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Abstract

The dynamics of the equal-time cross-correlation matrix of multivariate financial time series
is explored by examination of the eigenvalue spectrum over sliding time windows. Empirical
results for the S&P 500 and the Dow Jones Euro Stoxx 50 indices reveal that the dynamics of
the small eigenvalues of the cross-correlation matrix, over these time windows, oppose those of
the largest eigenvalue. This behaviour is shown to be independent of the size of the time window
and the number of stocks examined. A basic one-factor model is proposed, which captures the
main dynamical features of the eigenvalue spectrum of the empirical data. Through the addition
of perturbations to the one-factor model, (leading to a market plus sectors model), additional
sectoral features are added, resulting in an Inverse Participation Ratio comparable to that found
for empirical data.
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1. Introduction

In recent years, the analysis of the equal-time cross-correlation matrix for a variety
of multivariate data sets such as financial data [1–8], electroencephalographic (EEG)
recordings [18,19], magnetoencephalographic (MEG) recordings [9] and others, has been
studied extensively. In particular, Random Matrix Theory (RMT) has been applied to
filter the relevant information from the statistical fluctuations inherent in empirical cross-
correlation matrices, constructed for various types of financial time series [1–8]. By com-
paring the eigenvalue spectrum of the correlation matrix to the analytical results obtained
for random matrix ensembles, significant deviations from the RMT eigenvalue predictions
are said to contain genuine information about the correlation structure of the system.
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This genuine information has been used to reduce the difference between the predicted
and realised risk of different portfolios.

Several authors have suggested recently that there may, in fact, be some real correlation
information hidden in the RMT defined random part of the eigenvalue spectrum. A
technique, involving the use of power mapping to identify and estimate the noise in
financial correlation matrices, has been described [10]. This power mapping allows the
suppression of those eigenvalues, associated with the noise, to reveal different correlation
structures buried underneath. The relationship, between the eigenvalue density c of the
true correlation matrix, and that of the empirical correlation matrix C, was derived to
show that correlations can be measured in the random part of the spectrum [11,12]. A
Kolmogorov test was applied to demonstrate that the bulk of the spectrum is not in the
Wishart RMT class [13]. In this paper, the authors demonstrate that the existence of
factors such as an overall market effect, firm size and industry type is due to collective
influence of the assets. More evidence that the RMT fit is not perfect was provided, [14],
where it was shown that the dispersion of “noise” eigenvalues is inflated, indicating that
the bulk of the eigenvalue spectrum contains correlations masked by measurement noise.

The behaviour of the largest eigenvalue of a cross-correlation matrix for small windows
of time, has been studied [15] for the DAX and Dow Jones Industrial average Indices
(DJIA). Evidence of a time-dependence between ‘drawdowns’ (‘draw-ups’) and an in-
crease (decrease) in the largest eigenvalue was obtained, resulting in an increase of the
information entropy 1 of the system. Similar techniques were used, [16], to investigate
the dynamics between the stocks of two different markets (DAX and DJIA). In this case,
two distinct eigenvalues of the cross-correlation matrix emerged, corresponding to each
of the markets. By adjusting for time-zone delays, the two eigenvalues were then shown
to coincide, implying that one market leads the dynamics in the other.

Equal-time cross-correlation matrices have been used, [17], to characterise dynamical
changes in nonstationary multivariate time-series. It was shown that, as the synchroni-
sation of k time series within an M−dimensional multivariate time series increases, this
causes a repulsion between eigenstates of the correlation matrix, in which k levels par-
ticipate. Through the use of artifically created time series with pre-defined correlation
dynamics, it was demonstrated that there exist situations, where the relative change in
eigenvalues from the lower edge of the spectrum is greater than that for the large eigen-
values, implying that information drawn from the smaller eigenvalues is highly relevant.

The technique in [17] was applied to the dynamic analysis of the eigenvalue spectrum
of the equal time cross-correlation matrix of multivariate Epileptic Seizure time series,
using sliding windows. The authors demonstrated that information about the correlation
dynamics is visible in both the lower and upper eigenstates. The equal-time correlation
matrix of EEG signals was further studied, [18], with a view to investigating temporal
dynamics of focal onset epileptic seizures 2 . It was shown that the zero-lag correlations
between multichannel EEG signals tend to decrease during the first half of a seizure and
increase gradually before the seizure ends. This work was further extended to the case

1 In information theory, the Shannon entropy or information entropy is a measure of the uncertainty
associated with a random variable.
2 A partial or focal onset seizure occurs when the discharge starts in one area of the brain and then
spreads over other areas.
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of Status Epilepticus [19], where the equal-time correlation matrix was used to assess
neuronal synchronisation prior to seizure termination.

It was shown [20], for particular examples, that information about cross correlations
can be found in the RMT bulk of eigenvalues and that the information extracted at the
lower edge is statistically more significant than that extracted from the larger eigenval-
ues. The authors introduced a method of unfolding the eigenvalue level density, through
the normalisation of each of the level distances by its ensemble average, and used this to
calculate the corresponding individual nearest-neighbour distance. Through this unfold-
ing those parts of the spectrum, dominated by noise, could be distinquished from those
containing information about correlations. Application of this technique to multichannel
EEG data showed the smallest eigenvalues to be more sensitive to detection of subtle
changes in the brain dynamics than the largest.

In this paper, we examine the eigenvalue dynamics of the cross-correlation matrix from
multivariate financial data. The methods used are reviewed in Section 2. In Section 3 we
describe the data studied, while in Section 4 we look at the results obtained both for the
empirical correlation matrix and the model correlation matrices described.

2. Methods

2.1. Empirical Dynamics

The equal-time cross-correlation matrix, between time series of equity returns, is calcu-
lated using a sliding window where the number of assets, N , is smaller than the window
size T . Given returns Gi (t), i = 1, . . . , N , of a collection of equities, we define a normalised
return, within each window, in order to standardise the different equity volatilities. We
normalise Gi with respect to its standard deviation σi as follows:

gi (t) =
Gi (t) − Ĝi (t)

σi

(1)

Where σi is the standard deviation of Gi for assets i = 1, . . . , N and Ĝi is the time
average of Gi over a time window of size T .

Then the equal-time cross-correlation matrix is expressed in terms of gi (t)

Cij ≡ 〈gi (t) gj (t)〉 (2)

The elements of Cij are limited to the domain −1 ≤ Cij ≤ 1, where Cij = 1 defines
perfect positive correlation, Cij = −1 corresponds to perfect negative correlation and
Cij = 0 corresponds to no correlation. In matrix notation, the correlation matrix can be
expressed as

C =
1

T
GG

τ (3)

Where G is an N × T matrix with elements git.
The eigenvalues λi and eigenvectors v̂i of the correlation matrix C are found from the

following

Cv̂i = λiv̂i (4)
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The eigenvalues are then ordered according to size, such that λ1 ≤ λ2 ≤ . . . ≤ λN . The
sum of the diagonal elements of a matrix, (the Trace), must always remain constant
under linear transformation. Thus, the sum of the eigenvalues must always equal the
Trace of the original correlation matrix. Hence, if some eigenvalues increase then others
must decrease, to compensate, and vice versa (Level Repulsion).

There are two limiting cases for the distribution of the eigenvalues [17,18]. When all
of the time series are perfectly correlated, Ci ≈ 1, the largest eigenvalue is maximised
with a value equal to N , while for time series consisting of random numbers with average
correlation Ci ≈ 0, the corresponding eigenvalues are distributed around 1, (where any
deviation is due to spurious random correlations).

For cases between these two extremes, the eigenvalues at the lower end of the spectrum
can be much smaller than λmax. To study the dynamics of each of the eigenvalues using
a sliding window, we normalise each eigenvalue in time using

λ̃i(t) =

(
λi − λ̄

)

σλ
(5)

where λ̄ and σλ are the mean and standard deviation of the eigenvalues over a particular
reference period. This normalisation allows us to visually compare eigenvalues at both
ends of the spectrum, even if their magnitudes are significantly different. The reference
period, used to calculate mean and standard deviation of the eigenvalue spectrum, can
be chosen to be a low volatility sub-period, (which helps to enhance the visibility of high
volatility periods), or the full time period studied.

2.2. One-factor Model

In the one-factor model of stock returns, only correlations with the market, ρ0, are
taken into account. The spectrum of the associated correlation matrix consists of only
two values, a large eigenvalue of order (N − 1)ρ0 + 1, associated with the market, and
an (N − 1)−fold degenerate eigenvalue of size 1 − ρ0 < 1. Any deviation from these
values is due to the finite length of time series used to calculate the correlations. In the
limit N → ∞ (even for small correlation,i.e. ρ → 0) a large eigenvalue appears, which

is associated with the eigenvector v1 =
(

1
√

N

)
(1, 1, 1 . . . 1), and which dominates the

correlation structure of the system.

2.3. Market plus sectors model

To expand the above to a “market plus sectors” model, we perturb a number of pairs
N of the correlations ρ0 + ρn, where −1 − ρ0 ≤ ρn ≤ 1 − ρ0. Additionally, we impose

a constraint
∑

N

ρn = 0, ensuring that the average correlation of the system remains

equal to ρ0. These perturbations allow us to introduce groups of stocks with similar
correlations, (corresponding to Market Sectors).

Using the correlation matrix from the “one-factor model” and the “market plus sectors
model”, we can construct correlated time series using the Cholesky decomposition A of a
correlation matrix C = AAτ . We can then generate finite correlated time series of length
T ,
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xit =
∑

j

Aijyjt t = 1, . . . , T (6)

where yjt is a random Gaussian variable with mean zero and variance 1 at time t. Using
Eqn. 2 we can then construct a correlation matrix using the simulated time series. The
finite size of the time series introduces ‘noise’ into the system and so the empirical
correlations will vary from sample to sample. This ‘noise’ could be reduced through the
use of longer simulated time series or through averaging over a large number of time
series.

In order to compare the eigenvectors from each of the Model Correlation matrices and
that constructed from the equity returns time series, we use the Inverse Participation
Ratio (IPR) [4,22]. The IPR allows quantification of the number of components that
participate significantly in each eigenvector and tells us more about the level and nature

of deviation from RMT. The IPR of the eigenvector uk is given by Ik ≡
∑N

l=1

(
uk

l

)4
and

allows us to compute the inverse of the number of eigenvector components that contribute
significantly to each eigenvector.

3. Data

In order to study the dynamics of the empirical correlation matrix over time, we analyse
two different data sets. The first data set comprises the 384 equities of the Standard
& Poors (S&P) 500 where full price data is available from January 1996 to August
2007 resulting in 2938 daily returns. The S&P 500 is an index consisting of 500 large
capitalisation equities, which are predominantly from the US. In order to demonstrate
that our results are not market specific, however, we examine a second data set, made up
of the 49 equities of the Dow Jones Euro Stoxx 50 where full price data is available from
January 2001 to August 2007 resulting in 1619 daily returns. The Dow Jones Euro Stoxx
50 is a stock index of Eurozone equities designed to provide a blue-chip representation
of supersector leaders in the Eurozone.

4. Results

We analyse the eigenvalue dynamics of the correlation matrix of a subset of 100 S&P
equities, chosen randomly, using a sliding window of 200 days. This subsector was chosen
such that Q = T

N
= 2, thus ensuring that the data would be close to non-stationary

in each sliding window. Figure 1(a) shows broadly similar sample dynamics from the
5th, 15th and 25th largest eigenvalues over each of these sliding windows. The sum of
the 80 smallest eigenvalues are shown in Figure 1(b), while the dynamics of the largest
eigenvalue is displayed in Figure 1(c). The level repulsion between the largest eigenvalue
and the small eigenvalues is evident here, (comparing 1(b) and 1(c)), with the dynamics
of the small eigenvalues contrary to those of the largest eigenvalue. As noted earlier, this
is a consequence of the fact that the trace of the correlation matrix must remain constant
under transformations and any change in the largest eigenvalue must be reflected by a
change in one or more of the other eigenvalues. Similar results were obtained for different
subsets of the S&P and also for the members of the Dow Jones Euro Stoxx 50.
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Fig. 1. Time Evolution of (a) Three small eigenvalues (b) Sum of the 80 smallest eigenvalues (c) The

largest eigenvalue

4.1. Normalised Eigenvalue Dynamics

Using normalised eigenvalues as described above, (Eqn. 5), we performed a number of
experiments to investigate the dynamics of a set of small eigenvalues versus the largest
eigenvalue. The various experiments are described below:

(i) As in Section 4, the dynamics for the same subset of 100 equities are analysed using
a sliding window of 200 days. The normalisation is carried out using the mean and
standard deviation of each of the eigenvalues over the entire time-period. Figure
2(a) shows the value of the S&P index from 1997 to mid−2007.

The normalised largest eigenvalue is shown in Figure 2(b) along with the aver-
age of the 80 normalised small eigenvalues. The compensatory dynamics mentioned
earlier are shown more clearly here, with the largest and average of the smallest
80 eigenvalues having opposite movements. The normalised eigenvalues for the en-
tire eigenvalue spectrum are shown in Figure 2(c), where the colour indicates the
number of standard deviations from the time average for each of the eigenvalues
over time. As shown, there is very little to differentiate the dynamics of the 80−90
or so smallest eigenvalues. In contrast, the behaviour of the largest eigenvalue is
clearly opposite to that of the smaller eigenvalues. However, from the 90th and sub-
sequent eigenvalue there is a marked change in the behaviour, (Figure 2(d)), and
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the eigenvalue dynamics are distinctly different. This may correspond to the area
outside the “Random Bulk” in RMT. Similar to [15,16], we also find evidence of
an increase/decrease in the largest eigenvalue with respect to ‘drawdowns’/‘draw-
ups’. Additionally, we find the highlighted compensatory dynamics of the small
eigenvalues. These results were tested for various time windows and normalisation
periods, and found to be more pronounced since additional features are captured
and emphasised.
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S&P Index, 100 Stocks, Jan 1995 − Aug 2007
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−3 −2 −1 0 1 2 3

Fig. 2. (a) S&P Index (b) Normalised Largest Eigenvalue vs. Average of 80 smallest normalised eigen-
values (c) All Normalised Eigenvalues (d) Largest 12 Normalised Eigenvalues

(ii) To demonstrate the above result for a different level of granularity, we chose 50
equities randomly with a time window of 500 days, giving Q = T

N
= 10. The results

obtained, (Figure 3), are in keeping with those for Q = 2 earlier, with a broad-
band increase (decrease) of the 40 smallest eigenvalues concurrent to a decrease
(increase) of the largest eigenvalue, as required by level repulsion.

(iii) The previous examples used random subsets of the S&P universe in order to keep
Q = T

N
as large as possible. To demonstrate that the above results were not sam-

pling artifacts, we also looked at the full sample of 384 equities, (that survived the
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Fig. 3. (a) Normalised Largest Eigenvalue vs. Average of 40 smallest normalised eigenvalues (b) All
Normalised Eigenvalues

entire 11 year period), with a time window of 500 days (Q = 1.30). The results, as
shown in Figure 4, are similar to those above, with the majority of the small eigen-
values compensating for changes in the large eigenvalue. As indicated previously,
however, there is a small band of large eigenvalues, where the behaviour is different
to that of both the band of small eigenvalues and the largest eigenvalue.
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Fig. 4. (a) Normalised Largest Eigenvalue vs. Average of 325 smallest normalised eigenvalues (b) All

Normalised Eigenvalues

(iv) All examples discussed so far have focused on the universe of equities from the
S&P 500 that have survived since 1997. To ensure that the results obtained were
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not exclusive to the S&P 500, we also applied the same technique to the 49 equi-
ties of the EuroStoxx 50 index that survived from January 2001 to August 2007.
The sliding window used was 200 days, such that Q = 4.082. The results found
were again similar (Figure 5) to those found before, with a wide band of small
eigenvalues “responding to” movements in the largest eigenvalues. In this case, the
band of deviating large eigenvalues (ie. those which correspond to the area outside
the “Random Bulk” in RMT), (Figure 5(d)), is not as marked as in the previous
example. This effectively implies that equities in this index are dominated by the
“Market”.
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Fig. 5. (a) EuroStoxx 50 Index, Jan 2001 - Aug 2007 (b) Normalised Largest Eigenvalue vs. Average of
40 smallest normalised eigenvalues for EuroStoxx 50 (c) All Normalised Eigenvalues (d) The 9 Largest
Normalised Eigenvalues
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4.2. Model Correlation Matrix

The results, described, demonstrate that the time dependent dynamics of the small
eigenvalues of the correlation matrix of stock returns move counter to those of the largest
eigenvalue. Here, we show how a simple one-factor model, Section 2.2, of the correlation
structure reproduces much of this behaviour. Furthermore, we show how additional fea-
tures can be captured by including perturbations in this model, essentially a “market

plus sectors” model, Section 2.3, [13,22,23].
In order to compare the empirical results, Section 4, to those of the single factor

model, we first constructed a correlation matrix where each non-diagonal element was
equal to the average correlation of the empirical matrix in each sliding window. We then
calculated the eigenvalues of this matrix over each sliding window and normalised these
as before, (Section 2). The results of the single-factor model are displayed in Figure
6 for the EuroStoxx 50 index with a sliding window of 200 days. As can be seen, the
main features of the dynamics are in agreement with those of Figure 5 for the empirical
data. The large eigenvalue has equal and opposite value to the average of the 40 smallest
eigenvalues. As expected, there is no fluctuation across the lower eigenvalues, suggesting
that the empirical features missing from the single-factor model are explained by the
perturbations due to group dynamics.
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Fig. 6. (a) Normalised Largest Eigenvalue vs. Average of 40 smallest normalised eigenvalues (b) All
Normalised Eigenvalues using one-factor model correlation structure

To examine the properties of the eigenvector components, we use the Inverse Partici-
pation Ratio. For the single factor model, we created a synthetic correlation matrix using
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Eqn. (6), with average correlation (0.204) equal to that of the Euro Stoxx 50 over the
time period studied. As shown in Figure (7), the IPR retains some of the features found
for empirical data [4,22] with the IPR corresponding to the largest eigenvector having a
much smaller value than the mean. This corresponds to an eigenvector to which many
stocks contribute, (effectively the market eigenvector), [4,22].

In an attempt to include additional empirical features, such as the band of deviating
large eigenvalues between the bulk and the largest eigenvalue, we performed one further
experiment. We considered a perturbation, with two groups of stocks having correlation
ρ0−0.15 and ρ0+0.15, and kept the average correlation at each time window the same. In
this case (Figure (7)), additional features of the IPR are found. The extra group structure
results in a larger IPR for the smallest eigenvalue and for the second largest eigenvalue.
This is in keeping with [4] where, for empirical data, the group structure resulted in
a number of small and large eigenvalues with a larger IPR than that of the bulk of
eigenvalues. The large eigenvalues were shown, [4,8], to be associated with correlation
information related to the group structure.
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Fig. 7. (a) Normalised Largest Eigenvalue vs. Average of 325 smallest normalised eigenvalues (b) All
Normalised Eigenvalues

5. Conclusions

The correlation structure of multivariate financial time series was studied by investi-
gation of the eigenvalue spectrum of the equal-time cross-correlation matrix. By filtering
the correlation matrix through the use of a sliding window we have been able to examine
the behaviour of the largest eigenvalue over time. As shown graphically, Figures 2 - 5,
the largest eigenvalue moves counter to that of a band of small eigenvalues, due to level

repulsion. A decrease in the largest eigenvalue, with a corresponding increase in the small
eigenvalues, corresponds to a redistribution of the correlation structure across more di-
mensions of the vector space spanned by the correlation matrix. Hence, additional eigen-
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values are needed to explain the correlation structure in the data. Conversely, when the
correlation structure is dominated by a smaller number of factors (eg. the “single-factor
model” of equity returns), the number of eigenvalues needed to describe the correlation
structure in the data is less. In the context of the previous work, [15,16], this means that
fewer eigenvalues are needed to describe the correlation structure of ‘drawdowns’ than
that of ‘draw-ups’.

By introducing a simple one-factor model of the correlation in the system (Section 4.2)
we were able to reproduce the main results of the empirical study. The compensatory
dynamics, described, were clearly seen for a correlation matrix with all elements equal
to the average of the empirical correlation matrix. The model was then adapted, by
the addition of pertubations to the correlations, with the average correlation remaining
unchanged. This “markets plus sectors” type model was then able to reproduce additional
features of the empirical correlation matrix, demonstrated by the Inverse Participation
Ratio (IPR). The IPR of the “markets plus sectors” model was shown to have group
characteristics typically associated with Industrial Sectors, with a larger than average
value for the smallest eigenvalue and for the second largest eigenvalue.

Future work includes a more detailed study of the relationship between the direction
of the market and magnitude of the eigenvalues of the correlation matrix. Studying the
multiscaled correlation dynamics over different granularities may shed some light on
the different collective behaviour of traders with different strategies and time horizons.
Additional analysis of high frequency data may also be useful in the characterisation
of correlation dynamics, especially prior to market crashes. It would also be worthwhile
to study the possible relationship between the dynamics of the small eigenvalues and
additional correlation information which, according to some authors [10–14,17,20], may
be hidden in the part of the eigenvalue spectrum normally classifed as noise. Similar to
[17,20], this could be acheived through analysis of the relative dynamics of the small and
large eigenvalues at times of extreme volatility (such as during market crashes).
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