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Abstract—For the design and analysis of wireless systems,
complex simulations are required and performed. Model order
reduction techniques enable greater efficiencies to be achieved
and concomitantly, a reduction in memory-resource usage. How-
ever, maintaining a certain level of accuracy is paramount. In
this contribution, two techniques are combined to enable the
formation of a compact model of a high-order system, structure
or component. The first is a Krylov subspace method which
reduces the original model to a moderate size and the second is
a Fourier series expansion method that enables speed and ease
of determination of the time-domain responses of the system to
arbitrary inputs.

I. I NTRODUCTION

The technological advances in the circuitry involved in
wireless systems are such that there is an ongoing need for
efficient and effective model-order reduction techniques to
counter the ever-increasing complexity of simulations. Many
different techniques have been proposed, for example in ref-
erence [1 and all references therein]. In this contribution, two
different methods are combined to form a compact model of
a large high-order system thereby enabling fast and accurate
repeated simulations.

The first method considered is the Krylov subspace method
e.g. [2]. This method can handle very large systems and is
numerically efficient. However, there is no error bound for the
method and it can generate non-optimal models [3]. In general,
the reduced models formed from Krylov methods contain
information that is not necessary for a good approximation.

The second method addressed is based on a Fourier Series
Expansion (FSE) [4]. The medium-size model obtained after
application of the Krylov method is simulated and time-
domain responses can be explicitly obtained in a simple
form for an arbitrary input using only a compact set of FSE
coefficients. Guaranteed stability and causality is assured with
this model.

The proposed combined method is applied to a coplanar
waveguide and results will highlight the efficacy of the pro-
posed method.

II. K RYLOV SUBSPACEMETHODS

Consider a linear system with a state-space representation
as:

E
dx(t)

dt
= Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t),

wherex(t) is the state-space of the system of dimensionn,
u(t) is the input andy(t) is the output of the system. HereA,
B, C, D and E are the corresponding state-space matrices.
Eqn. (1) may be transformed to the Laplace Domain and a
transfer functionH(s) relating the inputU(s) to the output
Y (s) obtained:

H(s) = C(sE −A)−1B + D. (2)

There are several variations of Krylov methods but the PRIMA
[5] Krylov method is considered here. The Krylov space is
then defined as:

Kq(Â, B̂) = [B̂, ÂB̂, . . . , Âq−1B̂], (3)

whereÂ = (A− s0E)−1E andB̂ = (s0E −A)−1B andq is
the dimension of the reduced system. An orthonormal basis,
V , is formed forKq. The reduced system is then formed as:

Ẽ
dx̃(t)

dt
= Ãx̃(t) + B̃u(t) (4)

ỹ(t) = C̃x̃(t) + D̃u(t),

with Ẽ = V T EV , Ã = V T AV , B̃ = V T B, C̃ = CV and
D̃ = D.

The reduced system obtained with PRIMA matchesq mo-
ments of the original transfer function (2) and stability and
passivity are preserved as proven in [5].

However, it is well-known that Krylov methods generate
models which are, in general, larger than required. Several
remedies for this redundancy have been proposed [3, 6-7]. In
this contribution, the Fourier Series Expansion is proposed as
an alternative post-processing step to cure the problem.

III. F OURIER SERIESEXPANSION

The Fourier Series Expansion was first introduced in [4] and
is summarized here for completeness. LetH̃(ω) be the transfer
function of the reduced system obtained from application of
the PRIMA algorithm of Section II. SupposẽH(ω) is nonzero
for |ω| ∈ [0, ωm] whereωm is assumed to be large, but finite.
Also, assumẽH(ω) = H̃∗(−ω). ThenH̃(ω) may be expanded
in a Fourier Series as follows, bearing in mind that it must be
an even function of frequency.

Re H̃(ω) =
∞∑

k=0

ak cos kω̃, (5)
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where ω̃ = πω/ωm. The expression in (5) describes an even
function, defined forω ∈ [−ωm, ωm] (i.e. ω̃ ∈ [−π, π]). To
enforce causality, the expression forIm H̃(ω) may be obtained
from (5) via the Kramers-Kronig relations (Hilbert transform)
[8]:

Im H̃(ω) = −
∞∑

k=0

ak sin kω̃, (6)

From (5) and (6), it follows that

H̃(ω) =
∞∑

k=0

akejkω̃, (7)

for ω ∈ [−ωm, ωm].
The representation of the output in the time domain may be

obtained by an Inverse Fourier Transform. The output caused
by an (arbitrary) inputx(t) defined fort > 0, (i.e. input signal
x(t)θ(t) with Fourier imageX(ω), whereθ(t) is the unit step-
function), is:

y(t) =
1
2π

∫ ∞

−∞
ejωtY (ω) dω

=
1
2π

∞∑
k=0

ak

∫ ∞

−∞
ej(t−k̃)ωY (ω) dω (8)

=
∞∑

k=0

akx(t− k̃)θ(t− k̃),

wherek̃ = πk/ωm.
Therefore, once the set of FSE coefficients is obtained from

the frequency-domain simulations, then the response for an
arbitrary input may be readily determined from (8).

To determine the set of FSE coefficients,letH̃(ω) be ob-
tained at a number of points,ωi:

F
(1)
i = Re H̃(ω), i = 1, 2, . . . , N1; (9)

F
(2)
i = Im H̃(ω), i = 1, 2, . . . , N2, (10)

whereN1 is the number of real parts of the data points and
N2 is the corresponding number imaginary parts of the data
points.

Then let a be the set of real coefficientsa =
[a0, a1, . . . , aN ]T . Introduce M

(1)
ik = cos kω̃i, M

(2)
ik =

− sin kω̃i, and ω̃i = πωi/ωm, where k = 1, . . . , N . Then
from (9) and (10):

F (1) = M (1)a + E(1); (11)

F (2) = M (2)a + E(2). (12)

HereE(1,2) represent the errors that arise due to limiting the
summation in (5)-(8) to a finite number of terms,N ; (11) and
(12) may be merged to yield:

F = Ma + E (13)

with

F =
[

F (1)

F (2)

]
, M =

[
M (1)

M (2)

]
, E =

[
E(1)

E(2)

]

Fig. 1. Comparison of frequency responses for the coplanar waveguide –
red solid line is full model, blue dashed line is reduced model.

and the minimal error,ET E, for (13) is achieved with:

a = (MT M)−1MT F. (14)

The number of pointsN determines the size of this reduced
system. By selectingN as small as possible to obtain the
required error, any redundancy in the system in (4) can be
removed.

IV. EXAMPLE

The example considered is that of a coplanar waveguide.
The original model is described by a state-space representation
of the order of 300. The Krylov method is used to reduce this
dimension to 200. The Fourier Series Method is then applied
and the result obtained withN = 20 is shown in Fig. 1.
It is superimposed on the frequency domain response of the
original full model.

V. CONCLUSION

The paper has proposed a two-stage method for forming a
reduced-order model of large-scale systems. The method com-
bines two techniques, a Krylov method and a Fourier Series
approach. The method achieves a high degree of accuracy and
results in a compact model that enables ease of determination
of the time-domain responses.
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