422).   
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Figure 6.3: Expression levels of PTRF, IGFBP2, EphA2, CAV2, ANXA1 and CAV-1 

candidate markers measured by q-RT-PCR.  The average expression of technical 

triplicate results of candidate markers in the dasatinib responsive and resistant cell 

lines was compared to the control.   

 

6.4 Protein expression of biomarker panel in melanoma cell lines 

Western blot analysis was performed for each of the proteins encoded by the 6-gene 

predictive biomarker panel (Figure 6.5 and Figure 6.6). EphA2 was detected in 6 of 

the 8 melanoma cell lines tested.  Significantly higher levels of EphA2 were detected 
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in dasatinib responsive cell lines compared to dasatinib resistant cell lines (p = 0.02).  

CAV-1 was detected in all sensitive cell lines but in only 2 of the 4 resistant cell lines, 

however expression was significantly higher in dasatinib responsive cell lines (p = 

0.05).  ANXA-1 was detected in all cell lines; however significantly higher levels 

were detected in dasatinib responsive cell lines (p = 0.04).  Levels of CAV-2 were 

detected in all cell lines tested with no difference in expression between dasatinib 

responsive and resistant cell lines (p = 0.22).  PTRF was detected in the 4 dasatinib 

responsive cell lines and in 3 out of 4 dasatinib resistant cell lines and there was no 

significant difference in expression between the cell lines (p = 0.14). IGFBP2 was 

detected in all the cell lines.  The expression of IGFBP2 was slightly higher in 

dasatinib responsive cell lines though the result was not statistically significant (p = 

0.06).    

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4:  Immunoblotting for EphA2, CAV-1, ANXA1, CAV-2, IGFBP2 and 

PTRF in dasatinib responsive and dasatinib resistant melanoma cell lines. 
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Figure 6.5:  Relative expression levels of A) EphA2, B) CAV-1, C) ANXA1, D) 

CAV-2, E) IGFBP2 and F) PTRF protein levels measured by western blotting.  

Relative expression was measured by densitometry measurement of band intensities 

compared to the α-tubulin endogenous control. Black bars represent dasatinib 

resistant cell lines; grey samples represent dasatinib sensitive samples.  Error bars 

represent standard deviations for triplicate independent experiments. 
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Figure 6.6: Expression levels of PTRF, IGFBP2, EphA2, CAV2, ANXA1 and CAV-1 

candidate markers measured by densitometry from triplicate western blots.  The 

average expression of candidate markers in the dasatinib responsive cell lines was 

compared to the expression in the dasatinib resistant cell lines.  ‘*’ indicates that the p 

value is < 0.05. 

 

ANOVA analysis was used to determine if there were significant differences between 

mRNA and protein expression of ANXA1, CAV-1, CAV-2, EphA2, IGFBP2 and 

PTRF in the dasatinib responsive and resistant cell lines (Figure 6.6).    ANXA1 

expression was found to be similar at both mRNA and protein levels in dasatinib 

responsive and resistant cell lines (dasatinib responsive p = 0.285; dasatinib resistant 

p = 0.448). mRNA and protein levels of CAV-2 and EphA2 were similar in the 

dasatinib resistant cell lines; however the mRNA and protein expression were 

significantly altered in the dasatinib sensitive cell lines (CAV-2 - dasatinib responsive 

p = 0.039; dasatinib resistant p = 0.152: EphA2 - dasatinib responsive p = 0.003; 

dasatinib resistant p = 0.098).  CAV-1, IGFBP2 and PTRF were expressed at similar 

levels at both the mRNA and protein levels in dasatinib sensitive cell lines.  However 
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in the dasatinib resistant cell lines there were significant differences between protein 

and mRNA expression (CAV-1 - dasatinib responsive p = 0.074; dasatinib resistant p 

= 0.002: IGFBP2 - dasatinib responsive p = 0.192; dasatinib resistant p < 0.001: 

PTRF dasatinib responsive p = 0.323; dasatinib resistant p = 0.004).  

 

As expression of ANXA1, CAV-1 and EphA2 were significantly higher in dasatinib 

sensitive melanoma cell lines compared to dasatinib resistant cell lines; we selected 

CAV-1 for further analysis in melanoma tumour samples, to examine the frequency of 

expression of the markers in melanoma and their association with melanoma 

progression.  Because SRC has been shown to play an important role in metastasis in 

melanoma we also examined its expression in the melanoma tumour samples. 
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6.5 Immunohistochemistry analysis of selected biomarkers  

6.5.1 Patient characteristics 

A cohort of 126 melanoma tumour samples was used for immunohistochemical 

analysis.  In 7 cases, samples were available from a primary melanoma and a 

metastatic melanoma from the same patient.  Patients are predominantly female and 

greater than 60 years of age, however 34 % of patients are less than 60 (Table 6.2).  

Patient tumour samples are mainly from the primary melanoma site (67 %) and 33 % 

from metastatic melanoma. 

 

Breslow thickness and Clark’s level data were not available for 44 % and 49 % of 

patients respectively.  Where data was available, 54 % (n = 38/70) of tumours had a 

Breslow thickness of less than 2 mm, and 46 % (n = 32/70) had a Breslow thickness 

of greater than 2 mm.  The Clark’s level was III or less in 29 % (n = 37/64) of cases 

and IV or V in 42 % (n = 27/64) of cases. 

 

Of the 52 patients for whom data on lymph node dissection was available, 56 % (n = 

28/52) were lymph node positive, whilst 44 % (n = 24/52) were lymph node negative.   
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Table 6.2:  Clinicopathological characteristics of melanoma tumour samples (n=138) 

used for immunohistochemical analysis of CAV-1 and SRC kinase expression 

Characteristic Number of cases (%)
Age 
< 60 43 (34 %) 
≥ 60 83 (66 %) 
Sex 
Male 46 (37 %) 
Female 80 (63 %) 
Tumour type  
Primary melanoma 84 (67 %) 
Metastatic melanoma 42 (33 %) 
Breslow thickness (mm) 
n/a  56 (44 %) 
< 1 28 (40 %) 
1 – 1.9 10 (14 %) 
2 – 3.9 12 (17 %) 
> 4 20 (29 %) 
Clarke’s Level  
n/a 62 (49 %) 
II 8 (13 %) 
III 29 (45 %) 
IV 20 (31 %) 
V 7 (11 %) 
Lymph node status  
n/a 74 (59 %) 
Positive 28 (56 %) 
Negative 22 (44 %) 

 

6.6.1 Caveolin-1 expression in melanoma samples 

From the 126 samples stained for CAV-1, scores were only obtained for 122, due to a 

number of slides not containing tumour specimen. 

   

Fifty-four tumour samples (44 %) were positive for CAV-1 expression (Table 6.3).  

CAV-1 expression was associated with age (p = 0.0581) but the result was not 

significant.  Patients who were greater than 60 years of age had lower expression of 
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CAV-1 than patients who were 60 years or younger (Figure 6.7).  CAV-1 expression 

was not associated with gender or tumour type (primary versus metastatic) (Table 

6.4). 

 

In the primary melanoma patient samples Breslow thickness was compared to CAV-1 

expression according to the the groups of Breslow thickness (e.g. 1 = <1mm; 2 = 

1mm-1.9mm; 3 = 2mm – 4mm; 4 = >4mm) [185]  (p = 0.1081) and according to 

prognostic value (p = 0.4038) (1 = < 2 mm, 5-year survival rate of 80-100%; 2 = ≥ 

2mm, 5-survival rate of 50-75%) [186].   

 

CAV-1 expression was compared with grouped Clarkes level (p = 0.7748) where a 

Clarkes level of III or less correlated with invasion to the dermal junction, and a 

Clarkes level of greater than III correlated with invasion past the dermal junction into 

the dermis and subcutaneous fat.  
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Table 6.3: Relationship between clinico-pathological factors and expression of CAV-

1 protein in primary and metastatic melanoma specimens. Breslow thickness, Clarkes 

levels and lymph node status were only compared in the primary melanoma samples. 

P values were determined using the Chi-Squared test. 

Characteristic Caveolin-1 positive (%) p-value 
Total number  54/122 (44 %)  
Age 
≤ 60 24/43 (56 %) 
> 60 29/76 (38 %) 

0.0581 

Sex 
Male 22/44 (50 %) 
Female 32/78 (41 %) 

0.4 

Tumour type 
Primary melanoma 39/82 (48 %) 
Metastatic melanoma 15/40 (38 %) 

0.2936 

Breslow thickness 
n/a 53/122 (43 %) n/a 
< 1 mm 17/28 (61 %) 
1.0 mm – 1.9 mm 3/9 (33 %) 
2.0 mm – 3.9 mm 3/12 (25 %) 
> 4 mm 12/20 (60 %) 

0.1081 

Grouping 0 – 2 mm 20/37 (55 %) 
Grouping > 2 mm 15/32 (47 %) 

0.4038 

Clarkes Level 
n/a 59/122 (48 %) n/a 
II 7/8 (88 %) 
III 13/29 (45 %) 
IV 10/19 (53 %) 
V 5/7 (71 %) 

0.1424 

Grouping I, II, III 20/37 (54 %) 
Grouping IV, V 15/26 (60 %) 

0.7748 

Lymph node status 
n/a 95/122 (78 %) n/a 
Positive  4/6 (67 %) 
Negative 11/21 (52 %) 

0.5346 
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Figure 6.7:  Difference in the % of patients who were positive for CAV-1 staining in 

patients less than or equal to 60 years of age or greater than 60 years of age.  

 

6.6.2 Percentage of tumour cells positive for CAV-1 expression in melanoma 

samples 

CAV-1 expression was also graded according to the percentage of tumour cells that 

were positive for CAV-1 (0 = 0 %; 1 = ≤ 25 %; 2 = >25 % - ≤ 50 %; 3 ≥ 50).  The 

percentage of tumour cells positive for CAV-1 expression was associated with age (p 

= 0.0587).  Patients who were greater than 60 were more frequently negative for 

CAV-1 staining than patients who were 60 years or younger (Figure 6.8).  CAV-1 

expression was not associated with gender (p = 0.0934) and was also not significantly 

associated with either metastatic or primary tumours (p = 0.4723). 

 

In the primary melanoma tumour samples, the percentage of tumour cells positive for 

CAV-1 expression did not correlate with Breslow thickness, Clarkes level or lymph 

node status (Table 6.4).   
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Table 6.4: Correlation between clinico-pathological factors and the percentage of 

tumour cells positive for CAV-1 expression in primary and metastatic melanoma 

specimens. Breslow thickness, Clarkes levels and lymph node status were only 

compared in the primary melanoma samples.  P values were determined using the 

Chi-Squared test. 

Characteristic % tumours cells positive for CAV-1 expression 
(%) 

p-
value 

 0 % ≤ 25 % 26 – 50 % > 50 %  
Age  
≤ 60 19 (44%) 15 (35%) 6 (14%) 3 (7%) 
> 60 49 (62%) 11 (14%) 13 (16%) 6 (8%) 

0.0587

Sex  
Male 22 (50%) 14 (32%) 7 (16%) 1 (2%) 
Female 46 (59%) 12 (15%) 12 (15%) 8 (10%) 

0.0934

Tumour type  
Primary melanoma 43 (52 %) 20 (24%) 14 (17%) 5 (6%) 
Metastatic 
melanoma 26 (63%) 5 (12%) 6 (15%) 4 (10%) 

0.4723

Breslow thickness  
n/a 53/126 (42 %) n/a 
< 1 mm 11 (32%) 9 (56%) 5 (36%) 3 (60%) 
1.0 mm – 1.9 mm 6 (18%) 1 (6%) 2 (14%) 0 (0%) 
2.0 mm – 3.9 mm 9 (26%) 2 (12%) 0 (0%) 1 (20%) 
> 4 mm 8 (24%) 4 (26%) 7 (50%) 1 (20%) 

0.2851

Grouping 0 – 2 mm 17 (50%) 11 (69%) 7 (50%) 3 (60%) 
Grouping > 2 mm 17 (40%) 5 (31%) 7 (50%) 2 (40%) 

0.6241

Clarkes Level  
n/a 59/122 (48 %) n/a 
II 1 (3%) 5 (31%) 1 (7%) 1 (20%) 
III 16 (57%) 6 (38%) 4 (29%) 3 (60%) 
IV 9 (32%) 4 (25%) 5 (36%) 1 (20%) 
V 2 (7%) 1 (6%) 4 (29%) 0 (0%) 

0.1059

Grouping I, II, III 17 (61%) 11 (69%) 5 (36%) 4 (80%) 
Grouping IV, V 11 (39%) 5 (31%) 9 (64%) 1 (20%) 

0.1950

Lymph node status  
n/a 95/122 (78%) n/a 
Positive  2 (17%) 1 (17%) 2 (33%) 1 (33%) 
Negative 10 (83%) 5 (83%) 4 (67%) 2 (67%) 

0.8099
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Figure 6.8:  % of cells positive for CAV-1 expression in tumours from patients who 

are less than or equal to 60 years of age compared to patients who are greater than 60 

years of age.  

 

6.6.3 Intensity of Caveolin-1 expression in melanoma samples 

CAV-1 expression was also scored according to the intensity of tumour cell staining 

(0 = none; 1 = weak; 2 = moderate; 3 = strong).  CAV-1 expression was not 

significantly associated with age (p = 0.2707), gender (p = 0.6991) or with either 

metastatic or primary tumours (p = 0.2445). In the primary melanoma patient samples 

CAV-1 expression did not correlate with Breslow thickness, Clarkes level or lymph 

node status (Table 6.5).   
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Table 6.5: Correlation between clinico-pathological factors and intensity of staining 

for CAV-1 protein in primary and metastatic melanoma specimens. Breslow thickness 

, Clarkes levels and lymph node status were only compared in the primary melanoma 

samples.  P values were determined using the Chi-Squared test. 

Characteristic Caveolin-1 intensity (%) p-
value 

 None Weak Moderate Strong  
Age  
≤ 60 23 (53%) 6 (14%) 6 (14%) 8 (19%) 
> 60 44 (56%) 7 (9%) 20 (25%) 8 (10%) 

0.2707

Sex  
Male 24 (55%) 3 (7%) 10 (23%) 7 (16%) 
Female 43 (55%) 10 (13%) 16 (21%) 9 (12%) 

0.6991

Tumour type  
Primary melanoma 41 (50%) 11 (13%) 20 (24%) 10(12%) 
Metastatic 
melanoma 26 (65%) 2 (5%) 6 (15%) 6 (15%) 

0.1383

Breslow thickness  
n/a 53/122 (43%) n/a 
< 1 mm 10 (30%) 5 (56%) 8 (50%) 5 (46%) 
1.0 mm – 1.9 mm 6 (18%) 1 (11%) 1 (6%) 1 (9%) 
2.0 mm – 3.9 mm 9 (27%) 1 (11%) 1 (6%) 1 (9%) 
> 4 mm 8 (24%) 2 (22%) 6 (38%) 4 (36%) 

0.5542

Grouping 0 – 2 mm 16 (49%) 6 (67%) 9 (56%) 6 (55%) 
Grouping > 2 mm 17 (51%) 3 (33%) 7 (44%) 5 (45%) 

0.4818

Clarkes Level  
n/a 59/122 (48 %) n/a 
II 1 (4%) 3 (34%) 3 (18%) 1 (9%) 
III 15 (56%) 4 (44%) 5 (29%) 5 (46%) 
IV 9 (33%) 2 (22%) 5 (29%) 3 (27%) 
V 2 (7%) 0 (0%) 3 (18%) 2 (18%) 

0.3844

Grouping I, II, III 16 (59%) 7 (78%) 8 (50%) 6 (54%) 
Grouping IV, V 11 (41%) 2 (22%) 8 (50%) 5 (46%) 

0.5864

Lymph node status  
n/a 95/122 (78%) n/a 
Positive  2 (17%) 0 (0%) 2 (40%) 2 (29%) 
Negative 10 (83%) 3 (100%) 3 (60%) 5 (71%) 

0.5421
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6.7.1 SRC kinase expression in melanoma samples 

Ninety four tumour samples (76 %) were positive for SRC expression (Table 6.6).    

SRC expression was not significantly associated with age (p = 0.2897), gender (p = 

0.3554) or with either metastatic or primary tumours (p = 0.0890). 

 

In the primary melanoma patient samples, SRC expression did not correlate with 

Breslow thickness, Clarkes level or lymph node biopsy status (Table 6.6).  
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Table 6.6: Correlation between clinico-pathological factors and expression of SRC 

kinase protein in primary and metastatic melanoma specimens. Breslow thickness, 

Clarkes levels and lymph node status were only compared in the primary melanoma 

samples.  P values were determined using the Chi-Squared test. 

Characteristic SRC kinase positive (%) p-value 
Total number  94/124 (76 %)  
Age 
≤ 60 24/32 (75 %) 
> 60 59/92 (64 %) 

0.2897 

Sex 
Male 37/46 (80 %) 
Female 57/78 (73 %) 

0.3554 

Tumour type 
Primary melanoma 66/82 (81 %) 
Metastatic melanoma 28/42 (67 %) 

0.0890 

Breslow thickness 
n/a 53/122 (43 %) n/a 
< 1 mm 22/27 (82 %) 
1.0 mm – 1.9 mm 7/10 (70 %) 
2.0 mm – 3.9 mm 10/12 (83 %) 
> 4 mm 18/20 (90 %) 

0.5944 

Grouping 0 – 2 mm 29/37 (78 %) 
Grouping > 2 mm 28/32 (88 %) 

0.3743 

Clarkes Level 
n/a 59/122 (48 %) n/a 
II 8/8 (100 %) 
III 23/28 (82 %) 
IV 17/20 (85 %) 
V 6/7 (86 %) 

0.6519 

Grouping I, II, III 31/36 (86 %) 
Grouping IV, V 23/27 (85 %) 

0.9172 

Lymph node status 
n/a 75/122 (61 %) n/a 
Positive  4/6 (67 %) 
Negative 18/21 (86 %) 

0.2895 
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6.7.2 Percentage of tumour cells positive for SRC expression in melanoma 

samples 

Expression was also graded according to the % of tumour cells that are positive for 

SRC (0 = 0 %; 1 = ≤ 25 %; 2 = >25 % - ≤ 50 %; 3 ≥ 50).  The percentage of tumours 

positive for SRC expression was not significantly associated with age (p = 0.6102), 

gender (p = 0.7791) or with either metastatic or primary tumours (p = 0.1332). 

 

The percentage of tumour cells positive for SRC expression did not correlate with 

Breslow thickness, Clarkes level or lymph node status (Table 6.7).   
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Table 6.7: Correlation between clinico-pathological factors and the percentage of 

tumours positive for SRC expression in primary and metastatic melanoma specimens. 

Breslow thickness, Clarkes levels and lymph node status were only compared in the 

primary melanoma samples.  P values were determined using the Chi-Squared test. 

Characteristic % of tumour cells positive for SRC 
expression (%) 

p-
value 

 0 % ≤ 25 % 26–50% > 50 %  
Age  
≤ 60 8 (19%) 7 (16%) 9 (21%) 19 (44%) 
> 60 22 (27%) 13 (16%) 19(24%) 27 (33%) 

0.6102

Sex  
Male 9 (20%) 7 (15%) 11(24%) 19 (41%) 
Female 21 (27%) 13 (16%) 17(22%) 27(35%) 

0.7791

Tumour type  
Primary melanoma 16 (20 %) 13 (16%) 17(20%) 36 (44%) 
Metastatic 
melanoma 14 (33%) 7 (17%) 11(26%) 10 (24%) 

0.1332

Breslow thickness  
n/a 53/122 (43 %) n/a 
< 1 mm 5 (41%) 5 (46%) 5 (33%) 12 (39%) 
1.0 mm – 1.9 mm 3 (25%) 2 (18%) 1 (7%) 4 (13%) 
2.0 mm – 3.9 mm 2 (17%) 1 (9%) 3 (20%) 6 (19%) 
> 4 mm 2 (17%) 3 (27%) 6 (40%) 9 (29%) 

0.924 

Grouping 0 – 2 mm 8 (67%) 7 (64%) 6 (67%) 16 (52%) 
Grouping > 2 mm 4 (33%) 4 (36%) 9(33%) 15 (48%) 

0.6693

Clarkes Level  
n/a 59/122 (48 %) n/a 
II 0 (0%) 2 (20%) 2 (15%) 4 (13%) 
III 5 (56%) 2 (20%) 6 (46%) 15 (48%) 
IV 3 (33%) 6 (60%) 3 (24%) 8 (26%) 
V 1 (11%) 0 (0%) 2 (15%) 4 (13%) 

0.5405

Grouping I, II, III 5 (56%) 4 (36%) 8 (62%) 19 (63%) 
Grouping IV, V 4 (44%) 6 (64%) 5 (38%) 12 (37%) 

0.6755

Lymph node status  
n/a 75/122 (61%) n/a 
Positive  2 (40%) 1 (25%) 2 (33%) 1 (8%) 
Negative 3 (60%) 3 (75%) 4 (67%) 11 (92%) 

0.4402
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6.7.3 Intensity of SRC kinase expression in melanoma samples 

SRC expression was scored according to the intensity of SRC tumour cell staining (0 

= none; 1 = weak; 2 = moderate; 3 = strong).  SRC expression was not significantly 

associated with age (p = 0.3677), gender (p = 0.8079) or with either metastatic or 

primary tumours (p = 0.3465) (Table 6.8). 

 

SRC expression did not correlate with Breslow thickness, Clarkes level or lymph 

node status (Table 6.8).   
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Table 6.8: Correlation between clinico-pathological factors and intensity of staining 

for SRC kinase in primary and metastatic melanoma specimens. Breslow thickness, 

Clarkes levels and lymph node status were only compared in the primary melanoma 

samples.  P values were determined using the Chi-Squared test. 

Characteristic SRC kinase intensity (%) p-
value 

 None Weak Moderate Strong  
Age 
≤ 60 8 (19 %) 8 (19 %) 16 (36 %) 11 (26 %) 
> 60 22 (27%) 14(17%) 19 (24 %) 26 (32 %) 

0.3677

Sex  
Male 9 (20 %) 9 (20 %) 13 (27%) 15(33%) 
Female 21 (27%) 13 (17%) 22 (28%) 22(28%) 

0.8079

Tumour type  
Primary melanoma 16 (20%) 15 (17%) 26 (32%) 25(31%) 
Metastatic 
melanoma 14 (33%) 7 (17%) 9 (21%) 12(29%) 

0.3465

Breslow thickness  
n/a 53/122 (45%) n/a 
< 1 mm 5 (41%) 7 (50%) 9 (43%) 6 (27%) 
1.0 mm – 1.9 mm 3 (25%) 0 (0%) 3 (14%) 4 (18%) 
2.0 mm – 3.9 mm 2 (17%) 1 (7%) 6 (29%) 3 (14%) 
> 4 mm 2 (17%) 6 (43%) 3 (14%) 9 (41%) 

0.2625

Grouping 0 – 2 mm 8 (67%) 7 (50%) 12(57%) 10 (46%) 
Grouping > 2 mm 4 (33%) 7 (50%) 9(43%) 12 (54%) 

0.5690

Clarkes Level  
n/a 59/122 (48 %) n/a 
II 0 (0%) 3 (27%) 2 (10%) 3 (14%) 
III 5 (56%) 1 (9%) 14(67%) 8 (36%) 
IV 3 (33%) 5 (46%) 4 (18%) 8 (36%) 
V 1 (11%) 2 (18%) 1 (5%) 3 (14%) 

0.1906

Grouping I, II, III 5 (55%) 4 (36%) 16(76%) 11 (50%) 
Grouping IV, V 4 (45%) 7 (64%) 5 (24%) 11 (50%) 

0.1376

Lymph node status  
n/a 75/122 (62%) n/a 
Positive  2 (40%) 3 (50%) 0 (0%) 1 (10%) 
Negative 3 (60%) 3 (50%) 6 (100%) 9 (90%) 

0.1036
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In the cohort of 138 melanoma patients, both primary and metastatic samples were 

available for 7 patients.  We compared the expression of CAV-1 and SRC in these 

paired samples.  However because the numbers of paired samples were so small, it 

was not possible to get significant results for these comparisons (Table 6.9). 

 

Table 6.9:  Comparison of CAV-1 and SRC expression between the paired primary 

and metastatic melanoma patient samples. 

 CAV-1  SRC 
Primary melanoma 1/7 5/7 

Metastatic melanoma 0/6 3/7 
P - value 0.3352 0.2801 

 

6.8 Summary 

Our results suggest that neither expression nor phosphorylation of Src kinase or FAK 

predict response to dasatinib in our panel of melanoma cell lines. 

 

We analysed a 6-gene predictive biomarker, previously validated in breast cancer cell 

lines, in our melanoma cell line panel.  Expression of individual genes at the mRNA 

level did not correlate with response to dasatinib.  However, when protein levels were 

analysed, expression of ANXA1, CAV-1 and EphA2 was significantly higher in 

dasatinib sensitive cell lines compared to resistant cell lines.  

 

CAV-1 was detected in 44 % of melanoma tumour samples, and CAV-1 expression 

was significantly associated with patients over 60 years of age.  SRC was detected in 

73 % of melanoma tumour samples and was found to be expressed at significantly 

higher levels in patients who were lymph node negative compared to lymph node 

positive patients.   
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Chapter 7 

7. Phosphoproteomic analysis of dasatinib 

sensitive WM-115 and dasatinib resistant 

WM266-4 melanoma cells 
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7.1 Introduction 

WM-115 is a melanoma cell line derived from the primary site of a melanoma patient.  

WM-266-4 was derived from a metastatic melanoma from the same patient.  We have 

shown that the primary cell line, WM-115 is sensitive to dasatinib, while the 

metastatic melanoma cell line, WM-266-4 is resistant to dasatinib (section 4.1). 

Phosphoproteomic analysis was performed to identify markers of response and 

resistance to dasatinib in melanoma cell lines.  Our model compares two isogenic 

populations of cells representing both primary and metastatic cell lines.   

 

Following phosphoprotein enrichment, we used two phosphoproteomic approaches to 

identify phosphoproteins associated with dasatinib response/resistance, namely 2D-

DIGE analysis and phosphoprotein staining of 2D gels using the Pro-Q Diamond 

stain, both followed by protein identification using LC-MS and MALDI-ToF-ToF-MS 

(section 2.20). The 2D-DIGE analysis provides information on differences in the 

abundance of particular phosphoproteins identified while the Pro-Q Diamond staining 

detects differences in the level of phosphorylation of specific proteins. 

 

Finally, using bioinformatics software packages such as PANTHER analysis and 

Pathway Studio, we interrogated our protein lists to examine associations between 

specific proteins and melanoma or dasatinib sensitivity. 

 

7.2 2-D DIGE analysis  

Protein lysates were prepared from WM-115 and WM-266-4 melanoma cells which 

were untreated or treated with 100 nM dasatinib for 6 hours (section 2.15).  
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Phosphoprotein enrichment was performed, and the yield of phosphoprotein was 

approximately 10 % of total protein.  Two-dimensional DIGE proteomic analysis was 

performed on the phosphoprotein samples as previously described (section 2.17).  

2,500 spots were detected on the DIGE gels, and each spot was assigned a unique ID 

number (Figure 7.1).  The results of each set of replicate gels were analysed using the 

DeCyder differential in-gel analysis (DIA) module, and the difference in protein 

expression between two samples is expressed as fold-change.  The DeCyder software 

produces 3-D images of protein abundance, and constructs graphs of relative protein 

abundance of each of the samples analysed. 
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Figure 7.1:   Example of DIGE gel images from Gel no. 1 scanned at different 

wavelengths to reveal spots from A. Cy3-labelled WM-115 Ctrl cells, B. Cy5-labelled 

WM-115 dasatinib treated cells.  The spots detected by the DeCyder software are 

marked with green dots.  C. and D. are cropped pictures of A and B, respectively, 

focusing on the upper region of the gel, with the location of spot ID 1582 (Annexin 

A2) circled. 

 

A B

C D

Spot ID 
1582 

Spot ID 
1582 
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7.3 Phosphoprotein identification by LC-MS and MALDI-ToF-MS 

Comparisons of phosphoprotein levels were performed on WM-115 versus WM-266-

4 cells, WM-115 untreated versus dasatinib-treated cells, WM-266-4 untreated versus 

dasatinib-treated cells and dasatinib-treated WM-115 versus dasatinib-treated WM-

266-4 cells (Table 7.1).  Triplicate results were analysed by ANOVA. 

Phosphoproteins which demonstrated a fold-change of ≥ 1.2 and a significant p value 

(≤ 0.05) were further analysed. Student t-tests were also performed on each individual 

comparison and proteins with a significant T-test p value (≤ 0.05) were included in 

the analysis.  Of the 2,500 spots detected on the DIGE gels, 203 spots showed 

significantly altered levels of abundance in one or more comparisons, and were 

picked for identification by MALDI-ToF-ToF-MS and LC-MS.   

 

Table 7.1:   Summary of the comparisons performed in DeCyder software and 

displayed in Tables 7.2-7.5. 

Comparison Table 
Number of spots 

showing significant 
change 

Number proteins 
identified by MS 

WM-115 vs. WM-266-4 Table 7.2 156 61 
WM-115 vs. 

WM-115 dasat treated Table 7.3 82 33 

WM-266-4 vs. 
WM-266-4 dasat treated Table 7.4 21 7 

WM-115 dasat vs. 
WM-266-4 dasat treated Table 7.5 134 54 

In the comparison of WM-115 untreated cells versus WM-266-4 untreated cells, of 

the 61 significantly altered phosphoproteins identified by LC-MS and MALDI-ToF-

MS analysis, 29 proteins were significantly higher in the primary melanoma cell line 

WM-115 compared to the metastatic melanoma cell line WM-266-4 (Table 7.2).  A 

further 32 proteins were significantly lower in WM-115 cells compared to WM-266-4 

cells.  The proteins displaying the greatest fold increase in abundance in WM-115 
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untreated cells were members of the annexin family (ANXA1 and ANXA2) and 

moesin (MSN) whilst there was also significant decrease in lambda crystalin homolog 

(CRYL1). 

 

Table 7.2: Identified phosphoproteins altered in untreated WM-266-4 cells compared 

to untreated WM-115 cells. Phosphoproteins which demonstrated a fold-change of ≥ 

1.2 and a p value (≤ 0.05) were included for analysis.   

Master 
No. Protein ID Fold 

Change 
1-

ANOVA 
Gene 
I.D. 

1193 Actin B -4.59 2.3E-06 ACTB 
1582 Annexin-A2 -3.74 1.4E-06 ANXA2 
1619 Annexin-A1 -3.19 1.4E-06 ANXA1 
730 Moesin -3.18 .00012 MSN 
1639 Annexin-A1 -3.07 1.4E-05 ANXA1 

910 Protein disulfide isomerise-related 
protein 5 -2.82 3.8E-05 PDIA5 

801 Transketolase -2.68 0.00054 TKT 
720 78 kDa glucose-regulated protein -2.67 1.5E-05 GRP78 
1494 Fructose bisphosphate aldolase -2.60 1.3E-05 ALDOA 

1618 Glyceraldehyde-3-phosphate 
dehydrogenase -2.53 5.4E-07 GAPDH 

703 Radixin -2.52 0.00087 RDX 
694 Moesin -2.50 0.0005 MSN 

842 Protein disulfide isomerise-related 
protein 3 -2.38 0.00014 PDIA3 

304 Glyceraldehyde-3-phosphate 
dehydrogenase -2.29 1.2E-07 GAPDH 

1151 Tryptophanyl-tRNA synthetase -2.24 7.10E-07 WARS 
837 Serum Albumin -2.19 6.70E-05 ALB 

1768 Glyceraldehyde-3-phosphate 
dehydrogenase -2.11 0.0044 GAPDH 

1620 Annexin-A2 -1.98 2.8E-05 ANXA2 
1270 Citrate synthase -1.96 0.0027 CS 
2365 S100 calcium binding protein A10 -1.95 1.2E-06 S100A10
716 Radixin -1.90 0.0021 RDX 
1609 Annexin-A2 -1.88 2.3E-05 ANXA2 

909 Protein disulfide isomerise-related 
protein 5 -1.85 0.0031 PDIA5 

1245 Alpha-enolase -1.81 9.6E-06 ENO1 



 170

Master 
No. Protein ID Fold 

Change 
1-

ANOVA 
Gene 
I.D. 

1024 Alpha-enolase -1.78 5.5E-05 ENO1 
1658 Annexin-A2 -1.73 1.10E-05 ANXA2 
1480 Annexin-A1 -1.71 0.0073 ANXA1 
683 Radixin -1.61 0.0083 RDX 
2017 Proteasome subunit beta type-1 -1.27 0.00055 PSBM1 
1976 High mobility group protein B1 1.23 0.014 HMGB1 
2090 Peroxiredoxin-2 1.29 0.0018 PRDX2 
2223 Nucleoside diphosphate kinase A 1.42 0.00038 NDKA 

855 Succinate dehydrogenase [ubiquinone] 
flavoprotein subunit 1.44 0.0003 SDHA 

2070 Peroxiredoxin-2 1.47 0.0044 PRDX2 

1170 Protein disulfide isomerise-related 
protein 5 1.52 0.016 PDIA5 

1415 Actin B  1.54 0.0079 ACTB 
975 Pyruvate kinase M2 1.54 0.001 PKM2 

1113 Chain A, Human Tryptophanyl-tRNA 
Synthase 1.58 5.8E-6 WARS 

453 Eukaryotic elongation factor 2 1.68 0.0044 EEF-2 
1238 Alpha-enolase 1.78 0.012 ENO1 
941 Stress-induced-phosphoprotein 1 1.78 3.7E-05 STIP1 
1523 Annexin-A1 1.94 0.00038 ANXA1 

1095 Protein disulfide isomerise-related 
protein 5 1.94 0.008 PDIA3 

1772 Actin B-related protein 2/3 complex 
subunit 2 2.02 0.0004 ARPC2 

800 Glycerol-3-phosphate dehydrogenase 2.05 0.00016 GPD1 
1115 Suppression of tumorigenicity 13 2.07 0.00021 ST13 
1139 Fascin 1 2.08 0.00021 FSCN 1 
1091 Protein disulfide-isomerase A3 2.14 0.00039 PDIA3 
1064 Protein disulfide-isomerase A3 2.2 2.00E-07 PDIA3 
1063 Fascin 1 2.29 0.0011 FSCN1 
964 Moesin 2.32 0.0001 MSN 
1156 Glutathione synthetase 2.33 5.2E-07 GSHB 
1083 Glucose-6-phosphate 1-dehydrogenase 2.46 4.3E-08 G6PD 
1148 Tryptopehnyl tRNA synthase isoform b 2.49 1.10E-08 WARS 
1093 Protein disulfide-isomerase A3 2.7 3.30E-06 PDIA3 

735 DNA K-type molecular chaperone 
HSPA5 precursor 2.79 1.7E-05 HSPA5 

832 Heat shock cognate 71 kDa protein 3.15 7.3E-08 HSC71 
984 Seryl-tRNA synthetase 3.42 1.8E-05 SARS 
819 Heat shock-related 70 kDa protein 2 3.78 0.00016 HSPA1A
2148 Peroxiredoxin 2 isoform b 4.32 2.40E-08 PRDX2 
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Master 
No. Protein ID Fold 

Change 
1-

ANOVA 
Gene 
I.D. 

1752 Lambda-crystallin homolog 24.17 3.00E-10 CRYL1 
 

In the WM-115 cells, 14 identified phosphoproteins were increased in the dasatinib 

treated cells compared to the control cells (Table 7.3).  A further 18 phosphoproteins 

were decreased in dasatinib treated WM-115 cells compared to the untreated cells.  

MSN, peroxiredoxin 2 (PRDX2), 78 kDa glucose-regulated protein (GRP78) and 

radixin (RDX) displayed the largest fold decrease in abundance.  Dasatinib treatment 

also increased the abundance of ANXA2 and S100 calcium binding protein A10 

(S100A10). 

 

Table 7.3:  Identified phosphoproteins altered in WM-115 dasatinib treated cells 

compared to untreated WM-115 cells.  Phosphoproteins which demonstrated a fold-

change of ≥ 1.2 and a significant p value (≤ 0.05) were included for analysis.   

Master 
No. Protein ID Fold 

Change 
1-

ANOVA Gene I.D.

730 Moesin -2.98 0.00012 MSN 
2148 Peroxiredoxin 2 isoform b -2.69 2.40E-08 PRDX2 
720 78 kDa glucose-regulated protein -2.68 1.50E-05 GRP78 
703 Radixin -2.46 0.00087 RDX 
801 Transketolase -2.38 0.00054 TKT 
694 Moesin -2.30 0.0005 MSN 
683 Radixin -1.91 0.0083 RDX 
837 Serum Albumin -2.19 6.70E-05 ALB 

842 Protein disulfide isomerase-related 
protein 3 -2.38 0.00014 PDIA3 

716 Radixin -1.84 0.0021 RDX 

910 Protein disulfide isomerase-related 
protein 5 -1.73 3.80E-05 PDIA5 

909 Protein disulfide isomerase-related 
protein 5 -1.66 0.0031 PDIA5 

1768 Glyceraldehyde-3-phosphate 
dehydrogenase -1.44 0.0044 GAPDH 

756 Moesin -1.41 0.034 MSN 
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Master 
No. Protein ID Fold 

Change 
1-

ANOVA Gene I.D.

1480 Annexin-A1 -1.37 0.0073 ANXA1 
1021 Glucose-6-phosphate 1-dehydrogenase -1.34 0.02 G6PD 
975 Pyruvate kinase M2 -1.34 0.001 PKM2 
1245 Alpha-enolase -1.31 9.60E-06 ENO1 

1170 Protein disulfide isomerase-related 
protein 5 1.34 0.016 PDIA5 

2090 Peroxiredoxin-2 1.35 0.0018 PRDX2 
1960 Peroxiredoxin-4 1.36 0.0015 PRDX4 
429 Alpha-Actinin-4 1.38 0.029 ACTN4 
1619 Annexin-A1 1.40 1.40E-05 ANXA1 

1618 Glyceraldehyde-3-phosphate 
dehydrogenase 1.43 5.40E-07 GAPDH 

304 Glyceraldehyde-3-phosphate 
dehydrogenase 1.43 1.20E-07 GAPDH 

1415 Actin B 1.51 0.0079 ACTB 
784 Stress-70 protein 1.79 0.046 GRP75 
1620 Annexin-A2 1.97 2.80E-05 ANXA2 
1666 Annexin-A2 2.17 0.013 ANXA2 
1609 Annexin-A2 3.02 2.30E-05 ANXA2 
1658 Annexin-A2 3.06 1.10E-05 ANXA2 
2365 S100 calcium binding protein A10 7.03 1.20E-06 S100A10 

Of the proteins identified in WM-266-4 cells, dasatinib treatment decreased 6 and 

increased 1 phosphoprotein compared to untreated WM-266-4 cells (Table 7.4).  The 

phosphoproteins which displayed the largest decrease in abundance were Annexin-3 

(ANXA3), high mobility group protein B1 (HMGB1), whilst there was also an 

increase in PRDX2.  

 

Table 7.4:  Identified phosphoproteins altered in dasatinib treated WM-266-4 cells 

compared to untreated WM-266-4 cells.  Phosphoproteins which demonstrated a fold-

change of ≥ 1.2 and a significant p value (≤ 0.05) were included for analysis.   

Master 
No. Protein ID Fold 

Change 
1-

ANOVA 
Gene 
I.D. 

1671 Annexin-A3 -1.64 0.0018 ANXA3 
1976 High mobility group protein B1 -1.57 0.014 HMGB1
719 Radixin -1.42 0.0055 RXN 
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Master 
No. Protein ID Fold 

Change 
1-

ANOVA 
Gene 
I.D. 

832 Heat shock cognate 71 kDa protein -1.33 7.30E-08 HSC71 
720 78 kDa glucose-regulated protein -1.29 1.50E-05 GRP78 
1083 Glucose-6-phosphate 1-dehydrogenase -1.22 4.30E-08 G6PD 
2090 Peroxiredoxin-2 1.33 0.0018 PRDX2 

  

Comparison of phosphoproteins identified in dasatinib treated WM-266-4 and WM-

115 cells showed that 20 phosphoproteins were lower and 34 phosphoproteins were 

higher in dasatinib treated WM-266-4 cells compared to dasatinib treated WM-115 

cells (Table 7.5).  Four forms of ANXA2, which were identified, showed lower 

abundance in dasatinib-treated WM-266-4 than dasatinib-treated WM-115 cells, and 

lower levels of S100A10 were also observed.  Significantly higher levels of CRYL1 

and PRDX2 were observed in dasatinib treated WM-266-4 cells compared to 

dasatinib treated WM-115 cells. 

  

Table 7.5: Identified phosphoproteins altered in dasatinib treated WM-266-4 cells 

compared to dasatinib treated WM-115 cells.  Phosphoproteins which demonstrated a 

fold-change of ≥ 1.2 and a significant p value (≤ 0.05) were included for analysis.  

Master 
No. Protein ID Fold 

Change 
1-

ANOVA 
Gene 
I.D. 

2365 S100 calcium binding protein A10 -11.80 1.20E-06 S100A10
1658 Annexin-A2 -5.46 1.10E-05 ANXA2 
1609 Annexin-A2 -5.35 2.30E-05 ANXA2 
1582 Annexin-A2 -5.13 1.40E-06 ANXA2 
1619 Annexin-A1 -4.49 1.40E-05 ANXA1 
1913 Actin B -3.98 2.30E-06 ACTB 
1639 Annexin-A1 -3.98 1.40E-05 ANXA1 
1620 Annexin-A2 -3.72 2.80E-05 ANXA2 

304 Glyceraldehyde-3-phosphate 
dehydrogenase -3.07 1.20E-07 GAPDH 

1618 Glyceraldehyde-3-phosphate 
dehydrogenase -3.01 5.40E-07 GAPDH 

1024 Alpha Enolase -2.81 5.50E-05 ENO1 
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Master 
No. Protein ID Fold 

Change 
1-

ANOVA 
Gene 
I.D. 

1666 Annexin-A2 -2.41 0.013 ANXA2 
1151 Tryptophanyl-tRNA synthetase -2.18 7.10E-07 WARS 
1494 Fructose bisphosphate aldolase -1.98 1.30E-05 ALDOA 
1270 Citrate synthase -1.6 0.0027 CS 
1671 Annexin-A3 -1.58 0.0018 ANXA3 

910 protein disulfide isomerase-related 
protein 5 -1.49 3.80E-05 PDIA5 

2017 Proteasome subunit beta type-1 -1.44 0.00055 PSMB1 
1245 Alpha Enolase -1.42 9.60E-06 ENO1 
1021 Glucose-6-phosphate 1-dehydrogenase -1.22 0.02 G6PD 
995 HSP60 1.25 0.037 HSP60 
1960 Peroxiredoxin-4 1.25 0.0015 PRDX4 
1856 Proteasome subunit alpha type a 1.29 0.021 PSMA4 
2223 Nucleoside diphosphate kinase A 1.35 0.00038 NDKA 

1817 Actin B-related protein 2/3 complex 
subunit 2 1.43 0.02 ARPC2 

1098 Protein disulfide-isomerase A3 1.45 0.0014 PDIA3 

855 Succinate dehydrogenase [ubiquinone] 
flavoprotein subunit 1.49 0.0003 SDHA 

2269 Non-metastatic cells 2 1.51 0.012 NM23B 
1523 Annexin A1 1.54 0.00038 ANXA1 
1238 Alpha-enolase 1.72 0.012 ENO1 

1113 Chain A; Human Tryptophanyl-Trna 
Synthase 1.78 5.80E-06 WARS 

800 Glycerol-3-phosphate dehydrogenase 1.79 0.00016 GPDM 

1772 Actin-related protein 2/3 complex 
subunit 2 1.86 0.0004 ARPC2 

1095 Protein disulfide-isomerase A3 1.9 0.008 PDIA3 
1064 Protein disulfide-isomerase A3 2.02 2.00E-07 PDIA3 
453 Elongation factor 2 2.03 0.004 eEF2 
1139 Fascin 2.11 0.00021 FSCN1 
975 Pyruvate kinase M2 2.12 0.001 PKM2 
1083 Glucose-6-phosphate 1-dehydrogenase 2.13 4.30E-08 G6PD 
1115 suppression of tumorigenicity 13 2.16 0.00021 ST13 
941 Stress-induced-phosphoprotein 1 2.21 3.70E-05 STIP1 
1156 Glutathione synthetase 2.33 5.20E-07 GSHB 
964 Moesin 2.42 0.0001 MSN 

735 DNAK-type molecular chaperone 
HSPA5 precursor 2.45 1.70E-05 HSPA5 

1093 Protein disulfide-isomerase A3 2.57 3.30E-06 PDIA3 
1148 Tryptopehnyl tRNA synthase isoform b 2.61 1.10E-08 WARS 
1063 Fascin 1 2.63 0.0011 FSCN1 
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Master 
No. Protein ID Fold 

Change 
1-

ANOVA 
Gene 
I.D. 

832 Heat shock cognate 71 kDa protein 2.68 7.30E-08 HSC71 
1091 Protein disulfide-isomerase A3 2.72 0.00039 PDIA3 
814 Tryptophanyl-tRNA synthetase 2.77 0.0032 WARS 
984 Seryl-tRNA synthetase 3.78 1.80E-05 SARS 
819 Heat shock-related 70 kDa protein 2 4.45 0.00016 HSP72 
2148 Peroxiredoxin 2 isoform b 9.57 2.40E-08 PRDX2 
1752 Lambda-crystallin homolog 28.09 3.00E-10 CRYL1 

 

7.4 Phosphoproteins uniquely associated with dasatinib treatment in sensitive 

and resistant cell lines 

We compared the lists of phosphoproteins altered in dasatinib-treated WM-115 (Table 

7.3) and dasatinib-treated WM-266-4 cells (Table 7.4) to identify phosphoproteins 

that may be uniquely associated with dasatinib response in WM-115 or dasatinib 

resistance in WM-266-4 (Figure 7.2). Two of the identified phosphoproteins were 

significantly altered in response to dasatinib in both WM-115 and WM-266-4 cells. 

However, 31 phosphoproteins were uniquely altered in WM-115 cells (Table 7.6) and 

4 phosphoproteins were altered only in WM-266-4 cells (Table 7.7), in response to 

dasatinib treatment. 

 

 

 

 

 

Figure 7.2: Venn diagram displaying the number of altered phosphoproteins in 

response to dasatinib treatment in WM-115 compared to WM-266-4 cells. 
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7.4.1 Phosphoproteins uniquely altered in response to dasatinib treatment in 

sensitive WM-115 cells 

Of the 31 phosphoproteins uniquely altered in dasatinib treated WM-115 cells, 17 

phosphoproteins were reduced in abundance (Table 7.6).  Focussing on the proteins 

which showed the greatest fold change, 2 spots of protein disulfide isomerase-related 

protein 5 (PDIA5) were reduced by 1.73 and 1.66 respectively.  Abundance of two 

moesin (MSN) and two radixin (RXN) isoforms were also reduced in dasatinib treated 

WM-115 cells by 2.98 fold, 2.3 fold, 1.91 fold and 1.84 fold, respectively.  Dasatinib 

treatment of WM-115 cells also resulted in increased abundance of 14 

phosphoproteins, which were not altered in dasatinib-treated WM-266-4 cells.  Four 

forms of annexin-2 (ANXA2) were increased by 1.97, 2.17, 3.02 and 3.06 fold when 

WM-115 cells were treated with dasatinib.  

 

 Table 7.6: Identified phosphoproteins uniquely altered in dasatinib treated WM-115 

cells.  Phosphoproteins which demonstrated a fold-change of ≥ 1.2 and a significant p 

value (≤ 0.05) were included for analysis.  

Master 
No. Protein ID Fold 

Change 
1-

ANOVA Gene I.D.

730 Moesin -2.98 0.00012 MSN 
2148 Peroxiredoxin 2 isofrom b -2.69 2.40E-08 PRDX2 
703 Radixin -2.46 0.00087 RDX 
801 Transketolase -2.38 0.00054 TKT 
694 Moesin -2.3 0.0005 MSN 
683 Radixin -1.91 0.0083 RXN 
837 Serum Albumin -1.9 6.70E-05 ALB 

842 Protein disulfide isomerase-related 
protein 3 -1.9 0.00014 PDIA3 

716 Radixin -1.84 0.0021 RXN 

910 Protein disulfide isomerase-related 
protein 5 -1.73 3.80E-05 PDIA5 

909 Protein disulfide isomerase-related 
protein 5 -1.66 0.0031 PDIA5 
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Master 
No. Protein ID Fold 

Change 
1-

ANOVA Gene I.D.

1768 Glyceraldehyde-3-phosphate 
dehydrogenase -1.44 0.0044 GAPDH 

756 Moesin -1.41 0.034 MSN 
1480 Annexin A1 -1.37 0.0073 ANXA1 
975 Pyruvate kinase M2 -1.34 0.001 PKM2 
1021 Glucose-6-phosphate 1-dehydrogenase -1.34 0.02 G6PD 
1245 Alpha-enolase -1.31 9.60E-06 ENO1 

1170 Protein disulfide isomerase-related 
protein 5 1.34 0.016 PDIA5 

1960 Peroxiredoxin-4 1.36 0.0015 PRDX4 
429 Alpha-actinin-4 1.38 0.029 ACTN4 
1619 Annexin-A1 1.4 1.40E-05 ANXA1 

304 Glyceraldehyde-3-phosphate 
dehydrogenase 1.43 1.20E-07 GAPDH 

1618 Glyceraldehyde-3-phosphate 
dehydrogenase 1.43 5.40E-07 GAPDH 

1415 Actin B 1.51 0.0079 ACTB 
784 Stress-70 protein 1.79 0.046 GRP75 
1620 Annexin A2 1.97 2.80E-05 ANXA2 
1666 Annexin-A2 2.17 0.013 ANXA2 
1609 Annexin-A2 3.02 2.30E-05 ANXA2 
1658 Annexin-A2 3.06 1.10E-05 ANXA2 
2365 S100A10 7.03 1.20E-06 S100A10 

7.4.2 Phosphoproteins uniquely altered in response to dasatinib treatment in 

resistant WM-266-4 cells 

Dasatinib treatment of WM-266-4 cells resulted in the alteration of 4 phosphoproteins 

which were not altered in WM-115 cells treated with dasatinib (Table 7.7).  Of the 4 

phosphoproteins that were decreased in response to dasatinib, annexin-A3 (ANXA3) 

was decreased 1.64 fold and high mobility group protein B1 (HMGB1) was decreased 

by 1.57 fold.  Heat shock cognate 71 (HSC71) was also decreased, by 1.33 fold, in 

response to dasatinib treatment.  No phosphoproteins were increased in WM-266-4 

cells treated with dasatinib.   
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Table 7.7: Identified phosphoproteins uniquely altered in dasatinib treated WM-266-4 

cells.  Phosphoproteins which demonstrated a fold-change of ≥ 1.2 and a significant p 

value (≤ 0.05) were included for analysis.  

Master 
No. Protein ID Fold 

Change 1-ANOVA Gene 
I.D. 

1671 Annexin-A3 -1.64 0.0018 ANXA3 
1976 High mobility group protein B1 -1.57 0.014 HMGB1
832 Heat shock cognate 71 kDa protein -1.33 7.30E-08 HSC71 
1083 Glucose-6-phosphate 1-dehydrogenase -1.22 4.30E-08 G6PD 

7.5 PANTHER analysis of identified phosphoproteins 

The list of 36 phosphoproteins uniquely altered in dasatinib-treated WM-115 or WM-

266-4 cells were annotated to 22 gene symbols using NCBI and submitted to 

PANTHER (Protein ANalysis THrough Evolutionary Relationships; 

http://www.pantherdb.org/) for functional annotation analysis, to identify the possible 

cellular functions or pathways impacted by the phosphoproteins which were altered 

by dasatinib treatment. Dasatinib treatment of WM-115 and WM-266-4 cells resulted 

in changes to 19 and 3 specific proteins respectively (see Appendix 1), with multiple 

potential phosphoprotein isoforms detected for some of these proteins, e.g. ANXA2. 

The 22 individual proteins are associated with 13 biological processes (Table 7.8).    

 

Treatment of WM-115 cells with dasatinib resulted in alterations to several 

phosphoproteins associated with the biological processes ‘Cell structure and motility 

(BP00285)’ (6 proteins), ‘Carbohydrate metabolism (BP00001)’ (4 proteins), and 

‘Protein metabolism and modification (BP00060)’ (5 proteins) (See appendix 2).   In 

comparison, dasatinib treatment of WM-266-4 cells resulted in no alterations of 

proteins involved in ‘Cell structure and motility’ and ‘Carbohydrate metabolism’ and 

1 protein in ‘Protein metabolism and modification’.  
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Dasatinib treatment of WM-115 cells altered 6 phosphoproteins associated with the 

biological process ‘Cell structure and motility’ (ANXA1, RDX, MSN, ATCB, 

ACTN4 and ANXA2) whereas no altered proteins were identified in this category for 

WM-266-4 cells (Appendix 2).   ‘Cell structure and motility’ (BP00285) was further 

sub-divided into two “child” categories. ‘Cell motility’ (BP00287) containing 

ANXA1 and ‘Cell structure’ (BP00286) containing RDX, MSN, ACTB and ACTN4, 

with ANXA2 unclassified.   This indicates ANXA1 may play a role in dasatinib-

mediated effects on motility in WM-115 cells. 

 

Dasatinib treatment of WM-115 resulted in alteration of 5 phosphoproteins related to 

the biological process ‘Protein metabolism and modification’ (BP00060) (GRP78, 

PDIA5, PDIA3, GRP75 and TKT) compared to 1 phosphoprotein which was altered 

in dasatinib treated WM-266-4 cells (HSC71).  Protein metabolism and modification 

has three “child” categories ‘Protein complex assembly’ (BP00072), ‘Protein folding’ 

(BP00062) and ‘Protein modification’ (BP00063).   In WM-115 cells, dasatinib 

altered phosphorylation of GRP75 and GRP78 which are associated with ‘Protein 

complex assembly’ and ‘Protein folding’ and PDIA5, PDIA3 and TKT which are 

associated with ‘Protein modification’. Dasatinib treatment of WM-266-4 cells only 

resulted in an alteration of HSC71, which is related to ‘Protein metabolism and 

modification’. 

 

Four proteins which were altered in response to dasatinib treatment of WM-115 cells 

(ALDOA, ENO1, G6PD and PKM2) are involved in carbohydrate metabolism 

(BP00001) while no altered proteins were detected in this category for WM-266-4 
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cells.  Using PANTHER pathway analysis we identified that dasatinib treatment of 

WM-115 and WM-266-4 cells altered proteins involved in apoptosis signalling 

(P00006).   Two phosphoproteins were altered in dasatinib treated WM-115 cells 

(GRP75 and GRP78) compared to the alteration of 1 phosphoprotein in WM-266-4 

cells (HSC71).   All three proteins are members of the HSP70 family.    
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Table 7.8: Panther analysis of the 22 annotated individual proteins identified by 2D-

DIGE analysis. Swiss-Prot IDs were annotated to NCBI human Genbank gene 

symbols and PANTHER analysis (http://www.pantherdb.org/) was performed.  

 

7.6 Pathway Studio analysis of phosphoproteins altered in dasatinib treated 

melanoma cells 

We performed literature mining using the list of 22 unique proteins identified from 

dasatinib treated WM-115 and WM-266-4 cells.   We firstly examined the 

relationship between these proteins and melanoma (Figure 7.3). Pathway Studio 

analysis showed that of the 22 proteins identified, which were altered in response to 

WM-115 
Ctrl vs Dasat 

WM-266-4 
Ctrl vs Dasat

Panther 
Analysis Category Name 

# proteins identified in gene 
ontology 

Cell structure and motility 6 0 
Carbohydrate metabolism 4 0 

Protein metabolism and modification 5 1 
Immunity and defence 4 1 

Signal transduction 2 1 
Lipid, fatty acid and steroid 

metabolism 1 1 

Developmental processes 2 0 
Intracellular protein traffic 2 0 

Transport 2 0 
Biological process unclassified 1 1 

Cell cycle 1 0 
Amino acid metabolism 1 0 

Biological 
Process 

Coenzyme and prosthetic group 
metabolism 1 0 

Apoptosis signalling pathway 2 1 
Glycolysis 2 1 

Parkinson disease 2 1 
Pyruvate metabolism 1 0 

Pathway 

Integrin signalling pathway 1 0 
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dasatinib, 11 have been previously linked in the literature to melanoma. Two 

members of the annexin family (ANXA1, ANXA2), and two members of the heat 

shock family 70 family (HSPA5, HSPA8) were found to be linked to melanoma in the 

literature. 

 
Figure 7.3: Pathway studio literature mining analysis linking melanoma-related 

studies with proteins from the 22 unique proteins altered in response to dasatinib 

treatment. 

 

By analysing the direct interactions between the identified phosphoproteins, we found 

that 13 of the 22 proteins have been shown to have direct interactions with one 

another. ANXA1 phosphorylates ANXA2, whilst ANXA2 can also phosphorylate 

S100A10. Members of the HSP 70 family (HSPA8 and HSPA5) have been shown in 

the literature to directly interact with Src kinase, whilst HSPA8 can bind to PDIA3, 

GAPDH and HMG1. 
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SRC kinase was not identified from our proteomic analysis; however dasatinib 

directly targets it [169].   We therefore examined whether any of our identified targets 

have been shown to interact with SRC kinase. Interestingly, Pathway Studio analysis 

determined that SRC kinase has been previously shown to directly interact with 

ANXA2, S100A10, PDIA3, G6PD, HSPA8, ACTB, HSPA5 and GAPDH. 

 

Figure 7.4: Direct Interactions between list of 22 phosphoproteins and SRC kinase 

identified using Pathway Studio literature mining analysis. 

 

 

 

 

 

 

 

 

7.7 Selection of phosphoproteins for further investigation 

Due to the multiple spots of ANXA2 identified in the 2D-DIGE analysis, the high 

fold changes observed, particularly in the dasatinib-treated WM-115 cells, and the 

literature-based evidence for links between ANXA2 and Src kinase we chose to 

further analyse the ANXA2 isoforms.  Five different ANXA2 spots were identified 

from phosphoproteomic analysis; 4 which were only altered in WM-115 cells (Spot 

Inhibition

Activation

Binding partner

Potential link

Inhibition

Activation

Binding partner

Potential link
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ID 1609, 1658, 1620 and 1666) and 1 only altered in WM-266-4 cells (Spot ID 1582) 

(Table 7.9 and Figure 7.5).   

 

In WM-115 cells, dasatinib treatment resulted in an increase in the levels of 4 of the 

identified ANXA2 phosphoproteins.  Treatment with dasatinib in WM-115 cells did 

not alter the level of Spot ID 1582; however the abundance of this ANXA2 spot was 

decreased in response to dasatinib treatment in WM-266-4 cells.   

 

Table 7.9: Protein abundance analysis comparing levels of five annexin-A2 spots in 

WM-115 versus WM-266-4 cells, untreated versus dasatinib treated WM-115 cells, 

untreated versus dasatinib treated WM-266-4 cells and dasatinib treated WM-115 

cells versus dasatinib treated WM-266-4 cells analysed by the DeCyder software.  ‘*’ 

indicates that the difference in fold change between the two samples is significant as 

calculated by Students t-test.   

Spot ID 
WM115 vs 

WM266-4 

WM115 

Dasat vs Ctrl

WM266-4 

Dasat vs Ctrl

WM115 Dasat vs 

WM266-4 Dasat 

1582 -3.74 * 1.10 * -1.24 * -5.13 

1609 -1.88 * 3.02 * 1.06 -5.35 * 

1620 -1.98 * 1.97 * 1.05 -3.72 * 

1658 -1.73 * 3.06 * -1.03 -5.46 * 

1666 -1.26 2.17 * 1.14 -2.41 * 
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Figure 7.5: A) Protein abundance analysis comparing levels of five annexin-A2 spots 

in untreated and dasatinib treated WM-115 cells analysed by the DeCyder software.  

B) Protein abundance analysis comparing levels of five annexin-A2 spots in untreated 

and dasatinib treated WM-266-4 cells analysed by the DeCyder software.   
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Figure 7.7: Changes in levels of the ANXA2 proteins identified, in untreated and 

dasatinib treated WM-115 and WM-266-4 cells, analysed by the DeCyder software.  

The solid line in the graph is the average of triplicate measurements (dotted lines) of 

protein abundance. 
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7.8 Identification of phosphorylated peptides 

The MALDI-ToF-ToF-MS analysis also provides information on the amount of the 

total protein sequence, or the percent coverage, that was identified for each protein, 

and on potential post-translational modifications of the identified proteins, such as the 

presence of potential phosphorylation sites.  The average percent coverage of the 4 

ANXA2 spots identified was 48.75 %.   

 

A MASCOT score is calculated for each protein identified and reflects the level of 

confidence in the identification.  Figure 7.8 shows an example of an identified protein 

sequence; protein ID no. 1658 (ANXA2), which had a high MASCOT score of 605, 

and 59 % protein coverage.  Each individual peptide sequenced is also given an ion 

score, which indicates the level of homology between the peptide sequence and the 

protein identified. 

 

1   MSTVHEILCK LSLEGDHSTP PSAYGSVKAY TNFDAERDAL NIETAIKTKG 
51  VDEVTIVNIL TNRSNAQRQD IAFAYQRRTK KELASALKSA LSGHLETVIL 
101 GLLKTPAQYD ASELKASMKG LGTDEDSLIE IICSRTNQEL QEINRVYKEM 
151 YKTDLEKDII SDTSGDFRKL MVALAKGRRA EDGSVIDYEL IDQDARDLYD 
201 AGVKRKGTDV PKWISIMTER SVPHLQKVFD RYKSYSPYDM LESIRKEVKG 
251 DLENAFLNLV QCIQNKPLYF ADRLYDSMKG KGTRDKVLIR IMVSRSEVDM 
301 LKIRSEFKRK YGKSLYYYIQ QDTKGDYQKA LLYLCGGDD 

 
 

Figure 7.8: Protein sequence of protein spot no. 1658, ANXA2, showing the matched 

peptide sequences are in red (59 % coverage). The green peptide sequence 

corresponds to amino acids 120 – 135, which had a high ion score of 122, indicating a 

high level of homology with ANXA2.  

 

MALDI-ToF-ToF-MS data was available for 4 of the identified ANXA2 proteins and 

was analysed for potential post-translational modifications.  MALDI-ToF-ToF-MS 

analysis did not detect any post-translation modifications on ANXA2 spots no. 1609, 
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1658 and 1666.  One potential phosphorylation site in amino acid residues 232-245 

and two potential phosphorylation sites in amino acid residues 274-281 were detected 

for ANXA2 spot 1658.  Sequence 232-245 includes three tyrosine residues and two 

serine residues, whilst sequence 274-281 contains one serine residue and one tyrosine 

residue.   

 

Table 7.10: Matched peptide information for identified isoforms of ANXA2 proteins, 

showing MASCOT scores, % coverage and highest ion score obtained for the 

matched peptides. Peptide sequences with potential phosphorylation sites and the 

number of potential phosphorylation sites detected are listed. 

Protein I.D. 1609 1620 1658 1666 
Fold Change 3.02 1.97 3.06 2.17 
MASCOT Score 266 174 605 251 
% Coverage 48 % 38 % 59 % 50 % 
Highest Ion Score 62 44 122 52 
Total no. of phosphate groups identified 0 0 3 0 
Peptide sequences and no. of phosphate groups identified 
232-245 R.YKSYSPYDMLESIR.K 0 0 1 0 
274-281 R.LYDSMKGK.G 0 0 2 0 

 
 

7.9 Pro-Q Diamond staining of phosphoproteins in WM-266-4 cells  

Pro-Q Diamond is a stain which binds specifically to phosphorylated proteins. We 

used Pro-Q Diamond staining to identify proteins that display altered phosphorylation 

in response to dasatinib treatment in WM-266-4 cells.  Insufficient phosphoprotein 

was available to perform this analysis on the WM-115 cells.  
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Pro-Q Diamond staining was performed on unlabelled phosphoprotein samples 

separated on duplicate 2D gels (Figure 7.9) (section 2.21).  The results of each set of 

replicate gels were analysed using the ProGenesis SameSpots software where the 

intensity of the stained proteins was measured.  The ProGenesis software produces 

images which allow comparison of phosphorylation levels between samples, and 

constructs graphs of phosphorylation levels for each of the proteins analysed (Figure 

7.10). 

 A 

 

 

 

 

 

        B 

 

 

 

 

 

 

 

Figure 7.9: (A) 2D gel of WM-266-4 control stained with Pro-Q Diamond. (B) Zoom 

in on the upper region of the gel, with the location of spot ID 995 (HSP60) circled. 
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A total of five proteins which displayed altered levels of phosphorylation in response 

to dasatinib treatment in WM-266-4 cells were identified (Table 7.11).  Of the 5 

proteins identified, heat shock protein 60 (HSP60) and endoplasmic reticulum protein 

29 (ERP29) displayed the highest fold changes; 7.9 fold increase for HSP60 and 5.4 

fold increase for ERP29.  Other proteins identified which display altered 

phosphorylation levels included endoplasmic reticulum protein 60 (ERP60) and non-

metastatic cells-1 (NM23), however the fold changes observed in phosphorylation 

levels for both proteins were low in comparison to HSP60 and ERP29. 

 

Table 7.11: Proteins which displayed altered phosphorylation levels in dasatinib-

treated compared to control WM-266-4 cells, determined by SameSpots software. 

Phosphoproteins which demonstrated a fold-change of ≥ 1.2 and a significant p value 

(≤ 0.05) were included for analysis. 

Master 
No. Protein ID Fold 

Change
1-

ANOVA 
Gene 
I.D. 

837 Serum Albumin 1.5 0.0407 SA 
1064 Endoplasmic reticulum protein 60 1.6 0.0256 ERP60 
2269 Non-metastatic cells 1 2.3 0.00518 NM23 
1983 Endoplasmic reticulum protein 29 5.4 0.0071 ERP29 
995 Heat Shock protein 60 7.9 0.0022 HSP60 

  

We cross-referenced the change in levels of phosphorylation of both HSP60 and 

ERP29 with the abundance information previously obtained from the 2D-DIGE 

analysis on the same phosphoprotein samples (Figure 7.10A and B).  The abundance 

levels of HSP60 (1.14) and ERP29 (-1.15) were not significantly altered in WM-266-

4 cells in response to dasatinib treatment, according to the 2D-DIGE analysis.  
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Figure 7.10: A) SameSpots analysis displaying the change in the level of 

phosphorylation of HSP60 (Spot 995) and ERP29 (Spot 1983) in dasatinib treated 

compared to untreated WM-266-4 cells.  B) Pro-Q Diamond staining of HSP60 and 

ERP29 in dasatinib untreated and treated WM-266-4 cells C) DeCyder analysis of 

2D-DIGE displaying the abundance levels for HSP60 and ERP29 in dasatinib 

untreated and treated WM-266-4 cells. 
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7.10 Summary 

We performed phosphoprotein profiling in a primary melanoma cell line and a 

metastatic melanoma cell line derived from the same patient.  We also studied the 

effect of dasatinib treatment on both cell lines which display differences in sensitivity 

to dasatinib. 

 

Using 2-D DIGE analysis of this model 203 phosphoproteins showed altered 

abundance either between the primary and metastatic cell line, or in response to 

dasatinib treatment in either cell line.  Members of the annexin family, in particular 

ANXA1, ANXA2 and ANXA3 displayed altered phosphoprotein abundance when 

treated with dasatinib in both WM-115 and WM-266-4 cells.  As the abundance of 4 

isoforms of annexin-2 were altered by dasatinib treatment in WM-115 cells, while 

only 1 isoform was significantly altered in WM-266-4 cells treated with dasatinib, this 

suggests that alterations in ANXA2 may play a role in response to dasatinib in WM-

115 cells. 

 

Pathway Studio analysis confirmed that ANXA1 and ANXA2 have been previously 

associated with melanoma.  PANTHER analysis suggests that ANXA1 and ANXA2 

may be associated with motility and cell structure.  ANXA2 and S100A10 were also 

the only identified proteins which are associated with and phosphorylated by SRC.   

 

Using Pro-Q Diamond analysis of untreated versus dasatinib treated WM-266-4 cells 

we identified a small number of proteins which displayed altered phosphorylation 

status.  Of the identified phospoproteins, HSP60 and ERP29 displayed the greatest 

fold change in phosphorylation, although the abundance of both proteins was 
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unchanged according to the 2D-DIGE analysis.  Changes in the phosphorylation 

status of HSP60 and ERP29 may play a role in dasatinib resistance in WM-266-4 

cells.  

 

Appendix 1: NCBI Annotated phosphoproteins identified by 2D-DIGE analysis used 

for PANTHER and Pathway Studio analysis.Swiss-Prot IDs were annotated to NCBI 

human Genbank gene symbols 

WM-115  
dasatinib treatment

WM-266-4  
dasatinib treatment 

ACTB ANXA3 
ACTN4 HMGB1 

ALB HSC71 
ANXA1 
ANXA2 
ENO1 
G6PD 

GAPDH 
GRP75 
GRP78 
MSN 

PDIA3 
PDIA5 
PKM2 
PRDX2 
PRDX4 

RDX 
S100A10 

TKT 
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Appendix 2: The biological processes and pathways associated with the annotated list 

of proteins identified by dasatinib treatment of WM-115 and WM-266-4 melanoma cell 

lines.  Red gene symbols signify proteins that were identified from the WM-266-4 

dassatinib treated cells. 

 

PANTHER 
analysis Biological Process Identified Proteins 

Cell structure and motility ANXA2, ANXA1, RDX, MSN, 
ACTN4, ACTB 

Carbohydrate metabolism ENO1, PKM2, TKT, G6PD 
Protein metabolism and 

modification 
HSPA5, PDIA5, PDIA3, GRP75, 
TKT, HSPA8 

Immunity and defence PRDX4, PRDX2, GRP75, 
GRP78, HSPA8 

Signal transduction ANXA1, TKT 
Lipid, fatty acid and steroid 

metabolism ANXA1, ANXA3 

Developmental processes ANXA2, S100A10 
Intracellular protein traffic ANXA2, ACTB 

Transport ALB, ACTB 
Biological process unclassified GAPDH, HMGB1 

Cell cycle ACTB 

Biological 
Process 

Coenzyme and prosthetic group 
metabolism TKT 

Apoptosis signalling pathway GRP75, GRP78, HSPA8 
Glycolysis ENO1, PKM2 

Parkinson disease GRP75, GRP78, HSPA8 
Pyruvate metabolism PKM2 

Pathway 

Integrin signalling pathway ACTN4 
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Chapter 8 

8. Analysis of targets implicated in dasatinib 

sensitivity and resistance in melanoma cell lines 
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8.1 Introduction 

Following 2-D DIGE and Pro-Q Diamond phosphoprotein analysis we identified 

several proteins that may be associated with dasatinib sensitivity or resistance in the 

melanoma cell lines WM-115 and WM-266-4.  The approach we used for functional 

validation of these targets was immunoblotting followed by siRNA knockdown for 

selected targets. We initially optimised siRNA transfection in the melanoma cell lines 

using a range of transfection protocols and reagents, and used the siRNA transfection 

to examine the effect of SRC knockdown on proliferation in both WM-115 and WM-

266-4 cell lines. 

 

The following targets were selected for validation by immunoblotting, ANXA2 which 

was identified by 2D-DIGE analysis, ERP29 and HSP60 which were identified by 

Pro-Q Diamond staining. The proteomic results for these three targets are summarised 

in table 8.1. 

 

Table 8.1: Review of the proteomic analysis by 2-D DIGE analysis and Pro-Q 

diamond staining for each target selected for validation by immunoblotting. 

Target WM-115 vs. WM-115 dasatinib WM-266-4 vs. WM-266-4 dasatinib 
ID 1609 3.02 fold ID 1609 1.06 fold 
ID 1620 1.97 fold ID 1620 1.05 fold 
ID 1658 3.06 fold ID 1658 -1.03 fold 

ANXA2 2-D 
DIGE 

ID 1666 2.17 fold 

2-D 
DIGE 

ID 1666 1.14 fold 
2-D 

DIGE -1.04 2-D 
DIGE -1.15 fold 

ERP29 
Pro-Q 

Diamond N/A Pro-Q 
Diamond 5.4 fold 

2-D 
DIGE 1.13 2-D 

DIGE 1.14 fold 
HSP60 

Pro-Q 
Diamond N/A Pro-Q 

Diamond 7.9 fold 
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8.2 Optimisation studies for siRNA knockdown in melanoma cell lines 

SiRNA transfection conditions were optimised using the transfection reagents NeoFX 

(Ambion), Lipofectamine 2000 (Invitrogen), Genejuice (Novagen), Ribojuice 

(Novagen) and Interferin (Polyplus transfection) and kinesin siRNA which should 

cause inhibition of proliferation [187] (section 2.22) (Figure 8.1 and Figure 8.2). 

 

In WM-115 cells Genejuice and NeoFX were both ineffective when tested with 

kinesin siRNA (Figure 8.1).  Kinesin siRNA transfection using Lipofectamine 2000, 

Ribojuice and Interferin achieved significant inhibition of proliferation in WM-115 

cells; however the Ribojuice reagent was also highly toxic to the cells on its own.  

0%
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NeoFX Lipofectamine
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Genejuice Ribojuice Interferin

%
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w

th

Ctrl Transfection Reagent Kinesin siRNA

Figure 8.1:  Transfection of kinesin siRNA in WM-115 cells using a range of 

transfection reagents.  % growth is expressed relative to control untreated cells.   

 

In WM-266-4 cells, Genejuice and NeoFX were ineffective when tested with kinesin 

siRNA (Figure 8.2).  Transfection of kinesin siRNA with Lipofectamine 2000, 
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Ribojuice and Interferin showed significant inhibition of proliferation in WM-266-4, 

but the Ribojuice transfection reagent was again highly toxic on its own.  

0%

20%

40%

60%

80%

100%

120%

NeoFX Lipofectamine
2000

Genejuice Ribojuice Interferin

%
 G

ro
w

th

Ctrl Transfection Reagent Kinesin siRNA

 

Figure 8.2:  Transfection of kinesin siRNA in WM-266-4 cells using a range of 

transfection reagents.  % growth is expressed relative to control untreated cells. These 

results are from a single experiment. 

 

In WM-115 cells, Interferin was non-toxic to the cells, but it was more toxic than 

Lipofectamine 2000 in WM-266-4 cells.  Due to the efficient inhibition of growth 

achieved with kinesin siRNA and low toxicity to the cells, Lipofectamine 2000 was 

selected as the transfection reagent for future siRNA experiments. 

 

8.3 SRC siRNA  

8.3.1 SRC siRNA in WM-115 

The effect of SRC knockdown on proliferation was assessed using three commercial 

siRNAs (Ambion) (section 2.22).  The three siRNAs were also combined to create a 

siRNA pool.  The efficiency of SRC knockdown was examined by western blotting.  
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The negative control siRNA (scrambled) had little effect on SRC levels (Figure 8.3).  

SRC siRNAs 1 and 2 (SRC1 and SRC2) significantly reduced SRC levels compared 

to scrambled siRNA (p = 0.04; p = 0.05).  However, neither SRC3 nor SRC pool 

siRNAs significantly reduced levels of SRC as determined by western blotting. 
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Figure 8.3:  (A) Representative western blotting analysis of SRC knockdown by three 

independent siRNAs or a pool of the three siRNAs in WM-115 melanoma cells.  (B) 

Densitometry analysis of SRC bands (normalised to α-tubulin). Error bars represent 

the standard deviation of triplicate siRNA transfection experiments. ‘*’ indicates that 

p < 0.05. 

 

Kinesin siRNA reduced proliferation by approximately 71.8 % ± 3.3 % in WM-115 

cells (Figure 8.4).  Only SRC2 siRNA significantly reduced proliferation by 24.6 % ± 

2.7 % (p = 0.0006) in WM-115 cells (Figure 8.4). SRC3 siRNA also reduced 
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proliferation by 22.4 % ± 11.9 % but this did not achieve statistical significance (p = 

0.07). 

*
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Figure 8.4:  Effect of SRC siRNA on growth of WM-115 melanoma cells.  Error bars 

represent the standard deviation of triplicate experiments. .  ‘*’ indicates that p < 0.05 

for any SRC siRNA compared to scrambled siRNA. 

 

8.3.2 SRC siRNA in WM-266-4 

SRC2 siRNA significantly reduced SRC expression compared to scrambled siRNA in 

WM-266-4 cells (p = 0.03) (Figure 8.5).  However SRC1, SRC3 or SRC pool siRNA 

knockdown did not have a significant effect on SRC expression as determined by 

western blotting (p = 0.64; p = 0.26; p = 0.86). 
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Figure 8.5:  (A) Western blotting analysis of SRC knockdown by three independent 

siRNAs or a pool of the three siRNAs in WM-266-4 melanoma cells.  (B) 

Densitometry analysis of SRC bands (normalised to α-tubulin). Error bars represent 

the standard deviation of triplicate siRNA transfection experiments. ‘*’ indicates that 

p < 0.05. 

 

Kinesin siRNA reduced proliferation by 69.2 % ± 5.1 % in WM-266-4 cells.  

Significant knockdown of SRC by SRC2 siRNA, resulted in significant inhibition of 

proliferation in WM-266-4 (16.4 % ± 1.0 % inhibition (p = 0.01)) (Figure 8.6).  

Although SRC1 siRNA did not significantly reduce SRC levels in WM-266-4 based 

on the western blotting results, it caused a significant 25.2 % ± 3.8 % reduction of 

proliferation (p = 0.03). Neither SRC3 nor the SRC siRNA pool had a significant 

effect on proliferation in WM-266-4. 
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Figure 8.6:  Effect of siRNA SRC knockdown on growth in WM-266-4 melanoma 

cell line.  Error bars represent the standard deviation of triplicate experiments.  ‘*’ 

indicates that p < 0.05 for any SRC siRNA compared to scrambled siRNA. 

 

8.4 Validation of targets identified by Pro-Q Diamond staining 

To examine if the selected candidate phosphoproteins were up-regulated or down-

regulated in dasatinib treated or untreated WM-155 and WM-266-4 cells, we analysed 

protein levels by western blotting.   

 

No difference in expression of ERP29 was observed between WM-115 and WM-266-

4 cells (Figure 8.7). The Pro-Q Diamond proteomic analysis showed that dasatinib 

treatment increased the levels of ERP29 phosphorylation by 5.4 fold in WM-266-4 

cells. Based on previous phosphoproteomic analyses ERP29 contains 2 potential 

tyrosine phosphorylation sites (www.phosphosite.org) [188]. However, no tyrosine 
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phosphorylation was detected on immunoprecipitated ERP29, in either cell line or in 

response to dasatinib treatment.  Analysis to date has not detected any other potential 

phosphorylation sites of ERP29. 

 

 

 

 

 

 

 

Figure 8.7:  Western blotting analysis of ERP29 as detected by immunoprecipitation 

(IP) and detection of the ERP29 tyrosine residues by immunoblotting using a 

phosphotyrosine antibody in WM-115 and WM-266-4 cells untreated and treated with 

100 nM dasatinib for 6 hours. 

 

HSP60 is expressed at similar levels in both WM-115 and WM-266-4 cell lines and 

its expression is unaffected by dasatinib treatment (Figure 8.8). Pro-Q Diamond 

staining showed that dasatinib treatment increased the level of phosphorylation of 

HSP60 in WM-266-4 cells by 7.9 fold.  Based on previous phosphoproteomic 

analyses HSP60 contains 2 potential serine phosphorylation sites and 3 potential 

tyrosine phosphorylation sites (www.phosphosite.org) [189].  Immunoprecipitation of 

HSP60 followed by immunoblotting with anti-phosphotyrosine and anti-

phosphoserine antibodies detected low levels of both tyrosine and serine 

phosphorylation in WM-115 and WM-266-4 cells. The levels of phosphorylation 

were unchanged after treatment with dasatinib in both WM-115 and WM-266-4 cells.   

IP: ERP29

IP: ERP29 IB: p-tyrosine

W
M

-1
15

W
M

-1
15

 D
as

at
W

M
-2

66
-4

W
M

-2
66

-4
 D

as
at

IP: ERP29

IP: ERP29 IB: p-tyrosine

W
M

-1
15

W
M

-1
15

 D
as

at
W

M
-2

66
-4

W
M

-2
66

-4
 D

as
at



 204

 

 

 

 

 

 

 

 

 

Figure 8.8:  Western blotting analysis of HSP60 as detected by immunoprecipitation 

(IP) and detection of the HSP60 tyrosine and serine residues by immunoblotting using 

either a phosphotyrosine or phosphoserine antibody in WM-115 and WM-266-4 cells 

untreated and treated with 100 nM dasatinib for 6 hours. 

 

8.5 Validation of ANXA2 in melanoma cell lines 

ANXA2 was detected in a panel of melanoma cell lines and ANXA2 was detected in 

both WM-115 and WM-266-4 cell lines by western blotting.  Dasatinib treatment 

does not appear to affect total expression of ANXA2 (Figure 8.9).   

 

Based on previous phosphoproteomic analyses ANXA2 contains 5 potential serine 

phosphorylation sites and 14 potential tyrosine phosphorylation sites  

(www.phosphosite.org) [190].  2D-DIGE proteomic results showed that ANXA2 

phosphoprotein levels were higher in WM-115 cells compared to WM-266-4 cells 

(Table 8.1).  In WM-115 cells treated with dasatinib, 4 of the identified phospho-
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ANXA2 spots were increased by 3.06, 3.02, 2.17 and 1.97 fold, based on the 2D-

DIGE analysis.  

 

Immunoblotting following immunoprecipitation of ANXA2 detected tyrosine 

phosphorylated ANXA2 in both WM-115 and WM-266-4.  Dasatinib treatment 

resulted in a slight increase in phosphotyrosine levels in WM-115.  Immunoblotting 

for phosphotyrosine showed a slight decrease in tyrosine phosphorylation levels in 

dasatinib treated WM-266-4 cells.   

 

Very low levels of serine phosphorylation were detected on ANXA2 in both WM-115 

and WM-266-4 cells.  

 

 

 

 

 

 

Figure 8.9:  Western blotting analysis of ANXA2 as detected by immunoprecipitation 

(IP) and detection of the ANXA2 tyrosine and serine residues by immunoblotting 

using either a phosphotyrosine or phosphoserine antibody in WM-115 and WM-266-4 

cells untreated and treated with 100 nM dasatinib for 6 hours. 

 

ANXA2 expression was examined in the melanoma cell line panel (Figure 8.10) and 

was detected in 3 out of the 4 dasatinib responsive cell lines and in 2 out of 4 

dasatinib resistant melanoma cell lines. 
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Figure 8.10: Expression of ANXA2 and α-tubulin in the panel of melanoma cell lines. 

 

8.5.1 ANXA2 siRNA in WM-115 

We assessed the effects of ANXA2 siRNA on proliferation and sensitivity to dasatinib 

in both WM-115 and WM-266-4 cells. ANXA2 siRNA significantly knocked down 

ANXA2 expression compared to scrambled siRNA (p = 0.04) (Figure 8.11) in WM-

115 cells.  Lipofectamine 2000 or scrambled siRNA did not significantly affect the 

expression of ANXA2 in WM-115 cells. 
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Figure 8.11:  (A) Western blotting analysis of ANXA2 knockdown by siRNA 

SMARTpool in WM-115 melanoma cells.  (B) Densitometry analysis of ANXA2 

bands (normalised to α-tubulin). Error bars represent the standard deviation of 

triplicate siRNA transfection experiments. ‘*’ indicates that p < 0.05 for ANXA2 

siRNA compared to scrambled siRNA. 

 

Kinesin siRNA reduced proliferation by approximately 63.2 % ± 4.1 % in WM-115 

cells.  ANXA2 siRNA caused significant inhibition of proliferation in WM-115 cells 

(33.3 % ± 14.8 % inhibition (p = 0.04)) (Figure 8.12). 
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Figure 8.12:  Effect of siRNA SRC knockdown on growth in WM-115 melanoma cell 

line.  Error bars represent the standard deviation of triplicate experiments.  ‘*’ 

indicates that p < 0.05 for ANXA2 siRNA compared to scrambled siRNA. 

 

Under the conditions of the siRNA experiment, treatment with dasatinib did not 

significantly reduce proliferation of WM-115 cells (16.6 %) compared to untreated 

control cells (p = 0.06) (Figure 8.13). Treatment with scrambled siRNA and dasatinib 

did not significantly reduce proliferation (18.1 %) compared to WM-115 cells treated 

with scrambled siRNA alone (p = 0.12).  ANXA2 siRNA significantly decreased 

proliferation (28.5 %) of WM-115 cells compared to cells treated with scrambled 

siRNA alone (p = 0.0008).  Dasatinib treatment combined with ANXA2 siRNA 

further inhibited proliferation by 24.7 %, compared to untreated cells combined with 

ANXA2 siRNA, however, this difference was not statistically significant (p = 0.067). 

 

Lipofectamine 2000 alone resulted in a 26.8 % decrease in proliferation compared to 

untreated WM-115 cells.  However, lipofectamine 2000 combined with dasatinib, had 

a greater effect on proliferation than WM-115 cells treated with dasatinib alone 
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(dasatinib alone = 26.8 % proliferation inhibition; dasatinib and lipofectamine 2000 = 

42.9 % proliferation inhibition), thus lipofectamine 2000 may affect the response to 

dasatinib in WM-115 cells (results not shown). 
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Figure 8.13:  The effect of dasatinib on proliferation inhibition when combined with 

ANXA2 siRNA in WM-115 cells.  Error bars represent the standard deviation of 

duplicate experiments.  ‘*’ indicates that p < 0.05 for ANXA2 siRNA compared to 

scrambled siRNA. 

 

8.5.2 ANXA2 siRNA in WM-266-4 

ANXA2 siRNA significantly reduced ANXA2 expression compared to scrambled 

siRNA (p = 0.01) (Figure 8.14) in WM-266-4 cells.  Lipofectamine 2000 or 

scrambled siRNA did not significantly affect the expression of ANXA2 in WM-266-4 

cells. 
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Figure 8.14:  (A) Western blotting analysis of ANXA2 knockdown by siRNAs in 

WM-266-4 melanoma cells.  (B) Densitometry analysis of ANXA2 bands (normalised 

to α-tubulin). Error bars represent the standard deviation of triplicate siRNA 

transfection experiments. ‘*’ indicates that p < 0.05 for ANXA2 siRNA compared to 

scrambled siRNA. 

 

Kinesin siRNA reduced proliferation by approximately 64.2 % ± 4.3 % in WM-266-4 

cells.  ANXA2 siRNA alone did not significantly reduce proliferation (11.6 % ± 9.8 

%) in WM-266-4 cells (p = 0.36) (Figure 8.15). 
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Figure 8.15:  Effect of siRNA ANXA2 knockdown on growth in WM-266-4 

melanoma cell line.  Error bars represent the standard deviation of triplicate 

experiments.  ‘*’ indicates that p < 0.05 for ANXA2 siRNA compared to scrambled 

siRNA. 

 

Dasatinib alone did not significantly reduce proliferation of WM-266-4 cells (31.2 % 

± 16.3 %) compared to untreated control cells (p = 0.07) (Figure 8.16).  Scrambled 

siRNA combined with dasatinib did not significantly reduce proliferation (23.2 % ± 

10.7 %) compared to WM-266-4 cells treated with scrambled siRNA alone (p = 0.13). 

ANXA2 siRNA did not result in a significant decrease in proliferation (19.4 % ± 15.9 

%) compared to scrambled siRNA (p = 0.26), however scrambled siRNA did account 

for a 39.0 % ± 17.0 % inhibition of proliferation on its own compared to the control 

sample.  Dasatinib treatment combined with ANXA2 siRNA did not significantly 

inhibit proliferation (11.3 % ± 12.0 %) compared to cells treated with ANXA2 siRNA 

alone (p = 0.36). 

 

Lipofectamine 2000 alone resulted in a 13 % decrease in proliferation compared to 

untreated WM-266-4 cells.  However, lipofectamine 2000 combined with dasatinib, 
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had a greater effect on proliferation than WM-266-4 cells treated with dasatinib alone 

(dasatinib alone = 12.6 % proliferation inhibition; dasatinib and lipofectamine 2000 = 

43.6 % proliferation inhibition), thus lipofectamine 2000 may affect the response to 

dasatinib in WM-266-4 cells (Data not shown). 
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Figure 8.16:  The effect of dasatinib on proliferation inhibition when combined with 

ANXA2 siRNA in WM-266-4 cells.  Error bars represent the standard deviation of 

triplicate experiments. ‘*’ indicates that p < 0.05 for ANXA2 siRNA compared to 

scrambled siRNA. 

 

 8.6 Summary  

Lipofectamine 2000 resulted in the good transfection efficiency in both of the 

melanoma cell lines and was minimally toxic to the cells.   

 

SRC knockdown resulted in a significant decrease in proliferation in both the 

dasatinib sensitive WM-115 and the dasatinib resistant WM-266-4 cells. 
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Two proteins were selected for further analysis from the Pro-Q Diamond 

phosphoprotein staining. Both ERP29 and HSP60 were expressed in WM-115 and 

WM-266-4 cells.  However, the levels of tyrosine and serine phosphorylation detected 

by immunoblotting did not correlate with the apparent changes in phosphorylation 

observed on the Pro-Q Diamond gel analysis. 

 

Several spots of ANXA2 were identified by 2-D DIGE analysis of WM-115 cells 

treated with dasatinib.  ANXA2 was detected in both WM-115 and WM-266-4 by 

immunoblotting, and low levels of phosphorylation of tyrosine and serine were 

detected in the melanoma cells. 

 

ANXA2 tyrosine phosphorylation levels were slightly increased in response to 

dasatinib in WM-115 cells and unchanged in dasatinib treated WM-266-4 cells, based 

on phosphotyrosine immunoblotting results, which correlated with the 2D-DIGE 

results.  siRNA knockdown of ANXA2 resulted in significant inhibition of 

proliferation in WM-115 cells, but did not significantly inhibit proliferation in WM-

266-4 cells.   

 

Finally ANXA2 knockdown of WM-115 and WM-266-4 cells did not significantly 

alter response to dasatinib in either cell line.  However, the transfection reagents used 

may have improved the response to dasatinib, thus limiting the ability to assess any 

specific effect of ANXA2 siRNA on dasatinib response. 
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Chapter 9 

9. Discussion 
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The overall aim of this thesis was to develop novel therapeutic strategies for 

metastatic melanoma. The main focus of the research was on the evaluation of 

targeted therapies, in particular the multi-target kinase inhibitor dasatinib.  We 

examined the effects of dasatinib on melanoma cell growth, apoptosis, invasion and 

migration. In order to identify optimal rational therapeutic combinations, we tested 

combinations of dasatinib with other therapies. We investigated potential mechanisms 

of response and resistance to dasatinib in melanoma cells by interrogating signalling 

pathways targeted by dasatinib and by phosphoproteomic profiling of sensitive and 

resistant cell lines. Potential predictive biomarkers for dasatinib therapy were assessed 

in both cell lines and melanoma tumour specimens. 

 

9.1 Characterisation of melanoma cell lines 

Malignant melanoma is characterised as an aggressive, invasive cancer [191]. The 

panel of melanoma cell lines were derived from metastatic tumours, which is 

consistent with the migratory and invasive phenotype observed in vitro.  Within the 

panel of melanoma cell lines there was some variation in migration and invasion 

capacity which could be related to the number of genetic mutations associated with 

motility in each cell line.  The COSMIC database contains information on somatic 

mutation in human cancers and cancer cell lines.  Based on the data available in the 

COSMIC database, all of the melanoma cell lines tested are B-RAF mutated, whilst 

HT144 is PTEN mutated.  None of the cell lines in our panel are NRAS mutated 

(COSMIC).  The altered mutational status of genes such as B-Raf, NRas and PTEN 

have been implicated in determining the migratory and invasive potential of cell lines 

[191].  Sk-Mel-28 and M14, which display high levels of invasion and migration have 
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mutated P53, which has previously been implicated in increased invasion and 

migration in lung cancer cell lines [192] and A375P melanoma cell lines [193]. 

 

Metastatic melanoma is notoriously resistant to treatment in the clinical setting, with 

TMZ only achieving a 10-15 % response rate [194], and other drugs such as taxotere 

achieving 12-18 % responses [71].  We found that the IC50 concentrations of TMZ, 

whilst similar in melanoma and glioma cell lines, were in the high µM range in both 

cases.  Previous studies testing TMZ in two melanoma cell lines found the IC50 

concentration of TMZ to be approximately 800 µM [195] which is consistent with the 

values observed in our cell line panel (TMZ IC50 ranged from 250 µM to 800 µM).  

However, in the clinical setting plasma levels of TMZ only reach concentrations 

approaching 80 µM [196, 197].  The half-life of TMZ is less than two hours [198] 

which would reduce the efficacy of the drug in patients and may also explain the high 

IC50 values observed in vitro.   

 

The IC50 concentrations for taxotere and epirubicin reveal that our melanoma cell 

lines have comparable sensitivity to other cancer types tested.  However, despite this 

finding, melanoma patients do not respond to these drugs in the clinic.  Previous 

studies have shown that tumour cells in cancer patients and cell lines can differ 

greatly not only in their cell cycle times but also in their ability to apoptose and their 

sensitivity to chemotherapeutic drugs [199].  Another reason for higher sensitivity in 

cell lines could be that expression of P-gP and MRP-1 may be lost in melanoma cell 

lines, as both of these transporters are detected frequently in melanoma tmours [200].   
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In order to study potential mechanisms of resistance to TMZ, which is frequently used 

to treat metastatic melanoma, two TMZ resistant cell lines were established using two 

different selection methods.  Although the level of resistance induced was low, these 

two cell lines provide unique models to study acquired TMZ resistance in melanoma. 

Pulse selection of cell lines with chemotherapeutic drugs has been shown to lead to 

altered drug resistance to a range of chemotherapies in the selected cell lines [201, 

202].  However, the effect of acquired TMZ resistance on altered drug sensitivity has 

not been investigated.  Pulse selection of the two melanoma cell lines with TMZ 

resulted in increased resistance to cisplatin.  As TMZ and cisplatin are both DNA 

damaging agents, there may be common mechanisms of resistance to the DNA 

damage induced by these agents.   

 

ABC transporters have been implicated in chemotherapy drug resistance in cancer. 

However their role in TMZ resistance has not been extensively studied. Our studies 

revealed that repeated exposure to TMZ resulted in the decreased mRNA expression 

of the ABC transporters MRP1, MRP2 and ABCB5 whilst increasing mRNA 

expression of P-gP. Studies in glioma have shown that treatment with TMZ can 

increase MRP-1 mRNA expression [203], whilst studies in astrocytoma cells revealed 

that TMZ treatment led to increases in the transcription levels of BCRP, MRP3 and 

MRP-1 [204].  Therefore our results suggest that TMZ exposure alters the expression 

of ABC transporters. However, the role this altered expression plays in TMZ 

resistance, if any, remains to be determined. 

 

Exposure to taxotere also caused some changes in expression of ABC transporters. 

The increase in BCRP levels observed in HT144-Tax may contribute to the slight 
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decrease in sensitivity to taxotere observed as taxotere is also a substrate for BCRP 

[82].  

 

Interestingly, we found that BCRP and MRP-2 are highly expressed in the melanoma 

cell line panel tested.  The role of BCRP and MRP-2 in melanoma is not well tested. 

We therefore tested specific inhibitors of BCRP and MRP-2 to determine if inhibition 

enhanced response to substrate chemotherapy drugs in the melanoma cell lines.  

Inhibition of BCRP has been achieved by using fumitremorgin C (FTC) in a breast 

cancer cell line [205]. Mitoxantrone which is transported by BCRP [89, 205] was 

used to asses the impact of BCRP inhibition.  Whilst inhibition of BCRP was 

effective in a mitoxantrone selected cell line, DLKP-Mitox, no effect was observed in 

the melanoma cell lines, Malme-3M and Sk-Mel-5.  The lack of effect in the 

melanoma cell lines could be due to FTC not efficiently inhibiting the BCRP pump 

mechanism, or that despite BCRP inhibition other ABC transporters are capable of 

transporting mitoxantrone as ABC transporters have overlapping substrate profiles 

[206].  

 

MRP-2, a known transporter of vincristine [89], was expressed in Malme-3M and Sk-

Mel-5 in the melanoma panel.  MK571 has been shown to inhibit the transport of 

MRP-1 substrate drugs in melanoma cells and MRP-2 substrate drugs in liver cells 

[207, 208].  Our studies revealed that combination of vincristine and MK571 was 

ineffective in all cell lines tested. MK571 alone at a concentration of 7.5 µM inhibited 

growth by 17 % (± 10 %).  The 2008 MRP-2, Sk-Mel-5 and Malme-3M cells express 

MRP-2 but MK-571 did not enhance response to vincristine in any of these cell lines. 
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MK-571 may not entirely inhibit the activity of MRP-2, or vincristine may be 

transported by MRP-1 or P-gP.   

 

Our study of the melanoma cell lines in vitro suggests that the aggressive invasive 

phenotype of metastatic melanoma is also evident in the cell lines, whereas the 

inherent chemotherapy resistant phenotype does not appear to be retained in 

melanoma cells in culture. This may be due in part to loss of expression of specific 

ABC transporters in vitro as we found low levels of MRP-1 and P-gP mRNA 

expression in the cell lines and studies of tumour tissues have reported high levels of 

these two transport proteins in melanoma [200]. Thus melanoma cell lines may not be 

appropriate models to investigate mechanisms of resistance to chemotherapy drugs. 

 

9.2 In vitro evaluation of dasatinib and imatinib in melanoma 

Targeted therapies may improve prognosis in chemotherapy resistant tumours such as 

melanoma. We focussed on examining the effects of multi-target kinase inhibitors in 

melanoma cells, as novel potential therapies for melanoma treatment. We examined 

the effects of dasatinib, which targets BCR-Abl, SRC, c-KIT, PDGFR, Ephrin-A 

receptors, and imatinib mesylate, which targets Bcr-Abl, c-Kit and PDGFR in 

melanoma cell lines 

 

In a previous study in breast cancer cell lines, sensitivity to 1 µM dasatinib was 

defined as at least 60 % inhibition of cell proliferation, moderate sensitivity as 40-59 

% inhibition and resistance as less than 40 % inhibition [172] (assuming that higher 

concentrations than 1 µM would not be achievable in vivo) [172]. However, we also 

included cell lines which displayed a lower level of response to dasatinib and we 
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classified cell lines which displayed greater than 25 % inhibition of proliferation at 

300 nM as dasatinib responsive (Lox-IMVI, WM-115, HT144 and Malme-3M) and 

cell lines with less than 25 % inhibition of proliferation at 300 nM as dasatinib 

resistant (M14, WM-266-4, Sk-Mel-5 and Sk-Mel-28).  We set the highest dasatinib 

concentration at 300 nM dasatinib due to recent studies identifying that the peak 

plasma concentration of dasatinib was only 100 ng/ml [209].  Consistent with our 

findings, a recent study which tested dasatinib in a different panel of melanoma cell 

lines, also reported that both Sk-Mel-5 and Sk-Mel-28 were resistant to dasatinib up 

to concentrations of 2 µM [210]. 

 

Dasatinib inhibition of SRC has been implicated in reducing invasion and migration 

in human sarcoma [182], lung cancer [183] whilst specific SRC inhibition by PP2 

reduced invasion and migration in breast cancer cells [211]. Dasatinib reduced the 

level of invasion and migration in HT144 and Sk-Mel-28 cell lines, at concentrations 

that were non-toxic to the cells.  Interestingly, although Sk-Mel-28 showed no 

response to dasatinib in proliferation assays, very low concentrations of dasatinib (15 

nM) inhibited invasion and migration of these cells.  

 

Studies in lung cancer [212], head and neck squamous cell carcinoma [183] and 

malignant pleural mesothelioma [134] have revealed that dasatinib induces both cell 

cycle arrest and apoptosis.  Our results show that dasatinib induces both apoptosis and 

G1 cell cycle arrest in Lox-IMVI (the most dasatinib responsive cell line), whilst 

inducing either G1 arrest in HT144 or apoptosis in Malme-3M (moderately 

responsive). Therefore, optimal response to dasatinib in melanoma cells may require 

efficient induction of both cell cycle arrest and apoptosis.   
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Imatinib, which targets Bcr-Abl, c-Kit and PDGFR, does not inhibit the growth of 

either HT144 or Lox-IMVI cells. This raised the possibility that the sensitivity of 

melanoma cell lines to dasatinib may be due to targeting SRC or EphA receptors.   

 

SRC has been shown to be activated by the phosphorylation of tyrosine 418, which 

can control proliferation and invasion [134, 163].  After six hours of treatment, we 

found that dasatinib inhibited phosphorylation of SRC in all 3 dasatinib sensitive cell 

lines tested but also in the dasatinib resistant cell line Sk-Mel-5. Furthermore a recent 

study [210] showed that longer incubation with dasatinib inhibits phosphorylation of 

SRC in all melanoma cell lines tested. Thus inhibition of p-SRC alone does not 

predict sensitivity to inhibition of proliferation by dasatinib in melanoma cells.  In 

contrast to our results inhibition of c-SRC activation in prostate cancer cell lines was 

linked with a reduction in proliferation [213].   

 

In the panel of cell lines, treatment with dasatinib for 6 hours had no effect on 

expression of EphA2. In a time course experiment in the dasatinib-sensitive cell line, 

Lox-IMVI, phosphorylation of EphA2 appeared to be transiently decreased, but was 

restored by 6 hours. These results suggest that inhibition of EphA2 does not play a 

key role in the response to dasatinib observed in Lox-IMVI.  In contrast dasatinib has 

been shown to decrease the phosphorylation of EphA2 and EphA2 kinase activity in 

A2058 and A375 melanoma cell lines [210].  Thus EphA2 may play a role in 

dasatinib sensitivity; however this may be cell line specific. 
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In colon cancer cells, inhibition of SRC was associated with reduced phosphorylation 

of FAK at tyrosine 861, which in turn was implicated in inhibiting migration and 

invasion [173].  Treatment with dasatinib reduced the level of FAK phosphorylation 

of tyrosine 861 in all melanoma cell lines tested; therefore inhibition of FAK 

phosphorylation may play a role in mediating the inhibitory effects of dasatinib on 

invasion and migration in melanoma cells.   Recently enzyme assays have shown that 

dasatinib is a potent inhibitor of several additional kinases, including FAK (IC50 = 0.2 

nM) [214].  Therefore, dasatinib may directly target FAK, independently of SRC, 

resulting in inhibition of migration/invasion without inhibition of proliferation as we 

observed in the Sk-Mel-28 cells.  

 

 Differences in the level or activation status of SRC do not appear to predict 

sensitivity to dasatinib in the melanoma panel. Tsao et al [134] have also found that 

SRC expression does not predict response to dasatinib in malignant pleural 

mesothelioma.  Serrels et al [173] showed that inhibition of p-SRC in peripheral 

blood mononuclear cells correlated with inhibition of p-SRC in colon tumours. 

Measuring changes in phospho-SRC in peripheral blood mononuclear cells may 

therefore serve as a surrogate marker for response to dasatinib.  However dasatinib 

treatment inhibited p-SRC in dasatinib responsive and dasatinib resistant cell lines, 

indicating that p-SRC inhibition does not correlate with response to dasatinib.  

 

9.3 Dasatinib in combination with current targeted therapies 

Targeted therapies have been shown to be effective at inhibiting tumour growth when 

combined with chemotherapy.  We studied the effect of dasatinib in combination with 

chemotherapy and targeted therapies. In the dasatinib sensitive Lox-IMVI and HT144 
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cells, combining dasatinib with TMZ showed a significantly greater inhibition of 

cellular proliferation than either drug tested alone. In the partially responsive M14 and 

Malme-3M cells, there is a small but significant improvement in response when 

dasatinib is combined with TMZ. In the dasatinib-resistant cell line Sk-Mel-28, the 

combination was slightly more inhibitory than TMZ alone although the difference 

was not significant. Of note, although dasatinib alone appeared to increase growth of 

Sk-Mel-28 cells, this effect did not result in any antagonism when combined with 

TMZ.  A study by Homsi et al, (2009) reported that the combination of dasatinib and 

temozolomide was not synergistic in a panel of melanoma cell lines though 

interestingly combinations of cisplatin, a DNA damaging agent, and dasatinib were 

found to be synergistic.  This could indicate that inhibition of SRC may enhance 

response to DNA damaging agents as has been previously shown in glioma, breast 

and lung cancer [215, 216].  

 

Dasatinib was also tested in combination with taxotere and epirubicin.  Some 

enhancement of the effect of epirubicin was observed in Lox-IMVI and HT144 cell 

lines, but the combination of dasatinib and taxotere did not result in a substantial 

improvement when compared to either drug alone.  Studies in melanoma cell lines 

which tested dasatinib in combination with paclitaxel also showed that the 

combination was not synergistic [217]. 

 

Sorafenib which targets several tyrosine kinase inhibitors including BRAF is 

presently being assessed alone and in combination in clinical trials for the treatment 

of melanoma [218].  We tested sorafenib in a panel of melanoma cell lines which are 
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BRAF mutated. Interestingly the dasatinib sensitive cell lines were sensitive to lower 

concentrations of dasatinib than sorafenib.  

 

The combination of dasatinib and sorafenib was also tested but did not produce an 

improved response compared to the single agents suggesting that this combination 

may not be beneficial clinically.  However, the triple combination of dasatinib, 

sorafenib and TMZ displayed improved response compared to testing each drug on its 

own in both Lox-IMVI and Malme-3M, suggesting that this may be a rational 

combination for testing in clinical trials in melanoma patients.   

 

Prolonged exposure of melanoma cells to TMZ altered the sensitivity to other 

chemotherapy drugs.  Interestingly TMZ exposure also sensitised cells to dasatinib.  

We tested the combination of TMZ and dasatinib in the parent and TMZ resistant cell 

line and found the combination was more effective in Malme-TMZ compared to the 

parent cell line Malme-3M.  Expression of SRC was unchanged but phosphorylation 

of SRC was increased in the resistant cell line.  This may indicate that repeated 

exposure to TMZ increases SRC signalling.  Radiation of lung cancer cell line A549 

has been shown to activate SRC [215] and cisplatin has been previously shown to 

increase SRC phosphorylation [216].  These results indicate a link between DNA 

damage and the increased phosphorylation of SRC, which could underpin the 

mechanism whereby TMZ treated cells become more sensitive to dasatinib.  

Importantly despite TMZ resistant cells displaying increased levels of 

phosphorylation of SRC, treatment with 100 nM dasatinib still inhibited SRC 

phosphorylation.  These results suggest that dasatinib therapy may be of benefit to 
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melanoma patients whose tumours have progressed on TMZ-based chemotherapy 

regimes.  

 

9.4 Biomarkers for dasatinib treatment in melanoma 

Dasatinib is effective at inhibiting proliferation in 50 % of melanoma cell lines tested. 

To determine the effectiveness of dasatinib in the clinical setting it will be important 

to identify biomarkers that can be used to select patients that are more likely to 

respond to dasatinib therapy.  We found a potential link between inhibition of FAK 

phosphorylation by dasatinib and the reduction of migration and invasion in 

melanoma cell lines.  We also showed a potential link between EphA2 expression and 

dasatinib sensitivity in the panel of melanoma cell lines.   

 

We then examined a panel of genes which have been tested as biomarkers for 

dasatinib sensitivity in 23 breast cancer cell lines [184].  Based on microarray 

analysis, 161 genes which were associated with dasatinib sensitivity were identified.  

From the list of 161 genes, ANXA1, CAV-1, CAV-2, EphA2, IGFBP2 and PTRF 

were chosen to develop a biomarker panel whose combined expression profile 

predicted response to dasatinib.   

 

Other studies have also identified biomarkers of response to dasatinib in vitro.  One 

study found that elevated expression of CAV-1, moesin and yes associated protein-1 

predicted sensitivity to dasatinib in 39 breast cancer cell lines [172].  A second study 

in 16 prostate cancer cell lines found 171 genes were correlated with in vitro 

sensitivity to dasatinib.  Of the 171 genes, elevated expression of androgen receptor, 

prostate specific antigen, cytokeratin 5, urokinase-type plasminogen activator and 
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EphA2 was found to significantly correlate with dasatinib sensitivity [219].  Finally a 

study in ovarian cancer found that elevated expression of CAV-1, ANXA1 and 

EphA2 correlated with sensitivity to dasatinib [220]. 

 

We tested the 6-gene dasatinib sensitivity biomarker panel as these genes are either 

targets of dasatinib; SRC substrates; or part of the downstream SRC pathway.  It was 

also validated in 11 additional breast cancer cell lines and 23 lung cancer cell lines, 

predicting response to dasatinib in greater than 85 % of cases [184].   

 

mRNA expression of ANXA1, CAV-1, CAV-2, EphA2, IGFBP2 and PTRF did not 

correlate with response to dasatinib in our panel of melanoma cell lines.  However the 

number of cell lines in the panel was limited to 8 and this may be too small to detect 

correlations with dasatinib response. Interestingly, protein expression of ANXA1, 

CAV-1 and EphA2, determined by semi-quantitative immuno-blotting, correlated 

with dasatinib sensitivity.  Protein based detection systems are generally more 

favourable in the clinical setting, for example by immunohistochemical staining in 

tumour tissues or by ELISA on serum samples. Therefore, the development of 

ANXA1, CAV-1 and EphA2 as a panel of protein markers for predicting response to 

dasatinib should be investigated further in clinical specimens. 

 

The possible reasons for a lack of correlation between mRNA expression and 

dasatinib sensitivity are that Huang et al (2007) classified cells as being dasatinib 

sensitive if they achieved an IC50 at 600 nM dasatinib; however we classified cell 

lines as responsive if they achieved greater than 25 % growth inhibition at 300 nM 

dasatinib.  The less stringent definition of sensitivity may affect the accuracy of the 
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sensitivity biomarker in our panel of melanoma cell lines.  The lack of correlation 

between protein and mRNA expression could be due to mRNAs not being translating 

into protein. 

  

Interestingly the elevated expression of ANXA1, CAV-1 and EphA2 in our melanoma 

cell lines has been recorded in the other dasatinib biomarker studies as mentioned 

above.  CAV-1 expression was elevated in breast and ovarian cell lines that are 

responsive to dasatinib [172, 220].  Elevated ANXA1 expression was found in 

dasatinib sensitive ovarian cell lines [220], whilst EphA2 was elevated in ovarian and 

prostate cancer cell lines [219, 220].  Because CAV-1 expression was elevated in 

breast and ovarian cancer studies which used large numbers of cell lines and CAV-1 

is associated with SRC kinase, we selected CAV-1 and SRC as preliminary markers 

to assess in melanoma patient samples. 

 

CAV-1 was expressed in 43 % of melanoma patient tumours.  A previous study of 

exosomes from melanoma patient plasma found that CAV-1 was expressed at higher 

levels in melanoma patients compared to healthy volunteers [221] and in 

hepatocellular carcinoma CAV-1 expression increased with disease progression [222].  

There was, however, no correlation between CAV-1 expression and metastatic or 

primary melanoma in our study.  Therefore CAV-1 expression may be increased at an 

early stage of melanoma and does not appear to be a marker of melanoma 

progression.   

 

SRC was expressed in 73 % of melanoma tumours and was expressed at slightly 

higher levels in primary tumours compared to metastatic tumours.  A recent study also 
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found that p-SRC Y418 was detected in 17/35 patient tumours and in 5/9 metastatic 

tumours [217].  We also determined that SRC kinase expression is lower in lymph 

node positive patients compared to lymph node negative patients.  These results 

suggest that SRC expression in melanoma is associated with a better prognosis.  We 

found that 41 % of melanoma tumours express both SRC and CAV-1.   To determine 

the percentage of patients that will possibly benefit from dasatinib therapy, future 

work will include measuring ANXA1 and EphA2 in the melanoma samples.   

 

Previous studies in breast cancer have shown that SRC expression and 

phosphorylation are increased with disease progression [223, 224].  Studies have also 

shown that SRC kinase expression and phosphorylation are associated with decreased 

survival [225-227].  However in one study of bladder cancer, SRC kinase expression 

was lost with disease progression [228].  

 

To determine if expression of ANXA1, CAV-1 and EphA2 correlate with dasatinib 

sensitivity in melanoma, this panel of potential biomarkers would need to be assessed 

in melanoma patients who receive dasatinib treatment.  

 

9.5 Proteomic profiling of dasatinib sensitive and resistant melanoma cells and 

functional validation of targets identified from phosphoproteomic analysis 

Analysis of the effects of dasatinib on cell signalling did not reveal specific markers 

or pathways which are responsible for sensitivity or resistance to dasatinib. 

Furthermore, siRNA knockdown of SRC did not correlate with dasatinib sensitivity in 

the two melanoma cell lines tested.  Other SRC family members may also play a role 

in proliferation control and may also play a role in sensitivity to dasatinib.  SRC 
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siRNAs used in this experiment only inhibited the expression of c-SRC.  Specific 

targeting of other SRC family members may be required to determine if other SRC 

family members are involved in dasatinib sensitivity. 

 

Therefore, in an attempt to identify mechanisms of response or resistance to dasatinib, 

we performed phosphoproteomic profiling on two cell lines representing a model of 

dasatinib sensitivity and dasatinib resistance. The model selected was the isogenic 

pair of melanoma cell lines WM-115, which is dasatinib sensitive, and WM-266-4, 

which is dasatinib resistant. WM-115 was derived from a primary tumour and WM-

266-4 was derived from a metastatic tumour from the same patient [229]. Two 

hundred and nine phosphoproteins were significantly altered in the comparisons of 

WM-115 and WM-266-4 with and without dasatinib treatment and we successfully 

identified 82 phosphoproteins.  The 209 phosphoproteins detected were identified by 

2D-DIGE analysis which has some limitations. Novel techniques such as stable 

isotope labelling by amino acids in cell culture (SILAC) may be useful for 

identification of smaller and less abundant proteins.     

 

In our studies moesin (MSN) and radixin (RDX) phosphoprotein levels were higher in 

untreated WM-115 cells compared to untreated WM-266-4 cells.  Dasatinib treatment 

reduced the phosphoprotein levels (2.98, 2.3 and 1.41 fold) of MSN and RDX (2.4 

and 2.3 fold) in WM-115 cells compared to untreated cells.  Moesin and radixin are 

members of the ezrin, moesin, radixin (ERM) family of molecules involved in the 

association of actin filaments with the plasma membrane [230].  Moesin is 

constitutively activated by phosphorylation of threonine 555 [231] and the activation 

of ERM family members links actin filaments to CD43, CD44 and ICAM-1 which are 
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involved in adhesion [232].  Moesin is critical for invasion in 3-D matrices [233], and 

the phosphorylation of moesin has also been linked with invasion in endometrial cells 

[234].  Dasatinib reduced invasion and migration in the three melanoma cell lines 

tested, regardless of their sensitivity to dasatinib.  Therefore MSN and RDX may play 

a role in invasion in WM-115 and WM-266-4 cells and in dasatinib mediated 

inhibition of invasion and motility.    

 

PRDX2 was increased in untreated WM-266-4 cells compared to untreated WM-115 

cells (1.29, 1.47 and 4.32 fold).  The two identified PRDX2 spots in dasatinib treated 

WM-115 cells were increased by 1.35 fold and decreased by 2.69 fold. The 

peroxiredoxase (PRDX) family protects cells against peroxide oxidative damage and 

regulates H2O2 mediated signalling [235].  PRDX2 is a cellular peroxidase that 

eliminates endogenous H2O2 produced in response to growth factors such as platelet 

derived growth factor (PDGF) and epidermal growth factor (EGF) [236].  PRDX2 is 

expressed in melanocytes, however its expression is lost in advanced melanoma [237, 

238].   PRDX2 is a negative regulator of PDGFR and the silencing of PRDX2 

increased levels of PDGFR which resulted in increased growth of melanoma cells 

[237] and migration of mice cells [236].   

 

In WM-115 cells dasatinib reduced the phosphoprotein levels of one spot of PRDX2 

by 2.69 fold.  This phosphorylated form of PRDX2 could therefore be implicated in 

response to dasatinib.  However to fully elucidate this role it would be necessary to 

identify the specific residue of PRDX2 that was phosphorylated and assess its affect 

on dasatinib sensitivity in melanoma. 
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Heat shock protein A5 (HSPA5, GRP78) phosphoprotein levels were both increased 

and decreased in untreated WM-266-4 cells compared to untreated WM-115 cells 

(2.67 fold increase and 2.79 fold decrease) and dasatinib treatment of WM-115 cells 

resulted in increased levels of phospho-HSPA9A (GRP75) (1.79 fold). HSPA8 

(HSC71) phosphoprotein levels were decreased in untreated WM-266-4 cells when 

compared to untreated WM-115 cells (2.67 fold) and dasatinib treatment of WM-266-

4 cells resulted in increased levels of HSPA8 (1.33 fold).  

 

Heat shock protein (HSP) 70 family consists of 8 members, which enhance the 

recovery of stressed cells by catalysing the reassembly of damaged ribosomal proteins 

[239].  HSPA5, an essential housekeeping gene, is localised in the endoplasmic 

reticulum protein and is involved in protein folding and facilitating the transport of 

new proteins [239].  Interestingly chemotherapy induces the unfolded protein 

response which increases levels of HSPA5 in melanoma cell lines.  HSPA5 inhibits 

apoptosis by preventing the activation of caspase 4 and 7 [240].  siRNA knockdown 

of HSPA5 resulted in apoptosis induction and sensitised cells to cisplatin [240].  c-

SRC has been linked to activation of HSPA5 in kidney and fibroblast cells [241]. 

 

HSPA8 (HSC71) is expressed constitutively in most cell types and is an essential 

housekeeping protein.  Its functions include amongst others protein folding and the 

prevention of protein aggregation which we confirmed by PANTHER analysis.  Its 

importance is illustrated in mice, where knockout of HSPA8 is lethal [239].  

Interestingly the simultaneous inhibition of HSPA1A and HSPA8 resulted in the 

inhibition of proliferation and apoptotic induction in colon, ovarian and glioblastoma 

cell lines [242]. 
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Phosphoprotein levels of HSPA9A (GRP75) were reduced in response to dasatinib in 

WM-115 cells.  This may implicate HSPA9A in response to dasatinib in melanoma.  

Previous studies have implicated HSPA9A in the progression of brian cancer [243], 

however no studies have been performed to assess its impact on drug sensitivity.  

 

Levels of phospho-HSPA8 were decreased in WM-266-4 cells when compared to 

WM-115 cells and dasatinib resulted in the decrease in levels of HSPA8 in WM-266-

4 cells.  WM-266-4 is a dasatinib resistant cell line, and the reduction of 

phosphoprotein levels of HSPA8 by dasatinib would be expected to decrease 

proliferation and increase apoptosis [242]. Because WM-266-4 cells do not respond to 

dasatinib it would seem unlikely that HSPA8 is mediating resistance to dasatinib. 

 

ANXA2 is expressed at higher levels in WM-115 cells compared to WM-266-4 cells 

(3.74, 1.98, 1.88 and 1.73 fold).  We found that dasatinib increased the level of 

ANXA2 phosphorylation in WM-115 cells (3.06, 3.02, 2.17 and 1.97 fold), whilst 

dasatinib did not significantly affect ANXA2 in WM266-4 cells.   

 

The annexin family are calcium sensitive proteins that can bind negatively charged 

phospholipids and establish interactions with other lipids.  The annexin family have 

been previously implicated in proliferation, migration, apoptosis and chemoresistance 

in cancer [244, 245].  The annexin family have also been implicated in signalling 

through several pathways that are heavily linked with cancer and metastasis such as 

the vascular endothelial growth factor (VEGF), protein kinase C (PKC), EGFR and 

SRC kinase pathways [244, 246, 247]. 
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Annexin-2 (ANXA2) linked with invasion, metastasis and angiogenesis is a substrate 

for PKC, PDGFR and SRC kinase and acts in a calcium dependant manner whereby it 

can interact with the cell surface and affect the movement of phospholipids [244].  

ANXA2 is usually found in a tetrameric construct consisting of two ANXA2 chains 

and two S100A10 chains and the complex of ANXA2-S100A10 has a channel 

modulating effect on the cell surface which can affect the membrane interactions of 

lipids [248].  The role of S100A10 is not fully understood, however it is known that 

the calcium binding site of S100A10 is constitutively active and as such its actions are 

calcium independent [249].  SRC kinase has also been shown to phosphorlyate 

S100A10 [250] and ANXA1 and ANXA2 have also been shown to interact with each 

other as they can both bind in a calcium dependent manner [251].   

 

The expression of ANXA2 has been shown to be increased in glioma, pancreatic and 

colorectal cancer, whilst its expression was reduced in prostate cancer [244].  The 

expression of ANXA2 is also shown to be lower in metastatic samples when 

compared to primary samples in lung cancer [244].  Expression of ANXA2 therefore 

does not correlate with progression of cancer in all solid tumours.  In our study, the 

levels of phosphorylated ANXA2 are slightly lower in the metastatic cell line WM-

266-4 compared to the primary cell line WM-115.  This indicates that ANXA2 

phosphorylation may be lost with melanoma progression.  Further analysis in a larger 

group of melanoma cell lines by immuno-blotting and studying phosphorylated 

ANXA2 in primary and metastatic melanoma patient samples by 

immunohistochemistry may help to elucidate the role of ANXA2 in cancer metastasis. 
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Treatment with dasatinib increased phosphorylation levels of ANXA2 in WM-115 

cells but not in WM-266-4 cells.  This may indicate that phosphorylated ANXA2 

plays a role in dasatinib sensitivity.  ANXA2 can be phosphorylated on both serine 

and tyrosine residues, and the phosphorylation of each residue can have different 

affects on ANXA2 function.  Our immuno-blotting results suggest that dasatinib 

increased phosphorylation of tyrosine residues in WM-115 but not in WM-266-4 

cells; whilst phosphorylation levels of serine residues were reduced by dasatinib 

treatment in both WM-115 and WM-266-4 cells.  The levels of tyrosine and serine 

phosphorylation though were very low in both cases.  Alterations in tyrosine 

phosphorylation therefore may be important in response to dasatinib in melanoma cell 

lines.  

 

Phosphorylation of ANXA2 at tyrosine 23 (Y23) is associated with actin remodelling 

[252], proper endosomal association [190] and the translocation of ANXA2 to the 

membrane [253].  These factors implicate ANXA2 Y23 in the control of cancer cell 

motility.  Interestingly SRC can directly phosphorylate ANXA2 on Y23 [253, 254], 

which negatively modulates ANXA2 function and inhibits the ability of ANXA2 to 

bind F-actin [254].  However another study found that phosphorylation of ANXA2 

Y23 is essential for ANXA2 function and its association with the endosome [190].  

Phosphorylation of ANXA2 Y23 has not been previously implicated in control of 

proliferation.  However 12 other potential tyrosine phosphorylation sites have been 

identified by phosphoproteomic studies (www.phosphosite.org) and the function of 

these sites are not fully explored.  ANXA2 Y274 was found to be altered in SRC 

transformed mice [255] and ANXA2 Y237 has been associated with migration [256].  

This may indicate that tyrosine phosphorylation of ANXA2 may play a role in 
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proliferation inhibition in dasatinib sensitive melanoma cell lines, however further 

studies of individual tyrosine phosphorylation residues is required. 

 

ANXA2 can exist as either a tetramer bound to S100-A10 or as a monomer [257].  

Phosphorylation of serine 25 (S25) of the ANXA2 monomer by the PKC pathway 

[258] has been associated with ANXA2 nuclear entry [259].  The entry of ANXA2 to 

the nucleus has been associated with control of proliferation and DNA synthesis 

[260].  Studying nuclear localisation of ANXA2 in melanoma cells in response to 

dasatinib may clarify if S25 ANXA2 phosphorylation plays a role in dasatinib 

sensitivity. 

 

ANXA2 has been associated with control of proliferation, apoptosis and the invasive 

potential of multiple myeloma and ANXA2 knockdown can reduce proliferation and 

migration whilst increasing apoptosis in a range of cancer types [261-264].  We found 

that ANXA2 siRNA caused significant inhibition of growth in the dasatinib sensitive 

WM-115 cells.  In the dasatinib resistant WM-266-4 cells there was a slight decrease 

in growth but the affect was not significant. Inhibition of ANXA2 function may play a 

role in dasatinib mediated inhibition of growth in WM-115 cells.  However, further 

investigation would be required to determine the effects of the altered 

phosphorylation of ANXA2 on its function and response to dasatinib.  

 

Our attempts to study the effect of ANXA2 knockdown on sensitivity to dasatinib 

were unsuccessful.  The transfection reagent Lipofectamine 2000 increased the 

sensitivity of both WM-155 and WM-266-4 cell lines to dasatinib.  Previous studies 

increased the time between transfection and drug treatment allowing the cells a 
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chance to recover from transfection [265]. If the knockdown of ANXA2 by siRNA 

can be maintained it may be possible to further study the role of ANXA2 in dasatinib 

sensitivity. Alternatively stable transfection of short hairpin RNA to knockdown 

ANXA2 may be required to study the effects on dasatinib sensitivity. 

 

Pro-Q diamond staining of dasatinib treated WM-266-4 cells compared to untreated 

cells was performed to identify proteins that had altered phosphorylation levels in 

response to dasatinib.  Analysis of dasatinib treated WM-115 cells could not be 

performed due to insufficient quantities of phosphoprotein required to perform 

duplicate gels.  For the comparison of dasatinib treatment of WM-266-4 cell lines 

duplicate gels were analysed and SameSpots analysis used to identify significantly 

altered phosphorylation status between untreated and treated WM-266-4 cell lines.   

 

Pro-Q Diamond staining though was not a reliable technique.  Staining between gels 

often varied despite even loading concentrations and similar incubation times for the 

Pro-Q Diamond stain causing concerns over the reliability of results.   From the 

limited number of proteins identified by Pro-Q Diamond staining of dasatinib treated 

WM-266-4 cells, two proteins showed increased phosphorylation levels in response to 

dasatinib.   

 

Endoplasmic reticulum protein 29 (ERP29) a general endoplasmic reticulum marker 

usually localised to the endoplasmic reticulum or nuclear envelope is implicated in 

secretory protein synthesis [266, 267].  Studies in breast cancer xenografts have 

demonstrated that ERP29 contributes to the growth of MCF-7 induced tumours.  

[268].   
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Pro-Q Diamond results demonstrated that dasatinib significantly increased the 

phosphorylation of ERP29 in WM-266-4 (5.4 fold).  However, using immuno-blotting 

we failed to detect tyrosine phosphorylation in either dasatinib untreated or treated 

WM-155 or WM-266-4 cells.  The discrepancy between these results may be due to 

two factors.  Replicate staining of untreated and dasatinib treated WM-266-4 gels 

with Pro-Q diamond failed to produce repeatable results due to irregular binding of 

the stain to the phosphorylated proteins.  This may indicate that the identified 

phosphorylated proteins are artefacts and that dasatinib does not alter the 

phosphorylation level of ERP29.  Alternatively previous analysis has only identified 

one tyrosine phosphorylation site for ERP29 (www.phosphosite.org). The basal level 

of phosphorylation for ERP29 in untreated WM-266-4 cells by Pro-Q Diamond 

staining (section 2.21) was very low and dasatinib treatment only resulted in a slight 

but significant increase in phosphorylation of ERP29 in WM-266-4 cells.  Therefore, 

detection of ERP29 tyrosine residues by immuno-blotting may not be possible due to 

low levels of phosphorylation.     

 

Heat shock protein 60 (HSP60) is a mitochondrial chaperone that functions by 

preventing the aggregation and promoting proteolytic degradation of misfolded or 

denatured proteins [269, 270].  An increase in the levels of HSP60 has been 

associated with apoptotic survival and increased proliferation [271].   

 

In WM-266-4 cells dasatinib treatment resulted in an increase in the phosphorylation 

of HSP60, according to the Pro-Q Diamond analysis.  This could possibly implicate 

HSP60 in resistance to dasatinib in melanoma cell lines.  However immuno-blotting 
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of HSP60 tyrosine and serine residues failed to confirm this result.  Pro-Q-Diamond 

staining identified low basal levels of phosphorylated HSP60 in untreated WM-266-4 

cells and the resulting increase in phosphorylation of HSP60 after dasatinib treatment 

was low.  Previous analysis has identified two potential serine and three potential 

tyrosine phosphorylation sites (www.phosphosite.org).  A limitation of our study is 

that immuno-blotting with phospho-tyrosine and phospho-serine antibodies detects 

total tyrosine and serine phosphorylation levels of HSP60.  Alterations in the 

phosphorylation of multiple sites may not be detected by immunoblotting if there are 

multiple changes in phosphorylation. Further analysis to identify specific 

phosphorylation sites which are important in cancer would be required to identify if 

HSP60 plays a role in dasatinib resistance. 

 

Comparison of the lists of phosphoproteins identified in the primary and metastatic 

cell lines WM-115 and WM-266-4 may also lead to identification of phosphoproteins 

associated with metastasis.   

 

Fascin 1 (FSCN1) phosphoprotein levels were increased in WM-266-4 cells compared 

to WM-115 cells indicating that FSCN1 could be a marker of metastasis for 

melanoma. FSCN1, which functions in the formation of actin based structures, [272] 

is increased in breast, lung and ovary cancer.  Increased expression correlates with 

tumour progression and aggressiveness in colorectal cancer [273].   

 

Lambda crystalin homolog (CRYL1) was found to be 24.17 fold higher in WM-266 

cells compared to WM-115 cells. CRYL1 is a tumour suppressor gene known to be 

related to small heat shock proteins [274].  No studies have been performed in 
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melanoma, however expression of CRYL1 was lower in hepato-cellular carcinoma 

(HCC) compared to non-tumour liver samples, and low expression of CRYL1 was 

associated with poor response in liver cancer.  The increased expression of CRYL1 

observed in WM-266-4 may implicate CRYL1 expression in melanoma metastasis.  

 

Three alpha-enolase (ENO1) spots were detected by phosphoproteomic analysis.  

Two spots showed increased phosphoprotein levels whilst one spot showed decreased 

phosphoprotein levels in WM-115 cells compared to WM-266-4 cells.  (ENO1) is an 

enzyme involved in the glycolytic pathway and is frequently down-regulated in lung 

cancer, and low levels of ENO1 are predictive of aggressive behaviour of the tumour 

[275].  ENO1 has been shown to direct the migration and invasion of monocytic cells 

in inflammatory responses [276].  Further studies are required to analyse the role of 

ENO1 in melanoma in melanoma growth and metastasis. 

 

9.6 Summary and Conclusion 

In summary, our data suggests that melanoma cell lines are not an appropriate model 

to study chemotherapy drug resistance. 

 

We found that dasatinib has anti-proliferative and anti-invasive effects in melanoma 

cell lines, and that the combination of dasatinib and TMZ is more effective at 

inhibiting proliferation that either drug alone.  We believe that the use of dasatinib in 

combination with TMZ represents a viable alternative to current therapeutic regimes 

for metastatic melanoma and should be further studied to determine its efficacy in 

patients. 
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From analysis of previously studied dasatinib sensitivity biomarkers we identified a 3-

gene marker of sensitivity in melanoma cell lines.  We analysed expression of CAV-1 

and SRC in patient samples and found that they were expressed in 44 % and 73 % of 

melanoma tumours respectively.  Further analysis of ANXA1 and EphA2 in patient 

samples will determine the percentage of patients who express all three markers and 

classify them as the group who may respond to dasatinib therapy. 

 

Finally phosphoproteomic analysis revealed that levels of phosphorylated ANXA2 

were lower in dasatinib responsive WM-115 cells compared to dasatinib resistant 

WM-266-4 cells.  SiRNA knockdown of ANXA2 resulted in decreased proliferation 

in WM-115 cells compared to WM-266-4 cells possibly implicating ANXA2 in 

mediating response to dasatinib in melanoma cell lines.  To determine the role of 

ANXA2 in dasatinib response or resistance it would be necessary to identify specific 

phosphorylation residues affected by dasatinib therapy.  By specifically inhibiting 

these residues we could determine their effect on proliferation, invasion and migration 

in melanoma cell lines. 
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