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Abstract

This paper describes a hybrid machine translation (MT) approach that consists of integrating

bilingual chunks (sub-sentential translation units) obtained from parallel corpora into an MT system

built using the Apertium free/open-source rule-based machine translation platform, which uses a

shallow-transfer translation approach. In the integration of bilingual chunks, special care has been

taken so as not to break the application of the existing Apertium structural transfer rules, since this

would increase the number of ungrammatical translations. The method consists of (i) the application

of a dynamic-programming algorithm to compute the best translation coverage of the input sentence

given the collection of bilingual chunks available; (ii) the translation of the input sentence as usual

by Apertium; and (iii) the application of a language model to choose one of the possible translations

for each of the bilingual chunks detected. Results are reported for the translation from English-to-

Spanish, and vice versa, when marker-based bilingual chunks automatically obtained from parallel

corpora are used.

1 Introduction

Rule-based machine translation (RBMT) systems perform the translation task using linguistic knowl-

edge, most of which is explicitly encoded by human experts in formats that can be understood by the

machine translation (MT) engine. Unlike corpus-based machine translation (CBMT) systems, which

rely on the availability of very large sentence-aligned bilingual corpora, RBMT systems can be built

for languages lacking those extensive resources by eliciting and encoding translation knowledge di-

rectly, a rather costly task. The main advantage of RBMT systems compared to CBMT systems is their

predictability; lexical and structural selection is consistent, errors are predictable and may usually be

diagnosed and assigned to a particular module in the system, and predictability of errors makes real-life

post-editing easier in dissemination tasks. CBMT systems—such as statistical MT (SMT) systems—rely

heavily on statistical target-language models, whereas RBMT systems tend to produce fewer translations

which are deceptively fluent but in fact prove to be inadequate.

Even if errors can be easily attributed to a particular module or data set in the system, there is no

trivial way to incorporate the hard work of post-editors into an RBMT system, because of the need for

painstaking analysis and encoding of the changes into data that can be used by the system. Furthermore,

one may be interested in having a different translation for a given source-language (SL) segment, not

because the translation provided by the MT system is wrong, but because it is not an adequate translation

in the specific domain of the text being translated at that precise moment.

Some researchers have set out to do automatic statistical post-editing by training SMT systems to

“translate” the output of an RBMT system into the reference translations provided [7, 16]; the automatic

evaluation indicators that compare the output translations against the references show improvements

which may be clearly attributed to improvement in certain linguistic choices [7], but two important issues
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Figure 1: Modular architecture of the Apertium free/open-source MT platform.

remain: whether these improvements result in actual post-editing savings, and—as with human post-

editing—how the post-editing operations performed by the SMT systems can possibly be incorporated

in order to improve rule-based data.

An alternative to incorporating new data resulting from a laborious analysis of post-editing operations

would consist of building a hybrid system which takes advantage of existing bilingual sentence-aligned

resources, such as translation memories generated by professional translators when they provide solu-

tions to the translation at hand, but which otherwise uses RBMT as a baseline engine. This can be

partially automated, e.g. Eisele et al. [8] use bilingual corpora instead of post-editor output to include

lexical entries in an RBMT system. In this way, we retain the predictability of the RBMT system as

much as possible, and give it away only where a better alternative is provided by existing corpora.

Trivial hybridisation would work at the sentence level, but its coverage would be low, as whole

sentences are quite unlikely to be repeated. Sub-sentential hybridisation is therefore needed. One step

further is to translate just the difference between the new sentence and the best-matching sentence in

a bitext [3]. To that end, one needs to align sentences and extract sub-sentential translation units from

them. Other authors have explored a tighter, run-time integration of examples and rules [4].

This paper uses the sub-sentential aligners used in the example-based machine translation (EBMT)

systemMATREX [9, 18] that segment the source and target sentences into syntactically-motivated chunks

using the marker hypothesis, which states that natural languages contain a small number of surface

elements—morphemes and lexemes—that signal the presence of particular syntactic constructions [10].

The resulting chunks are then aligned to produce sub-sentential translation units. These are incorporated

into the flow of the RBMT system Apertium [1], which is described in section 2. Integrating marker-

based bilingual chunks into an RBMT system seems to be a natural choice because they are syntactically

motivated, as compared to linguistically-blind SMT segments.

2 The Apertium free/open-source machine translation platform

Apertium1 [1] follows the typical transfer-based approach to MT [11] that divides the translation into

three phases: (1) analysis of the SL text into an intermediate representation (IR), (2) transfer from the

SL IR to a target-language (TL) IR, and (3) generation of the TL text from the TL IR. It follows the

shallow-transfer approach shown in Figure 1, which may be considered to be somewhere between direct

translation and full syntactic transfer, i.e. a transformer system [2]. It consists of the following modules:

• A deformatter which encapsulates the format information in the input document. For the in-

1The MT engine, documentation, and linguistic data for different language pairs can be downloaded from

http://www.apertium.org.
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put HTML text Francis’ <strong>car</strong> is broken, the output of this module is

Francis’[ <strong>]car[</strong> ]is broken.

• Amorphological analyserwhich tokenises the text into surface forms and delivers, for each surface
form, one or more lexical forms consisting of lemma, lexical category and morphological inflection

information. The output of this module for the running example is ˆFrancis’/Francis<np>

<ant><m><sg>+’s<gen>$ [ <strong>] ˆcar/car<n><sg>$[</strong> ]ˆis/be

<vbser><pri><p3><sg>$ ˆbroken/break<vblex><pp>$.

• A part-of-speech tagger which chooses, using a first-order hidden Markov model [5] (HMM),

one of the lexical forms corresponding to an ambiguous surface form. For each word in the input

document it chooses the most probable lexical form given the context. The output of this module is

ˆFrancis<np><ant><m><sg>$ ˆ’s<gen>$[ <strong>] ˆcar<n><sg>$[</strong> ]

ˆbe<vbser><pri><p3><sg>$ ˆbreak<vblex><pp>$.

• A lexical transfermodule which reads each SL lexical form and delivers the corresponding TL lex-
ical form by looking it up in a bilingual dictionary. ˆFrancis<np><ant><m><sg>$ is translated

into Spanish as ˆFrancis<np><ant><m><sg>$; ˆcar<n><sg>$ as ˆcoche<n><m><sg>$;

ˆbe<vbser><pri><p3><sg>$ as ˆser<vbser><pri><p3><sg>$; and ˆbreak<vblex><pp>$

as ˆromper<vblex><pp>$.

• A structural transfer consisting of three sub-modules:

– A chunker which, after invoking lexical transfer, performs local syntactic operations and

segments the sequence of lexical units into chunks. A chunk is defined as a fixed-length

sequence of lexical categories that corresponds to some syntactic feature such as a noun

phrase or a prepositional phrase. The segmentation into chunks for the running example is

ˆnom<SN><UNDET><m><sg>{ˆFrancis<np><ant><3><4>$}$ ˆpr<GEN>{}$[ <stro

ng>]ˆnom<SN><UNDET><m><sg>{ˆcoche<n><3><4>$}$[</strong> ]ˆbe pp<Vcop>

<vblex><pri><p3><sg><GD>{ˆestar<vblex><3><4><5>$ ˆromper<vblex><pp>

<6><5>$}$. Note that in addition to segmenting the output of the tagger and integrating

the translations provided by the lexical transfer module, some operations have already been

applied, such as the replacement of the Spanish verb ser by the verb estar.

– An interchunkmodule which performs more global operations with/between the chunks. The

output of this module is [<strong>]ˆnom<SN><PDET><m><sg>{ˆcoche<n>

<3><4>$}$ [</strong> ]ˆpr<PREP>{ˆde<pr>$}$ ˆnom<SN><PDET><m><sg>{ˆFr

ancis<np><ant><3><4>$}$ ˆbe pp<Vcop><vblex><pri><p3><sg><m>{ˆestar

<vblex><3><4><5>$ ˆromper<vblex><pp><6><5>$}$.

– A postchunk module which performs finishing operations on each chunk. After propagating

the inflection information accompanying each chunk to the words inside it, the output of this

sub-module is [<strong>]ˆel<det><def><m><sg>$ ˆcoche<n><m><sg>$[</strong>

]ˆde<pr>$ ˆFrancis<np><ant><m><sg>$ ˆestar<vblex><pri><p3><sg>$ ˆrom

per<vblex><pp><m><sg>$.

• A morphological generator which delivers a TL surface form for each TL lexical form, by suit-

ably inflecting it. After morphological generation, the translation of the running example is

[<strong>]el coche[</strong> ]de Francis está roto.

• A post-generator which performs orthographic operations such as contractions (e.g. Spanish

del=de+el) and apostrophations (e.g. Catalan l’institut=el+institut). For the running example

this module does not perform any change to the input stream.

• A reformatter which de-encapsulates any format information. After de-encapsulating the for-

mat information we have the output of the MT engine: <strong>el coche</strong> de
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Francis está roto.

The Apertium MT engine is completely independent of the linguistic data used to translate for a

given language pair. Linguistic data is encoded using XML-based formats,2 which allows for easy data

transformation and maintenance.

3 Integration of bilingual chunks in Apertium

The simplest way to integrate the use of bilingual chunks in an existing MT system would be to detect

the SL chunks before performing the translation and replace them with the corresponding TL chunks.

However, this simple approach would distort both the context used by the tagger to perform the categorial

disambiguation and, more importantly, the recognition of patterns by the structural transfer module, and

thus the application of structural transfer rules. Needless to say, this would result in a larger number of

ungrammatical translations.

3.1 Translation approach

We propose to integrate the bilingual chunks without affecting the way Apertium translates as follows:3

1. Apply a dynamic-programming algorithm to compute the best coverage (see section 3.2) of the

input sentence using the source part of the collection of bilingual chunks provided. Once detected,

the mechanism used by Apertium to encapsulate formatting information (see section 2) is used to

insert delimiters around the SL chunks detected while keeping them intact.

2. Translate the input sentence as usual by Apertium; the detected chunks will also be translated

using the rule-based engine, while the delimiters containing the detected SL chunks which have

just been introduced remain in place.

3. Chunk delimiters are used to locate appropriate chunks and to replace the translation provided by

Apertium with the corresponding one (see below).

The introduction of chunk delimiters as formatting information may have some side-effects. As a result

of the application of some structural transfer rules, the formatting information (treated by the Apertium

modules as blank space between words) may have been placed in a different position, e.g. by rules that

reorder the words in a chunk, or otherwise insert or delete lexical items.

In section 4 we evaluate the performance of our approach when using bilingual chunks automatically

obtained from parallel corpora. As a result of this, a SL chunk may have different TL translations. To

select the best translation for each SL chunk, we use a language model to score each possible translation

in the context in which it appears; the Apertium translations are also considered to counteract the possible

side-effects of chunk delimiters being moved around.

3.2 Best coverage

We try to cover the maximum number of words of each SL sentence by using the longest possible chunks;

the longer the chunks, the more accurate their translations may be expected to be, because they integrate

more context. The best coverage can be computed efficiently by storing the set S of SL chunks in a prefix

tree (trie) of strings. This trie—a deterministic finite-state automaton—is defined as �Q,V,δ ,q0,F�,

2The XML formats (http://www.w3.org/XML/) for each type of linguistic data are defined through conveniently-

designed XML document-type definitions (DTDs) which may be found inside the apertium package.
3The method described here is implemented inside the package apertium-chunks-mixer and released under the

GNU GPL license; it can be freely downloaded from http://sf.net/projects/apertium/files/.
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where Q = Pr(S) is the set of states, each one corresponding to a prefix of the SL chunks; V is the

vocabulary of the words that can be found in the SL chunks; δ : Q×V → Q is the transition function,

such that δ (X ,w) = Xw for w ∈ V if X ,Xw ∈ Pr(S); q0 = ε is the initial state (the empty string); and

F = S is the set of final states recognising the SL chunks stored.

To compute the best coverage a dynamic-programming algorithm (Alg. 1) is applied, which starts a

new search in the trie at every new word in the sentence to translate, and uses a set of alive states A in the

trie and a map M that, for each word in the sentence, returns the best coverage up to that word together

with its score. Actually, only the best coverage up to the last l words, where l is the maximum length of

the SL chunks, needs to be stored.

Algorithm 1 BESTCOVERAGE: Algorithm to compute the best coverage of an input sentence.

Require: sent: SL sentence to translate; i: word index

while (A �= /0)∧ (i≤WORDCOUNT(sent)) do
M[i]← /0

A← A∪{q0} /* To start a new search from this word */
for all s ∈ A do
if ∃c ∈ Q : δ (s,sent[i]) = c then

A← A∪{c}
if c ∈ F then
M[i]←BESTCOVERAGE(M[i],NEWCOVERAGE(M[i−CHUNKLENGTH(c)],c))

end if

end if

A← A\{s}
end for

M[i]←BESTCOVERAGE(M[i],NEWCOVERAGE(M[i−1], /0)) /* /0 means word not covered*/
i← i+1

end while

return M[i-1]

Algorithm 1 uses four external procedures: WORDCOUNT(sent) returns the number of words in the
string sent; CHUNKLENGTH(c) returns the number of words of the SL chunk recognised by state c;
NEWCOVERAGE(cov,c) computes a new coverage by adding to coverage cov the chunk recognised by
state c; finally, BESTCOVERAGE(a,b) receives two coverages and returns the one with the best score.

The best coverage is the one using the least possible number of chunks, i.e. the longest possible

chunks; each word which has not been covered counts as a single chunk. If two different coverages use

the same number of chunks, the chunk having the most frequent SL part is preferred.

4 Experiments

Corpora and tools. We have tested our approach on Spanish↔English translation4 when integrating
bilingual chunks automatically obtained from the Spanish–English parallel corpus distributed for the

EACL 4th workshop on SMT.5 Before the extraction of bilingual chunks, sentences longer than 45 words

or sentence pairs having TL/SL or SL/TL word ratios greater than 1.5 were discarded.6 Table 1 gives

4The Apertium data used to run the experiments can be obtained from the Subversion repository in the SourceForge project

http://sf.net/projects/apertium/: package apertium-en-es, revision 9284.
5http://www.statmt.org/wmt09/
6The word-ratio threshold is the result of adding one standard deviation to the observed average in the corpus.
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Corpus Sentences English words Spanish words

Training 1,187,905 26,983,025 27,951,388

Development 2,050 49,884 52,719

Test 3,027 77,438 80,580

Table 1: Number of sentences and words in the corpora used in the experiments.

Translation

No chunks Marker-based No. of chunks used (% words covered)

dev test θ dev test Detected
Translated

All Apertium

English→Spanish 17.10 18.51 11 17.41 18.94 6,812 (18%) 5,546 (15%) 2,662 (7%)

Spanish→English 17.71 18.81 28 17.91 19.14 6,321 (17%) 5,488 (14%) 2,929 (8%)

Table 2: Frequency threshold θ and percent BLEU score when translating the development and test

corpora. The number of chunks detected and the number of chunks finally used in the translation of the

test corpus are also reported together with the approximate percentage of words covered by chunks.

details on the corpus finally used for training, the development corpus used to filter the bilingual chunks

obtained (see below) and the corpus used for testing.

Before the extraction of bilingual chunks, word alignments were computed by means of Giza++ [14],

symmetrised using the “grow-diag-final-and” heuristic implemented in Moses [13], and used to discard

bilingual chunks whose words are not aligned; bilingual chunks containing punctuation marks or num-

bers were also discarded.

To decide among all the possible translations of each SL chunk, we used a 5-gram target language

model trained by means of the SRILM toolkit [17] over the TL side of the same parallel corpus used to

obtain the bilingual chunks.

The marker-based bilingual chunks used were obtained by segmenting both sides of the parallel

corpus with the marker-based chunkers [9] provided by the MATREX [6, 18] EBMT platform, and then

by aligning the chunks through the chunk alignment algorithm implemented in MATREX [18, sec. 2.2].

Results. To decide which bilingual chunks to take into account in the translation, we translated the

development corpus with Apertium when integrating bilingual chunks that were seen at least θ times;

tested values for θ are in the interval [5,80]. The set of bilingual chunks providing the best BLEU
score [15] was used to translate the test corpus.

Table 2 reports the approximate translation performance, as indicated by the BLEU metric, when

the translation is performed by Apertium without using bilingual chunks, and when using marker-based

bilingual chunks. Note the small improvement achieved in the translation of both the development corpus

and the test corpus; statistical significance tests using bootstrap resampling [12] show that this improve-

ment is not significant. Also note that, contrary to what one might expect, the improvement is larger

when translating the test corpus than when translating the development corpus.

The table also reports the number of chunks detected, together with the approximate percentage of

words covered, in the first stage of our translation approach when translating the test corpus. The number

of chunks finally used because the language model chose a translation in the collection of bilingual

chunks is also shown. The last column in the table reports the number of chunks that are translated

exactly the same way as Apertium does; note that in the final analysis, around half of the chunks used in

the translation are translated in the same way as Apertium.

The differences between the chunks detected and those actually used in the translation may be due
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to chunk delimiters moved and placed in the wrong position by the structural transfer component. This

remains for further study.

5 Discussion

We presented a novel approach to the integration of sub-sentential translation units (bilingual chunks)

into the Apertium free/open-source rule-based MT platform. Our approach uses the longest possible

bilingual chunks available, in the hope that they will be more accurate since they integrate more context,

together with a language model to decide which translation should be used when an SL chunk has more

than one TL equivalent.

To test our approach we automatically extracted bilingual chunks based on the marker hypothesis

from parallel corpora. The results show a small, but not statistically significant improvement in transla-

tion performance as measured by BLEU. The results also show that the percentage of SL words finally

covered by chunks producing a translation different from the one provided by Apertium is relatively

small.

We plan to improve the way we select the bilingual chunks to use from all the chunks obtained

from the training corpus. The current approach is based only on the frequency of the chunks, so longer,

perhaps more accurate, bilingual chunks are penalised in favour of shorter, less accurate chunks.
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