

Presentations & Demos of the "Curiosity Cloning" Project

Dario Izzo, Christos Ampatzis, Marek Ruciński, Touradj Ebrahimi, Ashkan Yazdani, Thien Ha-Minh, Frédéric Dufaux, Alan F. Smeaton, Peter Wilkins and Graham Healy

Email: alan.smeaton@dcu.ie

Presented at the Workshop on "Brain Machine Interfaces for Space Applications: Enhancing Astronaut Capabilities", European Space Agency, Noordwijk (The Netherlands)

Introduction

- BCI rapidly expanding area
- Utilises specialist hardware
- Consumer (< \$1000 USD) -> Professional (\$50k+)
- DCU's focus:

What can be achieved with approx \$1000 USD hardware?

Overview

- Apparatus
- Experimental Methodology
- Experimental Outcomes
- Conclusions

Apparatus

- EEG Equipment:
- 'Pendant EEG' http://www.pocket-neurobics.com/
- 2 Channel device, 254 Samples Per Second, 12-bit resolution. Operation is wireless, with USB receiver.
- 'Daisy-Chained' 2 devices together to create 4-node device, with joint mastoid reference.
- Custom written device driver.

Apparatus

UNIVERSITY • TYNDALL NATIONAL INSTITUTE

Experimental Methodology

- For Oddball style experiments, subjects required to count number of oddballs observed.
- Subjects asked to look at fixation cross on screen, remain still and to refrain from blinking where comfortable.
- Expert advice: Node placements according to 10-20 system, at sites Pz, Cz, P3 and P4. Intention to capture most data from P3 ERP.

Experimental Methodology

Experimental Methodology

- Signal Processing (per channel), generalized approach for cross-subject application:
- Bandpassed Ohz-14hz, region 220ms-810ms, 14 samples.
- FFT from region 220ms-620ms, 5 features extracted in range 1hz-15hz, 3hz steps.
- Low frequency sampling in range 0hz-5hz for region 220ms –
 1000ms, 5 features extracted.
- Total features per channel: 24. Total features: 96.
- Time offset is from stimulus presentation time.

Experiments

'Reliability vs. Speed'

- See how far we can push a 4 node setup.
- Stimulus presentation rates 500ms -> 50ms.
- Dataset: ESTEC Rocks, Subjects: 4

• 'Expert vs. Non-Experts'

- Determine if it was possible to detect 3 classes of image, oddball, nonobvious oddball, non-oddball.
- Dataset: Nanomaterials Images (similar visually to heatmap).
- Subjects: 6 (5 'non-expert', 1 'expert' (ACT-ESA)).

SenseCam

- Similar to previous, determine differences in detection between 'expert' & non-expert, but on natural images.
- Dataset: SenseCam images from one subject.
- Subjects: 5 (4 'non-expert', 1 'expert' (DCU)).

SenseCam

SenseCam

- SenseCam personal wearable camera, capturing up to 3000 personal images per day.
- Presents information management research challenges, involving event segmentation, indexing and retrieval

Evaluation

Two fold evaluation criteria:

- 1. Creation of 'Grand Average' ERP signatures, to determine if we are capturing responses to different stimulus.
- 2. Creation of discriminative classifiers (SVM) to determine if signals can be captured and classified on 4 node setup. Evaluation metrics AUC & ROC.

Results

Reliability vs. Speed:

Grand Averages – dashed line = oddball stimulus.

Subject 'a': 1000ms

Subject 'b': 50ms

Results

'Expert vs. Non-Experts'

- 3 Classes of stimulus, oddball, non-obvious oddball, non-oddball.
- Of 6 subjects, the expert & 2 non-experts able to distinguish 3 classes, based upon grand averages.
- Classification accuracy for these 3 subjects around
 0.61-0.64 AUC for remaining 3 performance close to random.

Expert Subject: Oddball vs. Non-Oddball

Expert Subject: Oddball vs. Non-Obvious Oddball

Results

SenseCam Experiments:

- More difficult than anticipated.
- Generation of multiple ERP's such as N170 generated in response to faces, hampered classification as could be detecting different ERP's.
- More careful selection of dataset.
- Resolution of more nodes would be useful.

Conclusions

- 4 Node setup is capable of capturing 'Oddball' stimulus events, ideally around 300ms.
- Generation of data for classification requires careful experimental parameter selection.
- Is theoretically possible to capture the differences between subjects as to what is of interest, aka 'curiosity cloning', however is dependent on dataset.
- Great variability between subject long term goal to create generalized classifier.