
Dublin City University at QA@CLEF 2008

Sisay Fissaha Adafre Josef van Genabith∗

National Center for Language Technology
School of Computing, DCU

IBM CAS Dublin∗

sadafre,josef@computing.dcu.ie

Abstract

We describe our participation in Multilingual Question Answering at CLEF 2008 using
German and English as our source and target languages respectively. The system was
built using UIMA (Unstructured Information Management Architechture) as underly-
ing framework.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Infor-
mation Search and Retrieval; H.3.4 Systems and Software; H.3.7 Digital Libraries; H.2.3 [Database
Managment]: Languages—Query Languages

General Terms

Measurement, Performance, Experimentation

Keywords

Question Answering, Information Extraction, Importance Ranking

1 Introduction

This is our first participation in the Multilingual Question Answering Track of CLEF. We took part
in the bilingual CLEFQA task (German-English) where German is the source language and English
the target language. Since the system was originally designed for English, we need to translate the
German questions into English. We used the BableFish online translation system to translate the
questions. Due to time constraints, no provision has been made to handle errors introduced by
the translation system. This in turn has affected the resulting performance of our system since the
system was designed assuming syntactically correct questions as input. Furthermore, the system
is targeted at Factoid and Definition questions, and it does not cater for List questions.

QA systems, in the context of TREC and CLEF evaluation forums, generally consist of online
methods that generate answers to questions automatically by directly analysing the text corpus.
Systems also make use of external resources in the form of Gazetteers or precompiled Tables
which are obtained through offline mining of large text corpora or the web. Although it has
been shown that outputs of offline mining methods can be used to improve QA results, our focus
in designing the current system is on testing our online methods which are based on information
extraction methods. Our system does not make use of precompiled tables or Gazetteers. Like most
systems, our system uses Web snippets to rerank candidate answers extracted from the document
collections. In addition to the Web snippets, WordNet is used as lexical resource in the system.
Typical QA systems employ various Natural Language Processing (NLP) and Machine Learning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(ML) tools, a set of heuristics and different lexical resources. Seamless integration of the various
components is one of the major challenges of QA system development. In order to facilitate our
development process, we used the Unstructured Information Management Architecture (UIMA)
as our underlying framework [16].

In the remainder of this paper, we will describe our system. Section 2 provides a detailed
description of the system. It briefly summarises the UIMA framework (Section 2.1), and then
presents a componentwise description of the system that deals with Factoid questions. Section 2.8
summarises the treatment of Definition questions. Section 3 presents the result of the experimental
evaluation. Finally, Section 4 presents some concluding remarks.

2 System Description

We adopted the traditional architecture in building our system. Our question answering system
consists of the following core components: Question Analysis, Passage Retrieval, Sentence Analysis
and Answer Selection [7]. Question analysis mainly involves question classification and query
generation. We split the documents into passages and indexed them. The passage retrieval
component takes queries and retrieves the relevant passages, which are likely to contain an answer.
As passages are not the expected response units, they need to be further analysed to extract more
focused answers to user questions. The sentence analysis components apply different Machine
Learning and Natural Language Processing techniques, such as Named Entity Recognition, Parsing
(CFG and Dependency) and Pattern Matching to the sentences, in order to extract candidate
answers from them. Finally, the answer selection component takes the output of the different
components and generates a ranked list of candidate answers [13].

Each of these components employs various tools, and a set of heuristic rules. In order to ease
the development process, we used UIMA (Unstructured Information Management Architecture).
UIMA provides a number of benefits. First, it provides a common representation mechanism
of the result of the different analysis components. It also facilitates the integration of different
analysis tools. In the next section, we summarise the features of UIMA that are important for the
development of our QA System.

2.1 The UIMA Framework

UIMA is a framework and a software development kit for developing applications that analyse
and elicit relevant knowledge from unstructured information. Such applications, for example, can
be used to extract structured data from unstructured text [16]. UIMA facilitates integration of
typical natural language processing tasks, such as tokenization, sentence detection, named-entity
recognition, POS-tagging and chunking, parsing, etc, for building complex applications such as
question answering. In the setting of Multilingual CLEF 2008, Question Answering largely involves
processing of large unstructured textual information (the document collection) to find answers to
questions. UIMA takes care of much of the low level text analysis details and allows one to focus
on the actual problem.

UIMA offers different application development options. We adopted the Collection Processing
Architecture as it provides the basic building blocks for processing large document collections.
As shown in Figure 1, the collection processing architecture consists of three main components:
Collection Reader, Aggregate Analysis Engine, and Consumers. The Collection Reader iterates
through the document collection and converts each document into UIMA internal representation,
i.e. Common Analysis Structure (CAS). The CAS is passed to the Aggregate Analysis Engine,
which is composed of multiple analysis components (Analysis Engine) which carry out the actual
analysis of the document. The Consumers take the output of the Aggregate Analysis Engine and
make it available in a form suitable for processing by external applications or for storage. Common
Analysis Structure provides a common representation of the objects that UIMA analyses. Analysis
Engines contain annotators that form an important component of the Collection Processing Engine
(CPE). Results of the analysis are recorded in the form of annotations which are associated with

Analysis
Engine

Analysis
EngineCollection

Reader
IndexDocument

Collection

Consumer

Collection Processing Engine

Aggregate Analysis Engine

Annotator Annotator

ConsumerCASCASCAS

....

Figure 1: UIMA Architecture

Analysis Engine

Annotator
Named Entity Recognizer

CAS

What is the occupation of Jerry Hickman ?
What is the occupation of Jerry Hickman ?

Annotation Type: Question
CAS

Annotation Type: Question

Annotation Type: Person

Figure 2: Example Annotator

a region in the object being analysed. For textual data, the annotation is recorded as character
offset from the beginning of the document. The CAS provides interfaces for storing and querying
annotations over the text document. CAS may contain several annotations where each annotation
is identified by the associated type [16].

Figure 2 shows an example UIMA based application containing one analysis engine which
recognises named-entities. The input document is made of a single question string. The input
CAS contains a question annotation which spans the entire question string. The Named Entity
Annotator takes this input and adds a Person annotation to it. The resulting CAS contains two
annotations, i.e. Question and Person annotations. UIMA allows the composition of multiple
annotators into aggregate annotators where each annotator adds further annotations to the input
CAS. The final CAS consists of the question string and a set of annotations that are associated
with spans in the question string.

2.2 System Overview

The main inputs of the system are the document collection and the questions. Corresponding to
each of these inputs, we have collection and question processing components. As shown in Figure 3,
the collection processing component carries out preprocessing and indexing of the document col-
lection. The preprocessing step involves splitting documents into sentences, and POS tagging and
chunking. Indexing takes care of merging a set of sentences into passages and indexing them using
the Lucene retrieval engine [10]. The question processing corresponds to question classification and
query generation. The question processing also involves POS tagging and chunking, and parsing
of the input questions. The question classifier and query generation component take the linguis-
tically annotated questions and generate question classes, and queries respectively. Finally, the

Sentence
Splitting and
Tokenization

POS tagging
and Chunking

Collection
Reader Index

CLEF
Corpus

Questions

Indexing

POS tagging
and Chunking

Question
Reader

RetrievalQuery
Generation

Question
Classification

Clef Passages

Named Entity
Recognition

Preprocessing

Dependency
Parsing

Answer
Selection

Answers

web

Web Snippets

Figure 3: System Architecture

answer selection component, which matches questions to the answers, consists of passage retrieval,
sentence analysis, and answer reranking components. In the current system, we used TreeTagger
for POS tagging and Chunking, and a treebank-based Lexical Functional Grammar(LFG) parser
for dependecy parsing [2, 14].

In the next section, we provide detailed descriptions of each of these components assuming
Factoid questions as input. Section 2.8 describes the components that deal with Definition ques-
tions.

2.3 Question Analysis

Question analysis consists of a question classification and a query generation component. We
employed both machine-learning and rule-based methods for defining question classes. For the
machine learning approach, we trained a classifier using the data set provided by Li and Roth [9].
We used the MinorThird implementation of Conditional Random Fields as our classifier [4]. The
classification taxonomy consists of two layers in which the top level consists of 6 major classes
(ABBREVIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and NUMERIC VALUE),
and the bottom level consist of 50 classes. The resulting labels are used to define expected answer
types for the questions.

The rule based approach uses syntactic clues to identify terms that can be used to refine the
expected answer types - focus terms. Typical patterns include noun phrase chunks following a wh
word in the question.

Query generation identifies terms that will be used for retrieving passages. This step uses
patterns defined on the output of the POS tagger and Chunker. The query terms consist of noun
phrase and verb phrase chuncks, where the focus terms and stop-words are removed.

According to the CLEF guidelines, the questions are organised around a set of topics where
each topic is associated with a group of questions. However, the topic is not explicitly given
and must be inferred from the first question or its answer. Therefore, we devised a rule based

method for detecting the topic of the first question. The rules make use of both surface patterns
and syntactic clues to identify the topic of the question. The topic of the first question is also
appended to the query set of each of the remaining questions.

2.4 Passage Retrieval

We have three kinds of document collections or sources: the CLEF Document Collection, a
Wikipedia Corpus, and the Web. We treat each of these sources differently.

CLEF Collection We split the CLEF documents into passages where each passage is composed
of 10 consecutive sentences in the document. The sentences in the passages are POS tagged and
chunked. The original sentences are indexed and the tagged sentences are stored in a separate
field in the index - CollIndex.

Wikipedia Collection Similarly, the articles of the Wikipedia corpus are also indexed sepa-
rately - WikiIndex. However, the Wikipedia articles are indexed as a whole and are not split into
passages.

The query terms generated by the Question Analysis Module is submitted to both CollIndex
and WikiIndex. The top 100 passages from CollIndex and the top 10 articles from WikiIndex are
retained. Both the passages from the CLEF corpus and Wikipedia articles are split into sentences.
Each sentence will be assigned the retrieval status value of the corresponding passage or article as
an initial score. The sentences are passed to the sentence analysis module.

Web The system also retrieves web snippets using the same queries. We used Yahoo! APIs
for retrieving web snippets. We split the snippets into sentences, and retained only those that
contained one or more of the query terms. The sentences are assigned ranks where the top ranking
web snippets gets a rank 1, and the second top ranking snippet gets 2 and so on. Finally, sentences
are assigned scores as the inverse of their corresponding ranks.

The lists we obtain from the three sources contain scores that are computed quite differently.
In order to minimise the effects of the variation in scoring methods, we normalise scores in each
list as follows:

scoreR = scorenorm =
scoreMAX − score

scoreMAX − scoreMIN
(1)

2.5 Sentence Analysis

We run a named entity recogniser on the sentences retrieved. We trained a CRF based named
entity recogniser on the CoNLL Corpus [15]. It recognises the following four major classes: PER-
SON, ORGANISATION, LOCATION, MISCELLANEOUS. Since there is a mismatch between
the classes generated by the question classifier and named entity recognizer, we devised a mapping
between the outputs of the two systems. Furthermore, we added additional classes that could
reliably be identified using simple pattern matching (such as dates) to the major classes. We
have identified the following classes: Date, Person, Location, Organization, Numeric, Count and
Description. These classes are further qualified by using the bottom levels of the question classi-
fication taxonomy, or terms extracted using the rule-based component. For example, Location is
further qualified by Country, City, or State. The minor classes are used to filter the result set as
described in Section 2.7.3. We have one open class which contains all named entities that do not
map to any of the above classes.

The sentences are also parsed using a dependency parser. The result is used to extract depen-
dency triples that are used to measure the similarity between Questions and Sentences containing
the candidate answer as will be explained in Section 2.7.1.

2.6 Candidate Answer Extraction

We consider two cases when searching for candidate answers to the questions. The first case
relates to when the question class can be mapped to one of the predefined classes. In this case,
the named entities whose types match one of the broad question classes taken are as candidate
answers. For the non-matching case, all noun phrases are extracted from the sentence and are
considered candidates. Further type filtering is done on the list as shown in Section 2.7.3. Initially,
the named entities receive the retrieval status value of the passage to which they belong. Since
several named entities receive the same ranking, we rerank the entities using other evidence of
relevance.

2.7 Answer Reranking

We reranked candidate answers based on different sources of evidence, such as syntactic similarity
of the sentence with the question, proximity of query terms to the candidate answers, similarity of
the semantic type of the candidate answer to the answer type, and centrality of the sentence with
respect to a corpus of web snippets retrieved using the query terms extracted from the question.
We provide details of each these filtering mechanisms.

2.7.1 Syntactic Similarity

Syntactic structures have been used extensively to find answers to questions. Syntactic structures
have been used for reformulation of questions into the corresponding declarative forms containing
a missing constituent. The missing constituent is assumed to contain the answer phrase. The
resulting pattern is used to search for the sentence containing the answer. The syntactic structures
can also be used to measure the similarity between the questions and the sentence containing the
candidate answer. Syntax based evidences have been used to rerank candidate answers in a number
of QA Systems [6, 8, 12].

In the current system, syntactic similarity is measured in terms of the number of shared
dependency relations between the sentence and the question. For this, we parsed both the questions
and the sentences using a Lexical Functional Grammar(LFG)-based parser [2] developed at Dublin
City University. The system takes the output of a syntactic parser (Charniak parser [3]) and
generates an F-Structure, a labeled bilexical dependency graph. The output can also be provided
in the form of a set dependency triples. Although the final goal of the project is to make inference
based on the F-Structures, the current implementation makes use of the dependency triples to
compute similarity between the sentences and the questions. We count how many dependency
pairs are shared between the questions and answers, normalise the resulting value and add it to
the overall score of the named entities extracted from the sentence.

2.7.2 Term Proximity

This method is based on the assumption that answers are likely to be found in a close proximity
to the query terms in a sentence. In other words, if more query terms appear in the vicinity of the
candidate answer, the candidate answer is likely to be the true answer and hence receives more
weight. We implemented this intuition as follows. For each candidate answer in a sentence, we
take a window of 10 terms centred in the candidate answer. We then count how many of the query
terms appear in the Window. The final score is obtained by dividing the resulting count by the
total number of query terms.

2.7.3 Type Filtering

As mentioned in Section 2.5, our type classification is limited and assigns a significant part of the
named entity classes to miscellaneous. On the other hand, the types derived from questions are
either specific instances of the major classes we identified or may not be covered by the major

classes. In order to fill the gap, we devised the following methods for computing semantic similarity
between the expected answer type and the candidate answer.

Wikipedia Category Wikipedia contains a large set of user defined categories which are as-
signed to its entries. The method is implemented as a binary feature function. First, we check
if the candidate answer has an entry in Wikipedia. If the candidate answer does not match an
entry in Wikipedia, we assign a score of 0. If there is a Wikipedia entry corresponding to the
answer string, we retrieve the categories associated with the Wikipedia article. We then check if
the answer type terms are contained in the category lists. If the answer type terms does not occur
in the category list, we assign the candidate term a zero score otherwise we assign a score of 1 to
the candidate answer.

WordNet Hierarchy We take both the expected answer type and the candidate answer, and
check if they have entries in WordNet. We then check if the expected answer type and the candidate
answer stand in the Hypernym relation with respect to the WordNet hierarchy. We assign a score
which is the inverse of the distance between the two concepts in the hierarchy. For example, if the
expected answer type is a direct hypernym of the candidate answer, the candidate answer recieves
a score of 1.0, else it will be less than 1.0.

WordNet vs Wikipedia Category This is an extension of Wikipedia Category method above.
We take the expected answer type, and generate its WordNet hyponyms sets (5 levels down the
hierarchy). We take the Wikipedia categories of the candidate answer. Finally, we compute the
fraction of shared entries between these two sets as a measure of semantic similarity.

2.7.4 Web based evidence

We used the Web in two ways: to find answers, and to rerank candidate answers from the CLEF
Collection and Wikipedia Collection.

Web Answers The Web snippets pass through the same processing pipelines as the snippets
(sentences) from the CLEF Collection and Wikipedia Collection. Since answers must come from
the later two collections, the Web answers must be mapped onto the collection (Answer Projec-
tion). For each candidate answer in the lists obtained from the CLEF Collection and Wikipedia
Collection, we check if there is a matching Web answer in the ranked list of Web answers. If there
is, we add the score of the Web answer to the current score of the candidate answer. This assigns
more weight to those candidates that are found in the Web answer list.

Web based reranking This type of evidence for sentence importance is based on the assump-
tion that there is a high degree of redundancy among the top web snippets returned for a given
query. In order to take advantage of this fact, we create a reference corpus consisting of the top
50 ranking Web snippets. This corpus will be used to estimate relevance of the sentences to the
questions. This is estimated as a similarity between the target sentence with the web corpus.
The target sentence is the sentence that contains the candidate answer. We create a graph with
target and reference sentences as nodes and weighted edges indicating similarity between pairs
of sentences. In this model, sentences receive evidence of their importance from other sentences
and, in turn, they “pass on” their importance, in a recursive manner. Our graph-based ranking
method extends a method proposed in [5, 11]: we bring in “weighted support” from the reference
corpus. Details of our graph-based ranking approach can be found in [1].

2.7.5 Combining Scores

The overall scores for reranking candidate sentences is computed as a linear combination of the
Retrieval scores, Syntactic similarity, Term Proximity,Type Filtering and Web-based evidence.

Each of these scores have been normalized between 0 and 1 using the formula given 1. The
baseline system simply sums these scores without taking into account the relative importance
of the different evidences. In the future, we are planning to use machine learning approach for
computing the final score using these evidences as features, and a set of questions and answers as
training material.

2.8 Definition Questions

The definition questions expect short snippets or sentences that provide a concise definition or
description of the topic as an answer, unlike factoids for which the expected answers are largely
named entities. As a result, we adopted a different strategy for definition questions. The system
takes the topic generated by the question analysis module, and submits it as a query to the retrieval
module. The returned passages and Wikipedia articles are split into sentences. Sentences that do
not contain the topic are removed from the list. We assign more weight to sentences with copula
verb construction with the topic as a subject, e.g. TOPIC is

Finally, the sentences are reranked using evidences obtained from the web as described in
Section 2.7.4.

3 Experimental Evaluation

We submitted two runs for our CLEF participation. The first run is the output of the complete
system - Complete. The second run is the output of the system without the web-based reranking
component - Partial.

Factoid Definition Overall
Complete Partial Complete Partial Complete Partial

Right 8 1 8 0 16 1
Wrong 142 157 16 9 168 195
ineXact 1 1 6 1 7 3
Unsupported 9 1 0 0 9 1

Table 1: Results.

Overall the system returned only 16 exact answers, and 25 correct answers counting unsupported
answers. The web reranking component contributed significantly. The result without the web
reranking component is disappointing. This is attributed to a number of problems. The main
problem was lack of proper testing due to time constraints. This was compounded by an error
introduced by a last minute change. Another major problem is, of course, the scope of our system.
As mentioned in Section 1, the system relies primarily on online methods which focused on a
restricted class of named entities. Since it is an evolving system, we believe that its coverage will
improve by adding more semantic categories.

Effects of Translation Although most of the German questions have been accurately translated
into English, there are still some translation errors which affected our results. The errors may
range from incorrect word order, missing constituent to non-translated terms, and have affected
both the question classification and query generation components. For example, the following
translation error resulted in an incorrect question classification - Description or Definition.

• DE: Wie großist Jerod Ward?

• EN: Is Jerod Ward how large?

For the following case, which contains incorrect word order, the query generation component
identifies Mathieu Orfila as the Focus of the sentence, as in Country in the question form Which

country This error in turn propagated to subsequent analysis steps resulting in few candidate
answers.

• DE: Wann schrieb Mathieu Orfila sein ”Trait des poisons”?

• EN: When Mathieu Orfila wrote its ”Trait poisons”?

The last example contains a term that is not translated, i.e. Geomorphologie. Since it is the
only term in the query generated by the question analsys component, it returned very few snippets.

• DE: Was ist die Geomorphologie?

• EN: What is the Geomorphologie?

4 Conclusion

We presented our QA system adapted for the German-English bilingual CLEFQA task. The
system is developed using UIMA (Unstructured Information Management Architecture) as our
underlying framework. The exercise showed that UIMA facilitates building QA system in a short
period of time. Since this is our first participation, we hope that the results of the system will im-
prove in the future, given adequate time for testing and adapting to the new inputs, i.e. translated
inputs.

The system is largely based on Information Extraction methods, with various filtering and
reranking steps to pin point the correct answers. It is limited in a number of aspects since it is
in its early stages of development. Our future plan is to extend the types of question that can be
handled, and improve the methods for those already implemented. Furthermore, we also need to
improve on reranking algorithms. We would like to bring in more of the deep NLP methods into
the reranking algorithm. Specifically, we would like to extend our dependency triple based scoring
method to include the full LFG-based parse output. Finally, computation of the overall score is
based on simple linear combination of the individual scores ignoring their relative weights. In
the future, we will use a ML based approach for computing the overall score using the individual
evidences as features.

5 Acknowledgments

The research reported in this paper was supported by the Science Foundation Ireland under grant
number 04/IN/I527.

References

[1] Sisay Fissaha Adafre and Maarten de Rijke. Estimating importance features for fact mining
(with a case study in biography mining). In RIAO, 2007.

[2] Aoife Cahill, Michael Burke, Martin Forst, Ruth Odonovan, Christian Rohrer, Josef Genabith,
and Andy Way. Treebank-based acquisition of multilingual unification grammar resources.
Research on Language and Computation, 3(2):247–279, July 2005.

[3] Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the first conference
on North American chapter of the Association for Computational Linguistics, pages 132–139,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[4] W. Cohen. Methods for identifying names and ontological relations in text using heuristics
for inducing regularities from data. http://minorthird.sourceforge.net.

http://minorthird.sourceforge.net

[5] Günes Erkan and Dragomir R. Radev. Lexrank: Graph-based lexical centrality as salience in
text summarization. J. Artif. Intell. Res. (JAIR), 22:457–479, 2004.

[6] Boris Katz and Jimmy Lin. Selectively using relations to improve precision in question
answering. In Proceedings of the EACL-2003 Workshop on Natural Language Processing for
Question Answering, April 2003, 2003.

[7] J. Kupiec. Murax: A robust linguistic approach for question-answering using an on-line
encyclopedia. In Proceedings of 16th Annual International ACM/SIGIR Conference., 1993.

[8] A. K. Lamjiri, L. Kosseim, and T. Radakrishnan. Comparing the Contribution of Syntactic
and Semantic Features in Closed versus Open Domain Question Answering. In Proceedings
of the IEEE International Conference on Semantic Computing (ICSC2007), pages 679–685,
Irvine, California, USA, 2007.

[9] X. Li and D. Roth. Learning question classifiers, 2002.

[10] Lucene. The Lucene search engine. http://lucene.apache.org/.

[11] Rada Mihalcea. Graph-based ranking algorithms for sentence extraction, applied to text
summarization. In Proceedings ACL, 2004.

[12] D. Molla and M. Gardiner. Answerfinder - question answering by combining lexical. In In
Australasian Language Technology Workshop (ALTW) 2004, Sydney., 2004.

[13] Christof. Monz. From Document Retrieval to Question Answering. PhD thesis, University of
Amsterdam, 2003.

[14] Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In International
Conference on New Methods in Language Processing, Manchester, UK, 1994.

[15] Erik. F. Tjong Kim Sang. Introduction to the conll-2002 shared task: Language-independent
named entity recognition. In COLING-02: Proceedings of the 6th conference on Natural
language learning., 2002.

[16] UIMA. Unstructured information management architecture. http://domino.research.ibm.
com/comm/research_projects.nsf/pages/uima.index.html.

http://lucene.apache.org/
http://domino.research.ibm.com/comm/research_projects.nsf/pages/uima.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/uima.index.html

	Introduction
	System Description
	The UIMA Framework
	System Overview
	Question Analysis
	Passage Retrieval
	Sentence Analysis
	Candidate Answer Extraction
	Answer Reranking
	Syntactic Similarity
	Term Proximity
	Type Filtering
	Web based evidence
	Combining Scores

	Definition Questions

	Experimental Evaluation
	Conclusion
	Acknowledgments

