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Abstract 

This paper presents English—Hindi translit-
eration in the NEWS 2009 Machine Translit-
eration Shared Task adding source context 
modeling into state-of-the-art log-linear 
phrase-based statistical machine translation 
(PB-SMT). Source context features enable us 
to exploit source similarity in addition to tar-
get similarity, as modelled by the language 
model. We use a memory-based classification 
framework that enables efficient estimation of 
these features while avoiding data sparseness 
problems.We carried out experiments both at 
character and transliteration unit (TU) level. 
Position-dependent source context features 
produce significant improvements in terms of 
all evaluation metrics. 

1 Introduction 

Machine Transliteration is of key importance in 
many cross-lingual natural language processing 
applications, such as information retrieval, ques-
tion answering and machine translation (MT). 
There are numerous ways of performing auto-
matic transliteration, such as noisy channel mod-
els (Knight and Graehl, 1998), joint source chan-
nel models (Li et al., 2004), decision-tree models 
(Kang and Choi, 2000) and statistical MT models 
(Matthews, 2007). 

For the shared task, we built our machine 
transliteration system based on phrase-based sta-
tistical MT (PB-SMT) (Koehn et al., 2003) using 
Moses (Koehn et al., 2007).  We adapt PB-SMT 
models for transliteration by translating charac-
ters rather than words as in character-level trans-
lation systems (Lepage & Denoual, 2006). How-
ever, we go a step further from the basic PB-
SMT model by using source-language context 
features (Stroppa et al., 2007). We also create 
translation models by constraining the character-
level segmentations, i.e. treating a consonant-
vowel cluster as one transliteration unit.  

The remainder of the paper is organized as fol-
lows. In section 2 we give a brief overview of 
PB-SMT. Section 3 describes how context-
informed features are incorporated into state-of-
art log-linear PB-SMT. Section 4 includes the 
results obtained, together with some analysis. 
Section 5 concludes the paper. 

2 Log-Linear PB-SMT  

Translation is modelled in PB-SMT as a decision 
process, in which the translation Ie1 = e1 . . .  eI of 
a source sentence Jf1 = f1 . . . fJ is chosen to 
maximize (1): 
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IeP  denote respec-
tively the translation model and the target lan-
guage model (Brown et al., 1993). In log-linear 
phrase-based SMT, the posterior probability 
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JI feP  is directly modelled as a (log-linear) 

combination of features (Och and Ney, 2002), 
that usually comprise M translational features, 
and the language model, as in (2): 
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where k
K sss ...11   denotes a segmentation of the 

source and target sentences respectively into the 
sequences of phrases )ˆ,...,ˆ( 1 kee  and )ˆ,...,ˆ( 1 kff  
such that (we set i0 = 0) (3): 

,1 Kk   sk = (ik ; bk, jk), 
          

kk iik eee ...ˆ 11 
 , 

                      
kk jbk fff ...ˆ                               (3) 

The translational features involved depend 
only on a pair of source/target phrases and do not 
take into account any context of these phrases. 
This means that each feature mh   in (2) can be 
rewritten as in (4): 
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where mĥ is a feature that applies to a single 
phrase-pair. Thus (2) can be rewritten as: 
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  . In this context, the transla-

tion process amounts to: (i) choosing a segmen-
tation of the source sentence, (ii) translating each 
source phrase. 

3 Source Context Features in Log-
Linear PB-SMT 

The context of a source phrase kf̂  is defined as 

the sequence before and after a focus phrase kf̂  

=
kk ji ff ... . Source context features (Stroppa et 

al., 2007) include the direct left and right context 
words (in our case, character/TU instead of word) 
of length l (resp. lii kk

ff  ...1  and ljj kk
ff  ...1 ) of 

a given focus phrase kf̂ =
kk ji ff ... . A window of 

size 2l+1 features including the focus phrase is 
formed. Thus lexical contextual information (CI) 
can be described as in (6): 

CI = }...,...{ 11 ljjili kkkk
ffff                     (6) 

As in (Haque et al., 2009), we considered a 
context window of ±1 and ±2 (i.e. l=1, 2) for our 
experiments. 

One natural way of expressing a context-
informed feature is as the conditional probability 
of the target phrase given the source phrase and 
its context information, as in (7): 

mĥ ( kf̂ ,CI( kf̂ ), kê , sk) = log P( kê | kf̂ , CI( kf̂ ))  (7) 

3.1 Memory-Based Classification 
As (Stroppa et al., 2007) point out, directly esti-
mating P( kê | kf̂ , CI( kf̂ )) using relative fre-
quencies is problematic. Indeed, Zens and Ney 
(2004) showed that the estimation of P( kê | kf̂ ) 
using relative frequencies results in the overesti-
mation of the probabilities of long phrases, so 
smoothing factors in the form of lexical-based 
features are often used to counteract this bias 
(Foster et al., 2006). In the case of context-
informed features, since the context is also taken 

into account, this estimation problem can only 
become worse. To avoid such problems, in this 
work we use three memory-based classifiers: 
IGTree, IB1 and TRIBL 1  (Daelemans et al., 
2005). When predicting a target phrase given a 
source phrase and its context, the source phrase 
is intuitively the feature with the highest predic-
tion power; in all our experiments, it is the fea-
ture with the highest gain ratio (GR).  

In order to build the set of examples required 
to train the classifier, we modify the standard 
phrase-extraction method of (Koehn et al., 2003) 
to extract the context of the source phrases at the 
same time as the phrases themselves. Importantly, 
therefore, the context extraction comes at no ex-
tra cost.  

We refer interested readers to (Stroppa et al., 
2007) and (Haque et al., 2009) as well as the ref-
erences therein for more details of how Memory-
Based Learning (MBL) is used for classification 
of source examples for use in the log-linear MT 
framework. 

3.2 Implementation Issues 
We split named entities (NE) into characters. We 
break NEs into transliteration units (TU), which 
bear close resemblance to syllables. We split 
English NEs into TUs having C*V* pattern and 
Hindi NEs are divided into TUs having Ch+M 
pattern (M: Hindi Matra / vowel modifier, Ch: 
Characters other than Matras). We carry out ex-
periments on both character-level (C-L) and TU-
level (TU-L) data. We use a 5-gram language 
model for all our experiments. The Moses PB-
SMT system serves as our baseline system. 

The distribution of target phrases given a 
source phrase and its contextual information is 
normalised to estimate P( kê | kf̂ ,CI( kf̂ )). There-
fore our expected feature is derived as in (8): 

mblĥ = log P( kê | kf̂ ,CI( kf̂ ))                         (8) 

As for the standard phrase-based approach, 
their weights are optimized using Minimum Er-
ror Rate Training (MERT) of (Och, 2003) for 
each of the experiments. 

As (Stroppa et al., 2007) point out, PB-SMT 
decoders such as Pharaoh (Koehn, 2004) or 
Moses (Koehn, 2007) rely on a static phrase-
table represented as a list of aligned phrases ac-
companied with several features. Since these fea-

                                                
1 An implementation of IGTree, IB1 and TRIBL is available 
in the TiMBL software package (http://ilk.uvt.nl/timbl). 
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tures do not express the context in which those 
phrases occur, no context information is kept in 
the phrase-table, and there is no way to recover 
this information from the phrase-table. 

In order to take into account the context-
informed features for use with such decoders, the 
devset and testset that need to be translated are 
pre-processed. Each token appearing in the test-
set and devset is assigned a unique id. First we 
prepare the phrase table using the training data. 
Then we generate all possible phrases from the 
devset and testset. These devset and testset 
phrases are then searched for in the phrase table, 
and if found, then the phrase along with its con-
textual information is given to MBL for classifi-
cation. MBL produces class distributions accord-
ing to the maximum-match of the features con-
tained in the source phrase. We derive new 
scores from this class distribution and merge 
them with the initial information contained in the 
phrase table to take into account our feature 
functions ( mblĥ ) in the log-linear model (2). 

In this way we create a dynamic phrase table 
containing both the standard and the context-
informed features. The new phrase table contains 
the source phrase (represented by the sequence 
of ids of the words composing the phrase), target 
phrase and the new score. 

Similarly, replacing all the words by their ids 
in the development set, we perform MERT using 
our new phrase table to optimize the feature 
weights. We translate the test set (words repre-
sented by ids) using our new phrase table. 

4 Results and Analysis 

We used 10,000 NEs from the NEWS 2009 Eng-
lish—Hindi training data (Kumaran and Kellner, 
2007) for the standard submission, and the addi-
tional English—Hindi parallel person names data 
(105,905 distinct name pairs) of the Election 
Commission of India2 for the non-standard sub-
missions. In addition to the baseline Moses sys-
tem, we carried out three different set of experi-
ments on IGTree, IB1 and TRIBL. Each of these 
experiments was carried out on both the standard 
data and the combined larger data, both at char-
acter level and the TU level, and considering 
±1/±2 tokens as context. For each experiment, 
we produce the 10-best distinct hypotheses. The 
results are shown in Table 1. 

We observed that many of the (unseen) TUs in 
the testset remain untranslated in TU-L systems 
                                                
2 http://www.eci.gov.in/DevForum/Fullname.asp 

due to the problems of data sparseness. When-
ever a TU-L system fails to translate a TU, we 
fallback on the corresponding C-L system to 
translate the TU as a post-processing step. 

The accuracy of the TU-L baseline system 
(0.391) is much higher compared to the C-L 
baseline system (0.290) on standard dataset. Fur-
thermore, contextual modelling of the source 
language gives an accuracy of 0.416 and 0.399 
for TU-L system and C-L system respectively. 
Similar trends are observed in case of larger 
dataset. However, the highest accuracy (0.445) 
has been achieved with the TU-L system using 
the larger dataset. 

5 Conclusion 

In this work, we employed source context model-
ing into the state-of-the-art log-linear PB-SMT 
for the English—Hindi transliteration task. We 
have shown that taking source context into ac-
count substantially improve the system perform-
ance (an improvement of 43.44% and 26.42% 
respectively for standard and larger datasets). 
IGTree performs best for TU-L systems while 
TRIBL seems to perform better for C-L systems 
on both standard and non-standard datasets. 
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 S/B C/TU Context ACC M-F-Sc MRR MAP_ref MAP_10 MAP_sys 
C 0 .290 .814 .393 .286 .131 .131  

S TU 0 .391 .850 .483 .384 .160 .160 
C 0 .352 .830 .463 .346 .156 .156 

 
Baseline 
Moses  

B TU 0 .407 .853 .500 .402 .165 .165 
±1 .391 .858 .501 .384 .166 .166  

C ±2 .386 .860 .479 .379 .155 .155 
±1 .406 .858 .466 .398 .178 .178 

 
S 

 
TU ±2 .359 .838 .402 .349 .165 .165 

±1 .431 .865 .534 .423 .177 .177  
C ±2 (NSD1) .420 .867 .519 .413 .170 .170 

±1 .437 .863 .507 .429 .191 .191 

 
 
 
 

IB1  
B 

 
TU ±2 .427 .862 .487 .418 .194 .194 

±1 .372 .849 .482 .366 .160 .160  
C ±2 .371 .847 .476 .364 .156 .156 

±1 .412 .859 .486 .404 .164 .164 

 
S 

 
TU ±2 .416 .860 .493 .409 .166 .166 

±1 .413 .855 .518 .406 .173 .173  
C ±2 (NSD2) .407 .856 .507 .399 .168 .168 

±1 .445 .864 .527 .440 .176 .176 

 
 
 
 

IGTree  
B 

 
TU ±2 .427 .861 .516 .422 .173 .173 

±1 .382 .854 .493 .375 .164 .164  
C ±2 (SD) .399 .863 .488 .392 .157 .157 

±1 .408 .858 .474 .400 .181 .181 

 
S 

 
TU ±2 .395 .857 .453 .385 .182 .182 

±1 .439 .866 .543 .430 .179 .179  
C ±2 (NSD3) .421 .864 .519 .415 .171 .171 

±1 .444 .863 .512 .436 .193 .193 

 
 
 
 

TRIBL  
B 

 
TU ±2 .439 .865 .497 .430 .197 .197 

 S* C ±2 (NSD4) .419 .868 .464 .419 .338 .338 
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