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1 Introduction and Motivation

One problem facing the extraction of treebank grammars is that of ad hoc
rules, rules used for constructions specific to one data set and unlikely to be
used on new data (Dickinson, 2008). These rules can be erroneous, cover
ungrammatical text, or reveal issues with the treebank’s annotation scheme.
These are significant problems since training on erroneous data can be detri-
mental to parsing performance (e.g., Dickinson and Meurers, 2005; Hogan,
2007), and the use of precision grammars in grammar checking and genera-
tion requires distinctions between grammatical and ungrammatical sentences
(e.g., Bender et al., 2004). Ad hoc rules are especially problematic when they
point to inconsistent aspects of the annotation scheme, as the scheme forms
the basis of any analysis using it.

Together with these problematic cases, there is also the practical issue
of determining which treebank rules are useful for parsing new data: ad hoc
rules can also simply be rules that do not generalize. Although frequency is
often used to determine generalizability, this is not unproblematic, as low-
frequency rules can be valid and potentially useful rules (e.g., Daelemans
et al., 1999); high-frequency rules can be erroneous (e.g., Dickinson and
Meurers, 2005); and frequency is not completely related to usefulness for
parsing (e.g., Foth and Menzel, 2006). Furthermore, infrequent rules in one
genre may be quite frequent in another (Sekine, 1997). Thus, methods are
needed to determine which rules are generalizable to new data or not.

The previous detection of ad hoc rules, while effective, could be improved
in several ways. First, it currently relies on treebank-specific knowledge,
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such as knowing which part-of-speech categories were equivalent (Dickinson,
2008). If we can justify removing the dependence on corpus-specific proper-
ties, the methods can be made more corpus-independent.

Additionally, it is not clear whether the key properties identifying ad
hoc rules are based on frequency, some other criterion—namely similarity to
other rules—or both. Understanding the contribution of similarity is crucial
if we are to move beyond using ad hoc rule detection simply for treebanking
and into realms which already use frequency information, such as parsing.

Finally, the methods have only been developed to analyze rules which
occurred in some observed data. Although this is useful for examining rule
generalizability, it does not tell us anything about the quality of the rules
that never occurred in that data. Identifying the quality of unseen rules can
begin to point to how one might generalize a grammar to cover new types of
data, for cross-genre parsing (cf. Gildea, 2001; McClosky et al., 2006).

We thus examine the role of similarity in ad hoc rule detection and show
how previous methods can be made more corpus independent and more
generally applicable. After reviewing the previous methods in section 2,
we turn to the rationale for similarity-based rule comparison without any
treebank-specific knowledge in section 3.1. As we will see, the idea that
similarity to other rules indicates the reliability of a rule does not require
any corpus-specific information. Building on this, we discuss the component
parts of rule comparison, namely frequency and similarity, in section 3.2 and
outline how to adapt the methods for unseen rules in section 3.3. We evaluate
the methods in section 4, showing that the revised metrics for calculating ad
hoc scores are as good as, if not better than, the previous ones, while being
more general, providing a foundation for grammar generalization.

2 Background

Dickinson (2008) detects ad hoc rules by first grouping rules into equivalence
classes and then looking for similar rules across the grammar. Rules with
the same mother are grouped into equivalence classes by the following steps:

1. Remove daughter categories that are always non-predictive to phrase
categorization, i.e., always adjuncts, such as punctuation.

2. Group head-equivalent lexical categories, e.g., NN (common noun) and
NNS (plural noun).

Then, two methods are used to detect ad hoc rules. The first method
(whole daughters scoring) directly accounts for similar rules across equiva-



lence classes. Each rule type is assigned a reliability score by adding 1 for
every rule token within the equivalence class and adding 1

2
for every rule

token in a highly similar equivalence class. Rules with the lowest scores are
flagged as potentially ad hoc.

To determine similarity, a modified Levenshtein distance is used, where
only insertions and deletions are allowed; a distance of one qualifies as highly
similar. Substitutions are not used, as they are too problematic to include,
Consider the erroneous rule VP → RB, which occurs once in the Wall Street
Journal (WSJ) portion of the Penn Treebank (Marcus et al., 1993). With
substitutions, there would be 760 “comparable” instances of VP → VB, de-
spite the vast difference in category (verb [VB] vs. adverb [RB]).

The other method of detecting ad hoc rules (bigram scoring) calculates
reliability scores by abstracting a rule to its bigrams and examining which
bigrams the classes do not have in common. Using equivalence classes in the
calculations, both methods effectively identify ad hoc rules. Since the whole
daughters method is more effective across a range of tests, we focus on that
method in this paper, although our work is applicable to both.

3 Corpus-independent similarity

3.1 Corpus-independence

The notion of similarity above, namely the comparison to whole lists of
daughters, is a useful way to compare rules, but this is done only after rules
have been reduced into equivalence classes. While the use of equivalence
classes is well-motivated—e.g., it generally makes no difference whether a
rule has punctuation or not—this is not always ideal.

First, the groupings into head-equivalent categories are not always sound.
For example, JJ (adjective) and JJR (comparative adjectives) generally pre-
dict the same mother (ADJP) and generally modify nouns. However, there
are syntactic differences. As an example, consider (1): comparative adjec-
tives are used in correlative the-clauses (Bies et al., 1995, p. 303ff), whereas
positive adjectives are generally not. This is a syntactic context where the
two categories are not replacable; treating them separately captures this.

(1) The sooner our vans hit the road ... [X the/DT easier/JJR] it is for ...

Secondly, by comparing rules to similar rules, we are already naturally
capturing equivalences among rules. The categories JJ and JJR often are
replacable, which we can tell by the observable fact that they behave similarly



with respect to other comparable rules. For instance, NP → DT JJ NN (9866
tokens) and NP → DT JJR NN (234 tokens) are comparable rules because
they both are one step away from NP → DT NN (29,217 tokens). Grouping
rules around the more basic rule NP → DT NN already indicates similar
properties, without requiring pre-specification.

If we can remove the corpus-dependent rules for forming equivalence
classes and achieve comparable results, we prefer to do so, in order to be
able to work on a variety of corpora without learning the annotation scheme.
In this paper, we thus remove the criteria for forming equivalence classes,
and calculate reliability scores, using rules as they are. These equivalences,
though, still provide a useful goal: Levenshtein distance is effective as a
means for determining similarity because it captures properties such as the
removability of adjuncts and the natural equivalence of categories.

By more automatically creating equivalences between rules, we are more
sensitive to the surrounding categories. For example, a category may always
be an adjunct, but it can still be important to know that the adjunct exists
within a certain rule. Consider (2a), with the rule ADVP → RB RB -LRB-
PP -RRB- PP. Although both -LCB- and -RCB- (codes for left and right
curly brackets) are adjuncts, and labeled as such (-LRB-, -RRB-), observing
them within another structure is odd, given that the preferred analysis is to
embed such bracketed material, as in (2b). We see here that even adjuncts,
such as brackets, provide useful information about a rule being ad hoc.

(2) a. . . . they try * to build it [ADV P somewhere/RB else/RB -LCB-/-
LRB- [PP in Europe] -RCB-/-RRB- [PP besides the U.K.]] ,

b. [ADV P somewhere/RB else/RB [PRN -LRB- in Europe -RRB-] [PP

besides the U.K.]]

3.2 Contributions of information

The methods are based on two major components, frequency of a rule and
its similarity to other rules. Removing the equivalence class restriction, as
outlined above, we still have the following as our method for computing the
whole daughters score, which we use for reliability scores in this paper:

1. For every identical rule token, add 1.

2. For every highly similar rule token, add 1

2
.

It is clear from this formulation that we can split the calculation into
a frequency score (#1) and a similarity score (#2). Given that frequency



is already something which has been used effectively in parsing models, we
need to more fully investigate the role that similarity plays in the detection of
ad hoc rules, as it has the potential to provide more fine-grained information
not available from frequency. When we calculate similarity scores on their
own, we simply count one for each similar rule (instead of using 1

2
), as this

has a more natural interpretation as the number of similar rules.

3.3 Unseen rules

The method currently only calculates scores for rules which occurred in one
data set, namely the training data. But any rule in a set of heldout data
can be compared to see how similar it is to the rules in the grammar from
the training data. The scoring outlined above can be used, with the only
difference that the identical and similar rules are in a different data set. For
example, in (3), we have two rules which did not appear in our training
data (see section 4); in the case of NP → DT RB PRN S (3a), we have a
similarity score of 0, as no rules in the training data are similar, and the rule
is incorrect. In the case of the unseen and correct NP → JJ “ JJ NN (3b),
we have a similarity score of 866, i.e., 866 similar rules.

(3) a. A put option gives its holder [NP the/DT right/RB [PRN but not
the obligation] [S * to sell a stock ...]]

b. see [NP various/JJ “/“ unmet/JJ needs/NN] , ”/” ...

When examining a data set, then, there are two ways one can detect ad
hoc rules. On the one hand, one can calculate similarity scores compared to
other rules in the same data set. This indicates which rules are inconsistent
with other rules in the same grammar and is thus useful for treebanking. On
the other hand, one can calculate similarity scores compared to a different
data set, indicating which rules are more likely to have emerged from a
different grammar. These rules not only might be ad hoc, but they might
be indicative of a unique type of construction, whether because the genre is
different or because someone else annotated the data.

4 Evaluation

4.1 Unreliability scores

To evaluate, we follow Dickinson (2008) and see how well the scores com-
bining frequency and similarity—the reliability scores—predict a rule’s “un-
generalizability.” We train on sections 2-21 of the WSJ, and evaluate on



section 24. Table 1 shows the ungeneralizability rate for the whole daugh-
ters method, for different thresholds.

Threshold Rules Unused Ungeneralizability

1.0 1625 1617 99.51%
2.0 2801 2785 99.43%

3.0 3515 3479 98.97%

4.0 4011 3965 98.85%
5.0 4412 4357 98.75%

Table 1: New whole dtr. ungeneralizability (WSJ-24)

The results are quite good and dramatically surpass the values presented
in Dickinson (2008). For example, a threshold of 50 in the previous whole
daughters method with equivalence classes identifies 3548 rules with 96.93%
ungeneralizability. For that same approximate number of rules (thresh-
old=3.0), the method without equivalences has 98.97% precision.

Testing across genre Table 2 shows the results of evaluating the whole
daughters method on a new set of 1,000 gold standard parse trees (Foster and
van Genabith, 2008). The sentences were taken from the British National
Corpus (Burnard, 2000), and each was selected on the basis that it contains a
verb which does not appear in the WSJ training data. Because there are only
1,000 hand-corrected parse trees, we perform a five-fold cross-validation with
training/test splits of 800/200. Again, abandoning the use of equivalence
classes appears to be effective. At a threshold of 50.0, the whole daughters
method making use of equivalence classes has a precision of 88.51% for 790
rules, whereas, for a similar number of rules (threshold of 5.0), the new
method has a precision of 92.52%. At a threshold of 35.0, the old method
has a precision of 88.59% for 708 rules, whereas for a threshold of 3.0, the
new method has a significantly higher precision of 94.14%.

Threshold Rules Unused Ungeneralizability

1.0 388 376 96.91%

2.0 585 559 95.56%

3.0 683 643 94.14%
4.0 758 707 93.27%

5.0 802 742 92.52%

Table 2: New whole dtr. ungeneralizability (BNC1000, five-fold)



To better see what happens with different genres, we also examined what
happens when we train on the original training data (WSJ2-21)1 and evalu-
ate on the BNC1000. For approximately 1,600 rules (new whole daughters
threshold of 1.0, old of 8.0), the new method without equivalence classes
does a better job (99.25% vs. 98.92%), and for approximately 4,300 rules
(new threshold of 5.0, old of 81.0), the new method achieves a precision of
98.66% versus 96.84% for the old method. These results all indicate that
the whole daughters method without equivalence classes is superior to the
method with them, in terms of predicting which rules are useful for new text.
The results are even comparable across genres.

4.2 Similarity vs. Frequency

Based on the previous results, the methods identify ungeneralizable rules
quite accurately. The remaining question is: to what extent is this an effect
of frequency and to what extent is this an effect of similarity?

Threshold Rules Unused Ungeneralizability

1 8776 8627 98.30%

2 10,741 10,475 97.52%
3 11,601 11,253 97.00%

4 12,131 11,723 96.64%

Table 3: Frequency ungeneralizability (WSJ-24)

Frequency ungeneralizability As we can see in table 3, frequency on its
own is a solid indicator of a rule’s ungeneralizability, accurately identifying
thousands of rules which do not appear in the development data. However,
in identifying so many rules, it is rather coarse, not allowing us to sort
infrequent but useful rules from infrequent but problematic rules.

Similarity ungeneralizability For the similarity scores (i.e., number of
similar rules without including the frequency of the rule in question), we can
see in table 4 that whole daughters scoring is also effective at identifying
ungeneralizable rules. More than that, this scoring is providing information
more fine-grained than that available from frequency. Most of the 32 rules
with 0 scores which appear in the new data are fairly frequent (9 occur more

1Since the BNC1000 does not contain traces, these first had to be removed.



Threshold Rules Unused Ungeneralizability

0 1851 1819 98.27%

1 2622 2571 98.05%
2 3147 3080 97.87%

4 3865 3769 97.52%

Table 4: Whole dtrs. similarity (WSJ-24)

than 100 times in the training data and are thus clearly reliable), which is
why the reliability scores, combining frequency and similarity, work best.

Consider also that 1625 of the 1851 identified rules are single-occurrence
rules. Of these, 1617 (99.51%) do not generalize to the development data.
In fact, for all rules with frequencies of 1, if the similarity score is 2 or
less, the ungeneralizability rate is 99.48% (2661/2675), and for similarity
scores of 10 or less, it is 99.17% (4085/4119), higher than the 98.30% for all
single-occurrence rules (table 3). It thus seems that, for low-frequency rules,
similarity scores can sort rules within their frequency class.

4.2.1 Unseen rules

Taking into account rules in the evaluation data which did not occur at all
in the training data, we can more fully evaluate how well similarity scores
extend to new data. Table 5 shows how the scores change, once unseen rules
are also included in the evaluation, dropping dramatically (cf. table 4).

Threshold Rules Unused Ungeneralizability

0 1952 1819 93.19%

1 2747 2571 93.59%
2 3290 3080 93.62%

4 4033 3769 93.45%

Table 5: Whole dtrs. similarity, with unseen rules (WSJ-24)

The biggest factor is that 133 rules that occur in the heldout data have a
score of 0, and 101 of these never appeared in the training data. Interestingly,
however, this is out of 396 rules in WSJ-24 which have a frequency of 0 in the
training data. In other words, although 0% of the unseen rules are predicted
by frequency alone, 295, or 74.5%, of the new rules have a similarity score
greater than zero. This indicates that similarity scores have potential in
providing information for grammar generalization to new data. In this case,



for example, a similarity score above 0 misses 133 rules that we need, but
it picks up an additional 295. Future work can work on generalizing the
grammar in such a way as not to overgeneralize.

Likewise, there are 634 rules in the BNC1000 which do not appear in the
WSJ2-21 training data. A similarity score of 0 identifies 259 rules, of which
225 were not in the WSJ data. This means that 409, or 64.5%, of the unseen
rules have a score greater than 0. Again, we miss 259 rules, but gain 409 by
looking at similarity scores above a threshold of 0.

4.3 Analyzing rare rules

To determine the effectiveness of the similarity scores on isolating structures
which are not linguistically sound, as opposed to simply identifying ungener-
alizable rules, we sample 100 WSJ rules occurring only once in the training
data. Without examining the rule scores, we mark each as an error, un-
grammatical, unclear, or correct. Of these 100, 21 are errors, and 5 covered
ungrammatical constructions. For the bottom quarter of cases identified by
the original methods, the whole daughters (similarity scores ≤ 24) method
finds 7 errors, or 33% of them, additionally finding 2 ungrammatical cases.
For the new method which does not use equivalence classes, we find essen-
tially the same results: the bottom 22 cases (scores = 0) contain 8 errors, as
well as 3 ungrammatical structures.

100 BNC rules which occur once in the WSJ training material were also
sampled: 30 of these contain an annotation error, 46 are annotated correctly
and the remaining 24 are unclear cases, often idiomatic phrases, inadequately
covered by the Penn Treebank guidelines. As with the WSJ data, the simi-
larity scores are reasonably well aligned with the erroneous cases: the bottom
third of cases with the original method (similarity scores < 3) contain 13 of
the 30 erroneously annotated rules. The bottom third of cases (similarity
score=0) with the new method contain 14 of these 30 rules.

We can thus see that similarity-based scores are, in practice, effective at
sorting problematic low-frequency rules from less problematic ones. Taken
together with the results from the previous section that similarity sorts low-
frequency rules in terms of ungeneralizability, we can see that similarity is a
useful feature for determining a treebank grammar.

Where similarity does not work But what about the errors that have
high similarity scores? It turns out that these types of rules are those which
happened to be errors, but which actually license legitimate structures. For
example, the structure in (4) seems to be erroneous because just modifies the



NP. However, S → ADVP NP PP (score of 154) is a potentially legitimate
structure: S → NP PP is licensed in the case of sentence gapping and small
clauses (Bies et al, p. 127, 252ff), and a sentential adverb (ADVP) would
attach as a sister of the NP and PP (Bies et al, p. 13).

(4) And the company is certain * to get out some aircraft with [S [ADV P

just] [NP supervisors and other non-striking employees] [PP on hand]] .

Equivalences classes With this test-bed of cases, we can also analyze
how the method changes by removing the equivalence class criteria, in both
positive and negative ways. Starting with rules which are errors, we can see
how they are more appropriately receiving lower scores. Consider example
(5), with the rule NP → JJS JJ NN VBZ. The POS category VBZ is clearly
wrong, but the original whole daughters method assigns it the similarity
score 1,547, because the reduced rule NP → JJ NN VB is similar to lots of
NP → JJ NN rules. By keeping the rule distinct, the new whole daughters
score is 7, because this exact sequence is difficult to match.

(5) [NP most/JJS Western/JJ air/NN fleets/VBZ]

Consider also (6), with the rule NP → NP -LRB- NP , NP -RRB-. The
whole daughters score goes from 10,462 to 0. The equivalence mappings
would reduce this rule to NP → NP NP NP, thus losing crucial informa-
tion about how bracketing should be done for parenthetical information.
Although parentheses are “always adjuncts,” they are informative adjuncts.

(6) [NP [NP Rep. Ronnie Flippo] -LRB-/-LRB- [NP D.] ,/, [NP Ala.] -
RRB-/-RRB-] , one of the members of the delegation , says ...

From the BNC data, consider cases like (7a), which contains the erro-
neous rule NP -> “ NN ” (with the corrected version in (7b)). With the old
method, this is reduced to the extremely frequent NP -> NN, resulting in a
similarity score of 10,802. Without equivalence classes, it receives a score of
8. The new method proves useful in identifying the incorrect annotation of
quotations.

(7) a. [NP [NP “/” wardrobe-woman/NN “/”] [PP at the school] ]

b. [NP “/” [NP wardrobe-woman/NN] “/” [PP at the school] ]

There are cases, on the other hand, in which the new method performs
less well, assigning low scores to correct rules. For instance, in example (8)
from WSJ-24, with the correct rule S → -LRB- “ NP ” VP . -RRB-, the



similarity score moves from 159,444 to 0. We see such a dramatic difference
because of punctuation. The reduced rule was S → NP VP, which is clearly
correct and similar to other rules.

(8) [S -LRB-/-LRB- “/“ [NP Quest for Fire] ”/” [V P was the first time] ./.
-RRB-/-RRB-]

While removing some punctuation may assist in comparing rules, it is not
clear-cut, as the punctuation that is meaningful can differ across treebanks.
And as cases like (6) and (7a) show, punctuation can be informative.

5 Summary and Outlook

We have furthered the work of ad hoc rule detection by making it more
corpus-independent. We have also verified that similarity is a crucial factor
in determining the reliability of a rule, providing information unavailable in
frequency, including a way to score rules which are not in the training data.

Given the success of such a method, a next step is to verify its effec-
tiveness on other treebanks. An additional question is to see what effect
these scores have on parser training, either by filtering rules identified by
such methods, or using them in a parse reranking model . Since this work
points to ways to generalize a grammar to new data, one can also explore
the effects of the scores on parsing across genres (Sekine, 1997; Gildea, 2001;
McClosky et al., 2006) and their applicability to active learning techniques
(e.g., Tang et al., 2002).
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