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Abstract

Despite its state-of-the-art performance, the Data Ori-
ented Parsing (DOP) model has been shown to suf-
fer from biased parameter estimation, and the good
performance seems more the result of ad hoc adjust-
ments than correct probabilistic generalization over
the data. In recent work, we developed a new es-
timation procedure, called Backoff Estimation, for
DOP models that are based on Phrase-Structure an-
notations (so called Tree-DOP models). Backoff Es-
timation deviates from earlier methods in that it treats
the model parameters as a highly structured space of
correlated events (backoffs), rather than a set of dis-
joint events. In this paper we show that the problem
of biased estimates also holds for DOP models that
are based on Lexical-Functional Grammar annota-
tions (i.e. LFG-DOP), and that the LFG-DOP param-
eters also constitute a hierarchically structured space.
Subsequently, we adapt the Backoff Estimation algo-
rithm from Tree-DOP to LFG-DOP models. Backoff
Estimation turns out to be a natural solution to some
of the specific problems of robust parsing under LFG-
DOP.

The DOP model (Bod, 1995; Bod, 2001) currently ex-
hibits good performance on current benchmark tree-
banks, e.g. (Marcus et al., 1993). These treebanks are
annotated with impoverished phrase-structure parse-
trees and the DOP model that fits these annotations,
called Tree-DOP, works with the common rewrite op-
eration of substitution ( inherited from Context-Free
Grammars). Despite the simplicity of the rewrite for-
malism underlying Tree-DOP, probability estimation
turns out not to be as straightforward as it initially
seemed. Earlier studies (Johnson, 2002; Sima’an and
Buratto, 2003) have shown the bias of the three pre-
vious estimation procedures for Tree-DOP, namely
(Bod, 1995), (Bonnema et al., 1999) and (Bod, 2001).
Recently, a new study (Sima’an and Buratto, 2003)
shows that the main problem with estimation for Tree-
DOP is that the various parameters cannot be assumed
to be disjoint, as earlier work does; in fact, the Tree-
DOP parameter space is shown to abide by a partial
order that structures these parameters according to
correlations of occurrence between the different pa-
rameters. A suitable algorithm, Backoff Estimation,

takes into account this fact during the parameter esti-
mation for Tree-DOP. Preliminary experiments show
improved performance, despite the impoverished first
implementation.

In this paper, we study parameter estimation for
the extension of DOP to linguistic annotations that
are richer than phrase-structure. We concentrate on
the extension of DOP to Lexical-Functional Gram-
mar (LFG) annotations, i.e. LFG-DOP (Bod and Ka-
plan, 2003). Naturally, the problem of biased param-
eter estimation carries over from Tree-DOP to LFG-
DOP. In fact, the bias in Tree-DOP is further com-
pounded with specific aspects of LFG-DOP that al-
low for robust processing that can be achieved by ab-
straction over actually occurring treebank structures.
We show how the Backoff Estimation procedure ap-
plies to LFG-DOP and discuss the resulting model.
It turns out that Backoff Estimation naturally realizes
the specific model architecture that has been observed
to work best in previous experiments with LFG-DOP
(Bod and Kaplan, 1998; Bod and Kaplan, 2003).

Section 1 provides a review of the Tree-DOP
model. Section 2 reviews the Backoff Estimation al-
gorithm. Section 3 reviews LFG-DOP and section 4
extends the Backoff Estimation algorithm to LFG-
DOP. Finally, section 5 provides the conclusions from
this work.

1 Tree-DOP: Phrase-Structure

Like other treebank models, Tree-DOP extracts a fi-
nite set of rewrite productions, calledsubtrees, from
the training treebank together with probabilities. A
connected subgraph of a treebank treet is called a
subtreeiff it consists of one or more context-free pro-
ductions1 from t. Following (Bod, 1995), the set of
rewrite productions of Tree-DOP consists ofall the
subtrees of the treebank trees. Figure 3 exemplifies
the set of subtrees extracted from the treebank of Fig-
ure 1.

1Note that a non-leaf node labeledp in treet dominating a se-
quence of nodes labeledc1, · · · , cn consists of a graph that rep-
resents the context-free production:p → c1 · · · cn.
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Figure 1: A toy treebank
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Figure 2: Two different derivations of the same parse
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Figure 3: The subtrees of the treebank in Figure 1

The Tree-DOP model employs the set of subtrees
as a Stochastic Tree-Substitution Grammar (STSG):
a TSG is a rewrite system similar to Context-Free
Grammars (CFGs) ; the only difference is that the pro-
ductions of a TSG are subtrees of arbitrary depth2.
A TSG derivation proceeds by combining subtrees
using the substitution operation◦ starting from the
start symbolS of the TSG. In contrast with CFG
derivations, multiple TSG derivations may generate
the same parse. For example, the parse in Figure 1
can be derived at least in two different ways as shown
in Figure 2. In this sense, the Tree-DOP model de-
viates from other contemporary models, e.g. (Chelba
and Jelinek, 1998; Charniak, 2000), that belong to the
so-called History-Based Stochastic Grammar (HBSG)
family (Black et al., 1993). The latter models generate
every parse-tree through a unique stochastic deriva-
tion.

A Stochastic TSG (STSG) is a TSG extended with
a probability mass functionP over the set of sub-
trees: the probability of subtreet, that has root label
Rt, is given byP (t|Rt), i.e. for every non-terminalA:∑

{t|Rt=A} P (t | A) = 1.

2The depth of a tree is the number of edges along the longest
path from the root to a leaf node.

Given a probability functionP , the probability of
a derivationD = S ◦ t1 ◦ · · · ◦ tn is defined by
P (D | S) =

∏n
i=1 P (ti|Rti). The probability of a

parse is defined by the sum of the probabilities of all
derivations in the STSG that generate that parse.

When parsing an input sentenceU under a
Tree-DOP model, the preferred parseT is the
Most Probable Parse (MPP) for that sentence:
arg maxT P (T |U). However, the problem of com-
puting the MPP is known to be intractable (Sima’an,
2002). In contrast, the calculation of the Most Proba-
ble Derivation (MPD)D for the input sentenceU i.e.,
arg maxD P (D|U), can be done in time cubic in sen-
tence length.

The problem of how to estimate the probabilities of
the subtrees from a treebank isnot as straightforward
as originally thought. So far, there exist three estima-
tion procedures (Bod, 1995; Bonnema et al., 1999;
Bod, 2001). As shown in (Bonnema et al., 1999;
Johnson, 2002; Sima’an and Buratto, 2003), all three
estimation procedures turn out to be biased in an un-
intuitive manner.



2 Backoff Estimation for DOP

For the sake of completeness we review in this sec-
tion the Backoff Estimation procedure presented in
(Sima’an and Buratto, 2003).

Consider the common situation where a subtree3 t
is equal to a tree generated by a derivationt1 ◦ · · · ◦ tn
involving multiple subtreest1 · · · tn. For example,
subtrees17 (Figure 3) can be constructed by differ-
ent derivations such as(s16 ◦ s2), (s14 ◦ s1) and
(s15◦ s1◦ s3). We will refer to subtrees that can be
constructed from derivations involving other subtrees
with the termcomplex subtrees.

We observe that because the statistics for these
different derivations come from the treebank, these
statistics must be correlated. Next we will character-
ize these correlations in order to arrive at a suitable
estimation procedure.

t2

t1

X X

Y
t

Figure 4: Sketch of two derivation of the same subtree

For every complex subtreet, we restrict our atten-
tion only to the derivations involving pairs of sub-
trees; in other words, we focus on subtreet such that
there exist subtreest1 andt2 such thatt = (t1 ◦ t2)
(see figure 4). In DOP, the probability oft is given
by P (t|Rt). In contrast, the derivation probability is
given byP (t1|Rt1)P (t2|Rt2). However, according to
the chain ruleP (t1 ◦ t2|Rt1) = P (t1|Rt1)P (t2|t1).
Therefore, the derivationt1 ◦ t2 embodies an inde-
pendence assumption realized by the approximation4:
P (t2|t1) ≈ P (t2|Rt2). This approximation involves a
so-calledbackoff, i.e. a weakening of the condition-
ing context fromP (t2|t1) to P (t2|Rt2). Hence, we
will say that the derivationt1 ◦ t2 constitutesa back-
off of subtreet and we will write (t ≥bfk t1 ◦ t2) to
express this fact.

The backoff relation≥bfk between a subtree and
a pair of other subtrees allows for a partial order be-
tween the derivations of the subtrees extracted from
a treebank. A graphical representation of this par-
tial order is a directed acyclic graph which consists
of a node for each pair of subtreesti, tj that consti-
tute a derivation of another complex subtree. A di-

3The term “subtree” is reserved for the tree-structures that
DOP extracts from the treebank.

4Note thatRt2 is part oft1 (the label of the substitution site).

rected edge points from a subtreeti in a node5 to
another node containing a pair of subtrees〈tj , tk〉 iff
ti ≥bfk tj ◦ tk. We refer to this graph as thebackoff
graph. An example based on the subtrees of Figure 3
is shown in Figure 5, wheres0 stands for a subtree
consisting of a single node labeledS (the start sym-
bol). We distinguish two sets of subtrees: initial and
atomic. Initial subtrees are subtrees that do not partic-
ipate in a backoff derivation of any other subtree. In
Figure 3, subtrees17 is the only initial subtree.Atomic
subtrees are subtrees for which there are no backoffs.
In Figure 3, these are subtrees of depth one (double
circled in the backoff graph).

In the DOP model (under any known estimation
procedure), the probablity of a parse-tree is defined
as the sum of the probabilities of all derivations that
generate this parse-tree. This means that DOP linearly
interpolates derivations involving subtrees from dif-
ferent levels of the backoff graph; this is similar to
the way Hidden Markov Models interpolate different
Markov orders over, e.g. words, for calculating sen-
tence probability. Hence, we will refer to the different
levels of subtrees in the backoff graph as theMarkov
orders.

Backoff DOP Crucially, the partial order over the
subtrees, embodied in the backoff graph, can be ex-
ploited for turning DOP into a “backedoff model” as
follows. A subtree is generated by a sequence of
derivationsordered by the backoff relation. This is in
sharp contrast with existing DOP models that consider
the different derivations leading to the same subtree
as a set ofdisjoint events. Next we present the esti-
mation procedure that accompanies this new realiza-
tion of DOP as a recursive backoff over the different
Markov orders.

Estimation vs. smoothing It is common in prob-
abilistic modeling tosmootha probability distribu-
tion P (t|X, Y ) by a backoff distribution thereof e.g.
P (t|X). The smoothing ofP (t|X, Y ) aims at dealing
with the problem of sparse data (whenever the proba-
bility P (t|X, Y ) is zero). The backoff valueP (t|X)
can be used as an approximation ofP (t|X, Y ) under
the assumption thatt andY are independent. Smooth-
ing, then, aims at enlarging the space of non-zero
events in the distributionP (t|X, Y ). Hence, the goal
of smoothing differs from our goal. While smooth-
ing aims at filling the zero gaps in a distribution, our
goal is to estimate the distribution (a priori to smooth-
ing it). Despite these differences, we employ a back-

5In a pair〈th, ti〉 or 〈ti, th〉 that constitutes a node.
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Figure 5: A portion of the backoff graph for the subtrees in Figure 3

off method for parameter estimation byredistributing
probability mass among DOP model subtrees.

Katz Backoff The Katz Backoff method (Katz,
1987; Chen and Goodman, 1998) is a smoothing
technique based on the discounting method of Good-
Turing (GT) (Good, 1953; Chen and Goodman,
1998). Given a higher order distributionP (t|X, Y ),
Katz backoff employs the GT formula for discount-
ing from this distribution leading toPGT (t|X, Y ).
Then, the probability mass that was discounted (1 −∑

t PGT (t|X, Y )) is distributed over the lower order
distributionP (t|X).

Estimation by Backoff We assume initial proba-
bility estimatesPf based on frequency counts as in
DOPrf (Bod, 1995). The present backoff estima-
tion procedure operates iteratively, top-down over the
backoff graph, starting with the initial and moving
down to the atomic subtrees. In essence this procedure
transfers, stepwisely, probability massfrom complex
subtrees to their backoffs.

Let P c represent the current probability estimate
resulting fromi previous steps of re-estimation (ini-
tially, at stepi = 0, P 0 := Pf ). After i steps, the
edges of the backoff graph lead to thecurrent layer
of nodes. For everyt, a subtree in a node from the
current layer in the backoff graph, an edgee outgoing
from t stands for the relation (t ≥bfk t1 ◦ t2), where
〈t1, t2〉 is the node at the other end of edgee. We
know that

P c(t|Rt) = P c(t1|Rt1)P
c(t2|t1)

P c(t1 ◦ t2) = P c(t1|Rt1)P
c(t2|Rt2)

This mean thatP c(t2|t1) is backedoff toP c(t2|Rt2).
Hence, we may adapt the Katz method to estimate the
Backoff DOP probabilityPbo as follows:

Pbo(t2|t1) ={
P c

GT (t2|t1) + α(t1) Pf (t2|Rt2) [Pc(t2|t1) > 0]
α(t1) Pf (t2|Rt2) otherwise

whereα(t1) is a normalization factor that guarantees
that the sum of the probabilities of subtrees with the
same root label is one. Simple arithmetic leads to the
following formula:

α(t1) = 1 −
∑

t2:f(t1,t2)>0

P c
GT (t2|t1)

Using the above estimate ofPbo(t2|t1), the other
backoff estimates are calculated as follows:

Pbo(t|Rt) := Pf (t1|Rt1) P c
GT (t2|t1)

Pbo(t1|Rt1) := ( 1 + α(t1) ) Pf (t1|Rt1)

Before the next stepi + 1 of Katz backoff takes place
over the next layer in the backoff graph, the current
probabilities are updated as follows:P i+1(t1|Rt1) :=
Pbo(t1|Rt1).

Note thatPbo is a proper distribution in the sense
that for all nonterminalsA:

∑
t P (t|A) = 1. This is

guaranteed by the redistribution of the reserved proba-
bility mass at every step of the procedure over the lay-
ers of the backoff graph. Furthermore, we note that
the present method isnot a smoothing method since
it applies Katz Backoff for redistributing probability
massonly among subtrees thatdid occur in the tree-
bank. The present method does not address probabil-
ity estimation for unknown/unseen events.

Summary of experiments: In (Sima’an and Bu-
ratto, 2003) we describe a first implementation of
Backoff estimation for DOP and report on a series of
experiments. Because of the large number of DOP
subtrees the current implementation applies Backoff
estimation only tot ≥bfk t1 ◦ t2 iff t2 is a lexical
subtree i.e.,t2 =X → w whereX is a Part of Speech
(PoS) tag andw a word. This recognizes the impor-
tance of good estimates of the probabilities of lexical-
ized subtrees. The experiments on the Dutch OVIS
tree-bank show that the Backoff estimation method
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Figure 6: An LFG representation forJohn loves Mary.

described above outperforms the original estimator
(subtree relative frequency) used in (Bod, 1995; Bod,
2001). The improved behavior has been validated on
multiple different train/test splits. Furthermore, both
the new Backoff estimator and the subtree relative fre-
quency estimator outperform the estimator suggested
in (Bonnema et al., 1999).

Next we extend the new Backoff estimator to LFG-
DOP, and show that this estimator solves some of the
hard problems that LFG-DOP suffers from.

3 LFG-DOP: Lexical-Functional Grammar

Before we show how Backoff Estimation can be ap-
plied to estimate the model parameters, we specify the
four elements of LFG-DOP:

Representation: Lexical Functional Grammar
(LFG) (Bresnan, 2001) is a constraint-based
theory of language which aims to analyse lan-
guage in lexical and functional terms rather than
solely in terms of phrase structure. The LFG-
DOP model (Bod and Kaplan, 1998) employs
representations, such as the one in Figure 6,
which comprise two parallel levels, constituent
structure (c-structure) and functional structure
(f-structure), and a mapping between them.
The c-structures describe surface structure,
the f-structures describe grammatical relations
and φ maps between these levels of linguistic
representation. This relationship is generally
expressed as a triple of the form<c,φ,f>. An
f-structure unitf is φ-accessible from a node
n if either f is linked to n or f is contained
within an f-structure linked ton. This reflects
the intuitive idea that nodes can only access
information in the units of f-structure to which
they areφ-linked.

Decomposition into fragments: LFG-DOP frag-
ments consist of connected subtrees (as in

Tree-DOP) whose nodes are inφ correspon-
dence with (partial) f-structures. In operational
terminology, the Tree-DOP decomposition of a
treebank tree into subtrees proceeds using two
operators: root and frontier. These operators
select the nodes that delimit a subtree:root
selects the root node, andfrontier selects the
frontier nodes. The connected subgraph between
these selected nodes constitutes the subtree.

For LFG-DOP, these operators are extended as
follows (Bod and Kaplan, 2003). When a node
is selected by theroot operation, all nodes out-
side that node’s subtree are erased, as in Tree-
DOP. Further, allφ-links coming from the erased
nodes are removed and all f-structure units notφ-
accessible from the remaining nodes are erased.
The root operation also deletes the PRED at-
tributes (semantic forms) local to f-structures
corresponding to erased nodes. Thefrontier op-
eration selects a set of frontier nodes and deletes
all subtrees they dominate, also removing theφ-
links and semantic forms (but not features) cor-
responding to any deleted nodes. An example is
given in Figure 7.

VP
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OBJ
[
NUM SG

]


Figure 7: A fragment generated byroot and frontier
from the representation in Figure 6.

Composition: LFG-DOP derivations proceed using
composition operations that extend the substitu-
tion operation of Tree-DOP. The LFG-DOP com-
position operation (◦) involves two stages: c-
structures are combined exactly as in Tree-DOP
and their corresponding f-structures are unified
recursively.

According to LFG theory (Bresnan, 2001), c-
structures and f-structures must satisfy certain
well-formedness conditions:uniquenessspeci-
fies that each attribute in the f-structure can have
at most one value,coherenceprohibits the pres-
ence of grammatical functions which are not re-
quired by the lexical predicate, andcompleteness
requires that all functions governed by a lexical
predicate must be present in its f-structure. Any
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Figure 8: A fragment generated by thediscardopera-
tion from the representation in Figure 7.

parse generated by a sequence of composition
operations must satisfy these conditions.

Probability Model: As with Tree-DOP, the proba-
bility of a derivation is the joint probability of
choosing each fragment involved in that deriva-
tion. Hence, the probability of a derivation is the
product of the probabilities of choosing each of
the fragments involved in that derivationP (f1 ◦
...◦fn) =

∏
i P (fi) and the probability of a parse

T is the sum of the probabilities of its distinct
derivationsP (T ) =

∑
D derives T P (D).

In Tree-DOP, each Competition Set (CS) simply
contains all fragments with the same root node
because there are no conditions to be met other
than those enforced at each derivation step by the
composition operator. However, the definition
of the competition set for LFG-DOP depends on
which of the LFG well-formedness conditions
are enforced on-line while the derivation is be-
ing constructed and which are enforced off-line
when the derivation is complete.

3.1 Robustness (thediscardoperator)

The LFG c-structures generated byroot and frontier
are exactly the set of fragments generated for Tree-
DOP. However, they suffer from reduced composi-
tionality due to the constraints imposed by their asso-
ciated f-structures, resulting in robustness problems.
This issue can be addressed by further generalising
fragments generated viaroot and frontier by relax-
ing combinations of the constraints embodied in the
f-structures. A third operator,discard, extracts frag-
ments from f-structures by allowing attribute-value
pairs to be deleted while keeping the associated c-
structures andφ-links constant, as shown in Figure 8.
Discardis subject to one restriction, namely that pairs
whose values areφ-linked to remaining c-structure
nodes are not deleted.

3.2 Earlier parameter estimation for LFG-DOP

There exist two suggestions for parameter estima-
tion for LFG-DOPsimple relative-frequency (simple-

RP) and discounted relative-frequency (discounted-
RF). Discounted-RF is a variant of simple-RF, espe-
cially adapted for avoiding the problem of estimating
discardgenerated fragments as we explain next.

Let |f | be the number of occurrences of fragment
f in the corpus and CS a competition set containing
f . According to simple-RF, the probability assigned
to f is given by the relative frequency estimate (in the
multi-set of all possible fragments):

P (f) =
|f |∑

fx:fx∈CS |fx|

The probabilities of LFG-DOP fragments can be cal-
culated in terms of their relative frequencies among
all fragments generated from the corpus.

However this parameter-estimation method, known
as simple-RF, is as biased as the relative-frequency
estimation for Tree-DOP. Furthermore, this method
does not account for the fact that those fragments
produced bydiscardare generalisations of fragments
generated byroot andfrontier, and may be used in the
analysis of ill-formed input. Because exponentially
many fragments can be generated by applying dis-
card to each fragment produced via root and frontier,
the discard-generated fragments absorb much of the
probability mass under the simple-RF estimator, just
like larger subtrees absorb a large probability mass in
Tree-DOP.

A second parameter estimation method,
discounted-RF, treats fragments produced by
root and frontier as seen events and those gener-
ated via discard as unseen events. The relative
frequencies of seen events are discounted using
the Good-Turing estimator (Good, 1953) and the
discounted probability mass is given to the unseen
events. As discounted-RF assigns a fixed probability
mass to discard-generated fragments, the exponential
number of such fragments does not adversely affect
the probabilities of fragments generated by root and
frontier. However, this method is as biased as the first,
and it still does not account for the fact thatdiscard
fragments are generalisations ofroot and frontier
fragments and may be used to analyse ill-formed
input.

We think that the problem of how to employdis-
card within LFG-DOP is merely a symptom of the
bias of existing estimates for LFG-DOP as a whole.
Next we explain how Backoff Estimation can be ap-
plied to LFG-DOP, thereby also solving the problem
with how to employ discard fragments.



4 BackOff Estimation for LFG-DOP

Back-off parameter estimation can be applied to LFG-
DOP fragments generated byroot andfrontier exactly
as described for Tree-DOP, using a directed acyclic
graph to represent the partial order between them.
A directed edge points from a fragment〈cx, φx, fx〉
to a pair of fragments〈〈cy, φy, fy〉, 〈cz, φz, fz〉〉
if 〈cy, φy, fy〉 and 〈cz, φz, fz〉 compose to give
〈cx, φx, fx〉. Composition of these fragments involves
both leftmost substitution over the c-structures and
unification over the f-structures.

The production of LFG-DOP fragments viadis-
card involves generating all possible f-structure frag-
ments for each fragment produced viaroot and fron-
tier while keeping c-structure andφ-links constant.
Therefore, the backoff relation is defined in terms of
f-structure unification rather than fragment composi-
tion. For discard-generated fragments, a directed edge
points from a fragment〈c, φ, f〉 to a pair of fragments
〈〈c, φ, fy〉, 〈c, φ, fz〉〉 if f-structures fy and fz unify to
f and f 6= fy 6= fz:

〈c, φ, f〉 ≥ bfk〈c, φ, {fy

⋃
fz}〉

The probability of the derivation〈c, φ, {fy
⋃

fz}〉
is given as follows:

P (〈c, φ, {fy

⋃
fz}〉|Rc) =

P (c, φ|Rc)P ({fy

⋃
fz}|c, φ, Rc) ≈

P (c, φ|Rc)P (fy|c, φ)P (fz|c, φ, fy) ≈
P (c, φ|Rc)P (fy|c, φ)P (fz|c, φ)

Thus the derivation〈c, φ, {fy
⋃

fz}〉 embodies an in-
dependence assumption realised by the approxima-
tion P (fz|c, φ, fy) ≈ P (fz|c, φ). This approxi-
mation constitutes a backoff, hence the derivation
〈c, φ, {fy

⋃
fz}〉 is said to be a backoff of fragment

〈c, φ, f〉. Here, backoff is used to redistribute proba-
bility mass among discard-generated LFG-DOP frag-
ments by transferring probability mass from complex
fragments to their backoffs in a stepwise manner.

4.1 Discussion

Backoff Estimation of the LFG-DOP model param-
eters, includingdiscard generated fragments, natu-
rally addresses a major aspect of how to employ LFG-
DOP. Below we discuss the observations from earlier
work and explain why Backoff Estimation constitutes
a suitable solution.

Experiments described in (Bod and Kaplan, 2003)
suggest that, at least for small corpora over limited
domains, where a parse can be produced without re-
course todiscard-generated LFG-DOP fragments, the
inclusion of such fragments does not significantly
improve parse accuracy. Clearly, if discarding f-
structures entirely and parsing only with c-structures
does not result in one or more parses, then the inclu-
sion ofdiscard-generated fragments will have no im-
pact. Therefore, it has been suggested thatdiscard-
generated fragments should only be included in the
parse space where the input can be parsed using c-
structures only but no parse is possible over fully-
instantiated〈c, φ, f〉 fragments.

(Way, 1999) also observes thatdiscard should be
used to derive fragments only where absolutely neces-
sary. He suggests that there must be a countable num-
ber of cases – such as subject-verb agreement, rel-
ative clause agreement and movement phenomena –
in which unification fails anddiscard-generated frag-
ments should be applied. He outlines some ways in
which composition viadiscardcould work given such
a list of cases, whereby the process is triggered by the
occurrenceof unification failure and controlled by the
typeof failure that occurred.

These observations seem to lead towards an
LFG-DOP model wherediscard-generated fragments
are treated as “second rate” fragments that will be
used only upon failure of the other fragments to
produce analyses for the input. Although based
on empirical experience, this constitutes an ad hoc
mechanism that might mask the symptoms but will
not provide the remedy for the main problem: biased
parameter estimates. We think that the same can be
realized in a natural manner by Backoff Estimation.
In Backoff Estimation, the parameters are structured
in the backoff graph that directs the estimation algo-
rithm for realizing a kind ofsoft, probabilistic backoff.

Indeed, and as an ad hoc simplification of Back-
off Estimation, it is possible to employ the partial
ordering of fragments to achieve better performance
also whendiscrad-generated fragments are employed.
Clearly, for Tree-DOP and forroot- and frontier-
generated fragments in LFG-DOP, the partial ordering
of fragments is used solely for parameter estimation.
Fordiscard-generated LFG-DOP fragments, however,
this partial ordering can be further exploited in order
to motivate the phased addition of such fragments to
the parse space. For example, fragments can be added
in layers to the parse space, starting with the most spe-



cific (i.e. the first layer of each backoff graph) and
working toward the least specific. As soon as at least
one parse can be produced, no more fragments are in-
troduced and the most probable parse is determined,
thus favoring parses with more complete f-structures.
This approach accounts for the fact that, where one
or more parses can be produced viadiscard (but not
root and frontier alone), these parses can be consid-
ered to occupy a spectrum ranging from most specific
to least specific, depending on the number of attribute-
value pairs that have been discarded from the frag-
ments used to derive them. Other configurations can
also be envisaged. For example, following from the
proposals in (Way, 1999), the fragment space could be
partitioned based on the type of simple attribute-value
pairs which have been discarded from each fragment.

5 Conclusions

This paper shows how the parameters for the LFG-
DOP model can be estimated as a highly structured
space of correlated events. The Backoff Estimation
procedure that was originally developed for Tree-
DOP (based on Phrase-Structure annotations) turns
out especially suitable for LFG-DOP. In particular,
Backoff Estimation provides a solution to the prob-
lem of robust LFG-DOP parsing without resorting to
ad hoc, crisp mechanisms.

Future work will address various aspects of this
work. Naturally, empirical experiments with the re-
sulting LFG-DOP models need to be conducted in
order to verify the empirical value of this method.
There are various specific implementations of the al-
gorithm that need to be sorted out. Furthermore, a new
Maximum-Likelihood estimation procedure should be
developed that takes the backoff graph into account
(as that graph expresses constraints on the eligible pa-
rameter values).
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