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Gene expression analysis in breast cancer 

 

Jai Prakash Mehta 

 

Breast cancer is the most common type of cancer among females, both in incidence and 

death. As meaningful biological understanding of the disease is confounded by the 

existence of various molecular groups and sub-groups, the challenge for targeted drug 

development may lie in understanding the molecular mechanisms of various sub-groups 

in breast cancer.  

 

An in-house breast cancer gene expression dataset comprising 17 normal and 104 tumour 

samples was analysed to identify important genes and pathways relevant to various 

clinical parameters. Our results identified groups of patients with similar expression 

profiles, the possible biology driving them and the clinical implications. Comparing 

Normal and Cancer specimens‟ gene expression profiles, TP53, along with cell cycle 

genes, were up-regulated in cancer samples. Embryonic stem cell pathway genes were 

up-regulated, while fatty acid biosynthesis pathways were down-regulated in tumors vs 

normal.  

 

The cancer specimens largely clustered with respect to ER status. Meta-analysis was 

performed on in-house datasets along with five public datasets to identify ER pathway 

genes. The analysis identified novel genes which had not been previously associated with 

ER-related pathways in cancer. Nuclear receptor pathways were up-regulated in ER-

positive tumors/cell lines. Mining for ESR1-correlated genes across 5897 specimens 

identified FOXA1, SPDEF, C1ORF34 and GATA3 expression to be highly correlated.  

 

Three sub-clusters were identified among the ER-negative cluster. One represented 

ERBB2 over-expressing cluster. Additionally two unique groups of patients, with 

significant differences in survival, previously un-identified by other studies, were 

identified among the ER-negative cluster; a good prognosis cluster with high expression 

of Immune response genes; and a bad prognosis cluster with high expression of 

Ropporin, over-expression of which was also linked to high incidence of relapse in our 

study. siRNA knockdown of Ropporin (ROPN1 and ROPN1B) in the M14 melanoma 

cell line impaired cancer cell motility and invasion. Knockdown of ROPN1B in MDA-

MB-435s reduced motility. In the first study of its kind our results validated the role of 

Ropporin in cancer cell motility and invasion. 

 

A list of 162 relapse-associated prognostically-important genes was used to develop a 

Neural Network back propagation model to predict the clinical outcomes. The model was 

successful in predicting relapse with 97.8% accuracy and outperformed existing models, 

indicating a strong possibility of its use as diagnostic model.  
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1.1 Breast cancer 

In Ireland an average of 2368 new cases of malignant breast cancer are diagnosed in 

females and 21 in males each year. In females, breast cancer is the most frequent cancer 

after skin cancer. Females are estimated to have a 1-in-13 chance of developing cancer of 

the breast by the age of 74 and 969 deaths among females and 6 deaths among males are 

attributed to breast cancer each year, on average. For every five incidences of the disease, 

two deaths occur, and it is the most frequent cause of cancer-related deaths among 

females (The National Cancer Registry Ireland; http://www.ncri.ie).  

1.2 Sub-types in Breast cancer 

Breast cancer is considered a highly heterogeneous group of cancers arising from 

different cell types and each having its own clinical implications. Currently, all breast 

cancers are tested for expression of Estrogen Receptor (ER), Progesterone Receptor (PR) 

and HER2/neu proteins. ER and PR tests are usually done by immunohistochemistry 

whereas HER2/neu is accessed by FISH. This protein profiling of tumors helps to predict 

the eventual prognosis and can assist in the determination of the most appropriate 

treatment for the individual.  

1.2.1 Estrogen receptor (ER) 

 The ER is a member of the nuclear hormone family of intracellular receptors which is 

activated by the hormone 17β-estradiol (Dahlman-Wright et al., 2006). The main 

function of ER is as a DNA-binding transcription factor which regulates gene expression 

(Levin 2005). 

There are two different forms of ER, referred as α and β, each encoded by a separate 

gene. The α isoform is encoded by the ESR1 and the β isoform is encoded by the ESR2 

gene (Cowley et al., 1997). Hormone-activated ERs form dimers (Pace et al., 1997). 

These two forms of ERs are co-expressed in various cell types including thyroid, bone, 

adrenals and female rat brain (Greco et al., 2003; Arts et al., 1997; Couse et al., 1997; 

Kuiper et al., 1997). This may lead to the formation of homodimer ERα (αα) or ERβ (ββ) 

http://www.ncri.ie/
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or heterodimer ERαβ (αβ) (Li et al.,2004; Cowley et al.,1997). There is significant 

overall sequence homology among the two isoforms (Hall, Couse and Korach 2001). 

ESR1 is encoded on chromosome 6 (6q25.1) and ESR2 is encoded on chromosome 14 

(14q) (Menasce et al., 1993; Sluyser et al.,1988). Both ERs are widely expressed in 

different tissue types, however, there are some differences in their expression patterns 

(Couse et al.,1997). ERα is expressed in endometrial, breast cancer cells, ovarian stroma 

cells and in the hypothalamus. ERβ is expressed in kidney, brain, bone, heart, lungs, 

intestinal mucosa, prostate, and endothelial cells. The ERα proteins are regarded as being 

cytoplasmic receptors in their unliganded state, but visualization research has shown that 

a fraction of the ERα resides in the nucleus of ER-negative breast cancer epithelial cells 

(Htun et al., 1999). The ER's helix 12 domain plays an important role in determining 

interactions with co-activators and co-repressors and thereby affecting the respective 

agonist or antagonist effect of the ligand (Ascenzi, Bocedi and Marino 2006, Bourguet, 

Germain and Gronemeyer 2000).  

ERs are over-expressed in around 70% of breast cancer cases, and are referred to as "ER-

positive" tumors. Binding of estrogen to ER stimulates proliferation of mammary cells, 

with the resulting increase in cell division and DNA replication and increases mutation 

rate. This causes disruption of the cell cycle, apoptosis and DNA repair processes 

eventually leading to tumour formation. Additionally, estrogen metabolism leads to the 

production of genotoxic by-products that could directly damage DNA, resulting in point 

mutations (Deroo and Korach 2006). ERα expression is associated with more 

differentiated tumors, while evidence that ERβ is involved is controversial (Herynk and 

Fuqua 2004). However, recent research suggests that ERβ is associated with proliferation 

and a poor prognosis (Rosa et al., 2008). Different versions of the ESR1 gene have been 

identified (with single-nucleotide polymorphisms) and are associated with different risks 

of developing breast cancer (Deroo and Korach 2006). 

Patients with high levels of ER are treated with endocrine therapy (Normanno et al., 

2005). Endocrine therapy for breast cancer involves Selective ER Modulators (SERMS) 

which act as ER antagonists in breast tissue or aromatase inhibitors which work by 
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inhibiting the action of the enzyme aromatase which converts androgens into estrogens 

(Osborne 1999, Tamoxifen for early breast cancer: an overview of the randomised trials. 

Early Breast Cancer Trialists' Collaborative Group 1998). ER status is used to determine 

sensitivity of breast cancer lesions to tamoxifen and aromatase inhibitors (Fabian and 

Kimler 2005). Raloxifene, which has anti-estrogenic behaviour has been used as a 

preventative chemotherapy for women judged to have a high risk of developing breast 

cancer (Oseni et al., 2008). 

1.2.2 Progesterone Receptor (PR) 

The progesterone receptor (PR) also known as NR3C3 (nuclear receptor subfamily 3, 

group C, member 3), is an intracellular steroid receptor that binds progesterone. PR is 

encoded by the PGR gene which lies on chromosome 11 (11q22) (Law et al.,1987). This 

gene has two main forms, A and B that differ in their molecular weight (A: 94kDa and B: 

114kDa) (Horwitz and Alexander 1983). These two isoforms are transcribed from 

distinct, estrogen-inducible promoters within a single-copy PR gene; the only difference 

between them is that the first 164 amino acids of B are absent in A (Giangrande and 

McDonnell 1999).  

PR is expressed in reproductive tissue and has important roles in folliculogenesis, 

ovulation, implantation and pregnancy (Gadkar-Sable et al., 2005). Estrogen is necessary 

to induce the progesterone receptors (PRs) activity (Horwitz, Koseki and McGuire 1978). 

PRs become hyperphosphorylated upon binding of the steroid ligand. PR phosphorylation 

is complex, occurring in different cellular compartments and perhaps requiring multiple 

serine kinases (Takimoto and Horwitz, 1993). After progesterone binds to the receptor, 

restructuring with dimerization follows and the complex enters the nucleus and binds to 

DNA. There, transcription takes place, resulting in formation of messenger RNA that is 

translated by ribosomes to produce specific proteins (Edwards et al., 1995, Li and 

O'Malley 2003). 

About 65% of ER-positive breast cancers are also PR-positive and about 5% of breast 

cancers are ER-negative and PR-positive. If cells have receptors for both hormones or 

receptors for one of the two hormones, the cancer is considered hormone-receptor-
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positive. Co-regulators of PR either enhance or suppress transcription activity and 

thereby modulate the function of the PR. Chromatin high-mobility group protein 1, 

chromatin high-mobility group protein 2, TIP60 (Tat-interacting protein), proline-rich 

nuclear receptor coregulatory protein 1, proline-rich nuclear receptor coregulatory protein 

2, Cdc25B, and GT198 enhance PR transcription activity as demonstrated by transient 

transfection assays (Ko et al.,  2002; Ma et al., 2001; Zhou et al., 2000; Brady et al., 

1999; Verrijdt et al., 2002). Nuclear receptor corepressor, BRCA1 and Ubiquitin-

activating enzyme 3 suppress PR transcription activity (Fan et al., 2002; Gao and Nawaz 

2002). A mutation or change in expression of the co-regulators affects the normal 

function of the PR and may disrupt the normal development of the mammary gland, 

thereby leading to breast cancer (Gao and Nawaz 2002). 

1.2.3 HER2/neu 

HER2/neu (also known as ErbB-2, ERBB2) stands for "Human Epidermal growth factor 

Receptor 2" and is a protein giving higher aggressiveness in breast cancers (Quenel et al., 

1995). It is a member of the ErbB protein family, more commonly known as the 

epidermal growth factor receptor family. HER2/neu belongs to a family of four 

transmembrane receptor tyrosine kinases involved in signal transduction pathways that 

regulate cell growth and proliferation (Zhou and Hung 2003). 

HER2/neu is notable for its role in the pathogenesis of breast cancer and as a target of 

treatment. It is a cell membrane surface-bound receptor tyrosine kinase and is normally 

involved in the signal transduction pathways leading to cell growth and differentiation. 

HER2 is thought to be an orphan receptor, with none of the EGF family of ligands able to 

activate it. However, ErbB receptors dimerise on ligand binding, and HER2 is the 

preferential dimerisation partner of other members of the ErbB family (Olayioye 2001). 

The HER2 gene is a proto-oncogene located at the long arm of chromosome 17 (17q11.2-

q12). 

Approximately 30% of breast and ovarian cancers have an amplification of the HER2/neu 

gene or over-expression of its protein product (Zhou and Hung 2003). Over-expression of 

this receptor in breast cancer is associated with increased disease recurrence and worse 
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prognosis. The poor prognosis may be due to global genomic instability as cells with high 

frequencies of chromosomal alterations have been associated with increased cellular 

proliferation and aggressive behaviour (Ellsworth et al., 2008).  

HER2 is co-localized, and thus most of the time co-amplified, with another proto-

oncogene GRB7 (Vinatzer et al., 2005). Clinically, HER2/neu is important as the target 

of the monoclonal antibody trastuzumab (marketed as Herceptin). Trastuzumab is only 

effective in breast cancer where the HER2/neu receptor is over-expressed. One of the 

mechanisms of how traztuzumab works after it binds to HER2 is by increasing p27, a 

protein that halts cell proliferation (Le, Pruefer and Bast 2005). 

1.2.4 Triple Negative (TN) and basal type of breast cancer 

Breast cancer is termed triple negative (TN) when there is absence of ER, PR and HER2 

receptor proteins. This type of cancer accounts for nearly 20% of all breast cancers (Rhee 

et al., 2008). TN is a heterogeneous group of breast cancer and is commonly associated 

with the worst prognosis (Stockmans et al., 2008). TN breast cancer is associated with 

younger age and more aggressive tumour type. TN breast cancers are generally negative 

for bcl-2 expression but positive for the epidermal growth factor receptor and have a high 

level of p53 and Ki67 expression (Rhee et al., 2008).  

The basal subtype of breast cancer is accompanied by the expression of cytokeratin and 

P-cadherin markers (Paredes et al., 2007). Basal-like carcinomas typically express one or 

more of the basal cytokeratins such as CK5 and CK5/6. CK5 is more sensitive in 

identifying basal-like tumors than CK5/6 (Bhargava et al., 2008, Bryan, Schnitt and 

Collins 2006). The majority of TN breast cancers display a "basal-like" molecular profile 

on gene expression arrays (Anders and Carey 2008). The majority of BRCA1-associated 

breast cancers are TN and basal-like (Anders and Carey 2008). 

1.3 Prognostic markers in breast cancer 

1.3.1 Grade 

The histological grade of a tumour is determined by a pathologist under a microscope. A 

well-differentiated (low grade) tumour resembles normal tissue. A poorly differentiated 
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(high grade) tumour is composed of disorganized cells and, therefore, does not look like 

normal tissue. Moderately differentiated (intermediate grade) tumors are somewhere in 

between. 

The Bloom-Richardson grade (BR grade) (BLOOM and RICHARDSON 1957) is a 

histological grade assigned by pathologists to breast cancers. It is the most common type 

of cancer grade system currently used. It is a semi-quantitative grading method based on 

three morphologic features of invasive breast cancers. The morphologic features that are 

used are: 

 1) Degree of tumour tubule formation i.e. percentage of cancer composed of tubular 

structures 

 2) Tumour mitotic activity or rate of cell division. 

 3) Nuclear polymorphism of tumour cells, nuclear grade, change in cell size and 

uniformity. 

Each of these features is assigned a score ranging from 1 to 3. The scores are then added 

together for a final sum that will be in the range of 3 to 9. This value is then used to grade 

the tumour as follows: 

Value: 3-5 Grade 1 tumors (well-differentiated): Tumors with Grade 1 are associated 

with a good prognosis. 

Value: 6-7 Grade 2 tumors (moderately-differentiated): Tumors with Grade 2 are 

associated with an intermediate prognosis. 

Value: 8-9 Grade 3 tumors (poorly-differentiated): Tumors with Grade 3 are associated 

with a bad prognosis. 

1.3.2 Lymph node metastasis 

Lymph node metastasis is considered an important prognostic parameter in treating breast 

cancer patients. The sentinel node is the first lymph node reached by metastasising cells 
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from a primary tumour. A sentinel node biopsy is a minimally invasive technique to 

identify lymph node metastases (Tanis et al., 2001). Involvement of a lymph node in 

breast cancer significantly correlates with worse prognosis compared with no lymph node 

involvement (Colleoni et al., 2005). Such patients have a higher incidence of death due to 

disease (Jatoi et al., 1999) and should therefore be treated more aggressively. 

1.4 Invasion and Metastasis  

One of the most lethal aspects of breast tumors is their ability to invade the surrounding 

normal mammary tissue and re-locate to other sites in the body distal to the primary 

tumour, whereby tumour growth begins anew (metastasis). While the process by which 

cancer cells lose adherence to the primary tumour and develop migratory and invasive 

capacities has been well-described at the cellular level, the progression of invasion is still 

poorly understood at the molecular level. Cancer cells from a primary tumour enter 

lymphatic and blood vessels, circulate through the bloodstream, and settle down to grow 

within normal tissues elsewhere in the body. Most tumors, if left un-treated can 

metastasize to other parts of body.  

However, there are cancers with very low metastatic potential such as glioma and basal 

cell carcinoma. When tumour cells metastasize, the new tumour is known as a secondary 

or metastatic tumour, and often displays properties of the original (primary) tumour. 

Metastasis can occur long after the apparent elimination of the primary tumour. In breast 

cancer, metastases have been known to occur decades after the primary treatment 

(Karrison, Ferguson and Meier 1999). Cancer cells can exist in three separate states in a 

secondary site, solitary cells in quiescence, active pre-angiogenic micrometastases, in 

which proliferation is balanced with apoptosis and no net increase in tumour size occurs, 

and vascularised metastases, either small and clinically undetectable, or large and 

detectable by current technology (Demicheli 2001).  

Metastatic tumors are very common in the late stages of cancer. The spread of cancer 

cells may occur via the blood or the lymphatic system or through both routes. There is 

also a propensity for certain tumors to metastasize to particular organs (Chambers, 

Groom and MacDonald 2002). Successful formation of metastases requires angiogenesis 
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at the primary tumour, down regulation of cohesive molecules, increased motility of 

tumour cells, invasion into neo-vessels, tumour cell embolism, arrest and attachment in 

capillary beds of distant organs, extravasations and proliferation in the organ parenchyma 

and re-establishment of angiogenesis when the tumour reaches > 1-2 mm in size (Li et 

al., 2000). 

 

 

 

 

 

 

 

Fig 1.4: The metastatic sequence (Geho et al., 2005) 

 1.4.1 Microenvironment of Breast Cancer 

In vivo, every cell functions within its microenvironment. The mammary duct consists of 

epithelial cells surrounded by stroma, including fibroblast cells and other support 

components. A thin layer of extracellular matrix (ECM) lies between epithelial cells and 

stroma (Woodward, Xie and Haslam 1998). The proliferation and phenotype of breast 

epithelial cells are the results of the epithelial-epithelial cell, epithelial-stromal cell and 

epithelial cell-ECM interactions (Haslam and Woodward 2003). Carcinogenesis of the 

breast cells causes both transformation of cells and changes to their microenvironment. 

Four kinds of cell connections are known to be important in maintaining the epithelial 

layer: tight junctions, adherens junctions, desmosomes and gap junctions (Ehmann et al., 

1998). 
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Fig 1.4.1: Model of epithelial-cell–stromal-cell interactions. ECM, extracellular 

matrix; ER, estrogen receptor; PR, progesterone receptor (Haslam and Woodward 

2003). 

The function of these structures is to restrict both free cell movement and infinite 

proliferation. Gap junctions also act as the pathways for cell-cell communication, helping 

the biological signals of a cell, such as cytokines or the products of tumour suppressor 

genes, to pass into the neighbouring cells. Thus, one prerequisite of cell transformation is 

the breakdown of physical connections between cells, which means the loss of cell 

proliferation restriction. Epithelial cells are also found to form physical junctions with the 

ECM and the stroma. In fact, during metastasis, migrating cells alternatively attach to and 

detach from ECM and stroma to move forward (Price, Bonovich and Kohn 1997). 

However, ECM has been shown to serve as a natural physical obstacle of metastasis. 

Some studies have demonstrated that Matrigel, on ECM extract from tumors, promotes 

the formation of tumors and blood vessels in mouse models (Noel and Foidart 1998).  

Fibroblasts are the main cell type in stroma and have a similar influence on epithelial 

cells. When co-injected with Matrigel and mammary tumour cells, fibroblasts accelerated 

tumour formation in a mouse model (Noel and Foidart 1998). Studies have also shown 

that fibroblasts stimulate the movement and proliferation of cancerous epithelial cells 
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when they have direct cell contact in co-culture (Korohoda and Madeja 1997, Olumi, 

Dazin and Tlsty 1998).  

The last phase of primary tumour development is progression, which usually starts with 

growth of the dormant tumour following the promotion phase. The rapid progression 

phase is triggered once the new blood vessels are formed in the primary tumour. As a 

result, the cancer cells acquire the ability to metastasize. 

1.4.2 Angiogenesis 

 With the proliferation of the primary tumour, angiogenesis, or the generation of new 

blood vessels, becomes necessary. Tumors induce blood vessel growth (angiogenesis) by 

secreting various growth factors (e.g. vascular endothelial growth factor (VEGF) and 

basic fibroblast growth factor (bFGF)) (Barinaga 1997). Growth factors such as bFGF 

and VEGF can induce capillary growth into the tumour, which some researchers suspect 

supply required nutrients, allowing for tumour expansion (Hanahan and Folkman 1996; 

Sato et al., 2000; Ferrara 2001). Angiogenesis also increases the possibility of the tumour 

cells to enter into the circulation. Thus, angiogenesis promotes tumour cell invasion. 

1.4.3 Invasion 

 To access the circulation, tumour cells must cross the ECM. This active process is called 

invasion. Invasion is a process that includes proteolysis of the ECM, pseudopodial 

extension and cell migration (Palecek et al., 1997; Wolf et al., 2007b). It usually happens 

when the tumour size is relatively large. On the other hand, ECM and interstitial stroma 

act integrally as the barriers that must be overcome for invasion (Price, Bonovich and 

Kohn 1997, Nicolson 1988; Woodhouse, Chuaqui and Liotta 1997). For example, matrix 

metalloproteinases (MMPs) are over-expressed by most kinds of metastatic cells and are 

essential for degradation of the ECM (Price, Bonovich and Kohn 1997; Sengupta and 

MacDonald 2007). 
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1.4.4 Transport 

Cancer cells can enter into the circulatory system indirectly via the lymphatic system and 

are thus transported to distant tissues (Chambers, Groom and MacDonald 2002). Once 

tumour cells enter the blood circulation, they are exposed to shear stress and  interactions 

with leukocytes which could lead to their destruction. Cancer cells are capable of 

resisting leucocyte mediated distruction by forming a thrombus, adhering to the 

endothelia of ductal structures and thereby protecting themselves from the immune 

system (Bacac and Stamenkovic 2008). Considering the ability of cancer cells to 

proliferate infinitely, formation of secondary tumour growth is not a rare event once 

tumour cells have entered the circulation (Price, Bonovich and Kohn 1997). 

1.4.5 Arrest 

During this step, circulating cancer cells embed into the vascular endothelia forming a 

secondary site for tumour growth. Several factors contribute to this stage; mechanical 

trapping of tumour cells at a secondary site by small capillary beds; clusters of cancer 

cells are blocked at very narrow blood vessels; tumour cell adhesion at a secondary site 

by the expression of appropriate cell surface proteins; cancer cells are recognized and 

bound by receptors on the endothelial duct (Price, Bonovich and Kohn 1997; Nicolson 

1988; Horak and Steeg 2005). 

1.4.6 Extravasation 

Extravasation can be taken as the reverse process of invasion, during which the arrested 

cells enter into the secondary sites and are followed by formation of a new tumour (Price, 

Bonovich and Kohn 1997; Nicolson 1988). Taken together, metastasis is a multi-variable 

process and demonstrates diverse behaviour in different kinds of cancer (Price, Bonovich 

and Kohn 1997; Nicolson 1988). The malignant cell‟s metastatic properties are 

influenced by expression of many genes related to degradative enzymes or their 

inhibitors, cell adhesion components, growth factor receptors, programmed cell death or 

apoptosis, cell-cell communication components, cell motility components and host 

surveillance mechanisms (Price, Bonovich and Kohn 1997; Demicheli et al., 1997; Ben-

Baruch 2008). 
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1.4.7 Breast cancer metastasis-associated genes 

A number of genes have been investigated for changes in expression level during 

progression of breast cancer. An ability to circumvent the defences of the 

microenvironment is critical for progression of mammary tumors to malignancy. This 

process was first investigated by transferring a dominant oncogene into susceptible cells 

and then following progression of malignancy in animal models, such as mouse. Later, it 

was confirmed that the slow, stepwise changes in mammary cancer progression are not 

only qualitative, but can be quantified. Some of these changes can be reversible and do 

not involve dominantly acting oncogenes and tumour suppressor genes (Nicolson 1998). 

Thus, there is still no common cascade of changes to gene expression levels found in 

breast cancer, like that of colon cancer. In addition, oncogenes and tumour suppressor 

genes, genes regulating cell cycle, growth factors and their receptors and intercellular 

communication have become targets of research to better understand the progression of 

breast cancer. A brief description of some of the better known target genes will be 

outlined here.  

ER and PR and their ligands play important roles in the development and function of the 

mammary gland. Normal human mammary epithelial cells express very low or no levels 

of ER and PR. But, in breast cancer patients, about two-thirds of tumour tissues are ER-

positive by immunohistochemical analysis (Allred et al., 1998; Lapidus, Nass and 

Davidson 1998). 

p53 usually functions as a tumour suppressor by regulating transcription, cell cycle, and 

apoptosis. Mutations of p53 detected in breast cancers are primarily point mutations that 

often lead to loss of function of wild type p53 and over-expression of mutant p53 in 

malignant cells (Lacroix, Toillon and Leclercq 2006; Ravaioli et al., 1998). 

The c-erbB-2 or HER2/neu, gene codes for a transmembrane tyrosine kinase and acts as a 

receptor of a group of peptide ligands that can stimulate cell growth, cellular 

differentiation, adhesion and motility. Over-expression of HER2/neu is detected in 20-

30% metastatic breast cancer (Ravaioli et al., 1998; Hyun et al., 2008). 
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The bcl-2 gene is involved in the regulation of cell death, inhibiting apoptosis, and is 

found over expressed in breast cancer. Bcl-2 has been retrospectively considered as a 

potential prognostic factor of breast cancer (Callagy et al., 2006). 

Cyclins are a group of proteins that regulate cell cycle and deregulation of cell cycle 

control is one of the most evident alterations in cancer cell growth. Aberrations in 

sequence and expression of cyclins Bl, Dl, E, etc., are often detected in breast cancer 

(Ravaioli et al., 1998). 

Kai-1 is one of the few metastasis-suppressor genes discovered and was first mapped out 

in prostate cancer (Dong et al., 1995). Later, it was shown that transfection of the Kai-1 

gene into breast cancer cells suppresses their metastatic ability and may be a useful 

marker for staging human breast diseases (Phillips et al., 1998). 

MTAL, a novel gene identified in 1998, is associated with mammary tumour metastasis 

and may also be involved in human breast cell motility and growth regulation. Antisense 

blocking experiments showed that MTAL may stimulate the highly malignant breast 

cancer cells to move into and grow in distant sites such as bone and brain, which are 

common sites for breast cancer metastasis (Nicolson 1998). 

1.5 Gene expression profiling 

Expression microarray profiling is a high throughput technology used in molecular 

biology and biotechnology to simultaneously access the gene expression profile of 

thousands of genes. A typical microarray chip consists of an arrayed series of thousands 

of microscopic spots of DNA oligonucleotides, each containing a small amount of a 

specific DNA sequence. This can be a short section of a gene or other DNA element that 

are used as probes to hybridize a cDNA or cRNA sample under appropriate conditions. 

The hybridization is detected and quantified by fluorescence-based detection of 

fluorophore-labeled targets to determine relative abundance of nucleic acid sequences in 

the sample. 
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In standard microarrays, the probes are attached to a solid surface made of glass or silicon 

by a covalent bond to a chemical matrix via epoxy-silane, amino-silane, lysine and 

polyacrylamide (Derisi 2001). Affymetrix technology uses a photolithographic 

technology to synthesize 25-mer oligonucleotides on a silica wafer 

(http://www.affymetrix.com). Other microarray platforms, such as Illumina, use 

microscopic beads, instead of the large solid support (http://www.illumina.com/).  

1.5.1 Affymetrix microarrays 

The microarray experiments carried out in our study employed the Affymetrix GeneChip 

system. Affymetrix probes are designed using publicly available information. The 

sequences, from which the probe sets were derived, were selected from GenBank, 

dbEST, and RefSeq. The sequence clusters were created from the UniGene database 

(Build 133, April 20, 2001) and then refined by analysis and comparison with a number 

of other publicly available databases, including the Washington University EST trace 

repository and the University of California, Santa Cruz Golden-Path human genome 

database (April 2001 release). Sequences from these databases were collected and 

clustered into groups of similar sequences.  

The probes are manufactured on the chip using photolithography (a process of using light 

to control the manufacture of multiple layers of material), which is adapted from the 

computer chip industry. Each GeneChip contains approximately 1,000,000 features. Each 

probe is spotted as a pair, one being a perfect match (PM), and the other with a mismatch 

(MM) at the centre. These probe pairs allow the quantitation and subtraction of signals 

caused by non-specific cross-hybridisation. The differences in hybridisation signals 

between the partners, as well as their intensity ratios, serve as indicators of specific target 

abundance. Each gene or transcript is represented on the GeneChip by 11 probe pairs. 

The probe sets are given different suffixes to describe their uniqueness and/ or their 

ability to bind different genes or splice variants. 

 “_at” describes probes set that are unique to one gene 

 “_a_at” describes probe sets that recognise multiple transcripts from the same 

gene 
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 “_s_at” describes probe sets with common probes among multiple transcripts 

from separate genes. The _s_at probe sets can represent shorter forms of 

alternatively polyadenylated transcripts, common regions in the 3‟ ends of 

multiple alternative splice forms, or highly similar transcripts. Approximately 

90% of the _s_at probe sets represent splice variants. Some transcripts will also be 

represented by unique _at probe sets. 

 “_x_at” designates probe sets where it was not possible to select either a unique 

probe set or a probe set with identical probes among multiple transcripts. Rules 

for cross-hybridisation are dropped in order to design the _x_at probe sets. These 

probe sets share some probes identically with two or more sequences and 

therefore, these probe sets may cross-hybridise in an unpredictable manner. 

A sample must be registered and an experiment defined in GCOS (GeneChip Operating 

Software) before processing a probe array in the fluidics station or scanning. Once the 

array is scanned, an image file is created called a “.dat” file. The software then computes 

cell intensity data (“.cel” file) from the image file. It contains a single intensity value for 

each probe cell delineated by the grid (calculated by the Cell Analysis algorithm). The 

amount of light emitted at 570nm from stained chip is proportional to the amount of 

labelled RNA bound to each probe. Each spot correspond to individual probe (either 

perfect match or mismatch). The probes for each gene are distributed randomly across the 

chip to nullify any region specific bias. Following this, data analysis algorithms combine 

the probes to the respective intensity of individual transcripts (see section 1.6).   

1.5.2 Microarrays and Breast cancer 

Microarray analyses of clinical breast cancer specimens and cell lines have identified 

gene expression profiles which separated the tumors into various groups and sub-groups. 

These sub-groups have been associated with different clinical outcomes. The various sub-

groups that have been defined using a microarray approach are Luminal A, Luminal B, 

ERBB2 over-expressing, Basal sub-type and Normal-like (Sorlie et al., 2001). The 

Luminal sub-type A identified has a higher ESR1 and ER partner gene over-expression 

than Luminal sub-type B. Luminal sub-type A is considered to have a better prognosis 
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and response to Endocrine therapy than Luminal sub-type B. The ERBB2 and Basal sub-

groups of patients display a more aggressive form of cancer. The ERBB2 group of 

patients respond well to Herceptin. Additionally, an Apocrine (Androgen receptor 

positive) group has been defined based on microarray studies (Farmer et al., 2005). 

Apocrine sub-type is defined as Androgen receptor-positive and negative for Estrogen, 

Progesterone and HER2 protein. Apocrine sub-type of breast cancer is regulated by 

androgen. 

It was previously thought that a few cells from a tumour attain metastatic potential and 

move to different parts of body, where they develop as secondary tumors (Fidler and 

Kripke 1977; Poste and Fidler 1980). With the advent of microarray-based studies, this 

hypothesis has changed and it is now believed that metastasis potential is the property of 

the whole tumour rather than a sub-set of cells as previously thought (Ma et al., 2003; 

Weigelt et al.,  2003). These findings resulted in studies aimed at identifying genes which 

may be involved in metastasis, relapse and shorter survival. These genes have been used 

to develop prognostic models to predict long term relapse (van 't Veer et al.,  2002; 

Huang et al.,  2003; Karlsson et al.,  2008). Following successful attempts to identify the 

prognostic important genes and develop prediction models, microarrays have evolved 

into diagnostic assays. Studies based on gene expression were  later translated to 

diagnostic assays has been approved by the US Food and Drug Administration (FDA; 

http://www.fda.gov/) for routine use on breast cancer patients (see section 1.5.3). Apart 

from predicting clinical outcomes, these kits can also indicate theraputic options for 

patients. 

1.5.3 Gene expression in diagnostics 

1.5.3.1 OncotypeDx 

OncotypeDx, developed by Genomic Health (http://www.genomichealth.com), is a 

diagnostic kit that aims to quantify the likelihood of disease recurrence in women with 

early-stage breast cancer (Paik et al.,  2004) and also assesses the likely benefit from 

certain types of chemotherapy (Paik et al.,  2006). The OncotypeDx diagnostic assay is 

suitable for women with early-stage invasive breast cancer, who are ER-positive and 
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lymph node-negative. Typically in these cases, treatment with hormonal therapy, such as 

tamoxifen, is indicated. OncotypeDx is not suitable for patients with carcinoma in-situ or 

metastatic breast cancer. 

250 candidate genes possibly associated with breast cancer tumour behaviour were 

identified from published literature, genomic databases and microarray experiments. 

These genes were analyzed in 447 patients from three independent clinical studies in 

order to identify a panel of 21 genes strongly correlated with distant recurrence-free 

survival (Paik et al., 2004).  

Group Genes 

Proliferation Ki67, STK15, Survivin, CCNB1, MYBL2 

Invasion MMP11, CTSL2 

HER2 GRB7, HER2 

Estrogen ER, PGR, BCL2, SCUBE2 

Others GSTM1, CD68, BAG1 

Controls ACTB, GAPDH, RPLPO, GUS, TFRC 

Table 1.5.3.1: List of genes on the OncotypeDx assay 

OncotypeDx analyzes expression of these 21 genes from tumour mRNA to determine a 

prognostic recurrence score. The recurrence score is a number between 0 and 100 and 

corresponds to a likelihood of breast cancer recurrence within 10 years of the initial 

diagnosis (Paik et al., 2004). The result was later validated on a very large study of 4,964 

node-negative breast cancer patients (Habel et al., 2006). If sucessful in onward trials, 

this information would help doctors choose the right combination and medicinal dose for 

individual patients. Despite being an expensive test, it could result in considerable cost 

saving considering the fact that chemotherapy can cost thousands of euros per year, per 

patient (Hornberger, Cosler and Lyman 2005). 

OncotypeDx is a non-invasive test that is performed on a small amount of the tissue 

removed during the original lumpectomy, mastectomy, or core biopsy. The tissue sample 

is fixed in formalin and embedded in paraffin so it can be preserved and send to Genomic 
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Health for further diagnostic testing where the RNA is isolated from sectioned tissue 

blocks
 
using the MasterPure Purification kit (Epicenter, Madison, WI) and subsequently 

the assay is performed.  

1.5.3.2 MammaPrint 

MammaPrint is a microarray-based molecular diagnostic test that is used to assess the 

risk that a breast tumour will metastasize to other parts of the body. MammaPrint is 

marketed by Agendia (http://agendia.com) and assesses the risk factor for distant 

metastasis within five to 10 years (Glas et al., 2006). The test is suitable for lymph node-

negative breast cancer patients under 61 years of age with tumors of less than 5cm in 

diameter.  

MammaPrint uses a 70 gene signature, obtained by microarray studies to classify patients 

as low or high risk for recurrence of the disease. The 70 gene signature was previously 

identified by analysing microarray data from 34 patients who developed distant 

metastasis within five years and 44 patients who remained disease free for at least five 

years (van 't Veer et al.,  2002). The results were later validated in independent studies 

(van de Vijver et al.,  2002; Buyse et al.,  2006).  

MammaPrint estimates the expression of 70 identified genes in the tumour sample and 

compares the gene expression profile to reference expression profiles of „Low Risk‟ or 

„High Risk‟ profiles. The risk of tumour recurrence is then determined according to the 

degree of similarity between the tumour gene expression profile and reference profiles 

(van de Vijver et al., 2002). 

A low risk patient has a 95% chance of being metastasis-free within the following five 

years and 90% chance of being metastasis-free within the following 10 years, whereas a 

high risk patient has a 78% chance of being metastasis-free within the following five 

years and 71% chance of being metastasis-free within the following 10 years (van de 

Vijver et al., 2002).  

http://agendia.com/
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1.6 Microarray Data Analysis 

1.6.1 Normalization  

Normalization is the first step in the data analysis process. Normalization is the adjusting 

of microarray data to remove variations that arise from the technology rather than from 

biological differences between the RNA samples. Some of the common normalization 

algorithms for Affymetrix arrays are MAS5 (Pepper et al., 2007), RMA (Irizarry et al., 

2003) and dChip (Li and Hung Wong 2001). 

MAS5 developed by Affymetrix uses a reference (baseline) chip which is used to 

normalise all the experimental chips. The procedure is to adjust the intensity of each  

probes against the corresponding probes on the baseline chip; eliminate the highest 1% of 

probes (and for symmetry the lowest 1%), and fit a regression line to the middle 98% of 

probes.  

dChip uses an array with median overall intensity as the baseline array against which 

other arrays are normalised at probe level intensity. Subsequently a subset of PM 

(“perfect match”) probes, with small within-subset rank difference in the two arrays (also 

known as invariant set), serves as the basis for fitting a normalisation curve.  

RMA employs normalization at probe level using the quantile method. This 

normalization method makes the chips have identical intensity distribution 

1.6.2 Clustering  

Clustering is the grouping of objects based on similarity. In other words it is the 

partitioning of a data set into subsets, so that the data in each subset share some common 

trait. The measure for a common trait is defined before the clustering is performed and is 

often a distance metric defining the relative similarity among the two objects. Data 

clustering is a common technique for statistical data analysis, and has applications to 

many fields, including machine learning, data mining, pattern recognition, image analysis 

and bioinformatics.  
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Clustering gene expression data helps in identifying genes of similar function. These co-

expressed genes with poorly characterized or novel genes may provide a simple means of 

gaining insight to the functions of many genes for which information is not available 

currently (Eisen et al.,  1998). Co-regulated families of genes cluster together, as was 

demonstrated by the clustering of ribosomal genes as a group (Alon et al., 1999). 

Clustering is also used to identify the grouping patterns of specimens and has been 

widely used in studying the heterogeneity of cancer. Clinical breast cancers cluster as 

distinct groups based on their gene expression profiles and can be correlated with clinical 

outcomes (Sorlie et al., 2001).  

Primarily, most clustering techniques use a distance metric to define the similarity or 

difference among the two objects. Some of the most common distance metrics used are 

Euclidean distance, Manhattan distance and Correlation distance. Euclidean distance is 

the distance between two points that would be measured with a simple ruler, and can be 

also calculated by repeated application of the Pythagorean Theorem. Thus the distance 

measure would be: 

Distance = √ (∑ (Xi –Yi)
 2

) 

X and Y are expression vectors of genes or samples.
 

Manhattan distance is the distance between two points expressed as the sum of the 

absolute differences of their coordinates. Therefore the distance between point P1 with 

coordinates (x1, y1) and the point P2 at (x2, y2) would be |x1 - x2| + |y1 - y2|. 

Correlation distance measures the similarity between two points expressed as the 

correlation between the two objects. Often the Pearson correlation measure is taken as 

distance measure for most of the microarray data clustering. Correlation measure value 

range from -1 to +1. Positive values indicate a positive correlation (i.e. increase in value 

of one corresponds to increase in the value of the other). Negative values indicate a 

negative correlation (i.e. increase in value of one corresponds to decrease in value of the 

other and vice versa). A correlation value of 0 indicates no relation between the two 

values.  
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1.6.2.1 Hierarchical clustering 

Hierarchical clustering is a technique to generate a hierarchy among objects based on 

their similarity or differences. The similarity or difference is measured based on the 

distance criteria explained above. Hierarchical clustering may be constructed using an 

agglomerative or divisive approach. The representation of this hierarchy is a tree also 

known as dendrogram, with individual elements at one end and a single cluster 

containing every element at the other (Fig 1.6.2.1.1). Agglomerative algorithms begin at 

the leaves of the tree, whereas divisive algorithms begin at the root. Agglomerative 

clustering can be single linkage clustering, complete linkage clustering or average linkage 

clustering. 

 

Fig 1.6.2.1.1: An example of a tree or dendrogram. The leaves are shown in red and 

the nodes are shown in blue. A leaf reflects the entity and a node reflects the 

relationship between two entities, one entity and one node or among two nodes. 

Single linkage clustering: The distance between groups is defined as the distance between 

the closest pair of objects, and only pairs consisting of one object from each group are 

considered (Fig 1.6.2.1.2). 
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Fig 1.6.2.1.2: Single linkage clustering. The closest element in the cluster is used to 

calculate the reference distance among the two clusters. 

Complete linkage clustering: The complete linkage, also called farthest neighbour 

clustering method is the opposite of single linkage. The distance between groups is 

defined as the distance between the most distant pair of objects, one from each group (Fig 

1.6.2.1.3). 

 

Fig 1.6.2.1.3: Complete linkage clustering. The most distant element in the cluster is 

used to calculate the reference distance among the two clusters. 



 31 

Average linkage clustering: Distance between two clusters is defined as the average of 

distances between all pairs of objects, where each pair is made up of one object from 

each group (Fig 1.6.2.1.4). 

 

Fig 1.6.2.1.4: Average linkage clustering. The average of the element in the cluster is 

used to calculate the reference distance among the two clusters. The green is the 

average or centroid of the cluster. 

Hierarchical clustering has been extensively used in cancer research to identify 

relationship among genes and samples. Hierarchical clustering using multiple markers 

can group breast cancers into various classes with clinical relevance and is superior to 

individual prognostic markers (Makretsov et al., 2004). Hierarchical clustering has been 

widely used in studying the sub-groups in breast cancer (Sorlie et al., 2001; Charafe-

Jauffret et al., 2006; Weigelt et al., 2005; Hu et al., 2006). 

1.6.2.2 K-Means clustering 

The k-means algorithm is an algorithm to cluster objects into k partitions using the 

similarity between the objects. k is the number of partitions/clusters and is provided by 

the user. The algorithm starts by partitioning the input points into k initial sets randomly 
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or by using some heuristic approaches. It then calculates the centroid (mean point), of 

each set. Thereafter, it constructs a new partition by associating each object with the 

closest centroid. The centroids are then recalculated for the new clusters, and the process 

repeated by alternate application of these two steps until convergence, which is obtained 

when the objects no longer switch clusters or the centroids no longer change. K-means is 

one of the most commonly used clustering methods and has a wide application in 

microarray studies (Do and Choi 2008). 

Limitations of k-means clustering (MacKay 2003) 

 

1) Since k-means clustering starts with random seed points, the end result will not be the 

same and will depend on the initial random vector.  

 

2) K-means clustering needs the number of clusters from the uses and forces all the 

genes/samples to fit on those defined number of clusters. 

 

3) Does not work well with non-globular clusters.  Non-globular clusters are those whose 

boundaries are not well defined. 

1.6.3 Principal component analysis 

Principal component analysis (PCA) is a method to reduce multidimensional data sets to 

lower dimensions for easier analysis and visualization. PCA is mathematically defined as 

an orthogonal linear transformation that transforms the data to a new coordinate system 

such that the greatest variance by any projection of the data comes to lie on the first 

coordinate (called the first principal component), the second greatest variance on the 

second coordinate, and so on.  

PCA can be used for dimensionality reduction in a data set by retaining those features of 

the data set that contribute most to its variance, by keeping lower-order principal 

components and ignoring higher-order ones. Lower-order components contain the most 

important essence of the data and higher-order components contain the least important 
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essence of the data. However, this may not be the case with all types of datasets. PCA is 

used in microarray experiments to identify the most significant patterns in the data.  

Raychaudhuri, Stuart and Altman (2000), working with yeast sporulation data, concluded 

that much of the observed variability in the experiment was captured by the first two 

components corresponding to overall induction level and change in induction level over 

time.  

1.7 Classification 

Class predictions are supervised learning algorithms which learn the outcomes from the 

known (“Training”) dataset, in order to accurately predict the outcomes on the new 

(“Test”) datasets. Class prediction has a wide applicability both in research and in 

diagnosis. Some of the most popular algorithms include k-nearest neighbor, Support 

Vector Machines (SVM), Linear Discriminant Analysis (LDA) classification and Neural 

Networks.  

Back-propagation is a class of neural network algorithm which can be used to accurately 

predict the outcomes based on its learning on a known dataset. Neural networks have 

been used extensively in gene-finding (Sherriff and Ott, 2001), protein structure 

prediction (Cai, Liu and Chou 2003), drug screening (Jaiswal and Naik, 2008), cancer 

class prediction and clinical outcome prediction in cancer (De Laurentiis et al.,  1999) 

and other diseases. 

 



 34 

 

 

Fig 1.7.1: Generalized representation of the Multiple Layer Perceptron 

Architecture. Input layer gets the input and the information is processed in the 

network and the output is obtained on the output layer.  

Back-propagation uses the Multiple Layer Perceptron architecture to learn complex 

patterns. The Multiple Layer Perceptron is an architecture whereby the neurons are in 

layers; an input neuron layer where the network gets the input and an output neuron layer 

which gets the output. In between can be n layers of hidden neurons. The neurons in each 

layer are interconnected with all the neurons in the previous and next layer of neurons. 

These interconnections are associated with weights which helps in learning complex 

problems (Haykin 1998). The weights are numbers and contain information on the 

positive or negative regulation of any particular neuron on the closest neuron. The  

weights are adjusted in a way that the more important interconnections attain a higher 

value than the less important interconnections.  

Back propagation, which as the name suggests, is the propagation of error to the previous 

layer of network, is a very efficient method of training the artificial neural networks to 
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perform a particular task. It was first described by Paul Werbos in 1974, but it wasn't 

until 1986, through the work of David E. Rumelhart, Geoffrey E. Hinton and Ronald J. 

Williams, that it gained recognition leading to a renaissance in the field of artificial 

neural network (Rumelhart et al., 1986). 

Back propagation is a supervised learning method and implements the “delta rule”. The 

delta rule is a gradient descent learning rule for updating the weights of the artificial 

neurons in a single-layer perceptron. The algorithm requires a guided training that knows, 

or can calculate, the desired output for any given input. The difference in the expected 

and actual result is termed as error and this error is back-propagated to the network and 

weight correction measures are done in a way to minimize the error. 

1.8 Representative nature of cell line models to clinical conditions  

Cell line models are routinely studied to understand particular biological phenomena, 

with the expectation that discoveries made in these models will provide insight into 

human biology. These models are widely used to explore potential causes and treatments 

for human disease, where experimentation on humans would be unfeasible or unethical. 

Breast cancer cell lines are generated from cells isolated from breast tumour specimens 

and have the capability to divide indefinitely when grown in-vitro under stringent growth 

conditions. This potential makes these cell lines an excellent model of study for 

understanding the basic biology of breast cancer. Many studies which are not possible on 

animal models can be carried out relatively easily on these cell lines.  

There is, however, a great difference in the growth environment of the cancer cells in-

vivo to that of in-vitro. Despite the relatively large number of cancer cell lines currently 

under study in a variety of clinical settings worldwide, so far studies aiming at 

investigating the similarity of cell line models to their respective clinical conditions have 

been very limited. A previous study (Gazdar et al., 1998) found that only a small subset 

of primary breast cancers that display certain features of advanced tumour and poor 

prognosis can be cultured for a lengthy time. This group (Wistuba et al.,  1998) also 

reported that there was an excellent correlation among the cell lines to their clinical 

specimens, in terms of morphological features, presence of aneuploidy, 
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immunohistochemical expression of ER, HER2/neu, p53 proteins, allelic loss at all of the 

chromosomal regions analysed and TP53 gene mutations. A more recent study (Burdall 

et al.,  2003), concluded that most of the currently used cell lines are derived from 

metastatic sites rather than primary tumour and therefore may not be representative of the 

diverse nature of breast cancer. 

The advent of large-scale expression profiling experiments heralded by developments in 

microarray technology has facilitated a whole-genome analysis approach to this question. 

Large-scale expression profiling has made it possible to quantify the gene expression 

profiles of thousands of genes in a single experiment, thereby allowing the comparison of 

different samples on the basis of their full genomic expression profile, rather than on a 

selected number of genes. A previous study (Chang, Hilsenbeck and Fuqua 2005) 

reviewed the role of microarrays in management and treatment of breast cancer, and 

observed that a combined genomic approach should be taken to understand the 

heterogeneity of breast cancer. 

Given the novelty of microarrays, the number of studies utilizing this technology to 

investigate the similarity between the gene expression profiles of cell lines and clinical 

specimens is limited. Previously (Ross and Perou 2001), it has been found that cell lines 

and tumour specimens have distinct gene expression patterns which need to be 

considered for their appropriateness for each subtype of clinical conditions. Another 

study (Dairkee et al., 2004) compared gene expression profiles of early passage tumour 

cultures and immortal cell lines and observed that epithelial cultures isolated from 

primary breast tumors retain the characteristics of the tumour, but these characteristics 

are eliminated following in vitro selection of the rapidly proliferating cell population. In a 

similar comparative study of gene expression profiles of lung cancer cell lines and their 

respective clinical specimens (Wang et al.,  2006), it was observed that 51 of 59 cell lines 

represented their presumed tumors of origin.  
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1.9 Small interfering RNA (siRNA)  

Small interfering RNA (siRNA) is also known as short interfering RNA or silencing 

RNA and covers a class of 20-25 nucleotide-long double-stranded RNA molecules. In the 

late nineties, RNA silencing was
 
discovered in plants during the course

 
of transgenic 

experiments that eventually led to the silencing of
 
the introduced transgene and, in some 

cases, of homologous endogenous
 
genes or resident transgenes (Matzke et al., 1989; Linn 

et al., 1990; Napoli, Lemieux and Jorgensen 1990; Smith et al., 1990; van der Krol et al., 

1990). However, this approach could not be used in mammalian cells as the long double-

stranded RNAs (dsRNAs) triggered a cytotoxic reaction leading to cell death (Hunter et 

al., 1975). This cytotoxic reaction, mediated by the interferon system, protected the 

organism from RNA viruses by sacrificing the infected cell and thus preventing the 

spread of the virus (Stark et al., 1998). It was later reported that the dsRNAs shorter than 

30 nucleotides do not trigger the interferon response; therefore artificially produced 

siRNAs and their delivery into mammalian cells were able to efficiently induce RNA 

silencing (Elbashir et al., 2001).  

1.9.1 Mechanism of action of siRNA 

Long double-stranded RNA (dsRNA) (typically >200 nt) (upon introduction), enters a 

cellular pathway that is commonly referred to as the RNA interference (RNAi) pathway. 

During the initiation stage, long dsRNA is cleaved into siRNA (Hamilton et al., 2002), 

mediated by type III RNase Dicer enzyme. RNase III family members are among the few 

nucleases that show
 

specificity for dsRNAs (Hamilton et al.,  2002) and are 

evolutionarily conserved in
 
worms, flies, fungi, plants, and mammals (Aggarwal et al.,  

2006). Complete digestion, by RNase III enzyme results in dsRNA fragments
 
of 23-

 
to 

28-mer diced siRNA products (Blaszczyk et al., 2001).  

During the effector stage, the siRNAs assemble into endoribonuclease-containing 

complexes known as RNA-induced silencing complexes (RISCs). siRNAs undergo 

unwinding before being incorporated into a high-molecular-weight protein complex 

called RISC (Hammond et al.,  2000). Dicers are part of the RISC complex, which 

includes several different proteins such as the Argonaute gene family members and an 
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ATP-dependant RNA helicase activity that unwinds the two strands of RNA. Functional 

RISCs contain only single stranded siRNA (Martinez et al., 2002). The siRNA strands 

subsequently guide the RISC to complementary RNA molecules, where base pairing 

takes place between the antisense strand of the siRNA and the sense strand of the target 

mRNA. This leads to endonuclease cleavage of the target RNA (Novina and Sharp 2004). 

Gene silencing by RISC is accomplished via homology-dependent mRNA degradation 

(Tuschl et al., 1999; Hamilton et al., 2002), translational repression (Grishok et al., 2001) 

or transcriptional gene silencing (Pal-Bhadra, Bhadra and Birchler 2002) (Fig 1.9.1.1). 
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Fig 1.9.1.1: siRNA mechanism of action. dsRNAs are processed by a host Dicer 

enzyme to form siRNAs. Dicer-processed siRNAs and synthetic siRNAs undergo 

ATP dependent unwinding before being incorporated into a protein complex called 

RISC (RNA-induced silencing complex) that contains single stranded siRNAs. The 

RISC is reconfigured to active RISC which contains the proteins required for 

cleaving the target mRNA at the point where the antisense siRNA binds. After the 

cleavage the active RISC is released to cleave additional mRNA molecules whereas 

the cleaved mRNA is degraded by cellular ribonucleases. 
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1.10 Basal cell carcinoma 

Basal cell carcinoma (BCC) is the most common malignancy in the white-skinned 

population with an estimated 750,000 cases per year in the US, with 175 cases per 

100,000 reported in American men (Chuang et al., 1990). Although not lethal, tumors are 

locally invasive with disfiguring growth in surrounding tissues causing morbidity due to 

prevalent localization of tumors in facial skin. Accordingly, this disease typically has a 

favorable prognosis, as complete surgical excision is almost always curative (Walling et 

al., 2004).  

BCC is a slowly growing tumor occurring in hair-growing squamous epithelium. The 

transformation of basal stem cells located in the hair follicles or basal epidermis gives 

rise to BCC (Backvall et al., 2005). Ultraviolet (UV) radiation is considered the main 

carcinogen (Corona et al., 2001; Kricker et al., 1995) and approximately 80% of the 

tumors occur on the head and neck. If detected early, it can be treated and cured without 

serious side effects (Dua et al., 2004).  

Two main approaches to classify BCC have been suggested based on histopathological 

growth pattern and histological differentiation. To date, no universally agreed 

classification exists and it is regarded that classification based on growth pattern has the 

greatest biological significance (Saldanha, Fletcher and Slater 2003). Several sub-types of 

BCC have been identified- nodular-ulcerated BCC, superficial BCC, sclerosing BCC, 

cystic BCC, linear BCC and micronodular BCC. BCC rarely metastasize with rates 

ranging from 0.003 to 0.55% (Kapucuoglu et al., 2009; Walling et al., 2004). Up to 85% 

of metastasis has the neck or head as the site of the primary tumor (von Domarus and 

Stevens 1984), with at least two-thirds of cases originating from the face (Snow et al., 

1994). The most frequent site of BCC metastasis is regional lymph nodes, followed by 

bone, lung, and liver (Snow et al., 1994; Lo et al., 1991; Martin et al., 2000). 

Furthermore, people with BCC are at higher risks of developing further BCCs and other 

malignancies, including squamous cell carcinomas, malignant melanomas and possibly 

also non-cutaneous malignancies (Wong, Strange and Lear 2003). 
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Previous studies have indicated the role of Sonic Hedgehog (Shh) pathway, via Patched 

(PTCH) gene mutations (Johnson et al., 1996, Gailani et al., 1996), as a key cellular 

signaling event in BCC tumorigenesis. However, relatively little is known about the 

molecular events involved in this disease. A single study of BCC has been reported using 

a cDNA microarray representing 1,718 genes (Howell et al., 2005). 

Immunohistochemical techniques were used to study the expression of several proteins 

including CD10 (Pham et al., 2006; Yada et al., 2004), p63 (Park et al., 2004), low 

expression levels of CD44 (Baum et al., 1996) to associate with the presence of BCC. 

Expression level of the Ki67 antigen differs in BCCs that recur and BCC that do not recur 

(Healy et al., 1995).  
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1.11 Aims 

The overall goal of this project was to study breast cancer with reference to gene 

expression analysis using clinical specimens and in-vitro models. The specific aims of 

this project were: 

 To advance the understanding of the heterogeneity of breast cancer using gene 

expression analysis, and to identify gene expression differences among the 

Normal and Cancer breast tissue and comparing various clinical parameters such 

as ER status, Grade, LN status and Tumour size.  

 To identify gene expression changes that may be linked to clinical outcomes such 

as relapse-free survival and overall survival. 

 To compare our results with various other similar or related studies and identify 

precise genelists which may be linked to disease progression, relapse-free survival 

and overall survival.  

  To compare our results with two of the FDA approved prognostic assays 

MammaPrint and OncotypeDX to identify common genes in both studies which 

may be of common diagnostic importance.  

 To develop a model based on gene expression signatures to predict clinical 

outcomes for breast cancer patients using Back Propagation Neural Network 

algorithm 

 To identify sets of genes whose expression correlate with ER status using gene 

expression data generated in-house & publicly-available clinical and cell line 

datasets  

 To identify prognostically important genes from our microarray study and 

validate their functions in the laboratory using molecular biology techniques such 

as siRNA and cDNA transfection in cancer cell lines, in particular focussing on 

invasion and motility.  

 To identify the representative nature of cell lines to clinical conditions using gene 

expression data. 

 Basal Cell Carcinoma data analysis 
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2.1 Microarray data used in this study 

The gene expression profiles of 104 tumors and 17 normal specimens were generated in-

house as a starting point for this study. To complement this analysis, public datasets were 

also downloaded from GEO (Gene Expression Omnibus) for comparison; as outlined. 

2.1.1 Breast cancer clinical microarray dataset generated at NICB 

A total of 104 tumour specimens and 17 normal specimens were obtained from Dr. Susan 

Kennedy (Consultant Histopathologist, St. Vincent‟s University Hospital (SVUH), 

Dublin. The patients underwent potentially curative resection at the hospital and after 

pathological examination; the tumors were snap frozen in liquid nitrogen. The tumors 

were subsequently stored at −70/−80°C and were later processed onto microarray chips 

(see section 2.5.11) by Dr. Lorraine O'Driscoll and Dr. Padraig Doolan.  

Clinical information was obtained from the hospital for all patients. The dataset contains 

information on the following clinical parameters for individual patients: 

 Estrogen Receptor status 

 Censored relapse free survival for 7 years. 

 Type of cancer e.g. lobular, ductal 

 Overall Relapsed status 

 RIP (Event of death due to disease) 

 Relapse within 5 years 

 Survival for 5 years 

 Age at diagnosis 

 Tumour type 

 Tamoxifen treatment status 

 Chemotherapy status 

 Tumour size  

 Tumour grade 

 Lymph Node Status 
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2.1.2 Data obtained from public repositories 

Several published datasets relating to breast cancer were downloaded from the GEO 

(Gene Expression Omnibus) (http://www.ncbi.nlm.nih.gov/geo/), Array Express 

(http://www.ebi.ac.uk/microarray-as/ae/) as well as from independent sources (Table 

2.1.2.1). Datasets from GEO carry a unique GEO ID and more information can be 

obtained by searching for the specified GEO number. For some experiments, gene 

expression values were available as raw data files, while for others they were available as 

processed data. For all the experiments for which raw data is available the data was 

processed using dChip algorithm. The summary of the experiments taken for analysis is 

depicted in Table 2.1.2.1. 

 

http://www.ncbi.nlm.nih.gov/geo/
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Experiment Chip type No. of samples Comments 

GEO: GSE3156 

(Bild et al.,  2006) 

U133 Plus2.0 19 Breast Cell 

line 

GEO: GSE3744 

(Richardson et al.,  2006) 

U133 Plus2.0 47 Breast clinical 

specimens 

GEO: GSE2034 

(Wang et al.,  2005; Carroll et al.,  

2006) 

U133A 286 Breast clinical 

specimens 

GEO: GSE2990 

(Sotiriou et al.,  2006) 

U133A 193 Breast clinical 

specimens 

GEO: GSE4922 

(Ivshina et al.,  2006)  

U133A+B 347 Breast clinical 

specimens 

GEO: GSE1456 

(Pawitan et al.,  2005) 

U133A+B 159 Breast clinical 

specimens 

GEO: GSE4570 

(Hoek et al.,  2004) 

U133A 8 Melanoma cell 

lines 

GEO: GSE4587 

(Smith, Hoek and Becker 2005) 

U133 Plus2.0 19 Melanoma 

clinical 

specimens 

GEO: GSE5720 

(Shankavaram et al.,  2007) 

U133A+B 60 Cell lines of 

different origin 

GEO: GSE1133 

(Su et al.,  2004) 

U133A 79 Various tissue 

(van 't Veer et al.,  2002) Hu25K 117 Breast clinical 

specimens 

(Paik et al.,  2004) 

(genes taken from paper) 

PCR-based 

assay 

668 Breast clinical 

specimens 

Array Express E-TABM-185 U133A 5897 Various tissue 

and cell lines 

Table 2.1.2.1: Summary of individual experiments included in study  
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2.1.3 Basal cell carcinoma cancer clinical microarray dataset generated at NICB 

Tissue specimens from twenty cases of BCC were procured at the Blackrock Clinic and 

the Bons Secours Hospitals, Dublin, were examined macroscopically, immediately snap-

frozen in liquid nitrogen, and were subsequently stored at -80°C until required for 

analysis. Five normal skin specimens (from consenting male and female volunteers of a 

similar age range who never had skin cancer) were also included in these studies. 

Following this microarray analysis was performed (see section 2.5.11) by Dr. Lorraine 

O'Driscoll and Dr. Padraig Doolan using Affymetrix U133plus chips 

2.2.1 Normalization and Quantification 

For experiments where raw data files were available, normalisation using the dChip 

algorithm (www.dchip.org) was carried out. DNA-Chip Analyzer (dChip) is a software 

package implementing model-based expression analysis of oligonucleotide arrays and 

several high-level analysis procedures. This model-based approach allowed probe-level 

analysis on multiple arrays. In this normalisation procedure, an array with median overall 

intensity is chosen as the baseline array against which other arrays are normalised at 

probe level intensity. Subsequently a subset of PM (“perfect match”) probes, with small 

within-subset rank difference in the two arrays (also known as invariant set), serves as the 

basis for fitting a normalisation curve. PM (“perfect match”) is the exact match is a 

section of the mRNA sequence whereas MM (“mismatch”) is identical except for one 

base difference from its exact match counterpart. 

2.2.2 Quality inspection  

The following Quality Control measures are reported by dChip 

 Median Intensity: This is the middle intensity (when all chip probe intensities are 

ordered from low to high intensity) of the un-normalized probe values. 

Normalization process brings the median intensity to a comparable level. 

 P (Present) call %: Calls indicate if the transcript is expressed or not. It can be „P‟ 

for “Present”, „M‟ for “Marginal” and „A‟ for “Absent”. Total P calls in an array 

http://www.dchip.org/
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can vary widely based on the different nature of samples, but usually range from 

40-60% for a cell line experiment and 25-35% for clinical tissue.  

 % Signal outlier: The signal value greater than 80
th

 percentile multiplied by 3 is 

taken as signal outlier and is represented as % signal outlier.  

 % Array outlier: The array-outliers are the arrays whose probe pattern for selected 

probe sets are different from the consensus probe patterns seen in most arrays. If 

the array outlier value increases above 5%, the chip is marked as an outlier chip 

and is marked by „*‟; indicating potential image contamination or sample 

hybridization problem of that array.  

Manual inspection: Apart from the above parameters manual inspection was also 

performed to estimate the quality of individual chips. An example of a good and bad 

quality chip is shown overleaf (Fig 2.2.2.1 and Fig 2.2.2.2). 
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Fig 2.2.2.1: An example of a good quality scan image (image simulated by dChip) 
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Fig 2.2.2.2: A chip with very high background (image simulated by dChip) 

2.2.3 Standard deviation filtration 

This filtration was applied as a prerequisite to Hierarchical clustering. The aim of this 

filtration was to remove genes which had a standard deviation divided by mean i) less 

than 1 across samples or ii) more than 1000 across samples. This process removed genes 

which i) did not fluctuate significantly across samples ii) fluctuated too highly across 

samples to be prognostically valuable 

2.2.4 Hierarchical Clustering 

Hierarchical clustering is a mathematical technique whereby the analysed samples/genes 

are connected iteratively based on their similarity. Samples/genes with similar expression 

patterns are grouped together and are connected by a series of branches, which is called a 
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dendrogram (or clustering tree). Hierarchical clustering was used to see how well 

samples clustered together, identify any sub-groups in the samples and identify correlated 

genes. Cluster analysis was also used to identify significant clinical parameter 

(enrichment analysis) associated with the cluster. The observed and expected clinical 

parameter was calculated for each cluster and the whole data and a hyper geometric 

distribution was used to calculate the p-value for individual clinical parameter in each 

cluster. Similar analysis was performed for clusters of genes enriched for particular Gene 

Ontology and Pathways. Genes in the cluster were compared to genes not in cluster to 

find clusters enriched with gene belonging to a particular gene ontology or pathway. 

2.2.5 Finding significant genes 

The following criterion was used to generate genelists. 

2.2.5.1 Fold change 

Fold change is the ratio of the mean of the experimental group to that of the baseline. It‟s 

a metric to define the gene's mRNA-expression level between two distinct experimental 

conditions.  

2.2.5.2 Difference 

 The difference of Affymetrix expression units (gene expression values obtained after 

dChip processing) was also incorporated for finding differentially regulated genes.  

2.2.5.3 T-test 

The t-test assesses whether the means of two groups are statistically different from each 

other. The t-statistic is calculated as follows: 

t = (XT  ¯  XC) / √ ( varT / nT + varC / nC ) 

XT   mean of Treatment samples 

XC   mean of Control samples 
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varT  variance of Treatment samples 

varC   variance of Control samples 

nT   number of Treatment  samples 

nC   number of Control samples 

Subsequently, the p-value is calculated from the t-test.  

The purpose of the t-test is to evaluate the null hypothesis that there is no difference 

between the means of two samples. The t-test is a parametric test which is used to analyse 

the mean and standard deviation of two or more groups of samples based on a number of 

underlying assumptions, including a normal distribution of the data within the test.  

 

Therefore, hypothesis testing facilitates the calculation of the probability of the observed 

value of the t-statistic occurring based on the assumption that the null hypothesis is true.  

 

For calculation of the probability,  the data is assumed to be normally distributed. By 

convention, a p-value of ≤0.05 is usually considered sufficient to reject the null 

hypothesis, i.e. that there is a real difference between the means (≤0.01 would be 

considered strong evidence) (Stekel, 2003). 

For gene ontology and pathway analysis, the filtration criteria used was as follows: FC>2, 

Difference of means > 100 and p-value ≤ 0.05. For developing the MLPERCEP classifier 

(see section 3.5), a p-value ≤ 0.001 was used. For gene list generation purposes, FC>1.2, 

Difference of means > 100 and p-value ≤ 0.05 was utilised. 

2.2.6 Identifier conversion 

NetAffx from Affymetrix and David and Ease was used for gene identifier conversion. 

This was essential wherever microarray genelists from different platforms were 

compared. 
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2.2.6.1 NetAffx 

NetAffx is provided by Affymetrix (www.affymetrix.com) and provides detailed 

annotation of its probe sets on various chips. Individual and batch query was used at 

various places to convert the Affymetrix identifier to a different identifier or vice versa. 

2.2.6.2 David and Ease 

David and Ease (http://david.abcc.ncifcrf.gov/) is an online tool for gene identifier 

conversion and was used at many places for converting the gene identifier.  

2.2.7 Gene list comparison 

Microsoft Access and Venny were used to compare various genelists. 

2.2.7.1 Microsoft access 

MSAccess is a database-building package that was used to compare different gene lists. 

MSAccess allowed comparison of like genes across multiple lists. It allowed comparison 

of genes and also relevant information such as probe sets, difference of means and p-

values. It was also used as a repository and used for database queries. It was also widely 

used for merging tables and adding annotations to genelists.  

2.2.7.2 Venny 

Venny (http://bioinfogp.cnb.csic.es/tools/venny/index.html) is a Venn diagram-drawing 

software tool that was used to overlap and compare genelists using Venn diagrams. 

2.2.8 GenMAPP 

GenMAPP (http://www.genmapp.org) is a computer application designed to visualize 

gene expression and other genomic data on maps representing biological pathways and 

groupings of genes. It overlays gene-expression data on the pathways incorporating 

colour-coding according to user-defined parameters. Additionally, the MappFinder 

module identifies significant Gene ontologies and pathways affected by the submitted 

genelists. 

http://www.affymetrix.com/
http://david.abcc.ncifcrf.gov/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://www.genmapp.org/
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MappFinder 

MAPPFinder is an accessory program that works with GenMAPP and the annotations 

from the Gene Ontology (GO) consortium to identify significant GO and MAPPs. The 

calculations made by MAPPFinder (Fig 2.2.8.1) are intended to give an idea of the 

relative amount of genes meeting the criterion that are present in each GO term or Local 

MAPP.  

 

Fig 2.2.8.1: Calculations made by GenMAPP to calculate the significant of 

individual GO and MAPPs. (Obtained from GenMAPP website) 

Genes meeting the criterion: The number of distinct genes that met the user-defined 

criterion in the Expression Dataset. This may also be referred to as "genes changed." 

Genes measured: The number of distinct genes in the submitted expression dataset that 

were found to link to this GO term or MAPP. 

Genes associated with this GO term or MAPP: The number of genes assigned to this GO 

term or on this MAPP. Also referred to as the number of "Genes in GO" for a specific 

term. 

% genes meeting the criterion: Genes meeting the criterion/genes measured * 100 

% genes measured: Genes measured/genes associated * 100 

Nested numbers: The same 5 calculations are repeated, but as nested numbers.  
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Z score: The standard statistical test under the hypergeometric distribution (Fig 2.2.8.2). 

 

Fig 2.2.8.2: Z-score calculation. (Obtained from GenMAPP website) 

Where N is the total number of genes measured, R is the total number of genes meeting 

the criterion, n is the total number of genes in this specific MAPP, and r is the number of 

genes meeting the criterion in this specific MAPP. A positive Z score indicates that there 

are more genes meeting the criterion in a GO term/MAPP than would be expected by 

random chance. A negative Z score indicates that the there are fewer genes meeting the 

criterion than would be expected by random chance.  

Hypergeometric distribution: The hypergeometric distribution is a discrete probability 

distribution that quantifies the number of successes in a sequence of n draws from a finite 

population without replacement. An example of the hypergeometric distribution is an urn 

with some red marbles and some black marbles and we have knowledge of the ratio of 

them. A handful of marbles is taken and analysed for significant difference between the 

ratio of red to black in the sample and the total population in the urn.  

Permute P and Adjusted P: p-value is calculated based on the Z score and the 

hypergeometric distribution.  A p-value of 0 indicates a value < 0.001. 

2.2.9 Genesis  

Genesis is comprehensive software for microarray data analysis. It is available at 

http://genome.tugraz.at/. This software was used to perform k-means clustering (see 

section 1.6.2.2) and principal component analysis (see section 1.6.3). K-means clustering 

is a mathematical technique where the similar experiments/genes are grouped together. 

Principal component analysis is a mathematical technique to reduce the dimensionality of 

the data, thus giving a deeper insight into hidden patterns that influence the level of 

variation within the dataset. 

http://genome.tugraz.at/
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2.2.10 Dev C++ 

Dev C++ is an environment and compiler code used to write and execute C and C++ 

programs. This software is available at http://www.bloodshed.net/devcpp.html 

MLPERCEP was developed using Dev C++.  

2.2.11 C# (C-sharp) 

Borland C# was used to build user interface for the MLPERCEP programs. The software 

is available at http://www.codegear.com/products/bds2006.  

2.2.12 Kaplan-Meier survival function 

 

The Kaplan-Meier estimate (KM) (Kaplan and Meier 1958) estimates the survival 

function from life-time data. In life science research, it is used to compare two groups of 

patients or treatments for differences in survival. Kaplan Meier curves represent the 

proportion of the study population surviving at successive times. Kaplan-Meier curves for 

the parameters of interest and the outcomes are represented on the graph and the p-value 

is used to determine the likelihood that there is no difference between the two survival 

curves. 

 

Kaplan-Meier plots of the estimate of the survival function as a series of steps of 

reducing magnitude. The X-axis normally depicts the time of survival and the y-axis 

represents the percent of patients surviving. The algorithm takes account of censored 

data; loss of part of the sample before the final outcome is observed, e.g. patients leaving 

the study or patients dying due to different causes before the study is completed. The 

survival functions are compared for significant differences using Chi-squared statistics. 

SPSS (http://www.spss.com/) software was used for performing Kaplan-Meier analysis 

which was performed by Dr. Lorraine O'Driscoll, NICB.  

http://www.bloodshed.net/devcpp.html
http://www.codegear.com/products/bds2006
http://www.spss.com/
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2.2.13 CLUSTALW 

CLUSTALW (http://www.ebi.ac.uk/Tools/clustalw2/index.html) was used to performing 

multiple sequence alignment. CLUSTALW is an online tool to perform sequence 

alignment. 

2.2.14 BLAST 

BLAST was used to search for homologues sequences. 

 (http://blast.ncbi.nlm.nih.gov/Blast.cgi ) 

2.2.15 Non-parametric analysis 

Non-parametric analysis was performed using MeV (http://www.tm4.org/). The p-value 

was calculated using Wilcoxon test. Wilcoxon rank-sum test is a nonparametric test 

similar to the two sample t-test and is based on the rank order in which the observations 

from the two samples fall. The test is based upon ranking the two sets of sample 

observations as  a combined ranking. Each observation therefore has a rank; the smallest 

has rank 1 and so on.  The Wilcoxon rank-sum test statistic is the sum of the ranks for 

observations from one of the samples. The genes were termed as significant if FC>1.2, 

Difference of means > 100 and p-value ≤ 0.05. 

2.3 Cell Culture Methods 

2.3.1 Water 

Ultra high pure water (UHP) was used in the preparation of all media and solutions. Pre-

treatment of water, involving activated carbon, pre-filtration and anti-scaling was first 

carried out. This water was then purified by a reverse osmosis system (Millipore Milli-

RO 10 Plus, Elgastat UHP), which is low in organic salts, organic matter, colloids and 

bacteria with a standard of 12 - 18 M /cm resistance. 

http://www.ebi.ac.uk/Tools/clustalw2/index.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.3.2 Treatment of Glassware 

All solutions for use in cell culture and maintenance were prepared and stored in sterile 

glass bottles. Bottles, lids and all other glassware used for any cell-related work were 

prepared as follows: all glassware and lids were soaked in a 2% (v/v) solution of RBS-25 

(AGB Scientific, 83460) for at least 1hrs. This is a deproteinising agent, which removes 

proteineous material from the bottles. Glassware was scrubbed and rinsed several times 

in tap water; the bottles were then washed by machine using Neodisher detergent, an 

organic, phosphate-based acid detergent. The bottles were then rinsed twice with distilled 

water, once with UHP water and sterilised by autoclaving. 

2.3.3 Sterilisation 

Water, glassware and all thermostable solutions were sterilised by autoclaving at 121°C 

for 20 min under 15 p.s.i. pressures. Thermolabile solutions were filtered through a 0.22 

m sterile filter (Millipore, millex-gv, SLGV-025BS). Low protein-binding filters were 

used for all protein-containing solutions. Acrodisc (Pall Gelman Laboratory, C4187) 

0.8/0.2 m filters were used for non-serum/protein solutions. 

2.3.4 Media Preparation 

Medium was routinely prepared and sterility checked by Mr. Joe Carey (technician) as in 

SOP NCTCC 003-02. 10X media were added to sterile UHP water buffered with HEPES 

(N- [2-Hydroxyethyl]-N‟- [2-ethanesulphonic acid]) (Sigma, H-9136) and NaHCO3 

(BDH, 30151) and adjusted to a pH of 7.45 - 7.55 using sterile 1.5M NaOH and 1.5M 

HCl. The media were then filtered through sterile 0.22 m bell filters (Gelman, 121-58) 

and stored in 500 ml sterile bottles at 4°C.  

The basal media were stored at 4
o
C up to their expiry dates as specified on each 

individual 10X medium container. Working stocks of culture media were prepared as 100 

ml aliquots and supplemented as required. These were stored for up to 3 weeks at 4
o
C; 

after this time, fresh culture medium was prepared. 
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2.4 Maintenance of cell lines 

2.4.1 Safety Precautions  

All cell culture work was carried out in a class II down-flow re-circulating laminar flow 

cabinet (Nuaire Biological Cabinet) and any work which involved toxic compounds was 

carried out in a cytoguard (Gelman). Strict aseptic techniques were adhered to at all 

times. The laminar flow cabinet was swabbed with 70% industrial methylated spirits 

(IMS) before and after use, as were all items used in the cabinet. Each cell line (including 

low and high passage cells) was assigned specific media and waste bottles and only one 

cell line was used at a time in the cabinet, which, was allowed to clear for 15 min 

between different cell lines. The cabinet and incubators were cleaned each week with 

industrial detergents (Virkon, Antec. International; TEGO, TH. Goldschmidt Ltd.). A 

separate Laboratory coat was kept for aseptic work and gloves were worn at all times 

during cell work.  

2.4.2 Culture of Adherent Cell Lines 

The cell lines used during the course of this study, their sources and their basal media 

requirements are listed in Table 2.4.2.1. Cell lines were generally maintained in 25 cm
2
 

(Costar, 3056) and 75 cm
2
 flasks (Costar, 3376) and fed every two to three days. 

Cell Line Media Cell Type 

MDA-MB-435S RPMI with 10% FCS Breast/Melanoma 

M14 RPMI with 10% FCS Melanoma 

MDA-MB-231 RPMI with 10% FCS Breast 

Table 2.4.2.1: Cell Lines used in this study  

MDA-MB-435s was earlier thought to be a breast cell line, but recent analysis using gene 

expression and clustering of this cell line with melanoma cell lines indicates the origin of 

this cell line to be melanoma (Rae et al., 2007; Ellison et al., 2002). 
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2.4.2.1 Subculture of Adherent Cell Lines 

Prior to subculture cells were always monitored for any contamination and were only 

sub-cultured when the cells were 70-80% confluent. During routine sub-culturing or 

harvesting of adherent cell lines, cells were removed from their flasks by enzymatic 

detachment. 

Medium were emptied from cell culture flasks and rinsed with a pre-warmed (37°C) 

trypsin/EDTA (Trypsin Versene - TV) solution (0.25% trypsin (Gibco, 25090-028), 

0.01% EDTA (Sigma, E-5134) solution in PBS (Oxoid, BR14a)). The purpose of this 

was to inhibit any naturally occurring trypsin inhibitor which would be present in residual 

serum. Fresh TV was then placed on the cells (2ml/25cm
2
 flask or 3ml/75cm

2
 flask) and 

the flasks incubated at 37°C until the cells were detached (5-10 min). The flasks were 

struck once, roughly, to ensure total cell detachment. The trypsin was deactivated by 

addition of an equal volume of growth medium (i.e. containing 10% serum). The entire 

solution was transferred to a 20ml sterile universal tube (Greiner, 201151) and 

centrifuged at 1,000 rpm for 5 min. The resulting cell pellet was resuspended in pre-

warmed (37°C) fresh growth medium, counted (see section 2.4.3) and used to re-seed a 

flask at the required cell density or to set up an assay. 

2.4.3 Cell Counting 

Sample of this mixture was applied to the chamber of a haemocytometer over which a 

glass cover slip had been placed. Cells in the 16 squares of the four outer corner grids of 

the chamber were counted microscopically. An average per corner grid was calculated 

with the dilution factor being taken into account. Final cell numbers were multiplied by 

10
4
 to determine the number of cells per ml (volume occupied by sample in chamber is 

0.1cm x 0.1cm x 0.01cm i.e. 0.0001cm
3
; therefore cell number x 10

4
 is equivalent to cells 

per ml).  

2.4.4 Cell freezing  

Cryoprotective medium or freezing medium was prepared in complete culture medium 

containing 10% dimethylsulfoxide (DMSO) (Sigma, D-5879) and filter sterilised using 
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0.22 µm filter and syringe. The appropriate number of cryogenic vials (Greiner, 122 278) 

were labelled with the cell line, passage no and date. Cells were trypsinised as outlined 

previously (see section 2.4.2.1). The supernatant from the centrifuged cells were removed 

and resuspend the cell pellet in 1 ml of fresh media. Freezing medium (10% DMSO) was 

slowly added drop wise to the cell suspension to give a final concentration to 5% of 

DMSO, and a final cell concentration of 5 x 10
6
 – 1 x 10

7 
cells/ml. This step was very 

important, as DMSO is toxic to cells. When added slowly, the cells had a period of time 

to adapt to the presence of the DMSO, otherwise cells may have lysed. 1.5-1.8 mls of the 

DMSO-containing cell suspension was then added to each of the vials. The cryovials 

were which were quickly placed at –80
o
C. To allow long term storage of cell stocks, cells 

were frozen and cryo-preserved in liquid nitrogen at temperatures below –180
o
C. 

2.4.5 Cell Thawing 

Prior to the removal of a cryovial from the liquid nitrogen stores for thawing, a sterile 

universal tube containing growth medium was prepared for the rapid transfer and dilution 

of thawed cells to reduce their exposure time to the DMSO freezing solution which is 

toxic at room temperature. The cryovial was removed and thawed quickly by rubbing by 

hand. When almost fully thawed, the DMSO-cell suspension was quickly transferred to 

the media-containing universal and centrifuged at 1,000 rpm for 5 min. the DMSO-

containing supernatant removed and the pellet re-suspended in fresh growth medium. 

Thawed cells were then placed into 25cm
2
 tissue culture flasks with 5mls of the 

appropriate type of medium and allowed to attach overnight. After 24hrs, the cells were 

re-fed with fresh medium to remove any residual traces of DMSO. 

2.4.6 Sterility Checks 

Sterility checks were routinely carried out on all media, supplements and TV used for cell 

culture. Samples of basal media were inoculated into Columbia blood agar plates (Oxoid, 

CM331), Sabauraud dextrose (Oxoid, CM217) and Thioglycollate broth (Oxoid, CM173) 

which when combined detect most contaminants including bacteria, fungus and yeast. 

Growth media (i.e. supplemented with serum) were sterility checked at least 3 days prior 

to use by incubating samples at 37°C. These were subsequently examined for turbidity 
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and other indications of contamination. Freshly thawed cells were also subjected to 

sterility checks. 

2.4.7 Mycoplasma Analysis 

Mycoplasma examinations were carried out routinely (at least every 3 months) on all cell 

lines used in this study. This analysis was preformed by Michael Henry and Shane Kelly 

at the National Institute for Cellular Biotechnology (NICB). 

2.4.7.1 Indirect Staining Procedure 

In this procedure, Mycoplasma-negative NRK cells (a normal rat kidney fibroblast line) 

were used as indicator cells and incubated with supernatant from test cell lines to test for 

Mycoplasma contamination. NRK cells were used for this procedure because cell 

integrity is well maintained during fixation. A fluorescent Hoechst stain was utilised 

which binds specifically to DNA and so will stain the nucleus of the cells in addition to 

any Mycoplasma DNA present. A Mycoplasma infection would thus be seen as small 

fluorescent bodies in the cytoplasm of the NRK cells and occasionally outside the cells.  

NRK cells were seeded onto sterile cover slips in sterile Petri dishes (Greiner, 633 185) at 

a cell density of 2x10
3
 cells per ml and were allowed to attach overnight at 37°C in a 5% 

CO2 humidified incubator. 1 ml of cell-free supernatant (cleared by centrifugation at 

1,000 rpm for 5 min) from each test cell line was then inoculated onto a NRK cover slip 

and incubated as before until the cells reached 20-50% confluency (4-5 days). After this 

time, the waste medium was removed from the Petri dish; the cover slips (Chance 

Propper, 22 x 22 mm) were washed twice with sterile PBS, once with a cold 

PBS/Carnoys (50/50) solution and fixed with 2 ml of Carnoys solution (acetic acid: 

methanol - 1:3) for 10 min. The fixative was then removed and after air-drying, the cover 

slips were washed twice in deionised water and stained with 2 ml of Hoechst 33258 dye 

(BDH) (50 ng/ml) for 10 min. 

From this point on, work proceeded in the dark to limit quenching of the fluorescent 

stain. The cover slips were rinsed three times in PBS. They were then mounted in 50% 
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(v/v) glycerol in 0.05 M citric acid and 0.1 M disodium phosphate and examined using a 

fluorescence microscope with a UV (ultraviolet) filter.  

Prior to removing a sample for Mycoplasma analysis, cells were be passaged a minimum 

of 3 times after thawing to facilitate the detection of low-level infection. Optimum 

conditions for harvesting supernatant for analysis occur when the culture is in log-phase 

near confluency and the medium has not been renewed in 2-3 days. 

2.5 Analytical Techniques  

2.5.1 Preparation of total RNA from cells using RNeasy Mini Prep Kit 

High quality RNA was isolated from cells using the RNeasy mini-kit (Qiagen, 74104). 

Cell pellets for RNA extraction (stored at –80
o
C) were re-suspended in 1.2 ml of buffer 

RLT (supplemented with 10µl/ml of β-mercaptoethanol) and vortexed to loosen the 

pellets. The samples were completely homogenised by passing the lysate at least 5 times 

through a blunt 20-gauge needle (0.9 mm diameter) fitted to an RNase-free syringe. One 

volume (1.2 ml) of 70% ethanol was added to the homogenised samples and mixed well 

by pipetting. This mixture was then loaded in 700 µl aliquots on to an RNeasy mini 

column, which was placed in a collection tube and centrifuged at 8,000 x g for 15 sec 

(this was continued until the entire mixture had been passed through the column). Once 

all the homogenised cells had been passed through the column, the washes were carried 

out. Initially 700 µl RW1 was loaded on to the column and centrifuged at 8,000 x g for 

15 sec. This was closely followed by 2 washes in buffer RPE (also followed by 

centrifuging at 8,000 rpm for 15 sec). To completely dry the spin column, it was placed 

in a fresh collection tube and centrifuged at full speed for 1 min. The RNA was eluted by 

passing two lots of 25 µl RNase free water (supplied) through the column by centrifuging 

it at 8,000 rpm for 1 min. The eluted RNA was then quantified (see section 2.5.2). 

2.5.2 RNA Quantification using NanoDrop 

The NanoDrop ND-1000 is a full-spectrum (220-750nm) spectrophotometer that 

measures 1 µl samples with high accuracy and reproducibility. It uses a sample retention 

technology that relies on surface tension alone to hold the sample in place eliminating the 
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need for cuvettes and other sample containment devices. In addition, the NanoDrop has 

the capability to measure highly concentrated samples without dilution (50X higher 

concentration than the samples measured by a standard cuvette spectrophotometer).  

To quantify an RNA sample, 1µl of the sample is pipetted onto the end of a fibre optic 

cable (the receiving fibre, Fig 2.5.2.1 (A)). A second fibre optic cable (the source fibre, 

Fig 2.5.2.1 (B)) is then brought into contact with the liquid sample causing the liquid to 

bridge the gap between the fibre optic ends. The gap is controlled to a 1mm path (Fig 

2.5.2.1 (C)). A pulsed xenon flash lamp provides the light source and a spectrometer 

utilising a linear CCD array is used to analyse the light after passing through the sample. 

The instrument is controlled by special software run from a computer, and the data is 

logged in an archive file on the computer.  

When measurement of the sample is complete, the sample can be simply wiped away 

using a soft laboratory wipe. This is sufficient to prevent sample carryover because each 

measurement pedestal is a highly polished end of a fibre optic cable, with no cracks or 

crevices for leftover sample to reside. 

Fig 2.5.2.1: Samples are quantified by loading 1µl onto the receiving fibre (A), the 

source fibre, connected to the sampling arm (B) is brought down into contact with 

the sample allowing a 1mm gap between the upper and lower pedestal (C), through 

which the light is passed. (Pictures adapted from ND-1000 Spectrophotometer users 

manual V 3.1.0).  

RNA (like DNA) was quantified using an ND-1000 spectrophotometer. The ND-1000 

software automatically calculated the quantity of RNA in the samples using the OD260. 
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 i.e. OD260 x 40 x Dilution Factor/1000 = RNA content ( g/ l) 

 The software simultaneously measured the OD280 of the samples allowing the purity of 

the sample to be estimated. 

Purity = OD260/OD280 

This was typically in the range of 1.8-2.0. A ratio of <1.6 indicated that the RNA may not 

be fully in solution. The RNA was diluted to 1 g/ l stocks for the subsequent reverse 

transcription (RT) protocol (see section 2.5.4).  

2.5.3 RNA amplification, labelling and fragmentation of cRNA in preparation for 

hybridisation to Affymetrix array chips 

Components required for this protocol were included in the Two-Cycle Target Labelling 

and Control Reagents (Affymetrix, P/N 900494) and MEGAscript High Yield 

Transcription Kit, Ambion Inc, P/N 1334 with the exception of Ethanol (Sigma, E7023). 

The positive control Poly-A RNA is firstly diluted before spiking in with the sample 

RNA. Affymetrix supply a Eukaryotic Poly-A RNA Control Kit along with the Two-

Cycle Target Labelling and Control Reagents. The kit is designed specifically to provide 

exogenous positive controls to monitor the entire GeneChip eukaryotic target labelling 

process.  It is important to note that the Poly-A spikes were made up in non-stick RNase/ 

DNase free tubes (Ambion cat no. 12450(1.5ml)/ 12350(0.5ml)), which prevents the 

Poly-A spikes from sticking to the sides of the tubes and interfering with the final 

concentration of the positive controls.  

The tube with first strand cDNA synthesis master mix (Table 2.5.3.1) was then flicked 

and centrifuged briefly. 2µl of this mix was added to 2µl of the 50ng/µl RNA sample. 

The tubes were flicked and centrifuged briefly before being incubated for 6 min at 70°C. 

They were then incubated for 2 min on ice and centrifuged briefly. 
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Reagents Amount 

Poly-A RNA Control 2μl 

T7-Oligo (dT) Primer (50 μM) 2μl 

RNA + RNase-free water 16μl 

Table 2.5.3.1: First-Strand cDNA Synthesis 

The first cycle, first strand master mix was prepared as in Table 2.5.3.2. It is worth noting 

that Affymetrix suggest that if there are more than 2 samples that it is prudent to include 

extra to compensate for potential pipetting inaccuracy or solution lost during the process. 

The 5µl of first strand master mix was added to each sample, the tube gently flicked, 

briefly centrifuged and placed immediately at 42°C for 1hr and 72°C for 10 min before 

being placed on ice for 2 min. 

Reagents Amount 

5X 1st strand buffer 2μl 

DTT (0.1M) 1μl 

dNTP (10mM) 0.5μl 

RNase Inhibitor  0.5μl 

Superscript II 1µl 

Total 7μl 

Table 2.5.3.2: 1st strand master mix 

The first cycle second strand master mix was prepared by adding following reagents 

(Table 2.5.3.3). This 10µl mix was then added to each tube which were then flicked and 

centrifuged briefly before being placed at 16°C for 2hrs and 75°C for 10 min and then ice 

for 2 min. 

 

 



 67 

 Reagents Amount 

RNase-free Water 4.8μl 

dNTP (10mM) 0.4μl 

MgCl2 (17.5mM)  4μl 

E. coli DNA Polymerase 0.6μl 

RNase H 0.2μl 

Total Volume 10μl 

Table 2.5.3.3: Second-strand master mix  

The components for the first cycle IVT amplification (Ambion Megascript T7 kit) were 

assembled at room temperature. 5µl of each of the components ATP, CTP, UTP, GTP, 

enzyme mix and 10 x reaction buffers were added together for each sample included 

before being added to each sample. The tubes were gently flicked, centrifuged and placed 

at 37°C for 16hrs. 

 

 Reagents Amount 

10X Reaction Buffer  5μl 

CTP Solution  5μl 

GTP Solution  5μl 

10X Reaction Buffer  5μl 

CTP Solution  5μl 

GTP Solution  5μl 

Total Volume  30μl 

Table 2.5.3.4: First-Cycle, IVT Master Mix 

The cRNA was then purified using the GeneChip Sample Cleanup module (Affymetrix, 

900371) as recommended by the manufacturers instructions. 

The quantity of the cRNA was subsequently checked by diluting 2µl of cRNA in 18µl of 
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H2O and reading the quantity by using the NanoDrop (see section 2.5.2). 600ng is 

required for the second cycle of the protocol. 2µl of freshly diluted random primers 

(3µg/µl) was added to each sample and the tubes were flicked, centrifuged briefly and 

placed at 70°C for 10 min before being placed on ice for 2 min.  

The second cycle first strand mix was prepared by adding each reagent together as in 

Table 2.5.3.5 for each sample included. This 9µl was added to each sample before they 

were flicked, centrifuged and placed at 42°C for 1hr and ice for 2 min. After this, 1µl of 

RNase H was added to each sample before they were flicked, spun, and placed at 37°C 

for 20 min, 95°C for 5 min and ice for 2 min.  

 Reagents Amount 

5X 1st Strand Reaction Mix  4μl 

DTT, 0.1M  2μl 

RNase Inhibitor  1μl 

dNTP (10mM) 1μl 

SuperScript II  1μl 

Total Volume  9μl 

Table 2.5.3.5: Second-Cycle, First-Strand Master Mix 

4µl of a freshly prepared aliquot of T7 Oligo dT primer was added to each sample before 

they were flicked, centrifuged briefly and incubated at 70°C for 6 min and ice for 2 min. 

The second cycle second strand master mix was prepared by adding the following in a 

tube for each sample required (Table 2.5.3.6). This 125µl master mix was added to each 

sample before being flicked, centrifuged briefly and incubated for 2 hrs at 16°C. T4 DNA 

polymerase (2µl) was then added to each sample before incubating at 16°C for a further 

10 min. After incubating the samples at 4°C for 2 min, they were immediately purified 

using the GeneChip Sample Cleanup module (Affymetrix, 900371) following the 

manufacturers instructions. 
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 Reagents Amount 

RNase-free Water  88μl 

5X 2nd Strand Reaction Mix  30μl 

dNTP, 10mM  3μl 

E. coli DNA Polymerase I  4μl 

Total Volume  125μl 

Table 2.5.3.6: Second-Cycle, Second-Strand Master Mix 

All 12µl of cDNA were used for the second IVT step. The reagents required for this step 

were assembled at room temperature. The master-mix included 8µl RNase- free water, 

4µl of IVT labelling buffer, 12µl IVT labelling NTP mix and 4µl labelling enzyme mix 

for each sample included. The 28µl volume was added to each sample before flicking, 

centrifuging briefly and incubating at 37°C for 16 hrs. 

The biotin-labelled cRNA was purified using the GeneChip Sample Cleanup module 

(Affymetrix, 900371), as recommended by the manufacturers, and quantified using a 

NanoDrop. For quantification of cRNA when using total RNA as starting material, an 

adjusted cRNA yield needed to be calculated to reflect carryover of unlabeled total RNA. 

Using an estimate of 100% carryover, the formula below was used to determine adjusted 

cRNA yield: 

Adjusted cRNA yield = RNAm - (total RNAi) (y) 

Where, RNAm = amount of cRNA measured after IVT (µg), total RNAi = starting 

amount of total RNA (µg), y = fraction of cDNA reaction used in IVT  

The final step of the entire process was to fragment 20µg of the biotin-labelled cRNA by 

adding 8µl of fragmentation buffer to 20µg of cRNA and bringing the total volume of the 

reaction to 40µl, so that the concentration of the cRNA is 0.5µg/µl. This mix was 

incubated for 35 min at 94°C. From the fragmented cRNA 30µl (=15µg) was hybridised 

to the Affymetrix U133-plus-2 chip.  
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2.5.3.1 Probe Array Scan 

After staining and washing, the chips were scanned using an Affymetrix GeneChip 

Scanner 3000 (Affymetrix, 00-0186). The sample door on the scanner was opened and 

the probe array was inserted into the holder. Affymetrix GeneChip Operating Software 

(GCOS) runs all aspects of the array process, saving images of the scanned probe array in 

a data file (*.dat). GCOS automatically calculates the *.cel (Cell Intensity File) file from 

each *.dat file, which contains a single intensity value for each probe cell delineated by 

the grid (calculated by the Microarray Suite 5.0 (MAS5.0) algorithm) (ref- Affymetrix, I. 

Statistical Algorithms Description Document. 2002.  

http://www.affymetrix.com/support/technical/whitepapers.affx ). The chip File (*.chp) 

generated from the analysis of a probe array contains qualitative and quantitative analysis 

for every probe set. The report file (*.rpt) generated by GCOS summarizes the data 

quality information for a single experiment. The report is generated from the analysis 

output file (*.chp). 

2.5.3.2 Quality assessment of Affymetrix microarray chips 

The quality of the data generated with Affymetrix microarray chips was assessed based 

on different criteria including the scaling factor, background and noise levels, GAPDH 

3‟/ 5‟ ratios and the % Present call. 

Scaling factor: The scaling factor was the multiplication factor applied to each signal 

value on an array. A scaling factor of 1.0 indicates that the average array intensity was 

equal to the target intensity. Scaling factors vary across different samples and so there 

were no set guidelines for any particular sample type. However, Affymetrix advise that 

for replicates and comparisons involving a relatively small number of changes, the 

scaling/normalization factors (calculated by the global method) should be comparable 

among arrays. Larger discrepancies among scaling/normalization factors (e.g., three-fold 

or greater) may indicate significant assay variability or sample degradation leading to 

noisier data.  

 

http://www.pubmedcentral.nih.gov/redirect3.cgi?&&auth=0R76aKYU9SWo7fRf7nwgioTkNVupwL30T7A9Gs5Ah&reftype=extlink&artid=1345700&article-id=1345700&iid=125831&issue-id=125831&jid=4&journal-id=4&FROM=Article%7CCitationRef&TO=External%7CLink%7CURI&rendering-type=normal&&http://www.affymetrix.com/support/technical/whitepapers.affx
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Background and noise levels: Although there are no official guidelines regarding 

background, Affymetrix has found that typical Average Background values range from 

20 to 100 for arrays scanned with the GeneChip® Scanner 3000. Arrays being compared 

should ideally have comparable background values. A high background (over 60%) 

implies that impurities, such as cell debris and salts, are binding to the probe array in a 

non-specific manner, and that these substances are fluorescing at 570nm (the detection 

wavelength). This non-specific binding (noise) causes a low signal-to-noise ratio (SNR), 

meaning that transcripts present at very low levels in the sample may be incorrectly 

called as “Absent”. High background creates an overall loss of sensitivity in the 

experiment 

GAPDH 3‟/ 5‟ ratios: β-actin and GAPDH are used to assess RNA sample and assay 

quality for the majority of GeneChip expression arrays. Specifically, the Signal values of 

the 3‟ probe sets for β-actin and GAPDH are compared to the Signal values of the 

corresponding 5‟ probe sets. The ratio of the 3‟ probe set to the 5‟ probe set is generally 

no more than 3 for the 1-cycle assay. A high 3‟ to 5‟ ratio may indicate degraded RNA or 

inefficient transcription of ds cDNA or biotinylated cRNA. 3‟ to 5‟ ratios for internal 

controls are displayed in the Expression Report (.rpt) file. 

%Present call: The number of probe sets called “Present” relative to the total number of 

probe sets on the array is displayed as a percentage in the Expression Report (.rpt) file. 

Percent present (%P) values depend on multiple factors including cell/tissue type, 

biological or environmental stimuli, probe array type, and overall quality of RNA. 

Replicate samples should have similar %P values. Extremely low %P values are a 

possible indication of poor sample quality. In practice, % present calls averaged between 

40-60% for cell line RNA and 15-25% for clinical specimens. 

2.5.4 Reverse Transcription of RNA from cells (cDNA Synthesis) 

For cDNA synthesis High-Capacity cDNA Reverse Transcription Kit was used (Applied 

BioSystems, 43755750). The components of the kit were allowed to thaw on ice. RT 

master mix was also prepared on ice as described in Table 2.5.4.1.  
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Component Volume (µl) 

10X RT Buffer 2 

25X dNTP Mix (100 mM) 0.8 

10X Random Primers 2 

MultiScribe Reverse Transcriptase 1 

Nuclease-free H2O 4.2 

Total 10 

Table 2.5.4.1: 2X RT Master Mix 

10μl of 2X RT master mix were pipetted into each 0.5 ml eppendorf tube (Eppendorf, 

0030 121 023). To this eppendorf tube 10μl of RNA sample (400ng) was mixed by 

pipetting up and down few times. The tubes were then briefly centrifuged to spin down 

the contents and to eliminate any air bubbles and placed on ice until ready to be loaded in 

the thermal cycler. The thermal cycler was programmed as per Table 2.5.4.2. 

Step 1 Step 2 Step 3 Step 4 

Temperature (
o
C) 25 37 85 4 

Time 10 min 120 min 5 sec ∞ 

Table 2.5.4.2: Programme for thermal cycler  

2.5.5 Quantitative real time RT-PCR (qRT-PCR) 

TaqMan probes are oligonucleotides that have fluorescent reporter dyes attached to the 5' 

end and a quencher moiety coupled to the 3' end. These probes are designed to hybridize 

to an internal region of a PCR product. In the unhybridized state, the proximity of the 

fluor and the quench molecules prevents the detection of fluorescent signal from the 

probe. During PCR, when the polymerase replicates a template on which a TaqMan 

probe is bound, the 5'- nuclease activity of the polymerase cleaves the probe. This 

decouples the fluorescent dye thus, increasing the fluorescence in each cycle, 

proportional to the amount of probe cleavage. 
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2.5.5.1 Primer Design 

Primer design was done using Primer Express from Applied BioSystems 

(http://www.appliedbiosystems.com) and the primers were ordered from MWG 

(http://www.mwg-biotech.com/). The primers were designed across the introns, making 

them specific for detection of RNA. Since the two genes under study (ROPN1 and 

ROPN1B was 95% homologous, the region with maximum variability among the two 

genes was taken for the design of forward primers, reverse primers and probe.  

2.5.5.2 qRT-PCR 

The TaqMan quantitative Real time PCR (qRT-PCR) analysis was preformed using the 

Applied BioSystems. In order to exclude any amplification product derived from 

genomic DNA or any other contaminant that could contaminate the RNA preparation, 

total RNA without reverse transcription was used as a negative control. Water on its own 

was used as a negative control to detect the presence of any contaminating RNA or DNA. 

Reagents  Volume 

Nuclease-Free water (Ambion, 9930) 5µl 

TaqMan® Fast Universal PCR master mix (2 X) (Applied 

BioSystems, 4352042) 10µl 

Forward primer 1µl 

Reverse primer 1µl 

Probe 1µl 

Total 18µl 

Table 2.5.5.2.1: qRT-PCR Reaction Mixture 

18µl of reaction master mix (Table: 2.5.5.2.1) was added to the MicoAmp fast optical 96-

well reaction plate (Applied BioSystems, 4346906) followed by 2µl of the cDNA. 

 

http://www.appliedbiosystems.com/
http://www.mwg-biotech.com/
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Step 

Denature PCR 

HOLD 
CYCLE (40 cycles) 

Denature Anneal/Ext 

Time 20 sec 3 sec 30 sec 

Temp 95
o
C 95

o
C 60

o
C 

Table 2.5.5.2.2: Thermal cycling conditions used in this study 

Cycle threshold: The Threshold is the level of detection or the point at which a reaction 

reaches a fluorescent intensity above background. The threshold line is set in the 

exponential phase of the amplification for the most accurate reading. The cycle at which 

the sample reaches this level is called the Cycle Threshold, Ct. 

Relative Quantification: Relative quantification determines the change in expression of a 

nucleic acid sequence (target) in a test sample relative to the same sequence in a 

calibrator sample (control). 

2.5.6 Large scale plasmid preparation 

Luria-Bertani (LB Broth) was prepared as per Table 2.5.6 and was autoclaved. An aliquot 

of 10 mls LB Broth was taken in a 20 ml universal. Ampicillin was added to this broth at 

a concentration of 100μg/ml and inoculated with 10-20µl of glycerol stock for one unique 

clone. This was grown for 6-7hrs in an upright shaker at 37
o
C and ~300rpm. This was 

further inoculated into a 1000 ml flask with 400 mls of LB Broth containing amplicillin 

antibiotic (100μg/ml). The culture was incubated at 37
o
C with vigorous shaking 

(~300rpm) for ~8hrs. The bacterial cells were then harvested by centrifugation at 6000xg 

for 15 min at 4
o
C. Plasmid DNA was then extracted using the Qiagen Endofree Plasmid 

Purification Kit (Qiagen, 12362) (see section 2.5.6.1). DNA concentration was 

determined by measuring using NanoDrop at OD260nm (see section 2.5.2). 
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Reagents Volume 

Peptone 20g/L 

Yeast Extract 10g/L  

NaCl 5g/L 

Table 2.5.6: 2X-LB broth (low-salt) media preparation  

2.5.6.1 Isolation of plasmid DNA using Qiagen Endofree Plasmid Purification Kit 

Pelleted bacterial cells were resuspended in 250μl Buffer P1 with RNase A until no 

clumps were visible. This was then transfered to a microcentrifuge tube. 250μl of Buffer 

P2 was added to this mixture and mixed thoroughly by inverting the tube gently 4–6 

times until the solution became viscous and slightly clear. To this mixture 350μl of 

Buffer N3 was added and mixed immediately and thoroughly by inverting the tube 4–6 

times till the solution became cloudy. This solution was then centrifuged for 10 min at 

13,000 rpm (~17,900 x g). During centrifugation the vacuum manifold and QIAprep spin 

columns (Qiagen, 27104) were prepared. The supernatant from this was pipetted to the 

QIAprep spin column. The vacuum source was then switched on to draw the solution 

through the QIAprep spin columns. The QIAprep spin column was washed by adding 0.5 

ml Buffer PB and the vacuum source was switched on. After the solution had moved 

through the column, the vacuum source was switched off. This wash step removed trace 

nuclease activity. The QIAprep spin column was again washed by adding 0.75 ml Buffer 

PE. The vacuum source was again switched on to draw the wash solution through the 

column and then switched off. The QIAprep spin columns were then transferred to a 

microcentrifuge tube and centrifuged for 1 min. This step removed residual Buffer PE 

and ethanol from Buffer PE that may inhibit subsequent enzymatic reactions. The 

QIAprep column was then placed in a clean 1.5 ml microcentrifuge tube and DNA was 

eluted by adding 50μl Buffer EB (10mM Tris·Cl, pH 8.5) the center of the QIAprep spin 

column. The QIAprep spin column was allowed to stand for 1 min and then centrifuged 

for 1 min. 
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2.5.7 Plasmid transfection protocol 

To determine the optimal conditions for plasmid transfection in 6-well plates, an 

optimisation with GFP plasmid was carried. Cell suspensions were prepared at 2x10
5
 

cells per ml of plating media and plated one day in advance in 6-well plate (2 ml per 

well). Solutions of GFP plasmid at a concentration of 2µg/µl were prepared in optiMEM 

(Gibco, 31985). Lipofectamine 2000 (2, 4, 6µl) solutions were prepared in 500µl 

optiMEM and incubated at room temperature for 5 min. After incubation, the 

lipofectamine- optiMEM solution was added to each GFP plasmid. These solutions were 

mixed well and incubated for a further 20 min at room temperature. 500 l of the 

plasmid/lipofectamine solutions were added to a 6-well plate. The plates were mixed 

gently and incubated at 37 C for 5hrs. After 5hrs, the transfection mixture was removed 

from the cells and the plates were fed with fresh medium. After 72hrs, cells were 

observed under the fluorescent microscope. The conditions chosen for large-scale use 

were those that showed the most fluorescent cells and fewest dead floating cells.  

The plasmid in bacteria was obtained from Open Biosystems 

(http://www.openbiosystems.com). Details are in Table 2.5.7. 

Gene Accession Vector  Catalogue 

ROPN1 BC132744.1, 

BC132744 

PCR4-TOPO MHS4426-

99240150 

ROPN1B BC015413, 

BC015413.1, 

BG034740.1, 

BG034740 

PCMV-SPORT6 MHS1010-58339 

Table 2.5.7: Details of the cDNA used in the study 

2.5.8 RNA interference (RNAi) 

RNAi was carried out using small interfering RNAs (siRNAs) to silence specific genes. 

The siRNAs used were purchased from Ambion Inc (USA). Details of the individual 

siRNA are listed in Table 2.5.7.1. These siRNAs were 21-23 bp in length and were 
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introduced to the cells via reverse transfection with the transfection agent NeoFx 

(Ambion Inc., 4511). The details of siRNA used are listed in Table 2.5.8. The siRNA 

obtained was 5nmol and was diluted with 100µl nuclease free water to obtain a stock of 

50µM. The transfection solution was prepared using 30nm siRNA and 4µl of NeoFx.  

The amount of siRNA used was calculated as follows: 

Amount required = (required concentration / existing concentration) x total transfection 

volume 

In this case; Amount required = (30 x 10
-9 

g / 50 x 10
-6 

g) x 1100µl = 0.66µl/well 

This amount was diluted with 50µl of optiMEM. Similarly NeoFx was diluted with 50µl 

optiMEM. Both were incubated for 10 min, mixed, again incubated for 10 min and then 

placed in the wells of 6 well plates. Cell suspension @2 x 10
5 

per
 
well was placed on top 

of the siRNA solution and mixed. This was placed in incubator at 37 C. The media was 

changed after 24hrs and the assay was performed after 72hrs following transfection.  

Gene Ambion Catalogue Ambion siRNA Id 

ROPN1B 16708A 279600 

ROPN1B 16708A 279601 

ROPN1B 16708A 279602 

ROPN1 4392420 S29402 

ROPN1 4392420 S29404 

Negative Control 4611 Negative control 1 

Table 2.5.8: Ambion siRNA details used in the study 

2.5.9 Western Blot analysis 

2.5.9.1 Lysis of cell pellet 

A stock of lysis buffer was prepared using the reagents as shown in table 2.5.9.1.1. 

Working lysis buffer was prepared fresh every time before use as shown in the table 

2.5.9.1.2. 
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Reagents Volume 

1M Tris pH 7.4 2 ml 

3M NaCl 1.66 ml 

1M NaF 5 ml 

10% NP40 1 ml 

H2O 90.34 ml 

Total 100 ml 

Table 2.5.9.1.1: NP40 Lysis Buffer Stock 

 

Reagents Volume 

100mM Sodium Orthovanidate 10 l 

100mM PMSF 10 l 

Protease Inhib Cocktail 40 l 

NP40 Lysis Buffer 940 l 

Total 1000 l 

Table 2.5.9.1.2: Working Lysis Buffer 

After 72hrs of transfection, the cells were lysed in the 6-well plate. Prior to lysis, the 

plate was washed twice with cold PBS and drained of all supernatant. Cold lysis buffer 

(40 l) was added to the cells, dropping it evenly over the whole well/plate. The cells 

were scraped from the well and all the lysed/scraped cells were gathered in one corner of 

the well. The solution was pipetted up and down without frothing and placed in a pre-

chilled eppendorf tube (Eppendorf, 0030 121 023). The tube was vortexed for 30-60 sec 

until the solution was homogenised. The tube was placed on ice for 20 min and 

centrifuged at maximum speed in a microfuge for 15 min. The supernatant was 

transferred to a fresh chilled eppendorf tube and immediately quantified for protein (see 

section 2.5.9.2). The samples were prepared with 2-5X loading buffer (Sigma, S-3401) 

and water was added to make the all the samples at the same concentration. Parafilm was 

wrapped around the lids of the eppendorfs (to avoid evaporation) and the samples were 

boiled for 3-5 min. If not used immediately, the samples were stored at –20
o
C until 

needed. 
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2.5.9.2 Protein Quantification 

Lysed samples were removed from the freezer and placed on ice. A BSA standard of 1 

mg/ml was prepared in UHP. Diluted BSA Standards was prepared and 5μl of standard 

and 5μl of sample were placed in triplicate wells on a 96-well plate (Costar, 3596). The 

Biorad Dc Protein Assay (Biorad, 500-0116) was used for protein quantification. 25μl of 

Reagent A (containing 20μl Reagent S (Biorad, 500-0115) per ml of Reagent A (500-

0113)) followed by 200μl of Reagent B (Biorad, 500-0114) were added to each test well. 

The plate was kept at room temperature for 15 min prior to reading on the Spectra Max 

Plus using a softmax Lowry protein assay (750nm) program. 

2.5.9.3 Gel electrophoresis 

Proteins for Western blot analysis were separated by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE). Resolving and stacking gels were prepared as outlined in 

table 2.5.8.4.1 and poured into clean 10 cm x 8 cm gel cassettes, separated by 0.75 cm 

plastic spacers. The plates were cleaned by tap water, followed by UHP. After drying, the 

plates were wiped down in one direction using tissue paper soaked in 70% Industrial 

Methylated Spirits (IMS). The spacers and comb used were also cleaned in this way. 

After these had dried, the resolving gel was poured first and allowed to set for 20 min at 

room temperature. The stacking gel was then poured and a comb was placed into the 

stacking gel in order to create wells for sample loading. Once set, the gels could be used 

immediately or wrapped in wet tissue paper and stored at 4
o
C for 24hrs. 

1X running buffer (Table 2.5.9.3) was added to the running apparatus before samples 

were loaded. The samples were loaded onto the stacking gels, in equal amounts relative 

to the protein concentration of the sample. The empty wells were loaded with loading 

buffer. 
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Reagents Volume 

Glycine 14.4 g 

Tris 3.03 g 

SDS 1g 

H2O 1L 

Table 2.5.9.3: Running Buffer Components 

The samples were loaded including 7µl of molecular weight colour protein markers (New 

England Biolabs, P7708S). The gels were run at 200 V, 45mA for approximately 1.5hrs. 

When the bromophenol blue dye front was seen to have reached the end of the gels, 

electrophoresis was stopped. 

2.5.9.4 Western blotting  

Following electrophoresis, the acrylamide gels were equilibrated in transfer buffer (2mM 

Tris, 192mM glycine (Sigma, G-7126) pH 8.3-8.5 without adjusting) for 10 min. The 

protein in the gels was transferred onto nitrocellulose membranes (Boehringer 

Mannheim, 1722026) by semi-dry electroblotting. Eight sheets of Whatman 3 mm filter 

paper (Whatman, 1001824) were soaked in transfer buffer and placed on the cathode 

plate of a semi-dry blotting apparatus (Biorad, 170-3940). Excess air was removed from 

between the filters by rolling a universal tube (Sterilin, 128a) over the filter paper. A 

piece of nitrocellulose membrane, cut to the same size of the gel, was prepared for 

transfer (soaked in transfer buffer) and placed over the filter paper, making sure there 

were no air bubbles.  

The acrylamide gel was placed over the nitrocellulose membrane and eight more sheets 

of pre-soaked filter paper were placed on top of the gel. Excess air was again removed by 

rolling the universal over the filter paper. The proteins were transferred from the gel to 

the nitrocellulose at a current of 34mA at 15V for 24-25 min.  

All incubation steps from then on, including the blocking step, were carried out on a 

revolving apparatus (Stovall, Bellydancer) to ensure even exposure of the blot to all 
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reagents. The nitrocellulose membranes were blocked for 2hrs at room temperature with 

fresh 5% non-fat dried milk (Cadburys, Marvel skimmed milk) in Tris-buffered saline 

(TBS) with 0.5% Tween (Sigma, P-1379). After blocking, the membranes was washed 3 

x 5 min using 1X TBS/PBS. The membrane was then incubated with 5 to 10 mls primary 

antibody (concentration of primary antibody was used as in Table 2.5.9.4.2) for 1hr. 

Details of the antibody used is listed in Table 2.5.9.4.2. The membrane was again was 

washed 3 x 5 min using 1X TBS/PBS and then incubated in secondary antibody (Mouse 

antibody diluted at 1/1000) (DakoCytomation, P 0260). Finally the membrane was 

washed 3 x 5 min using 1X TBS/PBS. Bound antibody was detected using enhanced 

chemiluminescence (ECL) (Amersham, RPN2109) (see section 2.5.9.5). 

Components Resolving 

gel (7.5%) 

Resolving 

gel (12%) 

Stacking  

Acrylamide stock(Sigma, A3574) 3.8 mls 5.25 mls 0.8 mls 

Ultra pure water 8.0 mls 6.45 mls 3.6 mls 

1.5M-Tris/HCl, pH 8.8(BioRad, 161-0798) 3.0 mls  3.0 mls  - 

1.25M-Tris/HCl, pH 6.8(BioRad, 161-0799) - - 0.5 mls 

10% SDS(Sigma, L-4509) 150 mls 150 mls 50 mls 

10% Ammonium persulphate(Sigma, A-1433) 60 mls 60 mls 17 mls 

TEMED(Sigma, T-8133) 10 mls 10 mls 6 mls 

Table 2.5.9.4.1: Preparation of electrophoresis gels 

Note: *Acrylamide stock solution consists of 29.1g acrylamide (Sigma, A8887) and 0.9g 

NN‟-methylene bis-acrylamide (Sigma, 7256) dissolved in 60ml UHP water and made up 

to 100ml final volume. The solution was stored in the dark at 4
o
C for up to 1 month. All 

components were purchased from Sigma, SDS (L-4509), NH4-persulphate (A-1433) and 

TEMED, N,N,N,N‟-tetramethylethylenediamine (T-8133). 
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Antibody Dilution/Concentration Supplier Cat. No.  

Ropporin 1/1000 Abnova H00054763-M03  

α tubulin  1/5000  Abcam ab7291 

Table 2.5.9.4.2: List of primary antibodies used for western blot analysis 

2.5.9.5 Enhanced chemiluminescence detection 

Protein bands were developed using the Enhanced Chemiluminescence Kit (ECL) 

(Amersham, RPN2109) according to the manufacturer‟s instructions. The blot was 

removed to a darkroom for all subsequent manipulations. A sheet of parafilm was 

flattened over a smooth surface, e.g. a glass plate, making sure all air bubbles were 

removed. The membrane was placed on the parafilm, and excess fluid removed. 1.5 mls 

of ECL detection reagent 1 and 1.5 mls of reagent 2 were mixed and covered over the 

membrane. Charges on the parafilm ensured the fluid stayed on the membrane. The 

reagent was removed after one minute and the membrane covered in cling film. The 

membrane was exposed to autoradiographic film (Boehringer Mannheim, 1666916) in an 

autoradiographic cassette for various times, depending on the signal (30s – 15 min). The 

autoradiographic film was then developed.  

The exposed film was developed for 5 min in developer (Kodak, LX24, and diluted 1:6.5 

in water). The film was briefly immersed in water and fixed (Kodak, FX-40, diluted 1:5 

in water), for 5 min. The film was transferred to water for 5 min and then air-dried. 

2.5.10 Invasion assay 

2.5.10.1 Reconstitution of ECM proteins.  

Matrigel (Sigma, E-1270) was diluted to a working stock of 1 mg/ml in serum free 

DMEM. Aliquoted stocks were stored at –20
o
C. 

2.5.10.2 In vitro invasion assays 

100µl of matrigel were placed into each insert (Falcon, 3097) (8.0µm pore size, 24-well 

format) and kept at 4
o
C for 24hrs. The insert and the plate were then incubated for one 
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hour at 37
o
C to allow the proteins to polymerize. Cells were harvested and resuspended 

in culture media at 1 × 10
6
 cells/ml. Excess media/PBS was removed from the inserts, 

and they were rinsed with culture media. 100µl of the cell suspension was added to each 

insert and 500µl of culture medium was added to the well underneath the insert. Cells 

were incubated for 24hrs. After this time period, the inside of the insert was wiped with a 

cotton swab dampened with PBS, while the outer side of the insert was stained with 

0.25% crystal violet for 10 min and then rinsed in distilled water and allowed to dry. The 

inserts were then viewed and photographed under the microscope. The invasion assays 

were quantified by counting cells in 10 random fields within a grid at 20x objectives and 

graphed as the total number of cells invading at 200 x magnifications.  

2.5.11 Motility assay 

Motility assays were carried out as described in section 2.5.10.2, without the addition of 

ECM. 

2.5.12 Microsoft PowerPoint 

Microsoft PowerPoint is a presentation program developed by Microsoft. All the non-

referenced diagrams (Fig 1.6.2.1.1, Fig 1.6.2.1.2, Fig 1.6.2.1.3, Fig 1.6.2.1.4, Fig 1.7.1, 

Fig 1.10.1.1 and Fig 3.5.2.1) were drawn using Microsoft PowerPoint.  
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3.1 Breast Cancer clinical specimens 

Microarray gene expression profiling of 17 normal breast tissue specimens and 104 breast 

cancer specimens was performed using Affymetrix U133 Plus2.0 arrays as outlined in 

section 2.5.3. The aim was to study the clinical heterogeneity among breast tumors using 

gene expression data. Additionally the following comparisons based on clinical data were 

performed to study important genes, ontologies and pathways affected by the changing 

gene lists: 

 1) Normal vs. tumour 

 2) Estrogen receptor-negative vs. Estrogen receptor-positive 

 3) Lymph node-negative vs. Lymph node-positive 

 4) Grade 1 vs. Grade 2 

 5) Grade 2 vs. Grade 3 

 6) Tumour Size < 2.8cm vs. > 2.8 cm 

 7) Patients who did not relapse vs. patients who did relapse (Overall relapse) 

 8) Patients who survived vs. patients who did not survive (Overall survival) 

9) Patients who did not relapse within 5 years vs. patients who did relapse within 

5 years (Relapse 5yrs) 

10) Patients who survived for 5 years vs. patients who did not survive beyond 5 

years (Survival 5 yrs) 

3.1.1 Data Normalization and Quantification 

 The microarray raw data files were normalized and quantified using the dChip algorithm 

as outlined in section 2.2.1).  
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3.1.2 Data Filtration 

Data filtration was applied on 54,675 genes present on U133 Plus2.0 chip (see section 

2.2.3), to remove genes which i) did not fluctuate very highly across samples and ii) 

fluctuated too highly across samples to be trustworthy. Genes with a Standard deviation / 

Mean i) below 1 or ii) above 1000 were removed from further analysis. This set of genes 

was used for Hierarchical clustering. 10,243 genes passed this criterion and were used to 

carry out clustering analysis of clinical specimens.  

3.1.3 Hierarchical Clustering 

Hierarchical clustering (see section 2.2.4) was performed on the 10,243-member filtered 

gene list. The correlation values between the samples were calculated and two-way 

clustering was performed using the correlation values. The distance metric used was 1-

correlation and the clustering algorithm used was Average linkage clustering. Prior to 

clustering, the individual samples were standardised as follows: the expression of the 

individual genes was subtracted from their means for that sample and divided by their 

respective standard deviation. The results are shown in Figs 3.1.3.1-3.1.3.4. Fig 3.1.3.1 

shows all the specimens and Fig 3.1.3.2 – Fig 3.1.3.4 displays the individual sub-clusters. 

The dendrogram has specimens on both axes and the intersection point between any two 

samples represents the correlation value among the two specimens. The colours on the 

heat map represent the correlation values among the specimens. Red colours indicate 

positive correlation, blue colours indicate negative correlation and white colours indicate 

zero correlation. Different shades of red and blue reflect the relative correlation values. 

The diagonal red line is because of the correlation values of 1 among the identical 

samples. Blocks of red therefore represents similar specimens and also indicate how 

homogenous or heterogeneous the various groups of specimens are.  
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The hierarchical clustering results identify several groups of samples which correlate 

with different clinical parameters. The Normal samples largely clustered together. 

Among the tumors, the samples largely clustered based on the ER status. The clustering 

results have been divided into groups represented as A, B, C, D and E and are denoted 

just below the tree in Fig 3.1.3.1 and are all shown separately in greater detail in Figs 

3.1.3.2 - Fig 3.1.3.4.  

The first observation to be made is that the tumour specimens largely clustered as a 

separate group. However, there was one cancer specimen (S30) which clustered with the 

normal specimens. Additionally, there were 3 normal specimens (N4, N5 and N6) which 

clustered within group E of the cancer specimens. A very high correlation was observed 

between the normal specimens in Cluster A compared to the various cancer groups and 

sub-groups. The other important criterion on which the specimens clustered was Estrogen 

receptor status. Cluster C is enriched with ER-negative specimens whereas clusters D and 

E are highly enriched with ER-positive specimens. The details of the individual clusters 

and their correlation with clinical parameters are detailed below. 

Individual clusters were compared to identify genes important to that cluster. A nearest 

cluster comparison approach was used so as to mask the confounding factors. 

Additionally this approach helped in keeping the sample size of each group to a 

comparable level. Bigger groups were also compared to each other with an aim to obtain 

the hierarchy of the heterogeneity of breast cancer. 

Cluster A: This group comprised 14 normal specimens and one cancer specimen (S30). 

This group represents a very tight cluster as the level of correlation among samples as 

indicated by the strength of red colour is very high (Fig 3.1.3.1, Fig 3.1.3.2). However, 

three of the normal specimens (N4, N5 and N6) did not cluster with this group.  
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Fig 3.1.3.2: Enlarged view of the cluster A and B from the Fig 3.1.3.1. The colours 

on the heat map represent the correlation values among the specimens. Red colours 

indicate positive correlation, blue colours indicate negative correlation and white 

colours indicate zero correlation. Different shades of red and blue reflects the 

relative correlation values. Group A is composed of 14 normal samples and 1 

tumour sample (S30). Group B is the cluster closest to the normal sample group.  
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Cluster B: This group was enriched for patients who are ER-negative, relative to the other 

categories. The other linked clinical parameters are depicted in Table 3.1.3.1. The group 

that clusters closest to cluster B is the Normal specimen cluster (A)  

Significance analysis (as described in section 2.2.4) was carried out on this cluster and 

the significant clinical parameters specific to this cluster was identified (Table 3.1.3.1). 

Clinical  Status Represented Total p-value 

ER Negative 6/9 34/122 0.0139 

Age50 <50 5/9 27/122 0.0248 

Type  Lobular 4/9 17/122 0.0215 

Tamoxifen Not taken 6/9 26/122 0.0030 

Grade 1 3/9 11/122 0.0343 

Table 3.1.3.1: Clinical parameters over-represented in Cluster B. „Clinical‟ refers to 

the parameter of interest. „Status‟ indicates the particular frame of reference for 

that clinical parameter. The „Represented‟ column indicates the number of 

specimens of the total number of specimens within Cluster B that display those 

values for that parameter. „Total‟ indicates the total number of specimens for that 

clinical status over the whole sample dataset. Based on the ratio of „Represented‟ 

and „Total‟, the p-value is calculated.  

While comparing cluster A and B, cluster B did not display a higher expression of ESR1 

as this cluster is enriched for ER-negative specimens; however ERBB2 expression was 

found to be high (FC: 2.46) in Cluster B specimens. ESR1 gene and ERBB2 gene are 

important in breast cancer classification. 

Cluster C: This group was enriched for patients who are ER-negative and have undergone 

chemotherapy (see Table 3.1.3.2). By looking at the hierarchical clustering (Fig 3.1.3.3), 

it seems that many of the tumors isolated from patients in this group are of histologic 

Grade 3 (31 specimens are of Grade 3 out of total of 43 specimens in cluster C), despite 

the fact that grade was not identified by the significance analysis. None of the samples in 

this group was of Grade 1. This group was also enriched by patients who relapsed within 
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7 years (41/43) and who did not survive beyond 7 years (39/43). Close examination of 

this group (based on the dendrogram and heat map) reveals that there are 3 sub-groups in 

this main group. However, no clinical parameters associated with any of the sub-groups 

were identified as statistically-relevant by significance analysis.  

 

Fig 3.1.3.3: Enlarged view of the cluster C from Fig 3.1.3.1. This group of specimens 

is enriched for ER-negative patients (52.4%). However there are many ER-positive 

specimens in this group (40.5%). This group signifies a very high level of diversity 

as can be seen from the clustering patterns. There are three sub-clusters in this 

cluster (marked by red lines). 
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Clinical  Status  Represented Total p-value 

ER negative 23/43 34/122 0 

Chemo yes 23/43 50/122 0.0304 

Table 3.1.3.2: Clinical parameters over-represented in cluster C  

Cluster C is highly heterogeneous groups with three distinct sub-clusters. The left cluster 

was compared to (middle + right) cluster. Similarly the middle cluster was compared to 

(left + right) cluster and the right cluster was compared to (left + middle) cluster. The 

nearest cluster comparison approach was used so as to mask out the confounding factors. 

Table 3.1.3.3, 3.1.3.4 and 3.1.3.5 lists the top 10 genes (based on Fold change) among 

each comparison. 

Probe set Gene Baseline Experiment FC Difference p-value 

205475_at SCRG1 11.91 297.67 24.98 285.76 0.02769 

229341_at TFCP2L1 18.83 382.88 20.33 364.04 0.028253 

242488_at --- 13.63 244.75 17.96 231.13 0.00699 

213456_at SOSTDC1 13 224.4 17.27 211.4 0.021923 

220425_x_at ROPN1B 18.82 316.25 16.81 297.43 0.028281 

224191_x_at ROPN1 24.19 401.57 16.6 377.38 0.03536 

231535_x_at ROPN1 30.22 441.08 14.6 410.86 0.032765 

220559_at EN1 24.27 311.89 12.85 287.62 0.023241 

204733_at KLK6 21.32 222.4 10.43 201.08 0.036002 

204855_at SERPINB5 89.09 786.11 8.82 697.02 0.001439 

Table 3.1.3.3: Genes up-regulated in left cluster in comparison to (middle + right) 

cluster 

The left sub-cluster is enriched with patients who relapsed (9/13). One of the important 

and novel genes identified in the table above is Ropporin (ROPN1, ROPN1B). Further 

work on this gene is presented in section 3.6 
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Probe set gene Baseline Experiment FC Difference p-value 

205213_at CENTB1 5.22 147.31 28.21 142.08 0.002377 

208450_at LGALS2 10.24 193.39 18.89 183.15 0.00811 

216510_x_at IFI6  18.12 309.82 17.1 291.7 0.005858 

211650_x_at IL8 24.77 373.07 15.06 348.3 0.003931 

211637_x_at LOC652128 17.04 249.1 14.62 232.06 0.006901 

214777_at --- 31.89 464.36 14.56 432.47 0.004748 

216365_x_at IGL@  27.27 368.26 13.5 340.99 0.02424 

211908_x_at IL8 24.93 334.96 13.44 310.03 0.005076 

216430_x_at SCGB2A2 10.06 124.5 12.37 114.44 0.013686 

211634_x_at IGHM 11.83 145.43 12.3 133.6 0.04216 

Table 3.1.3.4: Genes up-regulated in middle cluster in comparison to (left + right) 

cluster 

The middle cluster is enriched with patients who did not relapse (12/19). The genes in the 

middle cluster are enriched for immune response function (IF16, IF8, LOC652128, IGL, 

and IGHM). 
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Probe set gene Baseline Experiment FC Difference p-value 

207802_at CRISP3 31.13 1080.8 34.72 1049.67 0.037581 

232547_at SNIP 33.68 645.21 19.16 611.53 0.002929 

213557_at CRKRS 84.5 807.21 9.55 722.71 0.002197 

234354_x_at ERBB2 27.95 221.59 7.93 193.64 0.003465 

238360_s_at --- 16.19 127.13 7.85 110.94 0.00764 

213551_x_at PCGF2 145.63 1078.29 7.4 932.66 0.004555 

226727_at LOC284106 183.4 1352.26 7.37 1168.85 0.010993 

214239_x_at PCGF2 273.49 1956.67 7.15 1683.19 0.003642 

239224_at FBXL20 23.02 148.81 6.47 125.79 0.003134 

203496_s_at PPARBP 248.16 1585.54 6.39 1337.37 0.005646 

Table 3.1.3.4: Genes up-regulated in right cluster in comparison to (left + middle) 

cluster 

The right cluster is enriched with patients who relapsed (7/11). Among other important 

genes, this cluster over-expresses ERBB2 which is known to confer bad prognosis on 

breast cancer patients. 

Cluster D: This group was enriched for tumors which are mainly ER-positive (all samples 

apart from one), Grade 1 and lobular.  

Clinical  Status Represented Total p-value 

Type Lobular 8/31 17/122 0.0324 

Grade 1 6/31 11/122 0.0302 

Table 3.1.3.5: Clinical parameters over-represented in cluster D 
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Fig 3.1.3.4 Enlarged view of cluster D and E from the Fig 3.1.3.1. These clusters are 

highly enriched for ER-positive specimens. Cluster D has only 1 ER-negative 

specimen and the Cluster E has 3 ER-negative specimens.  

Cluster E: This group was also enriched for patients with ER-positive tumors. However 

there were 3 ER-negative and 3 Normal specimens in this group. No particular clinical 

parameter was identified by significance analysis for this group, however when combined 

with Cluster D, the significance analysis identified the combination group to be 

associated with overall survival and censored relapse free survival (Table 3.1.3.6). 

Despite both clusters D and E being enriched for ER-positive specimens, ER was not 

identified by the significance analysis, possibly due to its prevalence in Cluster C and B. 
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Clinical  Status Represented Total p-value 

CenRFC7 0 21/55 25/122 0 

OSSur7 0 24/55 32/122 0.001 

Table 3.1.3.6: Clinical parameters over-represented in clusters D and E. Both the 

clusters were combined to perform this analysis. 

Cluster D and Cluster E both are enriched with ER-positive patients, however cluster D 

have an overall higher expression of ESR1 (FC: 2.65) and other ER related genes, 

including GATA3 (FC: 1.64), FOXA1 (FC: 1.65), SPDEF (FC: 1.67) and TFF3 (FC: 

1.59). 

Cluster C was compared to Cluster D+E. As expected, ESR1 (FC: 3.04) and other ER 

related genes e.g. GATA3 (FC: 2.1), FOXA1 (FC: 1.73), SPDEF (FC: 1.6) and TFF3 

(FC: 1.9) were up-regulated in Cluster D+E. 

The above results correlating different clusters with clinical parameters was also 

corroborated by the results of Kaplan Myer analysis performed by Dr Lorraine O'Driscoll 

(Fig 3.1.3.5) and described in section 2.2.12. 
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Fig 3.1.3.5: KM analysis on various groups identified by Hierarchical clustering. 

The different colour line represents the survival of patients of each group. BLUE: 

Cluster E; GREEN: Cluster D; VIOLET: Cluster C (Middle sub-cluster); 

YELLOW: Cluster C (Right sub-cluster); GREY: Cluster C (Left sub-cluster) 

The results indicate that the Ropporin-enriched cluster (Grey) has the worst survival 

compared to patients belonging to other groups. This was followed by ERBB2 over-

expressing cluster (Yellow). These two groups of patients were enriched for ER-negative 

specimens. Another ER-negative enriched group (Violet) with a high expression of 

immune response genes displayed a much better survival. Among the groups of ER-

positive patients, one with high expression of ER partner genes (Blue) had a marginally 

better prognosis than the other ER-positive patients with relatively low level of ER genes 

(Green).  
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3.1.3.1 Two-way Hierarchical clustering  

 

Two-way clustering is a highly computationally-intensive process if the number of genes 

and/or number of samples included is very large. For this reason, a more stringent 

differentially expressed genelist (p ≤ 0.05, Fold Change (FC) ≥ 2 and Difference > 100) 

was generated comparing the normal vs. tumour gene expression profiles, yielding a total 

of 3924 differentially expressed (2166 up-regulated and 1758 down-regulated) genes and 

separate 2-way clustering analyses were performed. The gene clusters with enriched 

genes for similar functions and pathways was identified (see section 2.2.4).  

 

3.1.3.1.1 Up-regulated Genes 

Two-way hierarchical clustering was performed on all specimens using the differentially 

expressed genelist (p ≤ 0.05, Fold Change (FC) > 2 and Difference > 100) comparing 

cancer specimens and normal specimens. The distance metric used was 1-correlation and 

the clustering algorithm used was Average linkage clustering. Prior to clustering, the 

individual samples were standardised as follows: the expression of the individual genes 

was subtracted from their respective means and divided by their respective standard 

deviation. 2166 genes passed the filtration criteria and the two-way hierarchical 

clustering was performed using this list (Fig 3.1.3.1.1) 
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SRG
LOC202451
ZNF37A
IHPK2
---
TMEM63C
MVP
TRIO
MARVELD2
TBX3
CARD14
VDP
FAM48A
KIAA0251
IMMP2L
DKFZp547E087
---
ARID2
CSNK1A1
CSNK1A1
PAPD4
NIPBL
PCBP2
RBM39 /// LOC643167
TRA2A
FAM39DP
ACIN1
PCTK2
---
NAP1L4
HNRPM
PCBP2
THOC2
RUFY2
EWSR1
SYMPK
METTL9
GSPT1
PABPN1
ADNP
CPSF6
MLLT10
CPSF6
ATP2C1
AFTPH
FNBP1L
CABP4
TBC1D5
MGC61571
PEX6
---
HNRPD
HSD17B7P2
LRRC37A2
PPFIBP1 /// LOC440091 /// LOC729222
C5orf13
FLJ11506
ANAPC5
FBS1
LOC440248
KIAA0737
VPS35
CTNND1
TRIO
TELO2
ZNF205
ANKS3
CBFA2T2
ZNF692
HM13
STRBP
KIAA1688
KIFC2
ZNF251
ZNF83
NAPE-PLD
LYPLAL1
DKFZP434A0131
LOC400506
OVCA2
SPPL2B
ARVCF
GABBR1
C14orf82
NR2F2
FLJ22795 /// LOC388152 /// LOC388161
FLJ22795
ZNF618
PRKCZ
TCF20
VGLL4
JARID2
JARID2
TRIM14
---
EXT1
EXT1
POLS
B4GALT5
ACTN4
ACTN4
ARHGAP27
SAMD4B
LLGL2
USP42
ET
EIF3S9
PKM2
---
C18orf1
ABHD11
SNORA76
ANKRD23
KIAA1641
---
SERTAD4
SERTAD4
ANKRD46
PHF20L1
RBM12B
IGF1R
IGF1R
IGF1R
IGF1R
IGF1R
IGF1R
PPP2R2C
SUSD4
SIPA1L2
CEACAM5
CEACAM6
CEACAM6
GPR160
REEP1
REEP1
MAP7
C3orf14
HIST3H2A
SLC7A11
MDK
ECM1
CYP4Z1
NKX3-1
SHROOM1
ARNT2
CYP4X1
MB
MBOAT2
MBOAT2
GPRC5A
GPRC5A
---
HOXC9
---
---
RICS
RICS
TncRNA
CREB3L1
C10orf81
ALDH3B2
VIL2
VIL2
VIL2
VIL2
BCOR
CBX3
SYT17
---
FLJ38379
C8orf38
LOC286167
LOC286167
SQLE
PYCRL
TIGD5
LRRC14
CPSF1
CPSF1
ZNF623
SCRIB
FAM83H
PARP10
SLC12A7
GSDMDC1
GSDMDC1
PVT1
PABPC1
---
PCDHA9 /// PCDHAC2 /// PCDHAC1 /// PCDHA13 /// PCDHA12 /// PCDHA11 /// PCDHA10 /// PCDHA8 /// PCDHA7 /// PCDHA6 /// PCDHA5 /// PCDHA4 /// PCDHA3 /// PCDHA2 /// PCDHA1
---
MGC9712
JPH1
GDAP1
GDAP1
TSPAN5
TSPAN5
PLXNB2
CARD10
TSPAN9
EFCAB4A
GINS2
KRTCAP3
MAZ
GTF3C1
SPIN1
SH3RF1
SH3RF1
IRX5
IRX3
HIST1H4K /// HIST1H4J
GRAMD1A
RUVBL2
RUVBL2
LYPLA1
LOC284889
---
IGSF4C
TRIB3
---
YIPF2
PMM2
MORC2
PFKFB4
PPFIA3
PPFIA3
GCN5L2
ZFR
EXOC7
SFI1
SFI1
LRDD
MAPK8IP3
RABEP2
PSD4
THRAP5
ULK3
PHLDB3 /// LOC653583 /// LOC732075
NUP210
PAK6
SLC37A1
STAP2
PAK4
SLC12A8
PPP2R4
PPP2R4
GPSM1
SNAPC4
SNAPC4
WDR34
ARRDC1
ZMYND19
PLEC1
GTF2IRD1
ABCB9
CAPS
ZNF444
BTBD14B
EPS8L2
RASSF7
RASSF7
PAQR4
JUP
LSR
BIK
RAI1
FAM86C /// FAM86B1 /// LOC348926 /// LOC645332 /// LOC653113 /// FAM86D /// LOC729647 /// LOC730897
PROM2
SOX12
NPDC1
KISS1R
TTLL12
TTLL12
GP2
LOC728215 /// LOC731895
RAE1
C20orf20
ZNF320
RDH13
EPS8L1
EPS8L1
EPS8L1
C19orf33
RAMP1
STARD10
STARD10
TFPT
ZNF776
PRMT1
C19orf48
PTOV1
NAT14
EEF1A2
TNNT1
SULT1A3 /// GIYD2 /// SULT1A4 /// GIYD1
PPP4C
XTP3TPA
TMEM141
B3GALT5
C1orf116
SHROOM3
SHROOM3
ELF3
ELF3
---
HOXB3
KAZALD1
DNAJC1
DNAJC1
NVL
OAZ3
TNRC9
TNRC9
TNRC9
MCF2L
MCF2L
ATP1B1
ATP1B1
NME7
TMEM63A
PLEKHG4 /// LRRC36 /// HSD11B2
MAL2
FAM84B
GRHL2
CDS1
CDS1
AMMECR1
PIK3R3
TSTA3
TSTA3
ADSS
---
C1orf9
SCYL3
CRIP2
ZNF281
ZNF281
---
KIAA1815
KIAA1815
AATK
PAK1
FLJ20160
MGAT4A
ATP2A3
---
SYT13
BCMO1
BEX1
FBXO2
STMN3
---
FAM102B
THRAP2
THRAP2
CPB1
TSPAN1
CYP2A6
CYP2A6
PI15
DACH1
DACH1
DACH1
MICAL2
CKMT1B /// CKMT1A
CCDC64
RET
REPS2
REPS2
INSM1
---
FBXL16
NRIP3
---
SFXN5
SCUBE2
---
MRPS30
---
---
---
---
ENO2
CHST1
PRRT2
FLRT3
IRX2
GRIA2
GRIA2
DKFZP761M1511
EDIL3
CACNA2D2
CNKSR3
PHF21B
SAMD13
---
CLGN
SLC1A1
VANGL1
VANGL1
FLJ20054
---
FLJ20054
---
COL4A5
GPATC2
TRAF5
RALGPS2
RALGPS2
PSD3
NAT1
PSD3
SLC7A2
PKIB
PKIB
CAMK2N1
TBX3
ATP2C2
SLC2A10
SLC30A8
GRTP1
TBC1D9
C1orf64
FLJ12993
ZNF217
CNNM4
SEMA4C
SEMA4C
KIAA0194
RNF43
HES1
HES1
TCN1
SLC16A6
HS6ST2
C20orf23
---
PRR15
TCEAL3
STC1
STC1
NDP
DNAJC12
FAAH2
CTPS2
FGD3
ABAT
ABAT
STC2
STC2
HIST1H2BG
HIST1H2BK
HIST1H2BK
HIST1H2BD
HIST1H3D
HIST2H2AA3 /// HIST2H2AA4
HIST2H2AA3 /// HIST2H2AA4
---
---
---
HIST2H2BE
HIST1H2BD
HIST1H2AC
TMCO1
COBL
FXYD3
FXYD3
CSTF3
CSTF3
PRRG4
HMGB3
HMGB3
DSCAM
SORD /// LOC653381
SORD
---
KCNE4
WFDC2
DBNDD2 /// C20orf169-DBNDD2
SIAH2
CYP2B7P1
CYP2B7P1
LEF1
---
FLJ30428 /// LOC730024
---
AKAP10
---
MSI2
---
MSI2
MSI2
MSI2
CSPP1
---
AGPAT6
PTPN1
FGFR3
ASB13
LOC731986
CLIC6
PLAT
LOC388743
CELSR2
CELSR2
GREB1
SUSD3
ADCY1
---
PREX1
MAPT
MAPT
CCDC74A /// CCDC74B
ABHD2
ABHD2
ABHD2
SCNN1A
HN1L
LOC146439
LRRC8E
RAB26
RAB26
---
ENTPD6
RHBDF1
RAB40C
C1orf93
PRPF19
ZNF768
TMEM125
DHCR24
KIAA1522
SLC35C2
NTHL1
NMRAL1
NMRAL1
BCL2L1
ZNF764
ZNF764
LRRC1
VPS37C
VPS37C
LOC400506
HN1L
EMP2
EMP2
EMP2
TOMM34
RNF187
CDH1
HSPA1A /// HSPA1B
HSPA1B
TUFT1
KARCA1
OVOL2
GSTO2
LASS2
TMEM9
C2orf17
C2orf17
RBKS
SDSL
PIP5K2C
KRT19
KRT18
KRT8
BSCL2 /// HNRPUL2
RP11-529I10.4
PAFAH1B3
SPINT2
MIF
FKBP4
WDR23
AP1M2
AP1M2
GALE
RAB11FIP4
HOXC10
CRABP2
EME2
GATA2
KIAA1467
CHPF
SLC9A1
ANKRD52
LOC728969
PIK3R2
RBM35B
NFATC3
LENG4
CBX4
SLC9A3R1
CANT1
CANT1
CGN
CGN
IER3
DDR1
DDR1
DDR1
DDR1
GOT2
SDC4
NUMA1
RAP1GAP
APBA2BP
PRRT3
NCDN
PIB5PA
TMEM87B
SLC44A1
SLC44A1
NSF
FLJ11506
PRLR
PRLR
FLJ20273
PTPLAD1
PTPLAD1
LASS6
LASS6
VAV3
VAV3
SLC38A1
SLC38A1
SLC38A1
BUB3
KIAA1598
PAIP1
PAIP1
FANCF
DKFZp313A2432
ATP8B1
HOOK1
LOC202451
---
LRBA
LCOR
NEBL
NEBL
KIF3A
CSNK1A1
CSNK1A1
ERGIC1
ARFIP2
CREB3L4
SPDEF
SPDEF
SPDEF
SH3BP4
MGC42367
RASEF
IQCE
SERINC2
RARA
RARA
C9orf75
---
RORC
TJP3
TJP3
ERBB4
ERBB4
LOC284561
ZNF703
GALNT6
GALNT6
MZF1
MZF1
SEMA3F
C19orf46
TRPS1
TRPS1
TRPS1
CLDN23
TRPS1
TRPS1
TRPS1
HOOK1
FNIP1
MKL2
PRKCBP1
PRKCBP1
PRKCBP1
CASZ1
FLJ20273
LOC730051
ZNF587
C4orf34
MLPH
LOC400451
LOC400451
SRG
TMEM25
---
AZGP1
KIAA1324
KIAA1324
DUSP4
GALNT7
GALNT7
TFF3
TFF1
GOLPH2
ENPP5
PVRL2
PVRL2
BHLHB2
TPBG
MREG
LOC143381
GFRA1
LOC143381
---
STATIP1
---
---
ESR1
SLC39A6
SLC39A6
SLC39A6
SLC39A6
RABEP1
JMJD2B
JMJD2B
JMJD2B
SFXN2
EVL
EVL
FLNB
CELSR1
RAB17
TLE3
TLE3
PARD6B
CA12
CA12
CA12
CA12
CA12
TMC4
BTBD5
THSD4
THSD4
THSD4
THSD4
---
MYB
GATA3
GATA3
GATA3
XBP1
FOXA1
MLPH
NME3
ROGDI
C16orf24
EARS2
EPB41L5
ZNF587
ZNF552
LOC730051
TSPAN13
AGR2
AGR2
PSEN2
BCMP11
MAGED2
MAGED2
TCEA3
LOC124220
LOC440335
HHAT
MARVELD2
ERBB3
ERBB3
CTSD
C4A /// C4B
CYP21A2
GALNT10
QSCN6
DEGS2
MUC1
MUC1
FZD2
PYCARD
CFB
SERPINA3
FLNB
C1orf34
C19orf21
LRG1
ANXA9
KCNK15
RPESP
RPESP
WNT5A
WNT5A
TIAM1
C12orf46
PSMD3
MSL-1
ASRGL1
PEG10
SMAD1
NOD2
TPD52L1
MGP
SCGB2A1
SCGB2A2
SCGB1D2
PITX1
CALML5
BEX2
SERPINA5
COL2A1
COL18A1
LZTS1
PTGFRN
FBLIM1
FJX1
AGRIN
VWA1 /// LOC727901
CRISPLD1
---
C8orf59
---
IL17RC
GSTA4
ATP6V1B1
ATP6V1B1
MBOAT1
PCF11
C3orf57
LTBP1
LTBP1
USP34
TMEM16A
SIX4
PPP1R3C
WNK4
CTA-221G9.4
C22orf29
SHANK2
SHANK2
SOX9
SOX9
COL27A1
---
COL27A1
BAMBI
TMPRSS3
COL7A1
CDR2L
DCBLD1
HIP1R /// LOC728014
HIP1R /// LOC728014
ANK3
ANK3
C20orf72
ZDHHC23
GMDS
---
MAGED4
MYO10
MYO10
TES
TES
E2F3
E2F3
LOC729908
---
CTNNB1
ITPR2
NPAL3
---
ZNF711
---
NAV2
TFCP2L1
TFCP2L1
EHF
EHF
EHF
ETV6
ETV6
ETV6
ETV6
GARNL4
SORBS2
SORBS2
GCNT2
ITGB8
FOXC1
KRT14
ANXA8 /// ANXA8L1 /// LOC728113
MFI2
KRT15
EFNA5
KCNN4
EPHB3
COL9A3
SOX10
FLJ10781
ZNF469
SHMT2
MGC61598
AGPAT5
RP6-213H19.1
CHMP4C
ATP1A1
GRHL1
APP
RIPK4
KCTD1
GTF3C4
PCYT1B
DSG2
GABRP
ELF5
ZNF286
FAM60A
SERPINB5
DSC2
---
RHOH
NUP210
NUP210
CCL19
FNBP1
POLR2J2
CYFIP2
CYFIP2
ST6GAL1
HLA-DQA1
HLA-DRB4
HLA-DQA1 /// HLA-DQA2 /// LOC731682
LIMK1
DIAPH1
CSK
IL4I1
MCM5
ELF4
---
SLC6A6
IL28RA
MAGEA6
MMP1
FCGR1B
BST2
RARRES3
ZC3HAV1
FLJ31033
DDX58
MX1
IFI44L
LOC129607
IRF7
IFI6
ISG15
OAS1
PARP9
CXCR4
ECGF1
ECGF1
---
CCL5
CCL5
TAP1
TAP2
---
PSMB8
PRB1 /// PRB2
PRB1 /// PRB2
HLA-G
HLA-C
UBD
TRBV19 /// TRBC1
CD3D
IL2RB
CD2
HLA-F
SEMA4D
NLRC5
CLEC7A
CXCL10
CXCL11
CXCL9
APOL1
---
C17orf27
KIAA1618
ISGF3G
SP110
GCH1
PSME2
STAT1
PARP14
C19orf28
TRIM14
IFI30
CAPG
ADAM8
TMEM51
HLA-DQA1
LTF /// LOC728320
CEACAM1
MGC29506
MGC29506
F7 /// IFI6 /// IGH@ /// IGHG1 /// IGHG2 /// IGHG3 /// IGHM /// IGHV4-31
IGHG1
IGHM
FAM46C
FKBP11
---
LOC91316
HLA-C
HLA-C
HLA-C
---
HLA-C
IGKV1D-13
---
HLA-C
IGKC /// NTN2L /// GJB6
---
---
IGLJ3
LOC387895
KRT81
KRT23
LYPD3
NLRP2
RHOT1
ZNF207
ZNF207
ZNF207
RPS6
TBC1D3 /// TBC1D3C /// LOC653380 /// LOC653498 /// LOC727735 /// LOC729837 /// LOC729873 /// LOC729877
SOCS7
---
NUFIP2
PNPO
PLEKHF2
ATAD4
WDR55
---
C17orf42
PHF12
CRLF3
TRAF4
TIAF1 /// MYO18A
DHRS13
EIF2B5
NIPSNAP1
NIPSNAP1
ZNF3
C7orf47
TMEM97
TMEM97
TMEM97
CUEDC1
SUSD2
ABCC3
FLJ44342
MYOHD1
PIGW
SLC1A4
SLC1A4
SLC1A4
TP53I11
RAB3D
---
CACNB3
CACNB3
SBK1
SBK1
PATZ1
ARS2
ARS2
GCAT
ARHGAP8 /// LOC553158
ARHGAP8 /// LOC553158
TNK2
NBEAL2
NBEAL2
WDR68
WDR68
TANC2
SMARCD2
LLGL2
CYB561
CYB561
SNIP
PERLD1
PERLD1
ERBB2
STARD3
C17orf37
MLLT6
PCGF2
PCGF2
CRKRS
PPARBP
PPARBP
PPARBP
CRKRS
CROP
CROP
EME1
EPN3
XYLT2
EPN3
UBE2Z
NME1
LRRC59
PYCR1
PCDHGC3
CRISP3
S100A9
S100A8
S100A8
S100A7
CCNE1
GJB2
CDC25B
AYTL2
TSPAN17
CP
CP
CLDN1
PERP
TRIP13
RARRES1
TMEM45A
IL20RA
KCNS3
ABCG1
EFHD1
DLG5
RPS24
C10orf35
DPM2
FAM102A
GPR157
EPPK1
EPPK1
EPPK1
PGM2L1
PGM2L1
SMYD3
SMYD3
TMF1
ENAH
PTPRK
GALNT3
KCNK1
RHPN2
SDC1
SDC1
HLXB9
TMEM132A
BZW2
MYO5B
CD24
CD24
CD24
CD24
CD24
CD24
SDCCAG8
SOX4
SOX4
SOX4
SOX4
JARID1B
ARID4B
USP54
SLC11A2
SLC11A2
PACSIN3
MARVELD3
MARVELD3
PPP1R13L
KRT7
VPS37B
SLC4A11
GLYATL2
SOX11
SOX11
SOX11
TCF3
EPHB4
EFNA4
LOC92312
LOC92312
LOC92312
CXADR
CXADR
CHML
CHML
NPAS2
TMEM165
FLJ45445 /// FLJ45340 /// LOC653340 /// LOC727755 /// LOC728105 /// LOC728797 /// LOC729660
FLJ45340
ABCC10
SOLH
DGKQ
DAGLBETA
SHB
CHD4
PPP1R10
KCNG1
FBXO32
BAT2D1
---
CDC2L6
CDC2L6
SLC7A1
FBXO45
---
IQGAP3
OVOL1
GTPBP3
DKFZp762P2111
ZMIZ2
DDX11
DDX11
NADSYN1
TRABD
SLC7A1
ATAD3A
ATAD2
GTSE1
NCAPG
NUSAP1
CHD7
ILF3
SMARCA4
DTNB
TOP1MT
JRK
JRK
MICB
C15orf48
GPR56
SLC35B2
ACTN4
VARS
SEMA4B
PKM2
MYH9
EVA1
S100A2
KRT6B
PHLDA2
TNFRSF12A
RHBDF2
TRIM47
PKP3
SLC2A1
HMGA1
PUS1
CST6
M6PR
WRNIP1
LAMC2
CDCP1
PLAU
SLC16A3
SLC16A3
ITPR3
MAPK13
MAPK13
S100P
ATP6V0B
B3GALT6
SLC44A2
LIMK2
LIMK2
TRIM29
FBXO32
PLP2
SFN
SFN
SFN
ST5
JAG2
TMEM158
CHI3L2
PDZK1IP1
PDZK1IP1
APOBEC3B
TM4SF1
TM4SF1
PFKP
CDH3
MICALL1
KRT17
KRT17
PROM1
PADI2
VDR
VDR
LAD1
C1orf106
KIAA1609
BACE2
ST14
ST14
SECTM1
LRP8
CARD9
SPATS2
PDE4B
C6orf115
ARPC5L
UHRF1
---
E2F8
ZNF367
RMI1
CENPF
DTL
MARCKSL1
FANCD2
TACC3
CENPM
SQLE
TRMT12
WDSOF1
RBM35A
RBM35A
CCNE2
ATAD2
ATAD2
PBK
TOP2A
TOP2A
TRIM59
TMEM48
DKC1
NUP205
CASP2
EZH2
NCAPG2
SRPK1
PUS7
NFATC2IP
PTDSS1
EIF2C2
CDKN2A
ANLN
CDC20
CDCA8
STIL
KIF2C
SLC7A5
PTHLH /// MOCOS
---
CDCA4
LMNB2
RAD51AP1
NOL1
FOXM1
TPX2
CDCA3
BIRC5
MELK
CDCA5
CENPA
KIF4A
MCM2
LOC146909
AURKA
NEK2
CKS2
RACGAP1
IQCH
CENPF
ASPM
ECT2
TYMS
CCNB2
PTTG1
MAD2L1
KPNA2 /// LOC728860
KPNA2 /// LOC728860
FAM83D
PAK3 /// UBE2C
AURKA
FEN1
KIAA1794
PRC1
RFC4
CCNB1
CCNB1
CEP55
KIF20A
HMMR
BUB1B
NUSAP1
BARD1
STMN1
CDC7
PPAT
ORC6L
ZWILCH
FIGNL1
GINS1
C7orf24
RRM2
MTHFD2
TACSTD1
PAICS
TIMELESS
GPSM2
KIAA0101
C12orf48
TMPO
CDC2
ZWINT
SMC4
MLF1IP
SNRPB
SNRPB
PPAP2C
CLN3
EIF2AK1
PMS2
BANP /// LOC649800
RNF44
POLR1C
FRAT2
ZFYVE27
SDF2L1
WDR68
TRIM25
VAMP8
ARF3
ATP6AP1
ADAR
TAPBP
ATP2A2
GGA1
C22orf30
RANGAP1
FKSG44
WHSC1
WHSC1
NONO
NONO
CCNF
F11R
Sep-09
Sep-09
Sep-09
FOXK2
SIRT7 /// LOC644124
RCC2
DNMT1
ILF3
SMARCA4
SMARCA4
SMARCA4
SMARCA4
POLR2H
XPO5
EDG4
MCM7
NAT10
BAIAP2L1
TACSTD2
EFNA1
IRF6
PRPF3
SETDB1
IPO9
JARID1B
JARID1B
RBM8A
PEX11B
POGK
TAGLN2
SMG5
HDGF
HDGF
B4GALT3
CDC42SE1
RAB25
CCT3
ISG20L2
UBAP2L
C1orf35
TRIM11
APH1A
TMED9
TMED9
TMED3
MAGED1
SLC35A2
S100A14
S100A16
ALDH18A1
CKAP4
CKAP4
OCIAD2
LAPTM4B
LAPTM4B
LAPTM4B
CD9
THOC3 /// LOC728554
C12orf32
DDX39
AKAP8
RPS21
C6orf129
PRSS8
CLDN7
CLDN4
CLDN3
CLDN3
NCOR2
DPP3
DPP3
SYNGR2
HM13
PDRG1
LAGE3
APTX
SLC12A4
KCTD5
VAV2
COMMD5
EXOSC4
EXOSC4
LY6E
RRS1
GPR172A
GPR172A
IDH2
AHCY
FARSLA
RNASEH2A
SEC61A1
CSGlcA-T
CSGlcA-T
PPAN
C7orf48
TBRG4
MGC2408
COMTD1
LOC150223
TSEN54
PPP1R14B
HN1
HN1
H2AFX
CBX2
TK1
TK1
LOC388796
LOC388796
ASNS
CBS
BOP1 /// LOC727967
WDR4
BSPRY
BSPRY
F12
PTP4A3
DHCR7
FLJ23867
ZDHHC9
FAM129B

 

Fig 3.1.3.1.1: Two-way clustering of samples and genes using up-regulated genes only. 
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As can be seen from Fig. 3.1.3.1.1, normal samples and tumour samples largely clustered 

separately. Four (n5, 14, p18, n6) of the normal specimens did not cluster with the rest of 

the normals. The second most important clinical parameter on which the clustering was 

visually observed was Estrogen Receptor. Clusters of co-expressed genes with similar 

functions/pathways were identified  in the dendrogram. There were a total of 487 clusters 

of genes with significant Gene ontology terms (p < 0.001). The functions along with the 

number of genes are listed in Appendix 1. 10 pathways were also identified which were 

significant (p < 0.001) in various clusters Table 3.1.3.1.1. The individual clusters are 

shown in Appendix 2 (Fig A1 - Fig A9). "*" indicates this cluster includes all genes. 

Therefore they have not been shown in Appendix 2 

Pathway Changed Measured p-value 

Cell cycle * 22 220 0.000014 

DNA replication 7 103 0.000862 

Glycosphingolipid metabolism 6 102 0.000905 

Inflammatory Response Pathway 7 15 0 

Circadian Exercise 4 15 0.000289 

Androgen and estrogen metabolism 4 30 0.000271 

Proteasome Degradation 5 17 0.000045 

Nitrogen metabolism 5 69 0.000892 

O-Glycan biosynthesis 4 58 0.000695 

Nuclear Receptors 4 14 0.000335 

Table 3.1.3.1.1: Significant pathways in clusters of genes among the up-regulated 

genes.  

3.1.3.1.2 Down-regulated Genes 

Similarly, two-way clustering was performed separately on down regulated genes (p ≤ 

0.05, Fold Change (FC) > -2 and Difference > -100) comparing cancer specimens and 

normal specimens. The distance metric used was 1-correlation and the clustering 

algorithm used was Average linkage clustering. Prior to clustering, the individual 



 101 

samples were standardised as follows: the expression of the individual genes was 

subtracted from their means for that sample and divided by their respective standard 

deviation. 1758 genes passed the filtration criteria and the two-way hierarchical 

clustering was performed on them (Fig 3.1.3.1.2) 
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Fatty acid metabolism // KEGG

IGF2 /// INS-IGF2
UCHL1
---
H19
S100A1
FAM107A
GALNTL1
MYH11
MYH11
RORB
---
GRAP
GLDN
HSPB8
LSDP5
PDE4DIP
---
CHURC1
CALCOCO2
TMED5
HRASLS2
---
---
PHLDB2
---
CD36
ORMDL3
RHOBTB3
CAB39L
NQO1
NQO1
NQO1
GLRX
FAM107B
FADS1
HOXD8
CSTA
PISD
SGCE
STEAP1
TFPI
NR4A1
NR4A1
EGR2
EGR3
ARHGAP6
FAM76A
LOC401093
POLA2
ACACB
CHST9
SVEP1
Sep-11
SLC4A4
ENPP2
ENPP2
LRP1B
HOXA7
HOXA5
HOXA7
GPR30
BMPER
FBLN1
GLUL
FDFT1
TSKU
CXCL14
CXCL14
CCL8
---
PIM1
CCL2
---
STAMBPL1
LMO2
MEF2C
RFTN1
TNFAIP8
TNFAIP8
CLU
FYN
PTGDS
PTGDS
PTGDS
GRK5
---
FLJ10159
EBF1
EBF1
DTX1
DNASE1L3
---
---
SKAP2
SKAP2
HIG2
GABRE
ASS1
RRAGD
EPB41L2
UNQ338
ACHE
CPNE2
ACSL4
ATF3
SDC2
SDC2
SDC2
MAP3K5 /// LOC729144 /// LOC732274
GULP1
GULP1
APOD
FKBP5
FKBP5
OLFML3
LIMS1
HSD17B11
APIP
EGFR
EGFR
EGFR
PLAGL1
PLAGL1
PLAGL1
MEOX2
MMRN2
RHBDL3
THRB
THRB
---
CPE
ADK
MGC5618
CFLAR
IFNGR1
GCSH /// LOC730107
MT1X
MT1X
MT1F
F3
PTGS2
CXCL2
HBEGF
IL6
PRKCDBP
MFAP5
VEGFC
SART2
DUSP6
C1orf115
JUN
RBP7
ID4
NAP1L5
FLJ20021
BMP2
---
GSTT1
LOC644246
CST3
C17orf61
---
CSN1S1
---
RP11-535K18.3
SIRT2
LOC339290
LOC400642
LOC400642
CSRP2
CSRP2
TNFRSF21
LDHB
LDHB
TMEM64
TMEM64
TIMP3
TIMP3
SLC24A3
IRS1
ELOVL5
ANXA6
ABLIM3
NTRK2
NTRK2
CD99L2
PROCR
LOC653071
EFEMP1
EFEMP1
ACAD11
GALNTL2
GALNTL2
GALNTL2
C2orf40
CCDC50
C10orf33
SAV1
TINAGL1
ALDH4A1
SLC25A25
ADAMTS1
ZFAND5
TIPARP
MT1M
APOLD1
NFIL3
RND3
JUNB
VAMP5
SNX10
---
PRIC285
ARHGAP22
GMFG
LY96
SERPING1
CD14
STAB1
STAB1
CLEC10A
FGL2
C10orf128
MPEG1
MPEG1
MS4A6A
MS4A6A
MS4A6A
MS4A6A
CLEC2B /// CDRT15P
DAB2
DAB2
DAB2
DPYD
DPP4
GAS1
MSRA
ADRBK2
ITGAV /// PLTP
WISP2
PTGIS
ANXA5
NRP1
ABCA1
SLC1A3
MRC1 /// MRC1L1
CANX
SLC25A20
KCNE3
LAIR1
APBB1IP
FCGR2B
TNS3
CD99
IDH1
ANXA2P3
TMBIM1
VIM
FABP5 /// LOC728641 /// LOC729163 /// LOC731043 /// LOC732031
ADFP
FDX1
NR1H3
MMP19 /// LOC732415
EMILIN2
VSIG4
LGMN
CD163
CD163
CPVL
MS4A4A
MS4A4A
DOCK11
SPTBN1
ABCA9
---
FOXP2
CUGBP2
ADRBK2
COL4A3BP
PHF17
PHF17
PHF17
MYCBP2
FOXO1A
ZFHX4
SPON1
SPON1
SPON1
HNT
SRPX2
FBN1
---
SHOX2
PRRX1
---
---
FIGN
PLN
THBS4
PDE4DIP /// LOC727893
SYNPO2
NEXN
NEXN
DDHD2
KLHL5
---
---
SPSB1
PLOD2
PLOD2
TXNIP
TXNIP
GPR177
ADD3
ADD3
C7
DARC
PECAM1
GJA4
S100A4
C10orf125
MAN1A1
PHACTR2
FAM43A
CASP4
AP1S2 /// LOC653653 /// LOC654127
RNASEH2B
CUGBP2
CUGBP2
CUGBP2
KCTD12
MAF
---
FLRT2
ABI3BP
FAM49A
RGL1
CARD6
PTGER4
FGL2
CLIC2
GIMAP6
ICAM2
C10orf54
OMD
LOC492311
WDR86
MRGPRF
PDGFRA
FGF7 /// KGFLP1 /// KGFLP2
LIFR
LIFR
ITM2A
ITM2A
MEIS2
IL33
PEAR1
GPR124
---
SLIT2
JAM2
RUNX1T1
---
EDG2
EDG2
C20orf82
PROS1
LOC399959
---
ITGAE
GCLC
GCLC
EHBP1
MAP4
FAM92A1 /// LOC730572
LOC645619 /// LOC731007
AK3L1
DKFZP686A01247
IMPAD1
ANKRD35
GAB2
TGFBR3
---
DHRS7B
TUBB2A
THEM2
GPR116
GPR116
DAB2
MITF
MITF
GOLGA1
C18orf51
PTPRG
LOC219854
KLF9
FGFBP2
PER1
PER1
TMEM47
TMEM47
HABP4
CCDC82
RSNL2
S100A10
CREB5
ZC3H12C
ADSSL1
CALD1
FGF1
---
MAP1B
C21orf6
C9orf95
HIBCH
HIBADH
ACN9
C18orf10
C18orf10
CKB
MCART1
PPP2R5A
SORT1
EPB41L1
SLC25A1
DGAT1 /// LOC727765
MECR
CAPZA2
FNTA
TAF9
SUCLG2
SUCLG2
MOSC2
MOSC2
EPB41L3
EPB41L3
EPB41L3
NNT
ASAH1
RPL23
PHCA
---
---
PEX11A
---
HRASLS3
---
PHYH
TM7SF2
BNIP3
BNIP3
PIGP
LACTB2
MEST
---
---
---
AMOTL2
PRICKLE2
SORBS1
CCDC23
C10orf104
COMMD6
CGI-38
DCAMKL1
LPAAT-THETA
SEL1L2
---
FIGF
LOC131873
KATNAL1
DAAM2
IRS2
IRS2
LMO3
---
ABHD6
C9orf103
GHR
SCD
---
LOC116236
STS
STS
TPST2
GNG12
---
EEF1A1
NR3C2
---
ZMYM6
OPTN
OPTN
KCNJ8
KCNJ8
ARID5B
SSPN
SSPN
SSPN
ROBO3
CACHD1
TMTC1
TMTC1
SPRY2
C20orf19
CHL1
S100B
COL4A2
C20orf194
GPC6
LAMC1
VIM
IL11RA
SPRY1
SNX1
---
MATN2
MAMDC2
PKD2
RCBTB2
YAP1
TCF7L2
TCF7L2
PDE8A
---
SH3BP5
SH3BP5
---
PHACTR2
MBD2
SNX5
STX7
STX7
STX7
MBNL1
AKAP2 /// PALM2-AKAP2
PLCL2
NR3C1
NR3C1
FOXN2
SH3KBP1
SH3KBP1
RRAS2
RRAS2
BANK1
PTEN
PTEN
PTEN /// PTENP1 /// LOC731292
SNN
---
KCTD9
SLC25A46
TMEM77
SASH1
SASH1
CYBRD1
NFIA
NFIA
---
---
ADM
ANGPTL4
ANKRD38
ARHGEF4
C6orf145
MMP24
PARVA
CFHR3
PINK1
PINK1
GPX4
LUZP1
EPB41L1
JUN
---
SNTA1
PKD1L2
CRIM1
CRIM1
GKAP1
ZNF25
NEGR1
---
TMEM55A
SPTBN1
FLJ36848
FLJ23861
CDKN1C
CDKN1C
TWIST1
CDKN1C
CDKN1C
EIF4EBP2
---
TNRC15
PTPRS
PTPRS
HADHA
MYOC
MCCC1
KCNJ1
C11orf73
C11orf73
PRDX6
CRLS1
MAFF
MAFF
AXUD1
ZFP36
FOSB
PPP1R15A
SOCS3
CDC42EP2
SOX7
THBS1
MGC14376
LATS2
LATS2
FILIP1L
FILIP1L
EMP1
EMP1
EGR1
CYR61
CYR61
JUN
EGR1
EGR1
DUSP1
FOS
KLF2
LOC387763
PTPN4
FZD5
RIOK3
LOC285086
ROCK2
DPH3
RDX
---
ECHDC1
ECHDC1
ECHDC1
KLF11
PNRC1
CMPK
UBE2E2
TUBB6
RBMS1
RBMS1
GPR180
SOS1
TJP2
FAM122A
---
SAA3P
SAA4
PEMT
---
TMEM56
VIL2
ANKRD40
ACOX1
GDPD5
GDPD5
RGS3
C10orf10
ACACB
TFE3
RILP
PLA2G2A
C22orf16
SNX21
PALM
C12orf39
---
ADSS
MSX1
PBLD
CYB5A
CYB5A
CYB5A
---
ANG /// RNASE4
RNASE4
NDUFS4
MRPS36
LOC730013
ABCC6
ZNF541
SLC25A16
SLC25A16
RBPMS
CITED2
CITED2
TKT
TKT
PHLDA3
GPX1
LGALS1
C2orf7
LOC205251
TST
PMM1
PXMP2
SNX15
HINT2
ATPAF1
EPB41 /// MRPS15
SDHB
POLR2E
ACO2
ECH1
RNF41
FAM54B
SKIP
SKIP
ABHD14A
ABHD14B
CUL5
ZNF435
---
NEDD1
C6orf57
FMOD
ACADM
PDGFD
SMAD3 /// UROD
CCNG1
ESD
ESD
BMPR1A
SMAD6
DIP2C
STON1
LMOD1
SIM1
---
WHDC1L1
C10orf84
ZNF320 /// FLJ38482
PPID
ANAPC10
ECHS1
FAM45A
COPS2
EVI5
C2orf17
DSCR1L1
RASGRF2
STOM
ATP2B4
ATP2B4
HNMT
C6orf120
HOXD9
ARHGEF6
C4orf20
C6orf72
LYRM5
---
SESTD1
MBNL2
CAST
TENC1
EZH1
EZH1
PDE8B
C5orf4
C5orf4
PHLDB1
TCF8
---
STX12
C10orf56
PTPRM
PTPRM
DKFZp667G2110
UTRN
SAMD8
GNG12
PTPN21
SPG20
PDZRN3
C5orf21
EDNRB
EDNRB
ZNF423
LOC284112
---
SRPX
CXCL12
RECK
GPR124
FAT4
LHFP
PCDH18
PLSCR4
CDC14B
RBMS3
---
---
PTEN
---
CREBL2
STAT5B
MDFIC
AKAP2 /// PALM2-AKAP2
---
JAZF1
NR3C1
CYP2U1
CLIC5
---
LEPR
GIPC2
PTPRB
MYCT1
ELTD1
VWF
ECSM2
MEOX1
CDH5
ROBO4
EDG1
TEK
CLDN5
ANKRD47
GNG11
PDE2A
CCL14 /// CCL15
CYGB
PODN
PDGFRL
FBLN1
FBLN1
EFEMP2
LRP1
CD248
FBLN2
SLIT3
SERPINF1
EFEMP2
SHE
EMCN
---
NID1
COL15A1
FSTL1
TGFBR2
CFH /// CFHR1
C10orf56
ANKRD25
OLFML1
SPARC
DCN
DCN
DCN
DCN
CCDC80
CCDC80
---
C11orf74
LYRM1
EIF4EBP2
BCAP29
TEX9
HLF
HLF
HLF
ANK2
ADRB2
MPDZ
LOC375190
---
USP53
---
ST13
ST13
SAP18
RP11-125A7.3
C9orf5
EPB41L4B
STXBP1
ALAD
AUH
SBF2
AADAC
CYP26B1
CCRL1
ZNF135
---
SCD
SCD
SCD
---
HBA1 /// HBA2
HBG1 /// HBG2
HBB
HBB
HBA1
HBA1 /// HBA2
HBA1 /// HBA2
HBB
HBA2
HBA1 /// HBA2
CDC14B
CDC14B
TK2
PTRF
PTRF
C17orf39
NRN1
DMD
FRMD4A
TEAD1
---
TMEM133
APCDD1
ZDHHC2
P2RY12
TNIP1
FADS3
FADS3
C14orf149
BTNL9
CCDC85A
KIAA1706
P2RY14
MDFIC
RASA3
THYN1
LOC389203
BIN1
BIN1
BIN1
BIN1
BIN1
TACC1
TACC1
TACC1
GSN
STAT5A
PHLDB2
HEBP2
PLA2G4A
MPPE1
ZNF169
---
ECHDC3
PRRT3
TSPAN3
MGC4562
PPID
ALDH3A2
ALDH3A2
ALDH3A2
SSB
ITGB1BP1
LOC339804
HOXA10
HOXA10
RBED1
TF
TF
ZBTB16
---
---
BNIP3L
BNIP3L
TMEM77
RNF125
BCL2L2
LTB4DH
---
SYNPO2
SYNPO2
SYNPO2
CXCR7
LOC645722
CORO1C
Mar-02
GNS
DNAJB4
HEATR5A
EML1
SEC23A
PI16
F13A1
FOLR2
MAF
RNASE1
CD209
RP11-54H7.1
AHNAK
WNT11
MGC72104
SASH1
C3orf23
PCAF
SNX2
SNX2
CREBL2
PPP3CB
ISCU
METTL7A
COL4A3BP
COL4A3BP
COL4A3BP
HBLD2
AZI2
CRYZL1
---
PTPN11
METTL5
DCTN6
LMBRD1
SERINC1
EEA1
AZI2
FBXO8
SETD7
ZNF650
ZNF650
UBL3
TLOC1
CCNH
TLOC1
CCPG1
CCPG1
CREBL2
FBXL5
PLEKHC1
PELO
PLXNA4A
RETSAT
MYOM1
C21orf34
KCNB1
---
ANXA1
PLEKHC1
SPTBN1
PCDH9
C7orf41
ANGPT1
NPR3
C10orf10
MCAM
ST6GALNAC6
RGC32
MST150
FLJ36748
KRT8L2
CRTAP
CRTAP
CRTAP
LOC727942
AOX1
F10
NEGR1
GPR133
FBN1
MFAP5
MFAP5
PGM5
RBMS3
C18orf4
---
GABARAPL1
GABARAPL1 /// GABARAPL3
ANKRD15
---
LARP6
LARP6
PRELP
PRELP
PRELP
MRAS
CRYAB
MRAS
SNTB2
ANKDD1A
ARTS-1
APOL6
B4GALT6
TNMD
---
HSD11B1
SYTL4
---
ADRA1A
ADRA1A
ADHFE1
LOC729777 /// LOC730766
COBLL1
VTI1B
RPL5
FAM69A
DKFZP761N09121
LRRN3
LRRN3
EPAS1
DUSP22
NPR2
OSBPL1A
FMO2
CDKN1C
EGFLAM
SP2
HADH
ALDH1L1
RGN
FAM92A1
PGRMC2
ASPH
MGC34646
MGC34646
ETFB
VAMP3
ARHGAP24
ABCA1
VAMP3
VAMP3
ADH5
HABP4
CCDC50
LAMC1
ANXA1
SPG20
ITGB1
---
---
ZFPM2
XG
ALDH6A1
ALDH6A1
ALDH6A1
ALDH6A1
CTNNAL1
KLF9
DMRT2
---
KLHDC8B
CFL2
RNASE4
SHMT1
CDKN2C
CKMT2
ATP5G3
CRK
ZFP106
HRASLS3
BTD
HACL1
CCDC107
CALB2
GPR109B
TMEM22
FLJ21963
FLJ21963
RHOBTB3
RHOBTB3
C10orf58
MGST1
MGST1
MGST1
HIRA
NFU1
LOC285550
ZDHHC3
---
MTMR10
FBXL5
---
MTIF3
PDK4
FABP4
CD36
CD36
---
HNMT
VGLL3
ZFHX1B
QKI
EPB41L2
QKI
GGTA1 /// LOC731515
ADAMTS5
ADAMTS5
ADAMTS5
RRAGD
FGF2
FAM89A
PCSK5
PCSK5
ITIH5
SYNPO
ADRA2A
CFD
OGN
OGN
MFAP4
LAMA2
LAMA2
LAMA2
C13orf33
ECM2
PPAP2B
PPAP2B
PPAP2B
NPR2
---
CD302
ADRBK2
GPC3
IGFBP6
C2orf32
IGF1
IGF1
IGF1
LDB2
C6orf189
BTBD6
RRAS
MYO1C
CRY2
CS
FAM62A
ECHDC3
FAH
PEX19
ACOT2 /// ACOT1
STX12
ZYG11B
PCCA
TMEM16F
PARVA
PARVA
VTI1B
POLR3GL
OSTM1
OSTM1
C14orf10
Sep-11
ACAA2
PFKFB3
ABHD5
ABHD5
TMEM135
SLC25A16
F8
---
PC
RBPMS
CABC1
PDP2
XRCC6BP1
MAP3K15
MTHFD1
AGPAT2
CCDC75
ATP1A2
LOC91461
---
CREBL1
ADRB1
---
ADH1A /// ADH1B /// ADH1C
TMEM132C
C12orf39
MOCS1
SLC7A10
---
SNF1LK2
FMO2
C10orf72
SNX21
PCDH18
CFH
SCARA5
SCARA5
TUBB6
CFL2
ANGPTL1
ABCA9
TNXB
TNXB
TNXB
GYPC
GNG2
SLC9A9
CHES1
CHES1
CHES1
FOXO1A
CCDC69
CCDC69
ZFP106
C14orf139
---
EBF1
MAPK10
C21orf25
---
DLC1
DLC1
PELO
FLJ10357
FLJ10357
DKFZP564J102
DKFZP564J102
ZAK
ZAK
ZAK
ZAK
CDO1
TTC7B
ALDH2
GTDC1
SDHD
NR3C1
AKAP2 /// PALM2-AKAP2
ITGB1BP1
LOC388335
CUTC
PARD3B
---
TRHDE
PTGER3
PTGER3
EIF4E3
EIF4E3
DIXDC1
HRASLS5
FAM13A1
SLC16A7
SLC16A7
C19orf12
COPZ2
CPM
CPM
CPM
CPM
RNF150
---
SGCB
SGCB
CCDC50
SPTBN1
CCDC50
---
EFHA2
RHOQ
CRTAP
MXRA7
CDKN2B
SAMD4A
RHOQ
RHOQ
RHOQ
RHOQ
ALDOC
VLDLR
---
PPP2R1B
RSPO3
EPDR1
Sep-08
GPR34
PPP2R1B
BHMT2
PPAP2A
PPAP2A
PPP2R1B
NEK7
VGLL3
---
PPP2R1B
CES1
ACSL1
ME1
ME1
KCNAB1
ALDH1A1
XLKD1
---
FLJ20701
---
FLJ90650
AKAP12
C1QTNF7
ITGA7
LOC339524
AKR1C4
---
CAT
CAT
---
AKR1C3
AKR1C2
AKR1C1
AKR1C2
AKR1C1
PCDH9
EBF3
CA4
PLXNA4A
DCUN1D3
CASQ2
SLC16A7
---
RP5-1103G7.6
SPTBN1
FLJ20581
FLJ20581
EMP1
---
KLF4
DPT
DPT
DPT
STX11
FHL1
FHL1
FHL1
FHL1
DIAPH2
OTEX
PYGL
C5orf23
---
SGCG
ASPA
GLYAT
HSPB7
GLYAT
MRS2L
TYRO3
LAMA4
ACSS2
---
MME
MME
LAMA4
---
ANGPTL2
ANGPTL2
SH3GLB1
NDN
CUGBP2
MSRB3
Sep-11
CCDC80
PCYOX1
RETSAT
EHHADH
ETFDH
ETFDH
GBE1
ANTXR2
---
---
LOC572558
PFKFB1
ADH1A /// ADH1B /// ADH1C
ACADL
ACADL
ACAT1
PEX19
HADH
HADH
---
AIFM2
TSPAN3
PECR
CFL2
GENX-3414
C10orf58
HSDL2
ACSL1
SDPR
PCK1
GYG2
MOSC1
ACO1 /// ANKRD15
PPARG
LOC339984
CDKN2C
AGPAT2
ASAM
TWIST2
OXCT1
DOCK11
DLD
EHBP1
UGP2
ADH5
ECHDC1
DHDDS
SAA1 /// SAA2
SAA1
COL4A1
RARRES2
CEBPA
MGC33894
TLN2
RBPMS2
LOC401052
MAOA
MAOA
MAOA
G0S2
ABCA8
FHL1
ADIPOQ
TBX15
FZD4
ACACB
ACACB
ACACB
KLB
KLB
DDR2
HSD11B1
MCAM
NMB
HSPB2
GHR
SEMA3G
ANGPT1
FLJ21986
BHMT
FLJ25530
SYN2
PTGER3
PTGER3
PTGER3
PTGER3
PCDH9
---
LGALS12
C19orf12
SYN2
NPR1
TNS1
ACVR1C
SUCLA2
WASF3
PCOLCE2
ITIH5
---
CAV2
CAV1
CAV1
C7orf41
PRSS23
PALMD
DDR2
SH3D19
AKAP12
AKAP12
MMP28
MCAM
MCAM
VKORC1L1
VTI1B
MMD
SLC19A3
ITSN1
ITSN1
GPAM
DDR2
HSPA12A
CAV2
---
ARHGAP20
---
PDZD2
---
SLC19A3
ECM2
PLEKHC1
FAM13A1
FAM13A1
LPL
LPL
GNAI1
GNAI1
FABP4
CIDEA /// GGT1
ADH1B
ADH1B
SORBS1
PLIN
GYG2
GYG2
GPAM
AOC3
CHRDL1
SORBS1
Gcom1
ITSN1
TNS1
TNS1
PDE3B
PDE3B
TNS1
GPD1
RDH5
---
LEP
SDPR
PRSS23
PRSS23
PPP1R1A
PPP1R1A
PRKAR2B
AQP7
RBP4
KIAA1881
GPD1
CIDEC
LIPE
TUSC5
DGAT2
ITGA7
MRAP
SPTBN1
AIFM2
SNF1LK2
PALMD
NMT2
NMT2
TMEM140
CCDC3
TMEM37
TMEM37
CLEC3B
PLAC9
LOC654342
LOC221091
SCRN2
COX7A1
LOC283481
LOC283481
TK2
TK2
DHRS3
MGLL
MGLL
LOC643837
SNTB2
SNTB2
C19orf12
PDE11A
VEGFB
AVPI1
ALS2CR2
NIPSNAP3B
PPP1R14A
IGF1
ADH1A
LOC400258
TMEM100
GPX3
GPX3
KLF15
FXYD1
TIMP4
GPR146
THRSP
THRSP
THRSP
HSPB6
PNPLA2
KCNIP2
C1orf213
C10orf116
BOK
HSDL2
HSDL2
NAT8L
SLC14A2
---
KIAA0427
DGAT2
PLXNA4A
CPM
CD300LG
LOC400258
LOC55908
C10orf58
LOC338328
EHD2
EHD2
RASD1
MYL9
MXRA7
SGCB
PGD /// UGDH
PAIP1
PAIP1
C1orf80
MORF4L1 /// MORF4
UQCRC2
C20orf30
MAP1LC3B
CCNDBP1
ACOX1
CALM1
CALM1
SNX3
SNX3
SNX3
SNX3
FBLN5
RNF130
AKAP7
AK3
AK3
BCL2L13
C5orf35
IDH3A
EIF2B3
SH3GLB1
SH3GLB1
C1orf123
RPRC1
RRAGC
PEPD
SLC25A33
ACYP2
ABHD5
SUCLG1
MDH1
PGM1
DECR1
PIR
ZHX1
HRSP12
ANKRD46
LOC645166
ARRB1
ZBED3
HSPG2
DOCK6
DOCK6
COL4A2
SYDE1
EPHX1
MESP1
NDUFV3
---
KLHL21
---
LOC442175
TRIOBP

 

Fig 3.1.3.1.2: Two-way clustering of sample and genes on down-regulated genes. 
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As before, the normals and tumors largely clustered as distinct groups, with 4 of the 

normals (n5, n4, p18, n6) not clustering with the rest of the normals. No clinical 

parameter was found to be significant among the clusters (see section 2.2.4). Clusters of 

co-expressed genes with similar functions/pathways were identified in the dendrogram. 

There were a total of 382 clusters of genes with significant Gene ontology terms (p < 

0.001). The functions along with the number of genes are listed in Appendix 1. 25 

pathways were also identified which were significant (p < 0.001) in various clusters 

Table 3.1.3.1.2. The individual clusters are shown in Appendix 3 (Fig A1 - Fig A6). "*" 

indicates this cluster includes all genes. Therefore they have not been shown in Appendix 

3. These seem to be normal metabolic processes which are down-regulated in tumour 

samples. 

Pathway Changed Measured p-value 

Glycolysis / Gluconeogenesis * 18 272 0.000064 

Fatty acid metabolism * 24 272 0 

Glycogen Metabolism * 15 272 0.000511 

Pyruvate metabolism * 13 272 0.000004 

Propanoate metabolism * 10 272 0.000001 

Tyrosine metabolism * 14 272 0.000035 

Fatty Acid Degradation * 11 272 0.000058 

Glutathione metabolism * 11 272 0.000348 

Krebs-TCA Cycle * 12 272 0.000163 

Citrate cycle / TCA cycle * 11 272 0.000003 

Glycerolipid metabolism * 22 272 0.000041 

Lysine degradation * 10 272 0.000626 

Fatty Acid Synthesis * 12 272 0.000001 

Bile acid biosynthesis * 15 272 0 

Valine, leucine and isoleucine degradation * 17 272 0 

Ascorbate and aldarate metabolism * 5 272 0.000183 

Small ligand GPCRs * 10 272 0.000101 

Methane metabolism  6 210 0.000985 
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Histidine metabolism  5 104 0.00087 

Tryptophan metabolism  7 71 0.000827 

Glycine, serine and threonine metabolism  5 60 0.000881 

Phenylalanine metabolism  4 49 0.000889 

Arginine and proline metabolism  4 29 0.00065 

Integrin-mediated cell adhesion  5 18 0.000975 

GPCRs Class A Rhodopsin-like  4 4 0.000019 

Table 3.1.3.1.2: Significant pathways in clusters of genes among the up-regulated 

genes. 

3.1.4 Comparison criteria: Normal vs. cancer specimens 

Identifying genes up-regulated or down-regulated in cancer vs. normal helps us in better 

understanding the cancer dynamics and help identify markers and treatment targets for 

breast cancer.  

A total of 17 normal breast specimens and 104 breast cancer specimens were compared 

for gene expression changes using data generated from an in-house microarray 

experiment as previously detailed.  

Up-regulated gene transcripts:  

4,213 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 

1.2 and Difference > 100) in cancer specimens compared to normal specimens. Genes 

were ranked by fold change and, based on this criterion, the top 20 genes are listed in 

Table 3.1.4.1.  

Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the 10 most significant functions represented are listed in Table 3.1.4.2.  

Pathway analysis was performed using GenMAPP on the up-regulated genes (p ≤ 0.05, 

FC>2, and Difference > 100). Significant pathways were identified based on p-value (p ≤ 
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0.05) and the 10 most significant pathways are listed in Table 3.1.4.3. Embryonic stem 

cells (Fig 3.1.4.1) and Cell cycle (Fig 3.1.4.2) pathways were observed to be enriched by 

the up-regulated genes. 

Down-regulated gene transcripts: 

3235 genes were identified as significantly down-regulated (p ≤ 0.05, FC< -1.2 and 

Difference< -100) in cancer specimens compared to normal specimens. Genes were 

ranked by fold change and, based on this criterion, the top 20 genes are listed in Table 

3.1.4.4.  

Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and 10 most significant functions represented are listed in Table 3.1.4.5. 

Pathway analysis was performed using GenMAPP on the down-regulated genes (p ≤ 

0.05, FC<-2, and Difference < -100). Significant pathways were identified based on p-

value (p ≤ 0.05) and the 10 most significant pathways are listed in Table 3.1.4.6. Fatty 

acid Biosynthesis (Fig 3.1.4.3) pathways were observed to be enriched by the down-

regulated genes.           
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Probe set gene Baseline Experiment FC p-value 

205916_at S100A7 1 406.87 406.87 0.000514 

205941_s_at COL10A1 2.65 478.64 180.62 0 

226548_at SBK1 1.17 160.03 136.8 0 

213201_s_at TNNT1 2.31 314.01 135.96 0 

208502_s_at PITX1 1 106.63 106.21 0 

207802_at CRISP3 2.01 182.44 90.77 0.004065 

239983_at SLC30A8 5.27 350.19 66.44 0.000373 

204915_s_at SOX11 3.4 186.95 54.92 0 

236885_at LOC92312 3.16 160.97 50.96 0 

220318_at EPN3 2.9 138.45 47.74 0 

204351_at S100P 16.14 757.64 46.94 0 

229341_at TFCP2L1 2.31 103.09 44.61 0.000727 

231352_at SLC22A8 3.62 141.75 39.12 0 

217428_s_at COL10A1 12.95 498.17 38.47 0 

206502_s_at INSM1 4.43 151.87 34.32 0.026509 

228969_at AGR2 20.64 705.66 34.19 0 

220414_at CALML5 8.25 279.3 33.86 0.000001 

1558281_a_

at MGC9712 3.94 132.13 33.58 0 

229158_at WNK4 4.39 143.38 32.65 0 

204913_s_at SOX11 4.77 153.22 32.14 0.00001 

Table 3.1.4.1: Genes up-regulated in cancer specimens in comparison to normal 

specimens 
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GOID GO Name Changed Measured p-value 

5581 Collagen 12 30 0 

785 Chromatin 30 124 0 

278 Mitotic cell cycle 38 177 0 

7067 Mitosis 31 135 0 

87 M phase of mitotic cell cycle 31 137 0 

5584 Collagen type I 3 3 0 

5694 Chromosome 43 230 0 

279 M phase 35 176 0 

6333 Chromatin assembly or disassembly 25 114 0 

8094 DNA-dependent ATPase activity 11 35 0 

Table 3.1.4.2 Functions enriched among genes up-regulated in cancer in comparison 

to normal specimens 

MAPP Name Changed Measured p-value 

1-Tissue-Embryonic Stem Cell 15 47 0 

Cell cycle KEGG 22 89 0 

M phase of mitotic cell cycle 25 124 0 

Chromatin 29 152 0 

mRNA processing Reactome 25 125 0 

2-Tissues-Blood and Lymph 16 78 0 

Rhodopsin-like receptor activity 5 240 0 

GPCRDB Class A Rhodopsin-like 3 253 0 

Chromatin assembly or disassembly 24 139 0.001 

Establishment and or maintenance of chromatin 

architecture 

34 217 0.001 

Table 3.1.4.3: Pathways enriched among genes up-regulated in cancer in 

comparison to normal specimens 
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Fig 3.1.4.1: Embryonic stem cells pathway. Red indicates up-regulated genes in 

cancer specimens in comparison to normal specimens. Green indicates down-

regulated genes in cancer specimens in comparison to normal specimens.  
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Fig 3.1.4.2: Cell cycle pathways. Red indicates up-regulated genes in cancer 

specimens in comparison to normal specimens. Green indicates down-regulated 

genes in cancer specimens in comparison to normal specimens. 
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Probe set Gene Baseline  Experiment  FC p-value 

228880_at LOC339984 248.01 1.42 -174.51 0.000056 

222083_at GLYAT 445.31 2.58 -172.89 0.000075 

204997_at GPD1 721.75 5.14 -140.45 0.000013 

1558421_a_at LOC400258 1347.45 13.29 -101.39 0.000089 

220736_at SLC19A3 366.24 3.63 -100.91 0.000028 

213515_x_at 

HBG1, 

HBG2 1036.62 11.04 -93.92 0.022274 

201539_s_at FHL1 1048.5 12.75 -82.21 0.000024 

243311_at 

RP5-

1103G7.6 1258.94 18.22 -69.09 0.000183 

222226_at SAA3P 145.13 2.13 -68.07 0.00477 

243813_at --- 129.99 1.95 -66.7 0.004182 

210298_x_at FHL1 1198.5 18.47 -64.88 0.000029 

210106_at RDH5 831.47 12.95 -64.21 0.000011 

235708_at KLB 736.68 12.68 -58.09 0.00003 

234943_at --- 108.54 1.87 -57.96 0.005823 

237154_at HSD11B1 1378.6 24.14 -57.11 0.000022 

219140_s_at RBP4 3687.79 65 -56.74 0.000016 

228168_at ATP5G3 102.45 1.83 -55.88 0.002188 

208383_s_at PCK1 1328 25.05 -53.01 0.000014 

207092_at LEP 4466.38 88.5 -50.47 0.000006 

209980_s_at SHMT1 111.96 2.42 -46.31 0.000878 

Table 3.1.4.4: Genes down-regulated in cancer specimens in comparison to normal 

specimens 
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GOID GO Name Changed Measured p-value 

9109 Coenzyme catabolism 12 22 0 

46356 Acetyl-CoA catabolism 11 21 0 

6099 Tricarboxylic acid cycle 11 21 0 

16628 

Oxidoreductase activity, acting 

on the CH-CH Group of donors, 

NAD or NADP as acceptor 9 15 0 

51187 Cofactor catabolism 12 26 0 

6629 Lipid metabolism 82 535 0 

9060 Aerobic respiration 12 28 0 

16491 Oxidoreductase activity 85 579 0 

4300 Enoyl-CoA hydratase activity 5 6 0 

Table 3.1.4.5: Functions enriched among genes down-regulated in cancer in 

comparison to normal specimens 

MAPP Name Changed Measured p-value 

Fatty Acid Synthesis BiGCaT 15 22 0 

Propanoate metabolism 14 27 0 

Citrate cycle TCA cycle  13 24 0 

Mitochondrial fatty acid betaoxidation 10 16 0 

Valine leucine and isoleucine degradation 17 39 0 

Fatty Acid Beta Oxidation Meta BiGCaT 14 32 0 

Adipogenesis 34 130 0 

Pyruvate metabolism 14 34 0 

1-Tissue-Muscle fat and connective 20 65 0 

Fatty acid metabolism 20 66 0 

Table 3.1.4.6: Pathways enriched among genes down-regulated in cancer in 

comparison to normal specimens 
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Fig 3.1.4.3: Fatty acid biosynthesis pathways. Red indicates up-regulated genes in 

cancer specimens in comparison to normal specimens. Green indicates down-

regulated genes in cancer specimens in comparison to normal specimens. 

3.1.5 Comparison criteria: Estrogen receptor-negative vs. Estrogen receptor-

positive 

Estrogen receptor (ER) status is important in identifying patients who are likely to 

respond from endocrine therapy. Identifying genes up and down regulated in ER-positive 

vs. ER-negative patients is important to get a better understanding of the significance of 

ER pathway. 

A total of 34 ER-negative breast specimens and 67 ER-positive breast cancer specimens 

were compared for gene expression changes. 
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Up-Regulated gene transcripts: 

855 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 1.2 

and Difference > 100) in ER-positive breast cancer specimens compared to ER-negative 

specimens. Genes were ranked by fold change and, based on these criteria, the top 20 

genes are listed in Table 3.1.5.1.  

Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the 10 most significant functions are listed in Table 3.1.5.2.  

Pathway analysis was performed using GenMAPP on the up-regulated genes (p ≤ 0.05, 

FC>2, and Difference > 100). Significant pathways were identified based on p-value (p ≤ 

0.05) and significant pathways are listed in Table 3.1.5.3. The Nuclear receptors pathway 

was observed to be enriched by the up-regulated genes. 

Down-regulated gene transcripts: 

1145 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change (FC) 

< -1.2 and Difference < -100) in ER-positive breast cancer specimens compared to ER-

negative specimens. Genes were ranked by fold change and, based on these criteria, the 

top 20 genes are listed in Table 3.1.5.4.  

Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and the 10 most significant functions are listed in Table 3.1.5.5.  

Pathway analysis was performed using GenMAPP database on the down-regulated genes 

(p ≤ 0.05, FC<-2, and Difference < -100). Significant pathways were identified based on 

p-value (p ≤ 0.05) and the significant pathways are listed in Table 3.1.5.6. Genes specific 

to blood and lymph tissue pathway were observed to be enriched by the down-regulated 

genes. 
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Probe set Gene Baseline Experimental FC p-value 

236445_at LOC731986 6.71 264.52 39.43 0.000901 

1494_f_at CYP2A6 49.93 606.61 12.15 0.024179 

242301_at CBLN2 10.41 116.75 11.21 0.012938 

210272_at CYP2B7P1 39.93 438.38 10.98 0.000165 

1552507_at KCNE4 65.09 511.13 7.85 0.000406 

1562821_a_at DSCAM 69.35 536.03 7.73 0.017704 

206754_s_at CYP2B7P1 189.29 1445.09 7.63 0.000069 

205696_s_at GFRA1 42.88 291.22 6.79 0 

230163_at LOC143381 82.42 558.14 6.77 0 

239983_at SLC30A8 76.2 505.49 6.63 0.004899 

218332_at BEX1 79.39 510.9 6.44 0.00405 

240192_at FLJ45983 24.51 135.67 5.54 0.000012 

222379_at --- 60.8 331.69 5.46 0.000691 

220540_at KCNK15 42.8 215.18 5.03 0.000035 

211712_s_at ANXA9 52.94 251.19 4.74 0.000007 

1555997_s_at IGFBP5 51.64 230.38 4.46 0.001196 

227550_at LOC143381 211.8 933.96 4.41 0.000002 

203999_at --- 35.44 147.18 4.15 0.012644 

241368_at LSDP5 55.83 222.53 3.99 0.000033 

226271_at GDAP1 79.83 307.42 3.85 0.017169 

Table 3.1.5.1: Genes up-regulated in ER-positive specimens in comparison to ER-

negative specimens 
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GOID GO Name Changed Measured p-value 

30027 Lamellipodium 2 15 0 

902 Cellular morphogenesis 7 236 0 

5006 

Epidermal growth factor 

receptor activity 2 7 0.002 

31252 Leading edge 2 18 0.002 

9653 Morphogenesis 9 522 0.002 

7584 Response to nutrient 2 15 0.003 

17162 

Aryl hydrocarbon receptor 

binding 1 1 0.004 

42995 Cell projection 3 65 0.004 

1786 Phosphatidylserine binding 1 1 0.005 

31667 Response to nutrient levels 2 19 0.005 

Table 3.1.5.2: Functions enriched among genes up-regulated in ER-positive 

specimens in comparison to ER-negative specimens. 

MAPP Name Changed Measured p-value 

Nuclear Receptors 2 38 0.039 

IL-3 NetPath 15 3 101 0.039 

Synthesis and Degradation of Ketone 

Bodies KEGG 1 5 0.04 

Butanoate metabolism 2 38 0.042 

2-Tissues-Endocrine and CNS 3 103 0.042 

Table 3.1.5.3 Pathways enriched among genes up-regulated in ER-positive 

specimens in comparison to ER-negative specimens. 
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Probe set Gene Baseline Experimental FC p-value 

216365_x_at 

IGL@, 

CPVL 228.98 31.35 -7.3 0.042385 

220425_x_at ROPN1B 164.84 24.84 -6.64 0.012712 

205363_at BBOX1 205.39 33.76 -6.08 0.004225 

224191_x_at ROPN1 187.87 31.7 -5.93 0.027217 

213711_at KRT81 587.61 103.04 -5.7 0.022424 

231535_x_at ROPN1 210.24 37.59 -5.59 0.023043 

219225_at PGBD5 169.43 31.97 -5.3 0.033009 

206165_s_at CLCA2 175.85 34.81 -5.05 0.044217 

212531_at LCN2 219.97 43.92 -5.01 0.030348 

210147_at ART3 126.27 25.23 -5 0.040628 

237625_s_at --- 427.38 86.05 -4.97 0.038949 

220559_at EN1 141 29.54 -4.77 0.03141 

214777_at --- 273.81 59.04 -4.64 0.033383 

217528_at CLCA2 232.94 50.85 -4.58 0.039492 

211881_x_at IGLJ3 532.05 118.48 -4.49 0.047763 

223468_s_at RGMA 482.4 108.43 -4.45 0.00109 

202037_s_at SFRP1 1122.95 256.41 -4.38 0.005489 

209396_s_at CHI3L1 802.87 188.9 -4.25 0.022891 

235209_at RPESP 316.05 76.29 -4.14 0.029573 

211798_x_at IGLJ3 611.25 150.68 -4.06 0.044385 

Table 3.1.5.4: Genes down-regulated in ER-positive specimens in comparison to ER-

negative specimens 
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GOID GO Name Changed Measured p-value 

45012 MHC class II receptor activity 3 13 0 

19884 

Antigen presentation, 

exogenous antigen 3 13 0 

19886 

Antigen processing, exogenous 

antigen via MHC class II 3 14 0 

19221 

Cytokine and chemokine 

mediated signaling pathway 3 15 0 

9607 Response to biotic stimulus 24 845 0 

6952 Defense response 22 806 0 

6955 Immune response 19 716 0 

50896 Response to stimulus 34 1754 0 

6032 Chitin catabolism 2 7 0.001 

4568 Chitinase activity 2 7 0.001 

Table 3.1.5.5: Functions enriched among genes down-regulated in ER-positive 

specimens in comparison to ER-negative specimens. 

MAPP Name Changed Measured p-value 

2-Tissues-Blood and Lymph 14 78 0 

1-Tissue-Blood and Lymph 13 168 0 

Phosphatidylinositol signaling system 7 122 0.004 

Kit-Receptor NetPath 6 4 67 0.017 

B Cell Receptor NetPath 12 6 158 0.039 

Table 3.1.5.6: Pathways enriched among genes down-regulated in ER-positive 

specimens in comparison to ER-negative specimens. 
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3.1.6 Comparison criteria: Lymph node-negative vs. Lymph node-positive 

Positive lymph node status indicates the spread of disease and is an indicator of 

aggressive disease. Identifying genes up and down regulated in Lymph node-positive vs. 

lymph node-negative patients may help identify biomarkers and targets for aggressive 

disease. 

A total of 45 lymph node-negative specimens and 59 lymph node-positive specimens 

were compared for gene expression changes. 

Up-regulated gene transcripts: 

102 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 1.2 

and Difference > 100) in lymph node-positive specimens compared to lymph node-

negative specimens. Genes were ranked by fold change and, based on this criterion, the 

top 20 genes are listed in Table 3.1.6.1.  

Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the 10 most significant functions are listed in Table 3.1.6.2.  

Pathway analysis was performed using GenMAPP on the up-regulated genes (p ≤ 0.05, 

FC>2, and Difference > 100). Significant pathways were identified based on p-value (p ≤ 

0.05) and listed in Table 3.1.6.3  

Down-regulated gene transcripts: 

126 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change (FC) < 

-1.2 and Difference < -100) in lymph node-positive specimens compared to lymph node-

negative specimens. Genes were ranked by fold change and, based on these criteria, the 

top 20 genes are listed in Table 3.1.6.4.  
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Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and the 10 most significant functions are listed in Table 3.1.6.5.  

Pathway analysis was performed using GenMAPP on the down-regulated genes (p ≤ 

0.05, FC<-2, and Difference < -100). No pathway was found to be significantly affected 

(p ≤ 0.05). 

Probe set Gene Baseline Experiment FC P value 

208161_s_at ABCC3 114.65 288.11 2.51 0.030769 

232547_at SNIP 78.47 197.18 2.51 0.031976 

201467_s_at NQO1 104.07 252.98 2.43 0.014538 

213557_at CRKRS 105.28 252.03 2.39 0.013519 

213551_x_at PCGF2 172.75 355.64 2.06 0.009378 

204942_s_at ALDH3B2 367.35 737.26 2.01 0.012173 

201525_at APOD 607.61 1214.76 2 0.03805 

236885_at LOC92312 104.67 204.99 1.96 0.003213 

201080_at PIP5K2B 460.62 888.4 1.93 0.013447 

202991_at STARD3 126.81 241.75 1.91 0.005253 

226727_at LOC284106 230.36 437.84 1.9 0.03065 

214239_x_at PCGF2 354.75 670.7 1.89 0.012442 

228854_at --- 129.08 243.04 1.88 0.037461 

210519_s_at NQO1 424.43 779.09 1.84 0.011794 

224784_at MLLT6 199.44 367.65 1.84 0.01422 

204351_at S100P 528.01 935.78 1.77 0.045632 

227512_at LOC92312 160.25 281.39 1.76 0.003296 

226346_at LOC92312 266.36 463.27 1.74 0.006202 

222706_at CCDC49 175.35 302.95 1.73 0.013138 

201400_at PSMB3 1252.09 2107.56 1.68 0.003089 

Table 3.1.6.1: Genes up-regulated in lymph node-positive specimens in comparison 

to lymph node-negative specimens 
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GOID GO Name Changed Measured p-value 

3955 

NAD(P)H dehydrogenase 

(quinone) activity 1 2 0.001 

4128 Cytochrome-b5 reductase activity 1 5 0.002 

4030 

Aldehyde dehydrogenase 

[NAD(P)+] activity 1 5 0.003 

46209 Nitric oxide metabolism 1 13 0.003 

6809 Nitric oxide biosynthesis 1 13 0.003 

7271 Synaptic transmission, cholinergic 1 8 0.004 

16652 

Oxidoreductase activity, acting on 

NADH or NADPH, NAD or 

NADP as acceptor 1 8 0.004 

7270 Nerve-nerve synaptic transmission 1 10 0.004 

8514 Organic anion transporter activity 1 10 0.006 

4028 Aldehyde dehydrogenase activity 1 13 0.006 

Table: 3.1.6.2: Functions enriched among genes up-regulated in lymph node-

positive specimens in comparison to lymph node-negative specimens 

MAPP Name Changed Measured p-value 

Sterol biosynthesis 1 19 0.015 

Phenylalanine metabolism 1 21 0.023 

Nuclear receptors in lipid metabolism and 

toxicity 1 33 0.029 

Oxidative Stress 1 28 0.031 

Tyrosine metabolism 1 50 0.046 

Histidine metabolism 1 43 0.048 

Table: 3.1.6.3: Pathways enriched among genes up-regulated in lymph node-positive 

specimens in comparison to lymph node-negative specimens 
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Probe set Gene Baseline Experiment FC P value 

1562309_s_at PHF21B 203.88 33.16 -6.15 0.029485 

205710_at LRP2 186.27 51.63 -3.61 0.027245 

226269_at GDAP1 439.22 124.8 -3.52 0.048222 

229947_at PI15 1154.42 334.98 -3.45 0.006649 

221796_at NTRK2 342.72 102.47 -3.34 0.047688 

205794_s_at NOVA1 496.28 183.17 -2.71 0.023049 

230863_at --- 484.5 185.15 -2.62 0.024507 

232687_at --- 241.09 91.97 -2.62 0.021802 

205567_at CHST1 253.67 112.66 -2.25 0.043266 

211421_s_at RET 321.52 144.02 -2.23 0.017844 

205472_s_at DACH1 518.9 258.04 -2.01 0.032869 

213832_at --- 364.12 185 -1.97 0.01482 

225123_at --- 432.05 227.79 -1.9 0.014714 

1570344_at --- 314.92 168.16 -1.87 0.01455 

205471_s_at DACH1 381.97 205.01 -1.86 0.035402 

228915_at DACH1 474.53 254.77 -1.86 0.024403 

225613_at MAST4 691.74 373.56 -1.85 0.031486 

227192_at PRRT2 291.04 161.4 -1.8 0.04585 

1554007_at ZNF483 250.9 140.49 -1.79 0.009076 

244696_at AFF3 379.29 219.24 -1.73 0.016035 

Table 3.1.6.4: Genes down-regulated in lymph node-positive specimens in 

comparison to lymph node-negative specimens 
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GOID GO Name Changed Measured p-value 

45130 

Keratan sulfotransferase 

activity 1 1 0 

7456 

Eye development (sensu 

Endopterygota) 1 1 0 

43121 Neurotrophin binding 1 3 0 

7497 Posterior midgut development 1 1 0.001 

7494 Midgut development 1 1 0.001 

42339 Keratan sulfate metabolism 1 2 0.001 

48565 Gut development 1 2 0.002 

30304 Trypsin inhibitor activity 1 3 0.002 

6012 Galactose metabolism 1 7 0.003 

1654 Eye development 1 9 0.004 

Table: 3.1.6.5: Functions enriched among genes down-regulated in lymph node-

positive specimens in comparison to lymph node-negative specimens 

3.1.7 Comparison criteria: Grade 1 vs. Grade 2 

Higher Grade cancers are more aggressive. Identifying genes up and down regulated in 

patients with high grade tumors vs. low grade tumors may help identify biomarkers and 

targets for aggressive disease. 

A total of 11 specimens with Grade 1 cancer and 40 specimens with Grade 2 cancers 

were compared for gene expression changes.  

Up-regulated gene transcripts: 

275 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 1.2 

and Difference > 100) in Grade 2 specimens compared to Grade 1 specimens. Genes 

were ranked by fold change and, based on this criterion, the top 20 genes are listed in 

Table 3.1.7.1.  
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Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the10 most significant functions are listed in Table 3.1.7.2.  

Pathway analysis was performed using GenMAPP on the up-regulated genes (p ≤ 0.05, 

FC>2, and Difference > 100). Significant pathways were identified based on p-value (p ≤ 

0.05) listed in Table 3.1.7.3.  

Down-regulated gene transcripts: 

75 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change (FC) < -

1.2 and Difference < -100) in Grade 2 specimens compared to Grade 1 specimens. Genes 

were ranked by fold change and, based on these criteria, the top 20 genes are listed in 

Table 3.1.7.4. 

Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and the 10 most significant functions are listed in Table 3.1.7.5. 

Pathway analysis was performed using GenMAPP on the down-regulated genes (p ≤ 

0.05, FC<-2, and Difference < -100). No pathway was found to be significantly affected 

(p ≤ 0.05).  
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Probe set Gene Baseline Experiment FC p-value 

221107_at CHRNA9 11.95 163.02 13.64 0.02427 

210576_at CYP4F8 15.69 162.6 10.36 0.038742 

202917_s_at S100A8 117.23 819.95 6.99 0.027742 

203915_at CXCL9 95.42 616.34 6.46 0.01134 

230966_at IL4I1 30.59 168.93 5.52 0.015138 

1562821_a_at DSCAM 82.14 447.18 5.44 0.017192 

202672_s_at ATF3 102.7 416.69 4.06 0.000924 

204533_at CXCL10 64.57 261.66 4.05 0.042573 

221667_s_at HSPB8 154.17 605.27 3.93 0.004196 

203645_s_at CD163 64.84 249.67 3.85 0.044332 

202768_at FOSB 75.36 286.7 3.8 0.001608 

203936_s_at MMP9 229.25 870.22 3.8 0.016992 

210163_at CXCL11 42.15 156.18 3.71 0.017085 

217388_s_at KYNU 119.89 416.78 3.48 0.007713 

221491_x_at HLA-DRB1 85.24 296.62 3.48 0.000384 

215049_x_at CD163 86.73 292.72 3.37 0.042521 

203290_at HLA-DQA1 58.37 187.41 3.21 0.021995 

202988_s_at RGS1 56.62 177.43 3.13 0.001173 

211143_x_at NR4A1 62.24 193.85 3.11 0.000432 

229476_s_at THRSP 89.79 274 3.05 0.012882 

Table 3.1.7.1: Genes up-regulated in Grade 2 specimens in comparison to Grade 1 

specimens 
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GOID GO Name Changed Measured p-value 

42379 Chemokine receptor binding 5 44 0 

8009 Chemokine activity 5 44 0 

1664 G-protein-coupled receptor binding 5 52 0 

19363 Pyridine nucleotide biosynthesis 2 10 0 

6955 Immune response 17 716 0 

9607 Response to biotic stimulus 18 845 0 

42364 Water-soluble vitamin biosynthesis 2 13 0 

6952 Defense response 17 806 0 

42330 Taxis 6 116 0 

6935 Chemotaxis 6 116 0 

Table 3.1.7.2: Functions enriched among genes up-regulated in Grade 2 specimens 

in comparison to Grade 1 specimens 

MAPP Name Changed Measured p-value 

1-Tissue-Blood and Lymph 5 168 0.001 

BCell Receptor NetPath_12 3 158 0.034 

Table 3.1.7.3: Pathways enriched among genes up-regulated in Grade 2 specimens 

in comparison to Grade 1 specimens 
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Probe set Gene Baseline Experiment FC p-value 

221207_s_at NBEA 202.86 79.62 -2.55 0.038106 

206509_at PIP 4995.37 1998.45 -2.5 0.031477 

204014_at DUSP4 1377.66 585.14 -2.35 0.034649 

229331_at SPATA18 196.9 84.09 -2.34 0.015777 

205009_at TFF1 3627.58 1582.24 -2.29 0.024715 

226034_at --- 1763.7 800.52 -2.2 0.023362 

201445_at CNN3 353.94 178.34 -1.98 0.039975 

204633_s_at RPS6KA5 289.74 147.1 -1.97 0.012653 

204635_at RPS6KA5 243.95 126.37 -1.93 0.006307 

204686_at IRS1 603.2 330.01 -1.83 0.023378 

243495_s_at --- 274.03 154.92 -1.77 0.01535 

208978_at CRIP2 243.56 139.62 -1.74 0.031256 

204623_at TFF3 3889.12 2265.98 -1.72 0.046233 

238044_at --- 260.61 154.2 -1.69 0.047571 

227769_at --- 254.05 151.79 -1.67 0.024086 

202936_s_at SOX9 838.74 508.58 -1.65 0.012404 

227856_at C4orf32 882.22 533.75 -1.65 0.047376 

226989_at RGMB 408.82 249.54 -1.64 0.02876 

228496_s_at CRIM1 1155.66 722.16 -1.6 0.021534 

229478_x_at BIVM 296.93 190.88 -1.56 0.025046 

Table 3.1.7.4: Genes down-regulated in Grade 2 specimens in comparison to Grade 

1 specimens 
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GOID GO Name Changed Measured p-value 

8330 

Protein tyrosine/threonine 

phosphatase activity 1 3 0.001 

51018 Protein kinase A binding 1 9 0.002 

17017 MAP kinase phosphatase activity 1 10 0.002 

5802 Golgi trans face 1 14 0.002 

6892 Post-Golgi transport 1 15 0.006 

8138 

Protein tyrosine/serine/threonine 

phosphatase activity 1 39 0.012 

19901 Protein kinase binding 1 43 0.014 

7586 Digestion 1 52 0.014 

19900 Kinase binding 1 49 0.017 

4725 Protein tyrosine phosphatase activity 1 76 0.019 

Table 3.1.7.2: Functions enriched among genes down-regulated in Grade 2 

specimens in comparison to Grade 1 specimens 

3.1.8 Comparison criteria: Grade 2 vs. Grade 3 

Higher Grade cancers are more aggressive. Identifying genes up- and down-regulated in 

patients with high grade tumors vs. low grade tumors may help identify biomarkers and 

targets for aggressive disease. 

A total of 40 specimens with Grade 2 cancer and 53 specimens with Grade 3 cancer were 

compared for gene expression changes.  

Up-regulated gene transcripts: 

930 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 1.2 

and Difference > 100) in Grade 3 specimens compared to Grade 2 specimens. Genes 

were ranked by fold change and, based on these criteria, the top 20 genes are listed in 

Table 3.1.8.1.  



 128 

Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the 10 most significant functions are listed in Table 3.1.8.2. 

Pathway analysis was performed using GenMAPP database on the up-regulated genes (p 

≤ 0.05, FC>2, and Difference > 100). Significant pathways were identified based on p-

value (p ≤ 0.05) and are listed in Table 3.1.8.3. 

Down-regulated gene transcripts: 

596 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change (FC) < 

-1.2 and Difference < -100) in Grade 3 specimens compared to Grade 2 specimens. Genes 

were ranked by fold change and, based on these criteria, the top 20 genes are listed in 

Table 3.1.8.4. 

Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and the 10 most significant functions are listed in Table 3.1.8.5. 

Pathway analysis was performed using GenMAPP database on the down-regulated genes 

(p ≤ 0.05, FC<-2, and Difference < -100). Significant pathways were identified based on 

p-value (p ≤ 0.05) and are listed in Table 3.1.8.6. 

 



 129 

Probe set Gene Baseline Experiment FC p-value 

215729_s_at VGLL1 8.32 121.89 14.65 0.004585 

204602_at DKK1 28.8 212.85 7.39 0.002297 

213711_at KRT81 73.65 492.39 6.69 0.007681 

234764_x_at LOC96610 47.16 206.44 4.38 0.016944 

231535_x_at ROPN1 32.27 138.4 4.29 0.037289 

212531_at LCN2 40.45 171.13 4.23 0.01685 

237625_s_at --- 77.24 319.08 4.13 0.027354 

223062_s_at PSAT1 67.35 257.38 3.82 0.000293 

204751_x_at DSC2 41.88 152.19 3.63 0.002025 

215189_at KRT86 45 159.32 3.54 0.009247 

213060_s_at CHI3L2 121.29 427.27 3.52 0.00917 

220625_s_at ELF5 149.21 512.18 3.43 0.005103 

226960_at UNQ473 47.89 150.55 3.14 0.027938 

206714_at ALOX15B 86.79 267.16 3.08 0.03856 

216401_x_at --- 122.68 374.9 3.06 0.036479 

201195_s_at SLC7A5 157 461.06 2.94 0.006608 

1560818_at LOC387895 120.25 348.45 2.9 0.023133 

213680_at KRT6B 197.82 570.54 2.88 0.01229 

204855_at SERPINB5 89.41 254.12 2.84 0.015386 

222549_at CLDN1 154.73 438.34 2.83 0.016607 

Table 3.1.8.1: Genes up-regulated in Grade 3 specimens in comparison to Grade 2 

specimens 
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GOID GO Name Changed Measured p-value 

5882 Intermediate filament 5 92 0 

45111 

Intermediate filament 

cytoskeleton 5 92 0 

278 Mitotic cell cycle 4 177 0 

5856 Cytoskeleton 9 710 0 

15288 Porin activity 2 20 0.001 

19212 Phosphatase inhibitor activity 2 25 0.002 

51301 Cell division 4 153 0.002 

5198 Structural molecule activity 8 673 0.002 

16781 

Phosphotransferase activity, 

paired acceptors 1 1 0.003 

4756 Selenide, water dikinase activity 1 1 0.003 

Table 3.1.8.2: Functions enriched among genes up-regulated in Grade 3 specimens 

in comparison to Grade 2 specimens 

MAPP Name Changed Measured p-value 

1-Tissue-Embryonic Stem Cell 4 47 0 

2-Tissues-Muscle Fat and Connective 4 82 0 

2-Tissues-Blood and Lymph 4 78 0.001 

Cell cycle KEGG 3 89 0.02 

Streptomycin biosynthesis 1 4 0.022 

Vitamin B6 metabolism 1 6 0.034 

Cell Cycle-G1 to S control Reactome 2 67 0.05 

Table 3.1.8.3: Pathways enriched among genes up-regulated in Grade 3 specimens 

in comparison to Grade 2 specimens 
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Probe set Gene Baseline Experiment FC p-value 

221107_at CHRNA9 163.02 13.2 -12.35 0.025506 

241811_x_at --- 122.75 10.29 -11.93 0.013787 

210576_at CYP4F8 162.6 20.88 -7.79 0.045351 

1560850_at --- 193.12 47.72 -4.05 0.042593 

206799_at SCGB1D2 1482.2 461.3 -3.21 0.006931 

219602_s_at FAM38B 149.67 48.6 -3.08 0.004821 

205440_s_at NPY1R 1193.02 388.98 -3.07 0.01136 

233059_at --- 472.38 157.13 -3.01 0.04971 

241368_at LSDP5 277.55 93.45 -2.97 0.002462 

235976_at SLITRK6 636.62 217.17 -2.93 0.039497 

213651_at PIB5PA 308.74 105.94 -2.91 0.000372 

227550_at LOC143381 928.69 327.47 -2.84 0.000501 

229975_at --- 1105.68 390.97 -2.83 0.006145 

203980_at FABP4 1345.62 486.59 -2.77 0.009236 

228766_at --- 671.85 245.4 -2.74 0.024059 

204018_x_at HBA1 193.91 72.2 -2.69 0.046376 

209458_x_at HBA1 187.28 69.6 -2.69 0.04667 

243241_at --- 447.87 170.16 -2.63 0.024914 

229580_at --- 418.9 160.07 -2.62 0.002053 

205696_s_at GFRA1 278.61 108.16 -2.58 0.003903 

Table 3.1.8.4: Genes down-regulated in Grade 3 specimens in comparison to Grade 

2 specimens 
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GOID GO Name Changed Measured p-value 

3867 

4-aminobutyrate transaminase 

activity 1 1 0.002 

47298 

(S)-3-amino-2-methylpropionate 

transaminase activity 1 1 0.002 

16167 

Glial cell line-derived neurotrophic 

factor receptor activity 1 2 0.002 

15674 

Di-, tri-valent inorganic cation 

transport 3 112 0.002 

4060 

Arylamine N-acetyltransferase 

activity 1 2 0.003 

5010 

Insulin-like growth factor receptor 

activity 1 3 0.003 

30284 Estrogen receptor activity 1 2 0.004 

9448 

Gamma-aminobutyric acid 

metabolism 1 2 0.004 

6631 Fatty acid metabolism 3 135 0.004 

45839 Negative regulation of mitosis 1 2 0.005 

Table 3.1.8.5: Functions enriched among genes down-regulated in Grade 3 

specimens in comparison to Grade 2 specimens 

MAPP Name Changed Measured p-value 

1-Tissue-Muscle_fat_and_connective 5 65 0 

2-Tissues-Endocrine_and_CNS 3 103 0.007 

Circadian_Exercise 2 48 0.017 

Bile_acid_biosynthesis 2 37 0.02 

Fatty_acid_metabolism 2 66 0.04 

Table 3.1.8.6: Pathways enriched among genes down-regulated in Grade 3 

specimens in comparison to Grade 2 specimens 
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The transcripts in the Grade 1 vs. 2 comparisons and Grade 2 vs. 3 comparisons were 

cross compared to identify transcripts which progressively increase with grade. Table 

3.1.8.7 list the transcripts which progressively increased or decreased with grade. 

Transcripts with different trends of expression were removed from the list.
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Probe Name Grade 1 vs. 2 Grade 2 vs. 3 

230966_at IL4I1 5.52 2.26 

204655_at CCL5 2.05 1.81 

209644_x_at CDKN2A 1.9 2.43 

219806_s_at C11orf75 1.89 1.51 

204994_at MX2 1.77 1.52 

216397_s_at BOP1 1.77 1.38 

219402_s_at DERL1 1.71 1.51 

219202_at RHBDF2 1.6 1.65 

201201_at CSTB 1.52 1.48 

200632_s_at NDRG1 1.4 1.72 

201433_s_at PTDSS1 1.4 1.36 

218499_at RP6-213H19.1 1.4 1.3 

222977_at SURF4 1.39 1.32 

218151_x_at GPR172A 1.36 1.45 

201587_s_at IRAK1 1.35 1.49 

225751_at RBM17 1.34 1.3 

208691_at TFRC 1.34 1.24 

201772_at AZIN1 1.32 1.26 

208693_s_at GARS 1.3 1.4 

200844_s_at PRDX6 1.3 1.24 

201527_at ATP6V1F 1.3 1.24 

222992_s_at NDUFB9 1.26 1.22 

217835_x_at C20orf24 1.26 1.21 

225334_at C10orf32 -1.41 -1.3 

227856_at C4orf32 -1.65 -1.37 

Table 3.1.8.7: Transcripts progressively increasing or decreasing with increase in 

grade 
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3.1.9 Comparison criteria: Tumour Size < 2.8cm vs. > 2.8 cm 

Large size tumors are more aggressive. Identifying genes up- and down-regulated in 

patients with large tumors vs. small tumors may help identify biomarkers and targets for 

aggressive disease. 

A total of 56 specimens with tumour size less than 2.8cm and a total of 48 specimens 

with tumour size greater than 2.8cm were compared for gene expression changes.  

Up-regulated gene transcripts: 

36 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 1.2 

and Difference > 100) in tumour size greater than 2.8cm compared to tumour size less 

than 2.8cm. Genes were ranked by fold change and, based on these criteria, the top 20 

genes are listed in Table 3.1.9.1.  

Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the significant functions are listed in Table 3.1.9.2. 

Pathway analysis was performed using GenMAPP on the up-regulated genes (p ≤ 0.05, 

FC>2, and Difference > 100). No pathway was found to be significantly affected (p ≤ 

0.05). 

Down-regulated gene transcripts: 

139 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change (FC) < 

-1.2 and Difference < -100) in tumour size greater than 2.8 compared to tumour size less 

than 2.8. Genes were ranked by fold change and, based on this criteria, the top 20 genes 

are listed in Table 3.1.9.3. 

Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and the 10 most significant functions are listed in Table 3.1.9.4.  
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Pathway analysis was performed using GenMAPP database on the down-regulated genes 

(p ≤ 0.05, FC<-2, and Difference < -100). No pathway was found to be significantly 

affected (p ≤ 0.05). 

Probe set Gene Baseline Experimental FC p-value 

235210_s_at RPESP 119.16 294.12 2.47 0.04609 

223895_s_at EPN3 269.69 631.28 2.34 0.003628 

219300_s_at CNTNAP2 87.71 195.71 2.23 0.037062 

220318_at EPN3 92.13 192.54 2.09 0.007949 

235203_at --- 146.71 249.42 1.7 0.015045 

243552_at --- 296.91 474.03 1.6 0.036136 

1556316_s_at LOC284889 263.36 410.07 1.56 0.000235 

201562_s_at SORD 353.7 540.08 1.53 0.04714 

213971_s_at SUZ12 196.02 299 1.53 0.041818 

214295_at KIAA0485 304.21 452.79 1.49 0.014113 

210002_at GATA6 210.51 311.08 1.48 0.031133 

225203_at PPP1R16A 255.24 367.22 1.44 0.009487 

235079_at --- 266.76 384.43 1.44 0.023296 

1553303_at C16orf46 629.84 905.39 1.44 0.028459 

213577_at SQLE 588.55 841.36 1.43 0.037003 

242824_at NFIA 430.72 610.49 1.42 0.045806 

200641_s_at YWHAZ 289.37 393.34 1.36 0.043948 

208972_s_at ATP5G1 854.63 1162.89 1.36 0.010666 

226616_s_at NDUFV3 350.37 475.02 1.36 0.017362 

208104_s_at TSC22D4 339.09 459.32 1.35 0.02723 

Table 3.1.9.1: Genes up-regulated in tumour size greater than 2.8 in comparison to 

tumour size less than 2.8  
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GOID GO Name Changed Measured p-value 

8038 Neuron recognition 1 5 0.002 

8037 Cell recognition 1 16 0.005 

19226 Transmission of nerve impulse 1 226 0.022 

8289 Lipid binding 1 195 0.027 

Table 3.1.9.2: Functions enriched among genes up-regulated in tumour size greater 

than 2.8 in comparison to tumour size less than 2.8  
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Probe set Gene Baseline Experimental FC p-value 

205358_at GRIA2 421.5 60.72 -6.94 0.048872 

243722_at PYDC1 164.35 36.57 -4.49 0.02198 

203029_s_at PTPRN2 220.94 88.15 -2.51 0.048149 

220414_at CALML5 383.44 161.31 -2.38 0.028932 

202768_at FOSB 244.75 113.18 -2.16 0.0116 

202506_at SSFA2 317.81 152.65 -2.08 0.020651 

221667_s_at HSPB8 531.42 255.95 -2.08 0.028217 

204351_at S100P 975.59 515.89 -1.89 0.021114 

204363_at F3 328.01 177.65 -1.85 0.019519 

219440_at RAI2 414.68 236.28 -1.76 0.017806 

203423_at RBP1 435.93 249.66 -1.75 0.019874 

212771_at C10orf38 251.59 147.36 -1.71 0.035128 

218976_at DNAJC12 943.16 562.33 -1.68 0.028794 

208078_s_at SNF1LK 361.28 220.95 -1.64 0.014417 

211026_s_at MGLL 282.48 175.3 -1.61 0.010454 

207992_s_at AMPD3 292.54 182.61 -1.6 0.009085 

204489_s_at CD44 439.87 278.4 -1.58 0.002035 

219681_s_at RAB11FIP1 390.62 252.8 -1.55 0.03929 

204550_x_at GSTM1 327.44 213.13 -1.54 0.030244 

223251_s_at ANKRD10 784.11 516.69 -1.52 0.005009 

Table 3.1.9.3: Genes down-regulated in tumour size greater than 2.8 in comparison 

to tumour size less than 2.8  
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GOID GO Name Changed Measured p-value 

4971 

Alpha-amino-3-hydroxy-5-methyl-4-

isoxazole propionate selective glutamate 

receptor activity 1 3 0.003 

15277 Kainate selective glutamate receptor activity 1 8 0.005 

19198 

Transmembrane receptor protein 

phosphatase activity 1 18 0.006 

5001 

Transmembrane receptor protein tyrosine 

phosphatase activity 1 18 0.006 

4970 Ionotropic glutamate receptor activity 1 18 0.009 

5234 Glutamate-gated ion channel activity 1 19 0.009 

8066 Glutamate receptor activity 1 38 0.02 

5231 

Excitatory extracellular ligand-gated ion 

channel activity 1 45 0.02 

122 

Negative regulation of transcription from 

RNA polymerase II promoter 1 65 0.022 

6986 Response to unfolded protein 1 41 0.023 

Table 3.1.9.4: Functions enriched among genes down-regulated in tumour size 

greater than 2.8 in comparison to tumour size less than 2.8  
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3.1.10 Comparison criteria: Patients who did not relapse vs. patients who did 

relapse (Overall relapse) 

Identifying genes up- and down-regulated in patients who relapse vs. those who did not 

may help identify biomarkers and targets for aggressive disease and can lead to 

development of diagnostic assays. 

A total of 56 patients who did not relapse and 48 patients who relapsed were compared 

for gene expression changes 

Up-regulated gene transcripts: 

323 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 1.2 

and Difference > 100) in tumour specimens of the patients who relapsed compared to 

tumour specimens of the patients who did not relapse. Genes were ranked by fold change 

and, based on this criterion, the top 20 genes are listed in Table 3.1.10.1. As can be seen 

from this comparison, the Ropporin transcripts were significantly differentially-expressed 

in relapsed vs. non- relapsed tumour specimens.  

Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the 20 most significant functions are listed in Table 3.1.10.2. 

Pathway analysis was performed using GenMAPP database on the up-regulated genes (p 

≤ 0.05, FC>2, and Difference > 100). Significant pathways were identified based on p-

value (p ≤ 0.05) and are listed in Table 3.1.10.3.  

Down-regulated gene transcripts: 

476 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change (FC) < 

-1.2 and Difference < -100) in tumour specimens of the patients who relapsed compared 

to tumour specimens of the patients who did not relapse. Genes were ranked by fold 

change and, based on this criterion, the top 20 genes are listed in Table 3.1.10.4. 
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Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and the 10 most significant functions are listed in Table 3.1.10.5.  

Pathway analysis was performed using GenMAPP on the down-regulated genes (p ≤ 

0.05, FC<-2, and Difference < -100). Significant pathways were identified based on p-

value (p ≤ 0.05) and listed in Table 3.1.10.6. Muscle, fat and connective tissue specific 

genes pathway (Fig 3.1.10.1) were observed to be enriched by the down-regulated genes. 
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Probe set Gene Baseline Experimental FC p-value 

224191_x_at ROPN1 25.01 148.64 5.94 0.01968 

220425_x_at ROPN1B 24.85 125.74 5.06 0.015855 

231535_x_at ROPN1 32.75 162.84 4.97 0.021558 

214595_at KCNG1 58.43 228.4 3.91 0.004431 

212531_at LCN2 50.9 169.1 3.32 0.044731 

206023_at NMU 48.79 156.42 3.21 0.019771 

220625_s_at ELF5 176.3 536.45 3.04 0.010197 

232547_at SNIP 77.12 227.4 2.95 0.020363 

235209_at RPESP 86.61 254 2.93 0.040668 

242350_s_at ST8SIA6 81.48 227.73 2.79 0.017142 

204855_at SERPINB5 101.99 278.81 2.73 0.020136 

235210_s_at RPESP 115.69 303.22 2.62 0.039636 

223062_s_at PSAT1 95.93 243.48 2.54 0.00843 

205044_at GABRP 376.38 932.57 2.48 0.0153 

208103_s_at ANP32E 116.16 266.76 2.3 0.001988 

213557_at CRKRS 117.88 271.12 2.3 0.027907 

204304_s_at PROM1 215.84 492.38 2.28 0.022001 

223748_at SLC4A11 125.62 286.45 2.28 0.023205 

202504_at TRIM29 104.11 234 2.25 0.02805 

213551_x_at PCGF2 180.1 387.69 2.15 0.012842 

Table 3.1.10.1: Genes up-regulated in tumour specimens of patients who relapsed in 

comparison to the tumour specimens of patients who did not relapse 
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GOID GO Name Changed Measured p-value 

8603 

cAMP-dependent protein kinase regulator 

activity 2 11 0 

15288 Porin activity 2 20 0 

15267 Channel or pore class transporter activity 4 376 0 

4648 Posphoserine transaminase activity 1 1 0.002 

42816 Vitamin B6 metabolism 1 2 0.002 

8614 Pyridoxine metabolism 1 2 0.002 

42819 Vitamin B6 biosynthesis 1 2 0.002 

8615 Pyridoxine biosynthesis 1 2 0.002 

19887 Potein kinase regulator activity 2 49 0.002 

19867 Outer membrane 2 60 0.003 

5215 Transporter activity 6 1412 0.004 

19207 Kinase regulator activity 2 55 0.005 

7340 Acrosome reaction 1 5 0.006 

6564 L-serine biosynthesis 1 8 0.006 

19861 Fagellum 1 9 0.008 

15106 Bicarbonate transporter activity 1 10 0.008 

15380 Anion exchanger activity 1 10 0.008 

5452 Inorganic anion exchanger activity 1 10 0.008 

6940 Regulation of smooth muscle contraction 1 9 0.009 

15301 Anion:anion antiporter activity 1 11 0.009 

Table 3.1.10.2: Functions enriched among genes up-regulated in tumour specimens 

of patients who relapsed in comparison to tumour specimens of patients who did not 

relapse 
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MAPP Name Changed Measured p-value 

1-Tissue-Endocrine and CNS 3 210 0.001 

Vitamin B6 metabolism 1 6 0.008 

Glycine serine and threonine metabolism 1 35 0.041 

Table 3.1.10.3: Pathways enriched among genes up-regulated in tumour specimens 

of patients who relapsed in comparison to tumour specimens of patients who did not 

relapse 
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Probe set Gene Baseline Experimental FC p-value 

242301_at CBLN2 134.72 15.37 -8.76 0.01888 

210576_at CYP4F8 124.3 16.15 -7.69 0.033726 

229764_at FAM79B 457.64 75.47 -6.06 0.001887 

243929_at ZNF533 200.31 52.69 -3.8 0.024215 

235978_at FABP4 142.81 40.78 -3.5 0.031338 

205710_at LRP2 160.38 50.4 -3.18 0.026702 

205380_at PDZK1 403.12 129.03 -3.12 0.008031 

210222_s_at RTN1 199.84 64.09 -3.12 0.017134 

202833_s_at SERPINA1 492.17 177.02 -2.78 0.012344 

205794_s_at NOVA1 455.57 165.34 -2.76 0.012041 

203029_s_at PTPRN2 222.84 85.37 -2.61 0.03321 

203485_at RTN1 688.43 264.94 -2.6 0.008909 

214440_at NAT1 1861.54 757.62 -2.46 0.000972 

235976_at SLITRK6 604.94 256.63 -2.36 0.034647 

218398_at MRPS30 621.53 265.65 -2.34 0.002144 

231207_at --- 328.23 143.94 -2.28 0.004513 

227600_at --- 305.13 134.82 -2.26 0.001608 

205696_s_at GFRA1 273.91 122.45 -2.24 0.00585 

219197_s_at SCUBE2 747.54 334.52 -2.23 0.016711 

211429_s_at SERPINA1 1076.28 485 -2.22 0.003786 

Table 3.1.10.4: Genes down-regulated in tumour specimens of patients who relapsed 

in comparison to the tumour specimens of patients who did not relapse 
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GOID GO Name Changed Measured p-value 

4421 

Hdroxymethylglutaryl-CoA synthase 

activity 1 2 0.001 

46912 

Transferase activity, transferring acyl 

groups, acyl groups converted into alkyl on 

transfer 1 4 0.001 

8393 Fatty acid (omega-1)-hydroxylase activity 1 2 0.002 

6629 Lipid metabolism 5 535 0.002 

4060 Arylamine N-acetyltransferase activity 1 2 0.003 

16167 

Glial cell line-derived neurotrophic factor 

receptor activity 1 2 0.006 

51244 Regulation of cellular physiological process 0 2727 0.01 

50791 Regulation of physiological process 0 2822 0.01 

46847 Filopodium formation 1 6 0.011 

43088 Regulation of Cdc42 GTPase activity 1 6 0.011 

Table 3.1.10.5: Functions enriched among genes down-regulated in tumour 

specimens of patients who relapsed in comparison to tumour specimens of patients 

who did not relapse 

MAPP Name Changed Measured p-value 

1-Tissue-Muscle fat and connective 3 65 0.001 

Synthesis and Degradation of ketone 

Bodies KEGG 1 5 0.009 

Synthesis and degradation of ketone 

bodies 1 6 0.013 

Table 3.1.10.6: Pathways enriched among genes down-regulated in tumour 

specimens of patients who relapsed in comparison to tumour specimens of patients 

who did not relapse 
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3.1.11 Comparison criteria: Patients who survived vs. patients who did not survive 

Identifying genes up- and down-regulated in patients who survived vs. those who did not 

survive may help identify biomarkers and targets for aggressive disease and can lead to 

development of diagnostic assays. 

Tumour specimens of 69 patients who survived and a total of 35 patients who did not 

survive were compared for gene expression changes.  

Up-regulated gene transcripts: 

385 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 1.2 

and Difference > 100) in tumour specimens of the patients who did not survive compared 

to tumour specimens of patients who survived. Genes were ranked by fold change and, 

based on these criteria, the top 20 genes are listed in Table 3.1.11.1.  

Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the 10 most significant functions are listed in Table 3.1.11.2.  

Pathway analysis was performed using GenMAPP on the up-regulated genes (p ≤ 0.05, 

FC>2, and Difference > 100). Significant pathways were identified based on p-value (p ≤ 

0.05) and listed in Table 3.1.11.3.  

Down-regulated gene transcripts: 

993 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change (FC) < 

-1.2 and Difference < -100) in tumour specimens of the patients who did not survive 

compared to tumour specimens of patients who survived. Genes were ranked by fold 

change and, based on these criteria, the top 20 genes are listed in Table 3.1.11.4 

Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and the 10 most significant functions are listed in Table 3.1.11.5.  
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Pathway analysis was performed using GenMAPP database on the down-regulated genes 

(p ≤ 0.05, FC<-2, and Difference < -100). Significant pathways were identified based on 

p-value (p ≤ 0.05) and listed in Table 3.1.11.6.  

Probe set Gene Baseline Experiment FC p-value 

210147_at ART3 23.95 129.59 5.41 0.030235 

212531_at LCN2 45.81 224.84 4.91 0.021047 

232547_at SNIP 79.47 282.82 3.56 0.021477 

214595_at KCNG1 79.42 249.59 3.14 0.020733 

206023_at NMU 57.62 178.51 3.1 0.047878 

223748_at SLC4A11 118.87 361.86 3.04 0.007922 

242350_s_at ST8SIA6 91.89 264.11 2.87 0.033159 

204855_at SERPINB5 117.94 302.9 2.57 0.038883 

223062_s_at PSAT1 108.16 272.54 2.52 0.014909 

223075_s_at C9orf58 362.21 878.02 2.42 0.013435 

227512_at LOC92312 156.91 375.07 2.39 0.000142 

204914_s_at SOX11 111.97 264.92 2.37 0.02351 

226346_at LOC92312 266.6 598.08 2.24 0.000878 

210513_s_at VEGFA 97.12 215.63 2.22 0.032837 

236885_at LOC92312 115.01 253.34 2.2 0.0041 

204915_s_at SOX11 135.5 290.79 2.15 0.042257 

213523_at CCNE1 141.89 303.3 2.14 0.041275 

202991_at STARD3 140.04 294.74 2.1 0.010777 

203496_s_at PPARBP 321.49 670.52 2.09 0.042681 

213551_x_at PCGF2 204.66 411.53 2.01 0.041232 

Table 3.1.11.1: Genes up-regulated in tumour specimens of patients who did not 

survive in comparison to tumour specimens of patients who survived 
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GOID GO Name Changed Measured p-value 

4648 Phosphoserine transaminase activity 1 1 0 

30521 Androgen receptor signaling pathway 2 32 0 

30518 

Steroid hormone receptor signaling 

pathway 2 43 0 

30522 

Intracellular receptor-mediated signaling 

pathway 2 45 0 

35257 Nuclear hormone receptor binding 2 43 0.001 

51427 Hormone receptor binding 2 43 0.001 

30947 

Regulation of vascular endothelial growth 

factor receptor signaling pathway 1 1 0.002 

48010 

Vascular endothelial growth factor 

receptor signaling pathway 1 1 0.002 

30949 

Positive regulation of vascular endothelial 

growth Factor receptor signaling pathway 1 1 0.002 

42816 Vitamin B6 metabolism 1 2 0.002 

Table 3.1.11.2: Functions enriched among genes up-regulated in tumour specimens 

of patients who did not survive in comparison to tumour specimens of patients who 

survived. 

MAPP Name Changed Measured p-value 

Id NetPath 5 2 51 0.001 

Vitamin B6 metabolism 1 6 0.017 

Hypertrophy model 1 20 0.025 

Glycine serine and threonine 

metabolism 1 35 0.034 

Table 3.1.11.3: Pathways enriched among genes up-regulated in tumour specimens 

of patients who did not survive in comparison to tumour specimens of patients who 

survived 
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Probe set Gene Baseline Experiment FC p-value 

206502_s_at INSM1 230.98 7.19 -32.13 0.025417 

206325_at SERPINA6 120.98 18.06 -6.7 0.039756 

229764_at FAM79B 391.54 60.87 -6.43 0.001304 

210222_s_at RTN1 185.27 40.52 -4.57 0.002024 

243929_at ZNF533 178.14 41.83 -4.26 0.013087 

205380_at PDZK1 369.77 93.07 -3.97 0.002203 

209706_at NKX3-1 310.19 81.64 -3.8 0.001471 

203485_at RTN1 648.43 187.63 -3.46 0.00067 

219197_s_at SCUBE2 739.18 213.92 -3.46 0.000281 

205794_s_at NOVA1 420.34 125.93 -3.34 0.002229 

229004_at --- 364.9 118.18 -3.09 0.000052 

205913_at PLIN 152.71 51.4 -2.97 0.02848 

227742_at CLIC6 461.51 156.68 -2.95 0.028478 

227182_at SUSD3 407.14 138.95 -2.93 0.000177 

228554_at --- 519.6 177.93 -2.92 0.007057 

227929_at --- 163.39 59.85 -2.73 0.03079 

232176_at SLITRK6 341.94 125.18 -2.73 0.02738 

203413_at NELL2 283.89 104.48 -2.72 0.003488 

228390_at --- 515.22 189.51 -2.72 0.000006 

210272_at CYP2B7P1 375.11 141.21 -2.66 0.043449 

Table 3.1.11.4: Genes down-regulated in tumour specimens of patients who did not 

survive in comparison to tumour specimens of patients who survived 

 

 

 



 151 

GOID GO Name Changed Measured p-value 

45010 Actin nucleation 1 1 0.001 

5925 Focal adhesion 1 1 0.001 

30027 Lamellipodium 2 15 0.001 

31252 Leading edge 2 18 0.001 

7494 Midgut development 1 1 0.002 

7497 Posterior midgut development 1 1 0.002 

9441 Glycolate metabolism 1 1 0.003 

18445 Prothoracicotrophic hormone activity 1 2 0.003 

7388 Posterior compartment specification 1 2 0.004 

7387 Anterior compartment specification 1 2 0.004 

Table 3.1.11.5: Functions enriched among genes down-regulated in tumour 

specimens of patients who did not survive in comparison to tumour specimens of 

patients who survived 

MAPP Name Changed Measured p-value 

1-Tissue-Muscle fat and connective 4 65 0.001 

Adipogenesis 3 130 0.018 

Circadian Exercise 2 48 0.019 

Synthesis and Degradation of Ketone Bodies 

KEGG 1 5 0.025 

Id NetPath 5 2 51 0.025 

Synthesis and degradation of ketone bodies 1 6 0.029 

2-Tissues-Internal Organs 3 137 0.034 

Apoptosis 2 82 0.044 

Table 3.1.11.6: Pathways enriched among genes down-regulated in tumour 

specimens of patients who did not survive in comparison to tumour specimens of 

patients who survived 
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3.1.12 Comparison criteria: Patients who did not relapse within 5 years vs. patients 

who did relapse within 5 years. 

Identifying genes up- and down-regulated in patients who relapse vs. those who did not 

may help identify biomarkers and targets for aggressive disease and can lead to 

development of diagnostic assays.  

Tumour specimens of 54 patients who did not relapse within 5 years and a total of 41 

patients who relapsed within 5 years were compared for gene expression changes. 

Up-regulated gene transcripts: 

318 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 1.2 

and Difference > 100) in tumour specimens of the patients who relapsed compared to 

tumour specimens of patients who did not relapse. Genes were ranked by fold change 

and, based on these criteria, the top 20 genes are listed in Table 3.1.12.1. As can be seen 

from this comparison, the Ropporin transcripts were significantly differentially-expressed 

in the 5 year relapse vs. non- relapsed tumour specimens.  

Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the 10 most significant functions are listed in Table 3.1.12.2. 

Pathway analysis was performed using GenMAPP on the up-regulated genes (p ≤ 0.05, 

FC>2, and Difference > 100). Significant pathways were identified based on p-value (p ≤ 

0.05) and listed in Table 3.1.12.3.  

Down-regulated gene transcripts: 

680 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change (FC) < 

-1.2 and Difference < -100) in tumour specimens of the patients who relapsed compared 

to tumour specimens of patients who did not relapse. Genes were ranked by fold change 

and, based on these criteria, the top 20 genes are listed in Table 3.1.12.4. 
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Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and the 10 most significant functions are listed in Table 3.1.12.5. 

Pathway analysis was performed using GenMAPP on the down-regulated genes (p ≤ 

0.05, FC<-2, and Difference < -100). Significant pathways were identified based on p-

value (p ≤ 0.05) and listed in Table 3.1.12.6. 
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Probe set Gene Baseline Experiment FC p-value 

224191_x_at ROPN1 20.3 162.32 8 0.019245 

220425_x_at ROPN1B 17.82 139.52 7.83 0.010956 

204437_s_at FOLR1 21.98 151.16 6.88 0.014061 

231535_x_at ROPN1 26.52 180.61 6.81 0.017972 

204855_at SERPINB5 73.65 316.13 4.29 0.004791 

229341_at TFCP2L1 38.76 157.15 4.05 0.030912 

209842_at SOX10 56.05 226.31 4.04 0.015137 

220625_s_at ELF5 146.44 582.94 3.98 0.006595 

202037_s_at SFRP1 221.42 865.31 3.91 0.014187 

206023_at NMU 45.81 177.39 3.87 0.014196 

212531_at LCN2 50.64 195.86 3.87 0.031797 

202036_s_at SFRP1 169.73 623.66 3.67 0.00988 

223748_at SLC4A11 91.73 328.87 3.59 0.003251 

219795_at SLC6A14 44.12 155.01 3.51 0.005238 

214595_at KCNG1 68.69 232.46 3.38 0.012411 

235209_at RPESP 87.61 291.55 3.33 0.030122 

232547_at SNIP 79.78 259.39 3.25 0.022409 

209466_x_at PTN 269.74 870.2 3.23 0.040297 

223468_s_at RGMA 110.09 348.4 3.16 0.012154 

235210_s_at RPESP 115.26 349.68 3.03 0.02415 

Table 3.1.12.1: Genes up-regulated in tumour specimens of patients who relapsed 

within 5 years in comparison to tumour specimens of patients who did not relapse 

within 5 years 
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GOID GO Name Changed Measured p-value 

8603 

cAMP-dependent protein kinase 

regulator activity 2 11 0 

15288 Porin activity 2 20 0 

30528 Transcription regulator activity 11 1171 0 

19212 Phosphatase inhibitor activity 2 25 0.002 

3712 Transcription cofactor activity 4 253 0.002 

4648 

Phosphoserine transaminase 

activity 1 1 0.003 

3824 Catalytic activity 5 4622 0.003 

19215 Intermediate filament binding 1 1 0.004 

8614 Pyridoxine metabolism 1 2 0.004 

8615 Pyridoxine biosynthesis 1 2 0.004 

Table 3.1.12.2: Functions enriched among genes up-regulated in tumour specimens 

of patients who relapsed within 5 years in comparison to tumour specimens of 

patients who did not relapse within 5 years. 

MAPP Name Changed Measured p-value 

2-Tissues-Muscle Fat and 

Connective 2 82 0.017 

1-Tissue-Endocrine and CNS 3 210 0.018 

Vitamin B6 metabolism 1 6 0.019 

Wnt NetPath 8 2 109 0.033 

2-Tissues-Internal Organs 2 137 0.04 

Inositol phosphate metabolism 2 134 0.041 

Table 3.1.12.3: Pathways enriched among genes up-regulated in tumour specimens 

of patients who relapsed within 5 years in comparison to tumour specimens of 

patients who did not relapse within 5 years. 

 



 156 

Probe set Gene Baseline Experiment FC p-value 

206502_s_at INSM1 287.37 9.91 -28.99 0.025471 

214320_x_at CYP2A6 816.58 36.86 -22.15 0.009574 

1494_f_at CYP2A6 695.91 33.63 -20.7 0.024309 

221107_at CHRNA9 127.61 9.11 -14 0.019025 

1562309_s_at PHF21B 190.53 15.67 -12.16 0.007264 

206325_at SERPINA6 136.76 13.02 -10.5 0.038544 

242301_at CBLN2 138.45 15.99 -8.66 0.021921 

205357_s_at AGTR1 590.42 69.39 -8.51 0.012981 

210576_at CYP4F8 126.86 17.06 -7.44 0.039621 

210272_at CYP2B7P1 487.73 67.47 -7.23 0.000966 

229764_at FAM79B 455.26 72.92 -6.24 0.002773 

236445_at LOC731986 266.11 44.94 -5.92 0.01803 

226269_at GDAP1 427.06 79.73 -5.36 0.010084 

218332_at BEX1 594.77 112.33 -5.29 0.008856 

206754_s_at CYP2B7P1 1573.54 302.78 -5.2 0.000651 

240192_at FLJ45983 154.22 30.82 -5 0.00002 

226271_at GDAP1 371.16 75.86 -4.89 0.012719 

205509_at CPB1 2047.11 450.59 -4.54 0.011659 

205794_s_at NOVA1 497.24 122.38 -4.06 0.001487 

203029_s_at PTPRN2 247.3 61.96 -3.99 0.004993 

Table 3.1.12.4: Genes down-regulated in tumour specimens of patients who relapsed 

within 5 years in comparison to tumour specimens of patients who did not relapse 

within 5 years 
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GOID GO Name Changed Measured p-value 

4867 Serine-type endopeptidase inhibitor activity 5 78 0 

4866 Endopeptidase inhibitor activity 5 124 0 

30414 Protease inhibitor activity 5 125 0 

30027 Lamellipodium 2 15 0.001 

31252 Leading edge 2 18 0.001 

42995 Cell projection 3 65 0.001 

4857 Enzyme inhibitor activity 5 220 0.001 

45010 Actin nucleation 1 1 0.002 

5925 Focal adhesion 1 1 0.002 

7494 Midgut development 1 1 0.003 

Table 3.1.12.5: Functions enriched among genes down-regulated in tumour 

specimens of patients who relapsed within 5 years in comparison to tumour 

specimens of patients who did not relapse within 5 years. 

MAPP Name Changed Measured p-value 

Valine leucine and isoleucine degradation 2 39 0.021 

1-Tissue-Internal Organs 5 244 0.021 

Synthesis and Degradation of Ketone Bodies 

KEGG 1 5 0.024 

Gamma Hexachlorocyclohexane degradation 2 45 0.025 

1-Tissue-Endocrine and CNS 4 210 0.039 

Synthesis and degradation of ketone bodies 1 6 0.041 

Ethylbenzene degradation 1 8 0.042 

Table 3.1.12.6: Pathways enriched among genes down-regulated in tumour 

specimens of patients who relapsed within 5 years in comparison to tumour 

specimens of patients who did not relapse within 5 years 



 158 

3.1.13 Comparison criteria: Patients who survived for 5 years vs. patients who did 

not survive for 5 years. 

Identifying genes up- and down-regulated in patients who survive vs. those who did not 

may help identify biomarkers and targets for aggressive disease and can lead to 

development of diagnostic assays  

Tumour specimens of 64 patients who survived for 5 years and a total of 29 patients who 

did not survive for 5 years were compared for gene expression changes.  

Up-regulated gene transcripts: 

400 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) > 1.2 

and Difference > 100) in tumour specimens of the patients who did not survived for 5 

years compared to tumour specimens of patients who did survive for 5 years. Genes were 

ranked by fold change and, based on these criteria, the top 20 genes are listed in Table 

3.1.13.1.  

Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, and 

Difference > 100). Significant functions were identified based on p-value (p ≤ 0.05) and 

the 10 most significant functions are listed in Table 3.1.13.2.  

Pathway analysis was performed using GenMAPP on the up-regulated genes (p ≤ 0.05, 

FC>2, and Difference > 100). Significant pathways were identified based on p-value (p ≤ 

0.05) and listed in Table 3.1.13.3. 

Down-regulated gene transcripts: 

969 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change (FC) < 

-1.2 and Difference < -100) in tumour specimens of the patients who did not survived for 

5 years compared to tumour specimens of patients who did survive for 5 years. Genes 

were ranked by fold change and, based on these criteria, the top 20 genes are listed in 

Table 3.1.13.4. 
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Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-2, 

and Difference < -100). Significant functions were identified based on p-value (p ≤ 0.05) 

and the 10 most significant functions are listed in Table 3.1.13.5. 

Pathway analysis was performed using GenMAPP database on the down-regulated genes 

(p ≤ 0.05, FC<-2, and Difference < -100). Significant pathways were identified based on 

p-value (p ≤ 0.05) listed in Table 3.1.13.6. 
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Probe set Gene Baseline Experiment FC P value 

213456_at SOSTDC1 10.09 117.71 11.67 0.022369 

210147_at ART3 15.75 142.8 9.06 0.02646 

204437_s_at FOLR1 24.9 178.39 7.16 0.031434 

220425_x_at ROPN1B 22.83 153.17 6.71 0.043523 

220559_at EN1 19.75 129.15 6.54 0.043512 

212531_at LCN2 52.76 256.71 4.87 0.030136 

220625_s_at ELF5 147.31 652.97 4.43 0.011091 

206373_at ZIC1 31.32 137.98 4.41 0.005065 

204855_at SERPINB5 82.13 357.9 4.36 0.008081 

204086_at PRAME 39.82 172.45 4.33 0.048485 

206023_at NMU 49.78 208 4.18 0.030535 

209842_at SOX10 61.23 252.8 4.13 0.036135 

232547_at SNIP 87.64 323.76 3.69 0.026748 

223748_at SLC4A11 103.94 380.55 3.66 0.006712 

242350_s_at ST8SIA6 83.55 296.44 3.55 0.029189 

1553613_s_at FOXC1 188.81 651.73 3.45 0.008375 

214595_at KCNG1 78.07 262.27 3.36 0.03416 

219795_at SLC6A14 48.81 161.81 3.32 0.021036 

202036_s_at SFRP1 206.71 678.3 3.28 0.041266 

226907_at PPP1R14C 44.8 144.93 3.24 0.044567 

Table 3.1.13.1: Genes up-regulated in tumour specimens of patients who did not 

survive for 5 years in comparison to tumour specimens of patients who did survive 

for 5 years 
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GOID GO Name Changed Measured p-value 

19212 Phosphatase inhibitor activity 3 25 0 

6563 L-serine metabolism 2 13 0 

9070 Serine family amino acid biosynthesis 2 12 0.001 

19888 Protein phosphatase regulator activity 3 45 0.001 

19208 Phosphatase regulator activity 3 46 0.001 

4864 Protein phosphatase inhibitor activity 2 24 0.002 

8076 

Voltage-gated potassium channel 

complex 3 80 0.002 

9069 Serine family amino acid metabolism 2 27 0.003 

5249 Voltage-gated potassium channel activity 3 96 0.003 

4648 Posphoserine transaminase activity 1 1 0.004 

Table 3.1.13.2: Functions enriched among genes up-regulated in tumour specimens 

of patients who did not survive for 5 years in comparison to tumour specimens of 

patients who did survive for 5 years 

MAPP Name Changed Measured p-value 

Glycine serine and threonine 

metabolism 2 35 0.002 

1-Tissue-Endocrine and CNS 3 210 0.008 

Vitamin B6 metabolism 1 6 0.018 

Methionine metabolism 1 14 0.026 

Blood Clotting Cascade 1 20 0.049 

Table 3.1.13.3: Pathways enriched among genes up-regulated in tumour specimens 

of patients who did not survive for 5 years in comparison to tumour specimens of 

patients who did survive for 5 years 
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Probe set Gene Baseline Experiment FC P value 

206502_s_at INSM1 243.97 8.12 -30.05 0.028369 

214320_x_at CYP2A6 693.76 34.24 -20.26 0.009304 

1494_f_at CYP2A6 588.77 31.16 -18.89 0.024325 

236538_at GRIA2 178.03 10.14 -17.56 0.040355 

205358_at GRIA2 389.59 27.73 -14.05 0.020555 

221107_at CHRNA9 109.73 8.28 -13.25 0.017158 

1562309_s_at PHF21B 164.82 12.69 -12.99 0.006251 

210576_at CYP4F8 113.27 9.13 -12.4 0.022252 

205357_s_at AGTR1 516.17 50.59 -10.2 0.009019 

236445_at LOC731986 241.86 25 -9.67 0.006299 

242301_at CBLN2 119.14 16.62 -7.17 0.024079 

240192_at FLJ45983 140.56 21.15 -6.65 0.000002 

219557_s_at NRIP3 245.85 37.19 -6.61 0.006063 

229764_at FAM79B 399.62 65.3 -6.12 0.002428 

210272_at CYP2B7P1 419.42 78.88 -5.32 0.003092 

233059_at --- 458.13 86.09 -5.32 0.002482 

219197_s_at SCUBE2 824.53 159.59 -5.17 0.00001 

226269_at GDAP1 374.8 73.26 -5.12 0.00918 

210222_s_at RTN1 186.12 41 -4.54 0.003962 

203029_s_at PTPRN2 224.07 51.34 -4.36 0.002727 

Table 3.1.13.4: Genes down-regulated in tumour specimens of patients who did not 

survive for 5 years in comparison to tumour specimens of patients who did survive 

for 5 years 
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GOID GO Name Changed Measured p-value 

50381 Unspecific monooxygenase activity 4 24 0 

5006 Epidermal growth factor receptor activity 2 7 0 

16712 

Oxidoreductase activity, acting on paired 

donors, with incorporation or reduction of 

molecular oxygen, reduced flavin or 

flavoprotein as one donor, and 

incorporation of one atom of oxygen 4 29 0 

46906 Tetrapyrrole binding 4 77 0.001 

20037 Heme binding 4 77 0.001 

4497 Monooxygenase activity 4 86 0.001 

50878 Regulation of body fluids 4 98 0.001 

16705 

Oxidoreductase activity, acting on paired 

donors, With incorporation or reduction of 

molecular oxygen 4 99 0.001 

19752 Carboxylic acid metabolism 9 409 0.001 

6082 Organic acid metabolism 9 411 0.001 

Table 3.1.13.5: Functions enriched among genes down-regulated in tumour 

specimens of patients who did not survive for 5 years in comparison to tumour 

specimens of patients who did survive for 5 years. 

MAPP Name Changed Measured p-value 

Synthesis and Degradation of Ketone Bodies 

KEGG 1 5 0.041 

Valine leucine and isoleucine degradation 2 39 0.045 

1-Tissue-Endocrine and CNS 5 210 0.045 

 Table 3.1.13.6: Pathways enriched among genes down-regulated in tumour 

specimens of patients who did not survive for 5 years in comparison to tumour 

specimens of patients who did survive for 5 years 
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3.1.14 Comparing gene lists to identify bad prognosis genes  

The gene lists generated above (Relapse 5 years 0 vs. 1 (Rel5) (see section 3.1.12), 

Survival 5 years 0 vs. 1 (Sur5) (see section 3.1.13), Overall Relapsed 0 vs. 1 (Relapsed) 

(see section 3.1.10) and RIP 0 vs. 1 (see section 3.1.11)) were compared to identify genes 

common to all the gene lists. The DE genes in all these comparisons are linked to bad 

outcome and an overlap of these lists was carried out to identify any high-value common 

targets among them. The number of genes common to these gene lists is depicted in the 

Venn diagram in Fig 3.1.14.1. The total number of common genes in all the gene lists 

was 384. These gene lists were further compared with lymph node 0 vs. 1 (Fig: 3.1.14.2), 

as lymph node-positive is linked to bad prognosis, and a final list of 74 genes were 

identified common to all comparisons was identified. The genes common to all the five 

lists are shown in Table 3.1.14.1 (up-regulated genes) and Table 3.1.14.2 (down-

regulated genes). 
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Fig 3.1.14.1: Venn diagram representing the number of genes common to two or 

more comparisons. There were a total of 384 genes common to all the 4 gene lists.  

 

Fig 3.1.14.2: Venn diagram representing the number of genes common to the 384 genes 

identified earlier (Fig 3.1.14.1) with the Lymph node 0 vs. 1. There were a total of 74 

genes common to all.  
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Probe Set 

Gene 

Symbol Rel5 Relapsed RIP Sur5 LN status 

232547_at SNIP 3.25 2.95 3.56 3.69 2.51 

213551_x_at PCGF2 2.36 2.15 2.01 2.25 2.06 

236885_at LOC92312 2.47 1.99 2.2 2.92 1.96 

202991_at STARD3 1.9 1.83 2.1 2.2 1.91 

214239_x_at PCGF2 2.13 1.93 1.94 2.14 1.89 

227512_at LOC92312 2.57 2.07 2.39 2.8 1.76 

226346_at LOC92312 2.42 2.06 2.24 2.79 1.74 

222706_at CCDC49 1.94 1.8 1.9 2.12 1.73 

201400_at PSMB3 1.71 1.73 1.78 1.84 1.68 

216836_s_at ERBB2 1.81 1.61 1.85 1.99 1.67 

203287_at LAD1 1.9 1.85 1.94 1.98 1.63 

224447_s_at C17orf37 1.63 1.59 1.78 1.9 1.58 

213230_at CDR2L 1.69 1.48 1.77 1.9 1.52 

210827_s_at ELF3 1.51 1.65 1.5 1.51 1.49 

230660_at SERTAD4 2.04 1.62 1.64 1.8 1.47 

234464_s_at EME1 1.68 1.54 1.76 1.84 1.44 

212680_x_at PPP1R14B 1.59 1.57 1.59 1.66 1.41 

205107_s_at EFNA4 1.63 1.41 1.51 1.64 1.41 

203430_at HEBP2 1.38 1.34 1.37 1.42 1.36 

201584_s_at DDX39 1.47 1.47 1.33 1.45 1.33 

223993_s_at CNIH4 1.31 1.28 1.32 1.34 1.32 

200660_at S100A11 1.3 1.36 1.42 1.38 1.31 

209609_s_at MRPL9 1.39 1.36 1.4 1.54 1.31 

213668_s_at SOX4 1.39 1.35 1.47 1.43 1.29 

208540_x_at LOC729659 1.3 1.33 1.44 1.38 1.28 

222400_s_at ADI1 1.35 1.24 1.28 1.27 1.28 

203315_at NCK2 1.34 1.32 1.33 1.43 1.27 

200888_s_at RPL23 1.37 1.33 1.3 1.42 1.26 
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222036_s_at SLC12A4 1.29 1.39 1.41 1.37 1.26 

222396_at HN1 1.32 1.3 1.4 1.41 1.24 

203956_at MORC2 1.24 1.4 1.39 1.32 1.24 

200882_s_at PSMD4 1.23 1.23 1.21 1.21 1.21 

Table 3.1.14.1: 32 gene transcripts, comprising 29 unique genes up-regulated and 

common to the 5 comparisons, making them indicative of a clinically poor prognosis 

Probe Set  

Gene 

Symbol Rel5 Relapsed RIP Sur5 

LN 

status 

205794_s_at NOVA1 -4.06 -2.76 -3.34 -3.77 -2.71 

211421_s_at RET -3.27 -1.9 -2.31 -2.8 -2.23 

205225_at ESR1 -2.51 -1.64 -1.77 -2.51 -1.46 

244696_at AFF3 -2.45 -1.93 -2.24 -2.59 -1.73 

227198_at AFF3 -2.38 -1.71 -1.79 -2.34 -1.59 

213832_at --- -2.34 -2.2 -2.29 -2.96 -1.97 

236194_at --- -1.96 -1.98 -2.13 -2.24 -1.68 

201311_s_at SH3BGRL -1.94 -1.48 -1.92 -1.91 -1.42 

225123_at --- -1.87 -1.8 -1.8 -1.81 -1.9 

225613_at MAST4 -1.84 -1.76 -1.81 -1.98 -1.85 

204072_s_at FRY -1.79 -1.54 -1.74 -2.12 -1.51 

227192_at PRRT2 -1.79 -1.71 -1.83 -1.88 -1.8 

222653_at PNPO -1.78 -1.54 -1.57 -1.71 -1.43 

221874_at KIAA1324 -1.77 -1.61 -2.04 -2.59 -1.47 

226939_at CPEB2 -1.73 -1.37 -1.45 -1.83 -1.48 

238883_at THRAP2 -1.67 -1.38 -1.46 -1.71 -1.53 

223204_at C4orf18 -1.65 -1.38 -1.49 -1.86 -1.41 

201312_s_at SH3BGRL -1.58 -1.44 -1.75 -1.74 -1.29 

227856_at C4orf32 -1.58 -1.51 -1.68 -1.61 -1.36 

225561_at SELT -1.54 -1.3 -1.51 -1.7 -1.25 

212209_at THRAP2 -1.54 -1.31 -1.33 -1.53 -1.42 
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201413_at HSD17B4 -1.5 -1.35 -1.46 -1.5 -1.25 

214924_s_at TRAK1 -1.47 -1.41 -1.52 -1.59 -1.32 

212208_at THRAP2 -1.47 -1.36 -1.35 -1.47 -1.43 

221918_at PCTK2 -1.44 -1.34 -1.41 -1.54 -1.29 

212207_at THRAP2 -1.41 -1.35 -1.34 -1.49 -1.4 

200940_s_at RERE -1.4 -1.32 -1.45 -1.51 -1.25 

243993_at PCTK2 -1.38 -1.41 -1.37 -1.36 -1.51 

201334_s_at ARHGEF12 -1.37 -1.36 -1.38 -1.36 -1.22 

223342_at RRM2B -1.36 -1.25 -1.37 -1.35 -1.26 

217122_s_at SLC35E2 -1.35 -1.22 -1.38 -1.46 -1.23 

225176_at LNPEP -1.34 -1.29 -1.34 -1.38 -1.22 

225363_at PTEN -1.33 -1.38 -1.52 -1.41 -1.31 

200850_s_at AHCYL1 -1.32 -1.28 -1.38 -1.38 -1.21 

218518_at C5orf5 -1.3 -1.3 -1.43 -1.4 -1.26 

227227_at LOC728871 -1.29 -1.24 -1.41 -1.35 -1.34 

224876_at C5orf24 -1.28 -1.26 -1.39 -1.37 -1.22 

218248_at FAM111A -1.27 -1.4 -1.44 -1.31 -1.23 

200848_at AHCYL1 -1.26 -1.29 -1.28 -1.3 -1.25 

224928_at SETD7 -1.25 -1.21 -1.42 -1.45 -1.2 

200761_s_at ARL6IP5 -1.24 -1.29 -1.4 -1.31 -1.22 

243249_at ACIN1 -1.23 -1.3 -1.26 -1.22 -1.29 

Table 3.1.14.2: 42 gene transcripts, comprising 32 unique known genes and three 

unannotated transcripts, down-regulated and common to the 5 comparisons, making 

them indicative of a clinically good prognosis. 

 

3.1.15 Non-parametric analysis 

 

Non-parametric analysis was performed on the following clinical parameters as described 

in section 2.2.15.  The null hypothesis tested was the mean of the two groups under 
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consideration are equal under an assumption that the data may not be normally 

distributed. 

 Normals/Tumour specimens  

Number of Up-Regulated genes: 4057 (4213 using parametric test) 

Number of Down-Regulated genes: 3379 (3235 using parametric test) 

 Estrogen Receptor status 

Number of Up-Regulated genes: 869 (855 using parametric test) 

Number of Down-Regulated genes: 1288 (1145 using parametric test) 

 Overall Relapsed status 

Number of Up-Regulated genes: 279 (323 using parametric test) 

Number of Down-Regulated genes: 504 (476 using parametric test) 

 RIP (Event of death due to disease) 

Number of Up-Regulated genes: 429 (385 using parametric test) 

Number of Down-Regulated genes: 1005 (993 using parametric test) 

 Relapse within 5 years 

Number of Up-Regulated genes: 288 (318 using parametric test) 

Number of Down-Regulated genes: 724 (680 using parametric test) 

 Survival for 5 years 

Number of Up-Regulated genes: 471 (400 using parametric test) 
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Number of Down-Regulated genes: 946 (969 using parametric test) 

 

 Tumour size  

Number of Up-Regulated genes: 67 (36 using parametric test) 

Number of Down-Regulated genes: 39 (139 using parametric test) 

 Tumour grade 1 vs 2 

Number of Up-Regulated genes: 108 (275 using parametric test) 

Number of Down-Regulated genes: 197 (75 using parametric test) 

 Tumour grade 2 vs 3 

Number of Up-Regulated genes: 846 (930 using parametric test) 

Number of Down-Regulated genes: 743 (596 using parametric test) 

 Lymph Node Status 

Number of Up-Regulated genes: 122 (102 using parametric test) 

Number of Down-Regulated genes: 110 (126 using parametric test) 

 

The genelists generated from this study are included on the CD with this thesis. 
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3.1.16 Summary  

This section identified various sub-groups of breast cancer and its association with clinical 

and gene expression data. Our results confirmed many of the existing groups and also 

identified new groups with clinical relevance. The Ropporin-expressing clusters of 

patients had a bad prognosis, whereas immune response expressing cluster of patients had 

a good prognosis. Clinical parameters were compared to identify gene expression 

changes. Gene ontology and pathways analysis was performed on these gene lists. 

Ropporin gene was identified as expressed in patients who relapsed and was studied in 

detail. 
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3.2 Comparing in-house gene lists with publicly available datasets  

 This section deals with comparing our in-house results with publicly available datasets. 

3.2.1 Comparison with public datasets on the Affymetrix GeneChip platform  

The in-house data was compared to 4 publicly available datasets for genes commonly 

associated with bad prognosis. Overall Relapse was taken as a common measure for 

comparison across different experiments. A gene list was created for each individual 

experiment comparing the patients who relapsed vs. patients who did not relapse. The 

filtration criteria for identifying differentially-expressed genes as outlines in section 2.2.5 

(FC>1.2, Difference>100 and p-value≤0.05) was taken for all the experiments. The 

number of patients who relapsed / did not relapse and the numbers of differentially-

expressed (DE) genes in each experiment are listed in Table 3.2.1.1. 

Experiment No. of Non-

relapsed patients 

No. of Relapsed 

patients 

No. of DE genes in 

each respective list 

In-house dataset 57 48 799 

GSE4922 160 89 67 

GSE1456 119 40 500 

GSE2990 139 40 153 

GSE2034 107 179 377 

Table 3.2.1.1: The above table represents the number of relapsed / non-relapsed 

patients in each experimental group and the number of differentially-expressed 

genes in each experimental group. 

The gene lists generated were compared for genes common to all five experimental 

groups. However, no transcripts were found to be common across all the experiments. 

Therefore, a separate approach was taken to identify transcripts which changed in any 3 

out of the 5 comparisons. To perform this task, a C program was written as this task was 

not possible to achieve using available software. Following this comparison, 22 

transcripts were identified which were either up- or down-regulated in a minimum of 3 



 173 

out of the 5 experimental groups (Table 3.2.1.2). There were 4 genes which were 

differentially-regulated in four out of five experiments; these are highlighted in bold. 
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Probe Set 

Gene 

Symbol 

In-

house GSE4922 GSE1456 GSE2990 GSE2034 

201041_s_at DUSP1 NS -1.22 -1.48 -1.28 NS 

201841_s_at HSPB1 NS 1.26 1.56 1.29 1.21 

202489_s_at FXYD3 1.32 NS 1.42 1.23 NS 

202503_s_at KIAA0101 NS 1.27 1.49 1.29 1.23 

202768_at FOSB -1.86 -1.46 -2.17 NS NS 

202954_at PAK3 1.41 1.24 1.35 1.33 NS 

204026_s_at ZWINT NS 1.26 NS 1.29 1.21 

204607_at HMGCS2 -2.02 -1.57 NS -1.97 NS 

208451_s_at C4A NS -1.28 -1.47 -1.27 NS 

209189_at FOS -1.42 -1.3 -1.67 -1.4 NS 

209772_s_at CD24 1.94 1.44 1.8 NS NS 

211429_s_at SERPINA1 -2.22 NS NS -1.49 -1.82 

212592_at IGJ NS NS -1.35 -1.52 -1.52 

212593_s_at PDCD4 -1.39 NS -1.24 NS -1.22 

214428_x_at C4A -1.48 -1.25 -1.46 NS NS 

218039_at NUSAP1 NS NS 1.47 1.33 1.24 

218336_at PFDN2 1.26 NS 1.28 NS 1.21 

218807_at VAV3 -1.37 NS -1.26 -1.24 NS 

219956_at GALNT6 -1.58 NS 1.55 1.36 NS 

222077_s_at RACGAP1 NS NS 1.33 1.36 1.32 

222453_at CYBRD1 -1.61 -1.22 -1.55 NS NS 

227182_at SUSD3 -1.9 -1.38 -1.51 NS NS 

Table 3.2.1.2: 22 transcripts DE in 3 out of the 5 experimental groups, incorporating 

the fold change in each experimental group when comparing the patients who 

relapsed vs. the patients who did not relapse. A positive fold change indicates that 

gene to be over-expressed in patients who relapsed in comparison to the patients 

who did not relapse. NS (non significant) = gene not differentially-expressed in that 

experimental group.  
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3.2.2 Comparison in-house relapse and lymph node gene list with OncotypeDx genes 

OncotypeDx from Genomic Health (www.genomichealth.com) is a PCR based laboratory 

test that predicts the likelihood of breast cancer recurrence in women with newly 

diagnosed and early stage invasive breast cancer. It also estimates the benefits from 

hormone therapy and chemotherapy. The development of this test followed on from the 

research carried out by Paik et al., (2004) where they identified 16 genes which have a 

prognostic importance in predicting relapse and survival. The aim of this study was to 

compare these 16 genes with our in-house study of microarray experiments on breast 

cancer.  

The 16 genes of OncotypeDx were mapped to 41 Affymetrix transcripts (Table 3.2.2.1) 

using the NetAffx Analysis Center (http://www.affymetrix.com/analysis/index.affx) and 

these Affymetrix IDs were used to compare with our results of overall relapse (see 

section 3.1.10) and lymph node metastasis (see section 3.1.6).  

Gene Symbol Corresponding Affy Ids 

MKI67 

212020_s_at 

212021_s_at 

212022_s_at 

212023_s_at 

AURKA 

204092_s_at 

208079_s_at 

 208080_at 

BIRC5 

202094_at 

202095_s_at 

210334_x_at 

CCNB1 
228729_at 

214710_s_at 

MYB12 201710_at 

GRB7 210761_s_at 

HER2 210930_s_at 
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216836_s_at 

234354_x_at 

MMP11 

235908_at 

203878_s_at 

203876_s_at 

CTS12 210074_at 

GSTM1 
204550_x_at 

215333_x_at 

CD68  203507_at 

BAG1 

202387_at 

229720_at 

211475_s_at 

ESR1 

205225_at 

217163_at 

211233_x_at 

211234_x_at 

211235_s_at 

211627_x_at 

215552_s_at 

217190_x_at 

PGR 208305_at 

BCL2 

203685_at 

207004_at 

203684_s_at 

207005_s_at 

SCUBE2 219197_s_at 

Table 3.2.2.1: Affymetrix Probe set IDs for the 16 genes of OncotypeDx  
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The OncotypeDx genes were compared with in-house gene expression data of patients 

who relapsed vs. patients who did not relapse (Fold change > 1.2, Difference > 100 and 

p-value≤0.05).  

There were a total of five genes common to the two lists, all with the same trend of 

expression. Over-expression of AURKA, BIRC5 and ERBB2 were associated with 

higher overall relapse in our study and were related to high risk of recurrence on 

OncotypeDx, whereas over-expression of ESR1 and SCUBE2 were associated with lower 

overall relapse in our study and were related to low risk of recurrence on OncotypeDx 

(Table 3.2.2.2). 

Probe Set Name Gene Symbol In-House OncotypeDX 

208079_s_at AURKA 1.32 +1 

202095_s_at BIRC5 1.55 +1 

216836_s_at ERBB2 1.61 +1 

205225_at ESR1 -1.64 -1 

219197_s_at SCUBE2 -2.23 -1 

Table 3.2.2.2: Comparing gene expression values of in-house study on patients who 

relapsed vs. patients who did not relapse with the OncotypeDx gene lists. Positive 

value represents over-expression of gene to be association with higher recurrence of 

disease and negative value represents over-expression of gene to be association with 

lower recurrence of disease.  

The OncotypeDx genes were also compared with gene expression data of patients with 

no lymph node metastasis and patients who had lymph node metastasis (Fold change > 

1.2, Difference > 100 and p-value≤0.05) from our in-house dataset. There were only two 

genes common to these lists (Table 3.2.2.3). ERBB2 expression was up-regulated in 

lymph node-positive patients in our study and was related to high risk of recurrence on 

the OncotypeDx. ESR1 expression was down-regulated in lymph node-positive patients 

in our study and was related to low risk of recurrence on the OncotypeDx. 
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Probe Set Name Gene Symbol In-House OncotypeDx 

216836_s_at ERBB2 1.67 +1 

205225_at ESR1 -1.46 -1 

Table 3.2.2.3: Genes common to in-house study comparing gene expression values of 

lymph node-positive patients vs. lymph node-negative patients with the OncotypeDx 

gene lists. A positive value represent over-expression of that gene to be association 

with higher recurrence of disease and a negative value represents over-expression of 

that gene to be association with lower recurrence of disease.  

3.2.3 Comparison in-house relapse and lymph node gene list with MammaPrint 

genes 

MammaPrint (Agendia http://www.agendia.com/), like OncotypeDx, is a molecular 

diagnostic kit which is used to assess the risk of breast tumor spread to other parts of the 

body. The development of this test is a follow on from the research carried out by van`t 

Veer et al., (2002) where they identified 70 transcripts which had a prognostic 

importance in predicting metastasis. These genes were mapped to Affymetrix Ids using 

gene symbols in a batch query to the NetAffx Analysis Center 

(www.affymetric.com/netaffx). For the Contig Ids, their corresponding Accession nos. 

were obtained from the table provided by the van`t Veer group. These Accession nos. 

were then searched in the unigene database using David and Ease (see section 2.2.6) to 

obtain the corresponding gene symbol which was then searched in the NetAffx Analysis 

center. In all, 45 unique genes from the van‟t Veer study was mapped to 81 Affymetrix 

transcripts (Table 3.2.3.1). The remaining 25 genes (AL080059, LOC51203, 

AA555029RC, DC13, AL137718, PK428, HEC, UCH37, KIAA1067, SERF1A, OXCT, 

L2DTL, AF052162, KIAA0175, SM20, DKFZP564D0462, MP1, FLJ11190, LOC57110, 

DHX58, AP2B1, CFFM4, HSA250839, CEGP1, ALDH4, and KIAA1442) were not 

identified by batch analysis in NetAffx as being present on the Affymetrix arrays. 

Following this, these 25 genes were searched manually and respective affymetrix 

identifier was allocated to them (Table 3.2.3.1). These were not identified in the batch 

analysis, because many were old gene names or less known alias of the genes. Still we 
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were not able to associate AL080059, AA555029RC, and AF052162 with any affymetrix 

identifier. 

Gene Symbol Probe Set ID 

AKAP2 

202759_s_at 

202760_s_at 

226694_at 

AP2B1 
200612_s_at 

200615_s_at 

BBC3 211692_s_at 

C9orf30 1552277_a_at 

CCNE2 
205034_at 

211814_s_at 

CDCA7 
224428_s_at 

230060_at 

CENPA 
204962_s_at 

210821_x_at 

COL4A2 
211964_at 

211966_at 

DCK 203302_at 

DIAPH3 

220997_s_at 

229097_at 

232596_at 

ECT2 

219787_s_at 

234992_x_at 

237241_at 

ESM1 208394_x_at 

EXT1 201995_at 

FBXO31 

219784_at 

219785_s_at 

223745_at 

224162_s_at 

FGF18 

206987_x_at 

211029_x_at 

211485_s_at 

214284_s_at 

231382_at 

FLT1 

204406_at 

210287_s_at 

222033_s_at 

232809_s_at 

GMPS 214431_at 

GNAZ 204993_at 

GPR180 231871_at 



 180 

232912_at 

GSTM3 
202554_s_at 

235867_at 

IGFBP5 

1555997_s_at 

203424_s_at 

203425_s_at 

203426_s_at 

211958_at 

211959_at 

LOC643008 229740_at 

LOC728492 

219982_s_at 

223538_at 

223539_s_at 

MCM6 
201930_at 

238977_at 

MMP9 203936_s_at 

NMU 206023_at 

ORC6L 219105_x_at 

PECI 
218025_s_at 

218009_s_at 

QSOX2 
227146_at 

235239_at 

RAB6B 

210127_at 

221792_at 

225259_at 

RFC4 204023_at 

RTN4RL1 230700_at 

RUNDC1 
226298_at 

235040_at 

SLC2A3 

202497_x_at 

202498_s_at 

202499_s_at 

216236_s_at 

222088_s_at 

TGFB3 
1555540_at 

209747_at 

WISP1 
206796_at 

211312_s_at 

ZNF533 

1555800_at 

1555801_s_at 

229019_at 

LOC51203 218039_at 

DC13 218447_at 

AL137718 220997_s_at 

PK428 214464_at 
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 240735_at 

HEC 204162_at 

UCH37 219960_s_at 

220083_x_at 

1570145_at 

KIAA1067 215413_at 

212026_s_at 

212034_s_at 

212035_s_at 

SERF1A 223539_s_at 

219982_s_at 

223538_at 

OXCT 202780_at 

244134_at 

L2DTL 222680_s_at 

218585_s_at 

KIAA0175 204825_at 

SM20 220956_s_at 

223083_s_at 

224314_s_at 

221497_x_at 

223045_at 

227147_s_at 

DKFZP564D0462 213094_at 

MP1 205273_s_at 

217971_at 

FLJ11190 1552520_at 

1552521_a_at 

LOC57110 219983_at 

219984_s_at 

DHX58 219364_at 

AP2B1 200615_s_at 

200612_s_at 

CFFM4 223344_s_at 

HSA250839 219686_at 

CEGP1 219197_s_at 

ALDH4 203722_at 

KIAA1442 233850_s_at 

Table 3.2.3.1: Affymetrix Id corresponding to genes on MammaPrint  

The 123 mapped transcripts from the van‟t Veer study were compared with our in-house 

gene expression data of patients who relapsed (overall relapse) vs. patients who did not 

relapse (Fold change > 1.2, Difference > 100 and p-value ≤ 0.05) (see section 3.1.10). 
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There were a total of five genes common to the two lists. These 3 genes displayed the 

same trend of expression between the two studies. Over-expression of NMU, GMPS and 

MELK were associated with a poor prognosis (higher incidence of relapse in our study 

and greater chance of distant metastasis in the van‟t Veer study), whereas over-

expression of PECI and SCUBE2 was associated with good prognosis (lower incidence 

of relapse in our study and less chance of distant metastasis in the van‟t Veer study) 

(Table 3.2.3.2). 

Probe Set ID Gene Symbol In-house MammaPrint 

206023_at NMU 3.21 +1 

214431_at GMPS 1.28 +1 

204825_at MELK, KIAA0175 1.57 +1 

218025_s_at PECI -1.29 -1 

219197_s_at  SCUBE2, CEGP1 -2.23 -1 

Table 3.2.3.2: Genes common to in-house study comparing gene expression values of 

patients who relapsed vs. patients who did not relapse with the MammaPrint gene 

lists. A positive value represents over-expression of each gene and its association 

with poor prognosis while a negative value represents over-expression of gene and 

its association with good prognosis.  

A similar overlap comparison was also performed using the MammaPrint 70 gene 

signature and our in-house generated gene list comparing lymph node-negative vs. lymph 

node-positive (Fold change > 1.2, Difference > 100 and p-value≤0.05) (see section 3.1.6). 

However, no transcripts were identified common to both studies. 

3.2.4 Summary 

The analysis compared our findings to similar other studies. The analysis found HSPB1, 

KIAA0101, PAK3 genes to be up-regulated in patients who relapsed. AP1 transcriptional 

factor genes FOSA, FOSB were down-regulated in patients who relapsed. We also 

identified common genes to two of the breast cancer diagnostic assay (OncotypeDx and 

MammaPrint) and our in-house study. NMU, GMPS, MELK, PECI and SCUBE2 were 
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common genes on MammaPrint and our in-house study. AURKA, BIRC5, ERBB2, 

ESR1 and SCUBE2 were common to OncotypeDx and our in-house study. 
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3.3 Meta analysis of Estrogen receptor pathway genes using gene expression 

data. 

The in-house generated dataset, together with 5 published datasets from GEO (Table 

3.3.0.1) were subjected to meta-analysis to identify genes significantly up or down-

regulated in estrogen receptor-positive and negative specimens.  

Five of these experiments were from clinical studies while one study was on breast 

cancer cell lines (GSE3156). All these experiments were carried out on Affymetrix 

GeneChip U133A or U133Plus2.0 arrays. Details of these experiments are listed in 

Materials and Methods (see section 2.1.2). The minimum number of common 

transcripts in all experiments was 22,283. That is the number of transcripts in U133A 

chip. 

The normalization method used and number of ER-positive and ER-negative 

specimens in each experiment is listed in the Table 3.3.0.1. 

GEO Id No of ER(-) specimens No of ER(+) specimens 

In-house 34 68 

GSE3156 11 8 

GSE3744 18 15 

GSE2034 77 209 

GSE2990 34 149 

GSE4922 34 211 

Table 3.3.0.1: The above table lists the normalization type and the number of 

ER-positive (+) and ER-negative (-) samples in each experimental group. 

GSE3156 is the cell-line dataset while all others are clinical specimens.  

Individual experiments were compared for differentially-expressed genes when 

comparing the ER-positive specimens to ER-negative specimens. Only those genes 

were taken for further analysis which had the p-value ≤ 0.05, Fold change > 1.2 and 

Difference > 100 when comparing the ER-positive specimens to ER-negative 

specimens. The gene list generated by each experiment was compared to each other to 

find common transcripts that changed in two or more experiments. The numbers of 

common transcripts in any two comparisons are listed in Table 3.3.0.2. 



 185 

GEO Id In-house GSE3156 GSE3744 GSE2034 GSE2990 GSE4922 

In-house 2000 410 702 819 443 751 

GSE3156  3715 481 576 315 414 

GSE3744    2394 1031 639 968 

GSE2034      3447 1027 1167 

GSE2990        1607 780 

GSE4922          2054 

Table 3.3.0.2: The above table represents the number of transcripts which are 

common to any two comparisons.  

Gene lists were also compared to identify common genes across all experiments. This 

analysis identified a set of 82 transcripts which were differentially up or down-

regulated across all the six experiments. Out of these 82 transcripts, 62 were up-

regulated and 20 transcripts were down-regulated in ER-positive specimens in 

comparison to ER-negative specimens.  

3.3.1 Up-regulated gene transcripts 

These transcripts, together with Affy IDs and associated fold changes are listed in 

Table 3.3.1.1.  

 

Probe Set 

ID 

Gene 

Symbol 

In-

House GSE4922 GSE3744 GSE2990 GSE2034 GSE3156 

211712_s_at ANXA9 4.74 3.55 11.15 3.52 3.38 6.5 

213234_at KIAA1467 3.6 2.63 3.45 2.12 2.49 2.13 

206401_s_at MAPT 3.54 3.03 4.54 2.13 3.63 12.43 

205225_at ESR1 3.53 6.04 40.74 4.71 8.88 15.27 

214440_at NAT1 3.53 4.19 13.32 3.19 6.07 4.58 

203928_x_at MAPT 3.44 3.04 4.15 2.19 3.44 5.83 

204540_at EEF1A2 3.41 2.04 4.93 2.89 3.41 2.08 

215304_at THSD4 3.2 2.95 5.85 2.18 2.92 2.51 

203929_s_at MAPT 3.17 3.69 5.79 2.32 4.09 8.68 
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205009_at TFF1 2.53 4.34 59.3 2.66 8.89 60.56 

214053_at ERBB4 2.49 2.61 6.06 2.37 3.01 5.28 

203963_at CA12 2.48 3.72 9.43 2.54 3.37 3.8 

204508_s_at CA12 2.48 5.03 11.83 3.16 4.03 5.1 

209460_at ABAT 2.43 3.54 5.9 3.41 4.07 10.54 

209459_s_at ABAT 2.23 3.31 6.29 3.28 4.33 11.58 

209603_at GATA3 2.14 3.39 5.78 2.25 4.75 5.08 

219741_x_at ZNF552 2.12 1.7 3.27 2.2 1.83 3.5 

214164_x_at CA12 2.06 3.68 11.48 2.58 3.57 3.23 

215867_x_at CA12 2.05 3.73 11.23 2.55 3.29 3.14 

218195_at C6orf211 2.03 2.65 3.47 1.73 3.27 5.13 

201841_s_at HSPB1  2.02 1.63 2.88 1.82 1.81 1.95 

203571_s_at C10orf116 2.01 2.06 7 1.77 3.2 13.28 

202089_s_at SLC39A6 2 3.51 6.11 2.22 3.85 4 

205862_at GREB1 1.99 5 16.28 1.88 4.07 60.55 

209602_s_at GATA3 1.99 3.21 7.02 2.13 4.44 4.4 

218211_s_at MLPH 1.98 2.01 6.23 1.78 2.69 1.95 

209604_s_at GATA3 1.97 2.72 6.62 1.99 3.61 3.9 

41660_at CELSR1 1.97 2.41 3.03 2 3.17 2.81 

35666_at SEMA3F 1.88 1.48 2.17 1.31 1.64 2.15 

213441_x_at SPDEF 1.87 1.27 2.69 1.48 1.64 3.2 

204862_s_at NME3 1.8 1.67 2.23 1.58 1.88 2.61 

209681_at SLC19A2 1.8 1.65 3.88 1.92 2.26 2.38 

218931_at RAB17 1.8 1.6 1.98 1.83 1.39 2.48 

201349_at SLC9A3R1 1.77 1.51 2.3 1.91 1.65 4.32 

209623_at MCCC2 1.74 1.8 2.12 1.67 1.95 1.62 

216092_s_at SLC7A8 1.74 1.8 2.88 1.46 1.9 4.35 

205081_at CRIP1  1.72 1.6 3.03 2 2.77 23.88 

221139_s_at CSAD 1.72 1.72 2.33 1.39 1.8 1.7 

204798_at MYB 1.68 2.51 2.57 1.65 2.9 5.18 

212099_at RHOB 1.66 2.03 3.96 1.53 1.95 2.43 

202454_s_at ERBB3 1.62 1.53 2.23 1.44 1.65 2.91 
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205074_at SLC22A5 1.62 1.48 2.22 1.7 1.51 1.68 

202088_at SLC39A6 1.61 2.89 6.24 2.12 3.12 3.15 

204667_at FOXA1 1.61 1.91 4.97 1.67 2.58 3 

201596_x_at KRT18 1.6 1.6 2.71 1.73 2.02 1.67 

201754_at COX6C 1.6 1.53 1.97 1.56 1.75 1.4 

204623_at TFF3 1.6 2.91 20.95 2.05 4.55 59.8 

205376_at INPP4B 1.58 1.99 4 1.98 2.53 2.7 

210652_s_at C1ORF34 1.56 2.57 2.82 1.95 2.55 3.5 

212446_s_at LASS6 1.51 1.34 1.89 2.13 1.58 2.36 

212208_at THRAP2 1.49 1.43 1.5 1.51 1.48 2.2 

212209_at THRAP2 1.48 1.56 1.93 1.73 1.62 2.62 

218259_at MKL2 1.44 1.65 2.01 1.67 1.61 1.91 

209008_x_at KRT8 1.41 1.37 2.21 1.23 1.32 2.39 

218807_at VAV3 1.4 1.87 2.38 1.48 2.55 2.6 

200670_at XBP1 1.37 1.75 3.41 1.43 2.33 3.37 

201650_at KRT19 1.37 1.45 1.96 1.48 1.7 2.54 

209110_s_at RGL2 1.34 1.35 1.96 1.29 1.37 1.6 

203476_at TPBG 1.31 1.88 3.02 1.4 1.69 1.55 

201236_s_at BTG2 1.28 1.62 2.69 1.46 1.94 2.45 

218966_at MYO5C 1.28 1.31 1.76 1.46 1.62 1.86 

217979_at TSPAN13 1.21 1.37 3.23 1.59 1.82 3.57 

Table 3.3.1.1: The above table lists the 62 transcripts which were up-regulated in 

ER-positive patients/cell-lines. 

Gene ontology analysis was performed on genes up-regulated in a minimum of 3 out 

of 6 (50%) experimental groups. This approach was taken so as to increase the size of 

the DE genes for GO and Pathway analysis keeping the background gene list free 

from DE genes. The assumption taken was that if a gene is found DE in 50% of the 

experimental cohorts analysed, it is very likely to be involved in the ER metabolism. 

Similarly for the background gene list, only those genes were included which were 

not found to be DE in any of the experimental groups. 
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The background gene list included those genes which were not differentially-

expressed in any of the experimental groups. There were a total of 935 genes which 

were up-regulated in a minimum of 3 out of 6 experimental groups. Similarly 15859 

genes taken as background were found to be non-significant in all of the experimental 

groups. 
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GOID GO Name Changed Measured Z Score 

6829 Zinc ion transport 3 6 4.272 

15175 Neutral amino acid transporter activity 4 10 4.244 

16461 Unconventional myosin 2 3 4.18 

5010 

Insulin-like growth factor receptor 

activity 2 3 4.18 

51183 Vitamin transporter activity 2 3 4.18 

4165 

dDdecenoyl-CoA delta-isomerase 

activity 2 3 4.18 

16675 

Oxidoreductase activity, acting on heme 

group of donors 5 15 4.161 

16676 

Oxidoreductase activity, acting on heme 

group of donors, oxygen as acceptor 5 15 4.161 

4129 Cytochrome-c oxidase activity 5 15 4.161 

15002 Heme-copper terminal oxidase activity 5 15 4.161 

15804 Neutral amino acid transport 3 7 3.854 

5006 Epidermal growth factor receptor activity 3 7 3.854 

4303 Estradiol 17-beta-dehydrogenase activity 3 7 3.854 

4866 Endopeptidase inhibitor activity 14 82 3.819 

30414 Protease inhibitor activity 14 83 3.767 

41 Transition metal ion transport 6 23 3.756 

50982 Detection of mechanical stimulus 1 1 3.753 

50974 

Detection of mechanical stimulus during 

sensory perception 1 1 3.753 

9592 

Detection of mechanical stimulus during 

sensory perception of sound 1 1 3.753 

8389 Coumarin 7-hydroxylase activity 1 1 3.753 

Fig 3.3.1.2: GO analysis on up-regulated genes 
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MAPP Name Changed Measured Z Score 

1-Tissue-Muscle fat and connective 9 44 3.55 

Nuclear Receptors 7 34 3.148 

Electron Transport Chain 10 58 3.113 

Androgen-Receptor NetPath 2 13 88 2.927 

Valine leucine and isoleucine biosynthesis 2 5 2.912 

Pantothenate and CoA biosynthesis 3 11 2.659 

Smooth muscle contraction 15 122 2.368 

Ethylbenzene degradation 2 7 2.256 

Glutamate metabolism 4 22 2.083 

Wnt NetPath 8 11 89 2.038 

Fig: 3.3.1.3: Pathways analysis on up-regulated genes 

3.3.2 Down-regulated transcripts 

Twenty transcripts were down-regulated in all experimental groups. They are listed in 

Table 3.3.2.1.
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Probe Set 

ID 

Gene 

Symbol 

In-

House GSE4922 GSE3744 GSE2990 GSE2034 GSE3156 

202037_s_at SFRP1 -4.38 -2 -6.32 -2.04 -3.31 -6.13 

202036_s_at SFRP1 -4 -2.08 -8.44 -1.83 -4.05 -10.37 

201012_at ANXA1 -2.63 -1.21 -1.75 -1.3 -1.35 -3.74 

212771_at C10orf38 -2.17 -1.62 -4.14 -1.74 -2.14 -3.46 

213113_s_at SLC43A3 -2.08 -1.77 -2.03 -1.34 -1.69 -4.84 

201300_s_at PRNP -1.9 -1.28 -1.84 -1.36 -1.55 -2.53 

208627_s_at YBX1 -1.83 -1.71 -2.81 -1.56 -1.61 -1.39 

212276_at LPIN1 -1.83 -1.44 -2.39 -1.62 -2.23 -2.13 

202342_s_at TRIM2 -1.79 -1.71 -3.48 -1.57 -2.22 -7.87 

200600_at MSN -1.77 -1.39 -1.7 -1.26 -1.94 -9.79 

221059_s_at COTL1 -1.64 -1.68 -1.81 -1.47 -2.13 -4.08 

200790_at ODC1 -1.51 -1.68 -2.04 -1.44 -1.75 -1.98 

218856_at TNFRSF21 -1.5 -1.69 -1.82 -1.56 -2.13 -2.66 

208628_s_at YBX1 -1.47 -1.53 -2.06 -1.35 -1.54 -1.38 

212274_at LPIN1 -1.37 -1.77 -2.72 -1.64 -2.12 -2.32 

212501_at CEBPB -1.37 -1.4 -1.58 -1.37 -1.58 -1.82 

212263_at QKI -1.31 -1.22 -1.89 -1.36 -1.54 -2.27 

201231_s_at ENO1 -1.3 -1.33 -1.76 -1.24 -1.72 -1.62 

218618_s_at FNDC3B -1.25 -1.23 -1.58 -1.29 -1.58 -2.98 

212345_s_at CREB3L2 -1.2 -1.27 -1.75 -1.27 -1.43 -1.86 

Table 3.3.2.1: The above table lists the transcripts which were up-regulated in 

ER-negative patients/cell-lines 

Gene ontology analysis was performed on genes down-regulated in a minimum of 3 

out of 6 experimental groups. The background gene list included those genes which 

were not DE in any of the experimental groups. There were a total of 697 genes which 

were down-regulated in a minimum of 3 out of 6 experimental groups. Similarly 

15859 genes taken as background were found non-significant in all of the 

experimental groups.  
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GOID GO Name Changed Measured Z Score 

7051 Spindle organization and biogenesis 6 12 6.794 

6270 DNA replication initiation 6 15 5.892 

226 Microtubule cytoskeleton organization 

and biogenesis 9 33 5.524 

16875 Ligase activity, forming carbon-oxygen 

bonds 8 28 5.39 

16876 Ligase activity, forming aminoacyl-

tRNA and related compounds 8 28 5.39 

8452 RNA ligase activity 8 28 5.39 

4812 tRNA ligase activity 8 28 5.39 

6261 DNA-dependent DNA replication 12 55 5.355 

9607 Response to biotic stimulus 64 633 5.337 

278 Mitotic cell cycle 21 133 5.28 

6418 tRNA aminoacylation for protein 

translation 8 29 5.252 

43038 Amino acid activation 8 29 5.252 

43039 tRNA aminoacylation 8 29 5.252 

3690 Double-stranded DNA binding 6 18 5.209 

49 tRNA binding 4 9 5.149 

51301 Cell division 18 110 5.063 

7049 Cell cycle 50 476 4.974 

7017 Microtubule-based process 15 85 4.967 

8283 Cell proliferation 43 389 4.962 

6260 DNA replication 17 104 4.913 

Table 3.3.2.2: Significant functions over-represented among ER-negative 

specimens.  

Pathway analysis was performed using GenMAPP. Significantly affected pathways 

were identified using the enrichment analysis in a way similar to that for Gene 

ontology. The statistically-significant pathways (top 10 based on Z-score) are listed in 

Table 3.3.2.3. Ropporin gene, expression specific to testis was also found to be up-
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regulated in ER-negative specimens in 3 out of 6 studies (Fig 3.3.2.1). However this 

pathway was not found to be significant. 

MAPP Name Changed Measured Z Score 

Cell cycle KEGG 19 69 6.548 

Aminoacyl tRNA biosynthesis 7 18 5.183 

Streptomycin biosynthesis 2 2 5.055 

Cell Cycle G1 to S control reactome 13 54 4.794 

DNA replication reactome 9 32 4.567 

Vitamin B6 metabolism 3 6 4.037 

2-Tissues-Blood and lymph 12 59 3.9 

One carbon pool by folate 4 13 3.272 

Galactose metabolism 5 21 2.93 

T-Cell-Receptor NetPath 11 15 107 2.731 

Table 3.3.2.3: Significant pathways over-represented among ER-negative 

specimens. 
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Fig 3.3.2.1: Testis specific genes up-regulated in ER-negative specimens. 

ROPN1B and ROPN1 has special significance and was studied in further detail 

(see section 3.6)  
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3.3.3 Genes correlated with ESR1 

ESR1 is the key gene involved in estrogen receptor pathway. The estrogen receptor 

pathway is very complex involving interaction of large number of genes, including 

many transcriptional factors. Detailed study of these genes could help in better 

understanding of the disease and development of better treatment options. This 

analysis was aimed at identifying genes whose expression patterns are correlated with 

ESR1. Gene expression profiles of 5897 samples representing diseased, normal 

human specimens and cell lines were obtained from Array Express E-TABM-185 (see 

section 2.1.2). The challenge was to mine large datasets for gene interaction network 

analysis. Because of the extremely large dataset, C programs were written to process 

the data. 

The first step in the data reduction effort was to filter out the genes which did not 

change much over the dataset, i.e. genes with low variation across samples. Only 

those genes which had a standard deviation greater than and equal to 1 across all 

samples were selected for further analysis. A total of 11,099 genes passed this 

criterion. The C program using Dev C++ (see section 2.2.10) was written for this 

analysis. 

The ESR1 gene has been shown to play an essential role in estrogen receptor 

metabolism. Using the set of identified 11,099 genes, the dataset was mined to 

identify highly correlated genes (Correlation > 0.75). A C program using Dev C++ 

(see section 2.2.10) was written to generate the correlation values among genes. 

FOXA1, GATA3, SPDEF and C1ORF34 were the only genes which had a correlation 

greater than 0.75 with ESR1. To get a deeper insight into how other genes correlate 

with estrogen metabolism, genes correlated with FOXA1, GATA3, SPDEF and 

C1ORF34 were identified (Correlation > 0.75) Many genes were identified which 

correlated with FOXA1, SPDEF and C1ORF34 and this information was used to 

create the network shown in Fig 3.3.3.1. However, no genes other than ESR1 were 

found to be correlated with GATA3. All these genes were also found to be up-

regulated in ER-positive tumour specimens in the previous analysis (see section 

3.3.1).  
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Fig 3.3.3.1: The above figure represents a correlation network among genes 

identified using 5897 samples. The correlation cut-off of 0.75 was used to filter 

genes. There were only 4 genes (FOXA1, GATA3, C1ORF34 and SPDEF) which 

correlated with ESR1 expression. However, there were many more genes which 

co-regulated with FOXA1, C1ORF34 and SPDEF. 

3.3.4 Correlation patterns among genes 

The correlation pattern among the ESR1-correlated genes (FOXA1, GATA3, 

C1ORF34, SPDEF) were plotted in excel to get a deeper understanding of the 

expression relationships between these genes (Fig 3.3.4.1 – Fig 3.3.4.9). The results 

indicate that, apart from one exception (that between genes SPDEF and FOXA1), 

there is independency of expression between each of the genes i.e. although the 

expression is correlated; the expression of one can be independent of the other. 
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However, there was an interesting relationship observed between the correlation 

patterns of SPDEF and FOXA1. The expression of FOXA1 was independent of the 

expression of SPDEF. However, the expression of SPDEF seems likely to be 

dependent on the expression of FOXA1 (Fig 3.3.4.1).  
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Fig 3.3.4.1: Correlation pattern between FOXA1 and SPDEF. Each axis 

represents the expression values of that individual gene. 
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Fig 3.3.4.2: Correlation pattern of ESR1 and FOXA1. Each axis represents the 

expression values of that individual gene. 
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Fig 3.3.4.3: Correlation pattern between ESR1 and GATA3. Each axis 

represents the expression values of that individual gene. 
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Fig 3.3.4.4: Correlation pattern between ESR1 and C1ORF34. Each axis 

represents the expression values of that individual gene. 
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Fig 3.3.4.5: Correlation pattern between ESR1 and SPDEF. Each axis represents 

the expression values of that individual gene. 
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Fig 3.3.4.6: Correlation pattern in FOXA1 and GATA3. Each axis represents the 

expression values of that individual gene. 

 

Fig 3.3.4.7: Correlation pattern between FOXA1 and C1ORF34. Each axis 

represents the expression values of that individual gene. 
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Fig 3.3.4.8: Correlation pattern between GATA3 and C1ORF34. Each axis 

represents the expression values of that individual gene. 
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Fig 3.3.4.9: Correlation pattern between GATA3 and SPDEF. Each axis 

represents the expression values of that individual gene. 
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3.4.5 Hierarchical clustering, Principal component analysis and k-means analysis 

on ESR1 correlated genes. 

Hierarchical clustering (Fig 3.4.5.1) and Principal component analysis (Fig 3.4.5.2) on 

the expression values of these 5 ESR1-correlated genes was utilized across all 

samples to identify similarities among the expression patterns of these genes. Both 

methods indicated that the FOXA1 and SPDEF expression were very similar to each 

other. 

 

Fig 3.4.5.1: Hierarchical clustering showing relationship among genes.  
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Fig 3.4.5.2: PCA showing relationship among genes. SPDEF and FOXA1 are 

close to each other on a 3-D representation of the data. 

To get a deeper insight on how the expression patterns of these 5 genes are distributed 

across all samples, k-means clustering was performed on all samples (5897) using the 

expression values of these 5 genes only (Fig 3.4.5.3). The individual genes were mean 

centered and divided by standard deviation. The total number of clusters generated 

was 12, the number of iterations was 200 and the distance criteria were Euclidean 

distance.  
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The biggest cluster (3209 samples; Cluster 8) represented specimens which express 

low levels of these 5 genes. The next biggest cluster (899 samples; Cluster 9) 

represented specimens where all these 5 genes are highly expressed. This result also 

indicated that in some of the specimens, ESR1 can be highly expressed even when 

other four genes are not expressed very highly (Cluster 5). Another interesting result 

is that the GATA3 expression can be independent of that of the other genes (Clusters 

2 and 6).  

All the five genes expressing together is the most obvious result from this study 

(Cluster 9) indicating that mostly these genes are co-expressed. Individual genes can 

be expressed without depending on the expression of other genes. However, no cluster 

with high expression of SPDEF and low expression of FOXA1 was observed, 

indicating that the expression of SPDEF may be dependent on the expression of 

FOXA1. 
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Fig 3.4.5.3: k-means clustering using all samples and 5 genes. The individual 

genes were mean centered and divided by standard deviation. The total number 

of clusters generated was 12. Number of iteration was 200 and the distance 

criteria were Euclidean distance. Total numbers of samples were 5897 

3.4.6 Summary 

The analysis identified important genes to ER pathway. ESR1, GATA3, FOXA1, 

SPDEF and C1ORF34 were found to be highly correlated and up-regulated in ER-

positive specimens. Nuclear receptor pathway was found to be up-regulated in ER-

positive tumors. Using gene expression data a gene interaction network was 

constructed around ESR1 gene, an important gene in the ER metabolism. The results 

also indicated that SPDEF expression may be dependent on the expression of 

FOXA1. SPDEF gene was identified to be up-regulated in ER-negative specimens.  
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3.4 Gene expression signature for HER2  

This section analyses three publicly available datasets to identify 

diagnostic/prognostic markers associated with HER2-positive tumors. 

3.4.1 HER2-positive vs. HER2-negative 

Clinical (GSE-1456 and GSE-3744) and Cell Line (GSE-3156) datasets (see section 

2.12) were cross compared to identify genes up- and down-regulated in HER2-

negative vs. positive patients. The number of specimens in each group and the number 

of DE genes (p ≤ 0.05, Fold Change (FC) > 1.2 and Difference > 100) are listed in 

Table 3.4.1.1. There were 13 transcripts common across all the experiments (Fig 

3.4.1.1) 

GEO Accession HER2 - HER2 + Up-regulated Down-regulated 

GSE-1456 144 15 421 314 

GSE-3744 24 8 101 290 

GSE-3156 14 4 898 2616 

Table 3.4.1.1: Number of HER2 samples in each experimental group and the 

number of DE genes in individual comparison 
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Fig 3.4.1.1: Common DE transcripts across experiments. Venny (see section 

2.2.7.2) was used to draw this Venn diagram.  
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The 6 up-regulated transcripts in all experimental groups are listed in Table 3.4.1.2. 

The 7 down-regulated transcripts in all experimental groups are listed in Table 

3.4.1.3. 

probe set gene GSE-1456 GSE-3744 GSE-3156 

216836_s_at ERBB2 4.8 17.17 7.51 

224447_s_at C17orf37 4.42 9.54 6.24 

202991_at STARD3 3.36 6.3 5.49 

224576_at ERGIC1 1.58 1.98 2.23 

215380_s_at C7orf24 1.52 1.79 1.96 

223847_s_at ERGIC1 1.49 1.83 1.75 

Table 3.4.1.2: Up-regulated transcripts in all experimental groups 

probe set gene GSE-1456 GSE-3744 GSE-3156 

223475_at CRISPLD1 -2.69 -8.46 -7.53 

202037_s_at SFRP1 -2.5 -4.89 -7.37 

202036_s_at SFRP1 -2.37 -5.57 -22.38 

218094_s_at DBNDD2  -1.91 -2.88 -3.41 

205383_s_at ZBTB20 -1.53 -1.76 -2.92 

235308_at ZBTB20 -1.4 -2.01 -3.97 

212190_at SERPINE2 -1.36 -2.09 -9.01 

Table 3.4.1.3: Down-regulated transcripts in all experimental groups 

3.4.2 Summary  

This section identified ERBB2, C17orf37, STARD3, ERGIC1 and C7orf24 as up-

regulated among HER2-positive patients.  
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3.5 Development of MLPERCEP, a software tool for predicting relapse in breast 

cancer 

Neural Network Multiple Layer Perception (MLPERCEP), using Back Propagation 

Algorithm, was used to accurately predict relapse in breast cancer patients. A stand-

alone piece of software, MLPERCEP was developed to implement Back Propagation 

Algorithm. The software is available at http://www.bioinformatics.org/mlpercep/ 

3.5.1 Design 

The MLPERCEP software is a collection of individual programs written in C 

language. Each of the C programs is complemented with the graphics user interface 

written in C# and the individual sets can be accessed from the main user interface also 

in C#. The C programs extensively use dynamic memory allocation and utilization of 

hard disk space to make the program practically handle extremely large networks and 

datasets. To run the software, the .NET runtime environment from Microsoft 

(http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-

4B0D-8EDD-AAB15C5E04F5&displaylang=en) must be installed. 

3.5.2 Architecture 

 The architecture of the MLPERCEP back propagation algorithm is shown below. The 

software has an input neuron layer, a hidden neuron layer and an output neuron layer 

(Fig 3.5.2.1.) 

http://www.bioinformatics.org/mlpercep/
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Fig 3.5.2.1: Architecture of back propagation algorithm. 

The number of input neuron depends on the number of inputs. The inputs can be 

binary or floating numbers. However, the results are more accurate if values within -1 

and 1 are used. Currently the software supports only binary outputs i.e. 0 or 1 or any 

value between them. The hidden layer is the generalization layer and can be varied by 

the user. The very high number of hidden neurons may lead to quicker learning, but 

may fail to generalize. However, a very small number of neurons may not allow the 

network to train at all. Some of the other fine tuning parameters are learning rate, 

momentum, error cut-off, maximum number of iterations and leave-one-out cross-

validation. 

3.5.2.1 Algorithm  

The algorithm was adapted from the book by Simon Haykin “Neural Network. A 

comprehensive foundation” (Haykin 1998) 

Forward propagation: 

Hidden layer output Hi = F (
ni

i 0

wi × Ii ) 
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w is weight of input to hidden interconnection and I is the input signal, n is the 

number of input neuron.  

Output O = F (

nh

h 0

Wh × Hh ) 

W is weight of hidden to output interconnection and H is the output of hidden neuron, 

n is the number of hidden neuron. 

H is the output of hidden neuron and O is the output of output neuron 

w and W are the weights of input-hidden and hidden-output connection. 

F is sigmoid activation function F(x) = 1/(1+e
-x

) 

Backward error propagation and weigh correction 

Output layer error vector D = O (1-O)(T-O)  

T is the desired output 

Adjusting the hidden layer weights 

∆Wi = αHD + θ∆Wi-1 

α is the learning rate, θ is the momentum 

Hidden layer error vector Ei = Hi(1-Hi)WiD 

∆wi = αIiE + θ∆wi-1 

The above process is iterated till the error sum of squares drops to user defined value 

or the maximum iteration is reached. 

Added features include equal loading of positive and negative examples. This avoids 

the algorithm‟s propensity to predict more efficiently on class with more examples at 

the cost of the class with fewer examples. Another important feature is the run time 

randomization of input examples. This avoids the problem of the network falling in 
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local minima. Additional features include leave-one-out cross-validation. This has an 

advantage on judging the systems efficacy on small datasets where dividing the 

datasets as training and testing datasets becomes impractical.  

3.5.3 Software Modules  

Following installation, the application can be launched from Start  All programs  

MLPERCEP or from a shortcut on the desktop if it has been made during the 

installation process. A window appears as shown in Fig 3.5.3.1. 
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 Fig 3.5.3.1: Start up screen of MLPERCEP. 

Clicking on the individual button will activate the respective program. 

3.5.3.1 Training program  

This program trains the network. Clicking on the Training button will produce a 

window as shown in Fig 3.5.3.1.1.  
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Fig 3.5.3.1.1: Back propagation training program.  

Training file: “Upload” button to select the file to be trained. A sample format is 

shown below. It should be a text file. 

Samples 4   

Parameters 2   

Sample1 0 0 0 

Sample2 1 0 1 

Sample3 1 1 0 

Sample4 0 1 1  

The first line should contain the word “samples” or any other word followed by the 

total number of samples. In this example, it is 4. 
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The second line should contain the word “parameters” or any other word followed by 

the total number of input parameters (this will be also taken as the number of input 

neurons). In this example it is 2. 

From the third line onwards, the first word should contain the sample name and the 

second column should be the expected output. The others in the row are the inputs to 

the system. It can be binary, e.g. 0 and 1, or it can be decimal (e.g. 0.02). The program 

will give optimum results only when the data range is between -1 and 1. 

If the data has samples as columns and parameters as rows (e.g. microarray data), 

utility programs “Format Data” can be used. If the data is of DNA sequences, the 

utility tool “Format sequence data” can be used. This tool will easily convert data to 

the above-mentioned format. 

Weight Output file: All the information of the training in the form of weights will be 

saved in this file. 

No of hidden neurons: This denotes the total number of hidden neurons the network 

should have. Ideally it should be less than the number of input neurons. If the 

numbers of hidden neurons are very less, it is possible the system will never learn. 

However on the other hand if the number of hidden neurons is very high, it may lead 

to better learning but behave poorly in generalization.  

Learning rate: Learning rate decides the speed by which the network will learn. A 

very small learning rate may take an infinite time for the network to learn. On the 

other hand a very high learning rate may lead to error bumping and the network not 

being trained at all. The optimum learning rate for most of the problems lies in the 

range of 0.4 to 0.6. 

 Momentum: During the training process, the error convergence reaches a local 

minima and no further convergence takes place. Placing a momentum (normally 

between 0.2 - 0.8) helps it come out of the local minima and proceed to the global 

minima. 

Error cut-off: Error reduces with iteration and the program will stop execution once it 

reaches the error cut-off or the maximum number of iterations. 
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Maximum iteration: The total number of training cycles performed by the program. 

However if the error reaches below error-cut-off, the program will stop. The lower the 

error cut-off, the better the results are. 

Copy: The program makes a copy of the dynamic changing weights after “copy” 

number of iterations. So if the program is stopped between iterations, the user can 

obtain the previous copy of the weights. 

Cross validation output file: By default, the system does not perform any cross-

validation. If a file name is provided, the system will perform cross-validation. The 

system performs a leave-one-out cross-validation which is a very computationally-

intensive process.  

Train: Clicking on “Train” will open an MSDOS window as shown below (Fig 

3.5.3.1.2). 

 

Fig 3.5.3.1.2: MSDOS screenshot showing error sum of squares 

These values are the error sum of squares. Ideally these values should decrease with 

time, indicating that the network is learning. The error sum of squares will reach zero 

when the software reaches the minimum error cut off or the maximum iteration is 

reached. If the error is not further reducing, the MSDOS window can be closed and 

the last set of weights will be taken for further calculations.  
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3.5.3.2 Testing  

After training the data the network can be used for testing on the unknown samples. 

Clicking on “Testing” button will activate the window shown in Fig 3.5.3.2.1. 

  

Fig 3.5.3.2.1: Back propagation testing program. 

Weight File: The training program exports the knowledge in the form of a weight file. 

The weights are the optimised weights for correct prediction.  

Testing File: The data format is the same as that for the training program. However, it 

does not need to have the target as the second row.  

Output file: File where the results are to be saved.  

Data contains expected output: If the test set data contains information on the output 

for each sample, check this option to test the algorithm efficiency 

Click on “Test” and the testing program will start.  

3.5.3.3 Map data between 0 and 1  

Since the expression values may be quite high, this tool maps the data between 0 and 

1. It uses the following calculation. 
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New value = (Old value - Minimum value for that gene)/ (Maximum value for that 

gene - Minimum value of that gene) 

This tool should be used only after the feature selection; otherwise it will map the less 

changing data also between 0 and 1 thereby magnifying the error.  

The data should be in the following format. It should be in a text file. 

Identifier s1 s2 s3 s4 s5 s6 

Target 1 0 0 1 1 0 

G1 3 8 2 9 1 2 

G2 9 4 2 9 6 5 

G3 3 2 7 9 3 2 

First row and column should contain the word “Identifier”, or any other word, 

followed by the names of the identifiers.  

Second row first column should contain the word “Target”, or any other word. 

Following this should contain the expected output of that sample, 0 for one class and 

1 for the other class. If this row is present, the option “Second column contains target” 

should be checked. 

The following rows should contain gene identifier followed by expression values.  

Clicking on “Map values between 0 and 1” will activate the window shown in Fig 

3.5.3.3.1. 
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Fig 3.5.3.3.1: Map data between 0 and 1. 

3.5.3.4 Formatting data  

This program will convert gene expression data to the format in which the training 

program can accept. Clicking on “Format microarray data” will activate the window 

shown in Fig 3.5.3.4.1. 

  

Fig 3.5.3.4.1: Format microarray data. 
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The data should be in the following format. It should be a text file. 

Identifier s1 s2 s3 s4 s5 s6 

Target 1 0 0 1 1 0 

G1 3 8 2 9 1 2 

G2 9 4 2 9 6 5 

G3 3 2 7 9 3 2 

The first row and column should contain the word Identifier, or any other word 

followed by the names of the Identifier.  

The second row, first column should contain the word “Target” or any other word. 

Following this should contain the expected output of that sample 0 for one class and 1 

for the other class. This row is essential for the training data. However it is optional 

for the testing data. If this row is present the option “Second column contains target” 

should be checked or else unchecked. Target can be in the second row even in the 

testing file. In such case it will give a comparative result with the expected output. 

The following rows should contain gene identifier followed by expression values 

Input file: Select the file to be formatted.  

Output file: Specify the output file name.  

Divide values by: The program trains best when the data range is in between 0 and 

1. So if the data lies outside this range, divide the values by a particular number so as 

the values fall between 0 and 1.  

Randomize samples: Randomizing samples is always helpful for the training. It 

randomizes the order of training examples fed to the program. If all positive examples 

are shown at one time and all the negative examples after that, then the system keeps 

on forgetting the previous class. Therefore it is essential to train the network with 

alternating positive and negative examples, so that the network remains balanced and 

does not deviate towards predicting one class at the cost of other. 
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Second row contains target: The second row should contain the known outcomes of 

individual samples as shown in the previous example and this is a must for the 

training file. However, it‟s optional for the testing set.  

Click on “Format”. The output file will be placed in the working folder. 

 3.5.3.5 Format Sequence data  

If the data is in the form of a DNA sequence, this utility tool will format the data to 

numeric values. The submitted sequence should be in FASTA format. 

Click on “Format Sequence Data” will activate the window shown in Fig 3.5.3.5.1. 

  

 Fig 3.5.3.5.1: Format DNA sequence. 

An example of input data is shown below: 

>Seq1 Hypothetical gene 

ATGCGTA 

>Seq2 Kinase 

TTCTAAC 

This step will be repeated. The first word will be taken as the sequence name. For the 

above example it will be Seq1 and Seq2 
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Negative training file: Upload the file with sequences which belong to one group. 

Here it will be assigned 0. 

Positive training file: Upload the file with sequences which belong to the other group. 

Here it will be assigned 1. 

The sequence are numerically transferred as  

A  0 0 

T  0 1 

G  1 0 

C  1 1 

Unidentified bases will be assigned 0 0. The length of sequences should be equal. 

Output file: Specify the output file name. 

Click on “format”. The output file will be placed in the working folder  

 For testing purposes, only one file is needed. Leave the field “Positive Training File” 

empty. The system will consider that the formatting is done for the testing purpose 

3.5.3.5 Analyse Results  

This tool can be used to analyse the results obtained from the cross validation study or 

after testing on a new result where the expected output is known. Clicking on 

“Analyse Results” will activate the window shown in Fig 3.5.3.5.1. 
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Fig 3.5.3.5.1: Analyse results. 

Input file name: Input file name contains the actual output of each sample along with 

the expected value/class. It is the output of testing or cross-validation. 

Positive and negative cut-off: Values between the positive and negative cut-off won‟t 

be considered for classification and their class would be considered as undermined. 

Having a stringent cut-off will increase the accuracy; however it will increase the 

number of samples as undetermined. 

The output includes Overall accuracy, Positive and Negative accuracy, True and False 

positive rates. “Positive accuracy” (also known as true positive rate) is the accuracy of 

positive class. Similarly, negative accuracy (also known as true negative rate) is the 

accuracy of the other class. False positive rate and false negative rate are the error 

rates associated with the positive and negative class respectively. 

An example of the result file is shown below 

Positive cut-off:  0.750000 

Negative cut-off:  0.250000 

Total number of samples: 34 

Total number of samples which could not be classified: 1 

Total number of samples which were accounted:  33 
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a=19 b=0 c=1 d=13 

Positive accuracy: 0.928571 

Negative accuracy: 1.000000 

Accuracy:  0.969697 

True positive rate: 0.928571 

False positive rate: 0.000000 

True negative rate: 1.000000 

False negative rate: 0.071429 

The calculations are shown below.  

 Predicted Actual 

a 0 0 

b 1 0 

c 0 1 

d 1 1 

 

Positive accuracy = d/(d+c) 

Negative accuracy = a/(a+b) 

Overall Accuracy = (a+d)/(a+b+c+d)) 

True positive rate = d/(c+d) 

False positive rate = b/(a+b) 

True negative rate = a/(a+b) 

False negative rate = c/(c+d) 

3.5.4 Results  

The aim was to develop a classifier to predict relapse in breast cancer patients. 

Differentially-expressed genes were generated by comparing the patients who 

relapsed (overall relapse) compared to patients who did not relapse. The total number 
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of samples was 105. The filtration criteria used was p ≤ 0.001. There were a total of 

162 genes meeting the criteria and a classifier was developed on those genes. The 

162-member gene signature expression values was normalised to between 0 and 1, as 

discussed in section 3.5.3.3. The data was used to optimize the neural network back 

propagation program. The optimization was done by varying the number of hidden 

neurons, learning rate and the momentum. The results are indicated in Fig 3.5.4.1, Fig 

3.5.4.2 and Fig 3.5.4.3 
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Fig 3.5.4.1: Leave-one-out cross validation accuracy on varying the hidden 

neurons  
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Fig 3.5.4.2: Leave-one-out cross validation accuracy on varying the learning rate 
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Fig 3.5.4.2: Leave-one-out cross validation accuracy on varying the momentum. 

The results indicate that 4, 8 and 10 hidden neurons gave better accuracy. 4 hidden 

neurons were taken for further analysis as lower number of hidden neuron makes the 

training process fast and should perform better on independent validation. A learning 

rate of 0.2 and 0.4 was found to give a better accuracy. Therefore a learning rate of 

0.4 was taken to obtain faster learning. Lower momentum performed better. Therefore 

a momentum of 0.1 was taken for subsequent analysis. 
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Optimised parameters were used: (Hidden neurons: 4; Learning rate: 0.4; Momentum: 

0.1; Error cut-off: 0.04; Maximum number of iterations: 10000). The leave-one-out 

cross-validation method was used to estimate the accuracy of the model. Additionally, 

another classifier was developed using Support Vector Machines using GEMS 

software. Default parameters were used (SVM cost: 100; SVM kernel: Polynomial 

and SVM kernel parameter (degree): 1) using the same dataset.  

When the cut-off 0.75 and 0.25 was used, the accuracy of the back propagation model 

was 97.8%. However there were a total of 11 specimens which could not be 

classified. When the cut-off was taken as 0.5, and all the specimens were grouped, the 

overall accuracy was 93.3%. The detail results are shown in Table 3.5.4.1. A support 

vector machine algorithm using the above data was able to classify with an accuracy 

of 93.3%. 

 Parameters Positive cut-off: 0.75 

Negative cut-off: 0.25 

Positive cut-off: 0.5 

Negative cut-off: 0.5 

A 51 53 

B 2 4 

C 0 3 

D 41 45 

Unclassified 11 0 

Accuracy 0.978723 0.933333 

True positive rate 1 0.937500 

False positive rate 0.037736 0.070175 

True negative rate 0.962264 0.929825 

False negative rate 0 0.062500 

Table 3.5.4.1: Results from Back propagation cross validation program. 

A cDNA microarray dataset generated by van‟t Veer et al., (2002), was used to 

develop a classifier to predict distant metastasis. This was done to judge how the 

algorithm performs on cDNA microarray data. The total number of specimens used 

was 78. DE genes (p < 0.001) were used to develop the classifier. The number of 

genes that passed this criterion was 117, and a classifier was developed on them. The 
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data was used without any transformation as the cDNA microarray values were close 

to 0 as the data was log ratio. Default parameters for both were used and leave-one-

out cross-validation was performed. When the cut-off 0.75 and 0.25 was used, the 

accuracy of the back propagation model was 89.7%. However, there were a total of 10 

specimens which could not be classified. When the cut-off was taken as 0.5, and all 

the specimens were grouped, the overall accuracy was 87.1%. The detail results are 

shown in Table 3.5.4.2. A support vector machine using the above data and default 

parameters was able to classify the data with an accuracy of 82.05%. 

 Parameters Positive cut-off: 0.75 

Negative cut-off: 0.25 

Positive cut-off: 0.5 

Negative cut-off: 0.5 

A 37 40 

B 2 4 

C 5 6 

D 24 28 

Unclassified 10 0 

Accuracy 0.897059 0.871795 

True positive rate 0.827586 0.823529 

False positive rate 0.051282 0.090909 

True negative rate 0.948718 0.909091 

False negative rate 0.172414 0.176471 

Table 3.5.4.2: Results from Back propagation cross validation program. 

3.5.5 Summary 

A back propagation algorithm was successfully developed as a user-friendly software 

package which can be used to develop a prognostic model for breast cancer. The 

results generated were at par or better than Support Vector Machines in predicting 

relapse and distant metastasis in two of the datasets tested. 



 229 

3.6 Functional analysis on ROPN1B 

Ropporin is a sperm-specific protein and is associated with sperm motility (Fujita et 

al., 2000). Its expression was also found in motile cilia helping them to move in one 

direction in a synchronised pattern (Newell et al., 2008). Ropporin (ROPN1 and 

ROPN1B) was identified as differentially-expressed in several gene lists commonly 

associated with bad prognosis in our breast cancer investigation (see section 3.1) This 

gene was significantly up-regulated in patients who relapsed, patients who did not 

survive beyond 5 years, patients who relapsed within 5 years and patients with ER-

negative tumors. Additionally this gene was up-regulated in one of the sub-groups of 

ER-negative breast cancer with a high incidence of relapse (see section 3.1.3). The 

gene was also up-regulated in the ER-negative subgroup in 3 out of 6 datasets 

comparing ER-negative and ER-positive specimens (see section 3.3.2). There was a 

total of 4 probe sets representing the Ropporin gene on the Affymetrix U133 Plus2.0 

microarray chip, which when annotated in NetAffx, corresponded to two highly 

homologous gene targets, ROPN1 and ROPN1B, located at two different loci on the 

same chromosome.  

3.6.1 Similarity and difference among ROPN1B and ROPN1 

3.6.1.1 Sequence similarity 

Using ClustalW, ROPN1B and ROPN1 were found to be 97% identical based on 

DNA (Coding sequence) sequence similarity (Fig 3.6.1.1.1) and 95.7% identical 

based on the predicted protein sequence similarity (Fig 3.6.1.1.2).  
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Fig 3.6.1.1.1: DNA sequence alignment for ROPN1 and ROPN1B 
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Fig 3.6.1.1.2: Protein sequence alignment for ROPN1 and ROPN1B 

3.6.1.2 Design of gene specific primers for ROPN1 and ROPN1B 

TaqMan primers were designed for ROPN1 and ROPN1B using primer express from 

ABI (see section 2.5.5.1). The primers were designed using the most variable region 

of the gene (close to 3‟ region). The forward and reverse primers were on different 

exons making it specific to detect mRNA only.  

ROPN1 primers:  

Sense: TGT CAG CAG GAT GCT AAA CTA CAT G Tm: 61.3, GC content 44% 

Location: 878 – 902 on NM_017578.2 

Antisense: ATT TTG GGT GGT ATA TGG GTT TCA Tm: 57.6, GC content: 37.5% 

Location: 1062-1039  

Probe: CAG CTG GAG TAA AAG CAC AAT TTT GGC AA Tm: 63.9, GC content 

41.4%, 5‟ JOE 3‟ TAMARA Location: 969 – 997 

ROPN1B primers: 

Sense: TGT CAG CAG GAT GCT AAA CTA CAT T Tm: 59.7 GC content: 40% 

Location: 765-789 in NM_ 001012337.1 
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Antisense: AGG TGG TAT ATG GGT TTA TCA TTC TGA Tm: 59, GC content 

37% Location: 942-916 

Probe: TGG CTG GAG TAA CAG CAC AAT TTT GGC Tm: 65. GC content: 48.1 

5‟ FAM 3‟ TAMRA Location 856 - 882 

Specificity of primers: ROPN1 and ROPN1B plasmids in bacteria were obtained from 

Open Biosystems (see section 2.5.7). The plasmids were isolated using mini-prep kit 

from Qiagen (see section 2.5.6.1). qRT-PCR was performed on these plasmids for 

both genes. 

To determine the efficacy of the ROPN1 and ROPN1B primers in differentiating their 

respective cDNAs, qRT-PCR experiments were set up utilizing both sets of primers 

on both plasmid preps from both genes. As can be seen in Fig 3.6.1.2.1, the designed 

ROPN1 primers were specific to ROPN1 and did not amplify ROPN1B. 
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Fig 3.6.1.2.1: ROPN1 qRT-PCR on ROPN1 expression plasmid preps. ROPN1 

primers amplified ROPN1 gene transcript from ROPN1 expression plasmid 

preps and did not amplify ROPN1B. On the X-axis, the first letter indicates the 

target (i.e. cDNA; A-ROPN1, B-ROPN1B) source, the second letter indicates the 

primer type and the number indicates the 1/x dilution. On the Y-axis, “Ct” refers 

to “Cycle Threshold” and is a measure of the cycle number at which the 

fluorescence generated within a reaction crosses the threshold. It is inversely 

correlated to the logarithm of the initial copy number.  

The ROPNIB primers were efficient in detecting ROPN1B cDNA. However, 

ROPN1B primers did amplify ROPN1 but at a later cycle (~6 Ct), making the 

detection of ROPN1 by ROPN1B primer 100-fold less specific compared to its ability 

to detect ROPN1B (Fig 3.6.1.2.2). Every 3.2 Ct difference is equivalent to a 10 fold 

difference in gene expression. Due to the sequence conservation between ROPN1 and 

ROPN1B, it was impossible to design alternate primers. As a result, it was concluded 

that to accurately assess ROPN1B expression using these primers, all ROPN1B qRT-

PCR experiments would be complemented with ROPN1 expression, to identify 

whether a given expression value was due to ROPN1B or ROPN1.  
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Fig 3.6.1.2.2: ROPN1B qRT-PCR on ROPN1/ROPN1B expression plasmid 

preps. The X/Y axes are as detailed for Fig 3.6.1.2.1. The detection of ROPN1 by 

ROPN1B primer was 100-fold less specific compared to its ability to detect 

ROPN1B.  

3.6.1.3 Affymetrix probe presentation of Ropporin (ROPN1 and ROPN1B) 

There are four probe sets representing Ropporin gene on Affymetrix U133 plus 

arrays, whereas there is only one on the U133A chip. To get a deeper understanding 

regarding which probes represent ROPN1 and which represented ROPN1B sequences 

for all these probes were BLASTED. 

Probe: 233203_at: On Affymetrix arrays probe ID with “_at” are considered as unique 

to the specified gene and are not supposed to hybridize with other genes. BLASTING 

the sequence resulted in no match with any of the reference sequence of ROPN1 or 

ROPN1B. However, there was a match with ROPN1 gene (not the reference 

sequence) (Fig 3.6.1.3.1). 

Two years previously when there was no reference sequence available for ROPN1, it 

was assumed that this probe represented ROPN1. And since this probe was not 

expressing in our study, it was assumed that the expression detected was due to 

ROPN1B and not ROPN1. With the updated annotation and qRT-PCR results, it was 
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concluded (at a much later date) that the unique probe for ROPN1 (233203_at) on 

Affymetrix chip is a faulty probe and does not represent ROPN1.  

 

Fig 3.6.1.3.1: BLAST result for 233203_at probe sequence. No BLAST hit was 

obtained for reference sequence for ROPN1 and ROPN1B 
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Probe 231535_x_at: BLAST results indicate this probe to represent ROPN1 gene (Fig 

3.6.1.3.2). No hit was obtained for ROPN1B reference sequence. 

 

Fig 3.6.1.3.2: BLAST result for 231535_x_at probe sequence. BLAST hit was 

obtained for reference sequence for ROPN1 and no hit was obtained for 

reference sequence for ROPN1B. 
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Probe 224191_x_at: BLAST results indicate this probe to represent both ROPN1B 

and ROPN1 gene. A 100% match was obtained for ROPN1B reference sequence (Fig 

3.6.1.3.3) and 99% match was obtained for ROPN1 reference sequence (Fig 

3.6.1.3.4). 

 

Fig 3.6.1.3.3: BLAST result for 224191_x_at probe sequence 
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Fig 3.6.1.3.4: BLAST result for 224191_x_at probe sequence  
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Probe 220425_x_at: BLAST results indicate this probe to represent ROPN1B. A 

100% match was obtained for ROPN1B reference sequence (Fig 3.6.1.3.5) and 97% 

match was obtained for ROPN1 reference sequence (Fig 3.6.1.3.6). 

 

Fig 3.6.1.3.5: BLAST result for 220425_x_at probe sequence 
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Fig 3.6.1.3.6: BLAST result for 220425_x_at probe sequence  

Therefore probe set 231535_x_at was taken to represent ROPN1 and probe set 

220425_x_at was taken to represent ROPN1B. 233203_at was no longer considered 

to represent Ropporin. 

3.6.2 Expression of ROPN1 and ROPN1B in normal and cancerous breast tissue 

3.6.2.1 Expression of ROPN1 and ROPN1B in our in-house study 

Ropporin (ROPN1 and ROPN1B) expression was examined in our in-house study 

using both microarray and qRT-PCR. 

3.6.2.1.1 Results from microarray 

On average, ROPN1 was 4.97-fold up-regulated in patients who relapsed and 

ROPN1B was 5.06-fold up-regulated in patients who relapsed compared to patients 

who did not relapse (overall). ROPN1 was 6.81-fold up-regulated in patients who 

relapsed within 5 years and ROPN1B was 7.83-fold up-regulated in patients who 

relapsed within 5 years compared to those who remained disease-free for 5 years. 
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High expression of ROPN1 and ROPN1B was observed in one of the sub-cluster 

enriched with ER-negative specimens. This cluster had the worst survival in 

comparison to other clusters (see section 3.1.3).  

ROPN1B (220425_x_at) was not expressed among 54/57 (94.7%) of the patients who 

did not relapse, however it was expressed in 13/48 (27.1%) of the patients who did 

relapse based on the cut-off of 100 Affymetrix unit. Similarly ROPN1 (231535_x_at) 

was not expressed among 53/57 (92.9%) of the patients who did not relapse, however 

it was expressed in 14/48 (29.1%) of the patients who did relapse.  

3.6.2.1.2 Survival analysis 

Survival analysis (see section 2.2.12) was performed on ROPN1B and ROPN1 using 

Present/Absent Affymetrix calls. ROPN1B expression has significantly correlated 

with relapse-free survival (p-value =0.0340) but not with overall survival (p-value 

=0.3894) (Fig 3.6.2.1.2.1). Absence of ROPN1B gene expression is positively linked 

to relapse-free survival; however no relation was observed for overall survival. 

However, ROPN1 expression did not significantly correlate with relapse free survival 

(p-value =0.122) or with overall survival (p-value =0.37) (Fig 3.6.2.1.2.2). This 

analysis was performed by Dr. Lorraine O'Driscoll. 
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Fig 3.6.2.1.2.1: The figure on the left denotes survival curve for Relapse-free 

Survival for ROPN1B; the figure on the right denotes the survival curve for 

Overall Survival for ROPN1B. X-axis denotes the survival in days; Y-axis 

denotes the percent of patients still surviving. 

 

Fig 3.6.2.1.2.2: The figure on the left denotes survival curve for Relapse-free 

Survival for ROPN1; the figure on the right denotes the survival curve for 

Overall Survival for ROPN1. X-axis denotes the survival in days; Y-axis denotes 

the percent of patients still surviving. 



 243 

3.6.2.1.3 Results from qRT-PCR 

In order to confirm the microarray findings, qRT-PCR was performed on only 94 of 

the 104 clinical specimens from our in-house study, due to the lack of available RNA 

for the remaining clinical specimens. ROPN1 was found to be 2.33-fold down-

regulated (baseline mean 2.39, SD 6.4; experimental mean 1.81, SD 6.4) in patients 

who relapsed, whereas ROPN1B was found to be 6.28-fold up-regulated (baseline 

mean 1.02, SD 2.4; experimental mean 11.37, SD 57.1) in patients who relapse. 

3.6.2.2 Expression in normal tissue  

The GSE1133 dataset (see section 2.1) was used to find the expression levels of 

ROPN1B in various tissues. Since the dataset is obtained from the U133A chip, 

information about ROPN1 was unavailable. This dataset includes gene expression 

data on 79 different human tissues (data shown for the top 20 organs in descending 

order of expression of ROPN1B represented by 220425_x_at) thereby providing 

ample opportunity to study distribution of ROPN1B gene expression in different 

human organs (see section 2.1.2). The results indicate that ROPN1B is very highly 

expressed in testis followed by ganglion and marginally in skin, medulla, trachea, 

heart and liver (Table 3.6.2.2.1). 

 

 

 

 

 

 

 

 

 



 244 

Tissue 

Expression of 220425_x_at (ROPN1B) 

Affymetrix units 

Testis interstitial 5656.1 

Testis 4401 

Testis leydig cell 3411.75 

Testis germ cell 3011.7 

Testis seminiferous tubule 2962.4 

Superior cervical ganglion 1547.65 

Trigeminal ganglion 966.3 

Ciliary ganglion 484.7 

Skin 358.9 

Medulla oblongata 310.6 

Atrioventricular node 306.5 

Dorsal root ganglion 283.9 

Heart 263 

Liver 257.9 

Adrenal cortex 251.4 

Prostate 245.9 

Trachea 243.2 

Appendix 237.6 

Cingulate cortex 226.3 

Cerebellum peduncles 201.4 

Table 3.6.2.2.1: Expression levels of ROPN1B (220425_x_at) in various tissues.  

3.6.2.3 Expression in cancer cell lines  

The GSE5720 dataset (see section 2.1) was used to find the expression levels in 

various cancer cell lines. This dataset constitutes gene expression values of 60 cell 

lines of different origins, thereby giving ample opportunity to find cell lines which 

express gene of our interest, so that functional validation can be performed. 

Expression of ROPN1 and ROPN1B was observed in melanoma cell lines UACC-

257, SK-MEL-28, MALME-3M, MDA-MB-435S (breast/melanoma), MDA-N, 

UACC-62, SK-MEL2, SK-MEL-5 and M14 (Table 3.6.2.3.1). 
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Cell Line 

231535_x_at 

ROPN1 

220425_x_at 

ROPN1B 

224191_x_at 

ROPN1+ROPN1B 233203_at 

UACC-257  376.5 910.4 392.1 21.4 

SK-MEL-28  356.8 450 307.7 37.6 

MALME-3M  176.9 241.8 213 22.4 

UACC-62  170.8 171.4 132.3 17.7 

MDA-N  112.9 216.5 150.5 9.6 

SK-MEL-2  174.4 154 207.7 26.8 

MDA-MB-

435S  99.7 225.7 84.4 10.8 

SK-MEL-5  164.5 149.2 130.3 32 

M14  90.8 85.5 86.4 11.5 

Hs578T  122.8 31.1 103.6 118.6 

Table 3.6.2.3.1: Expression levels of ROPN1 and ROPN1B in various cancer cell 

lines. 
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3.6.2.4 Expression in melanoma and melanocyte cell lines  

The GSE4570 dataset (see section 2.1) was used to estimate the expression level of 

Ropporin in normal melanocyte and metastatic melanoma cell lines. The dataset 

constitutes of 6 metastatic melanoma cell lines and 2 normal melanocyte cell line. The 

aim was to study the expression levels of Ropporin in normal melanocyte and 

metastatic melanoma. A low expression of ROPN1B was observed in normal 

melanocyte (NM1 and NM2) and high expression was observed in metastatic 

melanoma cell lines (WW165, YUCAL, YUHEIK, YUMAC, MNT1, YUSIT1) (Fig 

3.6.2.4). Since the dataset was on U133A chip no information regarding the 

expression level of ROPN1 was available. 

220425_x_at

0

200

400

600

800

1000

1200

1400

1600

WW165 YUCAL YUHEIK YUMAC MNT1 YUSIT1 NM1 NM2

G
e
n

e
 e

x
p

re
s
s
io

n

 

Fig 3.6.2.4: Expression level of ROPN1B (220425_x_at) in melanocyte and 

metastatic melanoma cell lines (Affymetrix unit). WW165, YUCAL, YUHEIK, 

YUMAC, MNT1 and YUSIT1 are metastatic melanoma cell lines, whereas NM1 

and NM2 are melanocyte cell lines.  
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3.6.2.5 Melanoma clinical specimens  

The GSE4587 dataset (see section 2.1) was used to estimate the expression changes of 

Ropporin during the different stages of melanoma progression. The results show that 

ROPN1 and ROPN1B expression progressively increase with disease progression and 

is highest in metastatic growth phase melanoma and lymph node metastasis (Fig 

3.6.2.5). The results positively associates Ropporin gene to disease progression and 

metastasis in clinical specimens. 
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Fig 3.6.2.5: ROPN1 and ROPN1B expression in melanoma progression. The 

number of samples in each group are (Normal: 2; Benign nevus: 2 ; Atypical 

nevus: 2 ; Melanoma in situ: 2 ; Vertical growth phase melanoma: 2; Metastatic 

growth phase melanoma: 2; Lymph node metastasis: 3.  
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3.6.2.6 Multiple Myeloma  

The GSE4581 dataset (see section 2.1) was used to estimate the expression of ROPN1 

and ROPN1B in multiple myeloma. The aim was to study the expression pattern of 

Ropporin in multiple myeloma. This result shows that both ROPN1 and ROPN1B are 

expressed in most of the multiple myeloma patients (Fig 3.6.2.6). Additionally, probe 

set 233203_at also expresses in many of the specimens, indicating the possibility of 

more isoforms of this gene.  
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Fig 3.6.2.6: ROPN1 and ROPN1B expression in myeloma clinical specimens  

3.6.2.7 qRT-PCR assessment of ROPN1B and ROPN1 expression in various 

melanoma cell lines 

The expression of ROPN1B and ROPN1 was not found in any of the breast cancer 

cell lines (based on microarray and qRT-PCR), except for MDA-MB-435s. At the 

time, MDA-MB-435S was considered a breast cancer cell line. But recently the cell 

line has become controversial as far as its origin is concerned. Recent studies have 

reported that this cell line might be a melanoma cell line, rather than a breast cancer 

cell line (see section 2.4.2). In order to identify a suitable cell line model for 

functional validation, ROPN1 and ROPN1B expression was examined by qRT-PCR 

in various cell lines (Breast: HCC1954, HCC1419, HCC1937, BT-20, MCF-7, MDA-

MB-231, MDA-MB-468 & SKBR3; Melanoma: MDA-MB-435S; HT144, SK-MEL-

28, MEL-5, M14). ROPN1 and ROPN1B expression was detected in the 
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breast/melanoma cell line MDA-MB-435S and all the melanoma cell lines tested. A 

high amount of expression of ROPN1B relative to ROPN1 was observed in MDA-

MB-435s and SK-MEL-28. ROPN1 was detected in all of the cell lines with 

expression of ROPN1B (Fig 3.6.2.7).  
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Fig 3.6.2.7: ROPN1B and ROPN1 expression in various melanoma cells. Ct is the 

Cycle Threshold. A lower Ct indicates higher expression. A high expression of 

ROPN1B was observed in MDA-MB-435s and SK-MEL-28. Nearly equal 

amounts of ROPN1 and ROPN1B expression were observed in M14, HT-144 and 

SK-Mel-5. The error represents the Standard Deviation observed among three 

technical replicates. 

3.6.3 siRNA knockdown of ROPN1 and ROPN1B in melanoma cell lines 

Since Ropporin plays an important role in sperm motility, our study aimed to 

investigate the possible role of Ropporin in cancer cell motility and invasion, which is 

a prime requirement for disease progression in melanoma, multiple myeloma and 

breast cancer. siRNAs targeting ROPN1 and ROPN1B were obtained from Ambion 

(see section 2.5.7).  
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3.6.3.1 ROPN1B siRNA on MDA-MB-435S 

3.6.3.1.1 Gene Expression Knockdown Analysis 

MDA-MB-435s cells were transfected with three different ROPN1B siRNA and qRT-

PCR (see section 2.5.4) was performed after 72hrs. qRT-PCR analysis confirmed the 

knockdown of ROPN1B using ROPN1B-1 siRNA (75.3%), ROPN1B-2 siRNA 

(69.6%) and ROPN1B-3 siRNA (56.6%) compared to scrambled transfected cells (Fig 

3.6.3.1.1).  
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Fig 3.6.3.1.1.1: ROPN1B qRT-PCR on ROPN1B-siRNA transfected MDA-MB-

435s cells. Knockdown was observed in siRNA knockdown cells. ROPN1B-1 

siRNA (75.3%), ROPN1B-2 siRNA (69.6%) and ROPN1B-3 siRNA (56.6%) 

compared to scrambled transfected cells. RQ is relative quantification with 

reference to scrambled. 
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Expression of ROPN1 mRNA was also checked in ROPN1B-siRNA-transfected 

MDA-MB-435s cells using qRT-PCR. ROPN1B-2 siRNA showed 19.8% and 

ROPN1B-3 siRNA showed 53.7% knockdown of ROPN1 in siRNA transfected cells 

compared to scrambled transfected cells (Fig 3.6.3.1.2). A surge in the expression of 

ROPN1 mRNA (141.4%) was observed in ROPN1B-1-siRNA-transfected cells 

compared to scrambled transfected cells (Fig 3.6.3.1.2).  

 

Fig 3.6.3.1.1.2: ROPN1 qRT-PCR on ROPN1B-siRNA transfected MDA-MB-

435s cells. ROPN1B-1 siRNA showed 141.4% increased expression of ROPN1 

whereas ROPN1B-2 siRNA showed 19.8% and ROPN1B-3 siRNA showed 53.7% 

knockdown of ROPN1 compared to scrambled transfected cells. 
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3.6.3.1.2 Western Blot Analysis 

A western blot was performed to check protein expression of Ropporin in three 

different ROPN1B siRNA transfected MDA-MB-435s cells (Fig 3.6.3.1.3). As can be 

seen, ROPN1B-3 transfection resulted in the highest amount of Ropporin knockdown. 

 

 

 

 

 

 

 

Fig 3.6.3.1.2: Ropporin western blot on ROPN1B siRNA transfected MDA-MB-

435S cells. Knockdown was observed following use of ROPN1B-siRNA3 and 

marginal knockdown was observed in ROPN1B-siRNA1- and ROPN1B-siRNA2-

transfected cells. 

3.6.3.1.3 Motility Assay  

MDA-MB-435s cells were transfected with three different siRNAs specific to 

ROPN1B and its effect on motility was observed (see section 2.5.10). The assay was 

performed in triplicates. There was significant loss of motility (ROPN1B-1 p-value 

=0.02; ROPN1B-2 p-value =0.02; ROPN1B-3 p-value =0.006) in the ROPN1B-

siRNA transfected cells compared to scrambled transfected cells (Fig 3.6.3.1.3). 

ROPN1B-1 siRNA showed 50.8%, ROPN1B-2 siRNA showed 55.4% and ROPN1B-

3 siRNA showed 60.1% reduced motility compared to scrambled transfected cells. 

This study indicates that the ROPN1B gene plays a role in the motility of this cancer 

cell line. 
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Fig 3.6.3.1.3: Motility assay on siRNA transfected MDA-MB-435S cells. All 

assays were performed in triplicate. There was significant reduction of motility 

in siRNA knockdown cells (ROPN1B-1 p-value =0.02; ROPN1B-2 p-value = 0.02; 

ROPN1B-3 p-value = 0.006). Y-axis denotes relative motility compared to 

scrambled. The error bar represents the standard deviation among three 

experimental repeats. 
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ROPN1 siRNA was not examined in MDA-MB-435s because of the low expression 

of ROPN1 in MDA-MB-435s. Invasion assay generated highly variable (un-

reproducible) results and was therefore removed from analysis. Often the cell line 

turns out to be non-invasive. 

3.6.3.2 ROPN1B and ROPN1 siRNA in M14 

The M14 melanoma cell line expressed both ROPN1 and ROPN1B in nearly equal 

amounts (Fig 3.6.2.7.1). siRNA knockdown was performed for ROPN1 using two 

ROPN1-specific siRNAs (ROPN1-1 and ROPN1-2) and ROPN1B using two 

ROPN1B-specific siRNAs (ROPNB-1 and ROPNB-2). 

3.6.3.2.1 Gene Expression Knockdown Analysis 

qRT-PCR analysis on the siRNA-transfected M14 cells confirmed the knockdown of 

ROPN1B (Fig 3.6.3.2.1.1) mRNA compared to scrambled transfected cells. 

ROPN1B-1 siRNA showed 62.4% and ROPN1B-2 siRNA showed 78.4% knockdown 

compared to scrambled transfected cells. ROPN1-1 siRNA showed 4% increased 

expression and ROPN1-2 siRNA showed 19.9% knockdown of ROPN1B in M14 

transfected cells compared to scrambled transfected cells (Fig 3.6.3.2.1.2).  
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Fig 3.6.3.2.1.1: ROPN1B qRT-PCR on ROPN1B-siRNA- and ROPN1-siRNA-

transfected M14 cells. The percent knockdown of each siRNA is indicated in the 

bar chart. 62.4% knockdown was observed for ROPN1B-1 siRNA and 78.4% 

knockdown was observed for the ROPN1B-2 siRNA. ROPN1-1 siRNA showed 

4% increase in expression (probably a noise), whereas ROPN1-2 showed 19% 

decrease in expression 

62.4% 

78.4% 

19.9% 

-4% 



 256 

Expression of ROPN1 mRNA was also checked using qRT-PCR in the ROPN1B-

siRNA- and ROPN1-siRNA-transfected M14 cells, 72hrs after transfection. qRT-PCR 

analysis confirmed the knockdown of ROPN1 mRNA (Fig 3.6.3.2.2) in siRNA 

transfected M14 cells compared to scrambled transfected cells. ROPN1B-1 siRNA 

showed 40.2%, ROPN1B-2 siRNA showed 58.5%, ROPN1-1 siRNA showed 42.7% 

and ROPN1-2 siRNA showed 45.5% knockdown compared to scrambled transfected 

cells (Fig 3.6.3.2.1.2).  

 

 

 

 

 

 

 

 

Fig 3.6.3.2.1.2: ROPN1 qRT-PCR on ROPN1B-siRNA- and ROPN1-siRNA-

transfected M14 cells. Knockdown of ROPN1 by both ROPN1-siRNA and 

ROPN1B-siRNA was observed.  
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3.6.3.2.2 Western Blot Analysis 

Western blot analysis was performed to analyse the expression of Ropporin protein in 

M14 cells 72hrs after transfection with ROPN1-siRNA and ROPN1B-siRNA. 

Western blot also showed knockdown of Ropporin in siRNA transfected cells (Fig 

3.6.3.2.2) compared to scrambled transfected cells. Alpha tubulin was used as a 

loading control for the samples. As can be seen, ROPN1-siRNA transfection resulted 

in the highest amount of Ropporin knockdown.  

 

 

 

 

 

 

 

 

Fig 3.6.3.2.2: Ropporin western blot on siRNA transfected M14 cells. Good 

knockdown of Ropporin was observed after ROPN1 siRNA and marginal 

knockdown after ROPN1B siRNA transfection. 

3.6.3.2.3 Motility Assay 

ROPN1- and ROPN1B-siRNA knockdown was carried out to determine the effect of 

knockdown on motility in M14. As can be seen in Fig 3.6.3.2.4, there was significant 

loss of motility (ROPN1B-1 p-value =0.0002; ROPN1B-2 p-value =0.002; ROPN1-1 

p-value =0.003; ROPN1-2 p-value =0.001) observed in ROPN1-siRNA-transfected 

and ROPN1B-siRNA transfected cells compared to scrambled-transfected cells. 

Transfection with ROPN1B-1 and ROPN1B-2 siRNA demonstrated a 31.2% and 

33.2% reduction in motility, respectively, while transfection with ROPN1-1 and 

ROPN1-2 siRNA showed a 17.1% and 37.0% reduction in motility, respectively, 

compared to scrambled transfected cells (Fig 3.6.3.2.3). 
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Fig 3.6.3.2.3: Motility assay on siRNA transfected M14 cells. The assay was 

performed in triplicate. Y-axis defines the relative motility compared to 

scrambled. Significant reductions in motility were observed in siRNA transfected 

cells. The error bar represents the standard deviation among the three 

experimental repeats. 
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3.6.3.2.4 Invasion Assay 

Invasion assays were performed on M14 cells 72 hrs following transfection with 

ROPN1- and ROPN1B-siRNAs. There was significant loss of invasion (Fig 3.6.3.2.2) 

(ROPN1B-1 p-value =0.003; ROPN1B-2 p-value ~ 0; ROPN1-1 p-value ~ 0; 

ROPN1-2 p-value ~ 0) in ROPN1-siRNA- and ROPN1B-siRNA-transfected M14 

cells compared to cells transfected with scrambled control. Transfection with 

ROPN1B-1 and ROPN1B-2 siRNA demonstrated a 47.7% and 56.4% reduction in 

invasion respectively, while transfection with ROPN1-1 and ROPN1-2 siRNA 

showed a 31.4% and 57.2% reduction in invasion respectively, compared to 

scrambled transfected cells (Fig 3.6.3.2.4).  
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Fig 3.6.3.2.4: Invasion assays on siRNA transfected M14 cells. Assays performed 

in triplicate. Y-axis defines the relative invasion compared to scrambled. 

Significant reductions in invasion observed in ROPN1/ROPN1B-siRNA 

transfected cells. The error bar represents the standard deviation among the 

three experimental repeats. 

Untreated   Scrambled   ROPN1B-1 

ROPN1B-2   ROPN1-1   ROPN1-2 

47.7% 

56.4% 

31.4% 

57.2% 



 261 

 



 262 

3.6.4 ROPN1 and ROPN1B cDNA over-expression studies 

ROPN1 cDNA in PCR4-TOPO plasmid (PCR4-TOPO-ROPN1) and ROPN1B cDNA 

in PCMV-SPORT6 plasmid (PCMV-SPORT6-ROPN1B) were obtained from Open 

Biosystems (see section 2.5.6). These plasmids were used to over-express these genes 

in the MDA-MB-231, MDA-MB-435s and M14 cell lines. 

3.6.4.1 Over-expression of ROPN1B in MDA-MB-231  

MDA-MB-231 cells were transfected with ROPN1B plasmid (PCMV-SPORT6-

ROPN1B) and empty plasmid (PCMV-SPORT6) (see section 2.5.6).  

3.6.4.1.1 qRT-PCR analysis 

qRT-PCR was performed to determine expression of the gene in the transfected cells. 

There was 8226.1-fold up-regulation of ROPN1B RNA in the PCMV-SPORT6-

ROPN1B transfected cells compared to the PCMV-SPORT6 transfected cells (Fig 

3.6.4.1.1). The high fold was due to zero expression in un-transfected cells.  
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Fig 3.6.4.1.1: ROPN1B qRT-PCR. ROPN1B over-expression was observed in 

ROPN1B transfected MDA-MB-231 cells. 
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3.6.4.1.2 Invasion Assay 

MDA-MB-231 was transfected with PCMV-SPORT6-ROPN1B and PCMV-SPORT6 

and invasion assays were carried out on the transfected cells. Results indicate a 

significant (p-value =0.003) loss in invasion following PCMV-SPORT6-ROPN1B 

transfection (Fig 3.6.4.1.2) compared to PCMV-SPORT6-transfected cells. There was 

28.1% reduced invasion in PCMV-SPORT6-ROPN1B-transfected MDA-MB-231 

cells compared to PCMV-SPORT6-transfected cells. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.6.4.1.2: Invasion assay on ROPN1B transfected MDA-MB-231 cells. Assays 

were performed in triplicates. There was significant decrease in invasion in 

ROPN1B over-expressing cells. Y-axis denotes relative invasion compared to 

empty plasmid. The error bar represents the standard deviation among the three 

experimental repeats. 
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3.6.4.2 Over-expression of ROPN1 and ROPN1B in MDA-MB-435s 

MDA-MB-435s was transfected with PCMV-SPORT6 plasmid, PCR4-TOPO-

ROPN1 plasmid and PCMV-SPORT6-ROPN1B plasmid. No empty plasmid control 

was generated for ROPN1 over-expression studies becuase of time constrains.  

3.6.4.2.1 qRT-PCR analysis 

ROPN1 qRT-PCR was performed on these transfected cells demonstrated a 4.2-fold 

up-regulation of ROPN1 mRNA in ROPN1 plasmid-transfected cells compared to 

cells transfected with PCMV-SPORT6 empty plasmid (Fig: 3.6.4.2.1). No change in 

expression was observed in ROPN1 mRNA in ROPN1B plasmid transfected cells 

compared to empty plasmid transfected cells (Fig 3.6.4.2.1).  

Fig 3.6.4.2.1: ROPN1 qRT-PCR. ROPN1 over-expression observed in ROPN1 

transfected cells 

ROPN1B qRT-PCR was also performed on these transfected cells and showed 31.5-

fold up-regulation of ROPN1B mRNA in PCMV-SPORT6-ROPN1B plasmid 

transfected cells compared to PCMV-SPORT6 plasmid transfected cells (Fig 

3.6.4.2.2). A 1.2-fold up-regulation of ROPN1B mRNA expression was observed in 

the PCR4-TOPO-ROPN1 plasmid transfected cells (Fig 3.6.4.2.2).  
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Fig 3.6.4.2.2: ROPN1B qRT-PCR. ROPN1B over expression was observed with 

ROPN1B over expression. 

3.6.4.2.2 Western Blot Analysis 

A Western blot was performed to check protein expression of Ropporin in cells 

transfected with ROPN1 and ROPN1B cDNA (Fig 3.6.4.2.3). As can be seen, an 

unexplained reduction in Ropporin protein was observed in PCVM-SPORT6-

ROPN1B-transfected cells.  

 

 

 

 

 

 

 

Fig 3.6.4.2.3: Western blot analysis of MDA-MB-435s cells transfected with 

ROPN1 and ROPN1B plasmid. 
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3.6.4.2.3 Motility Assay 

MDA-MB-435s was transfected with PCMV-SPORT6 plasmid, PCR4-TOPO-

ROPN1 plasmid and PCMV-SPORT6-ROPN1B plasmid and motility assays were 

performed after 72hrs. Results indicate significant (p-value =0.002) loss in invasion 

with ROPN1 over-expression and a marginal loss of invasion with ROPN1B over-

expression (Fig 3.6.4.2.3) compared to PCMV-SPORT6 empty plasmid transfected 

cells. PCR4-TOPO-ROPN1plasmid transfected cells showed 57.7% reduced invasion 

and PCMV-SPORT6-ROPN1B plasmid transfected cells showed 15.1% reduced 

motility in MDA-MB-435s cells compared to PCMV-SPORT6 empty plasmid 

transfected cells (Fig 3.6.4.2.4).  
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Fig 3.6.4.2.4: Motility assay on ROPN1 and ROPN1B transfected MDA-MB-

435S cells. Assays were performed in triplicates.There was significant loss in 

motility with ROPN1 over-expression and a marginal loss of motility with 

ROPN1B over-expression compared to PCMV-SPORT6 empty plasmid 

transfected cells. The error bar represents the standard deviation among the 

three experimental repeats. 

Invasion assay was giving highly variable (un-reproducible) results and was therefore 

removed from analysis. 
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3.6.4.3 Over-expression of ROPN1 and ROPN1B in M14 

M14 cells were transfected with PCMV-SPORT6 plasmid, PCR4-TOPO-ROPN1 

plasmid and PCMV-SPORT6-ROPN1B plasmid.  

3.6.4.3.1 qRT-PCR analysis 

ROPN1 qRT-PCR was performed on the transfected cells to check the expression of 

ROPN1 mRNA. qRT-PCR analysis showed 96.9-fold over-expression of ROPN1 in 

ROPN1 plasmid transfected cells compared to PCMV-SPORT6 empty plasmid 

transfected cells (Fig 3.6.4.3.1). No over-expression of ROPN1 mRNA was observed 

in PCMV-SPORT6-ROPN1B plasmid transfected cells compared to PCMV-SPORT6 

empty plasmid transfected cells (Fig 3.6.4.3.1).  
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Fig 3.6.4.3.1: ROPN1 qRT-PCR. ROPN1 over expression was observed in 

ROPN1 transfected M14 cells. 
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qRT-PCR was performed to analyze the expression of ROPN1B in PCMV-SPORT6 

empty plasmid, PCR4-TOPO-ROPN1 plasmid and PCMV-SPORT6-ROPN1B 

plasmid transfected cells. There was 50.0-fold and 6.1-fold over-expression of 

ROPN1B in ROPN1B plasmid transfected cells and ROPN1 plasmid transfected cells 

respectively, compared to PCMV-SPORT6 empty plasmid transfected cells (Fig 

3.6.4.3.2). 
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Fig 3.6.4.3.2: ROPN1B qRT-PCR. ROPN1B over expression was observed in 

ROPN1B transfected M14 cells.  
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3.6.4.3.2 Western Blot Analysis 

A western blot was performed to check protein expression of Ropporin in cells 

transfected with ROPN1 and ROPN1B cDNA (Fig 3.6.4.3.3). As can be seen, an 

unexplained reduction in Ropporin protein was observed in PCR4-TOPO-ROPN1 and 

PCVM-SPORT6-ROPN1B transfected cells compared to PCMV-SPORT6 transfected 

cells.  

 

 

 

 

 

 

 

Fig 3.6.4.3.3: Western blot analysis of M14 cells transfected with ROPN1 and 

ROPN1B plasmid. 

3.6.4.3.3 Motility Assay 

M14 was transfected with PCMV-SPORT6 plasmid, PCR4-TOPO-ROPN1 plasmid 

and PCMV-SPORT6-ROPN1B plasmid and motility assays were performed. Results 

indicate significant loss in motility (p-value =0.0002) with ROPN1 over-expression 

and a marginal loss of motility with ROPN1B over-expression (Fig 3.6.4.3.4) 

compared to PCMV-SPORT6 empty plasmid transfected cells. ROPN1 plasmid 

transfection resulted in 65.6% reduced motility and ROPN1B plasmid transfection 

resulted in 25.0% reduced motility in M14 cells compared to PCMV-SPORT6 empty 

plasmid transfected cells (Fig 3.6.4.3.4). 
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Fig 3.6.4.3.4: Motility assays on ROPN1 and ROPN1B transfected M14 cells. 

Assays were performed in triplicates. There was significant loss in motility with 

ROPN1 over-expression and a marginal loss of motility following ROPN1B over-

expression. Y-axis denotes relative motility compared to empty plasmid. The 

error bar represents the standard deviation among the three experimental 

repeats. 

3.6.4.3.4 Invasion Assay 

Invasion assays were was performed on M14 cells transfected with PCMV-SPORT6 

plasmid, PCR4-TOPO-ROPN1 plasmid and PCMV-SPORT6-ROPN1B plasmid. 

Results indicate significant loss in invasion (p-value =0.003) following ROPN1 over-

expression and a marginal loss of invasion with ROPN1B over-expression (Fig 

3.6.4.3.5) compared to PCMV-SPORT6 plasmid transfected cells. PCR4-TOPO-

ROPN1 plasmid transfection resulted in 48.9% and PCMV-SPORT6-ROPN1B 
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plasmid transfection resulted in 14.6% reduced invasion in M14 cells compared to 

PCMV-SPORT6 plasmid transfected cells (Fig 3.6.4.3.5). 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.6.4.3.5: Invasion assay on ROPN1 and ROPN1B transfected M14 cells. 

Assays were performed in triplicates. There was significant loss in invasion with 

ROPN1 over-expression and a marginal loss of invasion following ROPN1B 

over-expression. Y-axis denotes relative invasion compared to empty plasmid. 

The error bar represents the standard deviation among the three experimental 

repeats. 

3.6.5 Summary 

ROPN1B over-expression was linked to breast cancer patients who relapsed. The 

gene was also linked to disease progression in melanoma. siRNA knockdown 

positively associated ROPN1B gene to be involved in cancer cell motility and 

invasion. The results from over-expression studies were inconclusive. Over-
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expression of ROPN1 and ROPN1B resulted in reduction of Ropporin protein 

expression in M14. Over-expression of ROPN1B in M14 resulted in reduction of 

Ropporin protein. Over-expression studies of ROPN1 and ROPN1B resulted in 

reduction in protein level and reduction in invasion and motility. 

3.7 How Representative are Cell line models of clinical conditions? 

The aim of this section was to estimate the representative nature of breast cancer cell 

lines to their respective clinical specimen type using gene expression data and has 

been published previously (Mehta et al., 2007). 

Gene expression profiles of 189 breast clinical specimens (GEO accession: GSE2990) 

and 19 cell lines (GEO accession: GSE3156) were obtained from Gene Expression 

Omnibus (see section 2.1). These samples were pooled as a single experiment and 

normalized using the dChip algorithm (see section 2.2.1). Since the clinical specimens 

were analyzed using U133A and the cell lines were analyzed using U133_Plus 2.0 

microarray chips, the genes not represented in U133A were removed from the cell 

line data, giving a total available probe set number of 22,283. However, for the ER 

analysis on cell lines (see section 2.1.2), all the genes on the U133_Plus 2.0 chips 

(54,675) were included.  

3.7.1 Data filtration  

Two SD filters of 0.5 and 1.0 were applied to generate gene lists for hierarchical 

clustering. For the pooled comparison of cell lines and clinical specimens, the total 

number of DE genes identified using a SD filter of 0.5 was 8,036. For the comparison 

of cell line and clinical clustering relative to ER status, a SD filter of 1.0 was used, 

giving 7,738 filtered genes for the cell lines and 6,643 genes for the clinical 

specimens. A lower SD for pooled experiment was used, to get the optimum 

representative number of genes for clustering. 

3.7.2 Clustering  

Hierarchical clustering and PCA were performed on these gene lists. Hierarchical 

clustering, as expected, using the filtered 8036 gene-list, separated the sample set into 

two distinct clusters (Fig 3.7.2.1), one comprising the clinical specimens and the other 

comprising the cell line models. To examine whether the differences in hierarchical 
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clustering between cell lines and tumour specimens were due to differences 

incorporated by sample processing at different sites, this group replicated this 

clustering analysis substituting a separate 104-tumour dataset for the 189-tumour 

dataset detailed here. In this experiment, two separate clusters of cell lines and tumour 

specimens were again observed (data not shown). 

 

Fig 3.7.2.1: Hierarchical clustering demonstrating that cell lines and clinical 

specimens form two discrete groups. The right cluster is of 19 cell lines included 

in the study. The left cluster (incompletely shown because of large number of 

tumour specimens) represents 189 breast tumors. 

PCA was also performed on the sample using the filtered 8036 gene-list, which also 

separated the clinical specimens and cell lines into two distinct groups (Fig.3.7.2.2). 

As can be seen on the axes, the total variance accounted for in the sample set was 

27.95%. The clinical specimens also segregated into two further sub-groups, although 

not as distinct as that separating the cell lines and the clinical specimens.  
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Fig 3.7.2.2: Principal component analysis was performed on the samples and the 

two components were plotted. Clinical specimens are highlighted in red, cell line 

samples are highlighted in yellow.  

3.7.3 Significant genes 

The clinical specimens and the breast cell lines were compared for transcripts which 

were significantly up- or down-regulated in the two groups (p-value<0.001, fold 

change>2 and difference of 100 Affymetrix units). 2,615 genes passed the above 

filtration criteria, of which 1,086 were up-regulated in cell lines relative to clinical 

specimens and 1,529 genes were down-regulated in cell lines compared to clinical 

specimens.  

3.7.4 Gene ontology and pathway analysis 

GenMAPP Gene ontology and Pathway analysis was performed on the up- and down-

regulated gene lists and the over-represented GO categories/canonical pathways are 

outlined in Tables 3.7.4.1 and Table 3.7.4.2. In cell lines relative to clinical 

specimens, many of the functions which were over-represented were related to cell 
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cycle functions and nucleic acid processing (Tables 3.7.4.1). Where clinical 

specimens were compared to cell lines, the majority of categories and pathways 

affected were related to the immune response and related functions (Table 3.7.4.2).  

GO Name Changed Measured Z Score 

Mitotic cell cycle 61 281 15.236 

Cell cycle 87 576 13.874 

Mitosis 29 105 12.317 

M phase of mitotic cell cycle 29 107 12.163 

M phase 33 137 11.981 

Nuclear division 31 132 11.404 

Cell proliferation 94 877 10.501 

DNA replication and chromosome cycle 30 154 9.791 

Regulation of cell cycle 45 325 9.111 

Mitotic anaphase 6 11 8.5 

MAPP Name    

Cell cycle KEGG 22 84 9.081 

DNA replication Reactome 11 42 6.347 

G1 to S cell cycle Reactome 9 65 3.311 

Translation Factors 7 48 3.069 

Pentose Phosphate Pathway 2 7 2.856 

mRNA processing Reactome 12 115 2.739 

Cholesterol Biosynthesis 3 15 2.664 

Tables 3.7.4.1: GO terms and pathways enrichment analysis for genes over-

expressed in cell line models compared to clinical specimens. Higher Z score 

represents a stronger association of that function to genes which have over-

expressed in cell lines relative to clinical specimens. 
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GO Name Changed Measured Z Score 

Immune response 107 595 12.412 

Defense response 110 650 11.847 

Response to biotic stimulus 115 710 11.586 

MHC class II receptor activity 9 11 10.458 

Extracellular matrix 48 215 9.992 

Antigen processing, exogenous antigen via 

MHC class II 8 10 9.731 

Antigen presentation, exogenous antigen 8 10 9.731 

Extracellular 105 742 9.451 

Antigen presentation 12 23 9.204 

Antigen processing 12 23 9.204 

MAPP Name    

Complement Activation Classical 7 16 5.405 

Complement and Coagulation Cascades 

KEGG 

11 49 3.897 

Matrix Metalloproteinases 7 30 3.216 

Smooth muscle contraction 19 143 2.574 

Inflammatory Response Pathway 6 31 2.435 

Tables 3.7.4.2: GO terms and pathways enrichment analysis for genes over-

expressed in clinical specimens compared to cell line models. A higher Z score 

represents a stronger association of that function to genes which have over-

expressed in clinical specimens compared to cell line models. 

3.7.5 Estrogen receptor analysis  

Hierarchical clustering was also performed separately on the two groups (i.e. cell lines 

and clinical specimens), to determine if either group clustered similarly when 

compared for ER status. This analysis segregated the cell lines into two distinct 

groups, which clustered largely according to their ER status (Fig.3.7.5.1). Exceptions 

to this rule included the ER-negative SK-BR-3 & MDA-MB-453 and the ER-positive 

HCC1428, which clustered with the opposite group. Hierarchical clustering 

performed on the 189 clinical sample dataset did not demonstrate any appreciable 
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clustering according to ER status, although there was a tendency of clinical specimens 

to cluster based on their grade (data not shown).  

 

Fig 3.7.5.1: Hierarchical clustering of cell lines. The + indicates ER-positive cell 

lines and the ER-negative represents ER-negative cell lines. The left cluster in 

enriched with ER-positive cell lines and the right cluster is enriched with ER-

negative cell lines. 

3.7.6 Summary  

The above analysis shows that there is a marked difference in gene expression in 

tissue compared to cell lines. This difference was consistent in Hierarchical clustering 

and Principal component analysis. Genes related to cell cycle, mitosis, DNA 

replication were highly up-regulated in cell line models. Similarly, genes related to 

the immune system, Complement Activation Classical pathway and Matrix 

Metalloproteinase were significantly up-regulated in tissue relative to cell lines. The 

above results indicate that cell cycle and immune response results from cell-line 

models of various clinical conditions may not accurately reflect their behaviour in-
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vivo. These results should be taken into account when extrapolating the cell line 

results to clinically relevant conditions. 
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3.8 Molecular profile of basal cell carcinoma 

The aim of this section was to investigate the gene expression profile of basal cell 

carcinoma using whole genome expression microarrays and compare these profiles 

with the gene expression profile of normal skin. This work is currently the only 

whole-genome analysis of BCC published worldwide (O‟Driscoll et al., 2006). 

Microarray gene expression profiling of 20 basal cell carcinoma tissue specimens and 

5 normal skin tissue was performed using Affymetrix U133 Plus2.0 arrays (see 

section 2.1.3). Microarray samples were processed by Lorraine O'Driscoll and Padraig 

Doolan, while my role was in the analysis of the chip data generated. Tissue 

specimens from twenty cases of BCC were obtained from Blackrock Clinic and the 

Bons Secours Hospital, Dublin, snap-frozen in liquid nitrogen, and were subsequently 

stored at -80°C. Five normal skin specimens (from consenting male and female 

volunteers of a similar age range who do not/never had skin cancer) were also 

included in the studies. Following this RNA was isolated and microarray was 

performed for each chip (see section 2.5.11).  

3.8.1 Data Normalization and Quantification 

 The microarray raw data files were normalized and quantified using the dChip 

algorithm as outlined in section 2.2.1.  

3.8.2 Data Filtration 

Data filtration was applied on 54,675 genes present on U133 Plus2.0 chip (see section 

2.2.3), to remove genes which i) did not fluctuate very highly across samples and ii) 

fluctuated too highly across samples to be trustworthy. Genes with a Standard 

deviation / Mean i) below 1 or ii) above 1000 were removed from further analysis. 

This set of genes was used for Hierarchical clustering. 692 genes passed this criterion 

and were used to carry out clustering analysis of clinical specimens.  

3.8.3 Hierarchical Clustering 

Hierarchical clustering (see section 2.2.4) was performed on the 692 member filtered 

gene list. The distance metric used was 1-correlation and the clustering algorithm 

used was Average linkage clustering. Prior to clustering, the individual samples were 
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standardised as follows: the expression of the individual genes was subtracted from 

their means for that sample and divided by their respective standard deviation. The 

results are shown in Fig 3.8.3.1. 

 

 

Fig 3.8.3.1: The hierarchical clustering represents the clustering pattern of the 

BCC and normal specimens. Type indicates whether the sample is 

Normal/Tumour.  

The results indicate that the normal specimens clustered together and the BCC 

specimens clustered together. A subset of BCC samples (JT7, T24, T22, T11 & T19) 

clustered close to the normal specimens 

3.8.4 Normal specimens vs. Basal cell carcinoma 

Up-regulated gene transcripts 

2,108 genes were identified as significantly up-regulated (p ≤ 0.05, Fold Change (FC) 

> 1.2 and Difference > 100) in cancer specimens compared to normal specimens. 

Genes were ranked by fold change and, based on this criterion, the top 20 genes are 

listed in Table 3.8.4.1 
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Gene ontology analysis was performed on the up-regulated genes (p ≤ 0.05, FC>2, 

and Difference>100). Significant functions were identified based on p-value (p ≤ 

0.05) and the 10 most significant functions represented are listed in Table 3.8.4.2.  

Pathway analysis was performed using GenMAPP database on the up-regulated genes 

(p ≤ 0.05, FC>2, and Difference > 100). Significant pathways were identified based 

on p-value (p ≤ 0.05) and the 10 most significant pathways are listed in Table 3.8.4.3.  

Down-regulated genes 

1.813 genes were identified as significantly down-regulated (p ≤ 0.05, Fold Change 

(FC) <-1.2 and Difference < -100) in cancer specimens compared to normal 

specimens. Genes were ranked by fold change and, based on this criterion, the top 20 

genes are listed in Table 3.8.4.4 

Gene ontology analysis was performed on the down-regulated genes (p ≤ 0.05, FC<-

2, and Difference < -100). Significant functions were identified based on p-value (p ≤ 

0.05) and 10 most significant functions represented are listed in Table 3.8.4.5. 

Pathway analysis was performed using GenMAPP database on the down-regulated 

genes (p ≤ 0.05, FC<-2, and Difference < -100). Significant pathways were identified 

based on p-value (p ≤ 0.05) and the 10 most significant pathways are listed in Table 

3.8.4.6. 
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probe set Gene baseline  experiment  fold change P value 

204697_s_at CHGA 19.31 2516.41 130.34 0.000001 

224590_at XIST 6.27 433.45 69.08 0.001884 

214218_s_at XIST 10.05 631.37 62.79 0.00072 

224588_at XIST 42.73 2128.81 49.82 0.000552 

204913_s_at SOX11 8.48 236.67 27.92 0.000224 

214913_at ADAMTS3 26.38 632.27 23.97 0.000002 

220345_at LRRTM4 12.72 282.87 22.24 0.0061 

230863_at --- 15.38 308.31 20.05 0.029359 

204915_s_at SOX11 28.16 553.08 19.64 0.000059 

204424_s_at LMO3 70.78 1358.37 19.19 0.003562 

208025_s_at HMGA2 30.2 536.39 17.76 0.000173 

215311_at --- 27.85 476.31 17.1 0.000013 

227671_at XIST 24.01 407.71 16.98 0.003059 

218638_s_at SPON2 188.15 3181.08 16.91 0 

208212_s_at ALK 53.02 888.43 16.76 0.000003 

226346_at LOC92312 37.28 571.83 15.34 0 

204914_s_at SOX11 22.04 332.68 15.1 0.000124 

215443_at TSHR 17.2 257.19 14.95 0.00019 

213960_at --- 40.57 575.46 14.18 0.000001 

229523_at TTMA 47.92 662.44 13.82 0.000001 

Table 3.8.4.1: Genes up-regulated in cancer specimens in comparison to normal 

specimens 
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GOID GO Name Changed Measured p-value 

5201 

Extracellular matrix structural 

constituent 16 78 0 

5581 Collagen 8 30 0 

30199 Collagen fibril organization 3 5 0 

5578 Extracellular matrix (sensu Metazoa) 34 359 0 

31012 Extracellular matrix 34 365 0 

7155 Cell adhesion 43 559 0 

7275 Development 94 1696 0 

5576 Extracellular region 63 1096 0 

8201 Heparin binding 9 62 0 

6817 Phosphate transport 10 81 0 

Table 8.1.4.2 Functions enriched among genes up-regulated in cancer specimens 

in comparison to normal specimens 

MAPP Name Changed Measured p-value 

2-Tissues-Muscle Fat and Connective 12 82 0 

2-Tissues-Blood and Lymph 11 78 0 

Focal adhesion KEGG 17 187 0 

Wnt Signaling 9 71 0 

Wnt NetPath 8 11 109 0.001 

TGF Beta Signaling Pathway 6 52 0.003 

1-Tissue-Embryonic Stem Cell 5 47 0.014 

Apoptosis 7 82 0.017 

1-Tissue-Muscle fat and connective 6 65 0.021 

Chondroitin Heparan sulfate biosynthesis 3 20 0.023 

Table 3.8.4.3: Pathways enriched among genes up-regulated in cancer specimens 

in comparison to normal specimens 
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probe set Gene baseline  experiment  fold change P value 

208962_s_at FADS1 3354.77 166.07 -20.2 0.045399 

229476_s_at THRSP 4948.62 288.53 -17.15 0.034919 

207275_s_at ACSL1 1997.95 132.25 -15.11 0.039975 

206799_at SCGB1D2 1383.74 92.43 -14.97 0.042413 

221561_at SOAT1 1087.52 88.95 -12.23 0.008422 

206714_at ALOX15B 4264.04 372.27 -11.45 0.045644 

214240_at GAL 1747.34 157.08 -11.12 0.015802 

201625_s_at INSIG1 1773.81 182.47 -9.72 0.030044 

231810_at BRI3BP 988.19 110.99 -8.9 0.021503 

211056_s_at SRD5A1 1640.77 208.21 -7.88 0.032165 

229957_at TMEM91 1397.34 183.05 -7.63 0.025272 

204675_at SRD5A1 3279.09 446.39 -7.35 0.027894 

231736_x_at MGST1 2894.74 397.53 -7.28 0.031804 

205029_s_at FABP7 608.63 84.11 -7.24 0.021739 

201627_s_at INSIG1 728.68 100.79 -7.23 0.049971 

209522_s_at CRAT 2366.24 327.16 -7.23 0.020824 

226064_s_at DGAT2 2666.99 375.45 -7.1 0.032748 

231156_at HAO2 395.01 55.75 -7.09 0.045195 

223184_s_at AGPAT3 1603.83 228.89 -7.01 0.045149 

205030_at FABP7 2208.85 344.36 -6.41 0.021392 

Table 3.8.4.4: Genes down-regulated in cancer specimens in comparison to 

normal specimens 
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GOID GO Name Changed Measured p-value 

16126 Sterol biosynthesis 14 27 0 

6695 Cholesterol biosynthesis 12 22 0 

16125 Sterol metabolism 16 67 0 

44255 Cellular lipid metabolism 44 417 0 

6629 Lipid metabolism 49 535 0 

8203 Cholesterol metabolism 14 61 0 

42579 Microbody 15 70 0 

5777 Peroxisome 15 70 0 

6694 Steroid biosynthesis 14 64 0 

16491 Oxidoreductase activity 48 579 0 

Table 3.8.4.5: Functions enriched among genes down-regulated in cancer specimens 

in comparison to normal specimens 

MAPP Name Changed Measured p-value 

Cholesterol Biosynthesis 11 15 0 

Sterol biosynthesis 9 19 0 

Fatty Acid Beta Oxidation Meta BiGCaT 8 32 0 

Terpenoid biosynthesis 3 6 0 

Fatty Acid Beta Oxidation 1 BiGCaT 6 27 0 

Bile acid biosynthesis 7 37 0 

Pyruvate metabolism 7 34 0.001 

Citrate cycle TCA cycle  5 24 0.001 

Butanoate metabolism 6 38 0.001 

1-Tissue-Muscle fat and connective 7 65 0.002 

Table 3.8.4.6: Pathways enriched among genes down-regulated in cancer specimens 

in comparison to normal specimens 
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3.8.5 Summary 

The study was the first whole genome study on Basal cell carcinoma. The analysis 

identified important genes, functions and pathways which may be important in 

transformation of normal skin to basal cell carcinoma. Wnt signaling pathways was up-

regulated in BCC vs. normal skin whereas Cholesterol Biosynthesis pathway was down-

regulated in BCC patients vs. normal skin. 
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Breast cancer is one of the most common malignancies among females. The 

heterogeneous nature of the disease coupled with the lack of robust markers for 

prediction, prognosis, and response to treatment has so far eluded our understanding of its 

complex nature. It is generally assumed that transcriptional profiling, involving multiple 

gene signatures would be more predictive of tumour behaviour rather than single genes. 

Various studies have tried to answer this question with promising results correlating gene 

expression profiles with prognosis, recurrence, metastatic potential, therapeutic response, 

as well as biological and functional aspects of the disease. The integration of genomic 

approaches into the clinic lies ahead, but such studies need to be validated on large 

datasets. The challenge also lies in getting a better understanding of the various groups 

and sub-groups of breast cancer and how they may correlate with various groups of 

prognostic mRNA. 

In order to gain a better understanding of breast cancer heterogeneity and its association 

with clinical outcome, gene expression analysis was performed on 104 cancer specimens 

and 17 normal specimens. These specimens were from patients who underwent surgery 

during 1993–1997, and for whom follow-up clinical information was available. 

Additionally large datasets were downloaded from public repositories and analysed and 

compared to our dataset to get a holistic picture in order to help find answers to the 

complex questions associated with breast cancer. We aimed to find clinical heterogeneity 

among the breast cancer, genes, functions and pathways associated with various clinical 

conditions and prognostic important genes. The aim was also to perform meta-analysis on 

prognostic important genes and ER pathway genes.  

 4.1 Clinical heterogeneity in breast cancer 

The heterogeneity of breast cancer and the variability in the clinical response to treatment 

has led to wide interest in understanding the molecular mechanisms of the different 

behavioural phenotypes of breast cancer. Currently the most widely used markers for 

breast cancer classification and treatment are ER, PR and HER2 protein. These proteins 

are estimated based on immunohistochemistry. ER and PR are used as indicators of 

endocrine-sensitive breast cancers and HER2 as indicators of breast cancer patients with 
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metastatic disease who may benefit from trastuzumab therapy (Duffy 2005). Gene 

expression profiling has been widely used to understand the molecular mechanisms 

involved in disease progression (Cooper 2001), metastasis (Weigelt et al., 2005), drug 

metabolism and resistance (Brennan et al., 2005). 

Sample clustering techniques have been widely used to group samples with similar 

expression patterns and have immensely contributed to our understanding of 

heterogeneity associated with various types of cancers. In particular, such analysis has 

identified various sub-groups in breast cancer. Estrogen receptor status is the single most 

important criteria by which the clinical specimens tend to cluster (van 't Veer et al.,  

2002; Sotiriou et al.,  2003). Cluster analysis also identified Luminal subtype A and B, 

ERBB2, Basal and Normal type and identified intrinsic gene expression signatures for 

each group which correlated with patient outcome (Sorlie et al., 2001). This classification 

based on gene expression was later validated by many independent studies (Sorlie et al., 

2003; Calza et al., 2006; Hu et al., 2006).  

The sample clustering techniques were applied to the gene expression profile of our set of 

104 breast cancer and 17 normal specimens. Genes with low or extremely high variability 

among specimens were not used for the purpose of clustering. First, a correlation matrix 

using all the specimens was created followed by two-way clustering of samples. In this 

way, the similarity between the specimens and the homogeneity among the individual 

sub-groups were assessed. Additionally, this technique helped identify any further sub-

clusters within a cluster. 

The 104 cancer and 17 normal specimens divided into many distinct groups. Five main 

clusters (one of which could be sub-divided into three sub-clusters) were identified, some 

of them very specific to certain clinical parameters.  

4.1.1 High level of correlation between Normal samples (Cluster A)  

The most significant result in our study was that most of the normal specimens clustered 

together (Cluster A). However, three normal specimens did cluster with a group of cancer 

specimens over-represented by ER-positive tumors with relatively low expression of ER 
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partner (genes involved in ER pathway) genes (Cluster E). Also, the normal group 

contained one of the cancer specimens. Of the normal specimens which clustered as a 

group (Cluster A), a high level of correlation was observed among the normal specimens 

indicating that the normal breast gene expression profiles are alike (section 3.1.3).  

The remaining 103 tumour specimens represented a highly heterogeneous group, (in 

contrast to a very similar group of normal specimens in Cluster A) and there was 

relatively less correlation observed among the closely related specimens on the cluster as 

observed from the hierarchical clustering result. These results indicate that the normal 

breast specimens have very similar and unique gene expression patterns, and the 

transformation of normal breast cells to a tumour leads to a divergent pattern of gene 

expression. One possible reason for this may be that uncontrolled cell division may lead 

to higher rates of mutations occurring in the genomic DNA leading to different 

combinations and a wide diversity of aberrant expression patterns (Gagos and Irminger-

Finger 2005).  

4.1.2 Samples closest in character to Normal samples enriched for ER- & Grade1 

The group of samples that clustered closest to the normal specimen group was a set of 

specimens enriched for ER-negative status and Grade 1 (see section 1.3.1) tumors 

(Cluster B). The ESR1 gene was not over-expressed in this cluster; however ERBB2 was 

over-expressed in this group, when compared to the normal breast specimens. Similar 

results presenting gene expression profiles in groups of breast cancer specimens that are 

substantially “Normal-like” have been described in other studies (Sorlie et al., 2001; 

Calza et al., 2006)  

The rest of the samples clustered into two big groups. One was enriched for ER-negative 

specimens (Cluster C) and the other was enriched for ER-positive specimens (Cluster D 

and Cluster E). The clusters enriched with ER-negative patients were also enriched for 

patients with higher grade and who relapsed (7 year relapse).  
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4.1.3 ER-negative samples (Cluster C) display three distinct sub-clusters 

A high level of heterogeneity was observed in the ER-negative cluster (Cluster C) and 

three distinct sub-clusters were observed based on the hierarchical clustering and 

correlation among specimens. The left and right cluster had relatively worse prognosis 

based on KM (Kaplan-Meier), compared to the middle cluster. Specific genes of interest 

expressed in separate sub-clusters include high expression of the Ropporin gene, ERBB2 

and genes related to the immunoglobin family.  

KM curve analysis associated the left sub-cluster of Cluster C as having the worst 

survival. To gain further insight, the specimens of this cluster were compared to the 

specimens of middle and right sub-cluster for gene expression changes. Ropporin was 

identified as substantially over-expressed in this left sub-cluster compared to the other 

two sub-clusters and a detailed study of this mRNA was performed. Our results positively 

associated the over-expression of this gene to an ER-negative phenotype, high relapse 

and shorter survival. 

Our results also showed that the sub-cluster enriched with ERBB2 over-expressing 

patients had a higher incidence of relapse and reduced survival (right sub cluster of 

Cluster C). ERBB2-overepressing clusters of patients have been observed in other similar 

independent studies using sample clustering (Sorlie et al., 2001; Calza et al., 2006) and 

expression of this protein is associated with a poor prognosis and poor response to 

chemotherapeutic drugs (Revillion, Bonneterre and Peyrat 1998).  

The third (middle) sub-cluster had patients with relatively low relapse and longer 

survival. This cluster of patients exhibits high expression level of genes involved in 

immune response. IFI6 (interferon, gamma-inducible protein 6), IL8 (Interleukin-8), 

LOC652128 (similar to Ig heavy chain V-II region ARH-77 precursor), IGL 

(immunoglobulin lambda locus), IGHM (immunoglobulin heavy constant mu) genes 

were found to be over-expressing in this sub-cluster compared to its neighbouring cluster. 

Other studies in the literature also suggest that high expression of immune response genes 

is associated with a favourable prognosis in ER-negative sub-groups of patients 

(Teschendorff et al., 2007). Additionally, a previous study (Alexe et al., 2007) associated 



 293 

a higher expression of lymphocyte/immune response associated genes in a HER2-over-

expressing cluster with a low recurrence subtype. While over-expression of immune 

response genes has been linked to better prognosis in ER-negative specimens, this study 

is the first to demonstrate the clustering of these clinical samples as a distinct group. This 

result positively associated the ER-negative sub-group of patients with high expression of 

immune response genes with a favourable clinical outcome. 

4.1.4 ER-positive tumors sub-divide as two groups. 

The remaining samples were all enriched for ER-positive specimens and grouped into 

two distinct clusters (D & E), which may be due to differences in the level of expression 

of ESR1 and ER partner gene expression profiles. Cluster D had a relatively higher 

expression of ER partner genes such as ESR1, GATA3, FOXA1, SPDEF and TFF3. This 

high-ER-expressing cluster contained only one specimen with an ER-negative phenotype. 

The lower-ER-expressing cluster (Cluster E) had 3 ER-negative specimens and the three 

normal specimens were clustered away from the other normal specimens clustered with 

this group. This low ER cluster had a marginally reduced survival and a slightly higher 

incidence of relapse compared to its neighbouring cluster which displayed very high ER 

partner gene expression. Therefore, higher expression of ER genes might be linked to 

better prognosis, or better response to tamoxifen, since most of the ER-positive patients 

were treated with this drug. Similar clustering patterns and links to prognosis has been 

reported in other studies (Sorlie et al., 2003; Calza et al., 2006). 

In conclusion, our gene expression profiling results identified various groups and sub-

groups of breast cancer and associated them with the clinical parameters and linked them 

with the clinical outcomes. Our results identified new clusters with clinical relevance. 

4.2 Gene expression differences between Normal and Cancer tissue 

The transition from normal tissue to cancerous tissue is an important aspect in 

understanding the biology of breast cancer. Gene expression profiling can help identify 

the differences among the normal and cancerous tissue and can help better design drugs 

to target the disease. 
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The normal and cancer specimens were compared in order to identify genes and 

pathways that contribute to the transition from normal breast tissue to a cancerous state.  

4.2.1 Cell cycle pathway up-regulated in tumors 

Gene ontology and pathways analysis identified cell cycle related pathways to be over-

expressed and over-represented in tumors compared to normal specimens. This is not 

surprising considering the fact that uncontrolled cell division is associated with tumour 

development and alteration in cell cycle checkpoints may be responsible for cancer 

(Hartwell 1992, Kastan and Bartek 2004). Our study identified TP53 to be up-regulated 

in breast cancer in comparison to the normal breast tissue (section 3.1.4). Alteration in 

TP53 gene products is involved in bad prognosis of breast cancer (Borresen et al., 1995; 

Overgaard et al., 2000; Langerod et al., 2007). A high expression of TP53 in follicular 

lymphoma was observed in high grade and oversized tumors and correlated with poor 

prognosis (Pennanen et al., 2008) and also in a subset of ductal carcinomas in situ, with 

no expression observed in atypical lesions (Chitemerere et al., 1996).  

4.2.2 Embryonic stem cell pathway up-regulated in cancer  

In our study, many genes reported to be highly expressed in embryonic stem cell pathway 

were up-regulated in cancer compared to normal tissue indicating that breast cancer 

might originate from the stem cell, or has characteristics similar to stem cells. Many other 

studies have implicated abnormality in stem cells to the origin of cancer. Mutations 

among the stem cell genes could lead to an alteration in genomic stability, resulting in 

immortality and onset of cancer (Ashkenazi, Gentry and Jackson 2008). Additionally, the 

P53 gene has roles in normal and cancer stem cell differentiation, apoptosis, self-renewal 

and the capacity for tumourigenesis (Zheng et al., 2008). 

Cyclin dependent protein and protein complex of cyclin B1 (CCNB1) induces 

phosphorylation of key substrates mediating cell cycle progression from G2 to M phase 

(Morgan 1995; Nurse 1994). Recently it has been identified as an oncogene and is over-

expressed in the cells from leukemia and other tumors including breast cancer cells from 

patient tissues at G1 phase (Shen et al., 2004). Over-expression of cyclin B1 has been 
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associated with tumor invasion and reduced survival and is also reported to be a 

prognostic marker in several tumor types (Yu, Zhan and Finn 2002; Murakami et al., 

1999).  

Increased expression of CDC20 is reported to be a common event in various cancer 

including colorectal and bladder cancer tissues as well as in oral squamous cell 

carcinoma and gastric cancer (Kidokoro et al., 2008; Mondal et al., 2007; Kim et al., 

2005). Suppression of growth by inducing G2/M arrest was observed by reducing the 

expression of CDC20 using CDC20-specific siRNA suggesting it as a potential 

therapeutic target for various cancers (Kidokoro et al., 2008). 

MELK is associated with the regulation of spliceosome assembly, gene expression and 

cell proliferation (Vulsteke et al., 2004; Saito et al., 2005; Nakano et al., 2008). It is also 

expressed in several vertebrate tissues including the blast cells of the early embryo, 

embryonic stem cells, adult germ cells (ovaries and spermatogonia), hematopoietic stem 

cells and neural stem cells (Heyer, Kochanowski and Solter 1999; Nakano et al., 2005; 

Easterday et al., 2003). MELK gene transcript controls the cell cycle and acts to regulate 

the self-renewal of neural stem cells (Nakano et al., 2005). Marie et al. (2008) found 

progressively higher expression of MELK in a study carried out on more than 100 tumors 

of the central nervous system and a high level of expression in glioblastoma multiforme. 

It has been directly associated with proliferation and anchorage-independent growth in 

glioblastoma multiforme and brain tumors, identifying it as a possible therapeutic target 

for these types of cancer (Nakano et al., 2008; Marie et al., 2008). 

PFS2 has been associated with ovule patterning by regulating cell proliferation of the 

maternal integuments and regulating the timing of cellular differentiation of the 

megaspore mother cell (Pillitteri et al., 2007; Park et al., 2005). Pillitteri et al., (2007) 

reported that PFS2 might be responsible for properly coordinating the developmental 

states of the sporophytic integument tissues and gametophytic embryo sac. 

PRC1 plays a functional role in regulating mitosis and the protein is highly expressed 

during S and G2/M phase (Jiang et al., 1998). p53 is found to directly suppress PRC1 
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gene transcription in HCT116 p53+/+, HCT116 p53-/-, MCF-7, T47D, and HeLa cells 

(Li, Lin and Liu 2004). 

4.2.3 Fatty acid biosynthesis pathway down-regulated in cancer 

Several gene members of the fatty acid biosynthesis pathway were significantly down-

regulated in cancer compared to normal tissue. Our results contradict other published 

reports where fatty acid synthesis pathway is up-regulated in cancer (Kuhajda 2000; Pizer 

et al., 1996).  

The fatty acid synthesis pathway was found to be selectively activated in a study carried 

out on human prostate cancer tissue using in situ hybridization (Swinnen et al., 2000). 

This group also reported a relationship between increased lipogenesis and cancer 

progression.  

A study carried out on a group of established human breast carcinoma cell lines-SKBR3, 

ZR-75-1, MCF-7, and MCF-7a (doxorubicin-resistant)-and normal human fibroblasts 

(HS-27) suggested that fatty acid synthesis was required by some of the cancers for their 

growth and inhibition of fatty acid synthesis can inhibit the growth of neoplastic cells 

(Kuhajda et al., 1994).  

The relationship between abnormal fatty acid synthesis and an aggressive tumor 

phenotype is still not fully understood. Fatty acids are reported to be involved in 

tumorigenesis (Cohen et al., 1986), in receptor-mediated signal transduction (Tomaska 

and Resnick 1993), as well as modulators of tumor cell adhesion. The role of increased 

endogenous fatty acid biosynthesis in tumorigenesis is unknown. One of the possibilities 

could be that lipid mediators in the tumor cells may act in an autocrine or paracrine 

fashion affecting tumor behavior. It is also found that certain tumors have an apparent 

requirement for endogenous fatty acid biosynthesis compared to normal cells. These 

reported results suggest that inhibition of fatty acid biosynthesis could be a potential 

target for chemotherapy development (Kuhajda et al., 1994). 
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The synthesis of fatty acids from acetyl-CoA and malonyl-CoA is carried out by an active 

enzyme fatty acid synthase (FASN) (Epstein, Carmichael and Partin 1995; Shurbaji et al., 

1992). FASN is an important enzyme of the fatty acid synthesis and are found to be 

highly expressed in human cancers, including carcinoma of the breast, prostate, ovary, 

endometrium and colon (Epstein, Carmichael and Partin 1995; Shurbaji et al., 1992; 

Rashid et al., 1997; Alo et al., 1996; Milgraum et al., 1997). 

Stearoyl-CoA desaturase (SCD) is an enzyme which helps in the biosynthesis of 

monounsaturated fatty acids and also controls the regulation of metabolism in liver and 

skeletal muscle (Dobrzyn and Ntambi 2005). A link between SCD activity and tumor cell 

proliferation has been observed with increased expression of SCD in colonic and 

esophageal carcinoma, hepatocellular adenoma, as well as in chemically induced tumors 

(Thai et al., 2001; Li et al., 1994). SCD regulates programmed cell death and is crucial 

for cell survival (Scaglia and Igal, 2005). Down-regulation of SCD has also been 

associated with significantly decreased proliferation and invasiveness (Scaglia and Igal, 

2005). 

Long-chain acyl-CoA synthetases (ACSL) are necessary for fatty acid degradation, 

phospholipid remodeling, and production of long acyl-CoA esters that act as a regulator 

of various physiological processes in mammals (Soupene and Kuypers 2006).  

In conclusion, our results identified genes, functions and pathways that are associated 

with transition of normal breast tissue to cancer. TP53 gene was found to be up-regulated 

in breast cancer. Cell cycle pathways and embryonic stem cells genes were up-regulated 

in cancer. Fatty acid biosynthesis pathway genes were down-regulated in breast cancer. 

4.3 Genes up-regulated in Estrogen Receptor-positive breast patients 

4.3.1 In-house study 

Clinical decision making has very much relied on ER status of patients and many 

individual studies have tried to identify genes involved in Estrogen metabolism. In our 

study, 34 ER-negative breast specimens and 67 ER-positive breast specimens were used 
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to identify differential-expressed (DE) transcripts. Further meta-analysis was performed 

using five additional publicly available datasets, including one cell line data.  

Our in-house data identified 855 up-regulated genes associated with ER-positive vs ER-

negative specimens. Affected functions and pathways over-represented by these genes 

were related to cellular morphogenesis and epidermal growth factor receptor activity. 

Cellular morphogenesis is the key feature in the development of mammary gland and is 

supposed to be influenced by ESR1 gene and Estrogen (Mallepell et al., 2006; Sternlicht 

2006). Bi-directional regulation among EGFR and ER has been reported by other studies 

(Levin 2003; Britton et al., 2006). Estrogen can regulate expression of EGF receptor 

proteins and may play a role in Estrogen-stimulated growth (Mukku and Stancel 1985). 

ER and EGFR
 
signal through various kinases and influence transcriptional and non-

transcriptional actions of Estrogen
 
in breast cancer cells (Levin 2003). Increased EGFR 

signalling is associated with tamoxifen resistance in ER-positive breast cancer cells (Fox 

et al., 2008). 

Our in-house data identified 1145 down-regulated genes associated with ER-expression. 

Affected functions and pathways over-represented by these genes were related to immune 

response. Immune response is the main molecular process associated with prognosis in 

the ER and HER2 receptor-negative subgroups (Desmedt et al., 2008). Despite ER-

negative groups having a high proliferation and poor clinical outcome, a group exists 

with high expression of immune response genes with good prognosis (Schmidt et al., 

2008; Teschendorff et al., 2007). 

4.3.2 Meta analysis  

Meta-analysis was performed on six independent datasets, using common criteria to 

identify DE genes. 62 up-regulated transcripts common to all experimental groups were 

identified, which will be discussed here. 

ESR1 gene is very critical for ER action. ESR1 is ligand-activated transcription factor 

composed of several domains important for hormone binding, DNA binding, and 

activation of transcription. This gene was over-expressed in our study among the ER-
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positive patients. This gene was also up-regulated in all cohorts among the ER-positive 

specimens. ESR1 gene amplification is quite frequent in breast cancer (Holst et al., 2007) 

and endometrial cancer (Lebeau et al., 2008). Genetic polymorphism in the gene is 

associated with transformation of benign tumors to cancer (Gallicchio et al., 2006) and 

has been linked to breast cancer risk, tumour characteristics and survival (Einarsdottir et 

al., 2008).  

GATA3 (GATA binding protein 3) is important for mammary gland morphogenesis and 

luminal cell differentiation and is closely associated with ESR1 gene expression; 

however it has little prognostic value independent of ER (Voduc, Cheang and Nielsen 

2008). GATA3 co-expresses with ESR1 gene (Tozlu et al., 2006) and ER alpha pathway 

genes (Wilson and Giguere 2008). Genetic variability in the intronic region of GATA3 is 

associated with differential susceptibility to breast cancer (Garcia-Closas et al., 2007). 

GATA3 was up-regulated in all the experimental datasets comparing ER-positive cancer 

to ER-negative cancer. 

Forkhead box A1 (FOXA1) is a forkhead family transcription factor expressed in breast 

cancer cells and is associated with luminal subtype (Thorat et al., 2008). It is also 

strongly correlated with ESR1 expression (Tozlu et al., 2006; Lacroix and Leclercq 

2004). FOXA1 is correlated with luminal subtype A (Badve et al.,  2007) and with 

favourable prognosis (Badve et al.,  2007; Habashy et al.,  2008; Wolf et al.,  2007a) and 

plays a growth inhibitory role in breast cancer (Wolf et al.,  2007a). This gene was up-

regulated in all of the cohorts of ER-positive specimens vs. ER-negative specimens. 

SPDEF (SAM pointed domain containing ets transcription factor) is an Ets transcription 

factor expressed at high levels primarily in tissues with high epithelial cell content, 

including prostate, colon, and breast (Seth and Watson 2005). Its protein product is 

reduced in human invasive breast cancer and is absent in invasive breast cancer cell lines 

(Feldman et al., 2003). SPDEF over-expression is associated with nodal metastasis and 

hormone receptor positivity in invasive breast cancer (Turcotte et al., 2007). High 

expression of this gene in tumour and peripheral blood makes it a candidate prognostic 
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marker (Ghadersohi and Sood 2001). SPDEF was also up-regulated in all our 

experimental groups of ER-positive specimens vs. ER-negative specimens.  

C1ORF34 (tetratricopeptide repeat domain 39A) expression correlates with expression of 

ER in cell lines and was also detected in primary breast carcinomas but not in normal 

breast tissue (Kuang et al., 1998). This gene was also up-regulated in all our experimental 

groups of ER-positive specimens vs. ER-negative specimens.  

Other important and well known genes involved in the ER pathway which were up-

regulated in ER-positive patients vs. ER-negative patients in our study were CA12, TFF1, 

TFF3, ERBB4, MYB, NAT1, eEF1A2, LIV-1.  

Carbonic anhydrase XII (CA12) is a marker of good prognosis in invasive breast 

carcinoma (Watson et al., 2003). CA12 expression is associated with ER-positive tumors 

(Barnett et al., 2008; Tozlu et al., 2006).  

TFF1 (trefoil factor 1) is a small cysteine-rich secreted protein that is frequently 

expressed in breast tumors in the ER-positive patients. TFF1 is expressed in ER-positive 

tumors and its expression correlates with the expression of ESR1 (Tozlu et al., 2006; 

Wilson and Giguere 2008). Estrogens can stimulate the motility of breast cancer cells via 

the induction of TFF1 (Prest, May and Westley 2002). Like TFF1, TFF3 (trefoil factor 3) 

is also frequently expressed in breast tumors. Although closely related, there are marked 

differences in shape, size, and surface charge of these proteins (May et al., 2003). Like 

TFF1, TFF3 also co-expresses with ESR1 gene in breast cancer (Wilson and Giguere 

2008). In our meta-analysis both of these genes were found to be up-regulated in all 

experimental groups among the ER-positive specimens vs. ER-negative specimens. 

ERBB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4 avian) gene is a 

member of the tyrosine protein kinase family and the epidermal growth factor receptor 

subfamily. Its expression is associated with ER-positive tumors (Zhu et al., 2006). The 

ERBB family encodes 4 proteins, ERBB (HER1), ERBB-2 (HER2, NEU), ERBB-3 

(HER3), and ERBB-4 (HER4); HERs 1-3 are associated with poor survival, however 

HER4 is associated with better survival (Witton et al.,  2003; Bieche et al.,  2003). In our 
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meta-analysis ERBB4 was up-regulated in all experimental groups among the ER-

positive specimens vs. ER-negative specimens. 

MYB (v-myb myeloblastosis viral oncogene homolog avian) is a proto-oncogene and its 

expression is strongly associated with ER and PR in breast cancer (Guerin, Barrois and 

Riou 1988). Its expression is correlated with the expression of ESR1 gene (Tozlu et al., 

2006). This gene is also associated with improved prognosis (Guerin, Barrois and Riou 

1988). However, proliferation of ER-positive breast cancer cell lines is inhibited when 

MYB expression is knocked down (Drabsch et al., 2007). In our meta-analysis MYB was 

up-regulated in all experimental groups among the ER-positive specimens vs. ER-

negative specimens. 

NAT1 (N-acetyltransferase 1 arylamine N-acetyltransferase) expression correlates with 

expression of ESR1 (Tozlu et al., 2006; Wakefield et al., 2008). DNA hypomethylation 

in the NAT1 gene is present in cancerous breast tissue indicating that this type of 

methylation may significantly influence the transcriptional activation of the gene (Kim et 

al., 2008). In our meta-analysis NAT1 was up-regulated in all experimental groups 

among the ER-positive specimens vs. ER-negative specimens. 

Translation elongation factor eEF1A2 is a potential oncoprotein that is over expressed in 

two-thirds of breast tumors (Tomlinson et al., 2005) and predicts favourable outcome in 

breast cancer (Kulkarni et al., 2007). In our meta-analysis NAT1 was up-regulated in all 

experimental groups among the ER-positive specimens vs. ER-negative specimens. 

LIV-1 (solute carrier family 39 zinc transporter, member 6) breast cancer protein belongs 

to a family of histidine-rich membrane proteins and controls intracellular Zn2+ 

homeostasis (Taylor 2000). LIV-1 is associated with ER-positive tumors (Tozlu et al., 

2006).  In our meta-analysis LIV-1 was up-regulated in all experimental groups among 

the ER-positive specimens vs. ER-negative specimens. 

Our meta-analysis also identified novel genes which may be involved in ER metabolism 

and disease progression e.g. MYO5C, TPBG, RGL2, MKL2, THRAP2, LASS6, 

INPP4B, COX6C, MCCC2, RAB17, ANXA9, THSD4, ABAT, HSPB1 for which the 
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available literature is limited. These genes were up-regulated in all experimental groups 

among the ER-positive specimens vs. ER-negative specimens. 

Gene ontology and pathways analysis provided some functional insight to the mechanism 

of ER action. Our in-house dataset identified functions related to morphology to be 

significant among the ER-positive specimens. Pathway analysis identified nuclear 

receptors to be a significant pathway. This pathway was also found to be significant in 

the meta-analysis. The gene was termed as DE if it was significantly up-regulated in at 

least 50% of the datasets among the ER-positive specimens vs. ER-negative specimens. 

The DE genes were analysed (non DE as background) to identify functions and pathways 

enriched for ER genes (see section 3.3). Not DE genes were those which were not found 

differentially expressed in any of the experimental group. The functions up-regulated in 

ER-positive specimens vs. ER-negative specimens were Zinc ion transport, Neutral 

amino acid transporter activity, unconventional myosin and Insulin-like growth factor 

receptor activity. Estradiol regulates the expression of insulin like growth factor initiating 

an intracellular signal transduction pathway that activates transcription factors, including 

the estrogen receptor (Martin and Stoica 2002). Pathway analysis identified Tissue-

Muscle fat and connective, Nuclear Receptors, Electron Transport Chain, and Androgen-

Receptor NetPath 2 as up-regulated in ER-positive specimens.  

4.3.2.1 Nuclear Receptor pathway 

Nuclear receptors are transcription factors and become active when they detect a certain 

ligand in the cellular environment and have the ability to bind to DNA and activate genes 

(Mangelsdorf et al.,  1995). The most commonly studied nuclear receptors in breast 

cancer are ER and PR. However recently many other nuclear receptors has been found to 

be important in breast cancer, including those of Androgen receptor, corticosteroids, fat-

soluble vitamins A and D, fatty acids and xenobiotic lipids derived from diet (Conzen 

2008).  

Retinoic acid receptor (RAR) alpha or RARA has found to be differentially expressed in 

ER+ (MDA-MB-231, MDA-MB-330, HBL100, and Hs0578T lines) and ER- (MDA-

MB-361, BT 474, and BT 20) cells and is thought to be regulated by estrogen or other 
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steroid hormones (Fitzgerald et al., 1997; Roman et al., 1992). Relatively high levels of 

RAR alpha was observed in ER+ mammary carcinoma cells and were responsive to 

retinoids, whereas most undifferentiated, estrogen-independent, ER-negative (ER-) cells 

showed low RAR alpha expression and retinoid resistance. It has been shown to play a 

role in retinoid-induced growth inhibition of human breast cancer cell lines that express 

the estrogen receptor (ER) (Fitzgerald et al., 1997; Roman et al., 1992; Schneider et al., 

2000). All these studies suggest that RAR alpha might regulate the normal and malignant 

mammary epithelial cell growth, differentiation, and apoptosis (Fitzgerald et al., 1997; 

Sheikh et al., 1994; Widschwendter et al., 1997). 

Nuclear receptor subfamily 2, group F, member 6 (NR2F6) expressed in lymphocyte acts 

as a regulator of T lymphocyte activation, potently antagonizing antigen-receptor-induced 

cytokine responses in vitro and in vivo (Baier 2003). A high endogenous expression of 

NR2F6 mRNA was observed in embryonic brain and developing liver (Warnecke et al., 

2005; Miyajima et al., 1988). Hermann-Kleiter et al, reported a potential function for 

NR2F6 in the immune system as it was expressed in the thymus, spleen, lymph node, and 

bone marrow, CD3+ T and CD19+ B lymphocytes (Hermann-Kleiter et al., 2008). 

Androgen receptor (AR) is the key transcription factor required for prostate cell survival 

and proliferation and is reported to play a critical role in the development and progression 

of prostate cancer (Xu et al., 2009). In an immunohistochemical study carried out on 86 

patients with gastric carcinoma it was observed that patients with AR-positive tumors 

AR-positive had worse prognosis than AR-negative patients (Kominea et al., 2004). 

AR is expressed in 60% of invasive breast carcinomas and almost 50% of the ER-

negative tumors have been shown to be AR-positive (Agoff et al., 2003; Moinfar et al., 

2003). The median survival after disease recurrence of patients with AR-expressing 

tumors was significantly longer compared to that of patients with AR-negative tumors 

(Schippinger et al., 2006). There have been reports of prognostic advantage for patients 

with AR expression in early breast cancer compared to patients with AR-negative tumors 

(Agoff et al., 2003; Bryan et al., 1984; Kuenen-Boumeester et al., 1996). Of the 232 

breast carcinomas examined by Schippinger et al., (2006), 70.7% expressed ARs 
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demonstrating its expression is a common characteristic in breast cancer and may be a 

possible therapeutic target for endocrine antitumor therapies. 

VDR is expressed in the human colon, normal epithelial cells and some cancer cells 

(Kallay et al., 2002). Increased expression of VDR is associated with a favorable 

prognosis in colorectal cancer (Cross et al., 1996; Evans et al., 1998). Some of the other 

studies report that VDR expression decreases in high-grade carcinomas to levels found in 

normal mucosa (Kallay et al., 2002; Sheinin et al., 2000; Cross et al., 2001), while others 

found diminished VDR expression already in low- and intermediate-grade tumors and a 

decrease below normal mucosa levels in high-grade carcinomas (Palmer et al., 2004).  

In conclusion, our study identified various genes and pathways which are crucial for ER 

metabolism. Important genes identified to be up-regulated in ER-positive tumors are 

ESR1, FOXA1, SPDEF, TFF1, and TFF3. Nuclear receptor pathway was found to be up-

regulated in ER-positive tumors.  

4.4 Gene interaction network for ESR1 gene 

Large scale gene expression mining can help identify and understand the intricate 

relationship among correlated genes. Our analysis focussed on building a gene interaction 

networks around the ESR1 gene, an important gene in ER metabolism. 

A 5897-sample chip dataset obtained from Array Express (E-TABM-185) was used to 

identify genes which correlate with ESR1 gene expression, the central gene in the ER-

pathway (section 3.3.3). These specimens were from diverse types of tissue and cell lines; 

however, all were on Affymetrix HG-U133A chips and were normalised as a group, thus 

making it an excellent dataset for gene correlation analysis. Correlation measure has been 

widely used to understand gene interaction from gene expression data (Almudevar et al., 

2006; Lee et al., 2004). Pearson correlation coefficient as a measure of similarity between 

expression profiles was used to construct network graphs from gene expression data 

(Freeman et al., 2007). The size of the graph produced is dependent on the threshold 

correlation value selected. At low Pearson correlation coefficient cut-offs, networks 

become large whereas at higher thresholds levels, the networks consist of a smaller 
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number of genes and tend to be more useful for most analyses (Freeman et al., 2007). A 

Pearson correlation cut-off > 0.75 was used to identify genes that correlate in expression 

to that of ESR1. Expression of GATA3, FOXA1, SPDEF and C1ORF34 were found to 

be correlated with ESR1 expression (Spearman Correlation > 0.75 across 5897 samples). 

These 5 genes were also significantly over-expressed in the ER-positive group in all the 

six experiments when comparing ER-positive to ER-negative specimens. Interestingly, 

other than C1ORF34, for which function is less known, all the other genes (ESR1, 

GATA3, FOXA1 and SPDEF) are transcription factors and therefore these genes may be 

affecting the expression of large number of other genes. These findings therefore also 

indicate that that the ER pathway may be more complex than is currently considered and 

more detailed study is needed to unravel the mechanism behind the ER-positive tumour 

progression.  

Using the expression values of these 5 genes across 5897 specimens the relationships 

among these genes were investigated. Hierarchical clustering and PCA results indicated 

that FOXA1-SPDEF and ESR1-GATA3 expression are highly correlated. K-means 

clustering was performed to get a better understanding of the expression pattern of the 

genes across all specimens. The biggest cluster (3209 specimens) had little or no 

expression of these 5 genes in most of the specimens. The second biggest cluster (899 

specimens) had good expression of all these 5 genes in most of the specimens. These 

results indicate that these genes are most often expressed together. It is possible that 

several of these genes get switched on as part of differentiation of mammary glands and 

are essential for the development of luminal epithelial cells of the mammary gland (Tong 

and Hotamisligil 2007). Since the samples in this study were of diverse origin, there is 

the obvious possibility of different types of interaction of these genes in different 

individual cancers.  

 The other clusters had relatively fewer numbers of genes, but they indicated that the 

expressions of these genes are independent of each other, except for SPDEF expression 

which is present only when there is high expression of FOXA1. 



 306 

Correlation plots for individual combinations of genes were analysed across all 5897 

specimens to get a deeper understanding on the dependency of each gene expression on 

another. The results conclude that expression of ESR1, GATA3, C1ORF34, SPDEF, 

FOXA1 (except for SPDEF-FOXA1), although highly correlated, exist independently of 

each other. However, it seems likely that the expression of SPDEF may be dependent on 

the expression of FOXA1. A very high level of expression of FOXA1 existed with a low 

level of expression of SPDEF; however a high level of SPDEF expression was not 

observed associated with low expression of FOXA1.  

In conclusion, our study identified 4 genes (FOXA1, SPDEF, GATA3, and C1ORF34) to 

be correlated to the expression of ESR1. Additionally our results indicated the possible 

dependency of SPDEF expression on FOXA1. 

4.5 Genes up-regulated in ER-negative breast patients 

The absence of ER protein classifies the tumour as ER-negative. This phenotype is 

associated with a poor prognosis. The molecular biology of ER-negative tumors is poorly 

understood. There is lack of targeted therapies for ER-negative tumors, especially if they 

are triple negative (ER-negative, PR-negative, HER2-negative). Our study aimed to 

identify genes up-regulated in the ER-negative tumors. 

Our in-house data analysis also identified the ER-negative cluster to be enriched with 

patients who relapsed (overall) and high grade tumors. 6 datasets were compared to 

identify over-expressed genes in ER-negative tumors. Common criteria was used to 

identify DE (p ≤ 0.05, Fold Change (FC) > 1.2 and Difference > 100) genes. The meta-

analysis on these datasets identified 20 transcripts up-regulated in ER-negative specimens 

in all the datasets under study (section 3.3.2). 

SFRP1 (secreted frizzled-related protein 1) is a 35 kDa member of the SFRP family. It 

acts as a biphasic modulator of Wnt signaling, counteracting Wnt-induced effects at high 

concentrations and promoting them at lower concentrations (Uren et al., 2000). Promoter 

hypermethylation is the predominant mechanism of SFRP1 gene silencing in human 

breast cancer and SFRP1 gene inactivation in breast cancer is associated with 
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unfavourable prognosis (Veeck et al., 2006). SFRP1 showed the highest fold up-

regulation (8.25-fold average across all experiments) among the ER-negative specimens 

vs. ER-positive specimens. Our results for the first time showed a strong relation of 

SFRP1 with ER-negative phenotype. 

Other genes up-regulated by an average fold change > 2 in ER-negative specimens vs. 

ER-positive specimens were COTL1, SLC43A3, C10orf38, MSN and TRIM2. COTL1 

(coactosin-like 1) is a human filamentous actin-binding protein and is expressed in 

placenta, lung, kidney and peripheral-blood leucocytes (Provost et al., 2001). Coactosin-

like protein has been described as a cancer antigen in pancreatic cancer (Nakatsura et al., 

2002). Its function in breast cancer is unknown. SLC43A3 (solute carrier family 43, 

member 3) is expressed in microvascular endothelium (Wallgard et al., 2008) and its 

expression in cancer is poorly defined. The KLF9 (Krüppel-like factor 9) alters the 

expression of COTL1 and C10orf38 (Simmen et al., 2008). Very little information is 

available for MSN and TRIM2 as regards their role in cancer. Interestingly, most of the 

genes identified here up-regulated in ER-negative tumors have not been extensively 

studied previously for a role in cancer. This study has for the first time identified 

transcripts and genes which might be important for ER-negative breast cancer, where 

currently the understanding and therapeutic options are very limited. ER-negative tumors 

are morphologically and phenotypically very distinct from ER-positive tumors and there 

is need for more study and development of newer promising agents for the treatment of 

ER-negative breast cancer (Putti et al., 2005). Our study identifies newer targets which 

can be studied for development of targeted therapeutics for ER-negative Breast cancers.  

In conclusion, our results identified important genes up-regulated in ER-negative tumors. 

SFRP1 (secreted frizzled-related protein 1) gene was very highly expressed in ER-

negative breast tumors. 

4.6 Genes up-regulated in HER2-positive breast cancers 

ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma 

derived oncogene homolog avian) gene amplification is associated with a sub-set of ER-

negative tumors with a very poor prognosis (Revillion, Bonneterre and Peyrat 1998). 
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Two clinical and one cell line datasets (section 3.4) were analysed and compared to 

identify transcripts associated with ERBB2 expression. DE genelists were created for 

each and the genelists were compared. 13 transcripts (6 up-regulated and 7 down-

regulated) were common to all three datasets. The up-regulated transcripts common to all 

three datasets were ERBB2, C17orf37, STARD3, ERGIC1 and C7orf24. ERBB2 

(Average fold change: 9.8), C17orf37 (Average fold change: 6.7) and STARD3 (Average 

fold change: 5) are all located on chromosome 17q. Amplification of chromosome 17 has 

previously been identified in HER2-positive breast cancer (Bose et al., 2001). The other 

two genes ERGIC1 (chromosome 5) and C7orf24 (chromosome 7) with average fold 

change of 1.9 and 1.7, respectively, are on different chromosomes.  

ERBB2 gene amplification is associated with shorter disease-free survival and higher 

incidence of death due to disease (Slamon et al., 1987). The gene is located on 

chromosome 17 and is amplified in a subset of invasive breast cancer and correlates with 

poor clinical outcomes (Watters et al., 2003).  

The C17orf34 (chromosome 17 open reading frame 34) gene is located in close proximity 

to ERBB2 on chromosome 17q21 (Benusiglio et al., 2006) and is expressed in early and 

late stages of breast cancer disease, in very high amounts in metastatic patients and is 

absent or has very low expression in normal breast tissue (Evans et al., 2006). ERBB2, 

C17orf34 and STARD3 are located in a close proximity of 168kb region of chromosome 

17 (Maqani et al., 2006). STARD3, also known as Metastatic lymph node 64 protein 

(MLN64) is co-amplified with ERBB2 gene in breast cancer (Vinatzer et al., 2005) and is 

regulated by Sp/KLF transcription factors (Alpy et al., 2003).  

In conclusion, our results identified important genes up-regulated in HER- positive breast 

patients. Many of these genes were on chromosome 17. 

4.7 Lymph node-negative vs. Lymph node-positive 

Clinically, lymph node status is an important criterion in the treatment choice as patients 

with no lymph node involvement are usually spared from aggressive treatment. With the 

increase in the degree of lymph node involvement, which indicates the invasion of cancer 
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cells to naerby tissue, the survival of breast cancer patient decreases (Carter, Allen and 

Henson 1989). Since metastatic potential has been described as an inherent property of 

malignant tumors (Weigelt et al.,  2003; Weigelt et al.,  2005), the aim was to identify 

key transcriptional difference between lymph node-positive and lymph node-negative 

patients. A previously-described metagene (aggregate patterns of gene expression) study 

was able to predict lymph node status with an accuracy of 90% (Huang et al., 2003) 

indicating the prognostic value of lymph node metastasis genes. Gene ontology and 

pathway analysis in our study did not identify promising GO functions and pathways 

affected, possibly due to smaller numbers of identified DE genes. Lymph node-positive 

associated DE genes were compared to survival/relapse gene lists generated by 

comparing genes involved in five year relapse, overall relapse and survival comparisons. 

SNIP (SNAP25-interacting protein) was significantly up-regulated (FC=2.51) in patients 

with lymph node-positive compared to lymph node-negative patients. The expression of 

SNIP was not detected in normal breast specimens but was detected in 37% breast cancer 

correlating with unfavourable overall survival and was published by this laboratory 

(Kennedy et al., 2008). However, few DE genes were observed when the lymph node-

positive and lymph node-negative patients were compared. In a similar study, gene 

expression signature was not strongly associated with lymph node status (Sotiriou et al., 

2003). This indicates that there might not a definite signature for Lymph node metastasis.  

PHF21B (PHD finger protein 21B) gene was significantly down-regulated (FC = -6.15) 

in lymph node-positive specimens vs. lymph node-negative specimens. No information is 

known regarding its role in breast cancer.  

In conclusion, our study identified a limited number of genes which are up-regulated in 

breast cancer patients with Lymph node involvement. SNIP was an important gene up-

regulated in Lymph node-positive breast patients. 

4.8 Tumour Grade 

Grade is an important criterion in clinical decision making (section 1.3.1). Tumors with 

high Grade are more likely to undergo relapse and distant metastasis. Our results also 

indicate a strong association of grade with high relapse and poor survival. Hierarchical 
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clustering identified different groups of patients with differences in grade. The ER-

negative enriched group (Cluster C) was enriched with high Grade tumors; however there 

was a subset of ER-negative enriched group (Cluster B) with low grade tumors (Grade 1 

and Grade 2). The ER-positive enriched group (Cluster D and E) was enriched with low 

grade tumors (Grade 1 and Grade 2). Other independent studies have identified strong to 

moderate association of grade to gene expression profiles (Sotiriou et al., 2003; Wang et 

al., 2005; Calza et al., 2006) 

In our study, gene ontology and pathway analysis identified cytoskeleton, porin (are beta 

barrel proteins that cross a cellular membrane and act as a pore through which molecules 

can diffuse) activity, phosphatase inhibitor activity and cell division genes to be over-

expressed and overrepresented in Grade 3 cancers compared to Grade 2 cancers. Genes 

involved in cell cycle progression and proliferation have also been identified up-regulated 

in high grade cancer compared to low and intermediate grade cancer in other published 

studies (Sotiriou et al., 2003; Sotiriou et al., 2006). 

To find genes whose expression progressively increased with grade, comparisons were 

performed for genes up-regulated in Grade 2 vs. Grade 1 and Grade 3 vs. Grade 2. 

Twenty three transcripts were identified in which expression progressively increases with 

grade and two transcripts in which progression decreases with grade. IL4I1 (interleukin-

four induced gene-1) expression was 5.52-fold up-regulated in Grade 2 vs. Grade 1 and 

2.26-fold up-regulated in Grade 3 vs. Grade 2 (section table 3.1.8.7). Very little is known 

about the involvement of this gene in breast cancer although it has been found to be 

activated in primary mediastinal large B-cell lymphoma (Copie-Bergman et al., 2003). 

CCL5 (Chemokine (C-C motif) ligand 5) is an 8kDa protein classified as a chemotactic 

cytokine or chemokine and was found to be up-regulated with grade, with lowest 

expression in Grade 1 tumour and highest in Grade 3 tumour in our study. This gene is an 

inflammatory mediator and has pro-malignancy activities in breast cancer, and may have 

therapeutic potential (Soria and Ben-Baruch 2008). In stage II patients, the expression of 

CCL5 significantly increased the risk for disease progression (Yaal-Hahoshen et al., 

2006).  
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Our results indicate high expression of CDKN2A (cyclin-dependent kinase inhibitor) in 

high grade tumors, highest in Grade 3 cancers and lowest in Grade 1 cancers. CDKN2A 

encodes a protein that regulates 2 critical cell cycle regulatory pathways, the p53 pathway 

and the retinoblastoma pathway. CDKN2 germline mutations have been detected in 

patients with breast cancer and cutaneous melanoma (Monnerat et al., 2007) and families 

with prevalent childhood cancer (Magnusson et al., 2008).  

In conclusion, our study identified important genes, functions and pathways for which the 

expression increases/decreases with grade. IL4I1 (interleukin-four induced gene-1) was 

identified as an important gene whose expression increases very highly with the 

progressive grade. 

4.9 Tumour size 

Tumour size is a significant predictor of relapse-free survival in breast cancer (Hu et al., 

2006). As the tumour size increases, the survival rate decreases (Carter, Allen and 

Henson 1989). Very few DE genes were observed in our study when tumour size was 

analysed; this suggests that tumour size might not be an important parameter as far as 

gene expression differences are concerned. Only three mRNAs RPESP (Ribulose-5-

phosphate-3-epimerase-spondin), EPN3 (epsin 3) and CNTNAP2 (Contactin associated 

protein-like 2), were up-regulated by a fold change of greater than 2 in tumors with size 

greater than 2.8cm compared to tumors with size less than 2.8cm. Only seven mRNAs 

GRIA2 (Glutamate receptor, ionotropic, AMPA 2), PYDC1 (PYD (pyrin domain) 

containing 1), PTPRN2 (protein tyrosine phosphatase, receptor type, N polypeptide 2), 

CALML5 (Calmodulin-like 5), FOSB (FBJ murine osteosarcoma viral oncogene 

homolog B), SSFA2 (sperm specific antigen 2), and HSPB8 (heat shock 22kDa protein 8) 

were found to be down-regulated by a fold change of greater than 2 in tumors with size 

greater than 2.8cm compared to tumors with size less than 2.8cm. The results suggest that 

the gene expression profiles of large tumors are not very different from small tumors. 

Other studies also indicated that tumour size is not a very significant criterion as far as 

gene expression signature is concerned (Gieseg et al., 2004; Sotiriou et al., 2003) 

indicating that gene expression profile does not changes with increase in tumour size. 
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In conclusion, our result identified genes up-regulated or down-regulated with increase in 

tumour size. RPESP, EPN3 and CNTNAP2 were up-regulated in large tumors. GRIA2, 

PYDC1, PTPRN2, CALML5, FOSB, SSFA2, and HSPB8 were down-regulated in large 

tumors. 

4.10 Genes associated with relapse and survival 

4.10.1 In-house study 

Relapse-free survival is an important clinical parameter. Identifying genes with the 

prognostic importance could lead to discovery of better targeted therapies and also 

development of method to better classify patients for different kinds of treatment.  

Relapse and survival events were studied in our in-house dataset in four distinct analyses: 

overall relapse, overall survival, 5 years relapse and 5 years survival. The genelists 

compared were patients who relapsed vs. patients who did not relapse; patients who 

relapsed within 5 years vs. patients who did not relapse within 5 years; patients who 

survived vs. patients who died of the disease and patients who survived for at least 5 

years compared to patients who died within 5 years of diagnosis. The total number of 

common genes in all the four genelists was 384. 

The up-regulated genes identified from the group of patients with a  poor outcome 

outlined above (common to 4 genelist with average FC>2) were LCN2 (lipocalin 2), 

NMU (neuromedin U), SERPINB5 (serpin peptidase inhibitor, clade B ovalbumin, 

member 5), KCNG1 (potassium voltage-gated channel, KQT-like subfamily, member 1), 

SNIP (SNAP25-interacting protein), SLC4A11 (solute carrier family 4, sodium borate 

transporter, member 11), ST8SIA6 (ST8 alpha-N-acetyl-neuraminide alpha-2,8-

sialyltransferase 6), PSAT1 (phosphoserine aminotransferase 1), LOC92312, C9orf58, 

LOC92312, LOC92312, SOX11 (SRY sex determining region Y-box 11), PPARBP 

(mediator complex subunit 1), PCGF2 (polycomb group ring finger 2), ANP32E (acidic 

(leucine-rich) nuclear phosphoprotein 32 family, member E) and STARD3 (STAR-

related lipid transfer domain containing 3).  
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Similarly up-regulated genes in the group of patients with a good outcome outlined above 

(common to 4 genelist with average FC>3) were FAM79B (tumor protein p63 regulated 

1), RTN1 (reticulon 1), ZNF533 (zinc finger protein 385B), PDZK1 (PDZ domain 

containing 1), NOVA1 (neuro-oncological ventral antigen 1), SCUBE2 (signal peptide, 

CUB domain, EGF-like 2), RTN1 (reticulon 1). Additionally, ESR1 was up-regulated in 

the good outcome and lymph node-negative groups. A high expression of ESR1 is 

commonly associated with Luminal subtype A in microarray studies and correlates very 

well with better survival and disease-free outcomes (Hu et al., 2006; Sorlie et al., 2003). 

Our results are in agreement with other studies that show that high expression of ESR1 

gene is associated with favourable outcome on breast cancer patients. 

4.10.2 Meta-analysis 

Four other similar datasets (section 3.2.1) which contained relapse status of individual 

patients were cross-compared to identify transcripts up and down-regulated among all the 

datasets. No transcript was found common to all the datasets. It was therefore decided to 

identify transcripts up-regulated or down-regulated in three or more datasets. Twenty two 

transcripts were found to be DE in a minimum of three out of the five datasets under 

study. Three of them (HSPB1, KIAA0101 and PAK3) were up-regulated in four out of 

the five datasets and one (FOS) was down-regulated in four out of the five datasets. 

HSPB1 (heat shock 27kDa protein 1) is a 27 kDa heat shock protein and plays a role in 

cancer progression (Garrido et al., 2006). In four of the five experimental cohorts, this 

gene was found to be significantly up-regulated in patients who relapsed. Down-

regulation of HSPB1 in HCT116 human colon carcinoma cells caused senescence in a 

population of cells (O'Callaghan-Sunol, Gabai and Sherman 2007). In the 4T1 murine 

breast adenocarcinoma cell line, knockdown of this gene eliminates cell motility 

(Bausero et al., 2006). HSPB1 expression in human breast cancer cells can reduce 

Herceptin susceptibility by increasing Her2 protein stability (Kang et al., 2008). 

KIAA0101 (protein-coding GC15M062444) is a proliferating cell nuclear antigen-

associated (PCNA) factor and involved in cell proliferation. A high expression of this 

gene was found in plasma RNA of colorectal cancer (Collado et al., 2007). siRNA 
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knockdown of KIAA0101 in pancreatic cancer cells caused a reduction in proliferation as 

well as a significant decrease in DNA replication (Hosokawa et al., 2007). In 

hepatocellular carcinoma, a high expression of this gene was associated with increased 

stage, early tumour recurrence, and poor prognosis (Yuan et al., 2007). In our meta-

analysis comparing patients who relapsed vs. patients who did not relapse, this gene was 

found to be significantly up-regulated in patients who relapsed in four of the five 

experimental groups. 

PAK proteins are critical effectors that link Rho GTPases to cytoskeleton reorganization 

and nuclear signaling. The PAK3 gene has a significant role in the nervous system and 

mutation of this gene in involved in many diseases of the Central Nervous Sytem (Boda 

et al., 2004). PAK3 (p21 protein (Cdc42/Rac)-activated kinase 3) contributes to synapse 

formation and plasticity in the hippocampus (Boda et al., 2004). PAK3 mutations result 

in a specific form of X-linked mental retardation with fairly constant clinical features 

(Rejeb et al., 2008). However, there is limited understanding of this gene‟s involvement 

in cancer. Our results show that the expression of this gene is significantly up-regulated 

in patients who relapsed in four of the five independent studies. PAK1 phosphorylates 

histone H3 and affects the Pak1-histone H3 pathway and mitotic events in breast cancer 

cells (Li et al., 2002). PAK1 induces RAS transformation and that is essential for RAS-

induced up-regulation of cyclin D1 during the G1 to S transition (Nheu et al., 2004). 

Members of the FOS family (c-FOS, FOSB and its smaller splice variants, Fra-1 and Fra-

2) dimerise with Jun proteins to form the AP-1 transcription factor complex. Our study 

identified two members of AP-1 transcriptional factor (FOS and FOSB) to be down-

regulated in breast cancer patients who relapsed. FOS was down-regulated in four of the 

five experimental groups and FOSB was down-regulated in three of the five experimental 

groups. FOSB expression is necessary for normal proliferation and differentiation of 

mammary epithelial cells, and reduced FOSB protein levels in tumors has been found to 

be correlated with high grading, ER-negative and PR-negative, and high HER2/neu 

expression (Milde-Langosch et al.,  2003). A previous study (Milde-Langosch et al., 

2004) has reported that high FOSB levels are associated with high expression of MMP1, 
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MMP9, PAI-1 and uPAR protein in clinical models and over-expression of the gene 

increased invasion in the MCF-7 cell line.  

Meta-analysis for prognostic makers across various studies identify different sets of 

signatures and are mostly linked to proliferation This is because various mechanisms of 

cancer progression e.g ER+, ERBB2, have effects on increased cellular proliferation 

(Wirapati et al. 2008). The KIAA0101 gene was common to our meta-analysis and the 

meta-analysis performed by this group, with KIAA0101 up-regulated in the poor survival 

group in both studies. 

In conclusion, our results identified many genes up and down-regulated in aggressive 

disease. HSPB1, KIAA0101 and PAK3 were up-regulated in patients who relapsed. AP1 

transcriptional factor genes FOS and FOSB were down-regulated in patients who 

relapsed. 

4.10.3 Comparison our in-house result with OncotypeDx 

The in-house genelist comparing patients who relapsed vs. patients who did not relapse 

was compared with the expression of the 16 genes of OncotypeDx (Paik et al., 2004), a 

diagnostic kit used to assay the long term survival and the possible benefit from 

chemotherapy. AURKA, BIRC5 ERBB2, were up-regulated in both the studies in the bad 

prognosis group (patients who relapsed in our study and positive association with 

recurrence on OncotypeDX ) and ESR1, SCUBE2 were up-regulated in both the studies 

among the good prognosis group (patients who did not relapse in our study and negative 

association with recurrence). In our study, ERBB2 was also up-regulated in lymph node-

positive patients and ESR1 was down-regulated in lymph node-positive patients. Of the 6 

genes common to our analysis, all followed the same trend and were either associated 

with good or bad prognosis (section 3.2.2) indicating good aggrement among the two 

results.  

In conclusion, 37.5% of the genes were common to both the studies. Of the 6 genes 

common to both studies all followed the same trend of expression indicating good 

aggrement among the two results.  
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4.10.4 Comparison our in-house result with MammaPrint 

The relapse genelist above was also compared with that of MammaPrint (van 't Veer et 

al.,  2002). NMU (neuromedin U), GMPS (guanine monphosphate synthetase), MELK 

(maternal embryonic leucine zipper kinase) were up-regulated in both the studies 

(patients who relapsed in our study and positive association with metastasis on the 

MammaPrint genelist) and PECI (peroxisomal D3, D2-enoyl-CoA isomerase), SCUBE2 

(signal peptide, CUB domain, EGF-like 2) was down-regulated in both the studies 

(patients who did not relapse in our study and negative association with metastasis on the 

MammaPrint genelist) (section 3.2.3). No common genes were found when comparing 

with lymph node status with the genelist of MammaPrint. This may be due to differences 

in microarray platforms and differences in the sample and the way the specimens were 

selected. Also, van 't Veer et al., (2002) identified genes responsible for distant 

metastasis, while in our study relapse and lymph node metastasis were used as prognostic 

criteria. Similar conclusions were also drawn by Wang et al., (2005) as there was an 

overlap of only 3 genes among their genelist and MammaPrint genes.  

In conclusion, there were not many genes common to both studies. Of the few genes 

common to both genelist, they followed the same trend of expression. Our study does not 

compare very well with the van 't Veer et al.,  (2002) study due to the differences in the 

platform and clinical parameters used. In our study the clinical parameter was Relapse, 

whereas the clinical parameter used in the van 't Veer et al.,  (2002) study was distant 

metastasis.  

4.11 Relapse prediction 

 

 One of the many applications of microarrays is their potential use as 

prognostic/diagnostic kits. The success of these kits depends on the accuracy with which 

they can predict the prognosis of the patients. Many such algorithms can be used used for 

such types of classification. K-nearest neighbour (KNN) considers all specimens in an m-

dimensional space, where m is the number of variables and uses a distance metric to 

group them based on similarity or dissimilarity (Gregory et al., 2008). Probabilistic 

neural networks belong to the family of Radial Basic Function (RBF) networks. The 



 317 

algorithm is very similar to a feed-forward neural network with one hidden neuron. The 

input is directly passed to the hidden layer without weights and a Gaussian density 

function is used as an activation function. The interconnecting weights are optimized 

using a least square optimization algorithm (Haykin, 1998). Linear discriminate analysis 

LDA classifies the data using the linear combination of features which best separate two 

or more classes of objects (Geoffrey, 1992). Support vector machines (SVM) construct a 

hyper plane in space so as to maximally divide the margin between the different types of 

objects (Haykin, 1998). Ensemble classification methods works on combining different 

classification methods to improve the classification accuracy. The challenge in such types 

of classifier is to analyse the results coming from different classifier to get the optimum 

results. 

 A back propagation algorithm was implemented for accurate prediction of relapse in 

breast cancer patients. One hundred and sixty two differentially-regulated genes (p ≤ 

0.001) were identified among patients who relapsed and patients who did not relapse. 

These genes were used for training the network. To test the accuracy of the system, 

leave-one-out cross validation was used. The model predicted relapse to an accuracy of 

97.87% (100% for patients who relapsed and 96.2% for the patients who did not relapse) 

with a cut-off of 0.75 for positive examples and 0.25 for negative examples i.e patients 

with score above 0.75 were considered to relapse and patinets with score below 0.25 were 

considered not to relapse. Patients whose score fell between 0.25 and 0.75 were classified 

as undetermined. However, there were 11 specimens out of total of 104 which could not 

be classified. When all samples were classified, the accuracy was 93.33% (93.7% for 

patients who relapsed and 92.9% for the patients who did not relapse). Support vector 

machine (SVM) analysis was also used to classify the same data. SVM classified the 

relapse event with an accuracy of 93.33% which is same as that of back propagation, 

when all samples were classified. 

A classifier using a 70 gene signature was able to predict distant metastasis with an 

accuracy of 83% in node-negative breast cancer (van 't Veer et al.,  2002). This was later 

developed as the MammaPrint kit for detection of distant metastasis for lymph node-

negative breast cancer patients under 61 years of age with tumors of less than 5cm. An 
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independent classifier using back propagation and support vector machines was 

constructed using van 't Veer et al.,  (2002) data. Comparing patients who developed 

distant metastasis and patients who did not, a total of 117 DE genes (p ≤ 0.001) was used 

to generate the classification model. In leave-one-out cross validation, a back propagating 

algorithm was able to predict distant metastasis with an accuracy of 89.70% (82.7% for 

patients who developed distant metastasis within 5 years and 94.8% for the patients who 

did not) when a cut-off score of 0.75 for positive examples and a cut-off score of 0.25 for 

negative examples was taken. This resulted in 10 samples out of 78 samples as 

unclassified. However, when all samples were classified, the prediction accuracy was 

87.17% (82.3% for patients who developed distant metastasis within 5 years and 90% for 

the patients who did not). Similar analysis using support vector machines had a prediction 

accuracy of 82.05% in leave-one-out cross validation model.  

Many other studies have used gene expression data to develop prognostic models using a 

variety of gene selection techniques and classification algorithms. Huang et al., (2003) 

developed a probability-based classifier using metagene to predict lymph node metastasis 

and recurrence with an accuracy of 90%. Oncotype DX is a PCR based diagnostic kit to 

calculate the recurrence score for individual patients who have no lymph node involved 

and are ER-positive (Paik et al.,  2004; Sparano and Paik 2008). This kit is based on the 

expression of 16 genes and 5 control genes using PCR. The output of the analysis is a 

recurrence score. The higher the recurrence score, the higher is the probability of 

recurrence of the disease. Based on these scores, patients are classified as low risk, 

intermediate risk and high risk with the recurrence rate of 6.8, 14.3 and 30.5% 

respectively. 

Karlsson et al., (2008) studied 46 node-negative tumors with the aim of developing a 

classifier to distinguish high risk and low risk breast cancer patients. A t-test was used to 

identify DE genes among the high and low risk patients. A total of 51 genes (p<0.001) 

were used to build a voting feature interval classifier and correlation based classifier with 

a prediction accuracy of 96 and 89% respectively in leave-one-out cross validation study. 
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Our results based on the comparative analysis on same data indicate that back-

propagation is an excellent method of developing a classification model on both 

Affymetrix and cDNA microarray data and can outperform Support Vector Machines 

based classifiers.  

The gene signature along with the back propagation training algorithm has a potential to 

be developed as a diagnostic assay. The models performed better than the existing 

diagnostic kit such as MammaPrint and OncotypeDx. The analysis also indicates that the 

gene signature generated and used in our study is more informative because of the high 

accuracy obtained. This may be due to the fact that the chips utilised to generate this data 

were Affymetrix whole-genome U133 Plus2.0 chips, which contain vastly more 

transcript data than was used to identify the other two gene signatures. 

In conclusion, the study presented here demonstrates the suitability of back-propagation 

algorithm as an efficient classifier for gene expression data with potential of its use for 

diagnostic/prognostic kits. Using this classifier, we were successful in predicting relapse 

with an accuracy of 97.87%.  

4.12 Identification and functional validation of Ropporin 

Our in-house microarray data indicated that Ropporin is over-expressed in patients who 

relapsed (overall), relapsed within 5 years and did not survive beyond 5 years. In the 

early stages of annotating the transcript, it was realised that there are two genes, ROPN1 

and ROPN1B with a very high homology (97% on DNA sequence and 95% on protein 

sequence). Both genes are located on chromosome 3 (ROPN1: 3q21.1; ROPN1B: 

3q21.2). Because of their close proximity and sequence homology, it is likely that one 

arose from the other by duplication followed by random mutations during the 

evolutionary process.  

Ropporin expression was first detected in testis and is localized in the principal piece and 

the end piece of sperm flagella and is induced at late stage of spermatogenesis (Fujita et 

al., 2000). Rhophilin protein is localised in the outer surface of the outer dense fibre of 

sperm. Ropporin is localized in the inner surface of fibrous sheath of sperm. Rhophilin 
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and Ropporin together interact with small GTPase Rho which acts as a molecular switch 

that regulates various cellular processes such as cell adhesion, motility, gene expression 

and cytokinesis (Fujita et al., 2000).   

Sperm motility and acrosome (process at the anterior end of a sperm cell that produces 

enzymes to facilitate penetration of the egg) is dependent on actin polymerization where 

AKAP (A-kinase anchor protein) and RHOA (Ras homolog gene family, member A) 

interacting proteins play an important role. The phosphorylation of AKAP3 increases its 

interaction with RHOA-interacting proteins and Ropporin (Fiedler, Bajpai and Carr 

2008). Mutants lacking RSP11 (radial spoke protein), an ortholog of Ropporin in the 

flagellum of Chlamydomonal reinhardtii demonstrated impaired and sporadic motility 

(Yang and Yang 2006). 

Ropporin shares sequence similarity with three other proteins, ASP, SP17 and CABYR, 

all of which are localised in sperm flagella. All of them contain a highly conserved 

dimerization/docking (R2D2) domain, suggesting that all of these proteins interact with 

all AKAPs. All of these proteins are also expressed in motile cilia indicating that these 

proteins are vital for sperm and cilia (Newell et al., 2008).  

However, its expression has recently been detected in multiple myeloma, chronic 

lymphocytic leukaemia and acute myeloid leukaemia (Li et al., 2007b). Ropporin gene 

expression in tumour cells is associated with the high titer IgG antibodies against 

Ropporin. Because of its restricted expression in normal tissue and immunogenicity of 

the protein to the autologous hosts, this molecule may be a good target for 

immunotherapy (Li et al., 2007a).  

 

4.12.1 Affymetrix probe annotation for Ropporin 

On the Affymetrix U133 Plus2.0 chip, there are a total of four transcripts for Ropporin. 

According to the Affymetrix guidelines, 233203_at is specific probes for ROPN1 while 

the other three (224191_x_at, 231535_x_at, 220425_x_at) are non-specific probes. The 
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“_x_at” probe sets contain some probes that are identical, or highly similar, to unrelated 

sequences. These probes may cross-hybridize with sequences other than the main target. 

The sequence of each probe was obtained from NetAffx and annotated using BLAST. 

Recently a reference sequence identifier has been provided for ROPN1 and ROPN1B. 

RefSeq annotation integrates information from various sources, and represents a 

consensus description of the sequence and its features (Pruitt, Tatusova and Maglott 

2007). In the previous Genbank build there was no reference sequence available for these 

two genes and only early accession numbers were allocated to sequences. The Affymetrix 

U133 Plus2.0 chip was designed on the earlier Genbank build and therefore the probeset 

was designed on early submission of this gene which was poorly defined and annotated. 

The BLAST result of 233203_at did not have a hit with the reference sequence of either 

ROPN1 or ROPN1B. This indicated that the probe sequence of 233203_at may not 

represent Ropporin. However, it did have a hit with ROPN1 sequence gi|6599263| (not 

the reference sequence) indicating the possibility of more isoforms of Ropporin. Early on 

in our analysis, the assumption was made that only ROPN1B, and not ROPN1 is 

expressed in our in-house study. This was because the NetAffx-defined unique probeset 

for ROPN1 (233203_at) did not report any expression from the microarrays, while the 

non-specific ROPN1B probeset (220425_x_at) did yield a reproducible signal intensity. 

Following the outcome that 233203_at cannot be considered as a valid probe for ROPN1, 

two other probes were selected to represent ROPN1 and distinguish it from ROPN1B. A 

previous study, (Gautier et al.,  2004) analysed U133A chip annotation and documented 

that 64% of the Affymetrix annotation has discrepancies with current annotation due to 

the fact that while the probes on Affymetrix arrays remain the same for several years, the 

biological knowledge concerning the genomic sequences keeps changing. The BLAST 

result on the sequence of 231535_x_at indicated this probe to be a 100% match to the 

reference sequence of ROPN1 and 97% match to the reference sequence of ROPN1B. 

Therefore 231535_x_at was used to represent ROPN1. A BLAST result on the sequence 

of 224191_x_at indicated this probe to be a 100% match to the reference sequence of 

ROPN1B and 99% match to the reference sequence of ROPN1. Therefore, probeset 

224191_x_at was not used to represent either ROPN1 or ROPN1B. The BLAST result on 

the sequence of 220425_x_at indicated this probe to be a 100% match to the reference 
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sequence of ROPN1B and 97% match to the reference sequence of ROPN1. Therefore, 

probeset 220425_x_at was used to represent ROPN1B. On analysing our in-house 

datasets, it was observed that there was no expression of 233203_at in any of the 

samples, however, there was a substantial amount of expression of the other probesets. 

The same was true for a number of the publicly available breast and melanoma datasets. 

However, for multiple myeloma, all the probe sets (including 233203_at) showed varying 

levels of expression in many of the samples indicating a possibility of more isoforms of 

this gene.  

For the microarray analysis, probeset 231535_x_at was used to represent ROPN1 and 

220425_x_at to represent ROPN1B. However, there was no way to distinguish how much 

each one cross-hybridises to their respective variants.  

4.12.2 Ropporin expression in our in-house breast dataset. 

ROPN1 was 4.97-fold and ROPN1B was 5.06-fold up-regulated in patients who relapsed 

compared to patients who did not relapse. ROPN1 was 6.81-fold and ROPN1B was 7.83-

fold up-regulated in patients who relapsed within 5 years compared to those who 

remained disease free for 5 years. ROPN1B (220425_x_at) was not expressed among 

54/57 (94.7%) of the patients who did not relapse, however it was expressed in 13/48 

(27.1%) of the patients who did relapse based on the cut-off of 100 Affymetrix unit. 

Similarly, ROPN1 (231535_x_at) was not expressed among 53/57 (92.9%) of the patients 

who did not relapse, however, it was expressed in 14/48 (29.1%) of the patients who did 

relapse.  

A high expression of ROPN1 and ROPN1B was observed in one of the sub-clusters 

enriched with ER-negative specimens. This cluster had the worst survival in comparison 

to other clusters.  

4.12.3 Confirmation of Ropporin expression by qPCR  

Using qRT-PCR on the clinical breast specimens, it was possible to confirm the high 

expression of Ropporin in the breast specimens used to generate our in-house dataset. 

Primers for both genes were designed and tested for their specificity in detecting the two 
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genes using plasmids with the ROPN1 and ROPN1B genes cloned in. While ROPN1 

primers were very specific in detecting ROPN1 gene, ROPN1B picked up ROPN1 with 

100-fold less specificity than that of ROPN1B. Therefore, it was possible to distinguish 

between the two genes, once both qRT-PCR reactions were run on all assayed samples. 

qRT-PCR was performed on 94 of the clinical specimens from our in-house study using 

the specific primers for ROPN1 and ROPN1B. There was no RNA available for the rest 

of the clinical specimens. ROPN1 was found to be 2.33-fold (baseline mean 2.39; 

experimental mean 1.81) down-regulated in patients who relapsed, whereas ROPN1B 

was found to be 6.28-fold (baseline mean 1.02; experimental mean 11.37) up-regulated in 

patients who relapsed. ROPN1B qRT-PCR results are in agreement to the results from 

microarray result, however, the results from ROPN1 qRT-PCR contradicts the findings 

from our microarray study. With no way to predict or estimate the amount of cross-

hybridization of the Affymetrix probes, the results from qRT-PCR were considered to be 

a more accurate assessment of ROPN1 and ROPN1B expression in these samples. 

Previous studies have not tried to distinguish between the two genes (both usually 

referred to as Ropporin). The studies which do mention the ROPN1 gene do not seem to 

be specific for ROPN1 (Carr et al., 2001; Li et al., 2007; Newell et al., 2008). PCR 

primers from a study of Newell et al., (2008) were blasted using primer BLAST. The 

primers picked up the ROPN1B gene instead of the ROPN1 gene. Performing the same 

analysis on primers from two other studies (Carr et al., 2001; Li et al., 2007) picked up 

both genes. The obvious reason for these differences is the constantly evolving 

annotation of Genbank. However, our primers were specific in picking up the differences 

among the two genes. The primer BLAST results were highly specific in picking up their 

respective genes (results based only on forward and reverse primer).  

4.12.4 Functional validation using in-vitro cell line models 

Since the gene is expressed in sperm tail and cilia, both of them involved in motility, a 

hypothesis was made that in cancer it might be helping the cancer cells in moving from 

their primary site (via invasion) to a different location (metastasis).  
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Cancer cell line models were used to identify the functional role of this gene in cancer. 

With the hypothesis that this gene might play a crucial role in cancer cell motility and 

invasion; siRNA and over-expression studies were performed and followed by functional 

assays (motility and invasion) to investigate any possible association between this gene 

and invasion/cell motility. siRNA knockdown of ROPN1B in MDA-MB-435s showed a 

reduction in motility. siRNA knockdown of ROPN1 was not performed as expression of 

ROPN1 was substantially less than that of ROPN1B. No invasion assay results were 

available as the cell line did not demonstrated reproducible invasion. Similarly siRNA 

knockdown of ROPN1 and ROPN1B in M14 showed a decrease in invasion and motility. 

However, knockdown by ROPN1 siRNA was not very specific and based on the qRT-

PCR results, it knocked down the ROPN1B gene too. Thus the results could not 

positively associate ROPN1 to cell motility and invasion, however, as a whole (ROPN1 

and ROPN1B) can be positively associated with cancer cell motility. 

Results from over-expression studies were somewhat inconclusive. In M14 cells, over-

expression of ROPN1 and ROPN1B led to reduction in the protein content; with a 

consequent loss observed in invasion and motility. In MDA-MB-435s cells over-

expression of ROPN1 showed no increase/reduction in protein level, however there was 

reduction in motility. Cells over-expressing ROPN1B cDNA showed a reduction in 

protein level surprisingly and a reduction in motility.  

4.12.5 Ropporin expression in cancers and normal tissues 

The Ropporin gene is classified as cancer testis genes because of its expression in testis 

and not in other tissues, but with aberrant expression in cancers (Li et al., 2007). Cancer 

testis (CT) genes encode a heterogeneous group of immunogenic proteins (CT antigens) 

expressed almost exclusively in normal testis and in a percentage of tumors of various 

origin. On the basis of their tissue specificity and immunogenicity to its autologous host, 

CT antigens are considered promising targets for development of cancer vaccines 

(Simpson et al., 2005). Scanlan, Simpson and Old (2004), identified 44 CT gene families 

and studied their expression pattern in numerous cancer types. Bladder cancer, non-small 

cell lung cancer, and melanoma had high CT gene expression, breast and prostate cancer 
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had moderate CT gene expression while renal and colon cancer had low CT gene 

expression. CT gene expression was also observed among multiple myeloma 

(Condomines et al., 2007) and oesophageal carcinoma (Liang et al., 2005).  

In normal tissue, Ropporin is expressed in testis (Fiedler, Bajpai and Carr 2008, Fujita et 

al.,  2000; Li et al.,  2007; Newell et al.,  2008), fetal liver (Li et al.,  2007), motile cilia, 

liver, brain, pancreas and prostate (Newell et al.,  2008). Our analysis on publicly 

available datasets (GSE1133) confirmed the high expression of Ropporin in testis and 

marginal expression in brain and liver. Additionally, a high expression of this gene was 

found in ganglion and marginal expression found in skin, trachea and heart. High 

expression of Ropporin is also found in epithelial cells with motile cilia and this may be 

the reason for its detection in other tissue types with presence of motile cilia (Newell et 

al., 2008).  

Ropporin is detected in tumors of multiple myeloma (Li et al., 2007; Chiriva et al., 

2007), chronic lymphocytic leukaemia and acute myeloid leukaemia (Li et al., 2007). Our 

analysis on a publicly available dataset confirmed that Ropporin is widely expressed in 

multiple myeloma. Ropporin expression was also present in normal melanocyte (from 

normal skin) and the expression dramatically increases with the progress of melanoma; 

highest in metastatic growth phase melanoma and lymph node metastasis. 

4.12.6 Previous studies identifying Ropporin expression in breast cancer. 

Expression of Ropporin was also found in other publicly available breast datasets with 

aberrant expression observed in estrogen-negative breast tumors. Ropporin expression 

has previously been shown to be correlated with GABAπ expression which is associated 

with undifferentiated cell type and high grade of breast cancer (Symmans et al., 2005). 

Ropporin expression was also observed high in patients with breast cancer which 

developed bone metastasis (Smid et al., 2006). However, while these studies have 

previously linked Ropporin expression with breast cancer and metastasis, the gene was 

listed in these publications together with several other potentially important targets and 

was not specifically highlighted. This study is the first to functionally demonstrate a role 

for this gene in invasion in breast cancer. The identification of Ropporin as up-regulated 
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in these two studies has served to complement and strengthen our findings that the gene 

is actively involved in aggressive breast cancer.  

4.13 Conclusion  

Our study on clinical breast specimens and normal breast specimens has provided a deep 

insight to the biology of breast cancer. Our results identified groups of patients with 

similar expression profiles, the possible biology driving them and the subsequent clinical 

implications for those patients.  

Two unique groups of patients, previously un-identified by other studies with significant 

differences in survival were identified. A “good” prognosis group with a high expression 

of immune response-associated genes was demonstrated among the ER-negative group of 

patients. A group of patients with ER-negative tumors associated with a very poor 

prognosis has been shown to express high levels of the Ropporin gene. Over-expression 

of this gene was also observed in patients who relapsed vs. not. Using cell lines models, 

this study positively identified the involvement of ROPN1B in breast and melanoma 

cancer cell motility and invasion. The results also indicate that ROPN1 has a similar 

function, but because of the absence of very specific siRNA, this could not be proven.  

A prognostically-important genelist was used to develop a Neural Network back 

propagation model to predict the clinical outcomes. Using an identified set of 162 genes, 

the model was successful in predicting relapse with an accuracy of 97.8%.  

Comparing the gene expression profiles of Normal and Cancer specimens identified 

genes, functions and pathway differences associated with disease. TP53, along with cell 

cycle genes were up-regulated in cancer compared to normal specimens. Embryonic stem 

cell pathway genes were up-regulated in tumors indicating the possibility of impaired 

stem cell as origin of cancer. The fatty acid biosynthesis pathway was down-regulated in 

tumour vs. normal specimens. 

To get a deeper understanding of ER involvement in breast cancer and to mine genes 

which may play an important role in the ER metabolism, meta-analysis was performed on 
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an in-house dataset together with 5 public datasets. This analysis identified novel genes 

which had not been associated with the ER pathway. The nuclear receptor pathway was 

up-regulated in ER-positive tumors/cell lines. Mining for ESR1-correlated genes across a 

5897-member microarray chip dataset identified FOXA1, SPDEF, C1ORF34 and 

GATA3 expression to be highly correlated with ESR1. Our results also indicated that 

most of them are expressed together; however, individual expression can occur 

independently (except for SPDEF expression which seems likely to be dependent on 

FOXA1).  

4.13 Discussion of some peripheral research projects 

In the course of the PhD project, I became involved in two projects which were 

somewhat peripheral to the main thesis work. One involved a bioinformatics analysis of 

publicly available data sets, to evaluate how relevant cell line models might be to human 

tumors in vivo. The second involved an opportunity to take part in bioinformatics 

analysis of a unique data set on microarray analysis of basal cell carcinoma vs. normal 

skin. 

4.13.1 How Representative are cell line models of clinical conditions? 

Cell lines are widely used as models of in-vivo systems. However, limited studies have 

been done to establish whether these models accurately reflect in-vivo scenarios. A 

separate study carried out in our laboratory examined gene expression differences and 

similarities in a representative group of breast cancer cell lines and clinical specimens to 

estimate their approximate level of similarity and was published previously (Mehta et al.,  

2007). 

Cell lines grow under very tight and well-optimized conditions, with enough space to 

grow and divide. In comparison, tumors grow in a completely different environment and 

are influenced by a varied range of conditions. In this study, a clear segregation of the 

cell lines and clinical specimens by hierarchical clustering was demonstrated. This is in 

agreement with other similar studies where cell lines and clinical specimens tend to 

cluster separately from each other (Dairkee et al., 2004; Ross and Perou 2001). PCA also 
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demonstrated a clear separation of the two groups. A segregation of the clinical 

specimens into two smaller sub-groups was also observed, although the 

clinical/biological basis for this has not been determined here. An earlier experiment 

(Dairkee et al., 2004) also reported considerable scatter among primary tumour cultures 

and cell lines compared to normal breast specimens using PCA as a comparison tool. 

From the Genmapp analysis, cell cycle, mitosis, nuclear division, cell proliferation and 

other related functions are over-represented in cell line models in comparison to the 

clinical specimens, while functions related to immune response and defence response are 

over-represented in clinical specimens relative to cell lines. A recent study (Ertel et al.,  

2006), also reported that genes related to proliferation and cell cycle are over-represented 

in cell lines relative to clinical specimens, while cell communication, cell adhesion 

molecules and ECM-receptor interaction are down-regulated in cell lines compared to 

clinical specimens. Our study also indicated a decrease in expression of genes involved in 

cell adhesion in the cell lines compared to clinical specimens, although this data did not 

make it into the top ten ontologies.  

While the analysis outlined above identified the macroscopic broad-based differences 

between breast cancer cell lines and clinical specimens, it was considered useful to assess 

the similarity relationships of the cell lines and clinical specimens with regard to their ER 

status. It was hoped that while differences had been observed when comparing cell lines 

and clinical specimens directly, both cell lines and clinical specimens would cluster 

similarly when ER status was used as the criteria. Previous studies had demonstrated that 

both cell lines (Charafe-Jauffret et al., 2006) and clinical specimens (Sotiriou et al., 

2003) cluster largely on their ER status. To this end, unsupervised clustering of the cell 

lines and clinical specimens separately was carried out to determine if either group 

clustered according to ER status. However, while the cell lines largely clustered 

according to ER status, the clinical samples did not. This result indicated that, even at a 

single parameter scale, the differences between clinical specimens and their respective 

cell line models may remain considerable.  
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In conclusion, the findings reported here indicate that significant differences in gene 

expression between clinical conditions and their respective cell line models exist at both 

the large- and small-scale levels. A previous study (Dairkee et al., 2004) concluded that 

the results obtained from cell lines may act as good models for high-grade cancer, but 

may fail as useful models for most of the low- and medium-grade breast cancers. While 

our study does not indicate a specific clinical classification for which such cell line data 

may prove relevant, the data presented here demonstrate that these differences should be 

taken into account when extrapolating in-vitro cell line results to clinically-relevant in-

vivo systems. 

4.13.2 Basal cell carcinoma 

Basal cell carcinoma (BCC) is the most common skin cancer in humans. It is locally 

aggressive, invasive but rarely metastasises (Saldanha et al., 2004; Ionescu, Arida and 

Jukic 2006). Very few studies aimed at investigating the molecular mechanisms 

associated with BCCs have been published worldwide. Howell et al., (2005) analyzed 50 

BCC tumour specimens using cDNA microarrays and reported findings from their 

analysis of 1,718 transcripts. A separate study carried out in our laboratory analyzed gene 

expression of BCCs, compared to normal skin, using whole genome microarrays. 

Following extensive analysis of our data, a number of novel potential 

biomarkers/therapeutic targets for this disease were identified (O'Driscoll et al., 2006). 

In agreement with our findings, Howell et al.,  (2005) also reported gene transcripts 

including collagens (type V, alpha 1 & alpha 2; type IV alpha 1 & 2; type VII alpha 1), 

topoisomerase IIα, tumour-associated calcium signal transducer 1, profilin 2, calretinin, 

syndecan 2, and v-myc to be up-regulated in BCC compared to normal skin. Similarity 

was also observed between these two studies for transcripts down-regulated in BCCs 

compared to normal specimens. Examples of these include cystatin B, acetyl-Coenzyme 

acyltransferase 1, 3-hydroxy-3-methylglutaryl-Coenzyme A reductase, glutaredoxin, 

amyloid β (A4) precursor-like protein and cytochrome b-5. ADP-ribosylation factor 3 

was down-regulated by 1.67-fold in our study, but was up-regulated in the study by 

Howell et al., (2005). Glia maturation factor β was 1.42-fold up-regulated in our analysis 
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but Howell et al., (2005) reported it as down-regulated. These conflicting results may be 

due to different splice variants of these transcripts being detected by cDNA compared to 

oligo microarrays. It was also noted that the results that differed between our study and 

that of Howell et al., (2005) were generally transcripts <2-fold differentially-expressed 

between BCC and normal skin. Further comparisons between these studies cannot be 

performed as the fold change was not reported by Howell et al., (2005) and no 

information is publicly available on transcripts that were present on their microarray. 

Dys-regulation of the hedgehog and Wnt pathways is associated with the development of 

BCC (Rubin, Chen and Ratner 2005, Daya-Grosjean and Couve-Privat 2005). A tumour 

suppressor gene, patched homologue 1 (PTCH1) forms a part of the hedgehog signaling 

network (Cohen 2003) is found to be associated with the development of BCC (Boonchai 

et al.,  2000). Eleven-fold up-regulation of PTCH1, 7.39-fold up-regulation of gli2 and no 

significant change in shh expression levels was observed from our analysis of BCC 

compared to normal skin tissue. SMO (smoothened homolog) gene is associated with 

Hedgehog signalling heterotrimeric G proteins (Philipp and Caron 2009). GLI gene 

encodes a nuclear protein and binds to specific genes leading to transcriptional activity 

(Kinzler and Vogelstein 1990). The mechanism of action of PTCH1 is via binding to 

another transmembrane molecule smoothed (SMO) thereby suppressing intracellular 

signaling. Then sonic hedgehog (shh) binds to PTCH1 resulting in an uninterrupted 

signal transduction by SMO, via GLI transcription factors and subsequent activation of 

target genes, including members of the Wnt pathway (Yamazaki et al., 2001) and PTCH1 

(Cohen 2003). SMO is a protein with seven transmembrane domains that is distantly 

related to G-protein coupled receptors (GPCRs) (Ingham and McMahon 2001). Activated 

SMO stimulates transcription factors of the Cubitus interruptus (Ci) or GLI family 

inducing the expression of specific genes (King 2002). GLI transcription factors belongs 

to the Kruppel family of zinc finger proteins (Buscher and Ruther 1998).  

Increased PTCH1 mRNA levels have previously been reported in nodular BCC but 

undetectable in superficial BCC (Tojo et al., 1999); however detectable PTCH1 in both 

types of BCC was observed, with no significant difference in their respective expression 

values (t-test: p = 0.637). 
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PTCH1 is associated with tumour suppressor activity (Cohen 2003) and was found to be 

up-regulated in BCC compared to normal skin. The lack of tumour suppressor activity by 

PTCH1 may be due to lack of expression of its corresponding protein and/or lack of 

binding to SMO (not significantly different between BCC and normal skin). As PTCH1 is 

found to shuttle between the cell membrane and endocytotic vesicles in response to active 

hedgehog ligand, it is obvious that the expression of both mRNA and protein (at the 

relevant location, binding of SMO) is necessary to exert its tumour suppressor activity 

(Cohen 2003).  

Wnt signaling may be able to regulate a number of the aspects of the biology of tumour 

cells and thus contribute in several ways to the tumour phenotypes including 

proliferation. In our study there was significantly increased expression of a number of 

Wnt family members including Wnt5A (3.35-fold), in agreement with a study by 

Saldanha et al.,  (2004) where Wnt5A levels were increased in BCCs compared to 

surrounding skin; and Wnt6 (4.86-fold). Increased levels of Wnt ligand binding receptors, 

Frizzled D2 (8.94-fold), D7 (2.31-fold), and D8 (5.89-fold) and decreased levels of D4 (-

2.78-fold), were also found.  

Jun is a transcription factor involved in the Wnt pathway (Weeraratna 2005) and was 

found to be increased (2.34-fold) in BCCs compared to normal skin. Transcription factor 

associated with cancer including CHES1 (checkpoint suppressor 1) is involved in 

repressing expression of genes important for tumorigenesis (Scott and Plon 2005) and 

was differential-expressed in this study. CHES1 mRNA has been reported as down-

regulated in oral squamous cell carcinoma (Chang et al., 2005) and in hepatocellular 

carcinoma (Hong, Muller and Lai 2003). CHES1 mRNA levels were found to be 

significantly (-2.03-fold) down-regulated in BCC compared to normal skin. mRNAs 

involved in inducing apoptosis were also found to be down-regulated including CIDE and 

CARD15 which are 4.18-fold and 2.31-fold down-regulated in BCC compared to normal 

skin. 

Increased levels of ChgA in serum have been associated with poor prognosis/shortened 

survival for prostate cancer patients (Ranno et al., 2006). ChgA protein levels have been 
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proposed to assist in the diagnosis of Merkel cell carcinoma patients who may benefit 

from oncological therapy (Koljonen et al., 2005; Mount and Taatjes 1994; Carlei et al., 

1986). In this study, ChgA levels were found to be significantly (130.3-fold) up-regulated 

in BCCs compared to extremely low levels in normal skin specimens.  

In summary, our analysis has identified important genes, functions and pathways 

involved in normal skin transition to basal cell carcinoma. Wnt signaling pathway was 

found to be up-regulated in Basal cell carcinoma and may be potentially involved in 

transition of normal skin to basal cell carcinoma. 
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5.1 Hierarchical clustering analysis identified clinical heterogeneity in breast cancer 

To understand the clinical heterogeneity of breast cancer, two-way clustering analysis of 

the samples was performed. Various groups of samples and their association with various 

clinical parameters were identified. The important findings are summarised below. 

 The gene expression patterns of Normal specimens are very homogenous, 

whereas the gene expression patterns of breast tumors is highly heterogeneous. 

 Group of breast cancer (mainly ER-negative) tumour specimens exists whose 

expression pattern is closer to normal specimens than to most of the tumors.  

 Two ER-positive clusters were identified, one with low ER partner gene 

expression and the other with high ER partner gene expression. The cluster with 

high ER partner gene expression had a marginally better survival than the cluster 

with relatively low ER partner gene expression. 

 An ER-negative enriched cluster was identified. This cluster was highly 

heterogeneous. There were three distinct sub-clusters in this cluster. One sub-

cluster expressed high levels of the ERBB2 gene and patients in this group were 

linked to poor survival. The second sub-cluster of samples displayed over-

expression of immune response genes and the patients in this cluster were linked 

to improved survival. The third sub-cluster expressed high levels of the Ropporin 

gene and this sub-cluster was linked to poor survival.  

In conclusion, our gene expression profiling results identified various groups and sub-

groups of breast cancer and associated them with defined clinical parameters and 

outcomes. Our results identified new clusters which may have clinical relevance. 

5.2 Association of clinical parameters with genes, functions and pathways 

Various clinical parameters associated with tumour specimens such as ER status, LN 

status, Grade and Tumour size were compared in relation to gene expression, function 

and pathways. The important findings are listed below. 

 Cell cycle pathway genes were up-regulated in cancer specimens compared to the 

normal specimens. TP53, an important molecule in cell cycle regulation, was up-
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regulated in cancer when compared to normal specimens. Genes associated with 

the embryonic stem cell pathway were also up-regulated in tumors compared to 

normal specimens. The fatty acid biosynthesis pathway genes were down-

regulated in cancer compared to normal specimens.   

 Interleukin 4-induced gene (IL4I1) and CCL5 expressions progressively increased 

with increase in genomic grade, higher in Grade 3 tumors and lowest in Grade 1 

tumors. Both of these genes are related to immune response. 

 Ropporin gene expression was found to be enriched among patients who relapsed 

(overall), patients who relapsed within 5 years and patients who did not survive 

beyond 5 years. 

 SNIP and PCGF2 over-expression was linked to relapse, shorter survival and 

Lymph node-positive patients. 

In conclusion, the analysis identified important genes and pathways up- or down- 

regulated when comparing various clinical conditions. 

5.3 Comparing our in-house genelists with publicly available datasets  

Gene expression from 4 publicly available datasets and our in-house datasets were 

analysed for genes which may be involved in relapse. Additionally our results were 

compared with genes from OncotypeDx and MammaPrint. The important findings are 

listed below. 

 HSPB1, KIAA0101 and PAK3 were up-regulated in patients who relapsed in four 

out of the five cohorts. 

 AP-1 transcriptional factor genes FOS and FOSB were down-regulated in patients 

who relapsed. FOS was down-regulated in four out of five cohorts and FOSB was 

down-regulated in three out of 5 cohorts. 

 AURKA, BIRC5 and ERBB2 were up-regulated in patients who relapsed in our 

study and were also present on OncotypeDx as an indicator of bad prognosis. 

 ESR1 and SCUBE2 were down-regulated in patients who relapsed in our study 

and were also present on OncotypeDx as an indicator of good prognosis. 
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 NMU, MELK and GMPS were up-regulated in patients who relapsed in our study 

and were also present on MammaPrint as an indicator of bad prognosis. 

 PECI and SCUBE2 was down-regulated in patients who relapsed in our study and 

was also present on MammaPrint as an indicator of good prognosis 

In conclusion, our analysis identified the important genes HSPB1, KIAA0101 and PAK3 

to be up-regulated in patients who relapsed vs. those who did not relapse, and FOS and 

FOSB to be down-regulated in patients who relapsed vs. those who did not relapse. The 

NMU, GMPS, MELK, PECI and SCUBE2  genes were common to MammaPrint and our 

in-house study. AURKA, BIRC5, ERBB2, ESR1 and SCUBE2 were common to 

OncotypeDx and our in-house study. 

5.4 Meta analysis for estrogen receptor pathway genes using gene expression data 

Genes from 5 clinical and 1 cell line datasets were compared for differences in gene 

expression among ER-positive and ER-negative breast specimens and cell lines. 

Additionally gene expression profiles from 5897 microarray specimens were used to 

study the gene interaction network for ESR1 gene. The important findings are listed 

below: 

 ANXA9, ABAT, BTG2, C10orf116, C1ORF34, C6orf211, CA12, CELSR1, 

COX6C, CRIP1, CSAD, EEF1A2, ERBB3, ERBB4, ESR1, FOXA1, GATA3, 

GREB1, HSPB1, INPP4B, KIAA1467, KRT18, KRT19, KRT8, LASS6, MAPT, 

MCCC2, MKL2, MLPH, MYB, MYO5C, NAT1, NME3, RAB17, RGL2, 

RHOB, SEMA3F, SLC19A2, SLC22A5, SLC39A6, SLC7A8, SLC9A3R1, 

SPDEF, TFF1, TFF3, THRAP2, THSD4, TPBG, TSPAN13, VAV3, XBP1 and 

ZNF552 were found to be up-regulated in all the 6 experiments comparing ER-

positive specimens to ER-negative specimens 

 The Nuclear Receptors pathway genes (ESR1, AR, RARA, RORC and NR2F6) 

were over-expressed among the ER-positive specimens. 

 SFRP1, ANXA1, C10orf38, SLC43A3, PRNP, YBX1, LPIN1, TRIM2, MSN, 

COTL1, ODC1, TNFRSF21, YBX1, LPIN1, CEBPB, QKI, ENO1, FNDC3B and 
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CREB3L2 were found to be down-regulated in all the 6 experiments comparing 

ER-positive specimens to ER-negative specimens 

 Cell cycle and related pathways were over-expressed among the ER-negative 

specimens.  

 The Ropporin gene was found to be up-regulated in ER-negative patients in 3 out 

of 6 experiments studied, indicating Ropporin expression to be associated with 

ER-negativity. 

 GATA3, SPDEF, FOXA1 and C1ORF34 expression correlated with expression of 

ESR1 gene across 5897 specimens. All these genes were also up-regulated in ER-

positive specimens in the meta-analysis. 

 k-means clustering and correlation analysis indicated that all the genes expressing 

together is the most obvious result from this study, however individual expression 

can exist independent of each other except for SPDEF and FOXA1. 

 FOXA1 expression was independent of SPDEF; however SPDEF expression 

appeared dependant on FOXA1 as high expression of SPDEF only existed with 

the high expression of FOXA1 as revealed by correlation graph and k-means 

clustering. 

In conclusion, our study identified known and novel genes which are up- or down- 

regulated in ER-positive tumors compared to ER-negative tumors. The analysis also 

identified FOXA1, SPDEF, GATA3 and C1ORF34 expression to correlate with 

expression of ESR1. Furthermore, a dependency of SPDEF expression on FOXA1 

expression was also identified. 

5.5 Development of MLPERCEP, a software tool for predicting relapse in breast 

cancer 

As part of the thesis work MLPERCEP (Multiple layer perceptron) implementing Back 

propagation Neural network algorithm was developed to predict relapse in breast cancer 

patients. The algorithm was implemented on our in-house dataset and publicly available 

datasets. The results were then compared to the results obtained from support vector 

machines. The important results are listed below.  
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 MLPERCEP is designed with user friendly graphics user interface and is 

available at http://www.bioinformatics.org/mlpercep/ 

 MLPERCEP can be used for gene expression arrays, or any other type of data 

which can be classified as two groups. 

 Using 162 genes (p<0.001 comparing patients who relapsed vs. patients who did 

not relapse), a classifier was developed to predict relapse in breast cancer patients. 

The classifier was able to predict relapse with an accuracy of 93.3% in a leave-

one-out cross validation study. The same accuracy was obtained using support 

vector machines. However, with more stringent cut-off, the prediction accuracy of 

back propagation algorithm was 97.9%, however 10.5% of the patients could not 

be classified.  

 Data from Van‟t Veer et al.,  (2002) was used to develop a similar classifier and 

access the accuracy of the system. 117 genes (p<0.001 comparing patients who 

developed distant metastasis vs. patients who remained disease-free) was used to 

develop the classifier. The classifier was able to predict the outcome with an 

accuracy of 87.2% in a leave-one-out cross validation study. Using support vector 

machines the prediction accuracy was 82.05%. However with more stringent cut-

off, the prediction accuracy of back propagation algorithm was 89.7% and 12.8% 

of the patients could not be classified. This analysis indicated that back-

propagation based classifier can outperform SVM classifiers. 

In conclusion, a back propagation algorithm was successfully developed as a user-

friendly software package which can be used to develop a prognostic model for breast 

cancer. The results generated were at par or better than Support Vector Machines in 

predicting relapse and distant metastasis in two of the datasets tested. Our classifier was 

better than existing diagnostic kits and has the potential to be considered for development 

of a diagnostic kit.  

 

http://www.bioinformatics.org/mlpercep/
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5.6 Functional analysis on Ropporin 

Ropporin was over-expressed in patients who relapsed compared to patients who did not 

relapse. This gene was also over-expressed in patients who relapsed within 5 years, 

patients who did not survive beyond 5 years and ER-negative specimens. A follow up 

study using in-silico and in-vitro models was performed to access the prevalence and 

functional role of this gene. The important findings are listed below: 

 Our in-house microarray study indicated that Ropporin gene was significantly 

up-regulated in patients who relapsed, patients who did not survive beyond 5 

years, patients who relapsed within 5 years and patients with ER-negative 

tumors. Of the 6 other publicly available breast cancer datasets analysed, 

Ropporin was found to be over-expressed in 3 datasets among the ER-

negative specimens. 

 Ropporin expression was found to progressively increase with melanoma 

progression and was highest in metastatic growth phase melanoma and lymph 

node metastasis. Ropporin expression was high in many of the melanoma cell 

lines and low in melanocytes. 

 From analysis of the multiple myeloma dataset, Ropporin expression was 

found highly expressed in multiple myeloma patients. 

 In normal cells, observation of high expression of Ropporin was limited to 

testes and cervical ganglion while marginal/low expression was observed in 

heart and liver. 

 M14 was found to have nearly equal amounts of ROPN1 and ROPN1B. 

siRNA knockdown of ROPN1 and ROPN1B in this cell line showed reduction 

in invasion and motility. Over-expression of ROPN1 and ROPN1B in this cell 

line showed reduction in protein levels with an associated reduction in 

invasion and motility. 

 MDA-MB-435s was found to have high expression of ROPN1B and low 

expression of ROPN1. siRNA knockdown of ROPN1B in this cell line 

showed reduction in motility. Over-expression of ROPN1 in this cell line 
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showed reduction in motility. Over expression of ROPN1B in this cell line 

showed a reduction in protein and marginal reduction in motility.  

 MDA-MB-231 does not express ROPN1 or ROPN1B. Over-expression of  

ROPN1B showed reduction in invasion in this cell line 

In conclusion, Ropporin over-expression was linked to breast cancer patients who 

relapsed. The gene was also linked to disease progression in melanoma. siRNA 

knockdown positively associated Ropporin gene to be involved in cancer cell motility 

and invasion. There is potential of targetting Ropporin molecule as theureupetic drug for 

a subset of breast cancer and melanoma and possibly multiple myeloma.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 341 
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6.1 Validation of novel groups of specimens in independent studies 

Our in-house study identified clusters of samples correlating with varying degrees of 

survival and other clinical parameters. Our study identified two novel groups of 

specimens; a “Poor survival group” expressing high levels of the Ropporin gene and a 

“Good survival group” expressing high levels of immune response genes. Future work 

would involve validating these results across other available datasets and to integrate this 

information in a prognostic model for Estrogen receptor-negative breast specimens, with 

the potential to develop this knowledge in a diagnostic/prognostic kit. 

6.2 Diagnostic models  

Our results have demonstrated the suitability of Neural Network models as predictive 

models for clinical outcomes for breast cancer using our in-house generated patient 

dataset. Future work would include validating these findings in independent studies and 

extending the model to predict the therapeutic options and treatment regimens that would 

be best for breast cancer patients. This will incorporate information from the future 

chemosensitivity and resistance profiles and their relation to gene expression profile. The 

information will be integrated in Neural Network architecture to provide personalised 

information for the individual patients based on tumour gene expression profiles.  

6.3 Validation of gene interaction network 

Our study identified a gene interaction network for ESR1 gene using a 5897-member 

chip dataset. GATA3, SPDEF, FOXA1 and C1ORF34 were identified to correlate in 

expression to ESR1. Other than C1ORF34 for which the function is not known, the 

GATA3, SPDEF and FOXA1 are all transcriptional factors indicating their involvement 

in the ER metabolism. Understanding their complex interactions may help in better 

understanding of the ER metabolism and lead to a deeper insight in the disease 

progression of ER-positive cancers. A future aim would be to identify transcriptional 

factors influencing expression of these genes and the way they affect other genes.  
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A strong dependency of SPDEF expression on FOXA1 was inferred from the microarray 

results. A lab validation using siRNA technology would validate the in-silico results. 

SPDEF expression reduction with knockdown of FOXA1 would confirm this observation 

and the analysis methodology for mining high throughput microarray data.   

6.4 Ropporin as biomarker and targeted therapy 

Our results identified the Ropporin gene to be over-expressed among the breast cancer 

patients who relapsed. A high expression of this gene was correlated with melanoma 

progression and observed in multiple myeloma. Functional analysis identified the gene to 

be linked to cancer cell motility. Because of the limited expression of this gene in normal 

tissue and its antigenic property to its autologous host, such types of cancer can be 

targeted for immunogenic therapy. Future aim would be to develop technology to target 

Ropporin-positive tumors using immunogenic therapy as the expression of this gene is 

localised to sperm.  

Since the expression of this protein is very restricted in normal tissue with high 

expression in some metastatic cancers, detection of this protein or RNA in tumors could 

help determine the aggressive behaviour of cancer. There is also potential to look for the 

RNA and protein in serum and that can be developed as potential biomarker for detection 

of certain types of cancer (multiple myeloma, melanoma and a sub-set of breast cancer). 

The study by Li et al., (2007) has identified the Ropporin mRNA in multiple myeloma 

patients. Future work would involve analysing large number of tumors and serums 

samples from breast, melanoma and multiple myeloma patients to establish the 

prognostic and predictive value of Ropporin expression.     
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