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Abstract This article describes how a treebank of un-
grammatical sentences can be created from a treebank of
well-formed sentences. The treebank creation procedure
involves the automatic introduction of frequently occur-
ring grammatical errors into the sentences in an existing
treebank, and the minimal transformation of the original
analyses in the treebank so that they describe the newly
created ill-formed sentences. Such a treebank can be used
to test how well a parser is able to ignore grammatical
errors in texts (as people do), and can be used to induce a
grammar capable of analysing such sentences. This arti-
cle demonstrates these two applications using the Penn
Treebank. In a robustness evaluation experiment, two
state-of-the-art statistical parsers are evaluated on an
ungrammatical version of Section 23 of the Wall Street
Journal (WSJ) portion of the Penn Treebank. This ex-
periment shows that the performance of both parsers
degrades with grammatical noise. A breakdown by error
type is provided for both parsers. A second experiment
retrains both parsers using an ungrammatical version of
WSJ Sections 2-21. This experiment indicates that an
ungrammatical treebank is a useful resource in improv-
ing parser robustness to grammatical errors, but that the
correct combination of grammatical and ungrammatical
training data has yet to be determined.

Keywords Treebanks · Parser Evaluation · Robust
Parsing · Ungrammatical Language

1 Introduction

If a parser is to play a useful role in a natural language
processing application, it must be robust to noise in the
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form of grammatical errors. This robustness manifests
itself at four increasingly informative levels:

1. Some Analysis:
The parser returns an analysis (possibly a partial
one) for the ungrammatical sentence.

2. Correct Analysis:
The parser returns a full analysis for the ungrammat-
ical sentence and this analysis reflects the intended
meaning of the ungrammatical sentence.

3. Correct Analysis + Grammaticality Judgement:
The parser returns a full analysis which reflects the
intended meaning of the ungrammatical sentence, and
it also recognises that an error has occurred some-
where within the sentence.

4. Correct Analysis + Grammaticality Judgement
+ Error Correction:
The parser returns a full analysis which reflects the
intended meaning of the ungrammatical sentence, it
recognises that an error has occurred and it suggests
a correction for the error.

If the parser is to be employed in a grammar checking or
Computer-Assisted Language Learning system, the third
level of robustness is desirable, and the fourth level even
more so. The input to such systems is the users’ own
language, and they expect feedback on whether or not it
is well-formed. If, on the other hand, the parser is being
used to provide an analysis of a sentence that serves as
a step on the way to capturing the sentence’s intended
meaning, for example, in a machine translation or ques-
tion answering system, the third and fourth levels of ro-
bustness are not a prerequisite. However, the first level
of robustness is not guaranteed to be useful for such sys-
tems. It is, of course, better than a brittle response of no
parse at all, but the second level of robustness is superior,
because at this level, an analysis is returned which cap-
tures the ungrammatical sentence’s intended meaning.
Assuming that the parser in question is reasonably ac-
curate when faced with well-formed language, the second
level of robustness is equivalent to Menzel’s definition of
robustness [33] as a system’s reluctance to change its
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output when the input becomes increasingly ill-formed.
Intuitively, this second level of robustness is close to the
way people typically react to common grammatical er-
rors — they attend to the sentence’s meaning as if the
error did not exist. This article is concerned with the
second level of robustness, in particular, with examining
to what extent this level of robustness can be achieved
within a treebank-trained statistical parsing paradigm,
using a treebank of ungrammatical sentences.

Traditional symbolic approaches to parsing employ
grammars which aim to describe well-formed sentences
and explicitly reject ill-formed ones. In order to anal-
yse extra-grammatical input (including ungrammatical
input) various robust parsing techniques have been pro-
posed: constraint relaxation in which the parser’s gram-
mar is made more lenient [15,42,21], error anticipation
in which special mal-rules are employed to explicitly de-
scribe ungrammatical structures [38,2], minimum-edit-
distance approaches in which the ungrammatical sen-
tence is transformed until it can be parsed [43,29] and
parse-fitting approaches in which partial parses are pieced
together using heuristics [25,36]. The treebank-trained
statistical parsers [8,12,5,9] of the last fifteen years are
inherently robust at the first level of robustness, since
they will return an analysis for almost any sequence
of words. The robustness of these parsers comes from
their ability to overgenerate. Unlike traditional parsers,
treebank-trained statistical parsers are generally agnos-
tic to the concept of grammaticality but since they are
usually trained on high-quality texts such as the Wall
Street Journal, it is not clear that they are able to pro-
vide an accurate analysis for an ungrammatical sentence
and thus achieve the second level of robustness. This ar-
ticle attempts to explore the extent to which a treebank-
trained statistical parser can ignore grammatical noise
using the idea of an “ungrammatical treebank”. The ex-
ploration takes the following form: an ungrammatical
version of the Wall Street Journal (WSJ) section of the
Penn Treebank [32,31] is created, this ungrammatical
version of the WSJ corpus is divided in the usual way
into test and training data, and two WSJ-trained parsers,
Bikel’s implementation of Collin’s Model 2 parser [12,
5] and Charniak and Johnson’s reranking parser [9] are
then evaluated against the test section of the ungram-
matical WSJ to investigate these parsers’ resistance to
grammatical noise. The usual English training set for the
parsers is then replaced/augmented with parses from the
ungrammatical version of the WSJ, the parsers are re-
trained and then tested again to investigate whether the
parsers’ resistance to grammatical noise can be improved
without affecting their performance on well-formed sen-
tences.

The article is organised as follows: the idea of an un-
grammatical treebank is described in more detail in Sec-
tion 2. Section 3 contains a description of the data of in-
terest, i.e. ungrammatical language. An attempt is made
to give a definition of an ungrammatical sentence, and

examples of sentences which fall under this definition and
those which do not are provided. The process of creating
an ungrammatical treebank is described in Section 4. In
Section 5, the parser evaluation and retraining experi-
ments involving the ungrammatical version of the WSJ
treebank are presented and discussed. Finally, Section 6
summarises the main points in this article and proposes
potentially worthwhile further work in this area.

2 An Ungrammatical Treebank: Motivation and
Background

A corpus of ungrammatical sentences is a useful resource,
both as a source of evidence for the kind of ill-formed
structures that tend to occur in language, and as a source
of test and training data for parsers which aim to ac-
curately analyse sentences containing grammatical er-
rors. Since people are able to comprehend text containing
grammatical errors, it is reasonable to expect a parser to
behave in the same way. A corpus of ungrammatical sen-
tences can take the form of a learner corpus [22,16], i.e.
a corpus of sentences produced by non-native learners of
the language, or a more general form of error corpus, cre-
ated by scanning texts for errors [1,18]. Learner corpora
are particularly useful in the study of second language
acquisition since they provide insight into the difficulties
faced by native speakers of a particular language when
attempting to learn the corpus language. The more gen-
eral form of error corpus is unconcerned with whether
an error reflects linguistic competence or performance,
it merely records that an error has occurred. Unfortu-
nately, the compilation of both kinds of error corpus is a
slow process, because it is not enough to merely collect
a body of sentences, the grammaticality of each sentence
must also be judged in order to determine whether an er-
ror has occurred. If an error has occurred, it then must
be classified according to some error taxonomy.

A usefully large error corpus, in which every sentence
is guaranteed to contain a grammatical error, can be
quickly created by automatically introducing errors into
a corpus of grammatical sentences. In order to ensure
that this transformation process is rooted in linguistic
reality, it should, of course, be based on an analysis of
naturally produced grammatical errors. An interesting
aspect of the automatically induced error corpus is its
parallel nature, since the meaning of the ungrammati-
cal sentence can be found by looking at its grammatical
counterpart.

An even more useful resource for the devising and
testing of robust parsers, is a treebank of ungrammati-
cal sentences. In the same way that a treebank of gram-
matical sentences can be used as a source of test data
to evaluate parser output, and as a source of training
data to build a probability model, a treebank of ungram-
matical sentences can be used to evaluate and possibly
improve upon a parser’s performance on ungrammatical
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language. In the absence of such a treebank, previous
work by the author [17] attempts to evaluate parser out-
put on ungrammatical data by evaluating it against its
own output on a corrected, grammatical version of the
same data. Thus, the parser provides its own gold stan-
dard. Bigert et al. [4] adopt a similar approach by intro-
ducing artificial spelling errors into error-free text and
then evaluating parsers and a part-of-speech tagger on
this text using their performance on the error-free text as
a reference. Similarly, Lopresti [30] evaluates the effect
of OCR errors on various NLP tasks such as sentence
boundary detection and part-of-speech tagging by calcu-
lating the minimum-edit-distance between the original
document and the noisy OCRed document. A drawback
of these approaches to robustness evaluation is that an
application’s performance on noisy data is always eval-
uated against its performance on a well-formed version
of the same data. It can happen that the application
(parser, tagger, etc.) can produce an accurate analysis
for the ill-formed input but not for the equivalent well-
formed input (an example is provided by Foster [17]) and
the evaluation metric must incorporate some kind of es-
timate of how often this is likely to occur. An ungram-
matical treebank bypasses this problem because it serves
as a stand-alone and accurate set of reference parses for
ungrammatical sentences.

Of course, the creation of a treebank is a costly, labo-
rious task. However, assuming the existence of a treebank
of grammatical sentences and a corpus of ungrammati-
cal sentences derived automatically from the sentences
in the grammatical treebank, it is possible to automati-
cally create a treebank of ungrammatical sentences. This
treebank can then be partitioned in the usual way, into a
set of gold standard reference parses and a set of training
parses for any data-driven probabilistic parser.

The idea of an automatically generated error corpus
is not new. Bigert et al [3,4], for example, automati-
cally introduce spelling errors into texts. Okanohara and
Tsujii [35] generate ill-formed sentences (they use the
term “pseudo-negative examples”) using a n-gram lan-
guage model and they then train a discriminative lan-
guage model to tell the difference between these pseudo-
negative examples and well-formed sentences. Smith and
Eisner [39,40] automatically generate ill-formed sentences
by transposing or removing words within well-formed
sentences. These ill-formed sentences are employed in a
unsupervised learning technique called contrastive esti-
mation which is used for part-of-speech tagging and de-
pendency grammar induction. The idea of a treebank
of ungrammatical sentences has been explored before by
Kepser et al [28], who are responsible for compiling SIN-
BAD, a treebank of German sentences which have been
judged to be grammatically deviant by linguists. The
SINBAD treebank differs from the type of ungrammat-
ical treebank which would be produced by the method
described here because it is designed to be used more
as an informational source for generative linguists rather

than as a set of training/test data for a robust parser.
It is created manually rather than automatically, and is,
thus, limited in size.

3 The Data of Interest: Ungrammatical
Language

It is difficult to provide a satisfactory definition of the
term “ungrammatical”: for the purposes of this research,
a sentence is defined to be ungrammatical if all the words
in the sentence are well-formed words of the language
in question, but the sentence contains one or more er-
ror [18]. Although this definition simply defines ungram-
maticality in terms of error, it is less circular than one
in which an ungrammatical sentence is defined to be a
sentence which cannot be generated by the grammar of
the language. An error can take the form of a perfor-
mance slip which can occur due to carelessness or tired-
ness, or a competence error which occurs due to a lack
of knowledge of a particular construction. This defini-
tion includes real-word or context-sensitive spelling er-
rors and excludes non-word spelling errors. It also ex-
cludes the abbreviated informal language used in elec-
tronic communication [14,10,13]. For example, given the
well-formed sentence (1) and the above definition of un-
grammatical, sentences (2) and (3) are ungrammatical,
whereas sentences (4) and (5) are not. Sentence (2) is
ungrammatical (according to the definition) because it
contains a real-word spelling error and sentence (3) is
ungrammatical because it violates a well-defined word
order constraint of English. Sentence (4) contains an er-
ror (a non-word spelling error) but since not all the words
in the sentence are well-formed words of the English lan-
guage, it is not ungrammatical according to the above
definition. Finally, sentence (5) is not ungrammatical be-
cause it does not contain an error: the omission of the
first person subject pronoun and the abbreviation of be
to b are well-formed according to the norms of SMS com-
munication.

(1) I will be in town soon
(2) I will be it town soon
(3) I will in town soon be

(4) I will be in town soonn

(5) Will b in town soon

Previous work by the author [19,20,18] involved the
collection of ungrammatical written sentences in the En-
glish of newspapers, academic papers, emails and website
forums. The resulting 20,000 word corpus was analysed
and the following frequency ordering of the three word-
level correction operators used to correct a grammatical
error was found:

substitute (48%) > insert (24%) > delete (17%) > com-
bination (11%)
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The same ordering of the substitution, deletion and in-
sertion correction operators was found in a study of na-
tive speaker spoken language slips carried out by Stem-
berger [41]. Foster [18] found that among the grammat-
ical errors which could be corrected by substituting one
word for another (48% of total), the most common errors
were real-word spelling errors such as (2) above (20%),
agreement errors (9%) and errors in verb form (5%). In
fact, 75% of all errors fall into one of the following five
classes:

(6) missing word errors:
She didn’t want to face him → She didn’t to face him

(7) extra word errors:
Do you ever go and visit any of them? → Do you
ever go and visit the any of them?

(8) real-word spelling errors:
I love them both → I love then both

(9) agreement errors:
The contrast was startling → The contrasts was

startling
(10)verb form errors:

Want to save money? → Want to saving money?

A similar classification was adopted by Nicholls [34], hav-
ing carried out an error analysis on a learner corpus. Dif-
ferent languages and text types will exhibit a different
error density and distribution. Hashemi [23], for exam-
ple, finds that verb form errors are more common than
agreement errors in a study of the written language of
native Swedish speaking children, whereas agreement er-
rors are more common than verb form errors in the En-
glish corpus upon which this research is based. Although
not a truly representative sample, the corpus described
by Foster is compiled from a sufficiently broad array of
text types for us to conclude that the most common er-
rors occurring within it are likely to occur elsewhere and
for it to form the basis of the artificial error creation
procedure described in the next section.

4 Creating an Ungrammatical Treebank

This section describes the procedure for creating an un-
grammatical treebank. This procedure involves two steps:
the first is the introduction of grammatical errors into the
sentences in a treebank; the second is the transformation
of the original gold standard analyses into gold standard
analyses for the newly created ungrammatical sentences.
The first step is described in Section 4.1, and the second
in Section 4.2.

4.1 Automatic Error Creation

The error creation procedure takes as input a part-of-
speech tagged corpus of sentences which are assumed
to be well-formed, and outputs a part-of-speech tagged

for each POS-tagged sentence, s, in input corpus do
s ungram← ε
missing tried← false
extra tried← false
real word spell tried← false
agree tried← false
verb form tried← false
while s ungram is empty do

n← random float in range 0...1
if n < missing freq and missing tried = false
then

s ungram← insert missing word error(s)
missing tried← true

else if n < (missing freq + extra freq) and
extra tried = false then

s ungram← insert extra word error(s)
extra tried← true

else if n < (missing freq + extra freq +
real word spell freq) and real word spell tried =
false then

s ungram← insert real word spell error(s)
real word spell tried← true

else if n ≤ (missing freq + extra freq +
real word spell freq+agree freq) and agree tried =
false then

s ungram← insert agree error(s)
agree tried← true

else if verb form tried = false then
s ungram← insert verb form error(s)
verb form tried← true

Fig. 1 Top-Level Error Creation Algorithm

corpus of ungrammatical sentences. The error creation
procedure is inspired by the manually created error cor-
pus created by Foster [19,20,18], and the automatically
introduced errors take the form of the five most com-
mon error types found in this corpus and introduced in
Section 3, i.e. missing word errors, extra word errors,
real-word spelling errors, agreement errors and verb form
errors. The error creation procedure can be applied to its
own output to yield sentences with more complex errors
or with more than one of the above errors.

The top-level algorithm for creating the error cor-
pus is shown in Fig. 1. The distribution of the five er-
ror types is established by setting the values of the four
variables missing freq, extra freq, real word spell freq and
agree freq. For this research, these relative frequency val-
ues are set to approximate the distribution found in the
manually created error corpus (see Section 3).

4.1.1 Missing Word Errors

Missing word errors can be classified on the basis of the
part of speech of the missing word. In the error corpus
described by Foster [18], 98% of the missing word errors
involve the omission of the following parts of speech (or-
dered by decreasing frequency)1

1 Because the sentences in the manually created error cor-
pus were encountered in context, it was sometimes possible
to detect the erroneous omission of an adjective or an adverb.
These are not included in the procedure for creating missing
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insert missing word error(s)
s ungram← ε
if s contains more than one word then

missing pos← choose missing pos(s)
if missing pos is not empty then

candidate list ← list of sentence positions, p, such
that ∀p ∈ candidate list, POS(word@p in s) =
missing pos
p′ ← randomly selected position from candidate list
s ungram← s with word@p′ removed

return s ungram

choose missing pos(s)
l←< det, verb, prep, pronoun, noun, inf marker, conj >
l′ ← l ∩ set of all POS tags in s

total freq ←
∑lengthofl′

i=0
freq(l′[i])

if l′ 6=<> then
next← 0
n← random float in range 0...1
for all POS tags, pos ∈ l′ do

next← next + freq[pos]/total freq
if n < next then

return pos
else

return ε

Fig. 2 Missing Word Error Creation Algorithm

det(28%) > verb(23%) > prep(21%) > pro(10%)
> noun(7%) > “to”(7%) > conj(2%)

Missing word errors are introduced by searching a part-
of-speech tagged sentence for all occurrences of words
with the above part-of-speech tags and then deleting one
from the sentence. The frequency ordering shown above
is respected so that the resulting error corpus will con-
tain, for example, more missing determiners than missing
pronouns. In the unlikely event that a sentence contains
none of the above parts of speech, no ungrammatical
sentence is produced. Another case where no ungram-
matical sentence is produced occurs when the input to
the procedure is a one-word sentence such as Yes.

The algorithm for creating missing word errors is de-
tailed in Fig. 2. The algorithm assumes the available of
missing part-of-speech tag frequencies. As with the top-
level algorithm, these are set according to the distribu-
tion found in the manually created corpus.

4.1.2 Extra Word Errors

Extra word errors are introduced in the following three
ways:

1. Random duplication of a token within a sentence:
That’s the way we we learn here.

2. Random duplication of a POS within a sentence: There
it he was.

3. Random insertion of an arbitrary token into the sen-
tence: Joanna drew as a long breadth.

word errors because their omission will systematically result
in a grammatical sentence.

insert extra word error(s)
s ungram← ε
list← list of tagged words from BNC subset
n← random integer in range 0..2
if n = 0 then

s ungram← introduce repeated token(s)
else if n = 1 then

s ungram← introduce repeated tag(s, list)
else

s ungram← introduce unnecessary word(s, list)
if s ungram is empty then

s ungram← introduce unnecessary word(s, list)
return s ungram

introduce repeated token(s)
extra← ε
while extra is empty and not all words tried do

p← random integer in range 1...length(s)
if POS(word@p in s) 6= adj then

extra← word@p in s
return s with extra inserted at position p + 1

introduce repeated tag(s,list)
extra← ε
while extra is empty and not all words tried do

p← random integer in range 1...length(s)
if POS(word@p in s) 6= adj then

extra ← randomly selected word in list where
POS(extra) = POS(word@p in s)

if extra is not empty then
return s with extra inserted at position p + 1

return ε

introduce unnecessary word(s,list)
p← randomly selected integer in range 1...length(s)
extra← randomly selected word in list
return s with extra inserted at position p + 1

Fig. 3 Extra Word Error Creation Algorithm

The procedure considers each of these subclasses of extra
word error equally likely, and attempts to insert one of
them into a grammatical sentence. Adjectives (e.g. the
great great man) are not considered for duplication be-
cause, as with their omission, their repetition will not
result in an ungrammaticality. Apart from the case of
duplicate tokens, the extra words are selected from a list
of tagged words compiled from a random subset of the
British National Corpus [7]. This random subset con-
tains approximately 2,500 words. Again, the procedure
for inserting an extra word is based on the analysis of
extra word errors in the 20,000 word error corpus of Fos-
ter [18]. The algorithm is shown in Fig. 3. Note that it is
always possible to generate an extra word error within a
sentence because it always possible to insert an arbitrary
token at a random position.

4.1.3 Real-Word Spelling Errors

An error is classified as a real-word spelling error or
context-sensitive spelling error if it can be corrected by a
word similar to it in spelling. Two words are considered
similar in spelling if the Levenshtein distance between
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Table 1 Some English Real-Word Spelling Errors

is↔ if is↔ in is↔ it is↔ as is↔ us
is↔ its is↔ his if ↔ in if ↔ it if ↔ of
in↔ it in↔ an in↔ on it↔ its it↔ at

introduce real word spell error(s)
s ungram← ε
eng spell list← list of English real word spelling errors
candidate list←<>
for each word, w, at position, p, in s do

if < w, >∈ eng spell list then
candidate list← candidate list+ < w, p >

if candidate list is not empty then
n← random integer in range 1...length(candidate list)
< w′, p′ >← candidate list[n]
rep list←< r| < w′, r >∈ eng spell list >
k← random integer in range 1...length(rep list)
r′ ← rep list[k]
s ungram← s with word@p′ replaced by r′

return s ungram

Fig. 4 Real-Word Spelling Error Creation Algorithm

them is one (e.g. to and too) ([18]). Again following the
error analysis carried out by Foster [18], a list of candi-
date English real-word spelling errors is compiled. The
error creation procedure searches for all words in the
input sentence which can be replaced by a word simi-
lar in spelling (subject to the pre-compiled list): one of
these is then randomly selected and replaced. The list of
real-word spelling errors contains 113 pairs and a sam-
ple of 15 involving function words related to the words
is, it, in and if are shown in Table 1. The list contains
very common English words such as a, the and he, and
an ungrammatical sentence can be generated from most
sentences. The algorithm for inserting real-word spelling
errors is shown in Fig. 4.

4.1.4 Agreement Errors

Subject-verb and determiner-noun number agreement er-
rors are introduced into well-formed sentences by replac-
ing a singular determiner, noun or verb with its plu-
ral counterpart, or vice versa. For English, subject-verb
agreement errors can only be introduced for present tense
verbs, and determiner-noun agreement errors can only be
introduced for determiners which are marked for number,
e.g. demonstratives and the indefinite article. The proce-
dure would be more productive if applied to a morpho-
logically richer language. According to the error analysis
carried out by Foster [18], the erroneous word within
an agreement error is more likely to be the rightmost
word, i.e. the verb in a subject-verb agreement error or
the noun in a determiner-noun agreement error. This is
reflected in the algorithm for creating agreement errors
which is shown in Fig. 5.

insert agree error(s)
s ungram← ε
while error has not been introduced and not all words in
s tried do

p← random integer in the range 1...length(s)
if POS(word@p) = noun and POS(word@p+1) = num-
ber marked verb then

n← random integer in the range 1...3
if n = 1 then

s ungram ← s with word@p replaced by opposite
number form

else
s ungram← s with word@p + 1 replaced by oppo-
site number form

else if POS(word@p) = number marked determiner and
POS(word@p + 1) = noun then

n← random integer in the range 1...3
if n = 1 then

s ungram ← s with word@p replaced by opposite
number form

else
s ungram← s with word@p + 1 replaced by oppo-
site number form

else if POS(word@p) = number marked determiner and
POS(word@p+1) = adj and POS(word@p+2) = noun
then

n← random integer in the range 1...3
if n = 1 then

s ungram ← s with word@p replaced by opposite
number form

else
s ungram← s with word@p + 2 replaced by oppo-
site number form

else if POS(word@p) = number marked verb then
s ungram ← s with word@p replaced by opposite
number form

return s ungram

Fig. 5 Agreement Error Creation Algorithm

4.1.5 Verb Form Error

Verb form errors are introduced into well-formed sen-
tences by changing the tense of a verb within the sen-
tence, e.g. changing from the present participle verb form
laughing to the infinitival form laugh. The procedure for
inserting this type of error proceeds by identifying all
verbs within a sentence, selecting one of these verbs at
random, and replacing it with another verb form, also
chosen at random. The algorithm is shown in Fig. 6.
Note that some transformations are not carried out, e.g.
a present tense verb is not converted to its past form be-
cause the transformation will not result in an ill-formed
sentence (They laugh versus They laughed) and a present
tense verb is not converted to its plural or singular coun-
terpart since this is already covered by the agreement
error creation module.

4.1.6 Covert Errors

James [24] uses the term covert error to describe a gen-
uine language error which results in a sentence which is
syntactically well-formed under some interpretation dif-
ferent from the intended one. The tendency of the er-
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insert verb form error(s)
s ungram← ε
candidate verbs←<>
for each word, w, at position, p, in s do

if POS(w) = suitable verb form then
candidate verbs← candidate verbs+ < w, p >

n← random integer in range 1...length(candidate verbs)
< v, p′ >← candidate verbs[n]
if v is a past participle form then

k← random integer in range 1...3
if k=1 then

s ungram← s with word@p′ replaced by inf form
else if k=2 then

s ungram← s with word@p′ replaced by present par-
ticiple form

else
s ungram← s with word@p′ replaced by 3rd pers sing
form

else if v is an infinitival form then
k← random integer in range 1...3
if k=1 then

s ungram← s with word@p′ replaced by past partici-
ple form

else if k=2 then
s ungram← s with word@p′ replaced by present par-
ticiple form

else
s ungram← s with word@p′ replaced by 3rd pers sing
form

else if v is a present participle form then
k← random integer in range 1...3
if k=1 then

s ungram← s with word@p′ replaced by past partici-
ple form

else if k=2 then
s ungram ← s with word@p′ replaced by infinitival
form

else
s ungram← s with word@p′ replaced by 3rd pers sing
form

else if v is a present tense form then
s ungram ← s with word@p′ replaced by present par-
ticiple form

return s ungram

Fig. 6 Verb Form Creation Algorithm

ror creation procedure to produce covert errors was es-
timated by carrying out the following small experiment:
sentences were randomly extracted from the BNC and
the error creation procedure applied to them. 500 of the
resulting sentences (the first 100 for each error type) were
then manually inspected to see if the sentence structures
were grammatical. The percentage of grammatical struc-
tures that are inadvertently produced for each error type
and an example of each one are shown below:

(11)Agreement Errors, 7%
Mary’s staff include Jones,Smith and Murphy →

Mary’s staff includes Jones,Smith and Murphy
(12)Real-Word Spelling Errors, 10%

And then? → And them?

(13)Missing Word Errors, 13%2

She steered Melissa round a corner → She steered
round a corner

(14)Extra Word Errors, 5%
She made no effort to check her tears → She made
no effort to check in her tears

(15)Verb Form Errors, 6%
There was no turning back → There was no turned

back

The occurrence of these grammatical sentences in the
artificial error corpus can be reduced by fine-tuning the
error creation procedure or by using a finely grained
part-of-speech tagset to tag the input corpus. For ex-
ample, if the tagset could discriminate singular nouns
like staff and company which can have a distributive
reading from singular nouns such as car which don’t,
examples like (11) would not be produced. 3 Similarly,
if verb subcategorization frames were available to the
error creation procedure, it would know that the verb
steer can be used intransitively (13) or that the verb
check can be used with the preposition in (14). It is un-
realistic to assume, however, that covert errors can ever
be completely eliminated. They are a natural linguistic
phenomenon which occur in manually created error cor-
pora containing real errors. One could argue, therefore,
that they should not be eliminated. Ideally, a probabilis-
tic parser should be sophisticated enough to favour an
ill-formed structure with a plausible reading over a well-
formed structure with an unlikely reading. For example,
a parser that suspects that a verb form error has oc-
curred in the right-hand sentence of Example (15) and
interprets the turned as a present participle verb form
and back as an adverb is more useful than a parser which
interprets no turned back as a noun phrase.

4.1.7 Iteratively Applying the Error Creation Procedure

The output of the error creation procedure is a tagged
corpus of ungrammatical sentences (including the covert
errors discussed in the previous section). This corpus can
then be passed as input to the procedure to create a
second corpus with even noisier data. This second cor-
pus will contain sentences containing two separate errors
such as (16), or sentences such as (17) or (18) which are
correctable by applying a combination of the basic insert,
delete, substitute correction operators.

(16)This roadmap for the project has been derived. →

This roadmap for the has been derived derived.
(17)I have problems to get the script to run. → I have

problems getting the script to run.
(18)What does the thing do? → What does thing the

do?

2 Smith and Eisner [39,40] also note the propensity of a
word omission to result in a well-formed syntactic structure.

3 Note that example (11) is not really a covert error because
the two sentences have the same meaning.
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Increasingly noisy corpora can be created by iteratively
applying the error creation procedure to its own output.
However, if the data is too noisy it will become very
difficult for a parser to accurately parse it, just as it be-
comes very difficult for people to understand extremely
ungrammatical sentences such as (19). Is it reasonable
to expect a computer parser to handle language that is
problematic for the human parsing mechanism?

(19)Hotkey Utility show the indicators on your display
and save brightness adjustment each power supplying
conditions.

4.2 Gold Standard Transformation

The gold standard transformation procedure takes an
ungrammatical sentence and a gold standard syntactic
analysis of the grammatical sentence from which the un-
grammatical one has been generated, and outputs a gold
standard syntactic analysis of the ungrammatical sen-
tence. The transformation method is based on three as-
sumptions, the third assumption following on from the
first two:

1. At the heart of every ungrammatical sentence, there
is a grammatical sentence which expresses the same
“intended” meaning as the ungrammatical sentence.

2. The role of a parser is to produce an analysis for
a sentence which reflects, to a certain extent, that
sentence’s “intended” meaning.

3. A parser which aims to be robust to errors should
produce an analysis for an ungrammatical sentence
which is as close as possible to the analysis it pro-
duces for the corresponding grammatical sentence,
i.e. for the grammatical sentence at the heart of the
ungrammatical sentence.

In keeping with these assumptions, the transformation
procedure operates by changing as little as possible in
the original grammatical sentence analysis to produce
the analysis of the ungrammatical sentence. Ungrammat-
ical treebanks can be automatically generated from any
type of treebank, regardless of the syntactic annotation
scheme it employs. However, in this article, attention is
restricted to context-free phrase structure trees. Exam-
ples are provided for the error types described in Sec-
tion 4.1.

4.2.1 Real-Word Spelling Errors, Agreement Errors and
Verb Form Errors

Consider the grammatical sentence (20) and the ungram-
matical sentence (21) which contains a real-word spelling
error:

(20)A romance is coming your way.
(21)A romance in coming your way.
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Fig. 7 Gold Standard Parses for Sentences (20) and (21)

Fig. 7 depicts a Penn-Treebank-style gold standard parse
tree4 for the grammatical sentence (20) and, underneath
it, the parse tree which will be produced by the transfor-
mation procedure for the ungrammatical sentence (21).
This is considered to be the gold standard parse for
the ungrammatical sentence because it makes the crucial
recognition that the word in is part of a verb phrase and
contrasts in this way with another parse for the same sen-
tence, shown in Fig. 8, in which the sequence in coming
your way is analysed as a prepositional phrase. A parser
which produces the parse in Fig. 7 is robust to errors
since it is able to see right through an ungrammatical
sentence to the grammatical sentence at its heart, and
produce a parse which reflects the meaning of the gram-
matical sentence.5 The example sentence (21) contains
a real-word spelling error but the same transformation
would apply to any error correctable by a substitution,
e.g. an agreement or a verb form error. This transforma-
tion is the substitution of the erroneous word onto the
original word in the original analysis.

4.2.2 Missing Word Errors

Consider the grammatical sentence (22) and its ungram-
matical counterpart (23):

(22)Prices are expected to drop.

4 Penn-II functional tags and traces have been omitted,
since they are not needed to explain the tree transformations.

5 Note that the part-of-speech of the word in in the gold
standard parse tree is VBZ rather than IN. A similar deci-
sion was made in the annotation of typos in the Switch-
board Corpus (http://www.cis.upenn.edu/~bies/manuals/
tagguid2.pdf)
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Fig. 8 A Suboptimal Parse Tree for Sentence (21)

(23)Prices are expected drop.

A gold standard parse tree for the grammatical (22)
is shown in Fig. 9, with the gold standard parse tree
which will be automatically generated for the ungram-
matical (23) underneath. The bottom tree is produced
by replacing the pre-terminal category (TO to) in the
top tree in Fig. 9 with the trace (-NONE- 0). In contrast,
Fig. 10 shows a less accurate parse tree for Sentence (23).

4.2.3 Extra Word Errors

Consider the grammatical sentence (24) and the ungram-
matical sentence (25) which contains an unnecessary ex-
tra word to:

(24)Annotators parse the sentences.
(25)Annotators parse to the sentences.

Fig. 11 shows the gold standard parse tree for the gram-
matical (24), along with the two gold standard parse
trees which will be generated automatically by the trans-
formation procedure for the ungrammatical (25). In the
ungrammatical gold standard trees, the superfluous to
does not affect the constituent structure of the sentence
(above the pre-terminal level). The only difference be-
tween the two trees is the level where the word to is
attached. In both, to has not introduced any extra struc-
ture, which is a desirable result since the word does not
contribute to the sentence’s meaning. Contrast this with
the parse tree in Fig. 12, in which the presence of the
word to has caused a prepositional phrase to be intro-
duced.

4.2.4 Tree Transformation Algorithm

The tree transformation algorithm is shown in Fig. 13.
The top-level procedure takes as input a treebank tree, t,
and a part-of-speech tagged sentence, s. The sentence s
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Fig. 9 Gold Standard Parse Trees for Sentences (22) and
(23)
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Fig. 10 A Suboptimal Parse Tree for Sentence (23)
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Fig. 12 A Suboptimal Parse Tree for Sentence (25)

is the ungrammatical version of the sentence dominated
by t. The procedure returns a list of ungrammatical trees
dominating s. A list of trees rather than a single tree is
returned because for extra word errors there can be more
than one way of transforming the original tree to de-
scribe the ungrammatical sentence while preserving the
intended meaning (see Fig 11). If s contains a missing
word error, a real-word spelling error, a verb form error
or an agreement error, the list returned will always con-
tain only one tree. Note that the algorithm assumes that
the variables term count and count are global variables
available to all procedures.

transform tree(t,s)
trees ungram←<>
i← 1
while yieldi(t) = word@i in s do

i← i + 1
if error type(s) = real word or error type(s) = agreement
or error type(s) = verb form then

term count = 0
trees ungram← trees ungram + replace(t,word@i, i)

else if error type(s) = missing then
term count = 0
trees ungram← trees ungram + delete(t, i)

else if error type(s) = extra then
create new tree, t′ of depth 1
root(t′)← POS(word@i) in s
yield1(t

′)← word@i in s
trees no ← number of ancestors, t′′, of t, such
that root(t′′) is not a pre-terminal and yield1(t

′′) =
yieldi−1(t) or yield1(t

′′) = yieldi(t)
trees count← 0
while trees count < trees no do

term count = 0
count = 0
trees ungram←
trees ungram + add(t, t′, i, trees count, 0)
trees count← trees count + 1

return trees ungram

replace(tree,word,pos)
if root(tree) is a pre-terminal then

term count← term count + 1
if term count = pos then

yield1(tree)← word
else

for all daughters, d, of tree do
d← replace(d,word, pos)

return tree

delete(tree,pos)
if root(tree) is a pre-terminal then

term count← term count + 1
if term count = pos then

yield1(tree)← 0
root(tree)← −NONE−

else
for all daughters, d, of tree do

d← delete(d, pos)
return tree

add(tree,new,pos,limit)
if root(tree) is a pre-terminal then

term count← term count + 1
else

if pos > term count and
pos <= term count + length(yield(tree)) then

count← count + 1
if count = limit then

daughter(pos−term count)(tree)← new
else

for all daughters, d, of tree do
d← add(d, new, pos, limit)

return tree

Fig. 13 Tree Transformation Algorithm
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4.2.5 Iteratively Applying the Gold Standard
Transformation Procedure

Just as the error creation procedure can be applied to
its own output to create increasing levels of grammatical
noise, the gold standard transformation algorithm can
take as input a tree that it has already undergone trans-
formation and produce another tree as output. Consider,
for example, the ungrammatical sentence (21) repeated
as (26) and sentences (27), (28) and (29) which are the
result of introducing a second error into sentence (26):

(26)A romance in coming your way.
(27)A romances in coming your way.
(28)A romance in coming way.
(29)A the romance in coming your way.

In order to produce gold standard parse trees for sen-
tences (27), (28) and (29), the input to the tree trans-
formation procedure is the bottom tree in Fig. 7. The
output trees are shown in Fig. 14.

5 Experiments with an Ungrammatical Penn
Treebank

In this section, the usefulness of an automatically created
ungrammatical treebank is demonstrated by describing
a parser evaluation experiment and a parser retraining
experiment which are carried out using an ungrammat-
ical version of the Wall Street Journal portion of the
Penn Treebank [32,31]. The evaluation experiment is de-
scribed in Section 5.1 and the retraining experiment in
Section 5.2.

5.1 Parser Evaluation

The aim of this experiment is to evaluate how well two
lexicalized, history-based, generative, statistical parsers
cope with errors in text: a parser that copes well with er-
rors produces, for an ungrammatical sentence, an analy-
sis which closely resembles the analysis it would produce
for the sentence without the error.

Section 5.1.1 contains a description of how the ex-
periment was carried out and Section 5.1.2 presents the
results, which are then discussed in Section 5.1.3.

5.1.1 Method

The error creation procedure described in Section 4.1
is applied to the 2416 sentences in Section 23 of the
WSJ portion of the Penn Treebank [32,31], resulting in
an error corpus of 2416 sentences (133 sentences con-
taining a verb form error, 234 sentences containing an
agreement error, 511 sentences containing a real-word
spelling error, 613 sentences containing an extra word
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Fig. 14 Gold Standard Parses for Sentences (27), (28) and
(29)

and 925 sentences with a missing word). The gold stan-
dard transformation procedure described in Section 4.2
is then applied, resulting in an ungrammatical version of
WSJ section 23. A second noisier test set is created by
applying the error creation and gold standard transfor-
mation procedures to the first ungrammatical version of
WSJ section 23 (see Sections 4.1.7 and 4.2.5).

Two statistical parsers trained on the original gram-
matical WSJ sections 2-21 are used to parse the un-
grammatical sentences. The first parser is Bikel’s imple-
mentation of Collins’ generative head-driven probabilis-
tic Model 2 [5,12]. The second parser is the June 2006
version of Charniak and Johnson’s two-stage parser [9].
The first-stage is a lexicalized, generative, probabilistic
parser [8] and the second stage is a maximum entropy
reranker which exploits features of the entire parse tree
to reorder the n-best parse trees produced by the first
stage parser [27,11,9]. For this experiment, the input to
both parsers is untagged.
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Table 2 Parsers on Ungrammatical WSJ23

P R F

Bikel
Grammatical 85.9 85.8 85.9
Ungrammatical 1 81.3 80.7 81.0
Ungrammatical 2 76.4 75.4 75.9

Charniak & Johnson
Grammatical 91.7 90.8 91.3
Ungrammatical 1 87.4 85.6 86.5
Ungrammatical 2 83.2 80.7 81.9

Table 3 Parsers on Ungrammatical WSJ23: Breakdown by
Error Type

Error Type P R F

Bikel
Missing Word 82.8 79.2 81.0
Extra Word 80.3 84.0 82.1
Real-Word Spelling 79.6 79.5 79.6
Agreement 83.2 82.7 83.0
Verb Form 79.6 78.5 79.0

Charniak & Johnson
Missing Word 88.7 83.6 86.1
Extra Word 87.0 89.2 88.1
Real-Word Spelling 84.2 83.2 83.7
Agreement 90.8 89.2 90.0
Verb Form 88.3 86.5 87.4

The parses produced by both parsers are evaluated
against the ungrammatical gold standard WSJ23 parses
using the Parseval [6] labelled precision/recall metric.
According to this metric, a constituent in a test parse
tree is considered to be correct if it spans the same se-
quence of words and has the same label as a constituent
in the corresponding gold standard parse tree. Precision
represents the number of correct constituents divided by
the total number of constituents produced by the parser.
Recall represents the number of correct constituents di-
vided by the total number of constituents in the gold
standard set. The f-score is the harmonic mean of pre-
cision and recall. In the case of extra word errors, there
is potentially more than one gold standard analysis for
each sentence (see, for example, Fig 11), and therefore
the test sentence parse is evaluated against each of its
gold standard parses, and the highest f-score is chosen.

5.1.2 Results

Table 2 shows labelled precision, recall and f-score re-
sults calculated by evaluating the two parsers against the
two ungrammatical versions of WSJ23 using the Parseval
measures. “Ungrammatical 1” is the test set produced by
applying the error creation and gold standard transfor-
mation procedures to the original grammatical WSJ23.
“Ungrammatical 2” is the test set produced by applying
the error creation and gold standard transformation pro-
cedures to Ungrammatical 1. The first row in Table 2 in-
dicates the scores received by the parsers on the original

grammatical WSJ23 sentences. The first row figures rep-
resent an upper bound for the ungrammatical sentence
results, because, as was illustrated in Section 4.2, the
grammatical and ungrammatical gold standard trees are
isomorphic above the pre-terminal level and pre-terminal
constituents or part-of-speech tags are ignored in calcu-
lation of constituent accuracy. Table 3 gives a breakdown
of the Ungrammatical 1 results by error type.

5.1.3 Discussion

As might be expected, the presence of a grammatical er-
ror in a sentence has an adverse effect on both parsers.
The effect on both is quite similar, with an absolute
f-score deterioration of 4.9% on Ungrammatical 1 for
Bikel’s parser, and an absolute f-score deterioration of
4.8% for Charniak and Johnson’s parser. For both parsers,
there is an even larger deterioration for Ungrammati-
cal 2, 10% for Bikel’s parser and 9.4% for Charniak and
Johnson’s parser. Again, this is unsurprising, since Un-
grammatical 2 contains noisier sentences than the sen-
tences in Ungrammatical 1: each has an edit distance of
two from the original grammatical WSJ23 sentences.

The results in Tables 2 and 3 show that ungram-
matical sentences containing agreement errors achieve
scores which are the closest to the upper bound, sug-
gesting that this type of error does not generally distract
these parsers from finding the correct analysis. For both
parsers, there is no significant difference between the re-
sults for subject-verb agreeement errors and those for
determiner-noun agreement errors. Real-word spelling er-
rors are a problem for both parsers. It is not surprising
that this error type performs badly, since the replacing
word and the replaced word often have little in com-
mon grammatically. The worst performing error type for
Bikel’s parser is the wrong verb form error. Interestingly,
this is not the case for Charniak and Johnson’s parser.
In particular, Charniak and Johnson’s parser is more ro-
bust than Bikel’s parser to verb form errors involving the
conversion of either an infinitival or present tense indica-
tive verb form to a present participle form. Examples are
shown in (30) and (31):

(30) infinitival → present participle
Charniak and Johnson:
(S (NP Hooker’s philosophy) (VP was (S (VP to (VP
building and sell)))))
Bikel:
(S (NP Hooker’s philosophy) (VP was (PP to (NP
building and sell))))

(31) present indicative → present participle
Charniak and Johnson:
(S (NP That figure) (VP climbing (PP to (NP about
47%))))
Bikel:
(S (NP That) (VP figure (VP climbing (PP to (NP
about 47%)))))
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For both parsers, extra word errors achieve a higher
recall score in comparison to their precision score which
suggests that this kind of error tends to introduce un-
wanted structure into a parse. The two parsers’ scores
for extra word errors are slightly lower when the extra
word is a random token inserted at an arbitrary point in
the sentence, as opposed to extra word errors involving
adjacent duplicate tags or tokens.

For both parsers and in contrast to extra word errors,
missing word errors achieve a higher precision score in
comparison to their recall score, suggesting that a lack of
relevant structure is associated with this kind of error.
This is what one might expect. Analysing the missing
word errors by the part of speech that is omitted, it is
clear that both parsers cope well with the omission of
determiners and nouns, and less well with the omission
of verbs, prepositions and conjunctions. Of all the error
types, the missing word error is most associated with
covert errors (see Section 4.1.6). A likely explanation
for the better performance of errors involving missing
nouns is that their omission is more inclined to result in
a grammatical structure, e.g. in a noun-noun compound
or as objects to verbs with both transitive and intransi-
tive uses (see Example (13)). An error involving a miss-
ing determiner is likely to be contained locally within a
noun phrase and less likely to affect the parsing of other
constituents in a sentence, as would appear to be the
case for missing verbs, prepositions and conjunctions.

5.2 Parser Retraining

The aim of this experiment is to determine the effect of
training the two parsers evaluated in Section 5.1 on an
ungrammatical version of the WSJ. It is expected that
this will have a positive effect on the parsers’ perfor-
mance on the ungrammatical WSJ Section 23 sentences.
Section 5.2.1 contains a description of how the experi-
ment was carried out, Section 5.2.2 presents the results,
and these results are discussed in Section 5.2.3.

5.2.1 Method

The error creation and tree transformation procedures
described in Section 4 are applied to Sections 2-21 of the
WSJ portion of the Penn Treebank. Following the er-
ror analysis carried out by Foster[18], 4 of the 20 train-
ing sections (Sections 2-5) contain sentences with more
than one error or an error correctable by two applica-
tions of the insert, delete or substitute correction opera-
tors. This is achieved by applying the error creation and
tree transformation procedures to Sections 2-5 and then
applying the procedures again to their own output (see
Sections 4.1.7 and 4.2.5). The parsers evaluated in Sec-
tion 5.1 are trained on this new training set. In a second
experiment, the ungrammatical training set is combined
with the original grammatical WSJ sections 2-21, and
the two parsers are trained on this combined set.

5.2.2 Results

The overall results for the parser retraining experiments
are shown in Table 4. The first column of results repre-
sent the scores for both parsers on the three test sets
before the retraining and are a repeat of the results
shown in Table 2. The middle column of results are those
achieved after the parsers have been retrained on the
ungrammatical WSJ2-21 only, and the third set of re-
sults are those achieved when the parsers are retrained
on a combination of the ungrammatical WSJ2-21 and
the original WSJ2-21. A breakdown for individual error
types is shown in Table 5.

5.2.3 Discussion

As expected, both parsers achieve an improved f-score
on the ungrammatical test data, when trained on un-
grammatical data alone. For the Ungrammatical 1 test
set, Bikel’s parser achieves an absolute improvement of
1.2%, and Charniak and Johnson’s parser achieves an
absolute improvement of 1.4%. The improvement is sta-
tistically significant for both Bikel’s parser (p < 0.0001
for precision and p < 0.004 for recall) and Charniak and
Johnson’s parser (p < 0.0001 for precision and recall).6

For the noiser Ungrammatical 2 test set, the improve-
ments are even greater, 3.9% for Bikel’s parser and 3.7%
for Charniak and Johnson’s parser. Both improvements
are statistically significant (p < 0.0001). Unsurprisingly,
when trained on ungrammatical data alone, the perfor-
mance of both parsers on grammatical sentences is nega-
tively affected. There is an absolute deterioration of 1.7%
for Bikel’s parser and an absolute deterioration of 1.2%
for Charniak and Johnson’s parser. The deterioration is
statistically significant for both parsers (p < 0.0001).

The situation improves (although not quite as much
as hoped) when the parsers are trained on both the
grammatical and ungrammatical versions of WSJ2-21.
For Ungrammatical 1, Bikel’s parser achieves a statis-
tically significant (p < 0.0001) improvement of 1.7%
over the baseline of training on the original grammati-
cal WSJ2-21. Charniak and Johnson’s parser achieves an
improvement of 1.6%, also statistically significant (p <

0.0001). For Ungrammatical 2, there is an improvement
of 4.3% for Bikel’s parser and 4.0% for Charniak and
Johnson’s parser, both improvements statistically signif-
icant (p < 0.0001). For the original WSJ23, the results

6 Statistical significance is determined using a “stratified
shuffling” method which repeatedly shuffles sentence scores
between two sets of evaluation results for two parser mod-
els in order to test the null hypothesis that the two models
are the same. After every shuffle, the difference between the
two result sets is calculated and a count is incremented if
the difference is greater or equal to the original observed
difference. After 10,000 iterations, the likelihood of incor-
rectly rejecting the null hypothesis is (count+1)/10001. The
software used to perform the test was downloaded from
http://www.cis.upenn.edu/\%7Edbikel/software.html.
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Table 4 Retraining Results

P R F P R F P R F

Gram Only Ungram Only Gram and Ungram

Bikel
Grammatical 85.9 85.8 85.9 84.3 82.2 84.2 85.1 85.0 85.1
Ungrammatical 1 81.3 80.7 81.0 82.7 81.6 82.2 83.2 82.3 82.7
Ungrammatical 2 76.4 75.4 75.9 80.7 79.0 79.8 81.0 79.4 80.2

Charniak & Johnson
Grammatical 91.7 90.8 91.3 90.7 89.5 90.1 91.3 90.2 90.8
Ungrammatical 1 87.4 85.6 86.5 89.1 86.8 87.9 89.3 87.0 88.1
Ungrammatical 2 83.2 80.7 81.9 87.4 83.9 85.6 87.6 84.2 85.9

Table 5 Retraining Results: (Breakdown by Error Type)

Error Type P R F P R F P R F

Gram Only Ungram Only Gram and Ungram

Bikel
Missing Word 82.8 79.2 81.0 83.0 79.7 81.3 83.3 80.1 81.7
Extra Word 80.3 84.0 82.1 82.4 83.7 83.0 83.1 84.6 83.8
Real-Word Spelling 79.6 79.5 79.6 83.6 83.4 83.5 83.3 83.8 83.8
Agreement 83.2 82.7 83.0 81.9 81.3 81.6 82.3 81.9 82.1
Verb Form 79.6 78.5 79.0 82.1 80.9 81.5 83.3 82.2 82.7

Charniak & Johnson
Missing Word 88.7 83.6 86.1 88.9 84.1 86.4 88.9 84.2 86.5
Extra Word 87.0 89.2 88.1 89.0 88.9 89.0 89.0 89.2 89.1
Real-Word Spelling 84.2 83.2 83.7 90.2 89.1 89.7 90.3 89.2 89.7
Agreement 90.8 89.2 90.0 89.5 88.2 88.9 90.0 88.5 89.3
Verb Form 88.3 86.5 87.4 87.3 85.9 86.6 89.0 87.4 88.2

for both parsers still, unfortunately, represent a decrease
from the baseline f-score results: -0.8% for Bikel’s parser
and -0.5% for Charniak and Johnson’s parser. Although
these are small differences, they are statistically signif-
icant (p < 0.0001 for recall and p < 0.03 for precision
for Charniak and Johnson’s parser, p < 0.0001 for pre-
cision and recall for Bikel’s parser). Training on a com-
bination of grammatical and ungrammatical data seems
to be better than training on ungrammatical data alone
but it is clear from these results that a more sophisti-
cated approach to combining both types of training data
is required. An attempt was made to weight the training
material in favour of the grammatical sentences by using
ten copies of the original WSJ2-21 sentences, but this
did not improve results.

The breakdown by error type shows very similar trends
for both parsers. Comparing the first and third columns
in Table 5, we can see that the most pronounced im-
provement is shown for real-word spelling errors, with
Bikel’s parser achieving an absolute f-score increase of
4.2% and Charniak and Johnson’s parser achieving an
absolute f-score increase of 6.0%. The parsers have learnt
new part-of-speech tags for certain words and this knowl-
edge can lead to improved parse trees for ungrammatical
input. (33) is an example: the knowledge that where can
sometimes be confused with the verb were has allowed
Charniak and Johnson’s parser to correctly posit a verb
phrase, where previously it did not (32):

(32)(S But (NP There) (WHADVP where) (NP no buy-
ers))

(33)(S But (NP There) (VP where (NP no buyers)))

If the parsers were initially robust to a particular er-
ror type, the inclusion of ungrammatical sentences and
their trees in the training data does not help. In fact,
it causes a deterioration, just as it causes a deteriora-
tion for the grammatical sentences. For both parsers,
this happens for agreement errors and for certain types
of missing word errors (missing nouns and determiners).
It happens to a certain extent for verb form errors with
Charniak and Johnson’s reranking parser, although the
net effect of combining grammatical and ungrammati-
cal parse trees in the training material is positive. The
parse trees (34) and (35) are examples of how the inclu-
sion of ungrammatical material in the training set can
confuse the parsers: Charniak and Johnson’s parser suc-
cessfully ignores the agreement error in the sentence (34)
when it is trained on grammatical data alone, but when
it is trained on a mixture of grammatical sentences and
various kinds of ungrammatical sentences, it finds the
analysis (35) in which allocates is a noun and a verb has
been omitted more probable than the one in which it is
a singular or plural verb.

(34)(S (NP The negotiations) (VP allocates (NP about
15%) (PP to (NP foreign suppliers))))

(35)(S (NP The negotiations allocates) (VP (NP about
15%) (PP to (NP foreign suppliers))))
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6 Concluding Remarks

This article has introduced the concept of an automat-
ically generated treebank of ungrammatical sentences.
The purpose of such a treebank is to provide a source of
ungrammatical test and training data for parsers. The
treebank creation procedure involves the automatic in-
troduction of common grammatical errors into the sen-
tences in an existing treebank and the automatic trans-
formation of the treebank analyses into analyses of the
automatically generated ungrammatical sentences. The
basic idea is that the original analysis is changed in as
minimal a way as possible, so that the same seman-
tic representation can be derived from an ungrammat-
ical sentence parse as from its grammatical counterpart.
The research described in this article has focused on five
grammatical error types which occur frequently in writ-
ten text: missing word errors, extra word errors, real-
word spelling errors, agreement errors and verb form er-
rors. By applying the error creation and tree transforma-
tion to its own output, errors involving some combination
of the above five error types can also be handled.

This article described two experiments which em-
ployed an ungrammatical version of the Wall Street Jour-
nal section of the Penn Treebank. The first experiment
was a parser evaluation experiment which tested the per-
formance of two state-of-the-art WSJ-trained statisti-
cal parsers on sentences containing ungrammatical data.
The Parseval metric was used to perform the evalua-
tion, but the experiment could be repeated using an-
other constituency-based metric such as the Leaf Ances-
tor metric [37], or by transforming the constituent analy-
ses into dependency analyses [26]. The evaluation experi-
ment showed that both parsers are fairly robust to gram-
matical noise, in particular to sentences containing agree-
ment errors. The second experiment tested these two
parsers on the same ungrammatical data, after retrain-
ing them on noisy versions of WSJ2-21. When trained
on ungrammatical parses alone, the parsers performed
slightly better on ungrammatical data and slightly worse
on grammatical data, compared to when they were trained
on grammatical parses alone. Combining both sets of
training data yielded small but encouraging improve-
ments for both the grammatical and ungrammatical test
data.

An immediate future aim is to see if the retrained
parsers behave in the same manner when faced with real
erroneous data. The problem here is the time it will take
to annotate the erroneous data, a motivation for creating
an ungrammatical treebank in the first place. Neverthe-
less, some evaluation on real data is necessary to confirm
the results presented here. Another challenge remains
to improve performance on ungrammatical data without
any adverse effect on grammatical data and a possible
way forward is a two-stage parsing model, in which the
grammar derived from the ungrammatical treebank is
only employed when there is reason to suggest that the

input sentence may contain an error. This is a matter for
further research.
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many, Tübingen (2004)

20. Foster, J., Vogel, C.: Parsing ill-formed text using an
error grammar. Artificial Intelligence Review: Special
AICS2003 Issue 21, 269–291 (2004)

21. Fouvry, F.: Robust processing for constraint-based gram-
mar formalisms. Ph.D. thesis, Department of Language
and Linguistics, University of Essex (2003)

22. Granger, S.: International corpus of Learner English. In:
J. Aarts, P. de Haan, N.Oostdijk (eds.) English Language
Corpora: Design, Analysis and Exploitation, pp. 57–71.
Rodopi, Amsterdam (1993)

23. Hashemi, S.S.: Ambiguity resolution by reordering rules
in text containing errors. In: Proceedings of the 10th In-
ternational Conference on Parsing Technologies, pp. 69–
79. Prague, Czech Republic (2007)

24. James, C.: Errors in Language Learning and Use: Explor-
ing Error Analysis. Addison Wesley Longman (1998)

25. Jensen, K., Heidorn, G., Miller, L., Ravin, Y.: Parse fit-
ting and prose fixing: Getting a hold on ill-formedness.
American Journal of Computational Linguistics 9(3–4),
147—160 (1983)

26. Johansson, R., Nugues, P.: Extended constituent-to-
dependency conversion for English. In: J. Nivre, H.J.
Kaalep, K. Muischnek, M. Koit (eds.) Proceedings of
NODALIDA 2007, pp. 105–112. Tartu, Estonia (2007)

27. Johnson, M., Geman, S., Canon, S., Chi, Z., Riezler, S.:
Estimators for stochastic “unification-based” grammars.
In: Proceedings of the 37th Annual Meeting of the As-
sociation for Computational Linguistics (ACL-99), pp.
535–541. San Francisco, California (1999)

28. Kepser, S., Steiner, I., Sternefeld, W.: Annotating and
querying a treebank of suboptimal structures. In: Pro-
ceedings of the 3rd Workshop on Treebanks and Linguis-

tic Theories (TLT2004), pp. 63–74. Tuebingen, Germany
(2004)

29. Lee, K.J., Kweon, C.J., Seo, J., Kim, G.C.: A robust
parser based on syntactic information. In: Proceedings
of the Seventh Conference of the European Association
for Computational Linguistics (EACL-95), pp. 223–228
(1995)

30. Lopresti, D.: Performance evaluation for text processing
of noisy inputs. In: Proceedings of the 20th Annual ACM
Symposium on Applied Computing (Document Engineer-
ing Track), pp. 759–763. Sante Fe, New Mexico (2005)

31. Marcus, M., Kim, G., Marcinkiewicz, M.A., MacIntyre,
R., Bies, A., Ferguson, M., Katz, K., Schasberger, B.: The
Penn Treebank: Annotating predicate argument struc-
ture. In: Proceedings of the 1994 ARPA Speech and Nat-
ural Language Workshop, pp. 114–119. Princeton, New
Jersey (1994)

32. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Build-
ing a large annotated corpus of English: the Penn Tree-
bank. Computational Linguistics 19(2), 313–330 (1993)

33. Menzel, W.: Robust processing of natural language. In:
Proceedings of the 19th Annual German Conference on
Artificial Intelligence, Lecture Notes in Computer Science
981, pp. 19–34. Bielefeld, Germany (1995)

34. Nicholls, D.: The Cambridge Learner Corpus – error cod-
ing and analysis. In: Summer Workshop on Learner Cor-
pora. Tokyo, Japan (1999)

35. Okanohara, D., Tsujii, J.: A discriminative language
model with pseudo-negative examples. In: Proceedings of
the 45th Annual Meeting of the Association of Compu-
tational Linguistics, pp. 73–80. Prague, Czech Republic
(2007)
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