MaTrEx: Machine Translation Using Examples

Nicolas Stroppa and Andy Way

NCLT, School of Computing, Dublin City University

DCU NCLT @ NIST MT 2006

Outline

(1) Background
(2) System's DESCRIPTION
(3) Results/Discussion

Outline

(1) Background

2 System's description

3 Results/Discussion

MT@DCU

- National Centre for Language Technology (NCLT) in DCU. A team of 12 researchers:
- 2 M.Sc Students, 7 Ph.D. Students, 2 Postdocs
- Supervised by Dr. Andy Way
- First Participation to NIST MT. In 2006:
- OpenLab (TC STAR), Spanish \rightarrow English
- NIST MT, Arabic \rightarrow English
- IWSLT, Arabic \rightarrow English, Italian \rightarrow English
- Large-scale Example-Based Machine Translation system
- Easily adaptable to new language pairs
- Modular design - follow established Design Patterns
- Hybrid system: EBMT/SMT

MT@DCU

Remarks

- Historically, we have been working on EBMT
- EBMT and SMT are showing more and more similarities (use of aligned "phrases")
- We are working more and more on the combination of EBMT and SMT resources

2006: A Dry-RUN. . .

SOME PROBLEMS AND MISTAKES

- Strong underestimation of the workload: only one person, part-time, for 5 weeks
- Problems with memory requirement (> 4 Gigs of RAM needed by Giza++)
- Main cluster unavailable for 3 days because of maintenance during the last week
- Buckwalter had been automatically lowercased (!!)
- LMs were not trained on English GigaWord (only UN Data)
- MERT was skipped, EBMT chunking and alignment were skipped!
- \Longrightarrow the results do not reflect the capabilities of our system!

Outline

(1) Background

(2) System's DESCRIPTION

3 Results/Discussion

Matrex: A Hybrid EBMT/SMT System

A Phrase-Based EBMT/SMT System

- Data-driven system: Makes use of aligned phrases extracted from sententially-aligned corpora
- Two types of extraction:
- "SMT" phrases extracted from words alignments (Giza++ + heuristic)
"EBMT" phrases extacied thanks to (1) a chunking and (in) an alignment of chunks proposed by the EBMT system

Matrex: A Hybrid EBMT/SMT System

A Phrase-Based EBMT/SMT System

- Data-driven system: Makes use of aligned phrases extracted from sententially-aligned corpora
- Two types of extraction:
- "SMT" phrases extracted from words alignments (Giza++ + heuristic)
- "EBMT" phrases extracted thanks to (i) a chunking and (ii) an alignment of chunks proposed by the EBMT system

Matrex: A Hybrid EBMT/SMT System

A Phrase-Based EBMT/SMT System

- Data-driven system: Makes use of aligned phrases extracted from sententially-aligned corpora
- Two types of extraction:
- "SMT" phrases extracted from words alignments (Giza++ + heuristic)
- "EBMT" phrases extracted thanks to (i) a chunking and (ii) an alignment of chunks proposed by the EBMT system

Marker-Based EBMT: Chunking

- Approach to EBMT based on the Marker Hypothesis
"The Marker Hypothesis states that all natural languages have a closed set of specific words or morphemes which appear in a limited set of grammatical contexts and which signal that context." (Green, 1979).
- Universal psycholinguistic constraint: languages are marked for syntactic structure at surface level by closed set of lexemes or morphemes.

The Dearborn Mich., energy company stopped paying a dividend in the third quarter of 1984 because of troubles at its Midland nuclear plant

Marker-Based EBMT: Chunking

- Approach to EBMT based on the Marker Hypothesis
"The Marker Hypothesis states that all natural languages have a closed set of specific words or morphemes which appear in a limited set of grammatical contexts and which signal that context." (Green, 1979).
- Universal psycholinguistic constraint: languages are marked for syntactic structure at surface level by closed set of lexemes or morphemes.

The Dearborn Mich., energy company stopped paying a dividend in the third quarter of 1984 because of troubles at its Midland nuclear plant

Marker-Based EBMT: Chunking

- Approach to EBMT based on the Marker Hypothesis
"The Marker Hypothesis states that all natural languages have a closed set of specific words or morphemes which appear in a limited set of grammatical contexts and which signal that context." (Green, 1979).
- Universal psycholinguistic constraint: languages are marked for syntactic structure at surface level by closed set of lexemes or morphemes.

The Dearborn Mich., energy company stopped paying a dividend in the third quarter of 1984 because of troubles at its Midland nuclear plant

- 3 NPs start with determiners, one with a possessive pronoun
- Determiners \& possessive pronoun - small closed-class sets
- Predicts head nominal element will occur in the right-context.

Marker-Based EBMT: Chunking

- Approach to EBMT based on the Marker Hypothesis
"The Marker Hypothesis states that all natural languages have a closed set of specific words or morphemes which appear in a limited set of grammatical contexts and which signal that context." (Green, 1979).
- Universal psycholinguistic constraint: languages are marked for syntactic structure at surface level by closed set of lexemes or morphemes.

The Dearborn Mich., energy company stopped paying a dividend in the third quarter of 1984 because of troubles at its Midland nuclear plant

- 3 NPs start with determiners, one with a possessive pronoun
- Determiners \& possessive pronoun - small closed-class sets
- Predicts head nominal element will occur in the right-context.
- Four prepositional phrases, with prepositional heads
- Again a small set of closed-class words
- Indicates that soon thereafter an NP object will occur

Marker-Based EBMT: Chunking (2)

- Use a set of closed-class marker words to segment aligned source and target sentences during a pre-processing stage.
- <PUNC> used as end of chunk marker

Determiner	<DET $>$
Quantifiers	<Q $>$
Prepositions	<P $>$
Conjunctions	<C $>$
WH-Adverbs	<WH $>$
Possessive Pronouns	<POSS-PRON $>$
Personal Pronouns	<PERS-PRON $>$
Punctuation Marks	<PUNC $>$

- English Marker words extracted from CELEX and edited manually.

Marker-Based EBMT: Chunking (2)

- Use a set of closed-class marker words to segment aligned source and target sentences during a pre-processing stage.
- <PUNC> used as end of chunk marker

Determiner	<DET $>$
Quantifiers	<Q $>$
Prepositions	<P>
Conjunctions	<C $>$
WH-Adverbs	<WH $>$
Possessive Pronouns	<POSS-PRON $>$
Personal Pronouns	<PERS-PRON $>$
Punctuation Marks	<PUNC $>$

- English Marker words extracted from CELEX and edited manually.

Marker-Based EBMT: Chunking (3)

Pros

- Psycho-Linguistic motivation
- Simple (linear)
- Easily adaptable (only a list of marker-words is needed)
- Does not need expensive training on treebanks, etc.

Cons

- Blind (no context taken into account)
- Deterministic
- Not so easily adaptable to languages such as Arabic/Chinese (POS would be needed) \Longrightarrow we used ASVM for Arabic chunking

Remarks

- Can be combined with different chunkers, e.g. machine-learning based chunkers (cf. CoNLL'2000 shared task)
- In the English PTB, the most frequent first words of chunks are mostly marker-words...

Chunk Alignment

- "Edit-Distance Like" Chunk Alignment. Does not depend on the chunking strategy.
- Dynamic programming algorithm
- Conditional probabilities used:
- Based on Marker Tags

Based on Cognate Information: Lowest Common Subsequence natio, Dice Coefficient, Minimum Edit-Distance

Chunk Alignment

- "Edit-Distance Like" Chunk Alignment. Does not depend on the chunking strategy.
- Dynamic programming algorithm
- Conditional probabilities used:
- Based on Marker Tags
- Based on Cognate Information: Lowest Common Subsequence Ratio, Dice Coefficient, Minimum Edit-Distance - Based on Word Translation Probabilities

Chunk Alignment

- "Edit-Distance Like" Chunk Alignment. Does not depend on the chunking strategy.
- Dynamic programming algorithm
- Conditional probabilities used:
- Based on Marker Tags
- Based on Cognate Information: Lowest Common Subsequence Ratio, Dice Coefficient, Minimum Edit-Distance
- Based on Word Translation Probabilities
- Combination (=> can be viewed as a log-linear model)

Chunk Alignment

- "Edit-Distance Like" Chunk Alignment. Does not depend on the chunking strategy.
- Dynamic programming algorithm
- Conditional probabilities used:
- Based on Marker Tags
- Based on Cognate Information: Lowest Common Subsequence Ratio, Dice Coefficient, Minimum Edit-Distance
- Based on Word Translation Probabilities
- Combination (=> can be viewed as a log-linear model)
- "Edit-Distance" with Jumps
\qquad
\square

Chunk Alignment

- "Edit-Distance Like" Chunk Alignment. Does not depend on the chunking strategy.
- Dynamic programming algorithm
- Conditional probabilities used:
- Based on Marker Tags
- Based on Cognate Information: Lowest Common Subsequence Ratio, Dice Coefficient, Minimum Edit-Distance
- Based on Word Translation Probabilities
- Combination (=> can be viewed as a log-linear model)

$$
\lambda_{1} d_{1}(a, b)+\cdots+\lambda_{n} d_{n}(a, b) \Rightarrow-\lambda_{1} \log P_{1}(a \mid b) \cdots-\lambda_{n} \log P_{n}(a \mid b)
$$

- "Edit-Distance" with Jumps
- Useful for languages where the word order is different (didn't improve results for Spanish/English MT)

Chunk Alignment

- "Edit-Distance Like" Chunk Alignment. Does not depend on the chunking strategy.
- Dynamic programming algorithm
- Conditional probabilities used:
- Based on Marker Tags
- Based on Cognate Information: Lowest Common Subsequence Ratio, Dice Coefficient, Minimum Edit-Distance
- Based on Word Translation Probabilities
- Combination (=> can be viewed as a log-linear model)

$$
\lambda_{1} d_{1}(a, b)+\cdots+\lambda_{n} d_{n}(a, b) \Rightarrow-\lambda_{1} \log P_{1}(a \mid b) \cdots-\lambda_{n} \log P_{n}(a \mid b)
$$

- "Edit-Distance" with Jumps
- Useful for languages where the word order is different (didn't improve results for Spanish/English MT)

Mixing chunks

Hybridity

- "EBMT" and "SMT" aligned chunks are merged
- Adding EBMT chunks to the SMT chunks database:
- adds good alignments which are not present otherwise
- "boosts" already present SMT chunks (re-estimation)

OTHER TOOLS

- Pre-processing
- English: OpenNLP. Sentence segmentation and tokenization
- Arabic: ASVM. Tokenization
- Part-of-Speech Tagging
- English: TreeTagger
- Arabic: ASVM
- Chunking
- English: Marker-Based chunking/SVM chunking (Yamcha)
- Arabic: ASVM
- Note: nothing done with dates, names, etc.

System Architecture

System Architecture

- Aligned Sentences are submitted to word alignment and chunk alignment modules to produce translation resources
- Modular in design

System Architecture

- Aligned Sentences are submitted to word alignment and chunk alignment modules to produce translation resources
- Modular in design

System Architecture

- Aligned Sentences are submitted to word alignment and chunk alignment modules to produce translation resources
- Modular in design
- Easily adaptable and extendible

Outline

(1) Background

2 System's description

(3) Results/Discussion

Results/Discussion

Official results

	BLEU-4	NIST	METEOR	TER
NIST Set	0.0947	4.7089	0.3863	75.270
Gale Set	0.0320	2.6949	0.3074	83.022

- What do these results mean? Virtually nothing (they are those of a broken SMT system)
- Do not reflect the system's capability
- Admitted failure to scale. Wanted to play the game anyway.

Ongoing and Future Work

- Plan to continue the development the MaTrEx system
- Currently at early stage of development
- Implement an HMM-based chunk alignment strategy
- Investigate better the implication of hybridity
- Implement an Example-Based decoder (i.e. strong prior on chunking) + Use of generalised templates
- Big improvement expected for NIST MT 2007...

Thank you

Thank you for your attention.
http://www.computing.dcu.ie/research/nclt

