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1. INTRODUCTION

This paper addresses the automatic identification of often-
traversed routes for assisted living applications using WLAN
technology in addition to other modalities. This problem is
complicated by a number of factors, including the changing
and noisy nature of the WLAN channel, the need to track
users seamlessly in both indoor and outdoor environments,
the need for robustness to slight deviations in the precise path
taken, and speed, along a route. In this work commonly tra-
versed routes are identified by clustering based on sensed data,
two of which take the form of wireless signals: GPS and
WLAN. The latter is particularly important as it can be used
both indoors and outdoors. In addition an efficient image
matching algorithm is implemented to process data from im-
ages automatically taken along the route. In this work a fi-
nite number of routes were identified within the DCU cam-
pus. Each route was traversed many times over a period of
6 weeks and data sequences collected automatically on each
occasion. Each such traversal of a route is referred to as a trip
in what follows. Section (2) outlines the use of Multidimen-
sional Time Warping in order to automatically cluster trips
corresponding to specific routes based on wireless and image
data sensed on each trip. Section (3) outlines the manner in
which data was sensed and presents clustering results for each
modality individually as well as results based on a fusion of
the data.

2. MULTIDIMENSIONAL DYNAMIC TIME
WARPING

In order to find a similarity measure for data collected during
different trips the Multidimensional Dynamic Time Warping
Algorithm [1] was employed. The classic DTW algorithm
uses a local distance measure to determine the distance be-
tween a class sequence and a test sequence by calculating a
warping path on the DTW distance table. Suppose there are

two sequences of data i.e. a class sequence C of length I
and test sequence T of length J . To measure the similarity
between these two sequences, an I × J distance-table D is
constructed, where d(i, j) is the local distance between Ci,
the ith element of C and Tj , the jth element of T . Warping
paths W are then calculated from the distance table, each of
which consists of a set of distance-table elements that define
a mapping and alignment between C and T :

W =
{

w(i(q), j(q))
∣∣∣∣ q = 1, ..., Q,

max(I, J) ≤ Q ≤ I + J − 1

∣∣∣∣}
(1)

The overall distance associated with each warping path W
is obtained by summing the local distances d(i, j) along it.
One popular choice for finding the best alignment between the
class sequence and the test sequence is to identify the warping
path that minimises this overall distance. This minimal dis-
tance is therefore a measure of the similarity between the data
sequences. In the experiments described below each data se-
quence was multidimensional, (for example the WLAN mea-
surements record signal strength from 3 separate MAC ad-
dresses, while GPS data sequences record both longitude and
latitude) and the DTW algorithm must be correspondingly
generalised. In order to switch to higher dimensions the class
template C(I × V ) and test template T (J × V ) are used.
They represent multimodal sequences where V is the number
of variables. To calculate the DTW distance between the test
and class templates, the extended Euclidean distance is used
as the local distance measure to calculate the difference be-
tween the two vectors of length V , CV

i and TV
j . It is defined

as :

dE(CV
i , TV

j ) =

√√√√ V∑
v=1

WV (v)(Ci,v − Tj,v)2 (2)

where WV is a positive definite weight vector. The weight
vector WV can be used in the MDTW algorithm to give more
weight to certain variables to improve the performance of
recognition but since all the variables in our data are of equal
importance we set WV equal to 1 in what follows.
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3. EXPERIMENTAL SET-UP AND RESULTS

A set of training data was collected simultaneously using a
SenseCam GiSTEQ GPS device and Campaignr software (for
collecting signal strengths data) installed on a N95 Nokia cell-
phone. Measurements were taken on 6 selected routes within
and around the DCU campus. The devices were synchro-
nized and the data recording was collected at regular time
intervals (every 1, 15 and 30 seconds for GPS, SenseCam
and Campaignr respectively). Each route was traversed 5
times (i.e. 5 trips) over a period of 6 weeks, yielding 30
sets of data overall. Signal strength information is consid-
ered to be 3-dimensional (V in section (2) equals 3) as the
same 3 MAC addresses were discernible along each trip. GPS
data is deemed to be 2-dimensional (consisting of longitude
and latitude coordinates at each point). Two data-matrices of
order N × 3 and M × 2 were thus collected corresponding
to WLAN and GPS data for each of the 30 trips, where N
and M depended on the length of time the trip took. The
MDTW was then applied to each pair of data sequences for
each modality. In the case of image data the MDTW algo-
rithm was applied to every two sets of images taken by the
SenseCam. The elements of the local distance matrix in this
case corresponded to the number of features matched between
images in each set (multiplied by -1 in order that the minimal
path would correspond to the path with most matches). The
matching features were identified using the SURF algorithm
[2]. A greater weight was placed on bi-directional matches in-
dicating the greater level of confidence ascribed to them. For
each of the three modalities a 30 × 30 distance matrix repre-
senting the level of similarity between each pair of trips was
thus produced by the MTDW algorithm. A fourth matrix was
formed as an equally weighted linear combination of the pre-
vious three normalized distance matrices. The distance matri-
ces were then processed (using 170 iterations of the clustering
algorithm described on page 368 of [3]) to form figures 1-4 ,
which are a spatial representation of where each trip resides
in the appropriate signal-space. It is noted that similar trips
along the same route tend to cluster together and can be iden-
tified as such (these are explicitly grouped in figure 4). The
fusion algorithm was able to successfully identify each of the
6 routes, something not managed by any of the 3 modalities
when applied individually. Future work will further investi-
gate the accuracy and robustness of the methods presented as
well as the choice of weights in the MDTW and fusion algo-
rithms.
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Fig. 1. Clustering of trips based on GPS data

Fig. 2. Clustering of trips based on WLAN data
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Fig. 3. Clustering of trips based on image matching

Fig. 4. Clustering of trips based on fused data


