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Abstract

Despite its state-of-the-art performance, the Data Ori-
ented Parsing (DOP) model has been shown to suf-
fer from biased parameter estimation, and the good
performance seems more the result of ad hoc adjust-
ments than correct probabilistic generalization over
the data. In recent work, we developed a new es-
timation procedure, called Backoff Estimation, for
DOP models that are based on Phrase-Structure an-
notations (so called Tree-DOP models). Backoff Es-
timation deviates from earlier methods in that it treats
the model parameters as a highly structured space of
correlated events (backoffs), rather than a set of dis-
joint events. In this paper we show that the problem
of biased estimates also holds for DOP models that
are based on Lexical-Functional Grammar annota-
tions (i.e. LFG-DOP), and that the LFG-DOP param-
eters also constitute a hierarchically structured space.
Subsequently, we adapt the Backoff Estimation algo-
rithm from Tree-DOP to LFG-DOP models. Backoff
Estimation turns out to be a natural solution to some
of the specific problems of robust parsing under LFG-

takes into account this fact during the parameter esti-
mation for Tree-DOP. Preliminary experiments show
improved performance, despite the impoverished first
implementation.

In this paper, we study parameter estimation for
the extension of DOP to linguistic annotations that
are richer than phrase-structure. We concentrate on
the extension of DOP to Lexical-Functional Gram-
mar (LFG) annotations, i.e. LFG-DOP (Bod and Ka-
plan, 2003). Naturally, the problem of biased param-
eter estimation carries over from Tree-DOP to LFG-
DOP. In fact, the bias in Tree-DOP is further com-
pounded with specific aspects of LFG-DOP that al-
low for robust processing that can be achieved by ab
straction over actually occurring treebank structures.
We show how the Backoff Estimation procedure ap-
plies to LFG-DOP and discuss the resulting model.
It turns out that Backoff Estimation naturally realizes

the specific model architecture that has been observed
to work best in previous experiments with LFG-DOP

. (Bod and Kaplan, 1998; Bod and Kaplan, 2003).
The DOP model (Bod, 1995; Bod, 2001) currently ex Section 1 provides a review of the Tree-DOP

hibits good performance on current benchmark tree-

banks, e.g. (Marcus et al., 1993). These treebanks épé)dd' Section 2 reviews the Backoff Estimation al-

annotated with impoverished phrase-structure pars%(—mthm' Section 3 reviews LFG-DOP and section 4

extends the Backoff Estimation algorithm to LFG-

trees and the DOP model that fits these annotatio : . . :
called Tree-DOP, works with the common rewrite OprBOP. Finally, section 5 provides the conclusions from

eration of substitution ( inherited from Context-FreethIS work.
Grammars). Despite the simplicity of the rewrite for—:L
malism underlying Tree-DOP, probability estimation
turns out not to be as straightforward as it initiallyLike other treebank models, Tree-DOP extracts a fi-
seemed. Earlier studies (Johnson, 2002; Sima’an anile set of rewrite productions, calledibtrees from
Buratto, 2003) have shown the bias of the three prehe training treebank together with probabilities. A
vious estimation procedures for Tree-DOP, namelyonnected subgraph of a treebank tteis called a
(Bod, 1995), (Bonnema et al., 1999) and (Bod, 2001}ubtresiff it consists of one or more context-free pro-
Recently, a new study (Sima’an and Buratto, 2003juctions from ¢. Following (Bod, 1995), the set of
shows that the main problem with estimation for Treerewrite productions of Tree-DOP consists aif the
DOP is that the various parameters cannot be assum@gbtrees of the treebank trees. Figure 3 exemplifies

to be disjoint, as earlier work does; in fact, the Treethe set of subtrees extracted from the treebank of Fig-
DOP parameter space is shown to abide by a partigte 1.

order that structures these parameters according -te; ] o

. . Note that a non-leaf node labelgdn treet dominating a se-
correlations of occurrence between the different P&ence of nodes labeled, - - - , ., consists of a graph that rep-
rameters. A suitable algorithm, Backoff Estimationresents the context-free productigni= ¢; - - - ¢,.

DOP.

Tree-DOP: Phrase-Structure
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Figure 1: A toy treebank
Figure 2: Two different derivations of the same parse
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Figure 3: The subtrees of the treebank in Figure 1

The Tree-DOP model employs the set of subtrees Given a probability functionP, the probability of
as a Stochastic Tree-Substitution Grammar (STSG: derivationD = S o t; o --- o t, is defined by
a TSG is a rewrite system similar to Context-Free®(D | S) = [, P(ti|Rs,). The probability of a
Grammars (CFGSs) ; the only difference is that the prgparse is defined by the sum of the probabilities of all
ductions of a TSG are subtrees of arbitrary dépthderivations in the STSG that generate that parse.
A TSG derivation proceeds by combining subtrees
using the substitution operation starting from the . .
start symbolS of the TSG. In contrast with CFG When parsing an input sentencé un_der a
derivations, multiple TSG derivations may generatgree'DOP model, the preferred parse is the
the same parse. For example, the parse in Figure'viOSt Probable Parse (MPP) for that sentence:

can be derived at least in two different ways as showit 8 xr P(T|U). However, the problem of_corT]—
in Figure 2. In this sense, the Tree-DOP model gduting the MPP is known to be intractable (Sima’an,

viates from other contemporary models, e.g. (Chel 002). In contrast, the calculation of the Most Proba-

and Jelinek, 1998; Charniak, 2000), that belong to th%e Derivation (MPD)D for the mput.sentenc_H_l.e.,

so-called History-Based Stochastic Grammar (HBSG) & ™4*D P(D|U), can be done in time cubic in sen-

family (Black et al., 1993). The latter models generatéenCe length.

every parse-tree through a unique stochastic deriva-

tion. The problem of how to estimate the probabilities of
A Stochastic TSG (STSG) is a TSG extended witlhe subtrees from a treebanknist as straightforward

a probability mass functio” over the set of sub- as originally thought. So far, there exist three estima-

trees: the probablllty of Subtrefﬁthat has root label tion procedures (Bod, 1995’ Bonnema et a|., 1999,

Ry, is given byP(t|R;), i.e. for every non-terminall:  Bod, 2001). As shown in (Bonnema et al., 1999;

Dpre=ay P(E1A) = 1. Johnson, 2002; Sima’an and Buratto, 2003), all three

Tdepthof a tree is the number of edges along the Ionge_g?t'matlon procedures turn out to be biased in an un-

path from the root to a leaf node. intuitive manner.



2 Backoff Estimation for DOP rected edge points from a subtregin a nodé to
Co another node containing a pair of subtrégsty,) iff
For the sake of completeness we review in this se ">k 1 o £y, We refer to this graph as tHeckoff

tion the Backoff Estimation procedure presented in )
(Sima’an and Buratto, 2003). graph An example based on the subtrees of Figure 3

: N is shown in Figure 5, wherg0 stands for a subtree
Consider the common situation where a subtree o .
. L consisting of a single node labelét(the start sym-
is equal to a tree generated by a derivatipa- - - o ¢,

. . ) bol). We distinguish two sets of subtrees: initial and
involving multiple subtrees; ---t,. For example,

: . ic. Initial h i
subtrees17 (Figure 3) can be constructed by Olncfer_fsltomlc nitial subtrees are subtrees that do not partic

ent derivations such aés16 o s2) (s14 o s1) and ipate in a backoff derivation of any other subtree. In

(s150 10 s3) We will refer to subirees that can beFlgure 3, subtreel7isthe onIy_lnltlaI subtree.Atomic
subtrees are subtrees for which there are no backoffs.

. th Figure 3, these are subtrees of depth one (double
with the termcomplex subtrees . .
circled in the backoff graph).

We observe that because the statistics for these . .
In the DOP model (under any known estimation

different derivations come from the treebank, these

statistics must be correlated. Next we will charactelgrocedure)’ the probabllty_qf a parse-trge IS defined
as the sum of the probabilities of all derivations that

ize these correlations in order to arrive at a suitablé . . .
L generate this parse-tree. This means that DOP linearly
estimation procedure. ) L . . .
interpolates derivations involving subtrees from dif-
ferent levels of the backoff graph; this is similar to
the way Hidden Markov Models interpolate different
Markov orders over, e.g. words, for calculating sen-
tence probability. Hence, we will refer to the different
levels of subtrees in the backoff graph as lt@rkov

orders
Figure 4: Sketch of two derivation of the same subtregackoff DOP Crucially, the partial order over the

For every complex subtree we restrict our atten- Subtrees, embodied in the backoff graph, can be ex-
tion only to the derivations involving pairs of sub-Ploited for turning DOP into a “backedoff model” as

trees: in other words, we focus on subttemich that follows. A subtree is generated by a sequence of
there exist subtreels andt, such thatt = (¢ o t2) derivationsordered by the backoff relatiofThis is in

(see figure 4). In DOP, the probability efis given sharp contrast with existing DOP models that consider
by P(t[R¢). In contrast, the derivation probability is the different derivations leading to the same subtree

given by P(t1 Ry, ) P(t2|Rs,). However, according to as a set offisjoint events. Next we pregent the es_ti—
the chain ruleP(t; o ts[Ry,) = P(t1|Re,)P(t2]tr). mation procedure that accompanies this new realiza-

tion of DOP as a recursive backoff over the different

X

Therefore, the derivation; o to embodies an inde-
pendence assumption realized by the approximétionMarkov orders.

P(t2|t1) ~ P(t2[Rs, ). This approximation involves a gqtimation vs. smoothing It is common in prob-
so-calledbackoff i.e. a weakening of the condition- 5jjistic modeling tosmootha probability distribu-
ing context fromP(tz|t1) o P(t2[Re,). Hence, We yion p(4|x, ) by a backoff distribution thereof e.g.
will say that the denvano_ml o _tg constitutesa back- P(t|X). The smoothing of(¢|X, V') aims at dealing
off of subtreet and we will write ¢ >k 1 012) 10 \yith the problem of sparse data (whenever the proba-
express this fact. bility P(t/X,Y) is zero). The backoff valu@(¢/X)

The backoff relation>; ¢, between a subtree andcan be used as an approximationi| X, V) under
a pair of other subtrees allows for a partial order bgs,q assumption thaandY” are independent. Smooth-
tween the derivations of the subtrees extracted fromg, then, aims at enlarging the space of non-zero
a treebank. A graphical representation of this pagsents in the distributio®(| X, Y). Hence, the goal
tial order is a directed_ acyclic graph which con_sist%f smoothing differs from our goal. While smooth-
of a node for each pair of subtreest; that consti- j,4 aims at filling the zero gaps in a distribution, our
tute a derivation of another complex subtree. A digq,) js 1 estimate the distribution (a priori to smooth-

3The term “subtree” is reserved for the tree-structures thdng it). Despite these differences, we employ a back-
DOP extracts from the treebank.
“Note thatR, is part oft; (the label of the substitution site). ®In a pair(ty, t;) or (t;, ts) that constitutes a node.
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Figure 5: A portion of the backoff graph for the subtrees in Figure 3

off method for parameter estimation distributing wherea(t1) is a normalization factor that guarantees
probability mass among DOP model subtrees that the sum of the probabilities of subtrees with the

Katz Backoff The Katz Backoff method (Katz, same.root label is one. Simple arithmetic leads to the
following formula:

1987; Chen and Goodman, 1998) is a smoothing
technique based on the discounting method of Good- c
. t1)=1-— Pap(tolt
Turing (GT) (Good, 1953; Chen and Goodman, a(t) . ; . Gr(t2lt1)
1998). Given a higher order distributidd(t|X,Y"), wf(ita)>
Katz backoff employs the GT formula for discount-  ysing the above estimate dt,(t5t1), the other

ing from this distribution leading td%;r(t|X,Y). packoff estimates are calculated as follows:
Then, the probability mass that was discounted-(

>+ Par(t|X,Y)) is distributed over the lower order Pyo(t|Re) := Pr(t1|Rey) Pép(talts)
distribution P(¢| X).

Estimation by Backoff We assume initial proba- Poo(t1[Rey) = (1 +a(t1) ) Pr(ta[Rs,)
bility estimatesP; based on frequency counts as irBefore the next step+ 1 of Katz backoff takes place
DOP,; (Bod, 1995). The present backoff estimaover the next layer in the backoff graph, the current
tion procedure operates iteratively, top-down over thprobabilities are updated as followB! ! (¢1|R;,) :=
backoff graph, starting with the initial and moving Py, (t1|Ry, )-
down to the atomic subtrees. In essence this procedureNote thatP,, is a proper distribution in the sense
transfers, stepwisely, probability massm complex that for all nonterminalsd: ", P(t|A) = 1. This is
subtrees to their backoffs. guaranteed by the redistribution of the reserved proba-
Let P¢ represent the current probability estimatevility mass at every step of the procedure over the lay-
resulting fromi previous steps of re-estimation (ini-ers of the backoff graph. Furthermore, we note that
tially, at stepi = 0, PY := Py). After i steps, the the present method isot a smoothing method since
edges of the backoff graph lead to tberrent layer it applies Katz Backoff for redistributing probability
of nodes. For every, a subtree in a node from the massonly among subtrees thaid occurin the tree-
current layer in the backoff graph, an edgeutgoing bank. The present method does not address probabil-
from ¢ stands for the relatiort 41, t1 o t2), where ity estimation for unknown/unseen events.

(t1,t2) is the node at the other end of edge We , o
Summary of experiments: In (Sima’an and Bu-

know that : L .
ratto, 2003) we describe a first implementation of
PE(t|Ry) = P(t1|Re, ) P€(t2]t1) Backoff estimation for DOP and report on a series of
PC(t1 o ty) = P°(t1|Re, ) PC(t2|Rey) experiments. Because of the large number of DOP

. . : . subtrees the current implementation applies Backoff
This mean thaP*(fs[t: ) is backedoff oP<(a[Re. ). o gimaion only tot >, t1 ot iff to is a lexical

Hence, we may adapt the Katz method to estimate the . - ,
Backoff DOP probability?,, as follows: Subtree i.e.ts =X — w whereX is a Part of Speech

(PoS) tag andv a word. This recognizes the impor-

Pyo(talt1) = tance of good estimates of the probabilities of lexical-
Pér(talt1) + alt1) Pr(t2|Re,) [PS(t2|t:) >0] ized subtrees. The experiments on the Dutch OVIS

{ a(ti) Pr(ta|Re,) otherwise tree-bank show that the Backoff estimation method
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Figure 6: An LFG representation fdohn loves Mary

described above outperforms the original estimator
(subtree relative frequency) used in (Bod, 1995; Bod,
2001). The improved behavior has been validated on
multiple different train/test splits. Furthermore, both
the new Backoff estimator and the subtree relative fre-
guency estimator outperform the estimator suggested
in (Bonnema et al., 1999).

Next we extend the new Backoff estimator to LFG-
DOP, and show that this estimator solves some of the
hard problems that LFG-DOP suffers from.

3 LFG-DOP: Lexical-Functional Grammar

Before we show how Backoff Estimation can be ap-
plied to estimate the model parameters, we specify the
four elements of LFG-DOP:

Representation: Lexical  Functional ~Grammar
(LFG) (Bresnan, 2001) is a constraint-based
theory of language which aims to analyse lan-

Tree-DOP) whose nodes are ifi correspon-
dence with (partial) f-structures. In operational
terminology, the Tree-DOP decomposition of a
treebank tree into subtrees proceeds using two
operators: root and frontier. These operators
select the nodes that delimit a subtresot
selects the root node, arfibntier selects the
frontier nodes. The connected subgraph between
these selected nodes constitutes the subtree.

For LFG-DOP, these operators are extended as
follows (Bod and Kaplan, 2003). When a node
is selected by theoot operation all nodes out-
side that node’s subtree are erased, as in Tree-
DOP. Further, alp-links coming from the erased
nodes are removed and all f-structure units¢got
accessible from the remaining nodes are erased.
The root operation also deletes the PRED at-
tributes (semantic forms) local to f-structures
corresponding to erased nodes. Tromtier op-
eration selects a set of frontier nodes and deletes
all subtrees they dominate, also removing ¢he
links and semantic forms (but not features) cor-
responding to any deleted nodes. An example is
given in Figure 7.

VP SUBJ [NUM se]

TNS PRES
NUM sc

OBJ [NUM se]

guage in lexical and functional terms rather tharFigure 7: A fragment generated Ioyot andfrontier
solely in terms of phrase structure. The LFGfrom the representation in Figure 6.

DOP model (Bod and Kaplan, 1998) employs
representations, such as the one in Figure 6,

which comprise two parallel levels, constituentcomposition: LFG-DOP derivations proceed using

structure (c-structure) and functional structure
(f-structure), and a mapping between them.
The c-structures describe surface structure,
the f-structures describe grammatical relations
and ¢ maps between these levels of linguistic
representation. This relationship is generally
expressed as a triple of the forac,p,f>. An
f-structure unitf is ¢-accessible from a node
n if either f is linked ton or f is contained
within an f-structure linked to:. This reflects
the intuitive idea that nodes can only access
information in the units of f-structure to which
they arep-linked.

Decomposition into fragments: LFG-DOP  frag-
ments consist of connected subtrees (as in

composition operations that extend the substitu-
tion operation of Tree-DOP. The LFG-DOP com-
position operation ) involves two stages: c-
structures are combined exactly as in Tree-DOP
and their corresponding f-structures are unified
recursively.

According to LFG theory (Bresnan, 2001), c-
structures and f-structures must satisfy certain
well-formedness conditionsuniquenesspeci-
fies that each attribute in the f-structure can have
at most one value;oherenceprohibits the pres-
ence of grammatical functions which are not re-
quired by the lexical predicate, andmpleteness
requires that all functions governed by a lexical
predicate must be present in its f-structure. Any



RP) and discounted relative-frequency (discounted-

VP SUBJ [NUM s RF). Discounted-RF is a variant of simple-RF, espe-
v NP L’C‘Jfﬂ ZEES cially adapted for avoiding the problem of estimating
oBJ [ ] discardgenerated fragments as we explain next.

Let | f| be the number of occurrences of fragment

Figure 8: A fragment generated by tbiscardopera- f in the corpus and CS a competition set containing
tion from the representation in Figure 7. f. According to simple-RF, the probability assigned
to f is given by the relative frequency estimate (in the

multi-set of all possible fragments):
parse generated by a sequence of composition

operations must satisfy these conditions. If]

. . Pl =s—"17]
Probability Model: As with Tree-DOP, the proba- zfz:fzecs | fa]

bility of a derivation is the joint probability of

choosing each fragment involved in that derivaThe probabilities of LFG-DOP fragments can be cal-
tion. Hence, the probability of a derivation is theculated in terms of their relative frequencies among
product of the probabilities of choosing each ofill fragments generated from the corpus.

the fragments involved in that derivatid?( f; o However this parameter-estimation method, known
...ofn) = [, P(f:) and the probability of a parse as simple-RF is as biased as the relative-frequency
T is the sum of the probabilities of its distinctestimation for Tree-DOP. Furthermore, this method
derivationsP(T") = > p jerives 7 £ (D). does not account for the fact that those fragments

In Tree-DOP, each Competition Set (CS) S‘imphproduced bydiscardare generalisations of fragments
contains all fragments with the same root nog@enerated byootandfrontier, and may be used in the
because there are no conditions to be met oth@palysis of ill-formed input. Because exponentially

than those enforced at each derivation step by tBany fragments can be generated by applying dis-
composition operator. However, the definitioncard to each fragment produced via root and frontier,

of the competition set for LFG-DOP depends orthe discard-generated fragments absorb much of the
which of the LEG well-formedness conditionspmbabi"ty mass under the simple-RF estimator, just
are enforced on-line while the derivation is be_like larger subtrees absorb a large probability mass in

ing constructed and which are enforced off-line! '€€-DOP.
when the derivation is complete. A second parameter estimation method,
discounted-RF treats fragments produced by
3.1 Robustness (th@iscardoperator) root and frontier as seen events and those gener-

The LFG c-structures generated ot and frontier ated via discard as unseen events. The relative
are exactly the set of fragments generated for Trefequencies of seen events are discounted using
DOP. However, they suffer from reduced composithe Good-Turing estimator (Good, 1953) and the
tionality due to the constraints imposed by their asséliscounted probability mass is given to the unseen
ciated f-structures, resulting in robustness problemgvents. As discounted-RF assigns a fixed probability
This issue can be addressed by further generalisifigass to discard-generated fragments, the exponential
fragments generated vi@ot and frontier by relax- number of such fl’agments does not adverSEIy affect
ing combinations of the constraints embodied in théhe probabilities of fragments generated by root and
f-structures. A third Operatodiscard extracts frag_ frontier. However, this method is as biased as the ﬁrSt,
ments from f-structures by allowing attribute-valueand it still does not account for the fact thdiscard
pairs to be deleted while keeping the associated fiagments are generalisations mfot and frontier
structures ang-links constant, as shown in Figure 8.fragments and may be used to analyse ill-formed
Discardis subject to one restriction, namely that pairé‘,npu'[-

whose values areé-linked to remaining c-structure ~ We think that the problem of how to emplajis-
nodes are not deleted. card within LFG-DOP is merely a symptom of the
bias of existing estimates for LFG-DOP as a whole.
Next we explain how Backoff Estimation can be ap-
There exist two suggestions for parameter estim@lied to LFG-DOP, thereby also solving the problem
tion for LFG-DOPsimple relative-frequency (simple-with how to employ discard fragments.

3.2 Earlier parameter estimation for LFG-DOP



4 BackOff Estimation for LFG-DOP Experiments described in (Bod and Kaplan, 2003)
Back-off L b lied I_Fesuggest that, at least for small corpora over limited
ack-olf parameter estimation can be applied to domains, where a parse can be produced without re-

DOP fragments generated ot gndfron?ierexactly course taiscardgenerated LFG-DOP fragments, the
as described for Tree-DOP, using a directed acyc"ﬁclusion of such fragments does not significantly

graph to represent_the partial order between ther}?ﬁprove parse accuracy. Clearly, if discarding f-
A directed edge points from a fragmefat,, ¢x, /o) structures entirely and parsing only with c-structures

t[o a pair of fragments({cy, ¢y, fy), {cz, ¢z, fz>_> does not result in one or more parses, then the inclu-
It {cy, oy, fy) and <.c.z’¢z’fz> compose tq 9VE sion ofdiscardgenerated fragments will have no im-
(Caor Oz fu)- Compo§lthn of these fragments involve act. Therefore, it has been suggested thstard

bth Ieftmost substitution over the c-structures an enerated fragments should only be included in the
unification over the F-structures. parse space where the input can be parsed using c-

Th_e production Of_LFG'DOP _fragments VBIS-  irctures only but no parse is possible over fully-
card involves generating all possible f-structure fraginstantiatec{c o, f) fragments

ments for each fragment produced vt andfron- ]
tier while keeping c-structure ang-links constant. ~ (Way, 1999) also observes thaiscard should be

Therefore, the backoff relation is defined in terms ofS€d to derive fragments only where absolutely neces-

f-structure unification rather than fragment composiS&y- He suggests that there must be a countable num-

tion. For discard-generated fragments, a directed edgg" Of cases — such as subject-verb agreement, rel-
points from a fragmenic, ¢, ) to a pair of fragments ative clause agreement and movement phenomena —
(e, f,), (e, b, f.)) i f-structures f, and £, unify to I Which unification fails andliscardgenerated frag-

: ments should be applied. He outlines some ways in
fand f+f, #1.: . be appli .
which composition vialiscardcould work given such
(.6, f) > uynlc; &, {fy U £ a list of cases, whereby the process is triggered by the

occurrenceof unification failure and controlled by the

The probability of the derivatior, ¢, {f, | f.}) YPeof failure that occurred.
is given as follows: These observations seem to lead towards an
LFG-DOP model wherdiscardgenerated fragments

P({c, ¢, {fyUfZ}>|Rc) are treated as “second rate” fragments that will be

used only upon failure of the other fragments to
P(C’qﬁ‘RC)P({fyUfz}‘c’ ¢, Re) produce analyses for the input. Although based
P(c,p|R.)P(fylc, )P (f:le, o, fy) = on empirical experience, this constitutes an ad hoc

P(c,¢|Re)P(fylc, d)P(f:lc, ) mechani_sm that might mask the gymptoms bu.t will

not provide the remedy for the main problem: biased
parameter estimates. We think that the same can be

Thus the derivatioric, ¢, { f, U f.}) embodies an in- realized in a natural manner by Backoff Estimation.
dependence assumption realised by the approxim'@- Backoff Estimation, the parameters are structured
tion P(f.|c,¢,f,) ~ P(f:lc,¢). This approxi- in the backoff graph that directs the estimation algo-
mation constitutes a backoff, hence the derivatioHthm for realizing a kind ogoft probabilistic backoff.
(c,0,{fyU f-}) is said to be a backoff of fragment

(c, ¢, f). Here, backoff is used to redistribute proba- Indeed, and as an ad hoc simplification of Back-
bility mass among discard-generated LFG-DOP fragsff Estimation, it is possible to employ the partial
ments by transferring probability mass from complexrdering of fragments to achieve better performance
fragments to their backoffs in a stepwise manner.  also wherdiscradgenerated fragments are employed.
Clearly, for Tree-DOP and foroot- and frontier-
generated fragments in LFG-DOP, the partial ordering
Backoff Estimation of the LFG-DOP model param-of fragments is used solely for parameter estimation.
eters, includingdiscard generated fragments, natu-Fordiscardgenerated LFG-DOP fragments, however,
rally addresses a major aspect of how to employ LFGhis partial ordering can be further exploited in order
DOP. Below we discuss the observations from earlido motivate the phased addition of such fragments to
work and explain why Backoff Estimation constituteshe parse space. For example, fragments can be added
a suitable solution. in layers to the parse space, starting with the most spe-

%

4.1 Discussion



cific (i.e. the first layer of each backoff graph) and tation. ILLC dissertation series 1995-14, University of
working toward the least specific. As soon as at least Amsterdam.
one parse can be produced, no more fragments are Boad, R. and Kaplan, R. (1998). ‘A Probabilistic Corpus-

i i Driven Model for Lexical Functional Analysis’, IRro-
troduced z_:md the most_ probable parse is determlned,Ceeclings COLING-ACL-98Viontreal. Canada, pages
thus favoring parses with more complete f-structures. 145-151.

This approach accounts for the fa(?t that, where Orl?od, R. (2001). What is the minimal set of fragments that
or more parses can be produced discard (but not achieves maximal parse accuracy? Piroceedings of

root and frontier alone), these parses can be consid- the 39th Annual Meeting of the Association for Compu-
ered to occupy a spectrum ranging from most specific tational Linguistics (ACL'2001)Toulouse, France.
to least specific, depending on the number of attribut®od, R. and Kaplan, R. (2003). ‘A DOP model for Lexi-

value pairs that have been discarded from the frag- %egdflgcggﬁgla%agmsﬂé]a{g&gg?ggﬁfg&%‘ﬁggions,

ments used to derive them. Other configurations can Stanford, C.A. (in press).
also be en_wsaged. For example, following from thesonnema, R., Buying, P., and Scha, R. (1999). A new
proposals in (Way, 1999), the fragment space could be probability model for data oriented parsing. In Dekker,

partitioned based on the type of simple attribute-value PLii Sditoglp?g%%diggs l?_thgleDLng QrT%t?Ldﬁ{ES%O'r']O'
pairs which have been discarded from each fragment. ?Jniv?rs%ygof Amsterdam, Ams'Perdam. Py,

5 Conclusions Bresnan, J. (2001). ‘Lexical Functional Syntax’, Oxford:
Blackwell.

This paper shows how the parameters for the LFGeharniak, E. (2000). A maximum entropy inspired parser.
DOP model can be estimated as a highly structured In Proceedings of the 1st Meeting of the North American

; .~ Chapter of the Association for Computational Linguis-
space of correlated events. The Backoff Estimation . (NAACL-00) pages 132-139, Seattle, Washington,

procedure that was originally developed for Tree- USA.
DOP (bas_ed on I_Dhrase-Structure annotation_s) turEﬁelba, C. and Jelinek, F. (1998). Exploiting syntac-
out especially suitable for LFG-DOP. In particular, tic structure for language modeling. ~In Boitet, C.

Backoff Estimation provides a solution to the prob- and Whitelock, P., editorsProceedings of the Thirty-
| f rob LEG-DOP . ith . Sixth Annual Meeting of the Association for Computa-
em of robust - parsing without resorting 1o  {jong| Linguistics and Seventeenth International Confer-

ad hoc, crisp mechanisms. ence on Computational Linguistigsages 225-231, San
Future work will address various aspects of this Francisco, California. Morgan Kaufmann Publishers.
work. Naturally, empirical experiments with the re-Chen, S. and Goodman, J. (1998n empirical study of
sulting LFG-DOP models need to be conducted in smoothing techniques for language modelifigchnical
. . . Report TR-10-98, Harvard University.
order to verify the empirical value of this method.

There are various specific implementations of the af?00d. I (1953). The population frequencies of species and
the estimation of population parameter&iometrika

gorithm that need to be sorted out. Furthermore, a new 40:237—264.

Maximum-Likelihood estimation procedurg should b%ohnson, M. (2002). The DOP estimation method is biased
developed that takes the backoff graph into account and inconsistentComputational Linguistics28(1):71—
(as that graph expresses constraints on the eligible pa-76.

rameter values). Katz, S. (1987). Estimation of probabilities from sparse
data for the language model component of a speech rec-
ognizer. IEEE Transactions on Acoustics, Speech and
Signal Processing (ASSR5(3):400-401.
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