Constraint-based Validation of e-Learning Courseware

Mark Melia

Bachelor of Science in Software Systems

A Dissertation submitted in fulfilment of the
requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

DC

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Dr. Claus Pahl

September, 2009

Declaration

| hereby certify that this material, which | now submit for assessment orrtiggganme
of study leading to the award of Doctor of Philosophy is entirely my own wibrdt, | have
exercised reasonable care to ensure that the work is original, andoloesthe best of my
knowledge breach any law of copyright, and has not been taken frerwahk of others
save and to the extent that such work has been cited and acknowledbedtie text of

my work.

Signed:

0,

Student ID: 50057436

Date: September 18, 2009

Contents

Abstract X
Acknowledgements Xi
List of Tables Xiii
List of Figures Xiv
1 Introduction 1
1.1 ProblemContext 1
1.2 Research Problemand Challenges 4
1.3 Solutionand Evaluation.o oL 6
1.4 Contributions 9
1.5 ThesisOutline e 11
2 Background 13
2.1 Introduction 13
2.2 COUMSEBWAIE i i e e e e e 13
2.21 Courseware SCOPe v it e 15
2.2.2 Courseware Structure and Sequencing 16
2.2.3 Learning Contentin Courseware 18
2.2.4 Pedagogical Strategy 19
225 CoursewareQuality 20

2.2.6 Courseware Standardisation Efforts 22

2.3 Software Modelling Technologies 25
2.3.1 Meta Object Facility (MOF) 27
2.3.2 Unified Modelling Language (UML) 27
2.3.3 Eclipse Modelling Framework (EMF) 28

2.4 The Object Constraints Language (OCL) 28
24.1 OCLLanguageConstructs 29
2.4.2 OCLApplications, 33

2.5 Model Driven Engineering e 35

2.6 Model Transformations 36

2.7 ChapterConclusion e 37

State of the Art 40

3.1 Introduction 40

3.2 Courseware Construction 40
3.2.1 Specification-based Courseware Construction 41
3.2.2 Adaptive Educational Hypermedia (AEH) Courseware Authoring

TOOIS . . . 44
3.2.3 Ontology-based Authoring of Courseware 46
3.24 Constraint-based ITS 50
3.2.5 Model Driven Courseware Engineering 52

3.3 Courseware Validation, 59
3.3.1 Concept-based Course Analysis (CoCoA) Tool 59
3.3.2 Logic-based Course Planning and Verification 61
3.3.3 Ontology-based Guideline Definition for Courseware 63
3.3.4 Trap Detection in IMS Simple Sequencing 64

3.4 Comparison Framework 65
3.4.1 Courseware Construction Approaches 65

3.4.2 Courseware Validation Approaches 67

3.5 ChapterConclusion 69

Defining a Courseware Validation Framework 71
4.1 Introduction 71
4.2 Courseware ACIOrS 72
4.3 Courseware ConstructionConcerns 3 7
4.4 \Validation FocusofourResearch 76
4.4.1 Course Scope Validation 77
4.4.2 Courseware Structure and Sequencing Validation 77
4.4.3 Validation of Learning Objects in Courseware 79
4.4.4 Pedagogical Validation 80
4.5 ChapterConclusion e 81
Defining the CAVIAr Data Models 83
5.1 Introduction 83
5.2 Language Notation, Syntax and Semantics 85
5.3 TheDomainModel 87
5.3.1 Defining the Domain Model Abstract Syntax 88
5.3.2 Defining the Domain Model Semantics 89
5.3.3 Domain Model Interoperability 90
5.3.4 Defining a Candidate Concrete Syntax Definition 91
5.4 ThelLearningContextModel 92
5.4.1 Defining the Learning Context Model abstract syntax 93
5.4.2 Defining the Learning Context Model Semantics 95
5.4.3 Learning Context Model Interoperability 97
5.4.4 Defining a Candidate Concrete Syntax Definition 97
5.5 The Learning ResourceModel 98
5.5.1 Definingthe AbstractSyntax 99
5.5.2 Defining the Learning Resource Model Semantics 100
5.5.3 Learning Resource Model Interoperability 101

5.5.4 Defining a Candidate Concrete Syntax Definition 101

5.6 The Courseware Model 102
5.6.1 Defining an Abstract Syntax for Courseware Definition 2 10
5.6.2 Defining the Courseware Model Semantics 104
5.6.3 Courseware Model Interoperability 106
5.6.4 Defining a Candidate Concrete Syntax Definition 107

5.7 ChapterConclusion 108

Courseware Validation 110

6.1 Introduction 110

6.2 Defining a Domain Specific Language for Constraints 111
6.2.1 OCL Helper Operations 111
6.2.2 Towards a Model-Driven OCL Generation 117

6.3 \Validation Approach 119

6.4 Courseware Validation Pre-requisites 112

6.5 Courseware Model Validation 122
6.5.1 Courseware Attribute Validation 123
6.5.2 Courseware Integrity based on Courseware’s Learning Content126

6.6 Learning Context Validation 127
6.6.1 Domain Model Constraints 128
6.6.2 Learner ContextConstraints 129
6.6.3 \Validating Courseware Adaptivity 134

6.7 ChapterConclusion 135

Courseware Validation Process and Activities 137

7.1 Introduction 137

7.2 Example Case-Study Course Specification 138

7.3 \Validation Process Overview 141

7.4 Determining the DomainModel 142
7.4.1 DevelopingaDomainModel 143

7.4.2 Incorporating an External Domain Model 144

7.4.3 Case-study 144
7.5 Defining the Learning Context Model 146
7.5.1 Defining the Conceptual Pre-requisite Constraints 147
7.5.2 Defining Learner Stereotypes 0. 147
753 Case-Study 149
7.6 Determining the ValidationModel 151
7.6.1 Determining the Instructional Design 154
7.6.2 Deriving Instructional Constraints 154
7.6.3 Formulating Instructional ConstraintsinOCL 155
7.6.4 Case-study 155
7.7 Rendering the Courseware Definition into CAVIAr| 016
7.7.1 Case-study 160
7.8 \Validationof Courseware 161
7.8.1 \Validation Engine Initialisation 162
7.8.2 \Validation Outcome 162
7.83 Case-study e 163
7.9 Correcting Invalid Courseware416
7.9.1 Case-study 164
7.10 ChapterConclusion e 164
CAVIAr Implementation 166
8.1 Introduction 166
8.2 CAVIArand Courseware Construction 716
8.3 MIKAEL Architecture 168
8.4 The Eclipse Platform 172
8.4.1 Graphical Modeling Framework (GMF) 172
8.4.2 Model to Model Transformation (M2M) 172
8.4.3 Model to Text Transformation (M2T) 174

Vi

8.4.4 Model Development Tools (MDT) 174

8.5 CAVIArModelManager 175
8.6 Model-based Editors 175
8.6.1 Domain Model Editor 176
8.6.2 Courseware Model Editor 177
8.7 MIKAEL Perspectives 177
8.7.1 DomainPerspective 178
8.7.2 Learning Context Perspective 180
8.7.3 Courseware Perspective 181
8.8 Model Transformation Manager 183
8.8.1 ImportingaDomainModel 185
8.8.2 Importing a Courseware Model for Validation 187
8.8.3 Courseware Model Generation 191
8.8.4 Exportinga Courseware Model 191
8.9 \Validation Manager 192
8.10 Learning Object Repository (LOR) Manager 194
8.10.1 Screen-Scraping LOR Queries 194
8.10.2 Service-based LOR Queries 195
8.11 ChapterConclusion e 196
Evaluation 198
9.1 Introduction 198
9.2 Evaluation Strategies 200
9.2.1 Empirical Study 201
9.2.2 AnalyticalStudy 201
9.2.3 Comparison with the State ofthe Art 202
9.3 Usability. 202
9.3.1 MIKAEL User Trials Overview 203
9.3.2 MIKAEL User Trials Participant Details 205

Vii

9.3.3 MIKAEL User Trial Survey Results 207

9.3.4 DISCUSSION 209
9.4 CostEffectiveness 212
9.4.1 MIKAEL User Trial SurveyResults 213
9.4.2 DISCUSSION v i 214
9.5 Effectiveness 215
9.5.1 Analytical Evaluation of the CAVIAr Data Models 215
9.5.2 Empirical Evaluation of Course Creator’s Perception of Validation
Effectiveness 220
9.6 Modifiability 222
9.6.1 Native Domain Knowledge Specification Change 222
9.6.2 Courseware SpecificationChange 223
9.6.3 \Validation CriteriaChange 224
9.7 Performance 225
9.8 ChapterConclusion 227
10 Conclusions 229
10.1 Introduction L e 229
10.2 ResearchSummary i e 230
10.3 DIiSCUSSION o 232
10.4 Future Work 234
10.4.1 Intuitive Validation Model Definition 235
10.4.2 Enhancement of the Courseware Model 236
10.4.3 Categorisation of Courseware Problems 237
10.4.4 Correctionintegration 237
Bibliography 237
A Case-Study Documents 258
B Implementation Documents 261

viii

C User Trial Survey 276

D Acronyms 281

Abstract

Today e-learning courses, known as courseware, are expecteovidepa highly en-
gaging learning experience that adapts to a learner’s needs and igperaste with the
learner’s learning environment. This makes finding problems in the coarsewcreas-
ingly difficult, tedious and expensive. A course creator may attempt to val@aurseware
manually by simulating a variety of possible learner paths through the coamselut this
is very laborious and time-consuming, and in most instances does noteoabigossible
variances in the courseware.

Courseware validation automatically checks that courseware conformsdbd re-
quirements and limits the risk of problems at delivery time. Traditional appesath
validation simulate learner instances going through a given coursewaig.cdn lead to
performance problems in highly adaptive courseware due to the compléximolation.
These approaches are also inflexible as validation criteria are definefivimse program-
ming logic.

Courseware specifications define courseware in terms of its compordrsompo-
nentisation of courseware into a collection of annotated Learning Obje€rs) (bresents
an opportunity to validate courseware based on its compositional struttutigis thesis,
we present a hovel approach to courseware validation based on Blioeen Engineering
(MDE), using the component structure of courseware. We defineaf 8gimain Specific
Language (DSL), known as the Courseware Authoring Validation tn&ion Architecture
(CAVIAr), and show how it can be used to capture courseware agrigin concerns. We
then demonstrate how, by defining model constraints on a coursewanessitional struc-
ture, it allows for a flexible approach to courseware validation. We alsestigate how
CAVIAr-based tools can be integrated with the state of the art in e-lear@ingapproach
has been validated using a software implementation that allows course sreavatidate

courseware using CAVIAr.

Acknowledgements

First of all | would like to express my huge gratitude to my supervisor, Dru€Rahl,
for his patience, guidance and support. Thank you Claus for evegythoru have been an
exemplary supervisor and | have truly enjoyed working with you.

In the course of my research, | have been amazed at the generogtjafiesearchers
and academics with their time and knowledge. Many researchers in thedleghrEn-
hanced Learning field provided me with invaluable feedback and helpghoat my re-
search. One person who | must mention is Dr. Dragage@@ All through my Ph.D.
Dragan has never been too busy to help me out, sharing his immense wisdomewith

| would like to thank my parents, Yvonne and Brendan, for their suppattguidance
throughout my (many) years of schooling. Nothing | have achieved duaveé happened
without them and their belief in me. Mam and Dad thank you for always hatitng,
from helping me with my spellings in Scoil San Carlo to those nights looking at giroje
presentations. You have been a great example for me to live up to. Alsorangirgother
and grandfather, Pat and June, who have encouraged me throughaurtly my college
years but also my school years, and by providing me with my “secondplace. Thanks
nanny and granda, | promise you can have the back bedroom bacKk aowendepted to
you all, I hope you know how much | appreciate all you have done for me.

Thanks to all my CA friends and colleagues past and present, who abihisgoe too
numerous to name, but there are a couple who | have to mention. Firstlyt tevirank
all the members of the OntAWare and MIKAEL projects, Edmond, Declan,g/ o Mo.
In particular | would like to thank Wong and Mo, who helped me bring the MIKAEol
to reality. Thanks guys for all the effort you put in, much appriciated.oul also like
to thank Veronica and Claire, for watching all my presentations and prayidia with
insightful feedback.

A special mention has to go to Dr. Ronan Barrett. Ronan is an incredibly telante
devoted software engineer and researcher, and has always beefottencouragement, in-

sightful conversation, and banter. Ronan thanks for everything,igput, advice, feedback

Xi

and friendship.
Finally, I would like to thank my girlfriend Clare, who has been a rock of supClare,
you never had any doubt in your mind that | would be able to do this, evemwiried to

convince you otherwise. Thank you for your love, patience, engamant and faith.

Xii

List of Tables

21 MOFmodellingstack,
2.2 Analysisof OCLTools,

3.1 Courseware construction approaches comparison 66

3.2 Courseware validation approaches state of the art comparison 68

6.1 Derived CAVIAr operations for Learning Context Modelling constsu . . 115

6.2 Derived CAVIAr operations for Courseware Model constructs 116

7.1 Definition of anticipated learner knowledge defined in terms of CAVIAr

knowledgeelements 152

Xiii

List of Figures

2.1
2.2
2.3

3.1
3.2

3.3
3.4
3.5

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Sequencing clusters as defined in IMS Simple Sequencing [IMS, R003c 24
IMS LD Information Model [IMS,2003b] 25

Basic concepts of model transformation [Czarnecki and Helso®]200. 37

Screen-shot from the Reload Tool 3 4

Screen-shot of MOT tool showing a lesson map with each attribute given

The ACCT - Demonstrating the use of PEDE design elements [Daggé&hRGa

Screen-shot of the MOT+tool 57
Courseware actors 72
Courseware construction and validation concerns 73
Overview of the CAVIArModels 84
Domain model abstract syntax definedin MOF 89
CAVIAr Domain Model concrete syntaxexample 92
Learning context model abstractsyntax 4 9
Learning Context concrete syntaxexample 8 9
Learning resource model abstractsyntax 99
Learning resource model datatypes 0 10
Abstract syntax for courseware defined using MOF 103
Example Courseware Model concretesyntax 108

Xiv

6.1 Extract of the CAVIAr Courseware Model's metamodel 112
6.2 CAVIAr Courseware Modelextract. 113
6.3 MOF model used to capture data about the topic structural constraints 118
6.4 Model-based definition of a courseware topic timing constraint 119
6.5 Using OCL to define constraints on a metamodel that must be true for mod-

els that conform to that metamodel 120
6.6 Classification of CAVIAr validation constraints 121
7.1 UML Activity Diagram of the Methodological Framework 141
7.2 UML Activity Diagram for determining the CAVIAr Domain Model 143
7.3 Databases domain model definedusingSKOS 145
7.4 UML Activity Diagram outlining the activities for determining the CAVIAr

Instructional Constraints Model 146
7.5 UML Activity Diagram detailing the definition of the CAVIAr Validation

Model 153
7.6 UML Activity Diagram outlining the steps involved in loading a Course-

ware Model into the validation framework 161
7.7 CAVIAr metamodelsinthe USEtool 163
8.1 CAVIAr Courseware Authoring defined in terms of an UML Activity Diagr168
8.2 Layerview of the MIKAEL Architecture. 169
8.3 Component-based view of the MIKAEL architecture 916
8.4 MIKAEL Components 170
8.5 Defining the CAVIAr metamodels in ECore using Eclipse 176
8.6 Screen-shot of domain modelview 177
8.7 Screen-shot of domain perspective 179
8.8 Screen-shot of learning context perspective 180
8.9 UML Activity Diagram outlining tasks involved in defining learning contex@21
8.10 Screen-shot of the courseware perspective 183
8.11 Transformation of ontology XML file to CAVIAr Domain Model a8

XV

8.12 CAF metamodel definedusingECore 188
8.13 LAG defined as ECore metamodel 189
8.14 Transformation of LAG model to CAVIAr Courseware Model 190
8.15 Transformation from Courseware Model to SCORM XML binding diédin 192
8.16 UML Sequence Diagram depicting how the EDNA LOR is queried using

the screen-scrapingapproach 4 19
8.17 UML Sequence Diagram depicting how SQI-compliant LORs can hisglie

using PLQL e 195

9.1 Breakdown of participantknowledge 062

9.2 The number of courses participants have managed and delivetethean

number of courses participants have adapted orcreated 207 .
9.3 Domain Model editingsurveyresults, 208
9.4 Learning Context Model editing surveyresults 209
9.5 Courseware model editing surveyresults 10 2
9.6 Usability survey results after validating courseware 211

9.7 Participant understanding of the main aspects to CAVIAr and CAVIAr-
based courseware construction through MIKAEL 132

9.8 MIKAEL survey results relating to the cost effectiveness of MIKAEL. . 214

9.9 Course creator reflections on validation effectiveness 221
A.1 Databases domain model defined using SKOS (part1). 289.
A.2 Databases domain model definedusingSKOS 260

B.1 Excerpt from SKOS to CAVIAr domain model transformation defined i 282
B.2 Excerpt from CAVIAr courseware model to SCORM model definedTih A263
B.3 SCORM model to SCORM manifest XML transformation definition in ATL

(Partl) . . . 264
B.4 SCORM model to SCORM manifest XML transformation definition in ATL

XVi

B.5 SCORM modelto SCORM manifest XML transformation definition in ATL
(part3) . . . e e e e
B.6 ATL transformation definition, transforming the learning context model into
acourseware model (partl).
B.7 ATL transformation definition, transforming the learning context model into
acourseware model (part2).
B.8 ATL transformation definition, transforming the learning context model into
acoursewaremodel (part3). o e
B.9 ATL transformation definition, merging the learning context model with
courseware model (partl)
B.10 ATL transformation definition, merging the learning context model with
courseware model (part2)
B.11 ATL transformation definition, merging the learning context model with
courseware model (part3) e
B.12 ATL transformation definition, merging the learning context model with
courseware model (part4) e
B.13 Plugin.xml file defining plugin to provide functionality for and handle OCL
validation model (part1)
B.14 Plugin.xml file defining plugin to provide functionality for and handle OCL

validation model (part2)

XVii

274

Chapter 1

Introduction

1.1 Problem Context

Courseware defines a course in terms of its learning content, by definatde®inning con-
tent to deliver to a learner, when it should be delivered and how. €mare is generally de-
livered and managed using some type of Virtual Learning EnvironmenE}\dk Learning
Management System (LMS). Courseware authoring, also known aiseveare construc-
tion, is a rapidly evolving research area that is concerned with the toolsatitbdologies,
a course creator uses, to define and create courseware.

Understanding how people learn and using that knowledge to create betbeses
has always been a challenge for course creators. The literaturigelggahe course cre-
ator with general course construction methodologies, embedded in pecgurinciples
[Gagre et al., 2005, Reigeluth, 1999a, Reigeluth, 1983a, Briggs et al., 1¥dirse cre-
ators may also apply their own pedagogy in courseware constructionexaonple se-
guencing courseware topics in a particular way or ensuring that learesugirces do not
take an unreasonable amount of time to complete. Although course creatais apply
pedagogical principles to the courseware they construct, when dewglizyge course-
ware this can be difficult, especially when there are seemingly more prassugg, such
as standards compliance and delivery deadlines. When pedagogditzpleis are not

adequately applied in courseware it can can lead learner confusionjatimial prob-

lems, learner isolation and ultimately to the rejection of the courseware [SarApE#,
Ensuring the application of pedagogical principles is therefore of paratrimportance.
To this effect the literature highlights the importance of post-constructionseoualida-
tion or auditing as an essential part of a holistic courseware constructitmdwogy
[Rosmalen et al., 2006, Persico, 1996]. Courseware validation entheee are no prob-
lems in the courseware and pedagogical principles, as defined in the litceaattl by the
course creator, have not been neglected and have been appliectigorr

Recently there has been a move towards adaptive or personalisedvweargs This is
courseware that moves away from the “one size fits all” paradigm of traditeourseware
and instead looks to adapt to the individual needs of learners in termsrdétimaing goals,
knowledge of a subject and their learning style, amongst other thingsfosil Calvi, 1998,
Eklund and Brusilovsky, 1999]. The construction of adaptive orqreaksed courseware is
a “very complex, time consuming and expensive task” [Dagger, 20®b¢ent advances
in dedicated tools, such as My Online Teacher (MOT) [Cristea et al., 28@¥the Adap-
tive Courseware Construction Toolkit (ACCT) [Dagger, 2006b, h2lve raised the level
of abstraction that the course creator works at when creating adaptiveeware. These
tools go some way towards providing a more intuitive interface for constgietitaptive
courseware, but do not provide a method for validating the adaptiveseware created.
Validation is particularly important in adaptive courseware as it is importamsgare that
each individual learner, or defined learner grouping, will be givgredagogically sound
courseware instance that satisfies the course’s learning goals.

In addition to the pedagogical challenges that the course creator mustitteave can

observe the following trends in courseware construction:

e Componentisation - Courses are increasingly composed of Learningt©j€as)
which are small, reusable instructional units typically a lesson, assessmiznog
possibly a tutorial [Wiley, 2001]. Through reuse the course creat@ssdame and
money, and can use learning resources that have been tried and textest tourse-
ware. Discovery of LOs has been aided with the advent of the IEEEhir@aObject
Metadata (LOM) standard [IEEE LTSC, 2002].

2

e Standards Compliance - There has been a move towards standard aifitaspe
tion compliance in defining courseware, allowing courseware to be mowgaddne
Learning Management System (LMS) to another [Hummel et al., 2004, RDQ4].
The formal separation of learning process logic from content in cauangestandards
and specifications, such as SCORM [ADL, 2004] and IMS LD [Hummel.e@04],
and the annotation of LOs using a standardised LO metadata, such as (BH#E L
enables automated courseware validation, as metadata descriptions casdibtp

ensure the LO satisfies some validation criteria.

e Collaborative Courseware Construction - As courseware construstgetting more
complex, it is usually now a collaborative, multidisciplinary effort [Ismail, 2D0
Due to this, misunderstandings can easily occur between those involvad seeare

construction leading to problems being introduced to the courseware wcheskr

These trends have also caused a change in the course creator'sqolesaware con-
struction. The course creator now looks to reuse pre-existing LOs irseware con-
struction instead of producing all learning content needed for coarsewThe course
creator’s role becomes composition-oriented where courseware is sethfimm exist-
ing LOs. Courseware construction is therefore conducted at a higheg, abstract level
[Melia and Pahl, 2006a]. Tool support has been developed basiisdrigher level of ab-
straction. These tools allow for the production of standard compliant evarg, based on
the combination of LOs [RELOAD Project, 2005, Paquette et al., 2006]tl@duthoring
of personalised courseware [Cristea et al., 2003b, Dagger, 2066ijever, the existing
tool support does not provide the course creator with any facility torertkat the course-
ware constructed is as originally designed and envisioned by the caeaerc The onus
is firmly on the course creator to ensure there are no problems in the aiadtaourse-
ware. With courseware becoming ever more complex, through persditadisand course
creators now developing courseware at a higher level of abstrathisnis an extremely

difficult, if not impossible, undertaking for the course creator.

1.2 Research Problem and Challenges

In section 1.1 we identified the need for validating courseware where tialidensures the
courseware constructed is as envisioned by the course creatoes@arch investigates the
automated analysis of courseware allowing for the identification of the follpiyipes of

courseware problems:

e Scope - Learning goals cannot be achieved with given coursewarecdurseware

assumes incorrect knowledge for learners.
e Structural - Problems with the composition of courseware and how it is stadttu

e Sequencing - Problems with the sequence of how courseware elements déliy-

ered to the learner.
e Content - Problems with the content used in courseware.

e Pedagogical - Problems with the implementation of a learning approach defined
courseware. Sequencing and content problems can be defined afsspaedagogical

problem.

Courseware validation cannot exist in isolation, it must be part of a holigticseware
construction methodology. It is therefore necessary to investigate thedtitegof course-
ware validation into existing courseware construction methodologies.

We have defined our research question as:

Can courseware requirements in terms of content, structure, sequestinge
scope and pedagogical concerns, which are implicit in coursewagarrgbe
explicitly defined by the course creator and used in the automated validation
of a constructed courseware, where validation is integrated with establishe

courseware construction methodologies?

In addressing our research question we can break down the anticipatstch chal-

lenges as follows:

. ldentify the data available for courseware validation pre-deliveryringeof course-

ware requirements as defined by those involved in courseware cdimiruc
. Investigate how the courseware requirements can be represeplietlgx

. Develop an approach to validate courseware using the coursegaisaments. This
approach should be optimised towards personalised and personalmadsieveare, as

itis a major trend in Technology Enhanced Learning (TEL) [Wade andnsh 2007].

. Investigate how courseware validation can be integrated with existingeware

construction tools.

. Design and implement a proof of concept application that clearly validatese-

search in terms of its feasibility.

. Evaluate the research by investigating user acceptance of cotgsaldation within
courseware construction in general and our approach to validatiomtioyar. User

acceptance looks at the following:

e Usability - The validation approach and its tool support must be usable by the

course creator.

e Cost Effectiveness - The validation approach must be cost effdntiéems of

course creator effort.

o Effectiveness - The approach captures courseware problem&quidements
effectively. The validation approach must be able to validate problems is&ou

ware that the course creator deems to be important.

¢ Modifiability - The course creator must be able to customise the validation con-
straints criteria according to his or her own requirements. Validation stippor
must be flexible enough to be integrated with the TEL specifications used by

the course creator in courseware construction.

e Performance - The performance of our validation approach must leptatie

when compared with the state of the art.

Our research question addresses courseware that is defined migdgeational Mod-
elling Language (EML) [Maiihez-Ortiz et al., 2007]. We also assume that the courseware
is componentised in that it can be broken up into LOs that are annotated wigwaos
being repurposed and reused.

Validation is not seen as a replacement for formative [Dick and Car&y]1& sum-
mative [Carey and Dick, 1991] evaluation of courseware, but as a leonemtary activity.
Validation does not address complex pedagogical issues such as theaflarstruction,

LO gquality and LO’s impact on learners or learner motivation issues.

1.3 Solution and Evaluation

Our solution for addressing the research question and challenges dutlitiee previous
section is to explicitly model the courseware design in terms of its requiremeriis. T
courseware model is then constrained using a model constraint langliagi this our
approach defines a Domain Specific Modelling Language (DSML) to capturseware
requirements and uses a constraint language to allow the course cefatervehat is valid
and invalid courseware.

Our approach consists of five components, as outlined below:

e A Validation Framework - Definition of what can be validated in coursewatbea
pre-delivery/post-construction stage of the courseware life-cyaedrancourseware

requirements to be used in validation.

e Domain Specific Modelling Language (DSML) - Definition of a modelling languag
for capturing courseware, courseware content and the constagaieseware require-
ments. We have chosen to develop a new DSML for the purposes of vajjdatimse-

ware for the following reasons:

— There is currently no formalised way to capture the courseware requitsraie

the pre-delivery/post-construction stage of courseware construction

— Courseware validation is an activity that must be integrated with courseware

construction. The specifications used in courseware construction foe ias
they are being standardised. Our approach limits the effects of this stésadar
tion process by defining an independent courseware definition andpetet-

ing with the state of the art.

¢ Validation Constraint Language - Definition of a constraint language #ratapture

what is valid and invalid courseware.

e Courseware Validation Process - Outline of how the course creator tedidaurse-

ware using our approach.

¢ Proof of Concept Implementation - Courseware construction tool that sifiomval-

idation, exemplifying how validation can be integrated into courseware caisin.

The validation framework sets the scope of our research, by definingotimseware
construction concerns. These are courseware requirements théteaastressed in course-
ware construction. The courseware construction concerns repteseinformation avail-
able for courseware validation at the pre-delivery/post-constructame of the courseware
life-cycle, when validation takes place. The validation framework also osttimetypes of
courseware validation our research addresses.

The purpose of the DSML is to capture all the data available at the preedgfpost-
construction stage of the courseware life-cycle. This data is the coamsethat has been
constructed, the content used in courseware and the coursewateuction concerns that
were used in defining the new courseware.

Courseware validation criteria are formulated using a model constraintsdgag The
model constraints language is used to constrain what is an allowable waresgefinition.
A valid courseware is one that satisfies these modelling constraints. Mougtaints can
be defined using the courseware construction concerns defined irfstfie.D

We define a courseware validation process as a set of activities thaiuhsecreator
undertakes to validate courseware. This process involves firstly defithidigta available at

the pre-delivery/post-construction stage of courseware construgtiog the DSML, then

defining the courseware validation constraints, after which the coursew@hecked to
ensure it adheres to the constraints defined.

Courseware validation must be integrated with the state of the art in couesensa
struction. Interoperability with courseware construction tools and platfasnashieved
through model transformation technology (section 2.5). We illustrate this ipmaf of
concept implementation.

The proof of concept implementation is also used to validate the feasibility of our
courseware validation approach.

We evaluate our approach to courseware validation in the following ways:

e An evaluation of the suitability of our DSML is carried out by analytically conimgr
the expressivity of the DSML defined in this thesis with languages that geptre

similar data from the state of the art.

¢ A software implementation is used in user trials to assess user acceptarmeadéla
driven approach to courseware construction that leads to validatios alBo serves

to assess the user acceptance of the DSML we have defined forwargsalidation.

e We investigate how our approach compared with state of the art couesgalita-
tion approaches in terms of performance and modifiability. We also consiaer h
easy it would be for the course creator to modify the validation criteria, thesee
ware specification or the knowledge infrastructure used in validation. dkirlg at
performance we compare our novel approach to courseware valigétiothe vali-
dation approach used in the state of the art generally. This evaluatioegantund
a discussion on the difference between constraint-based validatiahjruser so-
lution, and learner simulation based validation, which is prevalent in the st#te of

art.

1.4 Contributions

In this section we highlight the contributions the research documented in tkis thakes

to the state of the art in TEL.

e This research looks at courseware validation at the pre-delivety¢postruction
stage of the courseware life-cycle. This stage of the coursewareytife-has only
limited data to use in validation, most notable is that there is no learner experience
data to use. In this thesis we identify the “courseware construction awicerhe
courseware construction concerns are the complete data about acgiveseware
at the pre-delivery/post-construction stage of courseware cotistrucThis data is
identified through systematic analysis of the pre-delivery/post-construstéame of
courseware construction. To our knowledge this is the first time the dailatdea
for courseware validation at the pre-delivery/post-construction sthgeurseware

construction has been defined.

e We formally define a new DSML for courseware validation at the pre-eslffpost-
construction stage of the courseware life-cycle. This DSML is knowna€turse-
ware Authoring Validation Information Architecture (CAVIAr). CAVIAr is pur-
pose built DSML for courseware validation. It allows for the formal débn of the

courseware construction concerns for the purpose of courseatdation.

e A novel constraint-based approach to validating a courseware defistidefined
that focuses on validating the courseware structure and composition ttzineval-
idating the possible learner paths learners can take in courseware. alidition
approach is courseware composition-oriented, by examining strucefialtbn of
courseware. This is different to the state of the art which, in generdis lemvali-
date courseware by simulating learner progression through couese@@mposition-
oriented validation is more suited to personalised courseware due to theceania

it.

e A model-driven validation process is defined, outlining the activities that dhese

creator must perform for validation. Models provide an intuitive way fer¢burse
creator to define the courseware construction concerns throughAZAMihrough
these activities we also outline our approach to interoperability with the state of th
art in TEL and knowledge representation specifications and standaodsgthmodel

transformation technology.

We also describe how model transformation technology can be used tdgfov in-
teroperability in TEL. We also provide details of a software implementation asaf pf
concept, demonstrating the feasibility of our validation approach.

The contributions detailed in this thesis have also appeared in numerougyieared

publications the most significant of which are:

e Melia, M. and Pahl, C. (2009Fonstraint-based Validation of Adaptive e-Learning
Courseware IEEE Transactions on Learning Technology (IEEE TLT) 2(1), pp 37
49.

e Melia, M. and Pahl, C. (2008jowards the Validation of Adaptive Educational Hy-
permedia using CAVIAIThe Sixth International Workshop on Authoring of Adaptive
and Adaptable Hypermedia A3H2008 AH2008 Workshop Proceedingsdiar,

Germany.

e Melia, M. and Pahl, C. (2007edagogical Validation of Coursewardhe Second
European Conference on Technology Enhanced Learning (ECZ0BE). Springer-
Verlag, LNCS Series. Crete, Greece.

e Melia, M. and Pahl, C. (2007An Information Architecture for Validating Course-
ware The First International Workshop on Learning Object DiscoverylExchange
(LODE2007) at EC-TEL'07. CEUR Workshop Proceedings, ISSH3t6073 Crete,

Greece.

e Melia, M. and Pahl, C. (2006%emantically-enabled Model Driven Course Compo-
sition. The First European Conference on Technology Enhanced Lea{B@-TEL

2006) - Doctorial Consortium Session. Crete Greece.

10

1.5 Thesis Outline

In this section we outline the structure of this thesis.

Chapter 2 presents a review of technologies, approaches and ternyiimolDgL. The
chapter also presents an overview of software modelling technologig®sestechnologies
are central to our solution.

In chapter 3 we provide context for our research by presenting the atahe art in
courseware authoring tools and approaches and then present thef sketert in course-
ware validation research. In concluding this chapter we present a cmpdramework,
which summarises our review of the state of the art.

Our research contribution begins in chapter 4, where we define autoiat&amework
for validation, outlining the overall scope for courseware validation inresearch.

In chapter 5, we present the Courseware Authoring Validation Informa&tiohitecture
(CAVIAr), a DSML that allows the course creator to model the courseveanstruction
concerns and the constructed courseware in the context of thesereenc

To validate the constructed courseware, CAVIAr includes a constrasevalidation
model, where validation rules are defined on the constructed coursasiagethe course-
ware construction concerns. We describe the CAVIAr Validation Modeh@apter 6, out-
lining the constraint types that can be defined using CAVIAr.

We present the courseware validation activities and define a coussgalatation pro-
cess in chapter 7. This section also provides an example case-studpywhaourse creator
has created courseware for undergraduate computing students oastbe &f databases.
We describe how the course creator validates this courseware usind\CAvV

A proof of concept implementation of CAVIAr is outlined in chapter 8. This implame
tation is known as MIKAEL (Management Infrastructure for Knowledigessed Adaptive
E-Learning) . MIKAEL allows the course creator to construct couesevbased on defin-
ing the CAVIAr courseware construction concerns. Once the coargetas been devel-
oped MIKAEL also provides the course creator with courseware validdtioctionality.

MIKAEL is specification and standard agnostic. We outline how MIKAEL easily be

11

integrated with current and upcoming standards and specifications infideleated areas,
such as knowledge management and the Semantic Web [Daconta et al., 2003]

We evaluate our work in chapter 9. The chapter evaluates the usertauoemf
CAVIAr and CAVIAr-based courseware validation, as defined in asearch challenges
in section 1.2.

In chapter 10, we summarise our research, present our final camdusnd outline

future work in this area.

12

Chapter 2

Background

2.1 Introduction

In this thesis we will outline how courseware can be validated. Our validappnoach
is based on the definition of a Domain Specific Modelling Language (DSMLgapdure
the courseware conceptual design and its requirements, with a conslaaigtsge that
constrains the allowable courseware configurations.

In this chapter we firstly describe what courseware is and how coarses/constructed
(section 2.2). We then outline software modelling technologies used in otsesgare val-
idation approach. Section 2.3 gives an overview of the classical agpmedo conceptual
modelling in software engineering and section 2.4 describes the Objectr@oh&an-
guage (OCL), a complimentary constraint language for software modaelstastiminate
ambiguity. Section 2.5 looks at Model Driven Engineering (MDE), a sakivemgineering
approach based on modelling. We conclude this chapter by summarising theaia

made and outlining the connection between courseware design and saftwdels.

2.2 Courseware

For the purposes of our study, we define a course as a planned botgraction with a

recognised start-point(s) and end-point(s), which is delivered ospeaified time period.

13

We define courseware as an explicitly defined, machine-readableeatefinition. Course-
ware uses software to deliver Technology Enhanced Learning (€&htent according to
some defined instructional design.

TEL content is interactive and non-interactive learning content delil/éw learners in
a software environment that aims to enhance the learner’s learningengerAn instruc-
tional design specifies what TEL content is delivered to an individuahé&aand when it
is delivered. An instructional design is an instantiation of a more generpbpe instruc-
tional design theory. Instructional design definitions in coursewarebaw for dynamic
courseware, where the courseware decides at delivery time whatdiient to deliver and
how it will be delivered

Based on the literature, we have identified six key levels of coursewaneligirity

[NQAI, 2003, Bajnai and Stienberger, 2003, Jovadgatial., 2006a]. These are as follows:

e Qualification Programme - This is typically a very large course leading to a qualifi

cation as defined in the National Framework for Qualifications (NFQ) inricela

e Course - This is a large course, which takes over 15 hours to completaypically
one 12-13 week course covered in a university semester as partualificgtion

programme.

e Module - Many modules make up a course. Each module in a course covers o

the core concepts in the course. A module can be broken down into lessons

e Lesson - A lesson is generally taught to the learner in a single sitting. A lesson
generally teaches the learner about a single concept. A lesson caakies olown

into LOs.

e Learning Object (LO) - A LO is interactive and non-interactive TEL cohtbat aims

to bring the learner to a learning goal. LOs can be broken down into camést

e Content unit - LOs are made up of content units, which are typically a pictuee

piece of text.

14

It is important to note that the courseware granularity levels stated abeveacom-
monly accepted but are exclusively used in this thesis to allow for clarity wissussing

courseware granularity levels.

2.2.1 Courseware Scope

The courseware scope defines what a course covers. It spéodiesurse start-point and
end-point. The courseware start-point is defined in terms of the learagsumed initial
knowledge of a subject domain, while the courseware end-point is dedige point in
the courseware when the learner can finish the course and the lsdeaening goals are
satisfied. The courseware scope is therefore defined in terms of ldgevi€he courseware
structure defines how a learner can get from the courseware starttpaohe courseware
end-point.

For the purposes of our research we follow a pragmatic rather thanlfseshapproach
to defining knowledge, based on instructional design literature [AlberSaefanutti, 2003].
In our research we make a distinction in the types of knowledge impartedgtincurse-
ware, conceptual knowledge and skills knowledge. Conceptual kdgels typically at-
tained though classroom or didactic learning, while skills knowledge is typiedtined
though practical training [Kenny, 2006]. Conceptual knowledge lagroan be mapped to
“verbal information” in Gag@’s learning outcomes, while skills knowledge can be mapped
to “intellectual skills” [Gagt et al., 2005]. A knowledge level can also be defined as a nu-
meric value between 0 and 1, where 0 represents no knowledge anel Wiegresents full

knowledge [Melia and Pahl, 2009].

2.2.1.1 Learner's Learning Goals

The learner’s learning goals define the desired post coursewavergekinowledge state
for each learner. Learning goals are therefore defined in terms ofl&dge. The course
learning goals are the starting point of course development, on whichsasset and in-
structional design are based [Dagger, 2006b, ch. 3].

In order to accurately assess whether or not courseware satisfles@arse learning

15

goal, a formative evaluation (post-delivery) can be carried out toénalearner will attain
the desired knowledge [Dick and Carey, 1991].

At the pre-delivery stage of courseware construction we can aggbssscope of the
courseware is sufficient to satisfy all learner’s learning goals andhbaype of TEL con-

tent used is suitable for the desired type and level of knowledge.

2.2.1.2 Learner's Assumed Initial Knowledge

Assumed initial knowledge is a statement of the knowledge we expect lsaméegin
a given courseware with. Assumed initial knowledge can also be exgréisderms of
conceptual and skills knowledge. The aim of a course is to define instruttEnwill

take the learner from assumed initial knowledge to the learner’s learnisg Gapturing
assumed knowledge in courseware validation is crucial, as coursevgamgction should

build on existing learner knowledge in order for the learner to achieveaithegpgoal.

2.2.2 Courseware Structure and Sequencing

The courseware structure facilitates instruction by bringing each lefm®r some as-
sumed initial knowledge state to the learning goal. The courseware strdefimes how the
courseware is brought together but also normally has sequencingidefirembedded in
the structure. For this reason, we look at the courseware structuisegndncing together
in this section.

In looking at courseware structure a distinction can be made between the amdr
macro (strategy) levels as defined by Reigeluth [Reigeluth, 1983b]. The taiel is con-
cerned with how a single idea or concept is taught, e.g. addressing thensétg of LOs
that address the same concept. The macro level addresses coursmsat the concept

level, e.g. what concepts are learnt by the learner and in what order?

2.2.2.1 Micro-Level Courseware Structure

Micro-level courseware structure is concerned with the instructiorsigideised in teaching

a core courseware concept. It is at the micro-level that the couratocmakes decisions

16

on the best instructional design for teaching a concept and ensurinth¢éhastructional
design used in the courseware accurately implements that strategy. Anlexdmap an ap-
proach the looks in detail at intra-conceptual sequencing of learnimgmbcan be found in
[Ullrich, 2005], where Ullrich investigates how Hierarchical Task NetwtTN) planning
can be used to define an instructional design to teach a given concept.

The course creator may define a default sequence of learning ewtietr®e each event
must take place for a concept to be taught. For this purpose &=@h. outline the “Events
of Instruction”, a series of instructional events which must take placeforo-level learn-
ing to take place [Gagnet al., 2005]. These instructional events are; gaining attention,
forming the learner of lesson objective, stimulating recall of prior learrmprgsenting stim-
uli with distinctive features, guiding learning, eliciting performance, pringdnformative
feedback, assessing performance and enhancing retention anddeeansfer. Gagaet al.
believe that all events are necessary in roughly this order. The extlokany event must
be a deliberate and conscious decision of the course creator basedleartting audience,

the learning task or both.

2.2.2.2 Macro-Level Courseware Structure

The macro-level courseware structure is concerned with how the teaohitoncepts is
sequenced in courseware. In defining the courseware structureubsecreator attempts
to define courseware sequencing that brings the learner from amedsnitial knowledge
state, to a learning goal, in the most effective and/or efficient manner.

Learning takes place in the context of other knowledge. Knowledge theqisred for
learning is known as pre-requisite knowledge. Gaghal. describes pre-requisite knowl-
edge as “critical for the rapid, smooth learning of [a] new skill”, the abeexi which would
make learning the new skill impossible [Gaget al., 2005, p184]. In traditional courses,
sequencing is dictated by the instructor. In courseware the learnembesa more active
player, and can influence the delivery sequence of course materigicarinbe done know-
ingly or unknowingly. The course creator can still specify a sequeuntedn also empower

the learner to choose their own sequence. This extra dimension to canesssguencing

17

n-

makes courseware structure validation very important, where validationengate that

any topic sequence that is available to the learner is instructionally sound.

2.2.3 Learning Content in Courseware

As mentioned in section 1.1, Learning Objects, used in courseware, Gambtated using
the IEEE Learning Object Metadata (LOM) standard. LOM is used to “fatalisgarch,
evaluation, acquisition and use of learning objects” [IEEE LTSC, 2002 standard is
quite large incorporating many characteristics of LOs. Due to its coverageQM stan-

dard can be used to validate LOs used in courseware. There aresgeviems of the LOM

standard, these are:

e General - General cataloguing information such as the LO name, landesgeords,

natural language description, structure, aggregation level and acvidigutifier.
e Life Cycle - Information about versioning, status and who has contritiotéoe LO.

e Meta-Metadata - Information about the metadata such as who is cataloguib@ the

and the language of the metadata.

e Technical - Information such as the format of the LO, the file size, file losatitd

system requirements.

e Educational - Metadata describing pedagogical details, such as theltjfftbe in-

teractivity type, learning resource type and semantic density of the LO.
e Rights - Details of the LO cost and copyright.

e Relation - How this LO is related to other LOs. The relation can express & rang
of relation types such dsasedOn, isPartOf, isVersionOf, isFormatOf, referereed

requires

e Annotation - Comments on how, by whom and when people are using this Li®. Th

allows for educators to supply some feedback on the LO.

18

¢ Classification - This section of the LOM allows the LO to be classified using some
specific external classification system. The person annotating the LO nowstig
details on what classification system is being used, where this LO falls in th&-cla

fication system and what the classification means.

The range (allowable values) for the majority of the LOM attributes is free (gt
description in theyeneralsection), while some only allow for a set of restricted values (e.g.
structure in thegeneralsection allow only the following values: atomic, collection, net-
worked, hierarchical and linear). LOM attributes can also be set toerefe some external
classification system, or reference external resources such as.@beAn XML schema
can also be used within LOM to enhance meaning of LOM values. For exampbn
annotation refers to a person th€ard standard can be used [Dawson and Howes, 1998].
The course creator can use this metadata to define validation concermsll ek at this

in more detail in section 4.4.3.

2.2.4 Pedagogical Strategy

A pedagogical strategy sets out a strategy for learning. In coureemmrare limited in
the extent to which pedagogical strategy can be realised. We confineéfitong what
LOs are delivered to which learners and when. Pedagogical strateggjos with many of
the other courseware construction concerns, such as the cowesagaiencing, as both are
concerned with how the courseware is delivered to learners.

Courseware pedagogical strategy allows courseware to adapt toatie ofeindividual
learners. The learner is the most complex concern in course constrastibe character-
istics of a learner are infinite. When representing a learner we genegathjct ourselves
to representing key characteristics that dictate the way the learner |@arliit the com-
plexity the learner introduces to the courseware definition, the coura®can use learner
stereotypes where a stereotype groups learners according to somercaiinibote(s) (e.qg.
software engineering students as opposed to electrical engineeriegtsiujdKay, 2000].

Adaptive behaviour in adaptive courseware is defined using leanaeacteristics. Dag-

19

ger outlines the learner characteristics that courseware can adapptmaknowledge and
competence, learner aims and goals, learner preferences, learrsgweare interaction his-
tory, cultural background, cognitive and learning style, prefermdraunication style and

needs and the learner delivery environment [Dagger, 2006b].

2.2.5 Courseware Quality

The quality of courseware can be assessed by evaluating particulantatrds the course-
ware, known as quality attributes. The validity of a given courseware igeficdn the
combination of these attributes.

Grutzner et al. identify four central quality attributes to which coursewalidityacan

be judged, these are [@Bzner et al., 2004]:

The Content of Learning Materials - What content is taught to the leatesformat

the content takes and its suitability.

e The Presentation of Learning Materials - Addresses how coursewdeziafem are
presented to the learner, addressing courseware sequencinguaselare structural

issues.

e How Learning Materials are Taught (i.e. pedagogic content) - This dimerafio

quality addresses the pedagogical approach to content delivery.

e How Well Courseware Engages - Looks at the level of learner emgaggewith the

courseware.

In validating courseware, we aim to pinpoint problems in courseware Inyifgi@g course-
ware elements that violate quality attributes. The quality attributes outlined alffere o
general guidelines for evaluating courseware.

Various educational bodies also specify guidelines for evaluating cearsgusing a
variety of quality attributes. The Texas Education Agency has definedrpremensive
evaluation matrix for evaluating courseware [Blackerby et al., 2002%. qurality attributes

used in this matrix are:

20

Course Design - Ensures the learner’s learning goals are addreBbidlooks at
the syllabus used to address the learning goals and also at how well tisewate

engages the learner.

Course Content - Looks at the how course content is organised, @he dfourse

content provided is sufficient to achieve each learner’s learning.goals

Instructional Strategies and Activities - Does the instructional strategyhsuitourse

learning outcomes and learners?

Learning Community - The course affords the opportunity to create a |lepcoim-

munity and encourages collaborative methods.

Student Assessments - Can the course effectively assess leammvledige at any

given point in the courseware.

Technology Integration - Technology used enhances the learnarigrigaxperience,
technology and media integration is seamless and the potential of technalagy fa

is addressed through the instructional design and alternative delivéimpdse

Course Effectiveness - Addresses the summative evaluation corddrescourse-

ware.

Other efforts in the area of courseware quality have concentratedtalisting the

quality of learning content in courseware. One such effort is the liegu@bject Review

Instrument (LORI), which provides users of a given LO a common fraonkewvith which

to evaluate the LO [Nesbit et al., 2003].

The quality attributes presented in the literature specify general coneseuality at-

tributes. For the purposes of courseware validation we focus on thwadigycpttributes that

can be evaluated before the course is delivered to the learners, lasothe “courseware

construction concerns”. We define these concerns in section 4.3.olinecgvare construc-

tion concerns are focused, measurable qualities of coursewareraaldcde assessed prior

to courseware delivery, allowing for correction before delivery torless.

21

2.2.6 Courseware Standardisation Efforts

Standardisation efforts in courseware have allowed for the de-cowgdlifigL content from
instructional logic, where instructional logic is the explicit machine-readdéfimition of

an instructional design. Many approaches to defining instructional lagibe found in the
literature in the form of Educational Modelling Languages (EMLSs) [Maz-Ortiz et al., 2007].
Two of these approaches are recognised IMS specifications, IMS S8eplgencing

[IMS, 2003c] and IMS Learning Design (LD) [IMS, 2003b]. Moreesjalised EMLs have
also be defined for specific types of e-learning environments, for eeating LAOS lan-
guage, developed by Cristea & de Mooij, allows the course creator taedefiaptive Edu-
cational Hypermedia (AEH) [Cristea and de Mooij, 2003]. AEH is describanore detalil

in section 3.2.2.

Recently, LOs have grown in popularity due to their advantages in coarsewon-
struction, such as a reduction in courseware construction time and effioialso allow-
ing course creators to reuse tried and tested TEL content. Specificativasalso been
developed that allow for the packaging of LOs, such as IMS Conteritagawy (CP)
[IMS, 2003a].

Learning Management Systems (LMSs), such as Mdodéackboard, and Saka,
provide a delivery platform for courseware delivery. LMSs canthsecourseware specifi-
cations to import and export courseware from one LMS to another. Thigsafor course-
ware to be developed independent of the eventual coursewarerggdlagform. The main
courseware specifications used in the import and export of cours@anathe ADL SCORM
[ADL, 2004] and the IMS Learning Design (LD) [IMS, 2003b] speddfiions. As the vast
majority of courseware is delivered through a LMS, in this section we look irerdetalil

at the specification efforts that allow for interoperability with LMSs.

*ht t p: / / www. mood| e. or g
ht t p: / / wwv. bl ackboar d. com
Sht t p: / / ww. sakai proj ect . org

22

2.2.6.1 SCORM

The Shareable Content Object Reference Model (SCORM), is a sjaicifi that defines
collection of standards and specifications used to describe coursiewane purposes of
courseware portability. The most recent published SCORM specificatithre iISCORM
2004 specification [ADL, 2004]. This specification is made up of thre¢esp&CORM
Content and Aggregation Model (CAM), SCORM Sequencing and N#eigdSN) and
SCORM Run-Time Environment (RTE). The previous version of this spatiin was the
SCORM 1.2 specification which did not have the sequencing and navigagfmitidns.

The SCORM CAM, allows for the packaging and description of a giverrsaware.
The main specification used to define the SCORM CAM is the IMS Content Bisgka
specification [IMS, 2003a]. Metadata standards, such as the IEEE &@Mlard, can be
embedded into the SCORM CAM to describe courseware.

The SCORM SN, allows for the definition of how learning content in SCORMis s
quenced for the learner. The principle specification used in SCORM S I848 Simple
Sequencing (SS) specification [IMS, 2003c]. The SCORM SN is definieb main ways,
through “sequencing control modes” and “sequencing rules”. Sequgicontrol modes
define how a learner can interact with a sequencing “cluster” wheresteclis an aggre-
gation of learning content with an aggregation level of one. We have odtisguencing
clusters in the diagram in figure 2.1. Sequencing rules allow the coura®cte define
condition-action rules for SCORM courseware.

The SCORM RTE allows for communication between a SCORM package andsa LM
The principle standard used for this is the IEEE ECMAScript ApplicatiorgRimming

Interface for Content to Runtime Services Communication [ADL, 2004].

2.2.6.2 IMS Learning Design (LD)

The IMS LD specification aims to capture learning (instructional) designs tteptyed
for a specific learning situation [Koper, 2005]. The IMS LD specificatitarted as the Ed-
ucational Modelling Language used at the Open University of the Netitsri@UNL), but

23

L~]
AA AE AC

| . | |

AAA | AAB lAAG ABA AEBB ABC ACA | ACB |ACC

ABCA

Figure 2.1: Sequencing clusters as defined in IMS Simple Sequencing 2003c]

has since been brought under the IMS umbrella, integrated with the otlsespikifications
and renamed IMS Learning Design (LD).

IMS LD is based on a theatre script metaphor. A learning design is made aigetdf
of plays which in turn contairacts An act has a set ofole-parts There are two types
of roles in a learning desigrstaff roles andearnerroles. The learning design workflow
is managed by thenethod which is designed towards a setmErequisitesandlearning
objectives A role-partin IMS LD links anactivity to arole [Olivier and Tattersall, 2005].
An activity defines a learningnvironmentwhich is a set ofearning objectandservices

Learning design has been designed in levels, allowing the course deatorease the
complexity of the learning design they are using incrementally. These leeetsdollows

[Olivier and Tattersall, 2005]:

e Level A - The core of the LD language, allows for the description andagiog of

courseware. Everything described thus far has been level A.

e Level B - Allows sophisticated adaptive learning specification using ptiggeaind

conditions.
e Level C - Allows for notifications.

Level B properties and conditions allow for the capturing of informatioruatiee learn-

ers, and the state of the learning design itself. Conditions can be thendlefintese

24

properties. Level C provides for greater interactivity and controt & during delivery,
allowing for a form of event-driven messaging in the learning design.

Figure 2.2 illustrates the conceptual structure of the IMS LD specification.

learning design |

designed lowards > - . ¢

aming nhjac:lve] ng:hal elements

;

[Feusa>>

[Coson]

creales 3

notification |—n0ges

outcome

learmer

. - ;
mefng objsctl | service D

Figure 2.2: IMS LD Information Model [IMS, 2003b]

2.3 Software Modelling Technologies

The courseware validation solution, defined in this thesis, is based on fihéioke of a
DSML, using conceptual modelling technology. In [Daconta et al., 2083/]cDaconta
et al. outline a series of ontology types with varying levels of expressiitgwn as the
ontology spectrum. To define a DSML for courseware validation we reguirontology
expressivity level that can define a fixed vocabulary. We have detedhilrat the level
of expressivity needed for our research is that of a “conceptuakthad the ontology

spectrum [Daconta et al., 2003] for the following reasons:

e We expect course creators to use the DSML in courseware constriartibis reason

25

it must be as intuitive as possible and therefore limit its complexity.

e The DSML is expected to capture courseware and be interoperable withevare

specifications. To allow for this the expressivity level of the DSML defiimethis

thesis must be the same as or less than that used to define the state of theeart. Th

state of the art is defined using conceptual models.

¢ Inorderto capture courseware requirements defined in terms of kngevied DSML
must be defined using an expressivity level the same as or less than thaisef
standards and specifications used to define knowledge. Knowledgiatarare

generally defined using the expressivity of a conceptual model or highe

To this effect we examine software modelling technologies used to captucemmal mod-
els, these being the Meta Object Facility (MOF) [OMG, 2003a] and the Uriifiedelling

Language (UML) [Eriksson et al., 2003]. Both MOF and UML are ObMotlelling Group
(OMG) standards. The OMG is an industry consortium that “maintains comjnaestry
specifications for interoperable applications” [Eriksson et al., 2003. Wl also look at
the Eclipse Modelling Framework (EMF) [Steinburg et al., 2008]. EMF mles a mod-
elling language that allows for a generative approach to software geweltt within the

Eclipse IDE [Czarnecki and Eisenecker, 2000]. MOF and EMF modellonsitucts are

similar to UML modelling constructs and as UML is a widely known modelling language

we will only briefly introduce MOF and EMF.

Software models are traditionally used as a design artefact in softwaetogeent.
Improvements in their semantics have allowed for them to become actual dexglbarte-
facts, capable of generating code. The use of software models depleeat artefacts in
software engineering is known as Model Driven Engineering (MDEh[&idt, 2006]. In
this thesis, we will outline how MDE can be used with our DSML in coursewarssiuc-
tion, and can also be used to allow for interoperability between the DSML &hd NMIDE
is described later in this chapter in section 2.5.

Software modelling technologies are the basis for the courseware validgimoach

defined in this thesis. The software modelling technologies described in thisrsallow

26

for the definition of a Domain Specific Modelling Language (DSML) in the “metdationg
technical space” [Djufi et al., 2006]. When this DSML is used with the Object Constraint
Language (OCL) it allows for the validation of courseware by constrgittie allowable
courseware definitions. As OCL is not widely known, we therefore defi€L in a tutorial

like format, in section 2.4.

2.3.1 Meta Object Facility (MOF)

The MOF is a universal mechanism for defining modelling constructs. TOE likelf is
self-defined. A MOF modelling architecture has a four layer modelling staicldfining

modelling languages. We outline the MOF modelling stack in table 2.1.

Table 2.1: MOF modelling stack

Metalevel | Description

M3 The meta-metamodel
level, defined using MOF
M2 The metamodel level de-

fined using MOF. The
M2 layer used to define
modelling languages e.g.
UML metamodel
M1 The model level defined
using modelling element
defined in a metamodel at
the M2 layer e.g. UML
model

MO The actual runtime in-
stance of the softwar
model defined at M1

174

[°2)

112

2.3.2 Unified Modelling Language (UML)

The Unified Modelling Language (UML) is used to describe software aftdiare require-
ments. The UML metamodel is defined by the OMG using MOF [OMG, 2007].r& he
are two types of UML models, structural and behavioural. Structural lealidine how a

system is composed, while a behavioural model documents the dynamicdaetaha sys-

27

tem. In table 2.1 we have also noted the modelling levels that the UML metamodel (UML

definition) and a UML model is defined at in the MOF modelling stack.

2.3.3 Eclipse Modelling Framework (EMF)

EMF is an open source modelling framework which integrates into the Ecliptenta
[Steinburg et al., 2008]. The primary purpose of EMF is to allow for gaties program-
ming within the Eclipse IDE. Developers can define software using an E@ogdel, a
modelling language for EMF. ECore models can then in turn be used to gedava code.
ECore is closely aligned with the Essential MOF (EMOF), a subset of the @& spec-
ification. An ECore model can be generated from an XML schema, a setmftated Java
interfaces or an UML2 model. To allow for the generation of Java code fio ECore
model EMF uses a model-to-text generator such as the Java Emitter Tempfaje\i&ke
will describe JET in detail in section 8.4.3.

Many powerful developer applications have been built on top of EMIe Such tool is
the Graphical Modelling Framework (GMF). GMF is a framework for desigmodelling
tools based on EMF models. To create a GMF modelling tool an EMF model isedefin
as the tool's metamodel. Model diagrams developed in the GMF application muast the

conform to this metamodel. We describe GMF in detail in section 8.4.1.

2.4 The Object Constraints Language (OCL)

In this section we take an in-depth look at OCL, its syntax, semantics andafjese. We
will concentrate on the parts of the OCL most applicable to our work. A motaildd
description of the OCL can be found in [OMG, 2003b] and [Warmer angbjde 2003].
OCL is a formal constraint language originally designed to describe ssiores to en-
hance the semantics of UML models. OCL typically takes the form of invaramtcaints,
defined on modelling constructs in a UML model. An invariant is a rule that meistue
when the model is instantiated. OCL can also be used to query a UML anc: Batel.

OCL is a declarative language that has no side effects on the model it iedlefi.

28

This means OCL cannot change the information in the UML model, it can onlyaatite
semantics of the model by constraining the allowable model instances.

The OCL standard, specified by the OMG, states that OCL should be aisgdeffol-
lowing purposes [OMG, 2003b]:

e “As a model query language.

e To specify invariants on classes and the types allowed in the class model.
e To specify type invariant for stereotypes.

e To describe pre- and post-conditions on operations and methods.

e To describe guards in activity diagrams.

e To specify target (sets) for messages and actions.

e To specify constraints on operations.

¢ To specify derivation rules for attributes for any expression over d_uidel.”

In this section we will provide an overview on defining OCL constraints, Wealso

define OCL's application areas and assess the tool support availablefiiting OCL.

2.4.1 OCL Language Constructs

In this subsection we outline the major OCL language constructs used to defisteaints
and queries in OCL. The main reference points used are the OMG stdafi, 2003b],
the text by Warmer and Kleppe [Warmer and Kleppe, 2003], and Richtei3. Rhesis
[Richters, 2001].

2.4.1.1 Expressions

OCL expressions are based on set theory and predicate logic. Forrtte@madical se-
mantics for OCL are defined in [Richters, 2001]. OCL does not use ariiametical

notation, as one of the design motivations for the standard was the neéuefagour

29

and precision of mathematics with the ease of natural language. The reayftréxise
unambiguous language that is easily written and read by Object Orientetitipreers
[Warmer and Kleppe, 2003, p17].

Literals and variables can be used to build simple expressions in OCL. Maorplex
OCL expressions can be defined, such as conditional branchesingy@CL's if-then-else
notation.

The value of an object property, defined in a class diagram, is spectiind the dot
notation in OCL, i.e.classname.propertynamé&he dot notation allows the user to build
paths around a given model. To navigate to an associated class thetimsecid role of the
associated class is used as the property name. Properties on colleci@assessed using

an arrow “>" followed by the name of a OCL collection operation (see section 2.4.1.8).

2.4.1.2 Types

The most basic OCL types are; Boolean, Integer, Real and String.eTipss can be
manipulated using logic operations (Boolean), arithmetic operations (IrdegeReal) and
string manipulation operations such as substring (String).

Three specialised types of collection classes are also defined in OCLB>and
Sequence. A set is a collection of objects, which does not allow for diugdicBag allows
for duplicates and a Sequence is an ordered set. Manipulation of cole&tidone using
various collection operations. We look at the OCL collection operations inl detection

2.4.1.8.

2.4.1.3 Context

All OCL expressions have a grounding in a model, which a given OCLtcainsis defined
in terms of, this is known as the constraint context. In listing 2.1 the constrairiext is
the clasCar, this means that the OCL constraints are defined from this model construct.
Herenumwheelds an attribute of theCar class. The invariant states that themwheels

attribute must be equal to four for the invariant to be satisfied.

30

Listing 2.1: Defining an additional operation on the Car class

context Car

inv wheels: numwheels = 4

2.4.1.4 Invariants

Invariants in OCL are defined with the keywona. An invariant must be true for an
instance of a model. It provides a method to constrain the forms objects @mtéhe
instance space. In listing 2.1 we have demonstrated an invariant statingtirahast have
four wheels.

Invariants may have an optional name, which is defined aftantHeeyword and before

the colon indicating the start of the invariant. In listing 2.1 the invariant is namleeels

2.4.1.5 Pre-conditions and Post-conditions

Pre-condition states and post-condition states can be defined on clestsomsausing OCL.
The precondition constrains what system state the context class opeaatibe invoked in
while the post-condition states what the system state must be once the opkaatibaen
invoked.

In listing 2.2 we have outlined an example use of a pre-condition and a pogition
for the start() operation of the Car class. The Car clastat() operation is defined as the
context. To define the operation as the context, we specify the contegtasidghen after
a double colon (“::"), we state the operation. The double colon indicateshtbatperation
callis an instance level event - a system state. The constraint statestbiairt{) operation
must only be invoked when the car’s engine is off (pre-condition) anetiggne must be

on after invoking the operation (post-condition).

Listing 2.2: Defining an additional operation on the Car class

context Car :: start() : Boolean

pre: engine.on =false

post: engine.on =true

31

2416 Let

Thelet keyword in OCL allows for the definition of local variables for an invariand is
defined as a sub-expression. In the example in listing 2.3, an initial lodabl&is defined
for the invariant using the let keyword. The local variali&l defines what an “old” car
is (i.e. a car more than ten years old), the invariaatyiceis then defined using this local

variable after the keyworih.

Listing 2.3: Defining an additional operation on the Car class

context Car
inv service: let old: Boolean =
age> 10
in
if old = true then
serviceRequired =true
else
serviceRequired =false
endif

2.4.1.7 Def

The OCLdef keyword allows for the definition of extra object attributes and operations
using OCL. These operations and attributes can then be used by otherdd&traints. In
listing 2.4, we use thelef keyword to define two operations. The first operatiomyés-
NumPassengers@n the Car class, which evaluates the number of passengersGara
instance. The second operatigatPassengerName(x:Integg®@ts the name of the passen-
ger at the index. This operation illustrates how parameters can be passed into an OCL

operation.

Listing 2.4: Defining an additional operation on the Car class

context Car
def getNumPassengers() : Integer = self.passengessize ()

def getPassengerName(x:Integer) : String= self.passesgeat(x)

2.4.1.8 Collection Operations

OCL offers a variety of collection operations, which aid the user in the méatipn and

querying of OCL collections, these include:

32

e sum()- Returns the sum of all elements in a collection.

e size()- Returns the number of elements in a collection.

e isEmpty()- Returns true if the collection has zero elements.

e notEmpty() Returns true if the collection has more than zero elements.
e select(expr} Returns elements in a collection whepepris true.

e collect(expr) Returns collection which results from evaluatiexpr.

o forAll(expr) - Expr must be true for all elements in the collection.

2.4.2 OCL Applications

As we have mentioned the main use of OCL is to enhance the expressieghigds mod-
els, by adding additional information to the model that cannot be expressegl UML's
visual notation. Since its original standardisation in 1997 OCL has evoaratlits appli-

cations have grown. OCL is now used in the following application areas:

e The largest use of OCL remains refining UML model definitions. The impoetaf
OCL in this regard is especially important with the advent of Model Drivegiber-
ing (MDE) in software development [Warmer and Kleppe, 2003, ch1].

e OCL is also being used to refine DSMLs defined in the metamodelling technical
space using meta-metamodel languages such as MOF or Ecore [Groa0@8k To

do this OCL is used to constrain metamodel definitions.

e OCL is used to define some model transformation languages such as theratias T

formation Language (ATL) [Jouault and Kurtev, 2005].

Tool support can be provided to the OCL developer in a number of widyussmann
et al. outline the most important aspects of tool support needed in ordestioesthe extra
effort needed to define OCL constraints is cost-effective [Hussmiaaln €000]. In their

work they outline key features that an OCL tool should have:

33

e Syntactic Analysis - Parsing OCL expression for syntactic errors.
e Type-checking - Enables automatic static type checking of OCL.
e Logical Consistency checking - Ensure that OCL constraints are mitazhictory.

e Dynamic Invariant Validation - Allow for the building of a snapshot of thetegsto

test invariants.

e Dynamic Pre-/Post-condition Validation - Again allows for snapshot of aysted

the testing of OCL pre/post-conditions.

e Test Automation - Allows for automated Checking of system test results aghes

specification.
e Code Verification and Synthesis - Verify safety-critical developmenjepts.

We add one more feature, which we deem important due to the importancessbtjee
programming in MDE, the facility to transform UML and OCL to programming code.

Richters uses the aspects of tool support outlined above to evaluatet@Eosetd OCL
tools [Richters, 2001]. In our work, we will further this work by addinggigditional tools

and updating the results. The tools we will look at are:
e UML Specification Environment (USE), from the University of Bremen [£)2008].

e Open Source Library for OCL (OSLO) - An OCL tool which allows for thelkeia-
tion of OCL against UML2 models. This project is managed by Fraunhofgitlite
FOKUS [FOKUS, Fraunhofer Institute, 2006].

e Octopus - Developed by Warmer and Kleppe, implemented as an eclipse plug-in

[Warmer and Kleppe, 2006].

¢ EMF Validation Project - The eclipse validation project allows for EMF moaesi-c

straints defined in OCL and Java [Steinburg et al., 2008].

34

e KeY Project - this project aims to allow for the formal verification of objedt-so
ware as seamlessly as possible, one of the applications of this is an OCL taxh, w

translates OCL to first-order predicate logic [Beckert et al., 2002].

e Dresden OCL Toolkit - designed to be integrated into other tools as an OGirylibr
There are several applications built on the Dresden OCL Toolkit incluain@CL2
workbench, an OCL checker GUI, a Java code generator and éoinawagion frame-

work. [DresdenOCL, 2007].

In table 2.2, we have outlined the aspects of tool support provided feably of the

tools described above. Question marks in the table indicate unavailable data.

Table 2.2: Analysis of OCL Tools

Feature Tools

USE | OSLO | Octopus| EMF | KeY | Dresden
Syntactic analysis yes | yes yes no no yes
Type-checking yes | no yes no no |yes
Logical consistency checking | no no no no ? no
Dynamic invariant validation yes | no ? yes | yes | yes
Dynamic pre/post-condition valt yes | no ? yes | yes | yes
idation
Test automation yes | no ? no yes | no
Code verification and synthesig no no no no yes | no
Model transformation facility no no yes yes | no |yes

2.5 Model Driven Engineering

Model Driven Engineering (MDE), also known as Model Driven Depenent (MDD) and
Model Driven Software Development (MDSD) is an approach to softvelavelopment,
where software is modelled at progressively lower levels of abstraai@ntually at the
level where code can be generated from the models. In this thesis we Witleohow

MDE technologies and approaches provide for interoperability betwEerand the DSML
defined for courseware validation. The thesis also outlines how our MdbBbe used in

courseware construction.

35

One specific MDE approach is Model Driven Architecture (MDA). MDAais MDE
approach promoted by the Object Management Group (OMG) [Frark@B]2It involves
using the OMG family of modelling languages to define and subsequentlyajerssft-
ware. In order for UML to be used as a development artefact ratharahaere design
artefact, UML models must be unambiguously defined. To allow for this OCkfiseld on
UML.

In MDA three types of models are defined in software development, Commaéhtic
dependent Model (CIM), Platform Independent Model (PIM) atadfBrm Specific Model
(PSM). The CIM model is a requirements model. The CIM can then be useshtyate the
PIM model, a systems design model, which is independent of any techndaigyrm. The
PIM is used to generate the PSM, which is the systems design model, modellad aome
technology platform, such as J2EE or .NET. Model transformations & tostransform

from one model type to another.

2.6 Model Transformations

Model transformations play a key role in MDE, allowing for [Czarnecld &telson, 2006]:

e Generation of lower-level models (and code) from higher level modelss-the case

in MDA's CIM, PIM and PSM.

¢ Definition of mappings among models at the same level or different levels-of ab
straction - allowing for mapping from one modelling notation to another modelling

notation.
e Query based views of a system.
e Performing of model evolution tasks, such as model refactoring.
e Reverse engineering of lower level models into higher level models.

Figure 2.3, outlines the basic premises of a model transformation, where tihel mo

transformation definition is defined between two metamodels, and the transformsa

36

then invoked at the model level.

refers to refers to

|Source Metamodell(—'Transformation Definition |—)|Target Metamodell

A A

conforms to conforms to

reads writes

Source Modell(Tran;for}manon Target Model
| | ngine

Figure 2.3: Basic concepts of model transformation [Czarnecki andRe2906]

When considering a model transformation language it is important to asséssitior-
mation language in terms of its features. To this effect Czarnecki andriHadsepare nearly

thirty transformation languages using the following features [CzarneckHelson, 2006]:
e Specification - Is there a detailed specification mechanism for the trangforma
e Transformation Rules - Looks at how transformation rules are formulated.

¢ Rule Application Control - Two dimensions, local determination (the model location
that a transformation is applied to) and scheduling (scheduling the ordemsfor-

mations).
¢ Rule Organisation - General structuring issues.
e Source-Target Relationship - Looks at how the source and targetl msredeslated.
¢ Incrementally - Ability to update target model with updates on the source model.
e Directionality - Are transformations unidirectional or bi-directional?

e Tracing - Mechanisms for recording different aspects of transformatecution.

2.7 Chapter Conclusion

In this chapter we have outlined the courseware terminology and conaegtéthis thesis,

and subsequently outlined the software engineering technologies arwhelpes used.

37

Initially, we looked at how courseware can be defined in terms of its ssbp&ture,
content and pedagogical strategy. We also examined how coursemality ¢¢ measured.
The two main courseware specifications defined to allow for the portabilitpufseware
definitions were then described, these being SCORM and IMS LD.

The second part of the chapter detailed the software engineering teglasoused in
our research to allow for courseware validation. These are principafiiyare modelling
technologies used in MDE.

Software modelling languages allows for the formal and unambiguous defioftsnft-
ware systems and their requirements. Software modelling languages ptlowittkeal se-
mantic expressivity for defining conceptual models to validate courseWeise software
modelling technologies to capture courseware design and its requirementssbef the

similarities between courseware and software, such as:

e Software is designed to satisfy some business need which is establishght ttesu
tailed analysis, while courseware is defined to satisfy some learning niadxtistsed

through an analysis of a skills gap.
— Software like courseware has some specific start-point depending @eits u
— Software like courseware has some specific end-point depending aeits u
e Time and money is saved through the reuse paradigm now prevalent iragsftw
engineering, found in software development approaches such aso@entBased
Software Development (CBSD) [Szyperski, 2002]. Coursewarstoaction 100ks to

reuse as much content and instructional design as possible to booshtitye ofithe

courseware and to save on time and development costs [Motelet et al}, 2007

e Software models such as UML can model software structurally and befalhg

which is the two main ways of expressing courseware.

e MDE technologies can be used to generate courseware specificatielis g¥lal., 2006,

Melia and Pahl, 2006b].

38

It should be noted that although there are similarities between the reushgoaria
software engineering and courseware design at a component lestelulaaly when com-
paring LOs with software components such as objects, there are some rffgjandes
in their usage and properties. Sosteric & Hesemeier discuss thesertiffsrand of the
incorrect comparison some authors have drawn between LOs and softhjacts
[Sosteric and Hesemeier, 2002].

In chapter 5 we will look at the application of software models to the definitioa of
DSML for describing courseware and its requirements. Then in chapier @utline how
OCL can be used to define courseware validation criteria. In chaptenv@lideemonstrate
how MDE technologies in general allow for the integration of coursewalidation with

the state of the art in courseware construction.

39

Chapter 3

State of the Art

3.1 Introduction

In this chapter we survey related research, initially looking at coursee@mstruction (or
authoring) and then at courseware validation.

Our particular focus is to examine where and how courseware validatiamtitsourse-
ware construction. After looking at courseware construction, weeamnate on the course-
ware validation state of the art in section 3.3. We examine four approaclcesiteeware
validation found in the literature. To analysis the state of the art examined irhiduiter in
section 3.4 we compare all the courseware construction and validatiooeapes covered
in this chapter using a comparison framework. The chapter concludestmyarising our

findings.

3.2 Courseware Construction

In this section we examine the state of the art in courseware constructearebgo provide
the courseware construction context for courseware validation.

We will examine each courseware construction approach in terms of its metteod
courseware granularity level it addresses and look at examples liddpgsearch demon-

strating an implementation of the courseware construction approach. Eaetmiemation

40

will be examined in terms of its user interface, its interoperability with other TElstoo
such as LMSs, and any validation functionality provided by the implementatidrernvgx-
amining an implementation’s user interface we are concerned with the leviestraation
the course creator constructs courseware at. We are not interestedaolgusability, such
as the tool's User Interface (Ul) layout. We investigate interoperabilitynftbe point of
view of how courseware validation can be integrated with coursewarsgroation. These

are central concerns to our investigation and are used to evaluatesearak.

3.2.1 Specification-based Courseware Construction

In section 2.2.6, we outlined the various standardisation efforts in coarea@nstruction.
Surrounding the development of these standards has been the devel@bto®! support
for course creators to produce standard/specification complianteveans or learning con-
tent. This tool support bases its courseware construction paradigmdeol EL specifica-
tion/standard model and work at the same granularity level as the couesspexification.
The primary goal of such a tool is to provide an intuitive user interfacdéfining the TEL
specification on which it is based. The primary motivation for using the TEcifipation
is that courseware produced using such a tool can easily be exportedpecification-
compliant way and then imported and delivered using any LMS, which is iméeable
with the TEL specification used.

In the following sections we will look at the tool support developed basedhe
SCORM specification (see section 2.2.6.1) and then look at tool suppat lwe the IMS

Learning Design (LD) (see section 2.2.6.2) specification.

3.2.1.1 SCORM Authoring Tools

SCORM is a very popular TEL specification for courseware packagiagthis reason tool
support based on the specification is numerous. Here we look at soneerabtie popular
ones.

The Reload Projectis a JISC funded project, managed by the University of Bolton
[RELOAD Project, 2005]. The Reload Editor allows the course creataoreate a SCORM

41

2004 package without knowledge of the specification’s XML bindings. Thchieved

through a graphical user environment that presents the SCORM XMLfites teee type

structure, where the XML tree is mapped to the file tree structure. Theeowgator can
open out elements of the XML specification, and drag and drop Learnbjgc® (LOs)

into a SCORM package - represented as the tree structure. A compaaisdoe drawn

to a classic file system interface, where the user can drag and drop fdegnous sys-

tem directories. When all the LOs needed for the courseware haveadded, the course
creator can then define sequencing information, in the form of an IMS Si8ggle@encing

definition, using a form-based UlI.

Figure 3.1 depicts a screen-shot of the Reload tool during coursel@agéopment. As
seen in the screen-shot the course is dividedanganizationsanditemsin anorganization
as in the SCORM specification.

The Reload editor allows the course creator to create a SCORM packagaiglitly
higher level of abstraction, abstracting the XML implementation details. Theseaueator
must still understand how to implement central concepts of coursewatagiag according
to the SCORM specification. The Reload tool does not allow for any kinclidation of
the SCORM courseware created.

InSite Studio from Mississippi State University [Mississippi State University, 2007], is
a diagram-based tool for the production of adaptive, modular learnimgicb The diagram
view presents the course creator with a visual representation of thenpatienal flow of
learning content, in flow-chart type notation. This type of presentational fiotation,
allows the course creator to develop courseware in a programmatic waycasiditions and
actions. InSite essentially provides a simple modelling notation for defining IM®I&
Sequencing [IMS, 2003c] within SCORM. InSite does not allow for anylldfivalidation
of the SCORM courseware created.

XML SCORM Studio [Eifel, 2007] specialises in converting legacy content into SCORM
content that can interoperate with a LMS. The XML SCORM Studio also alloevsahirse
creator to create SCORM packages using a similar tree based approaatftutid in the

Reload Editor. There is no validation functionality in the XML SCORM studio.

42

(5 Reéload Editor (=JE

File Edit Tools WYiew ‘Window Help

DE M o ~ |4 @ X+ + | Bwo 2wl

EMetadata - untitled =10ix|
Profile: |IMS LRM Profie ¥
Form ¢ Content Package - ecsigh 1-1ofx]
s 4
‘ w @ X A ! rofie: [P Dataut Profis >
"% ec_\sigﬁ MAMFEST-C39D7BAC-6232-0CF5-E597 -EDET1 9319570 i
el demo - Metadeta
B g i—— 4 IMS Metadsts
- kg — 122
——l hzandtest zip - Organizations
= business_startup =[] Organization
|:' =, Business_Startup —[0 & recipe for interoperability in practice
CJ) @TiRenderer zip E-E Resources
e (2] dermo il -9 demaidema htm
fﬂ imscp_w1pl xsd — & dermovderno bl
L“é’ imzmanifest xmi — B demoimaschematic jog
B imsmd_v1 p2p2 xad — B demoipkgBusiness_Startup_Tutarial zip
12 ims_smlxzd —[B demoipkgbusiness_startup_test zip Yo

— B demodimgidizoover gif

— demofimogidiscover 200 gif

— =] demadimgintralibraryactions gif

— B demodmaglffii gif

— demodimagintralibraryexport.gif

— = demaimgintralibraryexport 200 .gif

—[B demoikgbsandtest zip

— B demnimairelnacth toriatview dif _v._j

Metadata
Add Metadata to thiz node. You can
ras edit the Metadata from the Edit menu
Attribute I vl ot by clicking oh the hutton on the
toolkar.

B

| 5]

Figure 3.1: Screen-shot from the Reload Tool

3.2.1.2 IMS LD Authoring Tools

The IMS LD specification defines learning environments, including a definitidvow and
when to deliver learning resources to the learner. IMS LD is a more corfgrigyage than
SCORM, which makes its definition more difficult, in this section we look at toopstp
provided for defining IMS LD.
The Reload Project has also developed an IMS LD editor. This tool works on the

same principle as the SCORM editor, in that it provides a file tree type usdiairgern top

of the LD XML specification. This raises the level of abstraction the coarsator defines
LD at, from the XML level to the conceptual level. In order for the counsmator to use this

tool he or she must be knowledgeable on the LD specification. There imptowvalidate

43

LD courseware created in Reload.

ReCourseis the successor to the Reload Project’s IMS LD editor [Griffiths et al., RO09
The focus of the design of ReCourse was on usability. To this end Re€ptovides a more
intuitive model-based User Interface for defining IMS LD. There is atsavay to validate
courseware created in ReCourse.

CopperAuthor is another tool for defining IMS LD [Van der Vegt and Koper, 2005].
CopperAuthor was developed at the Open University of the Netherlabgsovides the
course creator with assistance in editing an IMS LD design through a sithplistic table
interface, based on the IMS LD standard. The support provided tootlvse creator with
this tool is minimal, providing an alternative interface to define IMS LD, than thie/a@
XML. CopperAuthor has a validation function that only allows the coursator to check

that the IMS LD definition complies with the IMS LD syntax specification.

3.2.2 Adaptive Educational Hypermedia (AEH) Courseware Autloring Tools

Adaptive Hypermedia (AH) is an area of research that looks at adagptiygermedia page
to a user model, for example eliminating hyperlinks that are not relevant totiaybar
user [Brusilovsky, 1996]. Adaptive Educational Hypermedia (AElHes AH technolo-
gies in an educational context, for example, using a learner’s prior lledlge to define an
educationally-oriented hypermedia environment to present to the learner.

In general AEH systems operate at a low level of granularity and typicaiipiato
a learner’'s knowledge at the lesson navigation level. This is typically dgn@dyiding
recommendations for a pedagogically sound learning path through thatexhat hyper-
media to the learner. Examples of such an AEH systems are Brusilovskysdntdr-
book [Eklund and Brusilovsky, 1999] and ELM-ART [Weber and Blmssky, 2001] sys-
tems and DeBra and Calvi's AHA! system [DeBra and Calvi, 1998]. The ABystem
also works at the level of the content unit in AEH, adapting even the tesepted to the
learner depending on the learner model.

Much of the research in AEH, concentrates on delivery, and thete&ted-based per-

44

sonalisation has on learning. For this purpose, AEH courses areadjgrarce off imple-
mentations developed by an AEH researcher. One of the main criticisms ofig\Etat
its authoring is a time consuming and complex activity [Brusilovsky et al., 1998je we
look at one AEH authoring system, the My Online Teacher (MOT) systemattenhpts to

alleviate these problems in AEH authoring.

3.2.2.1 My Online Teacher (MOT)

The “My Online Teacher” (MOT) tool [Cristea et al., 2003a], develope&indhoven Uni-
versity of Technology, allows course creators to create adaptiveeeare using the “LAOS”
system of layered models [Cristea and de Mooij, 2003]. In LAOS theravaveypes of
models - static and dynamic. The static models describe domain, pedagogidaeharer
data, and also the potential delivery environments. The dynamic modeitsesbow AEH
should adapt to variations in the static models. To create AEH using MOT, thisecore-
ator defines the static elements of LAOS using MOT. The LAOS models are thyerop
of each other, with each modelling layer building on the models defined below@Ss

static models are as follows, starting with the model at the bottom of the LAOS stack

e Domain Model - Organises and structures knowledge in a particulardeéaed in

terms of concepts. Concepts contain attributes that contain learning content.

e Goal and Constraints Model - Used to express educational goals. Tdhisés by
specifying weights on domain concepts, optional elements in the domain matiel an

conceptual sequencing definitions.

e User Model - Used to define the learner knowledge levels, interests anung

styles.

e Presentation Model - Model variables to do with different AEH delivemyimn-

ments.

Dynamic modelling elements of LOAS models are encapsulated in the adaptatioh mode

This model describes how the AEH reacts to variations in the static modelling e¢lemen

45

The adaptation model is based on the 3-tier LAG model of adaptive spéoificat the
top level of the LAG model is adaptation strategies, which are collection gitatian lan-
guages, that in turn, are collections of direct adaptation rules.

The MOT uses a hypertext interface to manipulate the LAOS models. Theecore-
ator can navigate around the LAOS models using a variety of links, wheteliek is a
connection to another element of a LAOS model. The model is edited usinghebfsed
interface. An example of such an interface can be found in figure 3.8renhe domain
model for biochemistry is being defined. The domain model has been oveitaia goal
and constraint model, indicating pedagogical information for this domain p&heentages
indicate weights for concepts and attributes within concepts. Each hyperduses a nav-
igational action, bringing the course creator to a new concept, attributeaediang action
to change the models in some way.

Although the MOT tool does not allow for the creation of TEL specificatiomptant
courseware, such as SCORM packages, there has been an affgdivén AEH courses cre-
ated by MOT on different AEH delivery platforms, including AHA! [Cristegal., 2003a]
and WHURLE [Cristea et al., 2003b]. Two main approaches are takerder tw migrate
the adaptive courses to the different delivery environments. Theditstuse a common
AEH language, the other is to use converters to convert the AEH definitibAQ@S to the
data structure expected by the delivery platform. MOT does not allow thesea@reator to
check the AEH he or she has created for problems. To do this the AEH mesplorted to

an AEH delivery system and test-runs of the AEH must be performed lgotimse creator.

3.2.3 Ontology-based Authoring of Courseware

The basic idea of ontology-based courseware authoring is to use stdigtaowledge in
the form of an ontology as a basis for creating courseware [Pahl atid,N2006]. The use

of an ontology provides the following advantages in courseware catisinu

e Domain ontologies can be used from other contexts, eliminating the couesawar

thoring cold start problem.

46

Sub-lessons and their contents - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help

@Back i __j‘\ @ i:@ :_h /':j Search \;,';:?\?Favorites G‘Media @ [—j

=
Address I@ http:fflocalhost/MOTOS lesson/flesson_frameset. caitteacherid=11&lessonid=72

Biochemistry

1ut] conclus 2
1 [cut] introduction (

Figure 3.2: Screen-shot of MOT tool showing a lesson map with each attriiven a
weight

e The semantics within the domain ontology can be used to find learning content.

e The domain ontology can be used as a principle navigation tool in the canesew

created.

The tools outlined in this section demonstrate how ontologies are used in theucens

tion of courseware and fine-grained learning resources such as$essLOs.

47

3.2.3.1 TANGRAM

TANGRAM is a tool that has been developed by Jovabati al. to aid course creators
in reusing and repurposing content units in LOs [Jovahevial., 2006b]. TANGRAM at-
tempts to cater for the course creator who wishes to create a new LO froientanits
of other LOs by decomposing LOs into small, highly reusable, content unitesel con-
tent units are then automatically annotated and can be searched by treaeatsr when
creating a new LO.

Decomposition of LOs is based on the ALOCoM Content Structure ontolofyitien
[Jovanove et al., 2005]. Once LOs have been decomposed into content units TANIGR
is able to automatically annotate each content unit. Annotation is based on thé &alfn-
ing Object Metadata (LOM) standard [IEEE LTSC, 2002]. A domain ontplegused to
capture subject domain information, and a context ontology is used to edprieduca-
tional context of the content unit, such as whether a content unit is gragtaor a title of
presentation slide. The automatic generation of LOs is done using ontoémgytinference
techniques.

The TANGRAM tool produces LOs in the form of openofftadocuments. The course
creator tests the LOs produced by TANGRAM by exploring them as a leaheze is no

automated validation functionality in TANGRAM.

3.2.3.2 OntAWare

In [Holohan, 2003], Holohan describes how structured knowledge as ontologies can be
used to create courseware using the OntAWare system. Holohan haspaéehven algorithm
that takes, as input, a tree-like ontological structure, and generatesdditPowerPoint
slides that reflects the knowledge in the ontology. Holohan et al. also démsshow
ontologies could be used to create multiple-choice questions to test studewkekige on
a given subject [Holohan et al., 2006, Holohan et al., 2005].

More recently an ontology-based delivery system has been develop&htAWare.

'htt p: // www. openoffice.org

48

The OntAWare delivery system creates an “active slide” of informatia@utbn ontology
component on the fly as the learner navigates the ontology. This meangeshianthe
knowledge base will be reflected in any of the learning content delivieye@ntAWare
[Melia et al., 2005]. The delivery of the courseware can also be palised for the learner
in terms of the learner’s knowledge [McMullen, 2007].

The tool provides the course creator with a form-based user interéacediting the
course knowledge base and for editing the courseware instructicsighdd he editing in-
terface is quite intuitive, but does have scalability issues as the couegerdnas no way of
viewing the knowledge base at a higher level of abstraction other thawli@idmal concept
level. Courseware constructed using OntAWare can be exported intRBIA packages,
to be delivered on LMSs compliant with that specification [McMullen et al. 5200

To test the courseware produced by OntAWare the course creatoparfmtm dummy
learner runs to see how the courseware adapts to learner attributee iFm® way to

automatically validate the courseware using OntAWare.

3.2.3.3 Visualized Online Authoring Toolkit (VOAT)

Yang et al. recognise the difficulties in reusing and repurposing LOsangét al., 2005],
and have created a suite of tools which aim to aid the course creator in gi@ocref
courseware. Yang and his team have embraced the Semantic Web movethentsaite
of tools by using Semantic Web ontologies as the basis for coursewartoored he
tool suite has been built on top of one of Yang's earlier attempts to encl@geuse
and repurposing, the SCORM-compliant Content Repository Manage&ystgm (CRMS)
[Yang and Tsai, 2003].

There are three components to VOAT; the Ontology-Based Outline Authdioog
(OBOAT), the Visual Online Course Authoring Tool (VOCAT) and the \d8zed Online
Simple Sequencing Authoring Tool (VOSSAT). The course creator Q8£3AT to create
a conceptual map of the content of the course to be created. The atiostrof this con-
ceptual map is guided by a domain ontology. The structure of the coursetblegy is

displayed in a file tree type structure, such as that found in the Reload tool.

49

Once a conceptual map has been created it is loaded into the VOCAT, whiskds
to add and assemble LOs into courseware. Editing of the courseware ikN@CGlone
through a set of eight buttons that are based around the addition atndc$ioim of LOs to
the course. There is a steep learning curve in using VOCAT as the areeter must learn
about the functionality of each button offered and their symboils.

The final tool in the suite is VOSSAT, which allows the course creator toifspe®
sequencing information. Sequencing information is specified throughnabased user
interface. Once sequenced the courseware is exported into SCORbSAarkden be used
by learners on a SCORM-compliant LMS. VOSSAT has a form-based aueithat uses
the terminology of the IMS simple sequencing specification. To use VOSSAlepith
knowledge of the simple sequencing specification is required.

VOAT concentrates on SCORM-compliant courseware constructionnditisoncerned
with checking the courseware constructed for problems. As such, i@ validation

functionality in VOAT.

3.2.4 Constraint-based ITS

The SQL-Tutor, developed at the University of Canterbury, is an Inailigutoring System
(ITS) for learning to program SQL for relational database systems [Mdret al., 2007].
This ITS is defined through constraints. Constraints work by checkingdistence of prob-
lems in the solution provided by the learner, violated constraints give clueswtotsupport
the learner. The constraint based approach of only correcting theelefar known prob-
lems means if the learner does something that the system doesn’t knowitalh@lgems it
to be correct - the learner is therefore “innocent until proven guiltyitftwic et al., 2007].
In order for the course creator to define an ITS for learning SQL alm@8tconstraints
have to be defined, describing the fundamental principles of SQL.

Constraint-based Intelligent Tutoring System (ITS) authoring suppproiaded by the
WETAS-ontology [Martin et al., 2007] and ASPIRE [Mitrovic et al., 200§ktems. The
WETAS-ontology allows the course creator to define an ontology for tegedeITS do-

main and generate constraints from the ontology definition [Martin et al.,]2@®GPIRE

50

is a complete authoring system for a constraint-based ITS. ASPIRE lodlesds intuitive

as possible, allowing the course creator to define their own ITS in nine stepdlows:

1. Specify the domain characteristics - The central domain conceptsaitenbdown

into tasks, steps or parts.
2. Compose a domain ontology - An ontology is defined to represent theesdbjaain.

3. Model the problem and solution structures - Define how domain problachthair

corresponding solutions and structures are declared.

4. Design the student interface - Based on the problem and solution sésitihe Stu-

dent Ul is designed.
5. Add problems and solutions - Example problems and solutions are added.

6. Generate the syntax constraints - Syntax constraints are generagetidvathe do-

main ontology definition.

7. Generate semantic constraints - Machine learning is used to derive tseown

straints from the problems and solutions provided by the course creator.

8. Validate the generated constraints -The system is tested by the caate tw ensure

it can identify an incorrect solution.
9. Deploy the tutoring system - ITS is deployed in the ASPIRE-Tutor system.

The ASPIRE Ul is mainly form-based, where much of the steps above h&mena
associated with them in ASPIRE. The domain ontology editing part of ASPHa#des a
graphical model of the ontology as shown in figure 3.3. The syntax andra& constraints
are displayed in their native LISP [Steele, 1990] and can be edited bytheeccreator.

The constraint-based approach allows the learner to be right, unlegstemsknows”
the learner is wrong. This means that every wrong approach must beithxdefined for
the course to notify the learner when he or she does something wrongapphneach is

excellent for smaller courses, but as seen with the SQL-tutor system, pneaap does

51

| . (@ &[F[E A5
I LD l [Improper Fraction 1 + Reduced Fraction +

Ll [¥]
Details | Relationships |
J_ Relationship name | Concept | cardinaliteMin | Cardinalite-a!

[hole number [wihale-number |1

Numeratur Whnle number _j1 . 1

Dennmmatnr LCD j1 :1.

Add

Figure 3.3: Domain model editing in ASPIRE

have scale problems. The constraints defined in ASPIRE are solely udefihimg the ITS,
the constraints cannot be used for validating the ITS in terms of its pedagalgyation of

the ITS can only be achieved through manual testing.

3.2.5 Model Driven Courseware Engineering

Courseware engineering is the use of software engineering technadogiesethodologies
in the development and maintenance of courseware [Dwolatzky et al.].2@0 of the
main software engineering principles used in courseware engineeribgtiaetion, where
abstraction is a deliberate simplification that picks out the most salient chéstcseof
a system [Sommerville, 2004, p170]. Abstraction is used to remove exoegdexity in
designing courseware.

Courseware engineering generally works at the courseware or madnielgrity level,
which mainly focuses on the combination of learning resources into a fdauseof in-
struction.

Here, we look at one particular type of courseware engineering, theoudlodel

Driven Engineering (MDE) technologies to capture courseware steictnd the learner

52

flow through the courseware, and the subsequent generation ofrsea@ue specifica-
tion based on the model. Melia et al. and Maeiz-Ortiz et al. have looked at the use
of UML Activity Diagrams to define IMS Simple Sequencing (SS), and investigrw
software model transformation technology can be used to generated SSBAL bind-
ing [Melia et al., 2006, Marhez-Ortiz et al., 2009]. Further insights into the use of MDE
can be found in [Laforcade and Choquet, 2006], which looks at taeMadel Driven Ar-
chitecture (MDA) methodologies in courseware development.

Here we will examine approaches to courseware creation that are hemaad the
definition of data models that capture the courseware construction cencéhese data

models are then used to create courseware.

3.2.5.1 Adaptive Courseware Construction Toolkit (ACCT)

The design of the Adaptive Courseware Construction Toolkit (ACCTagehl on the sep-
aration of the “key design elements of personalised elearning” [Daggeéb]. These

elements are (but not limited to) as follows:

e Narrative Structures - Pedagogical structures that specify a segjoétearning ac-

tivities and tasks.

e Activities - Activities are usually some task that must be performed in the eitgarn

environment. There can be tools associated with particular tasks.

e Subject Matter Concept Space (SMCS) - Knowledge about the subat dhe
(SMCS) also provides scope for the the adaptive courseware and lingitedypgic

information such as dependencies between concepts.

o Narrative Attributes - Narrative attributes describe some form of adaptatiade-
scribes information needed to make decisions on adaptivity, which is passeet
lectors” that select the most appropriate content from candidate cagrimpings

[Dagger et al., 2003].

53

e Learning Resources - Learning resource metadata can be used asithfobadap-

tation.

e Learner Profiles - A learner profile describes a learner in terms of thelkdge the

learner has.

e Personalised e-Learning Designs (PEDE Narrative) - The resultisgpalised course

based on the above personalised e-learning design elements. The RE&I@cap-

tures all the information needed to deliver the adaptive course. The PaD&ive

typically operates at the module level of courseware.

Figure 3.4 shows a screen-shot of the ACCT, and highlights the usecbfadahe

personalised e-learning design elements.

file Edt Tools Help

& Adaptive Courseware Construction Toolkit (ACCT) Prototype version0.5

EEX

-2 !jWehwues't

<@ Prior Knowledege and Objactive

Introduction
Task

%@ Collaboration

-] E—} Environment

A LocalisationiGlobalisation

<@ Display Capabilities
<@ Device Connectivity

[l n ntroduction to Simple Joins
F Aggregate Funchions
.| Database Agplications

- —
[custom Narrative Model Builder - C: CCT_s _cour ple_SOL_Course Narrativesmi o @
-C rative 1
I || ek sasreh)
|i]An 5L Case Study e i i
¢ ,:I Setthe Scene forthe Case Studly 5] Gearch Resulls I
| patabase Concents gg:;;vzl:v Data Types Module :
2| Introtuction to Databases R T::s: 1 e Structuges (Pedagony) |]
5| Refational Model {5 Tablo Stncture | Sampl@ Pedago rrfiive Moders . o
| Relstional Database Management a3 Tasle Sticture | Cage Stu ij L.EEI'HIHE Activities
. T3] Table Structs & . \ &
] Structured Query Language E;'m:s * ntrodustion Peer Review
=& Prior Knowledege and Objective 3 spings “Fonten Submission
@ :] Problem Space g :Tzscs 2 robiem ail
@ & Pioblem i e Resourtes A post
= Cest o Lahnase DT clivities Technical Corrections
5] pata Types 81 Dste-Time . nee el
? ElDetaDeﬂmﬁon Language: CR} 8 Date-Time BRfl Ereissian,
5 Date-Tirwe eferences and €0 chat
- @ Kolb Leaming Cytle 183 G o ot Dot e valuation = 'Emzm
Tabls Cunetsints 5 Overview of Constant Cata Trpes |_JiBlank
ﬁDewDaﬂmﬁon Language: ALJ T3 constants - Nureric e ! ol ® m Final Response
% [Populating 2 Datebase % 2"”5:‘":3' :“:9";‘ | email
| snstants - Numeric
] introduction to Data Maniputall 81 constans - namerc | ? Wiabquest foum
(2] InserTStatement 5 Constant Data Types- Strings niroduction @ Ei Subrmission of Revised York
o3| UPDATE Statement N3 Constant Data Types - Stings g
-5—5 b 3 5 constant Data Types - Strings ask ernail
< E}JM L atemen 51 Constant Data Types - Stri L rocess] post
| Database Retrigval =
|| The wHERE Clause T Ragourehs -] Datatiase Retieval
= : T 7
E Search Canditions P | — onclusion E The Simple SELECT Statement
(2] an introduction o Joins [Haralive Aliioutes | The BELECT statement
=i = i
f| an intreduction to Simple Joins ® e Axus &2 Empression Operstors
2] Agoregate Functions a bty [The WHERE Clause
&3] The simple SELECT Statement @ Kol Lsarming Cyels B3| search Conditions
] The SELECT Staterent %@ Prior Knowledege and Objective An Introduction fo Joins.

Figure 3.4: The ACCT - Demonstrating the use of PEDE design elements ¢D&§§6b]

Each design element in the ACCT is not dependent on any other desigmelerhizh

makes design elements very portable. For example, the narrative striatispecifies a

good web-based learning pedagogy (Web Quest) can be used in otheslated courses.

54

The combination of a concept map with pedagogic information, found in theTAC&h
limit the portability of a SMCS to only those courses where the course cregieeawith
the set pedagogy.

To test courseware constructed using the ACCT, it is deployed into thB€g&” de-
livery system allowing the course creator to perform dummy runs of thecoenmseware.

The ACCT is interoperable with mainstream TEL, as personalised coursestined
using the ACCT can be exported to IMS LD [Dagger, 2006a]. Althoughetlage some
limitations in the solution, the integration of the ACCT with IMS LD shows the importance

of interoperability with courseware specifications for coursewaretoactgon tools.

3.2.5.2 MD2 Course Authoring

The MD2 method allows the course creator to create didactic materials usingedbased
approach [Padm et al., 2006]. The method aims to support the course creator in a four-
phase process. The first phase is an analysis of the subject arsactimel phase involves
selecting the resources to be used according to pedagogical and &cbgigrements. In
the third phase learning materials are composed into a course and finally inittregfbase
the didactic material created is evaluated.

The MD2 method uses the MD2 model descriptors to describe the requirefoetits

didactic material. The MD2 model has four main types of descriptors:

e Knowledge Domain Descriptors - Represents the main features of the disaiplin

subject to be taught. This descriptor is used as a reference knowledgteie.

e Pedagogic Descriptors - Captures the pedagogical requirement ofdibetid ma-
terial being created, this descriptor is akin to the educational categore dEHE

LOM standard [IEEE LTSC, 2002].

e Support Descriptors - Ensures the didactic material created is reusdbieperable

and manageable.

e Usability and Quality Descriptors - Describes the constructed didactic maierial

55

terms of its usability and also check if the created material can effectivelyosup

educational tasks in order for the material to achieve its objective.

The MD2 method implements the four-phase process in thirteen steps, witlus/ario
steps associated with each phase. These steps are centred arougfthitiendof a MD2
model. Tool support is provided for the MD2 method. This tool uses atigmesire in-
terface to quiz the course creator on the didactic material requirementsnguifda MD2
model that reflect the didactic material requirements. This is a very simplediogcidr the
course creator, but can be very restrictive, as the course creatoiot add any information
to the MD2 model that is not covered in the questionnaire.

The final step of the MD2 process is the only step concerned with the deaiydnase.
This step defines the usability and quality descriptors of the MD2 model. Thissdbeged
on learner experience. To evaluate the didactic material’s quality the cowatr must
evaluate if the material defined “effectively supports educational taskéelps to achieve
the defined learning objectives” [Pédret al., 2007]. The usability elements provide the
course creator with the facility to evaluate the didactic material created in tefnesrof
frequency and severity, self-evidence, efficiency of use, famili@goisdime and memora-
bility. All values are represented as fuzzy sets and are aggregatethin ahusability and
quality value for the material. This is a form of validation of the material that iateckat
the post-delivery stage.

The importance of evaluation in MD2 is demonstrated in [Badat al., 2008], where
the usability and quality descriptors are used to drive adaptation, replaeiog par mate-
rial during the delivery of courseware.

Padbn et al. mention the use of IMS LD XML bindings as a method to representdeli
ery and presentation patterns. Should this be implemented it would allow foppetebil-

ity with any IMS LD delivery platform [Padim et al., 2006].

3.25.3 MOT+

MOT+ is a graphical knowledge modelling language for instructional erging

[Paquette et al., 2006]. It is worth noting that MOT+ has no relation to the Min@

56

Teacher (MOT) tool described in section 3.2.2.1. MOT+ can be applied inl&-actor
process model aiming to improve the learning design produced. The MQTrepaesent
concept, procedure and principle knowledge types, which are relatsttoother through
various relationships such as, specialisation link, precedence link, padpnoduct link.
These basic model constructs are used to build various knowledge maghsas factual
models, procedural models and processes.

The MOT+LD editor, uses MOT+ defined models, processes and methatfite
IMS LD. A graphical modelling language is defined for LD. The coursator can use this
vocabulary to define the various LD constructs he or she needs intorfigiil the learning

objectives defined for the courseware being constructed.

* o MOT Plus {1.4.1] - [MlntAula - MCAslal Standard §]
P Pahisc [itn Affchage’ Pomst (utls Frdfdrences Trpeds Models Feodte 2 -
D2 &R siesl- - xx[@FE e e
i === I 3
OO @

ol Sume #L o | el Ittt ch medbie’ Midbla i I & ¢ty
T s —
o M e
- B3 tepm
= a
= *
S Principios Compotancs: Pibaco; persanal con expenencia an
& generalazde A Dligcriminar o ta CONEIECTEAR (B0 amans)
& sequeitdad Irficed G yA) Bl actiral 1 nnel degesdo 4050
E x ~ sem ejercet ln compeiancia de
) == ‘ |,"l TS B BRSO, e e
= = * I sdpacionis secallas v Eamilisres
14
Sieal -] Cibras
(ot ¥
= P e ‘h“'““—:s-.__ e
" al I ¥ - L% By efiare,
= Dramobciongs e ’/' \ \ o i e
oHie 5"/ v % £ et aoned
/,— ri “ \5\
o2 r v N ~
& o 4 2.5
E Weodmeanin da .;’ \\
o i i \ Cueattas
Sl o \
= £
= T X
i T
& Zanjasy
c anbiacines Cimerdationes Esfuciuran
o
< » ad
2 popen . ;
._.'___]_ MPYESE, 26, L0, 71, DPEAE. D0, LBS.00T, LT 26,00, | 22,00, Zoom{0. 37} CREETNRP CO (ACCIRRSH

T2 démarrer G e T e s]

Figure 3.5: Screen-shot of the MOT+ tool

The MOT+ graphical representation provides a usability benchmarleforidg a course-
ware construction modelling language, as MOT+ “has been provenisaificsimple and
friendly to be used by persons with non-technical background” [Eget al., 2006], such

as the majority of course creators. A screen-shot of the MOT+ tool edound in figure

57

3.5.
Tool support for MOT+ does not provide the course creator with anyof courseware

validation functionality.

3.2.5.4 Sequencing Objects

Su et al. look at how abstraction can be applied to defining coursewguersging strategies
in [Su et al., 2005]. This research recognised the steep learning faoee by the course
creator creating SCORM 2004 compliant courses, and suggest usipjbet Oriented
Methodology (OOM), in [Su et al., 2005], to simplify the creation of SCORNhpbant

courseware. Using the OOM, complicated sequencing rules are efatapsinto objects,
known as a sequencing object. The types of sequencing objects thatadeble to the

course creator are:

e Linear - The learner flows a set path through learning content. Theeleaamnot

revisit learning content once completed.
e Choice - The learner chooses what to learn.

e Conditional - The course creator can set conditions which are evalaatedtime

and cause the lesson to behave in a certain way.

e Loop - Allows the course creator to force the learner to repeat aspkeatsaurse if

certain conditions are (not) satisfied.

e Exit - Allows the course creator to set conditions whereby a section ofdtiese is

complete.

The course creator must add learning content to sequencing objetithesnjoins the
sequencing objects together to create a courseware. This course isathgated into a
SCORM 2004 package using the “Course Sequencing to Content RA¢IRPCP) algo-
rithm.

The use of sequencing objects is an excellent example of how models caedheo

alleviate some of the complexity involved in creating SCORM sequencing. Seiqge

58

objects use a self-defined notation, and are not standardised, aefibteato not reap the
benefits of the automated transformation processes developed forrgiaadaDO mod-
elling languages, such as the UML.

A proof of concept implementation is described briefly in [Su et al., 2008]ckval-
lows the course creator to define the course in a graph-based, flevgtgphical notation.
The sequencing objects are used as patterns, which can be applied dartbenare graph
representation. The user interface is intuitive, in that the course crigataneeds to ex-
press the flow of a learner through courseware LOs. It is similar to theintegface used
in MOT+, described in section 3.2.5.3. The implementation does not provideotireec
creator with any way to check for problems in the courseware construsted sequencing

objects.

3.3 Courseware Validation

In this section, we survey the state of the art research addressingtiealidaconstructed
courseware. We will outline the validation approach, looking at the caangegranular-
ity level addressed by the approach and examples of applied reseassminof its user

interface, flexibility and interoperability with other TEL tools.

3.3.1 Concept-based Course Analysis (CoCoA) Tool

The Concept-based Courseware Analysis tool (CoCoA) was devkktpEarnegie Tech-
nology Education [Brusilovsky, 2000, Brusilovsky and Vassileva, 320 validates a given
courseware by analysing LOs in the courseware in terms of their typecamthiey are in-
dexed against a domain model.

“Advanced concept roles” define how a LO is indexed using domain numhelepts. A
LO is indexed with regard to the prerequisite knowledge required for tharidhe knowl-
edge outcome for a learner who engages with the LO. There are two tiypesi@quisites
defined and two types of knowledge outcomes defined, strong and weakong pre-

requisite or outcome indicates that deep knowledge of the conceptrederés required,

59

or obtained from the specified LO, while weak pre-requisite or outcomedtetichat only
surface knowledge of the concept referenced is required or obtéin¢he specified LO.
There are also various levels of prerequisite constraints defined fer LO

The LO types are recorded as “typed items”. The types of LOs areniegisms, exam-
ples, assignments and multiple-choice questions.

CoCoA checks sequential learning paths through LOs in a given agarse This is
done by simulating a learner’s progression through courseware Lig@stodl can check for

the following characteristics in courseware:

e Content Holes - Where a learner encounters a LO in courseware wiihwing the

necessary prerequisite knowledge needed for the LO.

e Consolidation of Presentation - Ensures concepts are just introducedanmd once

a concept has been taught in detail the introductory material is not stgaim a

e Question Placement and Repositioning - The system can place questianefarept

in the right place for a given courseware.

e Guidelines for Question Design - Enables the course creator to validatbet@gies-

tions used in courseware cover an adequate amount of concepts.

e Matching Presentations with Examples and Exercises - Checks that examnples

exercises are placed correctly in the courseware.

e Checking the Course Design Goal Against the Courseware - Allows tireecreator

to check that the courseware achieves its learning goals.

e Presentation Density and Sectioning - The number of concepts taughtic@ase-
ware element is not excessive and there is some consistency aboutntbernof

concepts taught at each courseware element.

CoCoA was prototypical in nature and as such there is no consideratidifospeci-
fications or standards. Pedagogical problems are defined by the Csftw/are developer,

there is no facility for the course creator to define validation rules. Thisethproblems

60

with user acceptance, as users did not agree with some of the cowgspredalems” flagged
by CoCoA. CoCoA was not developed using an extensible architectarehwould allow
for the inclusion of unforeseen pedagogical rules in the future. Itdd&s not reflect the
complexity of validating modern courseware as all courses validated us@gAmust be
linear in nature with no branching points. However, CoCoA demonstratesahdity of

courseware validation and also shows that it is not a trivial problem.

3.3.2 Logic-based Course Planning and Verification

The use of logics and reasoning for course planning and validatiorgessitivestigated by
the ALICE project at the University of Torino [Baldoni et al., 2004ahelproject looks at
a range of course construction activities including course validation {Bakt al., 2004b]

and construction [Baldoni et al., 20044a] using logical reasoning.

Reasoning is performed on an ontological knowledge base. The lemddearning
resources can be defined in terms of this knowledge base. Learntugees are viewed as
logical actions, with pre-requisites and effects.

The Wlog system, developed by the ALICE project, demonstrates how logitbe
used in courseware creation and validation. The motivation behind the \Wbens is to
validate Italian students study plans for a year with respect to their ovegled course
goals. A study plan is a list of courses a student takes in University. y&ststudents may
alter their study plan, but these alteration can have adverse affectefstutthents overall
degree learning goal. Study plan creation and validation is at a coamselayity level
in course creation and management. The Wlog system uses the DyLOG logjimégn
[Baldoni et al., 2004c] to represent knowledge and to program itsviimima The ALICE
project, which developed the Wlog system specifies where possible carditorricula
plans are generated from an initial state to a goal state [Baldoni et al.aR0Dde initial
state outlines the student’s knowledge at course design-time. The goaldfiates either
the knowledge the learner wishes to acquire or the courses the learheswiscomplete.
Plans are created to bring the learner from the initial state to the goal staén Wére are

conditional branches in the plan, the Wlog system uses sensory actiosis tioeaearner

61

what branch they wish to take.

Temporal projection is used to check that all pre-conditions in the actiomttee
respected. Courses are represented using action theory, whareaesse component is
an action with pre-conditions and post-conditions. Curricula models allowegirictions
and constraints to be placed on possible learning resource sequetitekreowledge level.
Curricula models can be formalised using temporal constraints. The modétslapendent
from the learning resources and operate on the knowledge level. &mipdx a possible con-
straint might be thatnowledge Element, must be learned beforenowledge Element,,
can be attempted. Using linear-time temporal logic (LTL) to represent temgpamatraints
allows for the validation of the courseware in terms of the curricula modelsul&Hioe
course be deemed invalid, it is important to be able to outline to the course duthea-
sons for invalidating the course. Temporal explanation is used to explamedsens for a
course failing validation.

An attempt has been made by Baldoni et al. to examine how this technology could
be applied at lower level of courseware creation granularity [Baldosi. €2004b], even
embracing courseware specifications and standards, such as SCXIRMA004] and the
IEEE LOM [IEEE LTSC, 2002]. The main motivation for this is to see if differeesasoning
techniques can be used to allow for adaptation to learner stereotypesah®s composed
on the fly based on pre- and post-conditions of SCORM LOs using additieaaning
strategy constraints. The learning strategy allows the course creatardifysguch things

as:

e Strategies for Learner Stereotypes - for example what LOs to seleiology stu-

dents learning computer programming.
e Learning Goals.

e LO Sequencing Strategies.

Although the ALICE group has looked at more fine-grained LO compositiahvali-
dation, the majority of their work concentrates on the validation and constnuatistudy

plans that define a qualification course [Baldoni et al., 2006, Baldali,e2004a]. This is

62

particularly interesting in the context of the Bologna Process [EU Bologgraément, 2000],
which requires course content to be verified against external sgdicific being promoted

at the European level.

3.3.3 Ontology-based Guideline Definition for Courseware

Sicilia makes the observation that the rationale used to define an IMS LD sp#otiiis not
captured. In [Sicilia, 2006] Sicilia outlines an ontology-based approantotiel the learn-
ing design and the rationale used to create the learning design in a commorggnidie
motivation for this is to allow for the generation of empirical data regarding pipéiation
of a learning theory through a learning design.

Sicilia firstly outlines how the IMS LD specification can be defined using anlogyo
This ontology is defined in terms of the opencyc ontology, an open sonmelé&dge base
containing over 100,000 atomic terms [Lenat, 1996]. The opencyc ontiaggtended to
allow for the definition of the rationale that is used in the design of a LD spatiiit.

Two methods for defining constraints on IMS LD definitions are provideS8icilia, 2007],
these are models and guidelines. Models provide a template-like structdegfifing a LD
definition, where the LD should reflect the template when certain conditiods Gaide-
lines can be defined in the context of the rationale and an LD ontology, wjuidelines
“describe how learning resource design and their outcomes ‘shouid lagpropositional
form” [Sicilia, 2006]. Guidelines can be formalised by defining constraintthe IMS LD
ontology, guidelines can be realised using the Semantic Web Rule LandaM¢iRL) syn-
tax [Horrocks et al., 2004]. This approach allows for the definition ofdLidelines based
on an instructional design theory.

Sicilia’s work outlines an initial effort in defining courseware and its ratiensing a
common point of context. The work also demonstrates how constraint sescin the
form of “models” and “guidelines”, can be used to guide the coursed@sen process or

generate tentative courseware designs automatically [Sicilia, 2007].

63

3.3.4 Trap Detection in IMS Simple Sequencing

IMS Simple Sequencing [IMS, 2003c] allows for the definition of coursevsequencing
behaviour. It is most commonly used in the SCORM specification. In sectio® ®eout-

lined how the IMS Simple Sequencing specification is defined. Defining adagturse-
ware using IMS Simple Sequencing is not a trivial task. Course creaorartknowingly
embed the following problems in a simple sequencing definition, known asrsgqgdraps

[Lin and Shih, 2009]:

e Learning Attempt Stuck in an Activity - Even though the learning activity is coteple

the learner is blocked in the activity and cannot move on.

e Learning Attempt has Fallen into a Vicious Circle - A deadlock situation where a

learning path has resulted in a loop that it is not possible for the learnet tugef.

e Deserved Activities are not Identified for Delivery - Sequencing rusesot be fired

and learning resources that should be delivered to the learner are not.

Lin & Shih outline a solution for the detection of these sequencing traps. dhisan
is based on the generation of a petri net representation for an IMS SiegueScing defini-
tion and the subsequent tracing of the petri net graph in search ofrseiqg traps. In their
approach Lin & Shih separate “foundation constructs” and “operatmstcucts”, where
foundation constructs are the definition of the sequencing control modesvoealues that
define the behaviour of a sequencing cluster, while operation constiefate the sequenc-
ing rules in a condition-action format. Various combination of foundation ttoats and
operation constructs can cause sequencing traps. Lin & Shih have iel¢stifine of these,
which are outlined in [Lin and Shih, 2009]. The paper also illustrates eaghesicing trap
graphically using a petri net diagram.

Sequencing traps are identified in two main ways. The simplest way is whetmia pe
net cannot be built for a given IMS Simple Sequencing specification. #ta pet repre-
sentation can be built, the second way is to use the petri net in a sequegrtgtection

algorithm. Lin & Shih outline a detection approach for locating sequencing tapsisting

64

of two algorithms.

The work of Lin & Shih specialises in problems with the IMS Simple Sequenciag-sp
ification, where the combination of particular attribute values in the specificatiores
erroneous behaviour. The approach taken by Lin & Shih is to validateetheescing spec-
ification for these problems. The problems highlighted by Lin & Shih are a sympfdhe
lack of good tool support for defining IMS Simple Sequencing. Good sapport would
protect the course creator from themselves when defining Simple Seéagégaaising the

level of abstraction in such a way that these sort of problems could raefireed.

3.4 Comparison Framework

In this section, we present a comparison of the courseware constracttboourseware
validation approaches. After presenting each comparison we discussrtigarison and

bring points of interest to the reader’s attention.

3.4.1 Courseware Construction Approaches

Table 3.1 provides a matrix of the features for the state of the art in coars@onstruction
covered in this chapter. The features used to compare the state of tlepmsent the
major differences in the approaches presented and provide a usefhnigm with which
to compare each approach. From this comparison we can generalise@giostrcommon
state of the art courseware construction environment. Our coursealatation approach

must be aligned to this. The comparison attributes used are as follows:

e Granularity Level - Refers to the courseware granularity level theseware con-

struction approach operates at.

¢ Internal Data Model - Many courseware construction approachsssthair approach

on some well defined data model. Approaches are compared based on this.

¢ Interoperability - Examines if the courseware construction implementation tem in

operate with complementary systems or specifications.

65

e User Interface - Looks in general at the approach taken to definerantisrface.

e LOR Support - Examines if the implementation of the approach allows for iréerop

ability with LORs.

e External Domain Model Support - Courseware construction can bedb@®und a
domain model allowing for the automation of some of the more trivial tasks in eours
ware construction. This attribute looks at whether the approach allovtedarse of

an external domain model.

e Validation Support - Support provides for the validation of the constductairse-

ware.

A question mark indicates data is unavailable.

Table 3.1: Courseware construction approaches comparison

Courseware Construction
Granularity level Internal data model Interoperability User Interface LOR Domain Validation
Support Model Support
Support

Reload SCORM Tool Course-lesson SCORM specifications | SCORM 2004 Tree-based No No No

Insite Studio Course ? SCORM 2004 Model-based No No No
(course flow)

XML SCORM Studio Topic SCORM ? ? No No

Reload LD Tool Course - lesson IMS LD specification IMS LD Tree-based No No No

ReCourse Course - lesson IMS LD specification IMS LD Model-based No No No

CopperAuthor Course-lesson IMS LD specification IMS LD Form and tree-| No No LD compli-
based ance

MOT Lesson LAOS model CAF Web-based forms| No Yes No

TANGRAM LO various ontologies open office Web-based forms| No Yes No

OntAWare LO - lesson OWL ontology SCORM 1.2 Web-based forms| Limited Yes No

ACCT Course variety of unconnected| IMS LD Model-based Limited Yes No

models

VOAT Lesson - course ontology-based SCORM 2004 Tree-Structure No Yes No
based

Constraint-based ITS|| Lesson - course constraints defined ond SQL Tutor Model-based and| No Yes No

Authoring domain model text-based

Sequencing Objects Lesson - course SCORM 2004 SCORM 2004 Model-based No No No

MD2 Lesson - course MD2 Model ? Questionnaire- No Yes No
based

MOT+ Lesson - course ? IMS LD Model-based No Yes No

As outlined in table 3.1, the majority of the courseware construction state ofrthe a
operates at the “lesson” to “course” granularity level. The internal mhaidels can be cate-
gorised into those tools, which use a TEL specification, those which argptbased and
those using a custom-built model. The custom-built approaches highlighbthieesvare
definition requirements currently not in the TEL specifications, such asédeated for ex-

tensive personalisation. This is also demonstrated with respect to intebdiigras some

66

personalised and adaptive courseware features can only be déliheough specialised
delivery environments, such as AEH.

Courseware construction tool support provides user interfaceartha¢xt-based, tree-
based and model-based. The level of abstraction the course creatatespat increases
as you move from text-based Ul up to the model-based Ul, although some sicnatis
proaches to text-based courseware construction have been investigéie state of the art
(e.g. questionnaire). We believe the most intuitive of the user interfaces ftoth-based
models found in MOT+ and Insite Studio. This approach does have limitationsiritth
does not scale to highly adaptive courseware, as displaying all thiblgossmbinations of
adaptivity can get quite verbose.

LOR support is somewhat lacking in the current state of the art, but this mbhgdause
of a lack of standardisation in how to interoperate with LORs we look at texbrances in
this area later in this thesis (section 8.10). The use of a domain model, seent®tarben
practice in courseware construction tools, particularly those in the msaegna. Domain
models allow the course creator to quickly define what should be in theewears and how
the courseware should be structured. This allows for the rapid devettmheourseware.

We also note that none of the courseware construction tools surveyed dtlo the
validation of any kind of pedagogical features of newly constructedseovare. Only the
CopperAuthor tool allows for some kind of validation, but this is purely to \aidthe

realisation of the IMS LD specification.

3.4.2 Courseware Validation Approaches

Table 3.2 provides a matrix of the features of each of the state of the ageveare val-
idation approaches, covered in this chapter. The comparison attribigdshase are as

follows:
e Granularity Level - The granularity level of the courseware that cavaehidated.

¢ Internal Data Model - How the validation approach represents the validdéita.

67

e Interoperability - Examines if the validation implementation can interoperate with

complementary systems and/or specifications.
e User Interface - Looks in general at the approach taken to definerantsrface.

¢ Validation Criteria - Investigates if the validation criteria can be defined sép#o

the validation implementation framework definition.

e Domain Model Support - Investigates whether an external domain moadélecased

in defining courseware validation data.

Table 3.2: Courseware validation approaches state of the art comparison

Courseware Validation

Granularity | Internal Data Model| Interoperability | User In- | Editable Domain
Level terface Validation Model
Criteria Support
Logic-based Qualification Logical model -| SCORM Text No No
Validation course learning resources
are actions
CoCoA Lesson- Domain model| No ? No No
module based
Ontology- Lesson- IMS LD IMS LD No Yes Opencyc
based guidance| module only
Trap detection || Lesson- IMS Simple Se-| IMSSS No No No
module guencing

The approaches to courseware validation addressed in this chapototypical in
nature. Only the logic-based approach and CoCoA actually go as faoeaislipg for a
proof of concept implementation. We have also found that Interoperabibtgdcern that
has not been addressed satisfactorily in the state of the art. The toolsvevéobied at
either do not provide for interoperability at all or provide for only limited ioerability
with courseware construction tools, considering just one interoperalégification in
TEL. TEL specifications and standards are in flux, courseware validédiols must be
modifiable to new specifications and changes to existing ones. This is na@gbevith the
current state of the art.

Support for the course creator is limited in the courseware validation stdle @frt.
Little research has taken place looking at how to represent the couesearsstruction con-

cerns. The state of the art concentrates on allowing the course credigfirte validation

68

criteria for only a pre-defined types of courseware problems. Jesapproach (ontology-
based guidance) considers the possibility of separating the validationacfitan the val-
idation framework programming logic, allowing the validation criteria to be expaswl
determined by the course creator. This is significant as we have discowvethe CoCoA
literature that many of the course creators that used the CoCoA tool fhahthe tool in-
validated what they considered valid courseware (i.e. the course rgeédanot agree with
the valid courseware definition of the CoCoA developers). We haveftierdeemed it an
important requirement for courseware validation to empower the cowratociby allowing
them to define what they consider to be valid and invalid in courseware.

We also find that the type of courseware that can be validated using thefdtageart is
somewhat limited. The approach taken by the majority of validation state of tise@dim-
ulate a learner’s behaviour in courseware. This works effectivelgimple, non-adaptive
courseware. As courseware gets bigger and more complex, allowipgrf&mnalisation, this
approach runs into complexity issues. To effectively validate persohbdisaurseware an

alternative approach to simulating learner behaviour must be established.

3.5 Chapter Conclusion

In this chapter, we reviewed the state of the art in courseware constractibthen looked
in detail at current courseware validation approaches. The chaearutlined the context
within which we position our research.

The majority of courseware construction tools provide interoperability witbuase-
ware delivery environment through the ADL SCORM or IMS LD specifiaatid his has
caused the majority of courseware authoring approaches to be at thgsamkarity level
as these TEL specifications, between the “course” and “lesson” lgirétguevel. 1t should
also be noted that there is a wide variety of internal modelling paradigms yseslibse-
ware construction approaches. Many base their internal data modélBh specification
but some have developed custom internal modelling paradigms. This mofeigsning

a courseware validation in line with the granularity level the TEL specificabipesate at.

69

For our research to have maximum impact, it must be able to interoperate usiigith
specifications, but also be able to change with the TEL specifications asntieye, or
even as new ones are developed.

We have presented four approaches to validation. Three of the ape@ogic-based,
CoCoA and trap detection) are based on simulating a learners progréssiagh course-
ware. The logic-based approach uses planning, CoCoA uses a treesalaalgorithm and
the trap detection approach uses petri nets. There are scalability issoesated with
these approaches and as courseware gets more complex, with peasimmatiecoming the
norm, we believe this to be a serious limiting factor for these approachesalitiation ap-
proaches addressed in this chapter, with the exception of ontologg-baskance, are also
somewhat limited in what they can validate in courseware. The validation sfdhese
approaches is pre-defined. This motivates the need for an extendidigtion approach,
one where the course creator can define the validation criteria, by wiickeware is vali-
dated against. Ontology-based guidance (section 3.3.3) could allow foodinge creator to
define a greater variety of validation criteria. Ontology-based guidancamagly focused
on the use of templates and guidelines to help the course creator to createdagteware.
The template approach exposes the validation criteria in the form of SWR4 aliteving
the course creator to define templates based on instructional design tiha@ycould be

extended to define all validation criteria.

70

Chapter 4

Defining a Courseware Validation

Framework

4.1 Introduction

In this chapter we provide an outline of our courseware validation framewmsection 4.2
we introduce the actors involved in courseware validation, then in sectiomedldok at the
courseware construction concerns and finally, in section 4.4, we will eutlim validation
approach.

The courseware construction concerns, in section 4.3, are contatmnsiust be ad-
dressed by the course creator when constructing courseware.esaarch looks to auto-
matically ensure that the course creator has addressed these caucezoy. We classify
courseware validation problems using these concerns.

After outlining the courseware construction concerns we will outline thadaf our
validation framework in section 4.4. This section gives a comprehensemiew of what
a valid courseware is and how our validation approach can check ifea givurseware is

valid or invalid.

71

4.2 Courseware Actors

There are many actors involved in the construction and delivery of emarg. Each of
these actors define a role that one, or many, persons can fill. OnenpEsalso fulfil

many roles. In figure 4.1, we have outlined the main roles in the coursewastrgction

A X X X X

course creator

process.

content developer support learner course accredition

D
L X X X R

domain expert instructional instructional course LMS administrator
designer designer administrator

programmer ?
i Generalisation q—

teacher

Figure 4.1: Courseware actors

There are five key roles in the courseware life-cycle, ¢barse creator the content
developer support staffthelearnerandcourse accreditationThe course creatorcreates
the courseware package, he or she is responsible for deciding artant to put into the
courseware and the instructional design used in the courseware tmitetdrow the LOs
are delivered to theearner. We can divide theourse creatorole into three key sub-roles,
domain expert who is an expert in the subject domain to be taugtsiructional designer
- who is an expert in how courseware concepts should be taught irea gontext andh-
structional designer programmera technical role that encodes instructional design using
a courseware specification. Thentent developeis responsible for creating the learning
content, such as slideshows, simulations, interactive media, podcasessasdments. An

instructional designer programmean also be aontent developefor example defining se-

72

guencing logic in a LOSupport staffare staff who support tHearnerthrough the learning
process. Théearnerrepresents the individuals taking the courseware, who have a training
need.Learnerscan be grouped into stereotypes where all members of the stereotype have
a common training need or some learning characteristic in commoncduree accredi-
tation role, is generally the organisation or entity that accredits a course anifiesp¢he
scope of the courseware.

We note that the principle actor involved in courseware validation isdliese creator
The course creatowill design the courseware in accordance to the courseware scope as
defined by theourse accreditatioactor, and compose the courseware using content created

by thecontent developeactor.

4.3 Courseware Construction Concerns

Validation of
Learning Objects

Learning
Content uses
Courseware Construction Courseware
Pedagogical Concerns Scope
Strategy
Courseware Structure
and Sequencing

Pedagogical Learning Goal
Validation Validation

uses

Courseware Structure
and Sequencing Validation

Figure 4.2: Courseware construction and validation concerns

In this section, we outline each of the courseware construction contexha course
creator must consider during courseware construction. We use threserns to derive pos-
sible courseware validation concerns, as illustrated in figure 4.2. As aliffireection 2.2
there are four principle courseware construction concerns; cgargescope, courseware

structure and sequencing, learning content and pedagogical stratéggan refine each

73

of these courseware construction concerns in terms of questions thaeoa as a basis
for validation, producing courseware validation concerns. We camadgoeach validation

concern to a courseware actor(s), as follows:

e Courseware Scope This concern relates to whether the courseware will allow the
learners to achieve the learning goals as defined by the course admeditdor and
also that the courseware is designed with the correct level of assunoedekige.
The courseware scope is outlined in detail in section 2.2.1. The conceptsetth
to be covered in order for the course scope to be satisfied are defireedidimain
expert. The course accreditation actor defines the course scopeplesaof this

concern are:

— Are each of the learner’s learning goals met?

— What initial knowledge does the courseware assume, is this correctefanth

ticipated learners?

— Does the courseware fill the gap in knowledge from the assumed initiallknow

edge to the learning goal for all learners?

e Courseware Structure and Sequencing Looks at how courseware is structured and
sequenced, in terms of the micro and macro level, as outlined in section 2.22. Th
courseware structure and sequencing is generally based on peddgomciples
and is defined by an instructional designer to be implemented in coursewéne b
instructional designer programmer. Examples of courseware structdreeguenc-

ing concerns are as follows:

Is the courseware consistent in terms of the size of its components?

How are courses, lessons and modules in the courseware structured?

Should concepts covered in some courseware component be taumyiet dbier

concepts (pre-requisites between concepts)?

How should LOs in a lesson, which teach a particular concept to the leamer

delivered?

74

— Does the effectiveness of specific LOs depend on some other LO g, geaor

erally, a concept being covered first, and if so, is this considered?

e Learning Content in Courseware - Here the course creator is concerned with the
appropriateness of the LOs in courseware used to teach a conceptdartigr. LOs
are developed by content developers. LOs in courseware can hatehalong

various dimensions such as:
— Content Relevancy - Is the content the most recent version and a ¢émdlie
micro-level courseware structure.

— Technical Issues - Is the format of the content appropriate? Is thefdize con-

tent appropriate (e.g. broadband availability could be an issue for threel@ar
— Pedagogical Considerations - this considers issues to do with the suitability of

the content for the learner (e.g. are particular learning styles facilitated)@

Examples of the types of learning content validation criteria the cours¢ocrisa

concerned with are as follows:

— Is the LO placed at the most suitable place in the courseware?

— Does the content allow the learner to attain the course learning goals selgqua
and does the assessment content test the learner to ensure the leaating g

have been met?
— Is the content format correct for the expected courseware delkratiyonment?
— Is the content format correct for the expected learners?
— Is the content used suitable?
e Pedagogical Strategy UsedThis concern is about the approach taken by the course
creator to allow learning to take place, as outlined in section 2.2.4. The donpart ex

and instructional designer decide on what pedagogical strategy td&xaeples of

validation criteria that this concern is associated with are:

75

— Does the courseware design consider all possible learner profilesterpto

take this course (courseware personalisation)?
— What learning styles does the courseware accommodate?

— Does the courseware apply an instructional design correctly?

The courseware construction concerns are not completely indedeofdeach other.
For example in defining the pedagogical strategy courseware consitraoticerns, course-

ware structure and sequencing concerns could be used.

4.4 Validation Focus of our Research

Here we define our courseware validation conceptual framework [MatigPahl, 2007c].
We begin by looking at how the course goal and structure can be valid&eitbwing
this we will look at how LO metadata, such as that found in IEEE LOM, candasl un
validation.

The discussion in this section follows on from the courseware constructiooerns
identified in the previous section. In figure 4.2 we summarised the relationshigeén
the courseware construction concern and the validation focus of esaneh. We have
identified the following types of courseware validation, which we addresgetail in this

section:
e Course scope validation
e Courseware structure and sequencing validation
¢ Validation of Learning Objects in courseware
e Pedagogical validation

We note that the courseware validation concerns we address in this taesiad do
have relationships between each other. For example coursewarasiaguaroblems that

do not allow the course goal to be achieved will cause a scope andnefugi®alidation

76

problem. This is known as a cross validation concern, where one typmucg@vare prob-
lem causes another. In this thesis we do not address the cross validataenrcs.

Our approach to courseware validation is knowledge-based. Knoedeased course-
ware validation uses a conceptual knowledge structure as a common poefei@nce
for expressing validation specifications for a given coursewareitiefin Knowledge is
captured in the form of a subject domain model, where a domain model delfimezin
concepts and relationships between domain concepts. The use of a slabfedn model
as a common point of reference in validation means that the domain model eadoval

point in validation, as validation concerns can be specified in terms of theidonoalel.

4.4.1 Course Scope Validation

Course scope validation ensures that courseware developed séltisfiesurse’s defined
learning goals and also assumes the correct knowledge for the antidipateelrs.

In order to verify that courseware satisfies each learner’s couasgig goals, it is nec-
essary to define the course goal in terms of the courseware. This camédy specifying
courseware and the course goals in terms of a domain model, where the dmneapt
model captures concepts covered by the courseware and defireptas learning goals
for learners.

In section 2.2.1.1, we outlined two broad knowledge types that can be Usdspeci-
fying course goals and a numeric value for knowledge level. Using sepbaomain model
as described above does not allow for the validation of the knowledgeotylesel. This
dynamic of knowledge must also be modelled when describing the couesehaments

and the course scope details.

4.4.2 Courseware Structure and Sequencing Validation

LOs used in a given courseware are annotated with metadata. This metada&fer-
ence domain model concepts, from a external knowledge classificastensy From this
we can infer what concepts are covered in courseware, where theyoeered, and by

which LOs. We can validate courseware structure in two ways by doingdfifsty intra-

77

conceptually looking at how LOs that cover the same concept are sedaad sequenced,
and inter-conceptually looking at how concepts in the courseware anpased and se-
quenced. Intra-conceptual courseware structure validation evaloateo-level course-
ware structure, while inter-conceptual courseware structure adresacro-level course

structure.

4.4.2.1 Intra-conceptual Courseware Structure

Intra-conceptual courseware structure is concerned with the micebdeurseware struc-
ture, as described in section 2.2.2. Its main objective is ensuring that altdbtequences
of LOs covering a particular concept in courseware is instructionallpgoas defined by
the course creator.

The intra-conceptual courseware structure can be designed usigranihg sheet”,
outlined by Gaga et al. in [Gagg et al., 2005, ch12]. Using a planning sheet the course
creator can specify a blue print for teaching a courseware conceppdrifying the type
of LOs needed to teach a concept and also desirable LO type sequélteeplanning
sheet can be seen as an effective way for the course creator te defefault structure and
sequence for teaching a courseware lesson.

We investigate how a intra-conceptual courseware structure andrsxogistrategy can
be defined, such as that found in a planning sheet, and used to valideés @gurseware,

in section 6.5.

4.4.2.2 Inter-conceptual Courseware Structure

Inter-conceptual courseware structure is concerned with how aelearaves from one
course concept to another. Inter-conceptual courseware sglggacifications should not
be prescriptive, in that only the inter-conceptual sequences deddrip¢he courseware
structure are valid. Instead inter-conceptual courseware strudtattdsuse constraints to
indicate undesirable conceptual courseware sequences.

Constraints can be expressed in two ways; the course creator cafy sp@dicit se-

guencing constraints between concepts or domain model constructs cesedeo spec-

78

ify implicit sequencing constraints between two concepts. Typically expligteecing
constraints are defined by the course creator using a modelling cortstrinclicate that
one concept is a pre-requisite for understanding another concegicitrapquencing con-

straints can be specified based on a domain model structure.

4.4.3 Validation of Learning Objects in Courseware

The IEEE LOM [IEEE LTSC, 2002] allows for the automated analysis of wt@s are
used in courseware and how they are used. Our approach is to ewalu@is suitability
for its position in the courseware structure. To use LOM to validate a LO, vat examine
the types of validation that can be carried out on each LOM attribute. As h@dvan exten-
sive collection of attributes to describe a LO, we group attributes with similgesanOur
motivation for doing this is that a validation approach based on a LOM attribititeavpar-
ticular range can be generalised to any LOM attribute with the same rangeistivigaish

between three groupings of LOM attributes:
e Simple LOM attributes.
e LOM attributes which reference external resources.
e LOM attributes which classify a LO according to some external taxonomy.

Simple LOM attributes are those attributes, that can be easily compared to adixed
or another LOM attribute value. These include any attribute with an atomic nummeric
pseudo-numeric range. An example of such an attribute is the “interactivély kttribute
of LOM, which has a range ofvery low, low, medium, high, very high These LOM
attributes allow for simple rules to be specified based on comparing one L®tioeanor
comparing LOM attribute values with explicit values.

LOs often exist as part of some bigger educational entity. To allow for tBisilhas
attributes that reference external resources, such as other LQsrel8kion section of
LOM allows a LO to reference other LOs. The types of references ir¢lbdsedOn,

hasPartOfandisRequiredByThe course creator can choose to ignore when a LO references

79

another resource or may use it in validation, for example, ensuring thratithe sequencing
constraint between courseware components that use LOs that ard tietategh ebasedOn
relationship.

LOM can use an external classification systems to catalogue a LO acctodsogne
external taxonomy (e.g. The ACM Computer Classification System [ACM8N)98 suc-
cessfulimplementation of this can be seen in the European Schoolnetpnjet uses the
classification section of LOM to point to an external competency taxonommAssche, 2007,
Sicilia, 2005]. The LOM classification section allows LOs to be classified admygpof the
following dimensionsprerequisite, educational objective, disciplinén external classifi-
cation system allows us to plot a given LO in terms of a conceptual knowlsttigeture,
allowing LOs to be linked to a domain model and transitively linking coursewsaarhole.
Validation rules can then be specified in terms of a LO relation with the extdasaifica-
tion system.

LOM attributes must also be validated in terms of their surrounding coursegatext.
For example, validation may ensure that the sum of the duration time of all LOgiie@a
courseware does not exceed a certain threshold. This type of validaatso important to
ensure a sense of uniformity in the courseware, for example, ensudrsgthantic density
of each consecutive LO delivered to the learner remains the same orrggtegsively

larger or smaller.

4.4.4 Pedagogical Validation

The pedagogical strategy for courseware defines how the cousséwadesigned to allow
learning to take place. We define pedagogical strategy in the contextuofesgare in
section 2.2.4. In validation, we aim to ensure that the pedagogical apptttetdhe course
creator looks to use has been implemented correctly. In our validationaghpree have
divided this into two core categories; validation of the implementation of an irtsinad
design in courseware and the validation of the application of personalisation
Instructional design defines the probabilistic best approach for lepgien a certain

pedagogical context. The instructional design used in coursewale: lb@@an implementa-

80

tion of an instructional design theory from the literature [Gaghal., 2005, Reigeluth, 1999a,
Reigeluth, 1983a, Briggs et al., 1991] or could be his or her own instnadtibesign. Val-
idation should allow the course creator to ensure that the instructionahdésigry he or
she is using has been implemented correctly in the courseware definition.
Personalisation allows the delivery of courseware that adapts to aidnalivearner’s,
or group of learner’s (stereotype), learning needs. A coursedefiaition must define
how adaptive behaviour takes place. Courseware validation shouldthkogourse creator
to check that adaptive behaviour has been defined correctly and wiithfdemented as

anticipated for each learner instance.

4.5 Chapter Conclusion

Our aim in this chapter was to define a conceptual framework for coarsevalidation.
To do this we identified the principle actors involved in courseware corgirud/Ve then
outlined the courseware construction concerns that the course cneasbronsider when
constructing courseware. These concerns allowed us to define tredl seepe of course-
ware validation for this thesis.

From the courseware validation definition in section 4.4 we define coursesavalid

if the following conditions are satisfied:

1. Courseware satisfies the course learning goal for all learnergttieéncourseware

(section 4.4.1).

2. The courseware structure and sequencing at the micro and madris kwend (sec-

tion 4.4.2).

3. Appropriate LOs are used for the courseware (e.g. format isatpit® scope is

adequate) (section 4.4.3).

4. The right LOs are delivered to the right learners at the right time (sedt#.3 and
4.4.4).

5. Instructional design is applied correctly (section 4.4.4).

81

6. Adaptive strategies are applied to the courseware correctly (sectigh.4

To deal with the validation concerns outlined in this chapter we propose a iBboma
Specific Modelling Language (DSML) in chapter 5 to capture the counsedata avail-
able at the post-construction/pre-delivery stage of the coursewaieytife. In chapter 6 a
constraints-based validation language is defined in the context of our.D8Mllow for

the validation of courseware as outlined in this chapter.

82

Chapter 5

Defining the CAVIAr Data Models

5.1 Introduction

In this chapter, we will define th@oursewaré uthoringValidationl nformationAr chitecture
(CAVIAr). CAVIAr is a set of models that have been comprehensivelfjried by the author
to capture courseware and its validation criteria [Melia and Pahl, 2009, stetid?ahl, 2007b,
Melia and Pahl, 2007a]. We can divide the CAVIAr model into two parts th¥'IBAdata
models, which capture the courseware definition and its constructionrcodat, and the
Validation Model, which defines what is correct and incorrect in couase. The CAVIAr

data models are as follows:
e Domain Model
e Learning Context Model
e Learning Resource Model
e Courseware Model

Figure 5.1 outlines the CAVIAr models using UML. The main CAVIAr models are th
Learning Context Model and the Courseware Model. The Learninge@biModel con-
tains a domain model and the Courseware Model references the LeRedogirce Model.

CAVIAr model names will start with capital letters for the rest of this thesis.

83

The Domain Model captures the structure of curriculum knowledge. Tdrailgg con-
text is defined in terms of the Domain Model and outlines courseware cotistricon-
cerns, such as conceptual sequencing constraints and the coypse $be Learning Re-
source Model contains a representation of the learning resourcedsruee courseware.
The Courseware Model defines the courseware that will be deliverk@rners in a TEL
specification-neutral way. Courseware elements refer to learningne=soin the Learning
Resource Model. LOs in the Learning Resource Model can be classiind a Domain
Model concept. This is illustrated in figure 5.1 through the reference trmmi_earning

Resource Model to the Domain Model.

uses

|V | —
Learning Learning refs |Courseware L
Context Resource & Model Validation
Model Model Model

1 refs /\ /T\constalns |
constains

| \'4

Domain Model

Figure 5.1: Overview of the CAVIAr Models

The Validation Model is defined by constraining the allowable structure o€these-
ware Model and Learning Resource Model. To do this a constraint éayegis used to
express constraints on the Courseware Model's and Learning Resbladel’s abstract
syntax definition, defining what is a valid Courseware Model definitiomd@raints can be
defined based on the Learning Context Model. The Courseware NodaVered in detail
in chapter 6. In this chapter we will concentrate on defining the CAVIAr datdels.

In order to define the CAVIAr data models, we look at how language notatiah
semantics are defined in section 5.2. This is then used to frame the definitieador

CAVIAr data model discussed in the subsequent sections.

84

5.2 Language Notation, Syntax and Semantics

In this chapter we define a Domain Specific Modelling Language (DSMLY}Herpur-
poses of courseware validation. DSMLs are a form of a Domain Specifiguage (DSL)
that can be defined and represented using graphical models. DS@fgrsfrom General
Purpose Languages (GPL) in that they can offer domain-specific nugationstructs and
abstractions [Mernik et al., 2005]. An example of a GPL would be Javacolsseware
construction is a highly specialised task, we have chosen to design a D&Mihis pur-
pose. We have been guided in this decision by the work of Mernik et. aledmlieve that

a DSML offers the following advantages [Mernik et al., 2005]:

e Improved software economics by providing a modelling language that espte

dynamics of TEL and courseware development.

e Providing for a modelling environment which is familiar to the end-user cotnse

ator, empowering the course creator.

This language will be used to define the constructed courseware andifsea@re con-
struction concerns.

For language to be adequately defined it must consist of three partd et Rumpe, 2004]:
e Syntax

e Semantic Domain

e Semantic Mapping

Harel and Rumpe note two main forms of language, textual and diagrammatig- A te
tual language’s basic syntactic expressions consist of linear chassrjeences making
up words, sentences, paragraphs and so on. Diagrammatic langbagie'syntactic ex-
pressions consist of lines, arrow, boxes and so on, and compositidramsms including
partitioning and connectivity. In order for correct interpretation of aylaage there must
be a rigid syntax. An abstract syntax defines the structure and allowinhem®s in a

language’s concrete syntax, that is used by the end-users of a ¢gngua

85

A language’s semantic domain provides the meaning for each syntactissixpreThe
semantic domain and syntax of a language are two separate entities; it idgptissdimany
different syntax can specify the same semantics. The definition of a serdantain can
be expressed in a variety of ways from formal definitions to natural lageu

A language’s semantic mapping relates the language’s syntax to a semantia.dama
common approach to providing a syntax with a semantic domain is to map it to another
language with a well-defined semantic domain. The language’s semanticeametined
transitively [Kurtev et al., 2006].

In the following sections, each of the CAVIAr data models are introduceoltiyning
its purpose. We then define an abstract syntax for the model. The moo&ifaa syntax
is defined as a metamodel using MOF [OMG, 2003a]. MOF is outlined in sect®h.2
We decided to use MOF to define the CAVIAr data models as it offered the appsbpri-
ate semantic expressivity needed for describing courseware validaticerms, as outlined
in section 2.3. A graph-based semantic domain is then defined for the CAvibael
being defined, which is then mapped to the abstract syntax. The CAVIAarstics are
defined to eliminate ambiguity in the language. Strict semantics will allow for algorithms
to be based on the CAVIAr models. We have used a graph-based notatiefirte the se-
mantic domain as it is an established approach for defining adaptive saueskanguages
[Vassileva and Deters, 1998, Karampiperis and Sampson, 2004, Gustesroya, 2002].
Using graph-based semantics allows for easy comparison with such tpsgua

Languages may also have one or more concrete syntax. The conaneg syused
directly by the end user and is defined in the confines of the abstracksyfdaomplete
the definition of the CAVIAr model’s a “candidate” concrete syntax is defin&e use the
term candidate as it is a suggestion on how to express the CAVIAr modets, athcrete
syntax could be specified. The candidate concrete syntax, outlined irh#pset, are used
throughout this thesis. For CAVIAr to be useful it must be able to intemtpewith a
variety of existing TEL standards and specifications. To this effect wealgidl outline how
the various CAVIAr models can be mapped to popular TEL standards auifisptions,

where appropriate.

86

5.3 The Domain Model

The purpose of the Domain Model is to represent the subject knowledgedonveyed to
the learner during courseware delivery. Domain models are used ielgris courseware
and ITS construction. Murray outlines four main motivations for using expdicmain

models as follows [Murray, 2003]:

e To model curriculum knowledge and structure - Allow for visualisation afasptual
curriculum elements, where a conceptual curriculum element is the doiatbpeak-

down of a course, but not actual learning material (e.g. topics, lessonsepts).

e To model simulations of the world - Modelling of physical processes whichvéto

learning.

e To model expert knowledge - Modelling of several types of knowledg&uding

problem solving expertise, procedural skills, concepts and facts.

e To model domain knowledge types - Modelling of the knowledge types coming to-
gether, for example, modelling the different knowledge dimensions (e.gt, wba,

where) of a particular concept.

The use of domain models has become even more relevant as ontologissdiia a
variety of scenarios, such as annotating and organising web resaurtee Semantic Web,
or as a basis for inferring knowledge in bioinformatics [Doniger et al. 3200

The sole purpose of the Domain Model in CAVIAr is to express the structiucarricu-
lum knowledge structure that courseware covers. The Domain Moeéslmiat need to be a
comprehensive knowledge source for the subject domain but justaddage structure that
is intuitive to the non-technical course creator that describes conaept®anmon relation-
ships between concepts. This was one of the deciding factors whelindgitie expressivity
required for our research in terms of Daconta’s ontology spectrurndita et al., 2003],
as outlined in section 2.3. It is worth noting that all knowledge in the Domain Miaikes
not have to be covered by the courseware. The knowledge covetthe lsourseware may

be a subset of the knowledge in the Domain Model.

87

5.3.1 Defining the Domain Model Abstract Syntax

The Domain Model is a formalism of knowledge defined as a concept gndpdre a node
represents a concept and an edge represents the relationship betwemmncepts. The
CAVIAr Domain Model is pedagogically neutral, in that it does not pregcehy teaching
or learning methodology over the knowledge it contains. This allows forsketidomain
models that have been defined for some purpose other than instructionsedia CAVIAr.
A concept graph for domain modelling in AEH authoring is formally defined bgt€a
and deMooij in [Cristea and de Mooij, 2003]. In AEH the domain model seagthe main
navigational tool, in which learning content is embedded. In coursewadntimain model’'s
use is most prominent as a semantic point of reference for LO annotatioexa@mnple of
this can be seen in the IEEE LOM standard where the “classification” metsdasad to

annotate a given LO using an external classification system (see se&i8dh 2

We define the Domain Model in the modelling technical space using a MOFtbase

definition. In figure 5.2, we outline the abstract syntax for the CAVIAr Domdodel
using MOF. It defines th€onceptas the primary building block of thBomainModel A
Concephas one attribute, theameof the concept. The concepamewill uniquely identify
the conceptwithin a DomainModel A conceptcan have manyynonymsa synonyms
another name by which@nceptis known. This can also be used for labelling tomcept
with anameusing an alternative language.

Conceptsare related to otharonceptdy a ConceptRelationshipA ConceptRelation-

shiphas a direction from itsourceconcept to itdargetconcept. TheConceptRelationship

has one attributegype Thetypedefines the semantics of the relationship. There are two

types of concept relationships, defined in the enumera&immceptRelationshipType

¢ NARROWER The source concept has a broader semantic scope than the target con

cept. This allows for a taxonomic relationship between concepts.

e RELATED- There is a semantic relationship between two concepts. This relationship

is symmetric.

The MOF defined abstract syntax is further constrained as follows:

88

<<enumeration>>

ConceptRelationshipType

DomainModel
+NARROWER

+RELATED
+concepts
1..*
0..*] Synonym
Concept Y y
- +ttarget +value: String
+name: String [T
Fsource
1
_Ilu* 1..*
ConceptRelationship
+type: ConceptRelationshipType

Figure 5.2: Domain model abstract syntax defined in MOF

e All concepts must have a hame.
e All concepts must have a unique name.
e All concept synonyms must have a value.

These constraints are defined formally in OCL below in listing 5.1.

Listing 5.1: Domain model abstract syntax constraints defined in OCL

context Concept

inv conceptnamemusthavevalue: name< '’

Concept. allInstances{(»any(name<> self.name)

inv conceptmusthaveunique.name:

context Synonym

inv synonymsmusthavevalue: value<> "’

5.3.2 Defining the Domain Model Semantics

A concept grapl’'G is defined ag€’'G C C' x E whereC' is a set of concepts arfdis a set

of edges.
e A conceptc € C is described with a set of names= {ny,ns,...n;}, where the

first name in the set shall be the default concept name. Names in the saame set

synonyms of each other. Each concept is uniquely identifiable by itsltletacept

name.

89

e An edgee € F is atuple<cl, ¢2, t.> that relates two domain concepts$, € C and
c2 € C. The edge type,, defines the semantics of the edge. We define two types of

edges allowing for simple ontologies to be defined:

— NARROWER Allowing for a semantic taxonomy working from the concrete to

the more abstract concepts.

— RELATED- Allows for the grouping of concepts, that one concept is related to

another concept.

In order to complete the semantic definition of the Domain Model, we provide seman
tic mappings between the domain model's abstract syntax and its semantic dorhain. T
concept graph defined &G is mapped to thd&®omainModelin the abstract syntax. The
MOF-definedConceptis mapped to the sét in the tuple-based domain model definition,
ConceptRelationshils mapped to the set of edge's The firstnamein ¢ is the default name
for ¢, wherec € C'is mapped to the name attribute of a MOF-defi@mhcepfclass, while
the concept'sSynonymsre the remainder of the concept names in the set dhe taxo-
nomic relationship and the related relationship in CAVIAr abstract syntabeadirectly

mapped to the taxonomic and related relationship in the semantic domain.

5.3.3 Domain Model Interoperability

For the CAVIAr Domain Model to be useful, it must be interoperable with theesiithe
art in domain model definitions. To illustrate interoperability at a conceptuel Ves define
mappings to the well-defined Simple Knowledge Organisation Structure (SE@&jard
[Miles and Brickley, 2005].

SKOS is defined using OWL [W3C, 2004]. SKOS is a well-defined candicatem-
mendation from the World Wide Web Consortium (W3C), used to express bascep-
tual structures and schemata. SKOS therefore operates in the ontotegluaital spaces,
whereas CAVIAr operates in the metamodelling technical space. Mappétgeén these
two technical space can be seen in the Ontology Definition Metamodel (Oivye OWL

classes are defined as MOF classessgva et al., 2006].

90

The primary component of a SKOS ontology is #k@s:concepiwhich is an instance of
owl:class Concepts are related by two types of semantic relationships; associédii@re
ships -skos:relatedand taxonomic skos:narrowerandskos:broader The skos:narrower
andskos:broaderelationships are used to define whetoacepthas a narrower or broader
scope than another.

SKOS can be mapped to the CAVIAr Domain Model abstract syntax as fallows

CAVIAr DomainModels mapped to the RDF graph which hosts a SK@®logy
e CAVIAr Conceptis mapped to thekos:concept

e CAVIAr ConceptRelationshipf typeNARROWERs mapped to SKOSkos:narrower
relationships, while the inverse ofNMARROWERelationship from the target to the

source can be mapped to thleos:broadelSKOS relationship

e CAVIAr ConceptRelationshipf type RELATEDis mapped to the SKOS relationship

skos:related

e The set of names for a given concept, defined as synonyms and asttept name
attribute, can be mapped to theesaurusTerrn the SKOS definition. Those terms
that are related to thekos:concepthrough theskos:altLabelare aSynonynin the
CAVIAr Domain Model, while theskos:prefLabeis used to determine the CAVIAr

concept’'snameattribute.

5.3.4 Defining a Candidate Concrete Syntax Definition

We propose a simple graphical concrete syntax for the CAVIAr Domaine¥latle do this
to define a modelling language that is intuitive enough to be used by a namdaicend
user, such as a course creator. In defining the concrete syntax weak# reference to the
abstract syntax defined using MOF.

A Conceptis represented as an ellipse, the value of the concaptiseattribute oc-

cupies the centre of the ellips&ynonymsire represented in the domain model as broken

91

line ellipses, where thealue attribute of thesynonymoccupies the centre of the ellipse.
Synonymasire related t@onceptdby a solid black line.

The two types of concept relationships are represented as follows:

¢ NARROWER Broken-line arrow from broader concept to narrower concepé. arh
row head is placed at tHéonceptRelationshifarget concept that being the narrower

concept.
e RELATED- Broken line between two related concepts

In figure 5.3, we outline an example of the Domain Model concrete syntdg.ekam-
ple is taken from the databases subject domain. In the exampt®tieepthamed “SQL”
has aSynonym“Structured Query Language”. “SQL" is related to “Relational algébaral

has a broader semantic scope than “Views”, where the arrow indicai@ssVis narrower

than “SQL”.

Relational
Algebra

Structured Query
Language

.~ e

Figure 5.3: CAVIAr Domain Model concrete syntax example

5.4 The Learning Context Model

The Learning Context Model defines domain-related pedagogic informdthe Learning
Context Model extends the Domain Model, by defining courseware meints as knowl-

edge elements in terms of Domain Model concepts. We can describe theénge@ontext

92

Model as layered on the Domain Model. For this reason a Domain Model raustlided

in the learning context definition. The Learning Context Model is made up of

e Conceptual Sequencing Constraints - Defines where knowledge of@mmept is

necessary to understand another concept (see section 2.2.2.2).

e Learner Stereotype Definitions - Defines what a learner groupingsrteekhow to
successfully complete the course and what a learner grouping is assoirkieow

prior to starting the course.

A learner stereotype definition allows the course creator to define legraepings,
defined in terms of the assumed initial knowledge of the learner groupingtprgtarting
the courseware and the learner grouping’s learning goals. This isrkasvthe course
scope, where a course scope is defined for each learner steréuiypse scope is covered
in detail in section 2.2.1). The course goal and assumed initial knowledgeefined as
knowledge elements in terms of the Domain Model. A knowledge level, a knoe/ligge,
and a Domain Model concept define knowledge elements.

The abstract syntax for the Learning Context Model is defined in thewoitp sub-
section. This is then mapped to a graph-based semantic domain definition.edtlon s

concludes with a description of a candidate concrete syntax.

5.4.1 Defining the Learning Context Model abstract syntax

In figure 5.4 we outline the Learning Context Model abstract syntax in M@te of the
central elements of the learning context is @@nceptmodelling element from the Domain
Model as the learning context is defined in terms of the Domain Model.

In the Learning Context Model an additional concept relationship is e@fi€oncept-
PreReq This relationship allows the course creator to define where knowledgenoé
Domain Model concept is necessary to understand another Domain kmukpt A Con-
ceptPreRegelationship defines a relationship betweawaceptand aKnowledgeElement
where the pre-requisite knowledge is defined aawledgeElementA KnowledgeEle-

mentis defined with knowledgéype a knowledgdevel and also a reference to a Domain

93

Model concept

TheLearningContexts also made up dfearnerStereotype®\ LearnerStereotypés;
is defined by enameand a set oKnowledgeConstrainisThe stereotyp@ameuniquely
identifies each stereotype. There are two types of knowledge consttaihtsain be defined
on a learner stereotyp&§oal and PresumedKnowledgePresumedKnowledgeefines the
knowledge that the course creator believes the learner stereotypestpri@vto starting the
courseware. Th&oalknowledge represents the knowledge state a learner should have after
taking the courseware. THeartOfRelationshipallows for the construction of composite
goals. If aGoal, g1 is part of anothefzoal, g2, the LearnerStereotypbas an overall goal,
which is the union of the knowledge elements in the gaal sets,g1 U ¢g2. Alternative
goals are defined using tidtGoal construct, where aAltGoalinstance is associated with

learning contexgoalsthat are alternatives to each other.

<>tLearningContext

LearningStyle 1. DomainModel

Ttheory: String LearnerStereotype

+name: String

+name: String

from DomainModel

0..*
<> KnowledgeElement

from Learning
Resource Model

+constraihts +level: integer

0..*
+type: CompetencyType
\Metadata 0. TTarger | +c> Concept
|Know|edgeConstraint} 1

A

+name: String
Fsource

ConceptPreReq
| 1
2. 0..* PresumedKnowled e|
Goal AltGoal | 9 <<enumeration>>

fsource |+target CompetencyType
1 1

— +VERBAL_INFORMATION

+relations +incomi ngRel ations +INTELLECTUAL SKILLS
1.+ 1..* =

PartOfRelationship

Figure 5.4: Learning context model abstract syntax

The Learning Context Model also allows the course creator to defineahsng styles
that he or she wants to use in validation. Learning styles can then be asdogith LO
metadata types. Capturing the anticipated learning styles that will be used outiseware

allows the Courseware Model to validate the course in terms of how leartjtes sre

94

used in the courseware. This is a similar approach to the integration of lgatyles into
adaptive strategies defined by Stash et al. in [Stash et al., 2004].

The MOF defined abstract syntax is further constrained as follows:

o If a learner stereotype has a goal and presumed knowledge for kagevidements
that reference the same concept, the knowledge level of the goal mgistdier than

the knowledge level of the presumed knowledge.
These constraints are defined formally in OCL below in listing 5.2.

Listing 5.2: Learning Context model abstract syntax constraints defin@€ln

context LeanerStereotype

inv goal-knowledgelevel_-greatecthan.presumedknowledge :

——Get set of concepts that are goal and presumed knowledge eptsc

let overlappingConstraints : Set(Concept) = self.consma—>select(oclisTypeOf(Goal))
—>iterate (i:KnowledgeConstraint; res:Set(KnowledgeEbm)=Sef{}| res—>union(i.knowledgeElements))
—>terate (j:KnowledgeElement; res2:Set(Concept)=8ft res2—>union(i.concept))
—>intersection(self.constraints>select(ocllsTypeOf(PresumedKnowledge))
—>iterate (x: KnowledgeConstraint; res3:Set(KnowledgefBémt)=Setf{}| res3—=union(x.knowledgeElements))
—>terate (y:KnowledgeElement; res4:Set(Concept)=§dt res4—>union(y.concept)))

self.constraints>select(oclisTypeOf(Goal}}y>collect(knowledgeElements)
—>select (ke | overlappingConstraints>includes(ke.c))
—forAll (ke | ke.level>

self.constraints>select(ocllsTypeOf(PresumedKnowledge))

—>collect(knowledgeElements)>select (kk kk.c = ke.c)->forAll(level > ke.level))

5.4.2 Defining the Learning Context Model Semantics

The Learning Context ModdlC M is made up of the tuplec P, LS, S>, whereP is is a
set of directed edge between Domain Model concept nodes, whickyspgeedagogical
pre-requisite relationship between concepfss is a set of learner stereotype definitions

andS is a set of learning style definitions

e The basic building block of the Learning Context ModeKisowledgeElementA
KnowledgeElemenie is defined by the tuplecki, kt, c>, wherekl is a knowledge
level. Knowledge levels is a value between 0 and 1, where 0 indicates mdddge
of the concept and 1 indicates full knowledge of the concepkt is a knowledge

type, where a knowledge type can be of type verbal information or intefieskil,

95

the two learning outcomes, defined by Gagat al. in [Gags et al., 2005] that can

be defined in terms of Domain Model concepts (outlined in section 2.2.1).

e A pre-requisite constraint € P is described using the tuplecl, ke>, wherecl €
C, andke is a knowledge element. The learner must have achieved the knowledge

defined inke for the pre-requisite defined arto be satisfied.

e A learner stereotypés € LS is described by the tupleG, AK,n>, whereG is
a set of learning goal knowledge elements far AK is a set of assumed existing

knowledge elements fds andn is the name of the stereotype.

e A goalg € G is described by the tuple K F, alt, NG>, where KE is a set of
knowledge elements defining the learning geét,defines a set of alternative goals
and NG is a set of nested goals within the ggalNested goals create a hierarchy of
goal sets. Thelt in a goal defines an alternative goal set for that goal, allowing for

the definition of alternative learning goals.

e Assumed knowledge elementk € AK is described by the tuple K £>, where

K F is a set of knowledge elements defining the presumed knowledge for tmsiear

e Alearning styles € S is defined by the tuple:st, sn, M >, wheresn is the name of
a learning style within the given theosy. The learning style is associated with a set

of metadataj\/, that identifies LOs that suit the learning style

We provide a semantic mapping for the Learning Context Model by mappitgeba
the abstract syntax and the semantic domain. OéaningContexMOF class is mapped
to the container, containing the sdtsand .S, LC M. The pre-requisite s€® is mapped
to the MOF clasConceptPreReqThe learner stereotype definitidinS is mapped to the
LearnerStereotypMOF class. The MOF clagsnowledgeConstraindefines learner rela-
tionships to knowledge, through tk@owledgeElemelOF class, which can be mapped
to the setK E. TheKnowledgeConstraintlass is specialised into two MOF classésal

andPresumedKnowledg&hich can be mapped to the sétsand A K respectively.

96

5.4.3 Learning Context Model Interoperability

The learning context model allows for the definition of the anticipated leateeeotypes
in terms of knowledge elements. The state of the art provides for specifisatéscribing
learners and describing knowledge. Learners can be describegthsitMS Learner In-
formation Package (LIP) specification [IMS, 2005]. The learner stgpe definition can

be mapped to the IMS LIP specification in the following ways:
e IMS LIP competency is mapped to learner stereotype presumed knowledge
e IMS LIP goal is mapped to learner stereotype goal

Knowledge can be represented in terms of a competency or educatigectivibusing
the IMS Reusable Definition of Competency or Educational Objective (RD)CEpecifi-
cation [IMS, 2002]. A knowledge element or group of knowledge elemeefimed in the
Learning Context Model can be mapped to the a RDCEO definition or grbRDEEO

definitions.

5.4.4 Defining a Candidate Concrete Syntax Definition

We propose the following concrete syntax to assist in the communication nirlgarontext
definitions. We have defined the concrete syntax through an exampldy ighitustrated
in figure 5.5.

A learner stereotype are depicted as a stick personstegeotypel The stereotype
is associated with the knowledge constraints that define this stereotypevld¢ige con-
straints are depicted as boxes, with instanced®refumedKnowledg#enoted with a small
line in the top right corner of the box. Knowledge constraints are assdaidtfeconceptsn
the Domain Model through KnowledgeElemeni he association between knowledge con-
straint and concept depict¥aowledgeElemeniThe knowledge elemelwvelis depicted
as a label on the relationship between the knowledge constraint and tteptomnhile the
arrow head image depicts the type of knowledge, a single head indicateadiwetige

type isVERBALINFORMATIONand a double arrow head ISITELLECTUALSKILLS

97

goall goal3 L _ 0.7

- .
N Storage Y=y TTTTTETETCT !
0.5 structures : :
1
goal2 fo._____ 1
--------------- . . 0.3 1
stereotypel | = |l————d T TEmeseeaall Normalisation N
AN 0.3 > Relational
PresumedKnoWIedgeX\. ------------------------- algebra

Verbal information knowledge constraint ===== >

Intellectual skills knowledge constraint ====== >
Goal part-of relationship

S
Alternative goals @
Presumed knowledge S

Learner stereotype

Figure 5.5: Learning Context concrete syntax example

For example, “goal3” has a knowledge element with a typtNGFELLECTUALSKILLS
with a level of 0.7 in the “Databasesbncept

Alternative goals are denoted using a bidirectional arrow as is the ca'gofall” and
“goal2”. A relationship with a diamond indicates that oyaal is part of anothegoal, as
shown in figure 5.5, where “goal3” is part of “goall’.

A knowledge element association between two concepts is a pre-requligitenship
between those concepts. Té@ncepiat the arrow head end is the target of @enceptPre-

Regrelationship. In figure 5.5 “Relational algebra” is a pre-requisite of tNalisation”.

5.5 The Learning Resource Model

The Learning Resource Model contains representations for leagsogmces used in course-
ware. The learning resource representation is based on the IEERng&bject Metadata

(LOM) standard [IEEE LTSC, 2002], enabling a direct mapping fronM_0 the Learning

98

Resource Model. This section outlines how learning resources aredé&fiiCAVIAr.

5.5.1 Defining the Abstract Syntax

In figure 5.6 we outline the Learning Resource Model's abstract syntd4QF, the data
types used in figure 5.6 are in figure 5.7.LAarningResourceModés composed oRe-
sources There are two types dResourceLO andService Where a LO is as defined in
section 2.2.6 and a service is as defined in the IMS LD literature as “anicedhat is
needed during learning, e.g. communication services, search semimeitoring services,

and collaboration services” [Koper and Olivier, 2004].

|LearningResourceModeI |

? from courseware model

referencedResource 1 R +resources
esource
U \ 2
+id String TOpiC
4 +name: String
+Complete: boolean
+aggregationLevel: int
Service
—

Relation ;mellada‘a Technical
.

o

-

+kind: RelationKind

AN
from domain model

Concept

+format: String
+size: integer
+location: string
+duration: integer

Metadata >

+name: String concept

+classifications +general +educational
0..* 1 1

Classification General Educational

+purpose: ClassificationType |[+Title: String +interactionType: Scale

+Coverage: String +InteractivityLevel: InteractivityLevels
+Structure: LOStructure +SemanticDensity: Scale

+Description: String +learningResourceType: ResourceType
+AggregationLevel: Integer = 1-4

Figure 5.6: Learning resource model abstract syntax

TheLO is associated witiMetadata which can be directly mapped to the IEEE LOM
standard [IEEE LTSC, 2002]. Thdetadatais composed of five partsRelation, Classifi-
cation, General, EducationandTechnical All modelling elements contained Metadata
have attributes that are used to describe the assodif2edhe Classificationassociates
the LO with a Domain Model concept for sonprpose wherepurposeis an attribute of

the Classificationclass. TheRelationmetadata relates this LO to other resources. The LO

99

<<enumeration>>
ResourceType

<<enumeration>>
RelationKind

<<enumeration>>
LOStructure

<<enumeration>>
Scale

+EXERCISE
+SIMULATION
+QUESTIONNAIRE
+DIAGRAM

+FIGURE

+GRAPH

+INDEX

+SLIDE

+TABLE
+NARRATIVE_TEXT
+EXAM
+EXPERIMENT
+PROBLEM STATEMENT
+SELF_ASSESSMENT

+HAS_PART
+BASED_ON
+HAS_FORMAT
+REFERENCES

+REQUIRES

+ATOMIC
+COLLECTION
+NETWORKED
+HEIRARCHICAL
+LINEAR

+VERY_LOW
+LOW
+MEDIUM
+HIGH
+VERY_HIGH

<<enumeration>>
Purposes

<<enumeration>>
ClassificationType

+DISCIPLINE
+IDEA
+PREREQUISITE

+COMPETENCY

+EDUCATIONAL_OBJECTIVE

<<enumeration>>
InteractivityLevels

+ACTIVE
+EXPOSITIVE
+MIXED

+DISCIPLINE

+IDEA
+PREREQUISITE
+EDUCATIONAL_OBJECTIVE
+COMPETENCY
+ACCESSABILITY
+RESTRICTION
+EDUCATIONAL_LEVEL
+SECURITY_LEVEL
+SKILL_LEVEL
+COMPETENCY

+LECTURE

Figure 5.7: Learning resource model data types

relationship is defined by thRelationattribute,kind. The five Metadatacomponents are

derived from the metadata types outlined in the LOM standard.

5.5.2 Defining the Learning Resource Model Semantics

We define the semantics of the Learning Resource Model as follows:

A Learning Resource Model,RM, is a set of learning resourcesRi.

There are two sets of learning resources captured in.tRd/, a set of learning

objectsL.O and a set of learning servicéss, thereforeLR = LOU LS.

A LO learning resource is further defined by the tuglBEL, CLASS, A>, where
REL is a set of relationships, that relate4 @ with anotherLR, CLASSis a set of

conceptual classifications for tHi©. A is a set of annotations for thisO.

Arelationrel € REL contains the tuplecir, type>wherelr € LR and the type of

relation, which is defined as a text value.

A classificatiorclass € CLASS is defined by the tuplec, pur>, wherec € C and

pur defines the purpose of the conceptual classification as a text value.

A learning object’s annotatiod,, is a tuple<att, val>, whereatt is the name of the

metadata attribute and:/ refers to its simple text value.

100

To map the abstract syntax to the semantics we define the abstract syntarsrofer
the graph-based semantics. TtearningResourceMod@&IOF class is mapped to the set
of learning resources defined as th&M set. The Learning Resource Model contains
instances of th&kesourceclass. There are two types of learning resources defined in the
abstract syntaxl_O and Service which correspond to the sefaD and LS respectively.

The Relationmetadata class is mapped to the Bt L, while the Classificationclass is
mapped to the set containing conceptual classificatiohglS'S. The General Technical
andEducationalclasses define a series of attributes and values, used to describe thd LO a

are mapped to the st

5.5.3 Learning Resource Model Interoperability

The CAVIAr Learning Resource Model must be able to interoperate wittreal learning
resource descriptions and metadata specifications and standards. dokttgsction, we
outline how this is achieved by mapping the Learning Resource Model to corstaratards
and specifications in TEL.

There are two types dResourcean the LearningResourceModethe LO and theSer-
vice A Learning Objectl(O) is a representation of some learning resource. LOs in the
CAVIAr courseware specification can be mapped tol#aning objectdefinition in IMS
LD and to theResourcén the SCORM specification. The CAVIABervicecan be mapped
to theServicedefinition in IMS LD, which together with a set of LOs creates the IMS LD
environment

EachLO is defined in terms of metadata. Each element contained iM#iadatacan
be mapped directly to an element of the IEEE LOM standard, for example tNeACA
GeneralMOF class can be mapped to the general section of LOMEthecationalMOF

class can be mapped to the “educational” section of LOM, and so on.

5.5.4 Defining a Candidate Concrete Syntax Definition

The Learning Resource Model is principally about annotating learnswmurees in course-

ware. This data is verbose in nature and therefore if presented in @aiagtic notation

101

with the other CAVIAr models could cause confusion due to an overloadfofnration
[Mendling et al., 2007]. We have therefore not defined a candidateretmsyntax defini-
tion for the learning resource metadata. We do, however, demonstrata bowrseware

Topicis associated with a learniiResourcén section 5.6.4.

5.6 The Courseware Model

The CAVIAr Courseware Model defines the structure of coursewaoen which its be-
haviour can be derived. There is a reference between the Coueskledel and the Learn-
ing Resource Model, and between the Courseware Model and theihg&ontext Model.
This allows for the Courseware Model to be evaluated with regard to thahgaresources
used and with regard to the learning context definition for the courseware

In TEL there are two main specifications for describing courseware metiig ADL
SCORM specification [ADL, 2004] and the IMS LD specification. Within the SO
specification the IMS Simple Sequencing specification [IMS, 2003c] anttobpackaging
specification [IMS, 2003a], in particular are used for coursewac&gging and definition.
Both SCORM and IMS LD are described in section 2.2.6.

In this section we will outline a language for defining courseware which isgaddent
of (although inspired by) ADL SCORM and IMS LD. The coursewarerdgéfin has been
designed with validation in mind, concentrating on the courseware structdiseeguencing.
We defined a language independent of the main courseware specificaditins allows for
minimal disruption to courseware validation tools, based on CAVIAr, duriegniaturing
of the mainstream specifications, such as SCORM and IMS LD. Interoifigrdoetween

CAVIAr and the mainstream TEL specifications will be addressed in sectin 8

5.6.1 Defining an Abstract Syntax for Courseware Definition

The CAVIAr Courseware Model is defined in terms of its structure, in aanidnical fashion.
Learners move freely through courseware topics unless the coea®icdoes not allow a

certain movement. To allow courseware to be defined in this way we definbstraet

102

syntax for specifying courseware structure. This abstract syntagfisedl, in MOF, in

figure 5.8.

Courseware

from LearningConlextMDde\BI
+name: String

EntryLearner -
<<enumeration>>
TopicRelationshipType
+PART-OF
+SEQUENCED_AFTER
lessThan +topics
1..*
L greaterThan +source
LearnerStereotype Topic T
0. .+ 0..* +name: String +target
—1+aggregationLevel: int [T
KnowledgeElement FSUDTOpTcsCompl ete
0..*
+level: integer
+type: KnowledgeType 1..* 1..*
TopicRelationship
+c i
1 +type: TopicRelationshipType
AN Concept
from DomainModel
+name: String
+completionCriteria
0..* 0. . *
Resource _
earningResourcesCompl et e TopicCompletionCriteria
0
+learningResourcesComplete: Resource[]
+timeLimit: int
+subTopicsComplete: Topic []

from LearnlngResourceModelBI

Figure 5.8: Abstract syntax for courseware defined using MOF

Coursewards defined using a coursewamame Courseware is principally comprised
of Topicinstances. ATopichas anameand anaggregationLevelTopicsare related to other
topicsvia a TopicRelationship A TopicRelationshighas atype Thetypeis defined as a
TopicRelationshipTypenumeration. ATopic can be made up of othéopicsthrough the
TopicRelationshipType - PARDF. A topicwhich is “part of” anothetopicis a sub-topic of
thattopic. Explicit topicsequencing definitions are defined usingThpicRelationshipType
- SEQUENCEDAFTER The SEQUENCEDAFTERTrelationship specifies when ohapic
must be covered before anotii@pic. Topicscan contain zero to many learniRgsources
A topic aggregationLevedllows for the differentiation between different courseware gran-
ularity levels defined in section 2.2. tapicis generally set at a granularity level between
the lesson granularity level and the course granularity level (defineztiios 2.2).

An EntryLearneris a condition, associated withT@picthat must be true for a learner

to enter the associateédpic. The EntryLearnerconsists of on&earnerStereotypealefined

103

in the Learning Context Model, and variodsiowledgeElementsvhich are related to the
EntryLearnerthrough agreaterTharor lessTharrelationship indicating if the learner must
achieve greater than or less than the knowledge defined in the assdtimetbdgeEle-
ment

The TopicCompletionCriterids contained within alopig, it allows the course creator
to express conditions for when tiepicis deemed to be complete. For example the course
creator may only want the learner to complete two out of three of a topicdapibs. A
TopicCompletionCriterias expressed for each completion permutation. Té@cComple-
tionCriteria also allows for a simple time limit on Bopicinstance.

The MOF defined abstract syntax is further constrained as follows:
¢ A Topicinstance has aaggregationLevebetween one and four.

e Topicsreferenced by dopicCompletionCriterianstance must be related to thepic

that contains th&opicCompletionCriteridby aTopicRelationshipf type PARTOF.

e Resourceseferenced by dopicCompletionCriteridnstance must be referenced by

the Topicthat contains th@opicCompletionCriteria
These constraints are defined formally in OCL below in listing 5.3.

Listing 5.3: Courseware model abstract syntax constraints defined in OCL

context Topic
inv: aggregationLevelvalue: this.aggregationLevel> 0 and this.aggregationLevek 5
inv: isEmpty(self.completionCriteria>collect(subTopicsComplete)
self.relations=>select(de.type=TopicRelationshipType ::CONTAINS>collect(target))
inv isEmpty(self.completionCriteria>collect (subTopicsComplete)

self.resources)

5.6.2 Defining the Courseware Model Semantics

We consider courseware to be a Learning Activity, where LA is defined as the tuple
<SLA,LO,LP,SP, EP,n>, SLA represents a set of embedded learning activities known
as Sub-Learning Activitied, O is the set of Learning Objects associated with the Learning

Activity, and L P is the set of learning paths.P and E P represent the start points and end

104

points respectively in the given Courseware ModgP is optional to learning activities.
A LA absent of a5P can be started at any sub-learning activity that does not have an
incoming learning path. There may also be more than$Rdor a LA. SP,EP # LA

andSP, EP # LO. Then variable represents the name for this learning activity.

e A learning pathip € LP is defined by the triple<sia, slas, G>, wheresla; €
SLA, slas € SLA are the source and target learning activities respectively. G is a
set of boolean guard conditions on the learning path, defining when titeeteaay

proceed fromsla; to slas. G defaults tarue whenG = ().

e A gate conditiong € G is defined as the tuplels, KC>, wherels is a learner
stereotype defined in the Learning Context Model @&@' is a set of knowledge

conditions.

e A knowledge conditiorkec € KC is defined by the tupleccom, K E>, where K E
defines a knowledge element, and the: is a comparator which defines whether the

learner must be below or above the knowledge defined ind¢he
e Alearning objecto € LO is as defined in thé& R M.

To complete the CAVIAr Courseware Model definition it is necessary taigeoa map-
ping from the abstract syntax to the semantic domain. The cours@wpieis mapped to
learning activity sef.A. The containment relationship betweefigpicand its sub-topics
is mapped to the relationship between a learning activitwherela € LA and its set of
sub learning activitie§ L A;,. There is an implicit learning patly, wherelp € LP from

each coursewarkopicto every othefopicin the Courseware Model except for:

e Where there is dopicRelationshipf type SEQUENCEDAFTERbetween course-
ware Topic instances and the target topic or its container topics that have not been

completed by the learner.

e Where the learner taking the courseware does not satisfy a t@pit'gLearnercon-

dition. EntryLearnerconditions also hold for any of the topic’s contained topics.

105

Instances of the O MOF class are members of tlig set in the activity based syntax.
Each learning activity has a set of start poift8 and end point¥’ P. The start pointin a
Topicis any topic which does not have BntryLearnercondition orSEQUENCEDAFTER
condition (where thaTopicis the source of the relationship) defined on it. The end point
defined by default for &opicis when all the topic’s resources and contained topics have
been delivered to the learner. A course creator can define a custdy d&®ining aTopic-

CompletionCriteriainstance.

5.6.3 Courseware Model Interoperability

In order for courseware validation to be integrated into coursewargremtion tool support
the Courseware Model must be interoperable with the state of the art ineveane speci-
fications such as IMS LD, ADL SCORM and IEEE LOM. These coursevgpecifications
are covered in detail in section 2.2.6. Here, we outline how the CAVIAr €aware Model
can be mapped to these courseware specifications.

The root of the abstract syntax is t@mursewareclass, this provides a container for
the courseware specificatioBoursewarecan be mapped to theanifestcomponent in the
ADL SCORM specification and to tHearning-desigrcomponent of the IMS LD specifi-
cation. These are the root components of their respective specifications.

Courseware is broken down into logical units, knowrTagics A coursewardopiccan
be mapped to arganizationanditemin the ADL SCORM CP (Content and Packaging). In
IMS LD the Topiccan be mapped to thday andact constructs. Thdopicclass attribute
aggregationLeveis used to allow the course creator to define different abstraction levels
for courseware topics. For example an individual course creator rshytermake the dis-
tinction between courses, modules, lessons and learning resourcesseware, the topic
aggregationLevelacilitates this, where a level is associated with a courseware abstraction
level. The aggregation level can be used to distinguish between an “adt‘ply” in IMS
LD and an “organization” and “item” in SCORM.

The TopicCompletionCriteriacan be mapped to the IMS Simple Sequencing “rollup

rules”, where the course creator can define when a learning activignplete. As we

106

have mentioned IMS simple sequencing can be defined at an item level inl8GBIRnd
can be defined on learning environments in the IMS LD specification. Ta&amship
between a coursewal®picinstance and Resourcenstance can be mapped to the “using”
relationship between an activity and resource in IMS LD, and betwedpmandResource

in SCORM.

5.6.4 Defining a Candidate Concrete Syntax Definition

We define a concrete syntax for the Courseware Model through anpdeaas shown in
figure 5.9. The figure shows a Courseware Model with three topics. “FQd" topic
and “JDBC” topic are sub-topics of the “Databasepic as indicated by th€ART.OF
TopicRelationshipdenoted as a solid line with a diamond at the target of the relationship.

In figure 5.9, the “JDBC” is sequenced after the “SQapic, as indicated by the broken
arrow between the twtopics This broken arrow representsSEQUENCEDAFTERtype
of TopicRelationshipThe “SQL" topic contains a learning resource - “lo1”.

The “JDBC” topic also has an entry learner condition - “EntryLearnerl”. The entry
learner has a learner stereotype associated with it - S@@lent”. The concrete syntax
also allows the course creator to define knowledge level conditions thathasatisfied
for the learner to enter the topic. These are defined below the entry lewme, the first
knowledge section defining knowledge levels of tyERBALINFORMATIONand the
second knowledge section definifgTELLECTUALSKILLSknowledge levels. The entry
learner condition, in figure 5.9, states that the learner must INMELLECTUALSKILLS
knowledge in “Java” of greater than 0.6.

Figure 5.9 also demonstrates the use offibeicCompletionCriteriawhich is denoted
as a small ellipse, with a numeric value in it. The numeric value represent®pheCom-
pletionCriteria’s timeLimit In the example, in figure 5.9, the notation also depicts that once

“JDBC” is complete, “Topicl” is complete, or after thirty minutes “Databasesbinplete.

107

<<CS_sStudent>>
EntryLearnerl
Java>0.6

Topic completion criteria O

Topic Databases

SQL

+lol

Topic part-of relation

Entry learner requirement

Figure 5.9: Example Courseware Model concrete syntax

5.7 Chapter Conclusion

In this chapter, we have defined the CAVIAr data models. To ensure @A¢hAr data
model definition was as sound and as complete as possible, we grourate@ A& Ar
data model definition in the courseware validation framework, defined intehdp Each
of the data models corresponds to one or more of the courseware atiosticoncerns, as

follows:
e The Learning Context Model captures the “courseware scope’ecnac
e The Courseware Model captures the “courseware structure andrsgqgg” concerns.

e The Learning Resource Model captures the “learning content in eaarg” con-

cerns.

o All the CAVIAr data models are used together to capture the “pedagodieadgy”

concerns.

We defined each CAVIAr data model in terms of its abstract syntax using &MO
defined metamodel, after this we defined a semantic domain for each metamiodeh us
graph-based notation. A semantic mapping was defined from the abgtréax $o the
semantic domain. Interoperability is a key concern for the CAVIAr data madwlsas such

each model has been mapped to a key TEL specification or standard.

108

Through the data models defined in this section it is possible to adequateljbdesc
courseware and courseware construction concerns in a standaral nvay. In chapter
6 we will outline how a constraints language can be used to ensure thatubseware
construction concerns, defined primarily in the Learning Context Model be automati-
cally validated. Chapter 6 also outlines how a constraint language allowsuingeccreator
to validate the courseware in other ways, including, ensuring the capgtication of a
particular instructional design.

In this chapter we have also outlined a candidate concrete syntax for thaib®odel,
Learning Context Model and Courseware Model. The concrete symtaxdes the course
creator with a facade to the CAVIAr models hiding complexity. This is an importsuie
as the course creator is a non-technical end user, who requires a sanpiisitive user
interface with which to define CAVIAr models. In chapter 9 we will evaluateubability

of this candidate concrete syntax.

109

Chapter 6

Courseware Validation

6.1 Introduction

In this chapter, we outline how CAVIAr allows for constructed coursenmar be vali-
dated. Validation involves ensuring that courseware, representecelyAUIAr Course-
ware Model, satisfies a variety of constraints, ranging from simple caarsestructural
constraints to complex constraints based on an instructional design theory.

We will use the OCL to define validation constraints. OCL is a constraint lageyfa
the metamodelling technical space designed to increase the semantic exgressIML
and MOF models. OCL, UML and MOF are all defined by the OMG and as dasigned
to complement each other [OMG, 2003b]. OCL is a natural choice foridgfoonstraints
in CAVIAr as CAVIAr is defined in the metamodelling technical space using MOEL is
a language designed to be used by software engineers, not coeasersr In section 6.2
we will outline our efforts to make defining courseware constraints in OClerimguitive
for the course creator. The first looks to define a set of common OGitiéuns for defining
CAVIAr Validation Models that can be reused by the course creator. [g¢eautline our
efforts to develop a model-driven approach to defining constraintsenshmodel captures
constraint data to be used to generate OCL. Subsequently, in sectionrévalidation
approach is described. We will identify three main categories of coursevadidation;

validation pre-requisites, courseware model validation and learningxtaatiédation. The

110

subsequent sections describe each validation category of validatioraih Wée summarise

our findings in section 6.7.

6.2 Defining a Domain Specific Language for Constraints

As we have outlined in section 4.2, there are many actors involved in coamseanstruc-
tion. The instructional designer programmer defines the definition of thel &Avali-
dation Model. The instructional designer programmer is an expert in thicajgn of
instructional design theory to a specific courseware, defined forafigdearning context.

Converting instructional constraints into OCL is not a trivial task. We aim fipett
the instructional designer programmer in this task by defining a Domain Spegifguage
(DSL) to define constraints. To do this we have investigated two appredchthis, defin-
ing OCL helper operations and creating an intuitive DSML for OCL. Thedrahperations
abstract commonly-used and complex constraint patterns in courseaation, and de-
fine them as an OCL operation. This creates a more high level and intuithatramt
language for the instructional designer programmer to define the caanesgalidation cri-
teria with. We describe this approach in the next section. The secondambpdefines a
DSML for instructional design constraints. The DSML represents esware validation
constraints using an intuitive graphical notation. The instructional desjgegrammer
uses the DSML to define validation criteria. The DSML is then used to automatgztly
erate the CAVIAr Validation Model in the form of OCL invariants. This apgueb is outlined
in section 6.2.2.

The two approaches we outline extend research by Wahler et al. Tharcasattempts
to simplify OCL construction by defining an extensible library of generic O@Ltgrns

[Wahler et al., 2006].

6.2.1 OCL Helper Operations

Our first approach allows for the extension of OCL with a domain specifialvolary that

queries CAVIAr models for specific elements. This is done by outlining a tyavieopera-

111

tions or functions that can be used by the instructional designer prognawimee defining
a CAVIAr Validation Model in OCL. It should be noted that this mechanismaiging the
course creator’s level of abstraction is highly customisable and extendetbinstructional
designer programmer may even define their own operations. Operatifimsddey other
instructional designer programmers can also be used when definingaiotss in much
the same way as programming libraries can be imported to raise the level @afctibstian
application programmer develops at.

A helper operation is defined using the O@Eef construct. The operation is given
a hame, parameters and a return type. The operation is basically an OG fique the
defined modetontext The query must return a datatype as specified by the helper operation
return type.

An example of where a helper modelling operation might be used is wherest&ionh
must be defined on a CAVIAr class that is used to capture relationship fembetween
two instances of the same CAVIAr metamodel class. An example of this typtatibreship
can be found at th@opicclass in the Courseware Model's metamodel andbeceptclass
from the Domain Model's metamodel. In order for the semantics of the assodmteeen
the two modelling elements to be captured, the association itself is representeemsate
class in the metamodel. In figure 6.1, we illustrate one of the aforemention¢idmstap
classes, where topics are related to each other using an instanceTopibRelationship
class, which can relate Bopic instance to anothéefopic instance. The semantics of the

TopicRelationshi@re defined in thegypeattribute of theTopicRelationshiglass.

Tooi +source
opic P +relations - - -
— TopicRelationship
+name: String [ftarget A
T |+incomingReIations +name: String
T +type: TopicRelationshipType

<<enumeration>>

TopicRelationshipType

+CONTAINS
+SEQUENCED_AFTER

Figure 6.1: Extract of the CAVIAr Courseware Model's metamodel

112

In order to define constraints on CAVIAr model definitions in OCL TiopicRelation-
shipclass must be considered to evaluatetyiperelationships between topics. To illustrate
this point we have defined an OCL constraint in listing 6.1 stating if a topic cantdiver
topics, the contained topics must reference more learning resourcdbahahthe contain-
ing topic. The invariant must be defined by traversingTfibpicRelationshiglass where the

TopicRelationship’sypeattribute isSCONTAINS

Listing 6.1: Invariant definition over two related topics using the TopicRelalignclass

context Topic
inv. more.LOs_in_containedtopics : self.relations

—>select(type = TopicRelationshipType :: CONTAINS)

—>forall(resources>size () >= self.resources>size ())

The constraint defined in listing 6.1, demonstrates where the semanticsTaftioRke-
lationshipclass are important. Although it is necessary to evaluate the relationshipitlass
is not a very intuitive way of constructing invariants. The main cause fofusion is that
relationships are represented in the metamodel as classes. While in a GAgt&t, which
is defined and used by the course creator, a relationship is typicallysesiesl as a line,
with different types of lines indicating the semantics of the relationship. Thignsom-
strated in figure 6.2 where the notation of a line with a diamond at one end isaidedote

the type isTopicRelationshipType::CONTAINS

Topicl

y

Topic2 Topic3

Figure 6.2: CAVIAr Courseware Model extract

Listing 6.2: CONTAINS derived attribute definition

context Topic
def: getContainedTopics(): set(Topic)=self.relations

—>select(type=TopicRelationshipType :: CONTAINS)

—>collect(target)

113

In order to make constraints based on these relationships more intuitivesfiue dn
OCL operation that encapsulates the OCL that is needed to traverse selatianship in
a metamodel. In listing 6.2 we illustrate the definition of teContainedTopics@Qper-
ation in the context of thdopic class. This operation provides OCL so that the course
creator is not required to define the OCL to navigatehhgicRelationshiglass. The direct
relationship is more intuitive for the instructional designer programmer.

This operation definition allows for the more intuitive definition of the invariafiraed
in listing 6.1 on the Courseware Model’'s metamodel. In listing 6.3 we use the renatam

to define the original invariant in listing 6.1.

Listing 6.3: Invariant definition using the CONTAINS derived attribute

context Topic

inv More_LOs.in_containedtopics : self>>getContainedTopics{>forAll(resources=>size ()

>= self.resources>size ())

Although we have concentrated dnpic here, the principles presented can be applied
to any relationship in the metamodel where the semantics of a relationship uweecdp a
metamodel class. Indeed the general principles can be applied to aeywhiee CAVIAr
model and are of particular use for streamlining the use of commonly used OCL

In table 6.1 and 6.2, we outline OCL helper operations that we have defifid.
tables are organised by the model element they work on. Table 6.1 outlieestiops
defined for the Learning Context Model, while table 6.2 outlines operatiefised for the
Courseware Model. The decision on what operations to define wereieafigidetermined
and validated through a related project [Janjua, 2008]. Our appnaésds the level of
abstraction that the instructional designer must define the CAVIAr ValidMiaael at. This
allows him or her to concentrate on the business of defining instructionatraints rather
than defining complex model navigation using OCL. Table 6.1 and 6.2 do pogsent
a complete list of all possible reusable operations in CAVIAr, the instrudtidesigner

programmer may add to this by defining their own OCL operations.

114

Table 6.1: Derived CAVIAr operations for Learning Context Modellimmstructs

Operation Name

Operation
Context

Description

containedGoals()
altGoal()

narrower()

broader()

siblings()

prerequisite(
level:Integer,includeVB:Boolean

getPresumedLearnerConcepts(

Goal

Goal

Concept

Concept

Concept

Concept

Learner

Operation gets all the goals contained in {
context goal.

This operation returns any alternative go
for the context goal.

This operation returns Concepts that are
lated to the context concept via ConceptH
lationship of type NARROWER - directio
source to target.

This operation returns Concepts that are
lated to the context concept via ConceptRe
tionship of type NARROWER - direction tar
get to source.

This operation returns a Concept’s sibli
concepts (i.e. concepts with the same pat
in the semantic scope taxonomy).

This operation returns Concepts that are
lated to the context topic via ConceptR
lationship of type PREREQUISITE. Con-
cepts that are returned must be related

a knowledge element above the level st

in the level parameter. Verbal informatio
pre-requisites are included whartludeVBis

true.

via
ted

This operation returns a set of concepts the
learner is assumed to know when starting the

course.

115

Table 6.2: Derived CAVIAr operations for Courseware Model cangiy

Operation Name

Operation
Context

Description

containedTopics()

sequencedAfterTopics()

containerTopic()

getTopicConcepts()

getAllTopicConcepts()

getConceptualPreReqTopics(
level:Integer,includeVB:Boolean

getLOPreReqTopics()

getCoursewareTopics()
getCoursewareConcepts()
getCoursewareResources()

getCommonPresumedKnowledd
level:Integer,includeVB:Boolean

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Courseware
Courseware
Courseware

eCourseware

This operation returns topics contained within
the context Topic
This operation returns Topics that are related
to the context topic via TopicRelationship
type SEQUENCEDAFTER.

This operation returns Topics that are related
to the context topic via TopicRelationship
type CONTAIN.

This operation will get the intersection of the
concepts covered by LOs in the context topic.
This operation will get the union of all the
concepts covered by all LOs in the context
topic.
This operation returns a set of topics that
cover concepts deemed pre-requisite congept
to the concepts covered in this topic. Top-
ics that are returned must be have a congep-
tual relation with a knowledge element above
the level stated in thkevel parameter. Verba|
information pre-requisites are included when
includeVBis true.

This operation returns a set of topics that con-
tain LOs which are pre-requisite to the LOs
covered in this topic.

This operation returns a set of all topics in a
given courseware.

This operation returns a set of concepts cpv-
ered in a given courseware.

This operation returns all resources in the
context courseware.

This operation gets the union of all the pre-
sumed knowledge for all the learners who it is
anticipated will use this courseware. To be |n-
cluded the knowledge level must be above the
level set bylevel verbal information is onl
included ifincludeVBis true.

116

6.2.2 Towards a Model-Driven OCL Generation

We have raised the level of abstraction that the course creator créaf4ar Validation
Model at using a model-driven approach. This was done through tedgteoject where
we developed tool support for the course creator allowing him or hezfinel CAVIAr Val-
idation Model constraints using an intuitive DSML [Janjua, 2008]. The teokloped is
based around CAVIAr Validation Model constraint patterns. A CAVIAalidation Model
constraint pattern is an abstract definition of some instructional const@amistraint pat-
terns are determined for each of the CAVIAr Courseware Model cactstr Patterns are
relatively simple, frequently used validation constraints defined on a plarticourseware
construct. A constraint pattern is instantiated by the course creator ustagae specific
data about the constraint.

We identified CAVIAr Validation Model constraint patterns foopic and Courseware
constructs from the CAVIAr Courseware Model by analysing the typmaostraints defined

for validation and identifying frequently used constraint structuressé&keere as follows:
e Topic Patterns

— Timing - Restriction on the length of time a topic can take.

— Learning Resource - Checks that a learning resource type is presemt

present in a given courseware topic.

— Adaptivity - Verifies that a particular type of learner is considered foivarg

courseware topic.

— Structural - Checks the number of topics contained by a given courséazic

and the aggregation level of the contained topics.
e Courseware Patterns

— Timing - Restriction on the length of time courseware can take.

— Structural - Checks the structure of the courseware in terms of the topics it

contains and how topics are sequenced in the courseware

117

The data needed to define each of these constraint patterns was elidtedezhto
define a constraint pattern metamodel using ECore. An example of suchtamaoude!
can be found in figure 6.3, where the topic structural constraint metarisodiefined using
MOF. This constraint shows that there are two main pieces of data needefirte a topic
structural constraint, these being the number of contained topics withinratgpie and the
aggregation level of those contained topics. The model allows for the &xpficesentation

of this data.

StructuralTopicConstraint

+aggregationLevel: integer

number Of Cont ai nedTopics ?cont ainedTopi csAggregationLevel

0..2 0..2

NumberConstraint AggregationLevelConstraint

;

Constraint

+value: integer
+comparitor: Comparitors

Figure 6.3: MOF model used to capture data about the topic structurdtaions

Our tool support allows the course creator to define CAVIAr ValidationdMacon-
straints using an intuitive model-based concrete syntax for each cohg@ttern. In figure
6.4 we outline an example of our intuitive model based concrete syntax. ledbésthe
course creator has defined a timing constraint on courseliegries The grey box defines
the set ofTopicsthat this constraint is defined on. In this case the constraint is defined on
coursewardgopicsassociated with the the “Software Quality” Domain Modehceptand
have amggregation levebf one. The blue box connected to thepicrepresents a timing
constraint. In this case the timing constraint defines a maximum time 30 minutes and a
minimum time of 20 minutes. As this timing constraint is associated witfitipéc set def-
inition, all topics in the set defined by the grey box must comply with this timing caimsir

The tool support was developed using the Eclipse Graphical Modellemgé&work (GMF).

118

Maumum Aliwed Time: 30
Minomre: Allowed Time: 10

P

Figure 6.4: Model-based definition of a courseware topic timing constraint

By defining a CAVIAr Validation Model using our GMF-based tool sugptirte course
creator creates an instance of a constraint pattern metamodel - a cdnsttem model.
Constraint pattern models are formalised into OCL using a model-to-text (M&Térgtor,
such as JET (JET is covered in section 8.4.3). The OCL constraint is thegrated into
a CAVIAr Validation Model. As this approach is extended to cover more tcaimé pat-
terns the course creator will be able to use this intuitive model-driven appro define a

complete CAVIAr Validation Model.

6.3 Validation Approach

The CAVIAr data models, which define the courseware and courseseastruction con-
cerns, are defined using MOF in chapter 5. The abstract syntax (mezjrobd CAVIAr
data model is defined using MOF. MOF metamodels can be constrained usinga®C
described in section 2.4. The course creator can define constraintSLino® the Course-
ware Model's metamodel that must be true for a Courseware Model tdide Vhae course
creator can use data defined in the Learning Context Model to definedbestaints. In
figure 6.5, we illustrate this diagrammatically.

We have identified three principle categories of validation, these are [Madi&ahl, 2009]:

e Validation Pre-requisites - This type of validation does not check for iostnal

119

Courseware Model’s
defined-on Metamodel

A

: instance-of

OCL Constraints

must-be-true-for Courseware Model

Figure 6.5: Using OCL to define constraints on a metamodel that must be troetels
that conform to that metamodel

features in the CAVIAr models, but checks that a minimum amount of data ik ava
able in the models to allow for validation. Validation pre-requisites do not addre
any of the courseware construction concerns covered in section Ae8validation
pre-requisites allow the course creator to have greater confidencédatiam, as it

guarantees that all data needed for validation is available.

e Courseware Model Validation - validation based on the coursewaredesjge-
sented in the CAVIAr Courseware Model and it related Learning Resohtodel.
This type of validation examines the LOs used in the courseware, and hawuhse
LOs are related to each other and grouped together into topics. Couvesklwdel

validation is concerned with the following courseware construction coscer

— Structure and Sequencing - Validates the courseware structural integrity

— Learning Content in Courseware - Checks what content is in coursgewhere

it is in courseware and how it is used.

— Pedagogical Strategy Used - Used to validate the pedagogical stratdggsu

the implementation of an instructional design theory.

e Learning Context Validation - This type of validation makes extensive usheof
CAVIAr learning context definition (see section 5.4), by comparing therS&aware
Model to the Learning Context Model. Learning context validation is corexbwith

the following courseware construction concerns:

120

— Course Scope - Ensures that all learning goals can be reached $ewane and

that the courseware considers the learner’s assumed initial knowledge.

— Structure and Sequencing - Concerned with conceptual sequendingddm

the Learning Context Model.

Each of the constraint categories can be further classified as outlingliie 6.6. We

will examine each category in detail as follows:
e Section 6.4 describes how validation pre-requisites can be defined uSing O

e Section 6.5 examines the courseware model validation category and outlimds h

define these types of constraints using OCL.

e Section 6.6 looks in detail at courseware validation that is based on thaihgar

Context Model and how these can be defined in OCL.

Courseware validation

Courseware validation Courseware‘ model Learning context
pre-requisites validation validation

PN

Courseware attribute Courseware model Domain model Learning context Courseware
validation integrity based on constraints constraints adaptivity
learning content constraints

LO metadata
validation

Derived attribute Direct attribute Necessary LOs Lo Conceptual Learner stereotype
validation validation contained in ordering pre-requisite constraints
courseware constraints

Figure 6.6: Classification of CAVIAr validation constraints

6.4 Courseware Validation Pre-requisites

The instructional designer programmer sets validation pre-requisitenasaiats on the
CAVIAr model that must be true for validation to take place. The main reastind
validation pre-requisites is to ensure that the data required for validatioessmt in the

CAVIAr models.

121

Much of CAVIAr validation requires specific LO metadata in order to acalyaleter-
mine the validity of courseware. LOs used in the courseware must be &thafigh certain
metadata for the course creator to be confident in validation. The caee®iccan specify
what metadata must be present in the CAVIAr data models in order for validatigo
ahead.

An example of this type of rule is outlined in listing 6.4 where the course creattmes
that Metadataclasses in a Courseware Model must be fully annotated with educational
metadata (i.e. an educational metadata instance exists and all educationatantpes

do not equal null).

Listing 6.4: Courseware element integrity rule ensuring all LOs have ¢éidnehmetadata

Context Metadata
inv. metadatamusthave.educational: !self.educational.isOclUndefined() and
self.educational.interactionType> null and
self.educational.interactivityLeve&> null and

self.educational.semanticDensity> null

6.5 Courseware Model Validation

In CAVIAr, the Courseware Model defines the structure of coursewaing courseware
topics. ATopicsequencing strategy can be specified by stating that one topic must be se-
guenced after another coursew@opicusing theTopicRelationship - SEQUENCEBFTER
Learning resources are conceptually contained in topics. Courseersenalisation is de-
termined by specifying guard conditions on courseware topics, knogntagl earnercon-
ditions. For a learner to enter a given topic E@rylLearnercondition must be true for that
learner.

Courseware model validation looks to validate the Courseware Model irnicsotz the
learning context. Validation based solely on the Courseware Model leetfa@tswo types

of validation:

e Courseware Attribute Validation - This type of validation validates a counseata

tribute against an externally defined value.

122

e Courseware Model Integrity Based on Courseware Learning Coritetitdates Course-

ware Model, ensuring it is structured correctly for the learning conterrntains.

6.5.1 Courseware Attribute Validation

This is the simplest type of validation the course creator can define. It Ewolymparing an
attribute of the Courseware Model with an external value, or derivirajuevrom a defined
set of courseware attributes and comparing that to some external vileexiernal value
is an alphanumeric value. The comparison tests the relation between thabextdue and
the one from the Courseware Model using a relational operator.
Here, we will outline a variety of simple instructional constraint rules that these

creator can use to validate the courseware. Constraints are defingdsasie simple ex-
ternal requirement that is compared with an attribute from the LO’s metadatangrared

with a derived value based on a grouping of LOs such as that foundanraewvarélopic

6.5.1.1 Defining Validation Rules

To define this type of rule the course creator must identify the CAVIAr cdrikass that
the OCL invariant will be defined on. The course creator then definem#trictional
constraint by comparing a courseware value with an external compasdog. To define
the courseware value the course creator either specifies an attribute obritext class
or defines a collection using the context class’s associations and slariv@ue from the
collection defined. To derive a courseware value from a collection,dbese creator can
use one of the OCL collection operations (see section 2.4.1.8).

If the courseware value and the external value are numeric, a comparidone using a
relational operator. If on the other hand the values are strings only tleéseand not equals

relational operators are valid.

6.5.1.2 Validation of Individual Courseware Model Element Attributes

Defining constraints on individual Courseware Model elements is dorspégifying con-

straints on the courseware and/or Learning Resource Model, coirsgréie attributes al-

123

lowed in these models.

To demonstrate the validation of individual elements of constructed coarsemve de-
fine an example constraint. In this example we constrain what LOs can deirusiee
courseware by specifying a maximum duration time for LOs used in courseWhis con-
straint is defined in listing 6.5. This type of rule might be used in an environmieate the
learner’s time is an expensive resource.

In our example case, we wish to limit the duration of each LO in the CourseMadle!
to thirty minutes. In order to evaluate this the duration of each LO must be ¢vdlua
ensuring its duration time is below the maximum specified time. The duration of &ch L
can be found in the LO’s technical metadata. In listing 6.5, the rule’s coistthéTechnical
class in the Learning Resource Model. The invariant specifies that aestahthelechnical

metamodel class must havelaration (attribute ofTechnicalclass) of less than thirty.

Listing 6.5: OCL rule which specifies LOs in CAVIAr cannot be longer thartyhminutes

in duration

context Technical

inv LO_violate_max_durationtime: duration< 30

6.5.1.3 Validation of Derived Courseware Attributes

Data can also be derived from the Courseware Model. This data caseloeto validate
aspects of courseware. To do this, the course creator queries faG¢lé\r Courseware
Model elements and derives some data from it. Using OCL, the cours®icoaa specify
constraints on this derived data from the Courseware Model. To derateiis we outline
an example that uses OCL to derive the duration of courseware as a arftblsompares
this against some maximum courseware time value. In this example, the LO dwities
are used to calculate the duration of the courseware as a whole. Thisas\sgecifying
how to evaluate the time of courseware topics and then specifying a cauresewariant
that calculates the sum of all topic times in the courseware. This value is thepaced
to the maximum time value that a courseware can take and ensures coers@&arnot

exceed it.

124

In listing 6.6, the course creator firstly defines the topic operagietTopicTime(Xo
calculate the duration of coursewdrepics The course creator must define this as it is not
one of the helper operations defined in table 6.2. This demonstrates hoauttse creator
can extend the operations we have defined and define their own hehratiop.

ThegetTopicTime(dperation is defined with a contextBdpicand recursively traverses
contained topics. A topic’s time is calculated as the sum of the LOs associatethaiith
Topicand the duration of its contained Topics. The invariaak coursewaretime exceeded
is then defined in listing 6.6, which uses thetTopicTime(pperation to get the duration
of each of the topics associated with tBeursewareinstance. The sum of the duration
attribute of each topic is then compared with the maximum courseware duratiosh in

this case is one thousand (minutes).

Listing 6.6: OCL constraint that evaluates the courseware time from its cedtai@s and

specifies a maximum courseware time of 1000 minutes

Context Topic
def: getTopicTime(): Integer =
self.resources>select(oclisOfType (LO))
—>iterate (i; res:Integer=p res = res+i.oclAsType(LO). metadata.technical.durat)on
+self.containedTopicsf>iterate (j;a:Integer=pa= a+j.getTopicTime ())
Context Courseware
inv. max.coursewaretime_exceeded :

self.topics—>iterate (i;res:Integer=0res=res+i.getTopicTime () 1000

This type of courseware validation rule can also be used to validate simplerggeme
of the courseware structure, where the courseware structuratdezdio be resolved to a
simple data type. An example of such a validation constraint might be enfaecmgimum
amount of LOs contained by each courseware topic. In listing 6.7, wéfgteat each topic

in the courseware must have at least ten learning objects contained in it.

Listing 6.7: OCL invariant specifying a minimum number of LOs in a coursewapie

context Topic
inv min_LOs_in_topic: self.resources

—>select(ocllsOfType (LO)->size () > 10

125

6.5.2 Courseware Integrity based on Courseware’s Learning @ntent

Here, we check that the courseware is structured correctly for theingacontent it con-
tains. An example of such validation criterium is to ensure that all courgelearning
resources that are referenced by a LO contained in the coursewais@acovered by some
topic in the courseware. More complex integrity checks, check the seimgeof learning
resources that reference each other, ensuring that the delivgrgrseze in the courseware

corresponds to how the learning resources are reference each othe

6.5.2.1 Necessary Learning Objects contained in Courseware

In listing 6.8 we have outlined an invariant that is deemed valid if all resousfesenced
by resources in the courseware are also contained somewhere in thevearxe. In defining
this rule the course creator defines how to get a set of all the resdbatese needed in the
courseware (i.e. those referenced by a LO in the courseware). Tdubisved by defining
the local variableneededResourceghis variable is defined by querying each of the LOs in
the courseware to see if it references anofResourceif it does the referenceResource

is added to the result set. When all resources have been evaluatesutieeeis returned.
The invariantall _referenced_Os.in_coursewards valid if by subtracting the LOs covered

in the courseware results in an empty set.

Listing 6.8: OCL ensuring that referenced LOs are in courseware

Context Courseware
inv all_referencedLOs.in_courseware:
let neededResources: Set(Resource)=
getCoursewareResources(pselect(ocllsTypeOf(LO))
—>iterate (r:Resource; los:Set(LO)=Sg}|los—>union(r.oclAsType(LO)))
—>iterate (y:LO; a:Set(Relation)=S¢%| a—>union(y.metadata.relations))

—>iterate (x: Relation; res:Set(Resource)=%¢ét res=>union(x.referencedResource))

self.neededResources self.getCoursewareResources ()=$pt

6.5.2.2 Relationships between Learning Objects are Respected in Cagware

The constraint rule in listing 6.9 can be further refined by checking thersizaaf the rela-

tionship between learning resources in the courseware. For exanmpuldd sie relationship

126

be of typeRelationKind::BASEDON, such that.O, is based or.O,, the instructional de-
signer programmer can ensure thal, is sequenced first. This is done by defining an OCL
constraint that specifies there must b8 EBQUENCEDAFTERtopic relationship between
the topic that containd O, and LO,, stating that the topic containingO,, is sequenced

first.

Listing 6.9: OCL ensuring that referenced LOs are in courseware

Context Topic
inv LO_basedon.referencerespected: resources-select(ocllsTypeOf(LO))
—>iterate (r:Resource; los:Set(LO)=Sg}| los—=>union(r.oclAsType(LO)))
—>iterate (y:LO; a:Set(Resource)=Sg}| a
—>union(y. metadata.relations>select (kind=RelationKind : :BASEIDN))))

self.sequencedAfterTopics ()
—>iterate (t:Topic; sLos:Set(Resource)=ggt/sLos=>union(t.resources))
=Set{}

To define this type of rule, the course creator builds up two sets desctiténtyvo
aspects of the courseware, which are to be compared. In this casesttsefidefines the
learning resources that the context topic’s learning resources se€l loa and the second
set defines all the learning resources of the topics sequenced afteortext topic. A
set operation is then used to compare the sets. In this case we specifyetd#farence
between the learning resources sequenced after the context topiededrtiing resources
that the context topic learning resources are based on must result mmpdy set.

This type of rule can also be used to ensure that specific types of LGzquenced
in a particular way when teaching a give concept. This allows for the validafiontra-
conceptual sequencing patterns, such as planning sheets definedjtiyes al., which is

outlined in detail in section 2.2.2.

6.6 Learning Context Validation

The Learning Context Model, covered in detail in section 5.4, defineseware learner
stereotypes and also conceptual sequencing constraints, both ofavlidkefined in terms

of the Domain Model. The learner stereotypes are defined in terms of tineiegtual learn-

127

ing goals and presumed knowledge. In this section, we examine the relgidrestveen
the learning context definition and the courseware developed. Our aiistte define con-
straints on the Courseware Model in terms of the learning context definifiais.ensures
that courseware adheres to the course scope and conceptual@egquequirements stated
in the Learning Context Model.

In order to validate the courseware against the course requirememgsdiiefihe Learn-
ing Context Model, the learning context must be defined in the context dfdleseware
Model. We will outline how a relationship between the Learning Context Madel the
Courseware Model can be established allowing the course creatorrie definterpretation
of the learning context. This is done using OCL.

Here, we define the three types of instructional constraints that areedafsing the

learning context:
e Domain Model Constraints - Instructional constraints using the Domain Murdgl

e Learning Context Constraints - Instructional constraints using the lbVeaaning

context including the Domain Model and the learner stereotype informatioAWHAE.

e Courseware adaptivity constraints - These constraints ensure thahpésation used

in the courseware is instructionally valid.

6.6.1 Domain Model Constraints

The Courseware Model is associated with a Domain Model through LO ntata@ach
LO can be classified to one or more Domain Model concepts. This assoaatidre used
to examine the Courseware Model structure in the context of the Domainligwdeture.
Validation constraints can then be defined based on a comparison betveeBrortiain
Model and the Courseware Model. Here, we will look at how OCL candeeltio compare
a Courseware Model with its related Domain Model to determine the coursswalidity.
Conceptual relationships in a Domain Model define how two concepts kateddo

each other. These relationships can be used to derive instructiongh dekes that can

128

then be validated against constructed courseware. For example the Ddoustis NAR-
ROWERconcept relationship could be used to define an implicit sequencing dohiea
tween courseware topics that have LOs, which reference the reldp@nsburceconcept
and LOs, which reference the relationshitgisgetconcept.

The narrower conceptual relationship is used in the instructional cartstiefined in
listing 6.10. The constraint specifies that topics covering more speciafiseayer) con-

cepts must be sequenced after topics covering more abstract (Hroadeepts.

Listing 6.10: OCL constraint using conceptual relationship semantics toedafirinstruc-
tional constraint where all topics covering broader concepts areeseqd

before those covering more specialised concepts

Context Topic
inv: self.getTopicConcepts ()
—>iterate (x:Concept; a:Set(Concept)=9gt a—>union(x.broader()))
— self.sequencedAfterTopics ()

—>iterate (y:Topic; b:Set(Concept)=Sg}| b—>union(y.getTopicConcepts()))

= Sef{} ——empty set

To formulate this type of rule the course creator creates two sets to conpoarset
based on a Domain Model traversal, using the inverse dtiRROWERoONcept relation-
ship (set A), and one based on a Courseware Model traversalthsiBg§ QUENCEDAFTER
topic relationship (set B). The two sets are compared using the diffef@@tecollection
operator which should result in an empty sét;- B = (). This verifies that all concepts
broader than the concept(s) covered by the context topic are cdvef@e the context top-
ics. In listing 6.10, these two sets are defined and compared using an mvwahigch is

valid if the difference operation results in an empty set.

6.6.2 Learner Context Constraints

Here we examine the two types of constraints that can be defined usingatimerigeContext

Model, these are:

e Conceptual Pre-requisite Constraints - Conceptual sequencingaatstn the Do-
main Model. Here we assume one common Domain Model for all LO conceptual

annotations in courseware.

129

e Learner Stereotype Constraints - The course creator can use a Is@m®type to
define learning goals and the presumed knowledge for a learner ggodiis infor-
mation can be used to ensure that the needs of a learner stereotypeg@epmet

by courseware.

6.6.2.1 Conceptual Pre-requisite Constraints

A seemingly obvious choice for checking pre-requisite constraints orsemare topics
would be to use the OCL pre- and post-condition constructs (see sectidnb2.4After
investigating the use of OCL pre- and post-conditions we found that thergiesaf these
OCL constructs were not appropriate for checking conceptualguyeisite constraints. The
pre-conditions and post-conditions in OCL are designed to check fatiayar state prior
to and after executing an operation at runtime. To explain this we consid€@Ghepre-
conditions and post-conditions in terms of the OMG modelling layers (see s&c8d,
where runtime is defined as the MO modelling layer. MO is the only layer an tipeze-
and post-condition can be checked as operation execution is a runtiniererand post-
conditions are therefore defined at the M1 modelling layer. Coursevedidation checks
the courseware structure at the M1 modelling layer, and is defined at thedd2lling
layer, therefore OCL pre-conditions and post-conditions cannotdzttosiefine conceptual
pre-requisite constraints specified in the CAVIAr Learning Context Motie validate the
M1 modelling layer OCL constraints are defined at the M2 modelling layer - tHél &A
metamodel. OCL invariants use the data from the Learning Context Modefite dehat
is a valid and invalid courseware structure. When courseware is defind€dCL checker
can be used to check that the constraints imposed by the Learning Corudet bh the
Courseware Model are satisfied by defining OCL invariants based@tbe sequencing of
topics and the conceptual pre-requisite relationship defined as pag bé#rning Context
Model. The use of the “invariant” type of OCL constraint also limits the OClediity used
in formulating the CAVIAr Validation Model. The CAVIAr Validation Model is thefiore
constructed in a way where all constraints are defined using a uniforrhamesm. This

limits the learning curve the instructional designer programmer is faced with ddfning

130

a Validation Model and also limits the diversity that CAVIAr tool support wobhhle to
handle.

The first invariant we define builds on the definition of getTopicConceptsfperation
of the Topicclass, defined in table 6.2. This invariant checks that if there is a presity
relationship between two concepts where conegptis the pre-requisite of concegtthen
cpre Will be covered in the courseware before coneepive have defined this constraint as

an OCL invariant in listing 6.11.

Listing 6.11: OCL to ensure that pre-requisite concepts are alwayeseed before the

topic which requires it

context Topic
inv conceptualprerequisiterule: self.getAllTopicConcepts ()
—>iterate (x:Concept; a:Set(Concept)=9gt a—>union(x.prerequisite (0.5 true)))
— self.sequencedAfterTopics ()
—>iterate (y:Topic; b:Set(Concept)=S€}| b—>union(y.concepts))
= Sef{}

In this constraint (listing 6.11) th&opic class is defined as the invariant context, as
each of the topics in the courseware must be checked against this ounsiitze course
creator defines two sets, the first containing all the pre-requisite ctsnoéthe concepts
covered by the context topic, set P, and the second set containingitepts that will def-
initely be covered prior to the learner getting to the context topic, set C. fidrespuisite
constraints set is defined as any conceptual pre-requiste relatiorigiipp kmowledge type
VERBALINFORMATIONor INTELLECTUALSKILLSand a knowledge level of greater
than 0.5 (see table 6.1 for details on {hrerequisiteOCL operation). The second set is
constructed by getting the concepts covered by LOs at topics that aiedredethe context
topic through th6sEQUENCEDAFTERrelationship. Th66EQUENCEDAFTERrelation-
ship guarantees that the target topic will be sequenced after the sopiceltioe difference
between these two sets is then sought using the OCL difference opevhaich, must re-
sult in an empty set (i.e. there are no concepts which are pre-requisiteptsrand not
covered by topics sequenced before the topic in queston,C = 0). The rule in list-
ing 6.11 illustrates how a basic conceptual pre-requisite constraint cdefined based on

the Learning Context Model. This constraint could be extended to cangidesxample,

131

transitive sequencing relationships in the courseware or Learning @ dnoelel.

The constraint in listing 6.11 allows us to check the sequencing of conceptsec
in courseware ensuring that pre-requisite knowledge is sequensedTiiis rule does not
take into account a learner’s knowledge prior to taking the coursewafméd here as set
L). For example if the set resulting from the difference operation resultederconcept,
c1, wherecy € P i.e. the concept is a pre-requisite concept, but this concept is presumed
knowledge of a particular learner stereotype taking the coursewaigcdirseware should
still be deemed valid for that learner stereotype as the concept, althotighveved prior
to the topic that needs it, is knowledge the learner already has.

In listing 6.12 a generalistic approach to dealing with learner pre-requisitelkdge
is taken, as follows(P — C') — L = (). The conceptual pre-requisite constraint violation is
sought first as in listing 6.11, then any violating concepts are comparatsatiee common
assumed knowledge for all learner stereotypes to take this coursédyewhen there are
still outstanding concepts will the invariaobnceptualprerequisiterule in listing 6.12 be

flagged as invalid.

Listing 6.12: OCL ensuring conceptual pre-requisites are sequergfeceliopics that re-

guire them and also that assumed learner knowledge is acknowledged

Context CAVIAr
inv conceptualprerequisiterule: self.courseware.getCoursewareTopics ()
—>forAll(

(getTopicConceptsf)>iterate (x:Concept; a:Set(Concept)=9gta—>union(x. prerequisite (0.5 true)))

—sequencedAfterTopics>iterate (y: Topic; b:Set(Concept)=Sg}| b—=>union(y.concepts))

—self.learningContext.ls>

iterate (x:LearnerStereotype;
a:Set(Concept)=self.learningContext sfirst (). constraints
—>select(ocllsOfType (PresumedKnowledge))
—>iterate (i;res:Set(Concept)=Sg}|res—including (i.competency.c))]|

x.constraints=>select(ocllsOfType (PresumedKnowledge))

—>iterate (j;res2:Set(Concept)=Sg}|res2—=>including (j.competency.c))

—>intersection(a) = Seft}

To construct the invariant in listing 6.12 the course creator must changertitext from
Topicto CAVIAr, as the learner stereotypes cannot be navigated to frdapia context.

The constraint is defined to traverse eddpic and query each of them for pre-requisite

132

Conceptghat are not covered by topics sequenced before it. If pre-requimiteepts are
found that are not covered by the topics sequenced before thenttopec, the invariant
compares these concepts with the presumed learner conceptual knewdedged as the
set of concepts that all learner stereotypes are assumed to knowg@titemsof all presumed
knowledge concepts). If any pre-requisite concepts are not e previous topic and

not in the set of presumed learner knowledge the invariant is not satisfied

6.6.2.2 Validating Learner Stereotype Course Goals

The CAVIAr learner stereotype construct is based on two forms of ézarrodel defini-
tions, the overlay learner model and the differential learner model [RK&30]. Kay defines
differential modelling as representing a subset of the domain knowledgeit & only
this subset that a student model will deal with. Differential learner modekimigfined in
CAVIAr using the learner stereotype goal construct. The coursdareaust ensure that
all the learning goals, defined for a given courseware, can be achigvall learners. In
the OCL constraint in listing 6.13, we have outlined an invariant that ensoa¢sll goal

concepts for all learners are covered somewhere in the courseware.

Listing 6.13: OCL invariant ensuring that the union of all learner sterentggal concepts

are covered in the courseware

Context CAVIAr
inv all_learner.goals.covered: self.learningContext.+s

iterate (x:LearnerStereotype;
a:Set(Concept)= Sqf | x.constraints>
select(ocllsOfType (Goal))
—>iterate (i:Goal; res:Set(Concept)=Sfj}t|i.competency.e}>union(a))

— self.getCoursewareTopics ()
—>iterate (j; res2:Set(Concept)=Sg}|res2—=union(j.getTopicConcepts()))

= Set{}

The OCL rule, in listing 6.13, firstly constructs a set containing all the goatepts
for all the learner stereotypes. The invariant in listing 6.13 does this the samas the
invariant in listing 6.12 constructs a set of the common pre-requisite condaptss case

the invariant iterates through each of the learner stereotypes and mgddeal concepts

133

found to a set, sefr. This set is then returned and compared with the set of all concepts
covered in the courseware, %€t If there are concepts that are goal concepts and not one
of the concepts covered by the courseware the invariant is invalid, i.envheant states

G — C = () must be true.

6.6.3 \Validating Courseware Adaptivity

As outlined in section 5.6, CAVIAr provides for courseware adaptivityatipwing the
course creator to specify an entry constraint on Courseware Mugiekin the courseware,
where the entry constraint is specified as a learner constraint, le#naésatisfy the entry
constraint may enter the coursew&pic.

Courseware validation can be used to ensure that the coursewats sdavariety of
different types of learners in a certain way. For example, validation bhankcthat each
topic has supplementary material for learners who are struggling with @pboavered in
the courseware. In order to define this OCL constraint we must defia¢ avtstruggling
learner” is, and what “supplementary support” means. For the puspufsidis work we
define a “struggling learner” as a learner who has taken a coursewpacehat covers some
concept and is deemed to have a knowledge level of less than or equaindlfat concept.
We define “supplementary support” for this learner as the provisiondifiadal LOs that
cover the said concept and that have a low or very low semantic densith sldelivered

after the main topic that is designed to teach the said concept to the learner.

Listing 6.14: OCL invariant insuring the existence of support material famlers strug-

gling with a concept covered in a topic

Context Topic
inv struggling-learnersupported:
let sameConceptTopic : Topic = self.sequencedAfterTogics

—>select(getTopicConcept()=self.getTopicConcept(}} first ()

self.sameConceptTopic.entryConstraint.lessThanCotapey . level <= 0.3
and
sameConceptTopic.resources

—>select(ocllsOfType (LO)}>forAll(educational . SemanticDensityx Scale ::MEDIUM)

To ensure that this type of adaptivity is provided the course creatosreeatkfine a

134

constraint to check for the existence of two topics, both covering the saneept and are
also sequenced after one another, ¢;gsequenced after. t; has no entry requirements,
while t, is only made available to learners who are struggling on the topic concept(s),
where the topic concept(s) is the concept(s) covered by all LOs atsbeigth a given
topic, defined in thgetTopicConcepts@peration in table 6.2. This will ensure that there is
supplementary material made available for each concept, covered in tisewave where a
learner is struggling with that concept. We have defined this as an OClraimsn listing

6.14.

6.7 Chapter Conclusion

This chapter has illustrated a constraint-based approach to coursemligiagion. Con-
straints are defined in OCL by constraining the allowable CAVIAr Coursewéodel and
Learning Resource Model structures. This type of validation is focosetthe composi-
tional structure of the Courseware Model, rather than its runtime behaviour

We outlined a classification system for the different types of validation tiA&t A

lends itself to. These were:

e Validation Prerequisites - Used to ensure the data needed for validaticailetde in

the CAVIAr models.

¢ Validation on Courseware Model Only - Validates Courseware Model elesrand
data derived from the Courseware Model. This type of validation doegssoany of

the data in the Learning Context Model.

¢ Validation Using the Learning Context Model - Validates courseware ulangourse-

ware construction concerns defined in the Learning Context Model.

The chapter also looked at the pragmatics of using a constraint lang@aggedhsigned
for software engineers in courseware validation. We accept that enfyspecialised course
creators will be able to define a validation model using OCL. Therefore @ffart to make

Validation Model definition more accessible to the majority of course createrhave

135

attempted to raise the level of abstraction at which the course creatoradigfiin@alidation
Model at. To do this we applied two approaches, OCL helper operatiahsadel-driven
OCL generation, in sections 6.2.1 and 6.2.2 respectively. OCL helpeattges provide the
course creator with OCL functions to encapsulate the most common and/olexo@pL
used in defining a CAVIAr Validation Model. The course creator defines\lidation
Model using these CAVIAr-specific helper operations. Model-dri@DL generation is
a MDE approach to defining a CAVIAr Validation Model. The course credtdines the
CAVIAr Validation Model using a Validation Model DSML. This DSML is thenagto
generate the Validation Model OCL.

In the next chapter we will outline a validation process to build up the CAVIAdet®
and validate courseware. In chapter 8, we will show how OCL validatismgudlined in
this chapter, can integrated into a courseware construction software@amlvalidation

approach is evaluated in chapter 9.

136

Chapter 7

Courseware Validation Process and

Activities

7.1 Introduction

In this chapter we present the courseware validation process and visiesti The chap-
ter demonstrates how one goes about validating courseware in a mode lelpagenment.
The main aim of the courseware validation process is to provide a strueippedach to the
course creator to validate constructed courseware using CAVIAr.nfiaree the reader’s
understanding of what is involved in each validation activity, we will exemgégh activity
in the validation process using an example case-study course - “Introalt@ Databases”.
The “Introduction to Databases” course is based on a course deliveBublin City Uni-
versity (DCU). The learning goals of this course are to teach the bast=abase design
to computing undergraduates. The experience reported from the exeasplstudy would
be mirrored in any other well-defined domains. We anticipate our validatioroapip to
be generally applicable to technical subjects, such as science and eimgine@nd also
structured subjects such as language learning.

The chapter begins by defining the requirements for the case-studsecanirsection
7.2. Section 7.3 then presents an overview of the CAVIAr validation psocEsllowing

this overview, we will examine each of the activities in the courseware valiptiocess in

137

detail with section 7.4 describing how a Domain Model is determined, section &&alles
how to define a Learning Context Model, section 7.6 shows how to deternviakdation
Model for courseware validation and section 7.7 details how a packayedgeware defini-
tion is converted to a CAVIAr Courseware Model for validation. We outlirethappens
at validation time in section 7.8 and after validation is complete in section 7.9.

In each section that covers a courseware validation activity we outlingitngpes of
that activity, specifying what the activity aims to achieve and how. We alempiify the
validation activity principles using the case-study course. We concludetbjgter with a

summary of the validation process in section 7.10.

7.2 Example Case-Study Course Specification

In our example case-study, the course creator must create a coplaeieg the elementary
concepts of database theory and design. The course descriptoreddonghis is DCU
module CA218 - “Introduction to Databasés”

The course accreditation body - Dublin City University (DCU), has ddfimenodule
descriptor. The module descriptor defines the learning goals of theecandsany other
pedagogical constraints, such as the presumed learner knowledge @fiting the course
as well as learner assessment requirements.

According to the course descriptor the module aims are described as:

“To provide students with an introduction to and an overview of database sy
tems including database design, Entity Relationship data modelling, the rela-
tional model of data and SQL, as well as an overview of some databade pro

ucts.”
The learning outcomes as defined in course descriptor are:

“As a result of this course, students will be in a position to design and imple-

ment a database for real world application, covering all stages of thebfaise

*http: // www. dcu. i e/ regi stry/ modul e_cont ent s. php?f unct i on=2&subcode=
CA218

138

design] process from conceptual design and layout through to writgigf&r

transactions. Students will also be very familiar with SQL.”

The learning outcomes indicate that not only will the learner require conakgnowl-
edge, but will also require skills knowledge, to “design and implement a ds¢db The
course creator must therefore ensure that the courseware prekidle&nowledge for the
required skills.

The module descriptor defines the course pre-requisites as “nondJ.de€nes a pre-
requisite as “any other modules offered by the University in which a studheist have
achieved satisfactory performance before enrolling on a particular leiddu

Courseware developed for CA218 - Introduction to Databases musteati the fol-

lowing constraints:

e The total timing of all learning material is outlined as follows:

— Lecture material - 24 hours
— Tutorial material - 12 hours

— Laboratory material - 12 hours

In the example case-study the course creator has elected to specifilatvinip additional

constraints to be applied to the courseware to improve the instructional adsigncourse-

ware:

e All courseware topics must contain at least one lecture LO.

e LOs used in each topic must just address the concerns of the topic (i.eOthmukt

be annotated with the concept the topic addresses).

An indicative syllabus has also been defined by a domain expert bagbé amodule
descriptor. The indicative syllabus is defined as an unordered colledftamurse concepts.
The domain expert has specified the importance of some of the conceptabdteely are

mentioned in the module aims. These concepts are denoted using a bold folltves

2http://ww. dcu. i e/ regi stry/ exam nati ons/ st andards. sht m

139

e Information Systems

e Database Overview

e Storage Structures

e Entity-Relationship Data Modelling
¢ Relational Model of Data

e SQL

e Overview of Database Products

e The System Catalogue

e Views

e Database Design & Normalisation

Web Databases and JDBC

The course creator has also defined the following conceptual seggemnstraints:
¢ Information Systems must be sequenced before all other coursewar® top

e Database Overview must be sequenced before all other coursewexedrcept In-

formation Systems.
e SQL must be sequenced before Views, as Views are a type of SQL.

e Database Design & Normalisation must be sequenced after the Relational dfod

Data.

The course creator also wishes to ensure that the courseware ael/etopectly imple-
ments Reigeluth’s Elaboration Theory [Reigeluth, 1999b].

There are two types of learner who take the databases course, Coipptieations
Information Systems (CAIS) students and Computer Applications Softwagimé&sring
(CASE) students. The CAIS students do not need to learn about “&t@agctures”.

140

CAIS students are also guaranteed to have done a module in InformatiemSyig year
one of their qualification course.

Based on this course specification a courseware has been devejoeddourse cre-
ator. To verify that the courseware adheres to the course requirgrdestsibed in this sec-
tion, pre-delivery, the course creator must validate the coursewarealilate the course-
ware using CAVIAr the course creator must build up the CAVIAr models iamabrt the
courseware package for the CA218 courseware for validation andpréorm validation.
In the following sections we will outline a validation process that can be usedlitate

courseware.

7.3 Validation Process Overview

CAVIAr Definition =—— =—— =

Model Generators =——===——===

Validation Engine =--=a==acaa-=

v
'
4 . \ . N
Determine learning context ! . ! . .
model | Load in courseware | Determine validation model
' '
'

Y Y y

...............

[invalid]

Edit courseware

Figure 7.1: UML Activity Diagram of the Methodological Framework

141

Our approach to validating courseware consists of five activities. Thetsaties are
summarised in the UML activity diagram in figure 7.1. We have used UML actdidy
grams in this chapter to communicate process flow as it is a common notation fongefi
process flow in software engineering and has a well defined metamodéb[Q807]. The
process starts with the assumption that the constructed coursewareribatbsising ei-
ther IMS LD or ADL SCORM, and LOs in the courseware are annotatedyusBE LOM
metadata. In the following sub-sections we present in detail each of thacfiwities. The

five activities in the validation process are as follows.
e Determine the subject Domain Model for courseware.

Determine a Learning Context Model in the context of the Domain Model.

Determine the courseware Validation Model.

Render the courseware definition as a CAVIAr Courseware Model.

Validate the courseware.

The validation process is supported by the following:
e CAVIAr definition - see chapter 5.
e CAVIAr model generators - see chapter 8.

e Courseware validation engine - see chapter 6.

7.4 Determining the Domain Model

The initial step in the courseware validation methodology is to locate a definitiaiimdo
subject domain that the constructed courseware teaches. The caase must determine
a subject domain model to use. The course creator can either defineet sidmain model
from scratch or reuse an existing domain model definition, perhaps in thredba Se-
mantic Web ontology, as in [Melia et al., 2005, Holohan et al., 2005, Jovaedal., 2005,

Aroya et al., 2002, Yang et al., 2005]. In our work we assume that theseareator reuses

142

the subject domain model that is also used to classify LOs used by the warnesé&hould
the course creator use a different domain model or define their own donuaial for val-
idation, this would have to be mapped or merged to the “classification soused’in the
LOM classification for the LOs used in courseware [I[EEE LTSC, 2008¢ “classification
source” in LOM and the domain model definition are ontologies, as defingueammtolog-
ical spectrum in [Daconta et al., 2003]. The mapping and merging of onésldg beyond

the scope of this thesis, more details can be found in [Gomez-Perez e(dl], 20

!

Cdemify suitable existing domain mudeD

[no domain model found]* [domain model found]
Develop domain model Transform domain model from native
notation to CAVIAr notation

[no edits required]

il
i

[course creator wishes to
edit domain model]

Edit domain model to conform with
course creator view of domain

Figure 7.2: UML Activity Diagram for determining the CAVIAr Domain Model

7.4.1 Developing a Domain Model

If there is no domain model that suits the needs of the course creatorshe oray choose
to create their own Domain Model. Tool support for defining a Domain Md@litlined in
section 8.6.1. A common approach to defining a new domain model is to use enlengd

ontology, such as the Suggested Upper Merged Ontology (SUMO) [Nik&aase, 2001]
or OpenCyc ontology [Lenat, 1996].

143

7.4.2 Incorporating an External Domain Model

In most instances where courseware validation takes place, the coesaseravill use an
existing domain model. A domain model is firstly identified and then transformed into a
CAVIAr Domain Model. Any external domain model definition can be used iVIBA as

long as the following conditions are met:
e The domain model has a formal metamodel or abstract syntax.

e The domain model’s metamodel can be mapped and transformed to the CAViAr Do

main Model metamodel.

For the domain model to be used in CAVIAr it is transformed from its nativeasgnta-
tion into a CAVIAr Domain Model. The following assumptions are made about ¢imeaih

models used in CAVIAr:

e The domain model has a taxonomy of concepts, the scope of concepisdsecmre

specialised or generalised as you move up and down the taxonomy.

e The domain model is self-contained, in that the domain model does notrreéeaay

external resources.

There is no pedagogical information in the domain model.

There are no circular dependencies or relationships within the domain model.

There are no orphan concepts in the domain model.

Once the external domain model definition has been transformed to a CAdiain
Model the course creator has the option of editing the Domain Model to &datut his or
her view of how the domain is conceptually structured.

7.4.3 Case-study

In our case-study, the course creator takes a domain model definitifimedian SKOS,

and transforms it into a CAVIAr Domain Model representation. These ianple syntax

144

transformations where a syntactical element from one notation is mapped/ttaatical
element of the other notation.

In our example case-study, the course creator chooses to use a iRy that de-
scribes the databases domain. SKOS is a common Semantic Web technolofgy deéid-
ing simple knowledge structures. We envision the Semantic Web to be one airttap
sources of knowledge structures as common shared conceptualisatiomssinose found

in ontologies, form the backbone of Semantic Web technologies [Stollbatg 2006].

skos:broadekskos:broadeskos:broadey/ skos:broader -~ skos:isRelated

ED
skos:broader i ed skos:isRelatggkos:isRelated\skos:isRelated i d™~gkos:isR d
(o)
skos:broadekskos:narrower” skos:broader skos:broader skos:broaden\skos:broaderskos:broader -~ skos:broader skos:broader skos:broader
skos:broader skos:broade skos:broad¢skos:narrower\skos:narrower
o G G

\skos:broade skos:narrowgskos:broader

Database_Architectur® Information_System:

Figure 7.3: Databases domain model defined using SKOS

In figure 7.3 we outline the domain model defined for the purposes of valifd#tm
CA218 course. This domain model provides a sufficient domain knowlsttgeture re-
quired for CAVIAr courseware validation (see appendix A for SKOSIXbinding).

This domain model has a central concepgtabaseSystem The DatabaseSystem
concept is broken into six more specialised concepts in the domain modelthgiSgOS
skos:narrowerand skos:broaderelationship, which arinformationsystemsNormalisa-
tion, DatabaseArchitecture StorageStructures SQL and RelationalModelling These
concepts are then broken down even further using the SgKaS:narrowerrelationship
and its inverse relationship, the SKG&os:broaderrelationship creating a taxonomy of
database concepts. The other relationship used in the domain model is tigr&li@on-
ship skos:related This allows the representation of concepts that are related to each other

but are not broader/narrower than each other. For example, themdingrd_Normal Form

145

andFunctionalDependencyre related, as the third normal form is based on the concept of
functional dependency.
The SKOS syntax is mapped to the CAVIAr abstract syntax as definedtioséc3.3,

creating a CAVIAr Domain Model for database systems.

7.5 Defining the Learning Context Model

After the Domain Model is determined, the Learning Context Model can fieedkin
the context of the Domain Model. The Learning Context Model is definedgacify-
ing additional modelling constructs in the context of the Domain Model. It ctmsis
learner stereotype definitions and pre-requisite relationships betweeepts in the Do-
main Model. Each learner stereotype definition consists of the coursgwale and pre-
sumed knowledge of that learner stereotype. Both are defined as kiymsmdements in
terms of the Domain Model concepts.

In figure 7.4 outlines the tasks involved in defining a CAVIAr Learning Ceinkéodel
using a UML Activity Diagram.

[pre-existing instructional
constraints model]

¢ [no pre-existing instructional

constraints model]
Evaluate pre-existing instructional
constraints model
[ed\lld.elele -~
pre-existing model] »

[use pre-existing ¢
model]

A
Define conceptual prerequisite
Define learner stereotypes constraints

|
Ld

Figure 7.4: UML Activity Diagram outlining the activities for determining the CAVIIn-
structional Constraints Model

146

7.5.1 Defining the Conceptual Pre-requisite Constraints

After the Domain Model concepts have been defined, the course creatoimpose se-
guencing constraints on the ordering of concepts covered in the e@reseThis is done
by specifying pre-requisite constraints. The course creator speaifies-requisite rela-
tionship where one Domain Model concept is the source of the relationstip different
Domain Model concept is the relationship’s target. This means that the &wans Model
must be sequenced in such a way where the pre-requisite relationshii@s ¢cancept is

sequenced before the relationship’s source concept.

7.5.2 Defining Learner Stereotypes

In CAVIAr the course creator must define the anticipated types of lemthat he or she
envisions will use the constructed courseware. Each learner steggstygfined in terms of
its goal concepts and its presumed knowledge entering the coursewareel to define a
learning context, the course creator must decide on what learnertgpaebe or she wishes
to define. The simplest and quickest approach to defining learner tyfgeeds to define
one learner stereotype that all learners fit into. In this case the coiltsmtrdiscriminate
at all between learners, a “one size fits all” approach to coursewargndeé\lthough this is
the simplest to develop it does not consider the different pedagogiedsd learners who
take a course [Brusilovsky et al., 1998]. At the other extreme, a leataszotype can be
designed for each learner allowing for very personalised coursevedidation, but is very
labour-intensive to develop. Using learner stereotypes the coura®icreay distinguish
between different groups of learners. For example learner steesotyquld be used to
distinguish ability levels in a group of learners, or possibly to distinguishexoadand/or
professional backgrounds.

The course creator then defines learner stereotypes in CAVIArdiogly. For each
of the learner stereotypes defined in CAVIAr the course creator miisedee course goal

knowledge and presumed learner knowledge.

147

7.5.2.1 Defining the Course Goals

Course goals are defined in terms of knowledge elements, by specifyioghai® Model
concept, a knowledge level and a knowledge type required for a lgggol, for a specific
learner stereotype. When a concept is defined as a goal conceptifseware, that Domain
Model concept is essentially tagged as a goal for a particular learmepstge, with an
expected knowledge level and type of knowledge, as outlined in section 5.4

The goal concepts are derived from the module specification, suclatasutiined in
section 7.2. This is done by identifying the concepts that capture the legyoatgfor each
learner stereotype and defining the knowledge type and level reqoirdtat concept. This
is not a trivial task and is open to much interpretation by the course crelier.course
creator must take the information supplied in the course descriptor andl&aritom it

the CAVIAr knowledge elements. This is done by following the steps below:
1. Identify the key knowledge concepts in the course descriptor.

2. ldentify the type of knowledge required, is the knowledge requiredegatual knowl-

edge or skills knowledge or both.
3. ldentify the level of the knowledge required for each knowledgeepnand level.

4. Map these elements to CAVIAr knowledge elements (knowledge elememnisfared

in section 5.4).

CAVIAr also allows the course creator to specify alternative goal gots¢c@nd to im-
port course goals from other Learning Context Models and integrate the a given
learning context. If the course creator wishes to reuse a learning goabtirse creator
simply includesthe pre-defined learning goal in the learning goal he or she is defirsag, u
ing the goalPartOfRelationshiglefined in section 5.4. Should the course creator wish to
define one learning goal as an alternative to another learning goal, ahargorelated via

the AltGoal goal relationship, also defined in section 5.4.

148

7.5.2.2 Defining the Presumed Learner Stereotype Knowledge

The presumed learner stereotype knowledge allows the course credédin® the knowl-
edge he or she expects a particular learner stereotype to have upimg $hee courseware.
Again, this is done in the context of the Domain Model by specifying the quscine
learner should know. The course creator must again define the krgewgge and level for
the presumed knowledge concepts. This involves assessing the knevalégujcal learner
in a particular stereotype will have in terms of the knowledge type and kngeliedel for
a specific Domain Model concept.

Presumed knowledge is added to the CAVIAr model through a relationshigbga the
learner stereotype’®resumedKnowledgelass and &KnowledgeElementhat references
the Domain Model concept. This in effect tags the concept as presunosdddye for a

specific learner stereotype.

7.5.3 Case-Study

Our case-study continues from section 7.4.3. Here we will exemplify thetéesiinvolved
in defining a Learning Context Model by outlining how the course creafines a Learning

Context Model for the databases courseware.
7.5.3.1 Expressing the Case-study in terms of the CAVIAr Instrudbnal Constraints
Model

Some instructional design constraints in the case-study course’s modofgt®sin sec-
tion 7.2, can be expressed in the CAVIAr Learning Context Model. Heedjrstly list the
constraints from the module descriptor defined in section 7.2, as an infosmale then

define the constraints as CAVIAr learning context knowledge elementsleTah

e The learner stereotypes defined for the courseware are:

— CASE - Computer Applications - Software Engineering students

— CAIS - Computer Applications - Information Systems students

149

e We can also list a number of goal concepts for CAIS and CASE learfibiesgoals
of the course are applied to both learner stereotypes unless othenteskastd can

be defined as follows:

— Each element in the indicative syllabus is defined as a required mid-level con

ceptual goal.
x Only CASE students require knowledge on “storage structures”.

— For concepts elicited from the module aims (bold in the indicative syllabus in

section 7.2) learners must achieve a high level of knowledge.

— The learning outcome specifies the learner must be able to “design and imple-
ment a database”. The course creator is able to identify skill concepdgdee
to be able to do this and specifies these concepts as mid-level skills knowledge

goals. Theses are:

*x ER Data Modelling
+* Normalisation

*x SQL - for database definition (DDL)

— The course creator recognises that SQL is not only important in the dasitgn
definition of databases systems but also in manipulating a working datakiase, th
too is defined as skills knowledge as the learning outcomes state that learners
must be “very familiar with SQL", and be able to write SQL for transactions.

Therefore a high level of skills knowledge is required on the SQL cancep

e The course creator must also define the knowledge we expect therléaraeter
the courseware with. To do this the course creator simply assesses wbatisd
in the learner’s previous modules. With this in mind we have defined the following

anticipated knowledge competencies for the typical CA218 learner:

— We expect all learners to have mid-range conceptual knowledge amiias-

mation systems, therefore th&ormation Systemgoncept is a concept which

150

all learners are expected to have a mid degree of conceptual knowbedge
fore taking the course. CAIS students have additional lecturdaforma-
tion_Systems#n year 1, and therefore have a slightly higher conceptual knowl-

edge level in this concept.

e The following conceptual pre-requisite constraints are defined on thbakses course
specification as outlined in section 7.2. It should be noted that these azeptoal

pre-requisite constraints and are defined for all learner stereotypes:

Mid-level conceptual knowledge imformation Systemis a pre-requisite for

all other goal concepts.

Mid-level conceptual knowledge iDatabase Overviews a pre-requisite for all

courseware concepts except theormation Systemsoncept.

Mid-level skills knowledge irSQLis a pre-requisite for theiewsconcept, as

views are a type of SQL.

Mid-level conceptual knowledge in thelational Model of Datare pre-requisites

to theDatabase Design & Normalisatiotoncepts.

From the requirements listed above the course creator can define tmnige@ontext
Model for the databases course. Table 7.1 defines all the facets ofahgke case study

learning context model.

7.6 Determining the Validation Model

The OCL-based CAVIAr Validation Model definition is described in chaptefhe course
creator can use the various types of constraints defined in this chappecityssourseware
validation rules. The constraint rules outlined in chapter 6 can be aggtetgaensure the
correct application of an instructional design theory. This is to say thsatramg the correct
application of an instructional design theory can be defined as part AY8X€ Validation

Model using a set of instructional constraints that courseware musteadtth In this section

151

Table 7.1: Definition of anticipated learner knowledge defined in terms ofl&Akhowl-
edge elements

’ Concept ‘ Knowledge Ievel‘ Knowledge Type‘
CASE Student - Goals
SQL 0.7 skill
Normalisation 0.7 skill
Normalisation 0.7 conceptual
Data Modelling 0.5 skill
Information System 0.5 conceptual
JDBC 0.5 skill
ThreelLayer Model 0.5 conceptual
DatabaseArchitecture 0.5 conceptual
StorageStructures 0.5 conceptual
CASE Student - Presumed Knowledge
Information Systems | 0.3 | conceptual
CAIS Student - Goals
SQL 0.7 skill
Normalisation 0.7 skill
Normalisation 0.7 conceptual
Data Modelling 0.5 skill
Information System 0.3 conceptual
JDBC 0.5 skill
ThreeLayerModel 0.5 conceptual
DatabaseArchitecture 0.5 conceptual
CAIS Student - Presumed Knowledge
Information.Systems 0.7 conceptual

we outline how a CAVIAr Validation Model is defined to ensure the corregiiaation of
an instructional design theory in courseware.

Figure 7.5 outlines the steps involved in defining an instructional designytiiredine
form of CAVIAr Validation Model constraints. These constraints can $&duo ensure the
correct application of an instructional design theory in the constructackeware. This
process begins with the course creator deciding on the instructionahdbsigry to use
and then investigating the possibility of reusing a Validation Model that validaesap-
plication of the chosen instructional design theory in courseware. lfiof@und, it can
be reused (and possibly extended). This minimises the Validation Modeltibefiaffort
for the course creator. However if a Validation Model cannot be itlse course creator
must define a Validation Model. To achieve this the instructional design thedmpken

down into instructional constraints that must be satisfied for the instructiteséjn theory

152

to be implemented correctly. To define the instructional constraints, theecotgator must
identify the main principles of the instructional design theory being usedh gaaciple
identified must then be converted into instructional constraints that must édatrahe
principle to be applied correctly in the courseware. The course creaordéfines each
constraint in terms of the CAVIAr metamodel. CAVIAr constraints are formdlisging the

CAVIAr constraint language, OCL.

'
' Identifying an Instructional _____________
H Design theory
'

'
Identify an instructional design H Deriving instructional _— — —
. '
theory to use in courseware v | constraints
'
Formulating instructional
constraints in OCL

[instructional design validation model exists]
'
H [instructional design validation modpl

'
'

'

'

H

'

Reuse instructional design H

H does not exist] H

Decompose instructional design
| into instructional principles

Convert instructional principles
| into instructional constraints |
*

> A A
[while more instructional

[while more instructional constraint rules to convert = false]

constraint rules
to convert = true]

Express current instructional constraint rule
in terms of CAVIAr models

‘ Add constrai

A

Y

»®

Figure 7.5: UML Activity Diagram detailing the definition of the CAVIAr Validatidvodel

In this section, we will look in detail at the activities involved in defining the CAVI
Validation Model. We have divided the Validation Model definition processtimtee main

parts, which we will examine in the following subsections:

e Determining the instructional design used in courseware (principally detedntin

the instructional designer).

153

e Deriving informal instructional constraints from the instructional desigclmice
(normally derived by the instructional designer and instructional desigmgram-
mer) and forming CAVIAr-based constraints based on the informal irtsned con-

straints.

e Defining instructional constraints in OCL (principally defined by the instruetio

designer programmer).

We will then look to our running case-study to exemplify the Validation Modéhien

process.

7.6.1 Determining the Instructional Design

Instructional design theory defines how knowledge should be taughteariaer given a
learning scenario. The course creator defines the instructional desgnsure instruction
is as effective and efficient as possible in facilitating the learner fromitialiknowledge
state to the learning goal knowledge state. A course creator may apply wreinstruc-
tional design or may apply one of the many instructional design theories in thetuite
[Reigeluth, 1999a, Gagret al., 2005].

To validate the application of an instructional design theory the coursecaecks if
there is a CAVIAr Validation Model that can be reused, which validates pipdiGation of
the instructional design theory that the course creator has attempted tarapplyseware.
If such a Validation Model exists the course creator can reuse this Validsltwlel and if

not the course creator must define his or her own Validation Model.

7.6.2 Deriving Instructional Constraints

In validating courseware, the course creator looks to confirm that #nudtisnal design
theory has been applied correctly in courseware. To validate the emnsagainst an
instructional design theory, the course creator must break down they héminstructional

constraints.

154

An instructional design theory can be defined as a set of instructiomaigles, as
demonstrated by Reigeluth in his outline of each instructional design thewgrembin
[Reigeluth, 1999a]. For an instructional design theory to be usedatly;réhe course
creator must adhere to these principles. In defining the requirementshefitagl to in-
structional principles the course creator can define instructional eimstbased on these
principles that must be true for the correct application of the instructioesibd theory.
Once the instructional constraints that make up the definition of an instrukctiesign the-
ory have been defined, the course creator specifies each conisttaimhs of the CAVIAr
metamodel. The output of this step is a series of constraints defined informégdiyris of

the CAVIAr metamodel.

7.6.3 Formulating Instructional Constraints in OCL

At this stage the instructional design has been broken up into instructionstraints that
are defined in terms of CAVIAr. These constraints must then be usedtufate a CAVIAr

Validation Model using OCL. In chapter 6, we have described how caingtrare defined.
The instructional designer programmer takes each of the constraintsefindsdthem in

terms of the CAVIAr metamodels and expresses them formally in OCL.

7.6.4 Case-study

The Validation Model is used to define rules on the Courseware Modetisttbe adhered
to for courseware to be deemed valid. The Validation Model provides thesea@reator
with the facility to express rules and constraints using CAVIAr metamodelitiefis.

The first step in defining the Validation Model for our case-study covaseis to estab-
lish the instructional design definition that the course creator wishes to teatidarseware
against. In the case-study this is defined by establishing the instructigighdbeory the
course creator has attempted to implement and any other additional requseiaéned
in the course criteria (section 7.2). From the course criteria we establisiolibwing

courseware instructional design requirements:

155

The courseware must be designed as specified in Reigeluth’s Elabcragony.
All courseware topics must contain a “lecture” LO.

The LOs used in topics must focus on what that topic is covering.

All LOs of type “lecture” must not exceed 1440 minutes (24 hours).

All LOs of type “experiment”, “simulation”, “exercise” and “sessessment” must
not exceed 1440 minutes (24 hours) as these are collectively the tutwdifdlaora-

tory material.

To define constraints for the elaboration theory, the course creatcksteesee if a Val-

idation Model already exists that checks for the correct application afl#imration theory

in courseware. If one exists it can be reused. In our case-studyamoMalidation Model

exists. The course creator must develop a Validation Model that enth@application of

the elaboration theory in the Courseware Model.

The elaboration theory is firstly broken down into its key instructional priesipvhich

must be true for the theory to be applied correctly. These principles remre defined by

Reigeluth in [Reigeluth, 1999b] (principles are numbered P1-5):

P1: Tasks, concepts and principles are arranged from simple to corsfaleing with
the simplest real-world version of the task, concept or principle movingdoreere

complex versions.

P2: Pre-requisite relationships between knowledge elements taught in ulse co

[Reigeluth, 1999b, p431] must be respected in course sequencing.

P3: Teach supporting content together with the concept, principles @ tiaakit is

most related to.

P4: Group tasks, concepts and principles together with supporting ¢amtefearn-

ing episodes.
P5: Give learners some choice as to what to “elaborate” first/next.

156

Once the instructional design has been formulated into instructional priacigecan
define each as an instructional constraint that must be true for the a&fi@motheory to be
applied correctly. We do this as follows. Constraints are humbered ChéinBtructional

design principle on which a given constraint is based is stated at the ¢imel adnstraint:

e C1. Courses must start with the simplest topics and progressively allomdoe

complex or specialised topics to be delivered (P1).

e C2: When sequencing course topics pre-requisite relationships thatbexigeen

knowledge elements must be respected (P2).

e C3: If a LO in a topic specifies a dependency on another LO(s), the btbh) is

supporting content and must be available in that topic (P3).

e C4: All LOs in a given course topic (learning episode) must be focuesgdarhing a
common knowledge element (P4). This constraint also addresses tlse coberia

that states “LOs used in each topic must address the concerns of the topic”

e C5: The learner must be able to choose which high-level coursewadrettolearn

about and when (P5).

We also add constraints for the non-elaboration theory constraints défitiee course

criteria section, section 7.2;
e C6: There must be a “lecture” LO for each part of the course.
e C7: The total duration of “lecture” LOs must not exceed 1440.
e C8: The total duration of “tutorial” and “lab” LOs must not exceed 1440.
Each constraint is then defined in terms of the CAVIAr metamodels:

e C1: Topicsmust start with the broadest topic-concept according to the CAVIAr Do-
main Model, and progressively allow the learner to learn more complex oiadised
topic-concepts. The topic-concept is defined by dgbeTopicConcept(PCL opera-

tion in section 6.2.1.

157

e C2: If atopic-concept is the source oPREREQUISITE ConceptRelationstipere
must be SSEQUENCEDAFTER TopicRelationshifhat reflects the conceptual se-

guencing constraint.

e C3: Should a LO in a task topic be based on another LO(s), “based orfirzed
when a LO has &elationwhereRelationKindis BASEDON, both LOs must be in
the sameTopic The BASEDON relationship between LOs indicates that the target
LO in the relationship is “supporting content needed” as defined in the reltiio

theory.

e C4: All LOsin a courseward@opicmust be classified with only the topic-concept(s),

where topic-concept is defined by thetTopicConcept@CL operation.

o C5: IntheCoursewareonstruct, there must be less than half the number of contained

SEQUENCEDAFTER TopicRelationshigs Topics

We also add the following constraints for non-elaboration theory contgrdafined in

section 7.2, as follows:

e C6: There must be a LO withlaarningResourceTypef LECTUREIN each CAVIAr

courseware topic.

e C7: The sum of the duration of dIECTURELOSs in a CAVIAr Learning Resource

Model must not exceed 1440.

e C8: The sum of the duration of diXPERIMENT SIMULATION EXERCISEand
SELFASSESSMENTOs (“tutorial” and “lab” LOs) must not exceed 1440 (min-

utes).

The course creator has now specified the courseware constraintesaethe CAVIAr
metamodels. These constraints are then converted to OCL. In listing 7.1 ande/h2ve
taken the constraints for the databases courseware (C1-8) andddifneorresponding
OCL. The mapping from the constraint definition above to each OCL canistsamade

explicit through OCL comments.

158

Listing 7.1: Case study Validation Model - part 1

Context Topic

——C1— Principles, tasks and concepts must be sequenced from smpl complex
inv coursewaresequencedfrom_simple_to.complex:
self.sequencedAfterTopics ()
—>iterate (y:Topic; a:Set(Concept)=Sg}| a—union(y.getTopicConcepts()))
— getTopicConceptsf)>iterate (x:Concept; a:Set(Concept)=gét a
—>union (x.narrower()->union(x.siblings ())
= Set{}

—-C2——Conceptual prerequisites are respected in topic sequencing
inv conceptualprerequisitesare_respected:
self.getAllTopicConcepts ()
—>iterate (x:Concept; a:Set(Concept)=gdt| a—>union(x.prerequisite (0.5 true)))
— self.sequencedAfterTopics ()
—>iterate (y:Topic; b:Set(Concept)=S€}| b—>union(y.concepts))
= Set{}

—-C3 — Supporting learning resources must be available in the sampic
inv supportingcontentavailable.in_topic:
resources>select(oclisTypeOf(LO))
—>iterate (r:Resource; los:Set(LO)=Sg}| los—>union(r.oclAsType(LO)))
—>iterate (y:LO; a:Set(Resource)=Sg}| a
—>union(y. metadata.relations>select (kind=RelationKind ::BASEN))))

— self.resoures = St

——C4 — LOs must be focused on the topic concept
inv LO_conceptfocus:

self.getAllTopicConcepts self.getTopicConcepts ()=Sé}

——C6 — All tasks must have a lecture LO
inv task has.lecture.LO:
getAllTopicLOS(—>

exists(educational.learningResourceType = ResourceTypECTURE)

context Courseware
def: getLOType(type:String): Set(LO) =
self.getCoursewareResourcesf}select(oclisTypeOf(LO))
—>iterate (i:Resource; res:Set(LO)=Sf}t|res—including (i—>oclAsType (LO)))
—>select(type)

—-C5 — There is only limited number of sequencing constrainfer high—level topics in courseware
inv limited_sequencingconstraintsin_coursewaretopics:
topics—>iterate (i; res:Integer=0res = res+i.sequencedAfterTopics(size ())

< (topics—>size ()/2)

——C7 — The sum of all lectures in the courseware must not exceed 24ir&o
inv lecture.time_exceeded:
self.getLOType('Lecture’)
—>iterate (i:LO; durs:Set(Integer)=S¢}|durs—>including(i.technical.duration)
—>sum () < 1440

159

Listing 7.2: Case study Validation Model - part 2

context Courseware
——C8 — The sum of the tutorial LOs in the courseware must not exceeld hdurs, tutorial LOs are defined
as LO of type experiment, exercise, simulation or self assesnt
inv lab_or_tutorial-time_exceeded:
let los:Set(LO)=
self.getLOType('experimenty>union(self.getLOType('exercise’))
—>union(self.getLOType('simulation’'}}>union(self.getLOType(’'selfassessment’))
—>iterate (i:LO; durs:Set(Integer)=S¢}|durs—including(i.technical.duration)
—>sum () < 1440

7.7 Rendering the Courseware Definition into CAVIAr

In order for courseware to be validated in CAVIAr it must be converted & CAVIAr
Courseware Model. In TEL courseware is described using a coarsespecification such
as SCORM [ADL, 2004] or IMS LD [IMS, 2003b]. In order to integrat@@Ar validation
with the state of the art, it is necessary to be able to translate the coursgeaification
into a CAVIAr Courseware Model. In figure 7.6, we outline the steps invblmerendering
a courseware specification ready for validation. That is converting Mk dépresentation
of a courseware definition, where a courseware is defined usingreeveare specification
and a set of LO metadata descriptions, from its native representationaarsfiotrming it
into CAVIAr models.

Much of this process is automated and transparent to the course chegtiementation
level details on how the courseware specification is transformed into OAs4A be found
in section 8.8. For the course creator to render a courseware spamifizdo a CAVIAr
Courseware Model, all he or she must do is choose the correct traradfon that will

transform the XML courseware specifications used into a CAVIAr Cawese Model.

7.7.1 Case-study

In our case-study, the databases courseware has been defirggtheshbL. SCORM 2004
specification. SCORM is described, in detail, in section 2.2.6. LOs used irothieaware

are annotated using the IEEE LOM metadata standard (described in se2ti®n 2

160

!

G’ransform courseware specification XML syntax to an XML modeD

Transform XML model to courseware Transform XML model to LO metadata
specification model specification

Transform and integrate all generated models into
a CAVIAr model

Figure 7.6: UML Activity Diagram outlining the steps involved in loading a Ceurare
Model into the validation framework

A transformation process is defined to transform the SCORM specificatibh.@M
standard, used for LOs in the courseware, into CAVIAr. This proéessco-ordinated
series of transformations and managed using a transformation orchessatjui. The pro-
cess transforms the SCORM specification into a CAVIAr Courseware Mudkthe LOM
definitions into a Learning Resource Model. These CAVIAr models are thegrated

together. This process is transparent to the course creator.

7.8 Validation of Courseware

Validation of courseware takes place when the courseware and theea@ue’s learning
context are modelled using CAVIAr and the courseware Validation Modgldeen speci-
fied. In order to validate the courseware a validation engine, in the foem 6fCL checker,
is used to check each of the Validation Model constraint rules is valid focdhsetructed
courseware.

In this section, we will look at how to use OCL checker tools to allow for the adilooh

161

of a CAVIAr Courseware Model.

7.8.1 Validation Engine Initialisation

The validation engine must be made CAVIAr-aware, this is done by loadin@&wWAr
metamodels into the OCL checker. Constraints are then specified in terms oA\tharC
metamodels and loaded into the OCL checker. The CAVIAr models are thesed it the
OCL checker, which checks that the OCL constraints defined are séiisflee Courseware
Model if any part of the Courseware Model violates an OCL invariantctirestraint and

courseware modelling construct is flagged and the course creator igdotifi

7.8.2 Validation Outcome

Typically an OCL checker will run through each of the invariants stated in/diielation

Model and test each one against the CAVIAr model. Should an invareaébmed invalid,
the invariant is flagged. The course creator is made aware of the failadanis once
validation is complete and all invariants have been checked against thee@@ume Model.

Itis not possible to make recommendations to the course creator on c@maeasures
for invalid courseware using an OCL checker. An OCL checker cdn gime a boolean
value, stating whether or not an invariant passed or failed. We mentiosedtion 2.4 that
OCL can be used as a model query language. The model element(s)ubed eeconstraint
to fail can be retrieved by redefining the OCL invariant definition into a mqdety.

The burden of analysing the problems identified through validation rests weittotirse
creator, he or she must assess the problems in the CAVIAr model, identifpdheause
of the problems and address them. In the majority of cases this will involve editing
courseware to correct the problem found. We do, however, beliewelie possible to
classify the types of courseware problems that will be found and fromrifes possible

solutions. We investigate this in the future work section, section 10.4.

162

7.8.3 Case-study

In our case-study the course creator can now validate the databasesveare. The databases
Courseware Model is validated against the constraints defined in sediidn &nd also the
learning context constraints, checking that learning goals and cortegiguencing con-
straints are satisfied.

The OCL checker used for the purposes of our case-study is the WEEee section
2.4.2 for details). USE provides support for defining the CAVIAr metartsdead then
defining runtime snapshots as CAVIAr metamodels instances, CAVIAr mo@sId. can
be defined on the CAVIAr metamodels and then checked against the CAvddels with
USE. Figure 7.7 shows a screen-shot of the USE tool, with the CAVIAr metata@re
defined as a UML model. A CAVIAr model is then defined by specifying desyissnap-

shot in USE.

4] USE: CAVIATZ 0.U58"

Eile Edit State View Help

EL E'@HIA ¢lej=]~ ojm %4 K|

Class diagram

Bl 4 Classes
® CAVIAr

® LearningContext
Learner: Stereotype

nnnnnnnnnnnn
eeeee

GoalRelationship
DomainModel

® Concept
Synonym

%
® ConceptRelationship
Learnin gResource 1
® Resource
L0
3 e T <<enumeration>>
Metadat, fuang echnical
® Relation FnowledgeConstrame] ol BasSTicaTpn pe
Classification W o

® General

Educational

® Technical

ContentType

CoursewarzMadel
ryLearner

® Topic

Topickelationship | | NS S 7 A wontahggenenal

Bl 4 Associations
* c

:::::

<<enumeration>>
GoalRelationshipType

Presumedknowdedge

<<enumeration>>
ractivityLeyels

Log
compiling specification CAVIAr2_0.use
done.

Model CAVIAF (27 classes, 33 associations, 1 invariant, L operation, 0 pre-/postconditions)

Figure 7.7: CAVIAr metamodels in the USE tool

163

In our case-study a violation is identified. The course creator is notifieadeoton-
straint violation by the constraint name. In this case the course creatatifischthat the
“task haslectureLO” has been violated, the OCL checker also indicatesTiegic that

caused the violation.

7.9 Correcting Invalid Courseware

To correct the majority of problems found in courseware the courséocredl be required

to edit the Courseware Model. Fixes will typically involve:

The addition or removal of LOs, with certain characteristics.

Altering the sequencing of courseware topics.

Altering the structure of the courseware, by adding, removing, splitting oginge

topics.

Editing the Validation Model - false positives are being given by validatiagiren

7.9.1 Case-study

The CAVIAr validation violation that was identified in section 7.8.3 was caugealTopic
that does not have a LO of type “lecture”. ThHepic in question is highlighted by the
OCL checker. To solve this problem the course creator must locate atecxd O of type
“lecture” that satisfies the learning need at the highlighfegic and integrate it into the
topic. Alternatively, the Validation Model can be edited to allow fopicsthat do not have
a LO of type “lecture”. Once the course creator has integrated suchima@e courseware

it can be revalidated.

7.10 Chapter Conclusion

In this chapter we have outlined the activities involved in validating coursewaing

CAVIAr. These activities make up the CAVIAr courseware validation pssc This process

164

empowers the course creator to model constructed courseware andutiseveare con-
struction concerns. There are six activities in this process - determinirapaid Model,

defining the Learning Context Model, determining a Validation Model, renderourse-
ware as a CAVIAr model, validating the courseware and then fixing thdgmabfound in

the courseware through validation.

We have illustrated the validation process using an example case-studyr tage-
study we outlined a typical course module requirements found for a @itivepurse. These
requirements were used to define CAVIAr models, which were in turn usedlittate an
example case-study courseware. This example case-study was Ipates apurseware
requirements for DCU course CA218 - “Introduction to Databases”. ®tbd ensures that
courseware satisfies the courseware requirements outlined in the modtriptdes

We have evaluated the courseware validation activities in the validationgzrda®ugh
user trials that use the courseware validation activities as part of emneseonstruction.

We will present the details of these user trials in the evaluation chapteteci®ap

165

Chapter 8

CAVIAr Implementation

8.1 Introduction

In the previous three chapters we have described CAVIAr and denatetnow it can be
used to validate courseware. In this chapter we will outline a coursewastraction tool
based on the CAVIAr that allows for the construction of coursewardtarsibsequent val-
idation. This tool is known aManagemenknfrastructure folK nowledge-baseédaptive

E-Learning (MIKAEL). MIKAEL's purpose is as follows:
e Proof of concept for CAVIAr validation.
e Tool-support for user trial evaluations of CAVIAr.

e Show-case how CAVIAr can be used in courseware construction.

The purpose of this chapter is to discuss a proof of concept applicati@A\dIAr,
which we have developed, known as MIKAEL. MIKAEL is a coursewamastruction soft-
ware tool (and Learning Content Management System (LCMS), defirjPdim et al., 2007]).
The chapter looks at the implementation-specific elements involved in developirgup-
port based on the CAVIAr metamodels.

The chapter begins by defining a courseware construction procsed ba the incre-
mental definition of CAVIAr models. MIKAEL has been built to support thisiseware

construction process. Section 8.3 gives an overview of the MIKAEtwsoE architecture.

166

MIKAEL has a flexible component-based architecture. In the sectionddheatv section
8.3 we examine each MIKAEL component in detail by looking at how each oot is

implemented.

8.2 CAVIAr and Courseware Construction

CAVIAr was designed as a set of models to capture courseware coii@triconcerns,
which are then used to validate courseware against a constraints moddlAIGAaw also
be used to construct courseware where each of the CAVIAr modelksseafis a courseware
construction concern used to derive a skeleton courseware defiIGAEL is designed
around the application of the CAVIAr models to create courseware. MIK&sEbased on
constructing CAVIAr models as part of a courseware constructionggocThe activities
in this courseware construction process can be mapped to the activitiesdoutrseware
validation process in chapter 7.

In figure 8.1, we have outlined the courseware construction process ai$)ML Ac-
tivity Diagram. In the first activity, the course creator determines a Domaidd\ithat
represents the target domain for the courseware being developed. addhomain Model
is defined, the course creator can then define the learning contexefootinseware using
the Domain Model. At this point the course creator can also locate and wpeaifiing
resources to address the learning need associated with each cortbepDomain Model.
A Courseware Model is then generated based on the requirements indharigeCon-
text Model defined in the preceding activities. The course creatordiathe Courseware
Model, until he or she is satisfied with its design. Once courseware cotistris complete
the course creator can validate the courseware to ensure it satisfiesitheveare require-
ments defined in the learning context and also to ensure that the coussgweties a desired
instructional design theory correctly. When the Courseware Modehiptaie it can be ex-
ported into a Technology Enhanced Learning (TEL) specification, as@CORM or IMS

LD (outlined in section 2.2.6).

167

!

G)etermine domain modelj<

Locate suitable learning . .
. Define learning context
resources for domain concepts
. . model
and associate with concept

CGenerate courseware modeD

Y

Gdit courseware modeD(i

\

Validate courseware

[invalid]

[valid]

prort to courseware specification)

®

Figure 8.1: CAVIAr Courseware Authoring defined in terms of an UML #ityi Diagram

8.3 MIKAEL Architecture

The goal of MIKAEL is to support the course creator in constructingseware through

the courseware construction process outlined in figure 8.1. The MIK#®BLshould also

support the course creator in the following ways:
e Locate and integrate learning resources.

e Import domain models.
e Export Courseware Model into a TEL specification.

e Validate the Courseware Model.

168

Domain Model Courseware Model Learning Context Validation Manager
Editor Editor Editor OCL Checker
Model
Transformation Graphical Modeling Framework (GMF) EMF Databinding Validation Framework
Manager LOR
Manager
CAVIAr Model Manager
ATL Eclipse Modeling Framework (EMF)
Eclipse Platform
Figure 8.2: Layer view of the MIKAEL Architecture
Ecinse]

LOR
Manager

Model
Transformation
Wanager

CouUrsEware
Mok
Ecitor

Domain
Madel
Editor

EMF

| EMF Databinding

Y
Cavlar
B ——

Learning
Cortext
Wiodlel
Editor

Manager

Framework

Walidation

1
1
1
EMF Yaliclation
1
1
1
1
1
1
1

Figure 8.3: Component-based view of the MIKAEL architecture

A high-level architecture of the MIKAEL tool is outlined in figure 8.2. Thelitecture

presented is a layered one, where each layer builds upon the layess Bsloutlined in the

figure, MIKAEL has be developed using the Eclipse Platform [Arthome lzaffra, 2004],

an open-source Java-based platform. We have highlighted the elemdntsethave de-

veloped in grey. We have also outlined the MIKAEL architecture as a copmatiagram,

using UML, in figure 8.3, to enhance understanding. The interaction leetile com-

ponents we have developed is summarised in figure 8.4. Vahdation Manager/OCL

Checkeris half grey and half white as to develop thalidation Managemwe extended an

example Eclipse OCL Checker plug-in. We choose to base MIKAEL on Echgst pro-

vides an infrastructure for rapid application development and also @e¥ot various user

interface packages to develop an intuitive user interface for the corgator. Also, Eclipse

169

Model
Transformation
Manager

OCL Parser

Courseware
Editor

CAVIAr Mode
Manager

Requirements
Editor

é 6

Learning
Context
Perspective

LOR Domain
Manager Perspective

Courseware
Perspective

Figure 8.4: MIKAEL Components

has been proven in other courseware construction tool supportasuble Reload LD edi-
tor [RELOAD Project, 2005]. Th€AVIAr Model Managerwhich is based on the Eclipse
Modelling Framework (EMF) manages the CAVIAr models. MIKAEL provides intu-
itive model-based editorfor constructing CAVIAr models, these are tBb®main Model
Editor and theCourseware Model Editowhich have been developed using the Graphical
Modeling Framework (GMF) [Gronback, 2009].

MIKAEL has been developed to support CAVIAr-based coursewarsstruction. Each
component in the MIKAEL architecture is defined to support one or mothectivities
outlined in the UML activity diagram in figure 8.1. In the following we list eachiseware

construction activity and state the MIKAEL component(s) that supports it:

e Determine Domain ModelBomain Model Editomnd Transformation Manager

Locate Suitable Learning ResourcdsOR Manager

¢ Define Learning Context Modell-earning Context Editar

Generate Courseware ModeTransformation Manager

Edit Courseware ModelCourseware Model Editor

170

¢ Validate Courseware ModeMalidation Manager
e Export to Courseware Specificatioffransformation Manager

Further to this MIKAEL has three Eclipse “perspectives” defined, edathich corre-
spond to a central activity in the courseware construction process ie BglL A perspective
is defined as a set of user tools that are needed for some purpose iseEdipe defined

perspectives are:

e Domain Perspective - Allows for the definition of a subject Domain Model bichv
the courseware is based, also allows course creator to specify L@srioepts in
Domain Model. Conceptual sequencing constraints can also be defineddarttain

perspective.

e Learning Context Perspective - Allows for the definition of learner stypes in

terms of learning goals and assumed knowledge.

e Courseware Perspective - Allows course creator to define, viewdinthe Course-

ware Model.

Each perspective is defined in detail in section 8.7.

Interoperability in MIKAEL is provided through model transformations, tfiedel
Transformation Managecomponent is responsible for managing model transformations,
which leverages the Atlas Transformation Language (ATL) [Jouaultamtev, 2005] and
associated tools. The MIKAEValidation Manageiis based on the EMF Validation Frame-
work 1, which allows for the integration of the Eclipse OCL Checker. In order tat®c
learning resources the MIKAEL tool must be interoperable with LORs. L KbB Manager
is responsible for this.

In the following sections we will examine each of the MIKAEL components we&ha
developed in detail. Before this we will outline the Eclipse Framework and thgdedools

we have used to develop MIKAEL.

*ht t p: // www. ecl i pse. or g/ model i ng/ enf/ ?proj ect =val i dati on

171

8.4 The Eclipse Platform

The Eclipse platform is an open source, highly extensible software ptatfs primary
purpose is as a Integrated Development Environment (IDE) for Jaedagenent, but other
projects have been built on the Eclipse platform which provide suppols$ toca wide
variety of technical and non-technical tasks. The Eclipse platform is usiitig a plug-in
architecture. The Eclipse platform is defined in terms of plug-ins and egtenso the
platform are also developed as plug-ins.

The Eclipseworkbenchis the user environment. It is the main window in Eclipse,
composed oéditorsandviews

The development of Eclipse components is divided into separate proj@cexdmple
the Eclipse Tools projects define and integrate different tools into the Eglagerm, for
example in the C/C++ Development Tool (CDT) project IDE functionality far Eclipse
platform is developed for C and C++ developers.

MIKAEL is built on plug-ins from the Eclipse Modelling project. In section 2.8:8
introduced one such project, EMF. In this section we will outline the other elenud the

Eclipse Modeling project that MIKAEL uses.

8.4.1 Graphical Modeling Framework (GMF)

GMF is a generative component for Eclipse, which allows developerstien graphical
modelling user interface for an ECore model. To generate a graphicallimgdeterface,
the GMF developer must define a domain model in ECore, a graphical defjratiooling
definition and a map to integrate them together. GMF is then able to generatiagnem
code that defines a plug-in to provide the user with a model-based Ulfiairdginstances

of the aforementioned ECore domain model.

8.4.2 Model to Model Transformation (M2M)

The M2M project has been set up to integrate a model transformation frankéatrans-

form one model type to another model type. There are two main parts to the vigitt,

172

ATL and QVT.

8.4.2.1 Atlas Transformation Language (ATL)

ATL is a model transformation language that allows for model transformagdinitions
to be defined declaratively and imperatively [Jouault and Kurtev, 209H] rules define a
mapping from source metamodel elements to target metamodel elements. ThaWgfory
mation can then be executed on the source model generating a target niwdelarte three
types of rules in ATL, “matched”, “lazy” and “called” rules. Matched milare invoked
when a modelling element which corresponds to the rdteis clause is matched in the
source model. Lazy rules are called from other rules, but are negeutsd directly. Lazy
rules are normally called with a parameter consisting of a source modelcart€falled
rules are similar to lazy rules except a called rule can have any numberaheters.

Called rules may also explicitly define a return type or else nothing will be return

8.4.2.2 Query/View/Transformation (QVT)

QVT is an OMG specification that allows for model transformations to be défileelar-
atively and imperatively [OMG, 2005]. Declarative model transformatemesdefined on
two levels - “relations” and “core”. Relations are at the specification |dedhing rela-
tionships between MOF model elements. The relations’ language suppf@ts pattern
matching during transformation execution. Relations can be mapped to a coeg mbich
is defined using a more limited language than that at the relations level. Thenglatid
core express the same semantics but at different levels of abstraction.

There are two Eclipse M2M projects based on QVT, Operational QVT audbative
QVT [Eclipse Foundation, 2008]. Operational QVT allows the developeetme a QVT
transformation relation in the form of a mapping operation. The Declarat¥e iQstill in

development. Its ultimate goal is to provide [Eclipse Foundation, 2008]:
o A dedicated perspective for the Eclipse IDE to define QVT transformations

¢ An advanced editor with auto-completion and syntax colouring.

173

e An execution environment implementation.

e Anintegrated QVT debugger.

8.4.3 Model to Text Transformation (M2T)

The M2T project allows for the generation of text from models [Eclipsenéation, 2009].

There are five components of the M2T project:

e Java Emitter Template (JET) - Provides a code generation facility using JSBriike
plate files, where developers write templates for the code to be generappddP2003].
JET not only allows the generation of Java, but also structured langgagh as SQL

and XML.

e Acceleo - An implementation of the OMG Model Transformation Language (MTL

language specification.
e Xpand - A statically-typed template language.

e M2T Core - Invocation framework allowing clients to invoke model-to-text Sohs

independently of a model-to-text language.

e M2T shared - Consists of infrastructure elements that can be shareedretmodel-

to-text languages.

8.4.4 Model Development Tools (MDT)

The aim of the MDT project is as follows [Eclipse MDT, 2008]:
e To provide an implementation of standardised metamodels.
e To provide exemplary tools for developing models based on those metamodels.

Within the MDT project is the OCL component. This is used in MIKAEL for defmin
the CAVIAr Validation Model. The OCL component provides the following soi for
OCL integration into the Eclipse platform [Eclipse MDT, 2008]:

174

APIs for parsing and evaluating OCL constraints and queries on EMFImode

An Ecore implementation of the OCL abstract syntax model.

A visitor API for analysing and transforming the Abstract Syntax TreeT)A& OCL

expressions.

An extensibility API for clients to customise the parsing and evaluation envirnteme

used by the parser.

8.5 CAVIAr Model Manager

The CAVIAr-based approach to courseware construction is a systeamioach to the
development of CAVIAr models for courseware construction. The mamagt of CAVIAr
models, in MIKAEL, is the responsibility of the CAVIAr Model Manager. TRRAVIAr
Model Manager is built on the Eclipse Modelling Framework (EMF). The G#Wodel
Manager manages the updating of CAVIAr models created through the ERIF The
MIKAEL tool is based on the definition of CAVIAr in EMF. The CAVIAr metamels

are defined in ECore in the CAVIAr Model Manager.

Figure 8.5 shows the manipulation of the CAVIAr ECore metamodel using the EMF

editor. An ECore model is defined in EMF using the default tree-basedniseace.

8.6 Model-based Editors

The central components of the MIKAEL tool are the model editors devdlosing the
Eclipse Graphical Modeling Framework (GMF). The GMF editors provigedburse cre-
ator with a model-based user interface for courseware construction.

MIKAEL has two GMF editors, th&®omain Model Editorand theCourseware Model
Editor. TheDomain Model Editorallows the course creator to edit the CAVIAr Domain
Model and also allows for some elements of the learning context to be defihe@ourse-

ware Model Editorallows the course creator to edit the Courseware Model.

175

800 Java — mikaelZlow/model MIKAEL 2 ecore ~ Eclipse Platform — /Users/mark /Documents/workspace =

[Ei= |-G Q- | EEG | @S h ey [T AM3 Megam... [iSVN Reposit... $5Debug £0Team Synchr... <f=Plug-in Deve... [#CVS Reposit... &java

€ lowzhigh.atl [a'g caviar mikaelzhigh (@ sczxmLad fmj SCORM.ecore [b imsmanifest.xml f’m MIKAEL2 ecore fa'g MIKAELZ ecore &3 =8
» [LearningContext

» [DomainModel
v B synonym

= value : EString i
v H concept

am o |||

ynonyms : Synonym
ns : ConceptRelationship
ingRelations : ConceptRelationship
piRelationship
¥ 2 ConceptRelationshipType

~ NARROWER = 0

= PREREQUISITE = 1

- RELATED = 2
> H Competency
¥ [Learnerstarectype

» = name : EString
b & knowledgeConstraints : KnowledgeConstraint
» = entryLearner : EntryLearner
» & goalRelations : GoalRelationship
¥ E KnowledgeConstraint
= > KnowledgeConstraint

¥ [Goal - KnowledgeConstraint

ions : GoalRelationship
comingRelations : GoalRelationship
» [GoalRelationship

¥ £ GoalRelationshipType

» [LearningResourcel Model

» B EntryLearner

» = id:Estring

= = A=}
g, | a
L Frpmsiiies: o 53 3
| Praperty | value
Abstract % false

| Defaut value
ESuper Types
Instance Type Name

Interface % false
Name =

<>

J ! lsEeED)

Figure 8.5: Defining the CAVIAr metamodels in ECore using Eclipse

A GMF editor is not provided for the Learning Resource Model and treriag Con-
text Model in MIKAEL. A model-based user interface would not be an optimethod
of displaying this data due to its verbose nature. Instead the information i& thedels
is portrayed to the course creator using table and list based views. Weh#ined how
these views are used in Eclipse perspectives for the Learning Reddodsd in section

8.7.1 and for the Learning Context Model in section 8.7.2.

8.6.1 Domain Model Editor

The Domain Model Editoris principally concerned with the CAVIAr Domain Model. The
Domain Model Editorallows the course creator to create a Domain Model through an intu-

itive user interface.

Figure 8.6 shows a screen-shot of bremain Model Editor As shown, the environment

176

that the course creator defines the Domain Model in is comparable to otj@tiee tools
used in the educational domain such as mind-maps [Budd, 2004]. Treteatypes of
nodes that can be added and used imabmain Model Editoyconceptiodes andgynonym
nodes. Three relationship types between concepts are avallbRROWERRELATED

andPREREQUISITEA relationship is also defined to relate a concept to its synonym.

1| *caviar.mikael2low_diagram S o -
M| % Palette 4
== EEEER
</ o e D (= Domain Model
— — 4 Concept
(Storage_Stf » Concept-Concept:Narrower
o S
o (\ Relational Madeiling) - Concept-Concept:Prerequisite
|~ > — -
R Modelin D il n — Concept-Concept Related
I~ = \ saL)
r— S Synanym
4 Concept-Synonym
o == ——== = o W N =
~ ~ -
—D:iM 1 . < Data_ Definition angu:ge)/) L Hjafmnal,ca\(inf— D < i >(
e ool
<_7 o > Q SQL Select D) -
e S S T
v
€)

Figure 8.6: Screen-shot of domain model view

8.6.2 Courseware Model Editor

The Courseware Model Editois principally concerned with the Courseware Model in
CAVIAr. The Courseware Model Editoallows the course creator to create a Courseware
Model through an intuitive interface.

The editor has two node typewmpic nodes ancentryLearnernodes. There are two
relationship types betwedopicnodes PARTOF andSEQUENCEDAFTER There is also

a relationship to relate the graphical representation of an entry leameitioo to a topic.

8.7 MIKAEL Perspectives

The Eclipse framework allows for the definition of perspectives. A patye is a defined
set of editors and views. In this section we will examine the perspectivagraml for

MIKAEL. Each perspective supports one or more activities in the cewaseconstruction

177

process illustrated in figure 8.1 and can also be used to support thewavesvalidation
process activities illustrated in figure 7.1. In the following we outline eachpaetive and
the activities it supports in the courseware validation and coursewas&aotion processes.

These are as follows:
e Domain Perspective - For defining and editing a domain model definition.

— Courseware Validation Process - Determine Domain Model.
— Courseware Construction Process - Determine Domain Model, locate Igarnin

resources.

e Learning Context Perspective - For defining learning context informatidhe con-

text of the domain information.
— Courseware Validation Process - Determine Learning Context Model.
— Courseware Construction Process - Define Learning Context Moeegrgte
Courseware Model.
e Courseware Perspective - Allows for the development of a Coursdwadel.
— Courseware Validation Process - Import courseware, determine Vahddodel,
validate courseware, edit courseware.

— Courseware Construction Process - Edit Courseware Model, validates&

ware Model, export to courseware specification.

8.7.1 Domain Perspective

The domain perspective is made up of bemain Model Editora Domain Model Out-
line, Concept List View and the Learning Object Repository (LOR) Vievwhe Tomain
perspective allows the course creator to manipulate and create a Domadt telbe used
in courseware construction. Ti@wmain Model Editomgives the course creator a graphical
model-based environment in which to define a Domain Model, as outlined ins&cad.

As Domain Models used in courseware construction can be quite extemgiwdifficult to

178

view, MIKAEL provides the course creator with two ways to manage the DoiMaitke| at

the macro level - a Domain Model outline and concept list view. The DomaineMmatline

provides a graphical overview of the Domain Model view. The conceptiksy simply lists

all the concepts in the Domain Model, in alphabetical order, providing theseatreator

with a simple sorted list to find a concept. When the course creator clickscagbim the

concept list it is highlighted in thBomain Model Editor

® Eclipse File Edit Diagram i Search Project Run MIKAEL Actions Windew Help M D 4 3 = = (Charged Thul3:51 Q
anNo Domain — a i sject/caviar.mikael2low_diagram — Eclipse Platform 3
| et IR N SR - i EAEE RS e T3 [Courseware [Learning C... F Domain &'Java
| Lucida Grande (5 B B I |A- & g =< |0 |8 o8-8 | X B 3 |[100”

[m] i ceptli 527 0(4 caviar.mikael2low._diagram &3 [i] caviar.mikael2high_diagram | [instructionalDesignl.ocl | =8|
t i# Palette P

BCNF mik&as

Database_Architecture (= Domain Model @

Database_Systems R 4 Concept

‘, ..,

DML == ——— ReluedTo = —_ R e M ‘ cg:izp:_marmwer

ER_Modelling P

Fifth_Normal_Form narrowerThan Eon.:esn—p

rirst_fPiat_Form T oncept:Prerequisite

Four] al_Form - narrowerHHER /—’_\- narrowesT - Concept-

e Sy llarmal_Farm > oML oBL _ \Rz\iﬂuni\andszgi> Concept Related

Ha¥hing narrawerThan Synonym

Indexing narrowerThan

Information_Systems
Java_Programming

JDBC

Modelling
Multivalued_Dependency
Normalisation
Relational_Algebra
Relational_Calculus
Relational_Modelling
Second_Normal_Form

l/Tfﬂ;T\' narrowerThan Aameaililhe (,
|| =
rowerThan

Than

narrower
narrawerThan
Datzbase_Systems

e narrowerThan

<4 Concept-Synonym

3

saL
sQL_select € —
SQL_Views (77 Learning Objects 5 ~_ = O[3 Outline 2 _ EEs~=0
Stptage Sleuichires Addit | Title Description Farmat -
System_Catalog (=] SQL Tutorlal - Learn SQL DCU wiorlal to illustrate SQL Statements with Examg html — Lo
Third_Narmal_Farm 0 sqL Courses it OL Syntax with Interactive Testing)| || D -
T e =

Three_Layer_Model (] Manipula Math with Java tine of the description hem e s - -

o = =

(@) SQL Commands sutrate SQL Syntax with Examples hemi

-
" e | R

Figure 8.7: Screen-shot of domain perspective

Each concept in the Domain Model represents a potential learning neem/efcome

this learning need, the course creator must assign LOs to that concepDontain Model,

where the LO provides for learning on the concept it is assigned to. Tetldthe LOR

View is integrated into the domain perspective. This view allows for the autorsatadh

for LOs that satisfy the learning need represented by the selectedptandbe Domain

Model Editor.

The screen-shot in figure 8.7 outlines the domain perspective. The figannotated

A to D, indicating the different parts of the perspective as follows:

179

A - Concept List View.

B - Domain Model Editor graphical model on the left, tool palette on the right.

C - LOR View - outlining the LOs associated with the selected concept. The nietada

of the LO is also outlined in the view.

D - Domain Model Outline.

8.7.2 Learning Context Perspective

The learning context perspective is used for defining the CAVIAr liegroontext as out-
lined in section 5.4. The perspective is centred around the definition oilestereotypes,

where a learner stereotype is defined in terms of conceptual presurmwtekige and con-

ceptual learning goals.

New Learner Stereotype Delete Learner Stergfiype

E-Commerce Student
InformationSystemsStudent
SoftwareEngineer

‘Web Design Student

7] LearningContextCon i = O|| 7 PresumedKnowledgeyj = B[CoalView 2

BCNF
Database_Systems
ER_Madelling
Fifth_Normal_Form

Information_System:

Database_Architectur:
DDL

DML

Normalisation

[d] caviar.mikael2low_diagram 2 =0

=
S 5 5QL_ Views : Relational_Calculus® >
RelatedTa 3 E RelatedTa =

narro;

narrowerThan

[

narrowerThan

narro

narrowerThan

prerequisite

narrowerThan - narrawerThan
=
(Than narrowerThan .) < -

. v
—n - - T > Jalvl

Figure 8.8: Screen-shot of learning context perspective

180

Figure 8.8 is a screen-shot of the learning context perspective. Theamatrolling
element of this perspective is the learner stereotype view annotated wittu$#ig this
view the course creator can add new learner stereotypes and del¢itegesises. When
a learner stereotype is selected the views below it allow for the definition dfehming

Context Model as follows:

e A - Learner Stereotype List View.

B - Concept List View - lists the concepts in the Domain Model.

C - Presumed Knowledge View - drag a concept frommcept list view(B) to here

for that concept to be presumed knowledge for the selected stereotype.

D - Goal View - drag a concept from tlomncept list viewB) to here for that concept

to be a goal for the selected stereotype.

e E - Domain Model View - graphical view of the concepts in Domain Model, allows

the course creator to easily see the context of a given concept.

We have outlined the activities involved in creating a learner stereotype irAEILKn

a UML Activity Diagram, figure 8.9.

8.7.3 Courseware Perspective

The courseware perspective allows the course creator to edit andhge®AVIAr Course-
ware Model. This is done using ti@ourseware Model Editaand the entry learner view. As
outlined in section 8.6.2, the courseware model editor allows the courderceadit and
view topics and topic relations in a Courseware Model. Using the couregveaspective

the course creator can define entry learner conditions on cours@pérs, using a separate
Entry Learner View When an entry learner condition is selected in the Courseware Model
editor, theEntry Learner Viewdisplays the details of the entry learner condition and allows
the course creator to edit the entry learner definition.

In figure 8.10 we have annotated a screen-shot of the coursewapeptive, as follows:

181

Create new stereotype

/J')
»{ Name stereotype

Y
\4
2
Y
3 v
A Drag goal Drag presumed knowledge
Create new stereotype concepts to selected to selected stereotype
stereotype goal presumed knowledge
y 4 ¢
N [learning context
model incomplete] Select an alternative

3
7 stereotype
[learning context model complete]

Figure 8.9: UML Activity Diagram outlining tasks involved in defining learnirantext

e A - Courseware Model Editor On the left is a graphical model of the courseware,

while on the right is the tool palette for editing the Courseware Model.

e B - Entry Learner View There are two main parts of tletry Learner ViewThe top
of the view indicates the learner stereotype that the selected entry leanditian
affects. The lower part of the view lists the knowledge elements and cotopmara
associated with this entry learner condition. Buttons above this list allow thrseou
creator to add and remove knowledge elements to the entry learner conditioghh

the add and remove competency buttons.

e C - Learning Object Editor - This editor is activated when the course arehts
on a topic in the Courseware Model Editor. The view lists the LOs that aeeareded
by the selected topic. The learning object editor can also be used to add tLapscs

and edit the existing LOs associated with courseware topics.

182

M| =+ Palette >

4 EntrylLearner

4 Topic

4 TopicEntryLearners

< TopicRelationship_SequenceAfter
4 TopicRelationship_Contains

A TE

(S € :]

[EntryLearnerView i3 = O|(LearningObjectView & = B

(Add Competency) (Remove Competencies) ~ Learmerstereotype (ruipe 3] [SoftwareEngineer F

p—
1 | Concept | Cemparator. | Level |
(] DDL Less than 5

=) K1

Figure 8.10: Screen-shot of the courseware perspective

8.8 Model Transformation Manager

Model transformation technology is an integral part of MIKAEL. Modelrisformation
technology is used at any point in the course construction procesthatas the creation

of a new model. These are:

e Importing a Domain Model - Using model transformation technology for importing
data, allows MIKAEL to be flexible enough to be able to import domain models from
any source as long as a metamodel is defined for the source data andfartnan

tion from the source metamodel to the CAVIAr Domain Model's metamodel can be

defined.

¢ Importing Courseware Model for Validation - the MIKAEL tool can be useoport
a courseware definition, which was developed using some other careseanstruc-

tion tool, for CAVIAr-based validation.

183

e Courseware Model Generation - model transformations are used in HILKA de-
fine how a Courseware Model is generated based on the coursear@s&uction

concerns defined in the CAVIAr Learning Context Model, as outlined ré&g.1.

e Exporting Courseware - MIKAEL can export courseware constrlicti any course-
ware specification as long as a metamodel is defined for the target datangpe a
a transformation from CAVIAr Courseware Model's metamodel to the targéa-me

model can be defined.

When developing the Model Transformation Manager, we looked to baseattrans-

formation framework that was:
e Stable.
o Well established.
e Well supported.

¢ Allowed for both declarative and imperative transformation definitions - sointiee

CAVIAr transformation definitions could not be defined declaratively.
e Could be used with EMF models.

A range of transformation languages were evaluated based on the Wwedamecki and
Helsen, who surveyed model transformation approaches based ofettanes
[Czarnecki and Helson, 2006].

We decided to build the Model Transformation Manager on the ATLAS Toams-
tion Language (ATL) framework. ATL is a model transformation specificatamnguage
that uses declarative and imperative constructs. Declarative progransriime preferred
method of defining model transformations by expressing mappings froormetaemodel to
another asitis a direct mapping between model elements and it is intuitive . dtivpearon-
structs allow for the definition of transformation specifications that are diffio express
declaratively [ATLAS Group, 2006]. The language allows the usertimdenappings from

source metamodel constructs to target metamodel construets/[B et al., 2005]. ATL is

184

a well-established and stable model transformation language, which caedevith EMF
models. It also well supported by an active user group.

The MIKAEL Model Transformation Manager can also allow for data sesrthat are
not defined in the modelling technical space. These data sources canvegted as long
as an XML binding is available for the data source. The Model Transfiom#&anager
uses the ATLAS MegaModel Management Tool (AM3) for this. The AM3 (&\M3 XML
injector) can load in an XML source and create an XML model for the XMtadaurce.

The XML model can then be transformed to a domain specific model.

8.8.1 Importing a Domain Model

The first task in the courseware construction process, illustrated irefRyar is to load a
domain model. To do this, the course creator will generally source a domaiel inoch
some third party.

An ontology provided by some trusted third party can be used to define dATAV
Domain Model, or at least to provide a starting point. The Semantic Web makes use
ontologies to provide a common reference point for syntax used in welcafagns. With
the growing importance of Semantic Web applications, there is an increasmigentof
ontologies available [Hendler, 2008].

Semantic Web ontologies have an XML binding. In order for these ontoltglesused
the ontology definition must be mapped from the XML technical space to thellimgde
technical space resulting in the generation of a CAVIAr Domain Model. Tivexd XML
to an XML model, the AM3 XML injector is used in MIKAEL. When an XML model $ia
been generated, the XML model can be transformed into a CAVIAr DomaideMasing
ATL. In figure 8.11, we outline the steps involved in generating a CAVIAN2ain Model
from an ontology with an XML binding.

Examples of ontology and modelling languages that can be transformed imaiD

Model are as follows:

e Web Ontology Language (OWL) [W3C, 2004] defined ontologies - Thisestiain

185

ontology definition language used on the Semantic Web. OWL is based aiptiesc

logics and has XML syntax.

e XML Topic Maps (XTM) [Pepper and Moore, 2001] - An XML based apach to

create indexes, where topics are related to other topics.
e XML Schemata - An XML vocabulary definition.
e UML2 models - OMG defined software engineering modelling specification.

We exemplify the transformation in figure 8.11 by outlining how a SKOS ontology is

transformed to a CAVIAr Domain Model as follows:

1. Convert SKOS from an XML serialisation to XML ECore model that com®to the

XML metamodel, using AM3.

2. Transform the XML model into a CAVIAr Domain Model using ATL.

[xML Metamodel HCAVIAr Domain Metamodel |

Ontology
File
-_)IOntoIogy ModeII.)|SCORM Modell
Defined By _—
Transformation Definition
Transformation Realisation _______._ >
XML Projection)

Figure 8.11: Transformation of ontology XML file to CAVIAr Domain Model

As outlined the SKOS XML is loaded into an XML model using the AM3 XML injector.
The XML model is then transformed to a CAVIAr Domain Model ECore repnggtion
using ATL. The transformation definition can be found in appendix B. Heeshighlight

some of the key transformation rules as follows:

186

e XML elements, named “skos:concept” are transformed into a CAVIAr Domaidéi

concept concept2conceptile.

e XML elements named “skos:broader” are transformed into CAVlArrower rela-
tionship between CAVIAr conceptsSKOSRelationshipBroader2conceptRelationship

rule.

e XML elements named “skos:related” are transformed into a CA&ated rela-
tionship between CAVIAr conceptsSKOSRelationshipRelated2conceptRelationship

rule.

8.8.2 Importing a Courseware Model for Validation

The MIKAEL tool allows the course creator to validate courseware usitigl&r valida-
tion, covered in section 8.9. The course creator can also use MIKAERlidate course-
ware that has not been constructed using our tool. To allow for this, NEIKArovides the
course creator with the facility to import courseware.

Specification compliant courseware, such as SCORM coursewareasiy be im-
ported into MIKAEL by mapping the courseware specification metamodel to AvAT
Courseware Model's metamodel. We outline these mappings in more detail ims@&id.
More challenging is the importation of non-standard courseware, suliagstive Educa-
tional Hypermedia (AEH). In this section, we describe how to import one tfp&EH,
LAOS-based AEH (see section 3.2.2.1 for details on LAOS), into MIKAEL tfee pur-
poses of validation. More details on how we achieved interoperability betw&®S and
CAVIAr can be found in [Melia and Pahl, 2008].

To validate AEH defined by MOT (outlined in section 3.2.2.1), using CAVIAr, the
LAOS models must be transformed into CAVIAr models. To do this, a metamoddl mus
exist for LAOS and a transformation definition must be defined from the &At@tamodel
to the CAVIAr metamodels. We define two metamodels for LAOS, one for LAG®iEC
elements, based on the Common Adaptation Framework (CAF), and one fsEBhadap-

tive rules in LAOS, based on LAG.

187

A CAF ECore metamodel can be defined based on the CAF XML definitiometefi
as an XML Document Type Definition (DTD) [Cristea et al., 2007]. This Dddh be con-
verted to an XML schema using an XML editing tool, such as XMLSpy [Altov@)%].
This XML schema is then used to generate the CAF ECore metamodel [Stegttalrg2008].
Due to ECore’s superior expressivity, additional semantics can belaodtse ECore model

definition that are implicit in the DTD, as follows:

e An explicit link betweenLink and Attribute can be defined as only an implicit link

exists in the CAF XML DTD.

e A “value” attribute must be added to CAF elements that contain text as a means to

represent the text.

e Specify ordered relationships for elements that have an implicit ordering iG &

DTD.

The final CAF metamodel is illustrated in UML in figure 8.12.

{ordered}
CAF +0. . *

1
Lesson
0..1
— {GoalModel|‘-| +label |-
- +wei ght
DomainModel
{ordered}
+0. . *

+1..lo..* Link

Concept |- +label: String

+weight: String

0 +value: String
] S—

0..* 0. . %
Contents 1 - * 0..* - 1 - -
—.|Attr|bute|._. Name —.lReIauonl._ RelationLink
+value: String T -

+value: String +l abel: String
+type: String
+wei ght: String
+value: String

Figure 8.12: CAF metamodel defined using ECore

Once the CAF ECore metamodel has been defined, a transformation majmontpé
CAF metamodel to the CAVIAr metamodels can be defined. These mapping tefine

each modelling construct in the CAF metamodel maps to a CAVIAr metamodel gonstr

188

We provide details on the mappings we have used in our interoperabilityieqres in
[Melia and Pahl, 2008].

LAG rules are used to define adaptive behaviour in LAOS. In the CAGAurseware
Model adaptivity is defined by specifying restrictions on the sequendinguwseware top-
ics and/or restrictions on learner stereotypes that can access a gien Adaptivity in
the CAVIAr Courseware Model is defined using modelling constructdh siscdefining a
sequencing constraint relationship between topics. To transform tiptivaedeules defined
using LAG to CAVIAr Courseware Model constructs the LAG languagetrbesdefined
in the modelling technical space. We have defined a limited metamodel for the bAG a
stract syntax in figure 8.13. This metamodel allows for the representatibA®Gfin the
modelling space. A LAG rule can then be parsed to create a LAG model. Adraration
is defined mapping the LAG metamodel to the CAVIAr Courseware Model's metaimo

which is integrated with CAVIAr models generated from the previous CAF toarmation.

+then <<Enumeration>>
— STATEMENT ATTRCHAR
/\

|ACTION| IFSTATl |WHILESTAT| |SPECSTAT||FORSTAT| |BREAKSTAT
1..* +i f
ATT_VALUE L. 1
1..* C
+LAOSattribute: String '_.IPREREQI_‘|COND|TION
+value: String
+attributeCharacteristic: ATTRCHAR

Figure 8.13: LAG defined as ECore metamodel

A LAG “sequencing” rule specifies that when a particular part of the BARQomain
Model is accessed, a different part of the AEH is to be made available tedhser. An
example of a LAG sequencing rule is outlined in listing 8.1. This type of LAG rule is
made up of two different parts, a condition and an action. The conditiookshié the
attribute “title” of concepts in the domain model has been accessed - “aduEng the

LAG attribute. In turn, the action sets the LAOS “text” attribute to be shownevistbeing

189

the attribute being set.

Listing 8.1: LAG sequencing rule

IF (DM.Concept. title.access == ’'true’) THEN

(DM. Concept.text.show == ’true’)

This rule is parsed by the Model Transformation Manager and creatastance of the

the LAG metamodel - a LAG model, illustrated in figure 8.14.

.. -

+then :
actl:ACTION if1:IFSTAT H
Lit :
av2:ATT_VALUE c1:CONDITION avl:ATT_VALUE H
1 * .
+LAOSattribute: String = DM Concept.text +enough: boolean = false PREREQ +LAOSattribute: String = DM Concept.title B
+value: String = true +value: int = 0 +value: String = true H
+attributeCharacteristic ATTRCHAR = show +attributeCharacteristic ATTRCHAR = access H
transformation
realisation

+++++++

+targe
+name: String = DM Concept.title
‘‘‘‘‘‘ String = DM Concept.text +aggregationLevel : int = 4
+aggregationLevel : int = 4
+relatipns crl:CoursewareRelationship +ofitgoingRel ations
+name: String = seqAfter

+type: TopicRelationshipType = #SEQUENCED_AFTER l

Figure 8.14: Transformation of LAG model to CAVIAr Courseware Model

When a LAG model has been constructed for the rule in listing 8.1, the LAGwatéel
can be transformed into a CAVIAr Courseware Model. To do this a tramsftion mapping
from the LAG metamodel to the CAVIAr metamodels is defined. This LAG rule staites
DM.Concept.titleattribute is accessed show th&1.Concept.text attributeThe transforma-
tion maps this type of LAG rule to a CAVIAr Courseware Model where edttbate in the
LAG condition and action, is a courseware topic. The topic mapped to the “titi@jwte in
the LAG rule is the source topic of BEQUENCEDAFTERcourseware relationship. The
target topic of th6&EQUENCEDAFTERTrule is the topic mapped to the “text” attribute. We
demonstrate how this transformation would take effect through the exampéédraation

in figure 8.14.

190

8.8.3 Courseware Model Generation

Once the Learning Context Model has been defined, MIKAEL can bd tesgenerate the
Courseware Model. Again, here MIKAEL uses ATL to generate a Gauase Model from
the Learning Context Model. For this ATL transformation the Learning Cardel is
taken in as the input model to the transformation, and a CAVIAr CourseMadel is the
output.

The transformation definition is in effect a definition of the instructional detiguse
in the courseware, defining how the courseware construction canosgp to a course-
ware definition. Different transformation definitions result in differingu@eware Models.
For example one transformation could define a courseware that starts piith tmvering
more specialised concepts in the Domain Model and works towards topiesrogtbroader
concepts, another might do the opposite covering the topics that addoesiebconcepts
first.

An example of a transformation that takes the Learning Context Model anergtes
a Courseware Model can be found in Appendix B. This transformatiorsmapcepts
that are goal concepts for any learner stereotypes in the Learningx@dhodel to top-
ics in the Courseware Model. EntryLearner conditions are placed orstgpithat each
learner stereotype is delivered only topics associated with that stersogyad. Concep-
tual sequencing constraints are mapped to topic sequencing relatiorsgepdying that

one topic must be delivered before another.

8.8.4 Exporting a Courseware Model

The MIKAEL tool supports the export of a CAVIAr Courseware Moddb a TEL specifi-
cation, such as SCORM or IMS LD. This allows the courseware to be degloging one
of the mainstream LMSs such as Mocdte Blackboard.

In figure 8.15, we outline the transformations that creates a SCORM méifiléefsbm

a CAVIAr Courseware Model. As outlined the Courseware Model is foansed into a

2http:// noodl e. org
ht t p: / / ww. bl ackboar d. com

191

SCORM model, which is an instance of a predefined SCORM metamodel. Theeaém h
is to generate a SCORM manifest file, which is an XML file. The SCORM modet mus
therefore be converted to an XML file. To do this the SCORM model is tram&fdrto an
XML model that conforms to the XML metamodel. AM3 XML injector is used to gener

an XML document from the XML model.

ECore
A

|Courseware Metamodell%'SCORM MetamodelHlXML Metamodell

A A A
|Courseware ModeII.)| SCORM Modell.)|XML Model.—-—
Defined By _
Transformation Definition
Transformation Realisation
XML Projection ")
—-—>

Figure 8.15: Transformation from Courseware Model to SCORM XML Iigdlefinition

The ATL to transform a CAVIAr Courseware Model into a SCORM XML masif can

be found in appendix B.

8.9 Validation Manager

EMF has a model validation framewdrkhat allows for the definition of constraints on
EMF meta-models. These constraints are then checked on the corriggpBiMF models
constructed. The EMF validation framework allows for constraints to beeléfin Java
and the Object Constraint Language (OCL). We extended the validativiteséo check
that the Courseware Model adheres to OCL constraints defined in théACAdlidation
Model.

As described in chapter 6, the CAVIAr Validation Model is defined using-Othe

definition of constraints on the CAVIAr Courseware Model's metamodellesdbe defini-

“htt p: // www. ecl i pse. or g/ nodel i ng/ enf / ?pr oj ect =val i dati on

192

tion of what is structurally incorrect for a given CAVIAr Coursewaredél. To validate a
CAVIAr Courseware Model the OCL constraints are checked agaiesSC#VIAr Course-
ware Model defined by the course creator.

To provide for validation support of the OCL constraints defined in the Wtbd
Model, the EMF validation framework is extended to accept an OCL file, eéfas the
CAVIAr Validation Model, to be checked against a CAVIAr model defingdtie course

creator. An OCL constraint provider is defined and integrated into the EMiBation

service, using theonstraintProvidergextension point, where an extension point is a mech-

anism provided by the Eclipse Platform to extend its functionality.

The OCL constraint handling functionality is handled as a plug-in in Eclips@rder
to make Eclipse aware of the functionality provided by the plug-in, it must berideed in
a file calledplugin.xml In listing 8.2 we have provided the extension point definition for
the OCLConstraintProviderwhich defines th€@©CLConstraintProvideras the constraint
handler for packages with the URI wfww.caviar.dcu.ie this being the URI identifying a
CAVIAR metamodel.

Listing 8.2: Constraint provider extension point for OCLConstraintPravid

<extension
point="org.eclipse.emf.validation.constraintProvicse
id="oclProvider™
<b— Custom constraint provider using OCL documents>
<constraintProvider
class="org.eclipse.emf.validation.examples.ocl.OCLConaitttProvider”
category="Constraintsfrom.an.OCL.Document”
cache="false>
<package namespaceUri="www. caviar .dcu.ie¥/
<ocl path="constraints/validationModell.ock¥
</constraintProvider

</extension>

For full details on thelugin.xmldefining the plug-in to handle OCL constraints defini-

tions, please consult appendix B.

193

8.10 Learning Object Repository (LOR) Manager

To be useful, MIKAEL must provide the course creator with an easycheaechanism
for LOs. MIKAEL can interoperate with Learning Object Repositories Rpand auto-
matically search for LOs that could be used in a given courseware LDReManagelis
responsible for managing connections to LORSs, querying LORS, angiatirg the results
returned from LORs.

The LOR manager uses two main strategies for searching LORs:
e A screen-scraping approach [Hemenway and Calishain, 2003].

e A service-based query approach [Simon et al., 2005].

8.10.1 Screen-Scraping LOR Queries

The screen-scraping approach is carried out by defining a LO qeesyURL, and passing
the URL to the LOR of choice. Parameters such as the keywords to use iediuh sire
passed in the URL. The result is returned as HTML. This HTML is parsed bustom
parser class that is aware of the structure of the HTML returned by the. 0®e parser

then generates a CAVIAnetadatanodel from the result.

:LearningSourcelLinkView :HttpClientParser ‘EdnaXmlParser

| |
. —

getData(url,concept)

%___

[
|

getData(responseBodyAsStream, concept)

- - - - - - ™TtIUAtaT — T~~~ =

|

|

|~ — —:WMeTaTaTa™ — ~ ~ 1 |
I I

I I

Figure 8.16: UML Sequence Diagram depicting how the EDNA LOR is quersag the
screen-scraping approach

In figure 8.16, we have outlined the main classes involved in the screaphsgrap-

194

proach used to query the EDNA LORAN instance of this class calls thtpClientParser
which is responsible for screen-scraping LOR queries. The resulii®fscreen-scrape

is passed to th&dnaXmlParsetto parse the result and builetadatamodels, from the
CAVIAr Learning Context Model, to be returned to thearningSourceLinkView The
LearningSourceLinkVieywopulates the metadata section of the LOR view, as outlined in
section 8.7.3, allowing the course creator to analyse the details of the L@oWwdar more
LORs to be integrated into MIKAEL the Abstract Factory pattern [Gamma et@95]1

is used. This pattern enables delegation to a different parser depeandinbat LOR is

scraped.

8.10.2 Service-based LOR Queries

There is currently a concerted effort to standardise how LORs angeguesing a LOR
interoperability specification such as the Simple Query Interface (SQI) fsehal., 2005].
Complementary to this approach is the development of a LOR query langkramen as
the ProLearn Query Language (PLQL) which has been developedisplly for the query
needs of LORs [Ternier et al., 2008]. Here, we look at how theseoappes can be used to

query LORs using MIKAEL.

:LearningSourcelLinkView :PLQLManager :SQIManager :LOMParser
T T I T
: - [1

generateQuery(concept) | |
| |
< --=--=-=-=--- | 1
squery | |
>
searchSQILORs|(query) D |
- --------=-- R !
‘Result | ! |
| |
'
parseResult(Result) | .
>
parseLOM(IolmMetadata)
¢ |
_______ :Metgdata
|| ¢ ‘Metadata — — ~ |

Figure 8.17: UML Sequence Diagram depicting how SQI-compliant LORdeaueried
using PLQL

Sht t p: / / ww. edna. edu. au/

195

Figure 8.17 outlines an UML Sequence Diagram outlining the classes inviolaesQl-
based query of a LOR using MIKAEL. The Sequence Diagram descel@ocess where
thePLQLManagergenerates a query. As PLQL has various levels of expressive pineer
PLQLManageris responsible for generating PLQL with the correct expressivity lemel f
the LOR(s) being used by the course creator. The query then useQtinge®ager, to wrap
the PLQL in SQI and send it to the LOR(s) of choice. The result of thisygieet OM
definitions for LOs and is parsed by th®MParser generating CAVIAmetadatanodels.

We note that various standards have been used together here. The caator may
wish to use a different combination of standards and specificationsxdonme the LOR
may return Dublin Core [DCMI, 2006] rather than LOM. To allow for this thbséract
Factory pattern [Gamma et al., 1995] has been employed here also, allawitige fpars-
ing the different specifications and standards in MIKAEL to be delegatespégialised
classes. This increases MIKAEL's maintainability as the parsing conceeparated into

specialised classes.

8.11 Chapter Conclusion

In this chapter, we have described the MIKAEL tool. MIKAEL provideslwmaport for the
CAVIAr-based courseware construction process, also outlined in ltlaister. This course-
ware construction process allows for the definition of CAVIAr models forghepose of
courseware construction. As part of the courseware constructime$s the course creator
can validate constructed courseware using the CAVIAr models.

MIKAEL provides a proof of concept tool for validating coursewasing CAVIAr. The
courseware construction process illustrates how the validation proctigties in chapter
7 can be integrated into courseware construction, thereby relieving nidcl burden of
creating CAVIAr models solely for validation.

We note the courseware construction process can be aligned with theOWtsslel
Driven Architecture (MDA) approach to MDE [Frankel, 2003]. Cawsre is created us-

ing three levels of abstractions that progressively get more implementatenten. Re-

196

quirements defined in the Learning Context Model can be aligned to the Gatigmunde-
pendent Model (CIM), the Courseware Model is aligned to the Platfadapendent Model
(PIM), as the CAVIAr Courseware Model is standard/specificatiortiraéurhe Courseware
Model is then used to create courseware in terms of a courseware cgtéaifj a Platform
Specific Model (PSM), where the courseware specification is the “phatfo

MIKAEL was developed using the Eclipse framework, using EMF to manag€RVIAr
models. User Interfaces were developed using GMF to help the authdirte thee Domain
and Courseware Models. Eclipse perspectives were designeddatfmimajor steps in the
courseware construction process, defined in figure 8.1. Modefforamstion technology
was used to define how courseware requirements in the Learning Cofdeei could be
used to generate a Courseware Model. We also demonstrated how Ciétgeaperabil-
ity is achieved through model transformation technology. The validation wiseware is
achieved by integrating an OCL Checker with the EMF validation framewohks dllows
the course creator to validate courseware in MIKAEL using OCL. MIKAEN be easily
integrated with LORs, using the LOR manager component.

The MIKAEL Model Transformation Manager component uses ATL toraefnodel
transformations. One issue we had with ATL was that it is not possible to sopsce
model constructs to the target model if those source model constructsisextas the basis
for a transformation. This was a problem when generating a Courséwadel as when
generating a Courseware Model the Learning Context Model must alsvdilable for
validation. In generating the Courseware Model, the Learning ContexteMmnstructs
were used in the transformation and therefore could not be copied to\thg generated
Courseware Model. To overcome this problem a second transformatisrdefamed to
merge the Learning Context Model with the newly created CoursewareMathis ATL
transformation definition can also be found in appendix B.

In chapter 9 we will evaluate the use of MIKAEL for courseware corsion in terms
of its user acceptance. MIKAEL was used extensively in user trialsuaiad as part of the

CAVIAr evaluation.

197

Chapter 9

Evaluation

9.1 Introduction

The evaluation of our research must be viewed in the context of our atigiaearch prob-
lem and how we have proposed to address this problem. In chapter 1wiéédthe need
for automated courseware validation as part of the courseware cttitatrprocess, where
validation ensures that constructed courseware satisfies pedagmgicabn-pedagogical
requirements defined by the course creator.

We identified the followingesearch challenge# order to achieve validation of course-

ware in section 1.2:

1. Identify the data available for courseware validation pre-deliveryrmgef course-

ware requirements as defined by those involved in courseware cditruc
2. Investigate how the courseware requirements can be represepliedigx

3. Develop an approach to validate courseware using the courseagaiisaments. This
approach should be optimised towards personalised and personalmaisieveare, as

itis a major trend in Technology Enhanced Learning (TEL) [Wade andnfsth 2007].

4. Investigate how courseware validation can be integrated with existingpesgare

construction tools.

198

5. Design and implement a proof of concept application that clearly validabese-

search in terms of its feasibility.

6. Evaluate the research by investigating user acceptance of cotgs@hidation within
courseware construction in general and our approach to validatiomtioydar. User

acceptance looks at the following:

e Usability - The validation approach and its tool support must be usable by the

course creator.

e Cost Effectiveness - The validation approach must be cost effdéntiggms of

course creator effort.

o Effectiveness - The approach captures courseware problemequidements
effectively. The validation approach must be able to validate problems iseou

ware that the course creator deems to be important.

¢ Modifiability - The course creator must be able to customise the validation con-
straints criteria according to his or her own requirements. Validation stippor
must be flexible enough to be integrated with the TEL specifications used by

the course creator in courseware construction.

e Performance - The performance of our validation approach must lepiatde

when compared with the state of the art.

In chapter 4 the courseware construction concerns were identifiedcothiseware con-
struction concerns represent the data available for coursewaretialigee-delivery. This
addresses research challenge 1. Based on the courseware at@rsttoncerns we de-
fined the Courseware Authoring Validation Information Architecture (G&Y]in chapter
5 and 6, as a set of models and modelling constraints that allow for the expfpicésenta-
tion of courseware construction concerns and courseware requitgraddressing research
challenge 2. The activities involved in validating courseware using CAVi&re defined in
chapter 7, satisfying research challenge 3. The design and implemenfaiproof of con-

cept software application was described in chapter 8. This softwaosyrkas MIKAEL,

199

allowed for courseware construction and validation based on CAVIAKAEL demon-
strated the feasibility of CAVIAr courseware validation and satisfies rekezhallenge 5.
In chapter 8 we also outlined how CAVIAr-based validation could be intedravith the
state of the art through model transformation technology. This addnessssch challenge
4.

In this chapter we address our only outstanding research challenge)uate the user
acceptance of our approach to courseware validation (challenges6).adceptance is as-
sessed by evaluating the effectiveness of our approach to captusews@re requirements,
the cost effectiveness of the approach, its usability, modifiability andpednce, as de-
fined in the research challenges.

In the next section (section 9.2), we will outline the evaluation strategies thiewe
used to evaluate user acceptance. After describing the evaluationissategvill evaluate
each user acceptance characteristic using one or more of the evaltiatiegiss. The user

acceptance characteristics were addressed as follows:
o Effectiveness - Section 9.5.

Cost Effectiveness - Section 9.4.

Usability - Section 9.3.

Modifiability - Section 9.6.

Performance - Section 9.7.

We conclude the chapter by summarising our findings in section 9.8.

9.2 Evaluation Strategies

There were three principle strategies taken to evaluate the researcheaided in this the-

sis. These were:

e Empirical Study - An empirical study was carried out through the MIKAEEnsi-

als. The MIKAEL user trials looked at usability, course creator peszkost and

200

effectiveness of CAVIAr validation and were then asked questionsigirguestion-

naires. Assessing user satisfaction did not include formal user testing.

e Analytical Study - We methodically analysed the suitability and effectiveniesaah
CAVIAr data model defined in this thesis.

e Comparative Study - Modifiability and performance were evaluated thraugdm-
parative study with the state of the art.
9.2.1 Empirical Study

As part of the evaluation of the MIKAEL tool, described in section 8, weiedrout user
trials with course creators from industry and academia. The aim of thesé¢riats were as

follows:
e Evaluate the usability of the MIKAEL tool in terms of its user interface.
e Evaluate the usability of the CAVIAr models.
e Evaluate CAVIAr-based validation effectiveness as perceived bgdhese creator.

e Evaluate CAVIAr with respect to its effectiveness in capturing the couase con-

struction concerns to allow for courseware construction.

e Evaluate CAVIAr with respect to its perceived efficiency when used irsewvare

construction (such as that found in MIKAEL).

We will describe the MIKAEL user trials in detail in section 9.3. The user tealits
are then described in section 9.3, 9.5 and 9.4 as part of our evaluatiorMdACdsability,

effectiveness and cost effectiveness respectively.

9.2.2 Analytical Study

In evaluating the effectiveness of the CAVIAr data models we analyseQA®Ar models
in terms of two types of criteria, structural criteria and semantic criteria. sinalccriteria

looks to evaluate theoundnesandcompletenesef each CAVIAr metamodel. Semantic

201

criteria takes into consideration application-specific information in orderatuate a given
CAVIAr data model. In section 9.5.1 we provide details of the approachtosmahlytically

evaluate the CAVIAr data models, and provide results from our evaluation.

9.2.3 Comparison with the State of the Art

We have evaluated CAVIAr validation in terms of its modifiability (section 9.6) agvfiqp-
mance (section 9.7) by comparing it with the state of the art.

We evaluated modifiability in CAVIAr validation using a scenario-based aggr&nown
as ALMA (Architecture Level Modifiability Analysis) [Bengtsson et al., 200ALMA is
used to compare the modifiability of CAVIAr-based information architecture thitrstate
of the art in courseware interoperability and courseware validation.dsider the modi-

fication of the following key validation concerns:

e A change to the native domain knowledge specification that is used for theATA

Domain Model definition.
e The courseware specification used is changed.
e The validation criteria must be changed.

In evaluating CAVIAr validation performance, we compare the simulatioredbaalida-
tion approach, the primary approach used in the state of the art, with CAAnstraint-

based approach in terms of its time complexity.

9.3 Usability

In this section we give details on the MIKAEL user trials that we have corduand
present the results of the MIKAEL user trial related to usability. The follgngnbsection,
section 9.3.1, outlines how the user trials were conducted. In subsecti@v@&3detail
the participant demographic that took part in the user trials. In section 9e83Begent the
usability results from the user trials. Other results from the MIKAEL usetstridll be

presented in subsection 9.4 (cost effectiveness) and section 9.34€CaéfNectiveness).

202

9.3.1 MIKAEL User Trials Overview

The MIKAEL user trials were conducted as a series of one-to-one tigomahe MIKAEL
tool with course creators (details of the participants will be covered in tkiesabsection).
In these tutorials the participant was shown how to create new coursewaceordance
with the courseware requirements for the case-study in chapter 7, usihDKAEL tool.
We did not allow the course creator to manipulate the courseware constrdaiatly, as
it was not feasible to teach the functionality of MIKAEL as well as demonstatese-
ware construction within the time constraints of the tutorial. The format of theilgor
involved intermittently asking the participant questions while constructing eaan® us-
ing MIKAEL. We followed this format so that the questions were about thersmware
construction activities that had just been witnessed. This limited the cognéiveud of
the survey allowing the course creator to concentrate on how MIKAELed f@r course-
ware construction. The survey questionnaire we used in our expergaarie found in
appendix C. The evaluation survey was predominantly quantitative in nawtiread some

qualitative questions. The user trial structure is detailed below:

1. Background - We initially presented an introduction of the coursewamstruction
process, as defined in chapter 8.2, to participants. In this presentationtived
how MIKAEL supports the courseware construction process by pimyid user in-
terface (Eclipse perspective, defined in section 8.7) for each of theconamseware

construction activities.

2. Survey Session - The participant answered questions related toutseware con-

struction process to gauge their understanding - results in section 9.4.

3. Domain Model Editing - This part of the tutorial consisted of importing a SKOS
ontology into MIKAEL and editing it according to the databases courseveaygire-
ments in section 7.2. The participant was also shown how to search for $i@g u
MIKAEL and how to add a LO to a concept. At this stage we also showed to the
participant how to add conceptual sequencing constraints betweeppterio the

Domain Model.

203

4. Survey Session - The participant answered questions related to thaibblodel -

results in section 9.3.3.1.

5. Learning Context Model Editing - This demonstrated how a learnerotygre is

defined in terms of the courseware learning goals and presumed knewledg

6. Survey Session - The participant answered questions related toah@rgContext

Model - results in section 9.3.3.2.

7. Courseware Model Editing - Participants were shown how to genefabeiseware
Model from the requirements defined in the Learning Context Model. We ¢ixe
plained to the participant how the Courseware Model is generated theoungipping
from the Learning Context Model to the Courseware Model and thatdheseware
generation definition is independent of MIKAEL's programming code. \&man-
strated how to edit the generated Courseware Model, and how requirededimed
in the Learning Context Model are mapped to the Courseware Model. eiesd
to the participant how personalisation is defined using entry learner carslititar-

ticipants were also shown how to add/edit/delete LOs to/from coursewars topic

8. Survey Session - The Participant answered questions related teeG@ue Model

editing - results in section 9.3.3.3.

9. Courseware Validation - Participants were shown how coursewkdatan is achieved
by firstly showing them an editable CAVIAr Validation Model defined in OCldan
then validating courseware. We showed participants that the Validation INkbde
editable to ensure that they understood that the Validation Model is nobptre
MIKAEL's programming logic but is a separate and editable definition of what
correct for a given courseware definition. The CAVIAr Validation Mbdsed a con-
straint from each of the type of validation rule defined in section 6. Theseware
created in the previous steps was then validated and the validation resdtshoam

to the participant for inspection.

204

10. Survey Session - The participant answered questions related tifettteveness (re-

sults in section 9.5) and usability (usability results in section 9.3.3.4) of validation.

11. Concluding questions - After the courseware was created andtealjgrrticipants
were shown how to export the courseware created into a SCORM pacKeys
SCORM package was then imported into the Moodle LMS. This allowed theeours

creator to see how courseware developed using MIKAEL is delivered.

12. Survey session - The participant answered general questgarslireg the usability
(results in section 9.3.3.4) and effectiveness (results in section 9.5)\diAtAased
courseware construction. We also asked the course creator abqgtémial time
and cost saving (if any) that could be achieved by using MIKAEL fanreeware

construction (results in section 9.4).

All questions were asked orally, allowing the participant to focus visuallyhertrial
task. Each “survey session” consisted of a set of closed questidresevhe participant
answered using a five point Likert scale [Likert, 1932] and then orem-@mded question
that allowed the participant specify additional comments about the prevmuseware
construction stage. At the end of the trial the participant could add commieots the
MIKAEL tool or CAVIAr-based courseware construction, in genetalvas not compulsory

to answer any question.

9.3.2 MIKAEL User Trials Participant Details

Courseware construction is an expert activity, these experts areta@lg&nown as course
creators, as defined in section 4.2. In our user trials we assembled a sanpfecourse

creators (n=14). Participants in the sample had a wide variety of baakdgou
e Academic.

— School of Computing in Dublin City University.

— School of Computing in the National College of Ireland.

e Industry.

205

¥ Courses managed and
delivered

of participants

¥ Courses developed or
adapted

0 1to3 4to10 10+

of courses

Figure 9.1: Breakdown of participant knowledge

— The financial services sector.
— The IT sector.

— The telecoms sector.

In figure 9.1, we have illustrated the knowledge breakdown of the tridalcgzants
as defined by the participants themselves. All considered themselves tmitiarfar an
expert in e-learning, while 10 participants (71%) considered themsedwaifidr or expert
in e-learning authoring, 12 participants (85%) stated they were familiar wigopelised
e-learning, but none considered themselves an expert in persorelisaching.

Figure 9.2 outlines the participants experience in delivering coursedsmh&reating
or adapting courses. This shows that all of the participants in our tria Halivered or
adapted courses and that the majority of the participants are experts,jtdoimg than ten
times.

Through the survey we also assessed the types of courses the patsitipd created or

adapted and found that seven participants had created/adaptedsdouesmdemia, ten had

206

100% - /
90% - / &l

80%
70%

60% | /
o

50%

= Expert

® Familiar

% of participants

NN

40% ¥ No knowledge

30%
20%

10% -

0%

Use of e-learning e-Learning authoring Personalised e-learning

Aspects of e-Learning Knowlege

Figure 9.2: The number of courses participants have managed andelisad the num-
ber of courses participants have adapted or created

created/adapted courses for industry training, while three participadtsrbated/adapted
professional training courses, such as a project management.course
9.3.3 MIKAEL User Trial Survey Results

In this section we will outline the MIKAEL user trial survey results related tahilgy.

9.3.3.1 Domain Model Editing

After demonstrating importing and editing a Domain Model in MIKAEL we asked the
participants a number of questions. Questions can be found in Appengic@on 3. In

figure 9.3 we outline the results from this survey related to usability.

9.3.3.2 Learning Context Model Editing

After the Participants are shown how to define a Learning Context Modhel.participant
was then asked questions on defining a Learning Context Model. Questiarbe found in

Appendix C, part 4. Figure 9.4 outlines the result from this survey retatedability.

207

of participants

simple
appeared simple
perspective
domain concepts
appeared simple

Modelling notation used made sense
with domain concepts

Creating a new MIKAEL project appeared

Importing an external knowledge source

The domain model view was intuitive

It appeared easy to use the domain model

It made sense to associate learning resources

It appeared easy to add learning resources to

The metadata on LOs was sufficient to make a
decision to add the LO or not

Adding conceptual sequencing constraints

“ Strongly Agree
& Agree

Neutral
& Disagree

& Strongly
disagree

Figure 9.3: Domain Model editing survey results

9.3.3.3 Courseware Model Editing

After demonstrating to the participants how a Courseware Model is geddrata the

Learning Context Model we demonstrated MIKAEL's courseware medéing function-

ality. The participants were then asked about their sentiment towards thee@@ue Model

and how it is defined. Survey questions can be found in Appendix €5pdn figure 9.5

we outline the results of this survey related to usability.

9.3.3.4 Post-validation

After validating courseware, we asked the participant a variety of questidiow they felt

about CAVIAr courseware validation. These questions can be fouAppendix C, part 6

and 7. The survey results related to usability are outlined in figure 9.6.

208

14

12

10

“ Strongly agree

“ Agree

of participants

Neutral

& Disagree

& Strongly disagree

Defining learner It appeared Terminology Terminology
stereotypes for easy to use the used was used was
my course learning intuitive consistent
seemed simple context
perspective

Figure 9.4: Learning Context Model editing survey results

9.3.4 Discussion

As outlined in the graph in figure 9.3, participants were positive about Domade! edit-
ing. Most participants thought creating a MIKAEL project and importing exdeknowl-
edge was simple. Domain model editing usability is not a major concern as the majority
of participants found the domain model view intuitive and the perspectiveaapd easy to
use. Using the Domain Model to drive a search for LOs was something that seade to
all participants, with 85% of participants indicating they thought it was easgid@d.O to
a concept. The majority of participants found the metadata displayed abivend @ gave
enough information to decide whether or not to add a LO to a concept. Pharéeipants
(23%) mentioned that it would be useful for MIKAEL to provide a way foe ttourse cre-
ator to preview a learning resource. One participant, in particular, ntteatid be useful
to allow users to fully review a learning resource before adding it by aligwhem to link
directly to the resource from within the tool”.

All participants thought creating a learner stereotype in MIKAEL was simgget{on

209

14 1
12
w10
=
o —
2 g /
£
m
o 6 7
“—
°©
=
4 -
“ Strongly
27 agree
0 T T T T T T T
-
i © ° c S v @ o agree
T 2 - 5] n & B 5 v
o = @ a u o
U v o v o c
2 € 3 5 £ s 8 Sz
2 2 % 2 B] o8 Neutral
= o —)) E 0 o 2
o = j—4 o4 =]
2 k| 85 3 % S & g o
o £ w X =B % ke 7= % = E
b=] = i) o o T T o "
o - oo o = = i
8 g g 2 c T E g e 2 g 2 o= i Disagree
—— —_— w
w g) = w v - E an i g = B
< 2 @ - 2 S o T C c 2 = c
e = g 2 c o ® 2 = S s 20
3 o o [} o —
o 8 L2 o Do S n % v 5 - g
£ & B g 8= = 5] £ e = 9 & Strongly
© =] 0 .
2 £ :£§ 8§ 28 = 3 £ disagrea
1] o n c = U S
2 o =] o < T
4 c = =] = o c w
@ o 8 5]] o = S
© 5 Q =1 I @ =
c (<1} jo. -
S 3) = [@
—_ g c [l = L
] © i = -
] = c
< = - 3
(= e

Figure 9.5: Courseware model editing survey results

9.3.3.2), with one stating that it was a good way to represent the dynamiaagfd@ourse-
ware requirements. Nearly all found the learning context perspectiviéivie. Terminology
used was found to be intuitive and consistent, by the majority of the participamesxam-
ple of this kind of terminology consistency is being able to relate concepts inghming
Context Model with concepts in the Domain Model. We believe that these resuts a
vote of confidence in the underlying CAVIAr Learning Context Modebat®ol to define
courseware requirements.

We surveyed the participants on their opinion on how MIKAEL allows for tbarse

210

14 7

12
_ 107
3
E g ~ Strongly agree
:E_ = Agree
& 6 - Neutral
‘s
® 4 & Disagree
& Strongly disagree
5 -

| understand | was waitinga | found creating
how validation long time to get a course
works my results confusing

Figure 9.6: Usability survey results after validating courseware

creator to edit a given courseware definition by editing the CAVIAr Cenese Model, the
results of this can be found in section 9.3.3.3. We found that most participadésstood
how the Courseware Model was generated at a high level (93%). péostipants also
thought MIKAEL's approach to creating a Courseware Model washilexand recognised
that the instructional design being used in the transformation definition ceubthdnged.
Participants felt they understood how to edit the learning resourcesiusediven topic.
Two participants gave a negative result regarding the intuitiveness ofdatelling notation
used for the Courseware Model, with the remainder giving a neutralr{€ipants) or pos-
itive answer (6 participants). The majority of participants gave positivevarssregarding
their understanding on how courseware adapts to a learner and hofin®skguencing re-
strictions on the Courseware Model, although one person gave a reegatiwer for each.
We believe that this was due to a misunderstanding with regard to the CAVIAelfirad
notation used in MIKAEL. One participant noted “the stereotype namerdrylearners
would be useful”, and another said the “arrow [is] pointing the wrong feayhe seqafter

[topic] relationship” indicating that there was some confusion with definingr€sware

211

Model constructs.

Nearly all participants (except for one who gave a neutral respamsigrstood how
validation worked. No participant felt that validation took an unreasorebleunt of time
to complete (seven to ten seconds). Although this result would be influemctte com-
plexity of constraints defined and the size of the CAVIAr models. This isgishybbecause
validation is an irregular (in many cases once-off) courseware catistnactivity.

From these results we can conclude that the course creator found eddiAVIAr

models intuitive during courseware construction in terms of:
e The CAVIAr courseware construction process.
e Using the CAVIAr models for courseware construction.
e The implementation of the CAVIAr models in MIKAEL.

e The validation of constructed courseware using CAVIAr through MIKAE

9.4 Cost Effectiveness

In this section we evaluate if there are cost implications associated with usiay A€
based courseware construction process. To do this we surveyeskaraator’'s sentiment
towards using MIKAEL for courseware creation with regard to cost imptica. Cost was
judged in terms of the time and capital investment required for courseweaéiam. The

survey questions looked at the following:

e Is there a significant learning curve associated with initially using CAVIasdd

courseware construction?
e Did the course creator find MIKAEL useful?
e Does the course creator think MIKAEL is time and cost effective?

e Does the course creator think that it will be easier for him or her to rexistirey

learning material with MIKAEL?

212

9.4.1 MIKAEL User Trial Survey Results

14
12
£ 10
8
g 8
£
8 6
e
(=]
ETY 4
5 “ Strongly agree
“ Agree
0 f
Neutral
“ Disagree

“ Strongly disagree

| understood the main CAVIAr

courseware construction steps

| understood the purpose of the

domain model

| understood the purpose of the
learning context model

| understood the purpose of the

courseware model

CAVIAr-based courseware construction

will offer cost and time savings

Figure 9.7: Participant understanding of the main aspects to CAVIAr and&Aased
courseware construction through MIKAEL

After an initial presentation on how MIKAEL constructed courseware bijding up
CAVIAr models we asked the participants questions to ensure they unoigtstas CAVIAr-
based courseware construction worked and to investigate if the participald see poten-
tial for cost savings in using MIKAEL. The results of this are presentdijime 9.7.

Figure 9.8 outlines the results of the MIKAEL survey associated with theacwbtime
of using MIKAEL as perceived by the course creator. These suiuegtions were asked

at the end of the MIKAEL user trial.

213

14 -
12 -

10 7

w

£

a g - Strongly agree
Q

B & Agree

2 6 -

= Neutral

e 4 - & Disagree

W Strongly disagree

| think MIKAELisa | think MIKAEL I think it will be
useful tool offers cost savings easier to reuse
learning resources
with MIKAEL

Figure 9.8: MIKAEL survey results relating to the cost effectivenedg b{AEL

9.4.2 Discussion

The questions after doing the MIKAEL user trial show that all participamisifl MIKAEL
useful. Most participants (71%) thought MIKAEL would produce ceware construction
cost savings, with the remainder of the participants giving a neutral an$hie is a marked
improvement on the 43% who thought MIKAEL would produce cost savimgs to seeing
the MIKAEL demo (figure 9.7). Participants see MIKAEL as an enablettierreuse of
existing learning resources. From this we can conclude that the coeegercdoes see cost
benefits associated with reuse in MIKAEL. Figure 9.8 also indicates thaseaweators
see MIKAEL as a useful tool and they think it is easy to reuse learninguress with
MIKAEL.

We also believe MIKAEL could offer significant cost savings indirecthe da its rela-
tively low training requirements. This is based on the fact that after juse&ibtroduction
on how the tool works the majority of course creators indicated that thegrarwbd each

element of CAVIAr-based courseware construction, as indicated inrttphgn figure 9.7.

214

9.5 Effectiveness

We evaluate the effectiveness of CAVIAr in terms of an:

e Analytical evaluation of CAVIAr for defining the course construction cems and

represent constructed courseware.

e Empirical evaluation of course creator’s perceived effectivenebedCAVIAr meta-
models for courseware validation, evaluated through the MIKAEL usds wiztlined

in section 9.3.

9.5.1 Analytical Evaluation of the CAVIAr Data Models

In evaluating the effectiveness of the CAVIAr data models we define twastgperiteria,
structural criteria and semantic criteria. Structural criteria looks to evatbhatoundness
and completenesef the CAVIAr metamodels. Semantic criteria takes into consideration
application-specific information in order to evaluate a data model. Althoughsistencies
with certain structural criteria definitions may be disregarded, the CAVIAamedel must
satisfy its semantic criteria.

Guizzardi et al. outline how to determine if a Domain-Specific Modelling Laggua
(DSML) is sound and complete by comparing the metamodel with a well-establikhed
main conceptualisation, such as an ontology [Guizzardi et al., 2005}y défene a mod-
elling language asoundwhen every modelling primitive can be represented in the domain
conceptualisation and they define a languagepagpletevhen every concept in the domain
conceptualisation is represented in the modelling language. To establishutitness and
completeness of the CAVIAr metamodels, we mapped each metamodel to a waedledefi
conceptualisation that represents that metamodel’s course construgtaroWe define
a metamodel asoundwhen all elements, or groups of elements, in the metamodel can be
mapped to an element, or group of elements, in the domain conceptualisatiorfiviéeal
metamodel asompletewvhen all elements, or groups of elements, in the domain conceptu-

alisation can be mapped to an element, or group of elements, in the metamodel.

215

To establish if arincompletemetamodel isufficientto satisfy the information needs
of validation we define a minimal level of completeness that the metamodel mistech
Should a metamodel be found to besoundwe establish if there is adequate rationale for
the inclusion of extra modelling constructs in the metamodel not in the domainptoiate

isation using the literature.

9.5.1.1 Domain Model

The CAVIAr Domain Model can be mapped to the Simple Knowledge OrganisStiat-
ture (SKOS). We use SKOS as it is a “light weight, intuitive language foelbping and
sharing new knowledge organization systems” [Miles and Bechhof88]26BKOS aims
to provide a simple knowledge structure similar to that which was needed f@AWBAr
Domain Model, which as stated is “a knowledge structure, describing ptsaad rela-
tionships between concepts” (section 5.3). SKOS is an established toalcsgtion for
representing conceptual structures that is currently undergoing Wiidd Web Consor-
tium (W3C) standardisation.

Section 5.3.3 illustrated how each of the CAVIAr Domain Model constructsbean
mapped to a SKOS modelling construct, meaning the CAVIAr Domain Model’'s me&imod
is sound. Although it is sound, the Domain Model is incomplete as the followinQS$K

modelling constructs have no representation in the CAVIAr Domain Model:
e skos:hiddenLabel A concept label hidden from the user.
e skos:scopeNotelntended meaning of a concept.
o skos:definitionr Provides complete explanation for a concept.
e skos:example Supplies an example for a concept.
e skos:historyNote Outlines changes to the concept meaning or form.
e skos:editorialNote Ontology of administration notes.

¢ skos:changeNoteFine-grained changes to concepts.

216

skos:Collection Collection of concepts, where membership is definegkmgs:member

skos:orderedCollectionOrdered collection of concepts.

skos:broaderTransitive Transitive relationship for skos:broader.

skos:narrowerTransitive Transitive relationship for skos:narrower.

In section 5.3, we have stated that the Domain Model need only be a simplé-know
edge structure describing concepts and the relationships betweermptsonteerefore the
CAVIAr Domain Model's metamodel isufficientfor courseware validation if it can be
mapped to the following SKOS modelling constructs that allow for simple condegitua-

tures:skos:concept, skos:prefLabel, skos:altLadediskos:semanticRelationship

9.5.1.2 Learning Context Model

The Learning Context Model represents the requirements of coumsewadoes this by
constraining the Domain Model in two ways, using conceptual instructi@mtcaints and
by defining learner stereotypes. A well-established conceptualisatigneego constrain
a Domain Model for the purposes of defining e-learning requirements fgtia¢ and con-
straints model” in LAOS. LAOS is covered in detail in section 3.2.2.1.

LAOS is based on the AHAM architecture [DeBra et al., 1999]. AHAM allows f
concept links of typererequisiteto define conceptual sequencing constraints. A one-to-
one mapping can be made between the AHAM concept link (relationship) inMbAthe
prerequisite relationship in the CAVIAr Learning Context Model definition.

In LAOS domain model concepts can be assigned weights by the couetercrehis
mirrors the assignment ofkmowledgelLevdb aknowledgeElemerih the CAVIAr Learn-
ing Context Model. The CAVIAknowledgeElemerstiso allows the course creator to define
aknowledgeTypeThe course creator cannot assigknawledgeTypa LAOS. In LAOS a
goal is not explicitly defined as itis in CAVIAr, but is implicitly defined as all domaiadel
concepts are goal concepts through the gddND’ link between domain model concepts.

If there are alternative goal concepts in the domain modeAtiP link can be changed to

217

anORlink. Both these LAOS goal and constraint concept links map directly to thel @A
goal constructs in the Learning Context Model.

The LAOS goal and constraints model does not allow for the definition pérsee
learner stereotypes, but this can be defined in the LAOS user modetidafih AOS user
models are defined in terms of a goal and constraint model. Learnertgesan the
CAVIAr Learning Context Model can be mapped to the LAOS user modrksumed-
Knowledgecan also be expressed for each learner in the LAOS user model, bindefim
initial knowledge level for an individual or a group of learners.

We can therefore conclude that all the elements in LAOS can be expregtethe
CAVIAr Learning Context Model. This means the Learning Context Maglelomplete.
However, all elements in the CAVIAr Learning Context Model cannotdpgesented in the
LAOS goal and constraints model meaning that the CAVIAr Learning CoMexiel is un-
sound. This is due to the addition okaowledgeTypelement when defining knowledge in
the CAVIAr Learning Context Model. We argue thakiaowledgeTypes necessary in order
to represent the minimal attributes of knowledge such as a learning outceefized by

Gagre et al. in [Gage et al., 2005].

9.5.1.3 Learning Resource Model

As we have outlined in section 5.5.3, the IEEE LOM standard [IEEE LTSQ2P8 used as
a domain conceptualisation for the representation of LOs in the CAVIAmiegResource
Model. We have used LOM as itis an IEEE standard for describing learasources. The
LO definition in the CAVIAr Learning Resource Model is based on the IEEB®M.SDandard.
There is a one-to-one mapping of IEEE LOM elements to CAlidatadataconstructs in
the Learning Resource Model.

In section 5.5.3, we also outlined a one-to-one mapping betweehQtend Service
elements in the CAVIAr Learning Resource Model and the LO and serifieition in the
IMS LD specification. We conclude that the CAVIAr Learning Resourcadll represen-

tation of LOs is both sound and complete.

218

9.5.1.4 Courseware Model

The Courseware Model can be mapped to either of the main TEL couesepecifications
ADL SCORM 2004 [ADL, 2004] or IMS LD [IMS, 2003b]. To establish t®undness
and completeness of the CAVIAr Courseware Model we compare it withMigelID spec-
ification. We have chosen to use the IMS LD specification as it is the more lfexitul
progressive specification, for example, allowing for the definition okdéht actors in the
learning process and allowing for the modelling of parallel learning activities

In section 5.6.3, we briefly looked, at a high level, how the CAVIAr Cowese Model
can be mapped to the IMS LD specification. The section described hovottehCAVIAr
Courseware Model constructs can be mapped to an IMS LD modelling nohsie con-
clude from this that the CAVIAr Courseware Model appears to be sottede, we look
at the IMS LD modelling constructs to see if they can be mapped to a CAVIAisemare
modelling construct or group of constructs. This will establish the complsseakthe
CAVIAr Courseware Model.

The IMS LD specification uses a theatre script metaphor [Koper, 20Bath of the
script components (play and act) can be defined as CAVIAr coursetopics at different
aggregation levels. Anethodin IMS LD co-ordinatesplays by defining them in terms
of alearning objectiveand prerequisite These constructs cannot be mapped to CAVIAr
Courseware Model constructs but can be mapped to the leagnadgndpresumed knowl-
edgeconstructs in the CAVIAr Learning Context ModeConditionscan be defined on a
methodn IMS LD, this can be mapped to CAVIAentry learnerconditions that are defined
based orknowledge elementOne of the core concepts in IMS LD is that everybody in
the learning process gets a role, eithestaf nor learnerrole. In CAVIAr, topicscan be
defined as suitable for particular learner roles througheamidy learnerconditions, which
are based on karner stereotypdut there is no way to defingtaff roles in the CAVIAr
Courseware Model.

In IMS LD there are two types of activities, learning activities and supadtiities.

The CAVIAr Courseware Model has no way to distinguish between thegeattivities.

219

Activities exist within an IMS LDactivity-structure A role performs aractivity within an
IMS LD act Learning activities can be mappedrasourcesn the CAVIAr Courseware
Model. There is no resource structure in CAVIAr to map #uaivity-structureconstruct
in IMS LD to. An outcomecan be defined for aactivity in IMS LD. This can then be
used to trigger anotification It is not possible to define an expligiutcomefor a topic
in the CAVIAr Courseware Model or aotification A learning environment is defined
usinglearning objectandservicesn IMS LD. These can be mapped to a learning resource
definition in the CAVIAr Courseware Model.

From this analysis we can conclude that the CAVIAr Courseware Modet@nplete
as many of the IMS LD constructs cannot be represented in it.

The IMS LD specification is concerned with roles other than learner ondsakso
defining parallel learning events. The CAVIAr Courseware Model ighes stage of its
development, not concerned with these and other advanced featetesmubte IMS LD
specification. Also there are elements in the IMS LD, sucleaming objectiveand pre-
requisite which are featured in other CAVIAr models (Learning Context Model) as
such do not require representation in the CAVIAr Courseware Modd.d#éfine a mini-
mal set of IMS LD constructs necessary to deem the Courseware Medefficientfor
the purposes of courseware validation. These are as follplay; act, condition, learner
(role), activity, environment, learning objeahdservice All these IMS LD model elements
can be represented in the CAVIAr Courseware Model as outlined ah@gecan therefore

conclude that the CAVIAr Courseware Modelkisfficientfor courseware validation.

9.5.2 Empirical Evaluation of Course Creator’s Perception ofValidation Ef-

fectiveness

To evaluate how effective the course creator perceives CAVIAr atid we asked partic-
ipants what they thought about courseware validation. This was doeretlaé participant
had validated the Courseware Model created during the user trials. TK#&BEW user trials

were described in detail in section 9.3.

220

9.5.2.1 MIKAEL User Trial Survey Results

In figure 9.9, we outline the results related to how the course creatortitvafidating the

courseware with regard to the effectiveness of courseware validation

14

12 +
” | S
E 10
g 8- Strongly Agree
=]
e "
B, 6= & Agree
5 Neutral
x4 -
W Disagree
9 -
& Strongly disagree
0 -

The problems | would be more | think MIKAEL will

brought to my confident in the increase the
attention were courseware | quaility of
actual problems created after courseware
validating it

Figure 9.9: Course creator reflections on validation effectiveness

9.5.2.2 Discussion

The majority of participants thought that validation brings actual coursewarblems to
their attention. All participants agree that they would feel more confidemitahe course-
ware they had created after validating it, with 57% agreeing strongly. Wef@lsal that
93% of participants believe MIKAEL will improve the quality of courses (thenaéning
participants gave a neutral answer).

We found from the open-ended question after validation that many parttsipaw key
advantages to CAVIAr validation, as validation constraints could be usedsire that a
given courseware meets some specified requirement, either for aciioedgarposes or
for a legislative requirement. Several Participants mentioned that caea®is cannot be

expected to define a Validation Model using OCL. In section 6.2.2 we outlinecdhdial

221

efforts in defining a model-based DSML that allows the course creatontrgte validation
OCL using a more intuitive interface. We look at other approaches to tadklisgssue in

section 10.4.

9.6 Modifiability

Modifiability assesses how easily a CAVIAr implementation can be adapted tatHitaw
given course creator’s requirements. To evaluate the modifiability of 8AWhsed tools,
we define a set of common maintenance scenarios that may be requiredrimcovelidate
courseware. Using these scenarios we compare CAVIAr with the state afttin terms of
how easily they can be maodified to cope with the given scenario. This agpi®based on
the ALMA (Architecture Level Modifiability Analysis) method [Bengtsson &f 2004], a
scenario-based method used to evaluate software architecture modifidthiNdA is used
to establish maintenance cost, assess risk and compare competing softhédectares.
In our research we use ALMA in a comparative setting, comparing the miiditffeof the
MIKAEL information architecture with architectures from the state of the acbiurseware
validation and when required courseware authoring.

We have elicited the following software maintenance scenarios, found irs@eare

validation:

e The native domain knowledge specification that is used to create the CA\diAain

model changes.
e There is a change to the courseware specification being used in validation.
e The validation criteria must be changed.

We look at each of these scenarios, in the following subsections.

9.6.1 Native Domain Knowledge Specification Change

Here, we consider the scenario where the native domain model specifibatity used to

bootstrap the CAVIAr Domain Model definition is changed.

222

Much of the state of the art in courseware authoring limits the authoring eéfguired
for courseware construction through the integration of existing domaiwlkdge specifi-
cations. Section 3.2.3 describes courseware construction tools that adlowelof existing
domain knowledge structures, in the form of Semantic Web ontologies, tattagptourse-

ware construction. These are as follows:
e VOAT allows for the use of an RDF(S) ontology (described in section 3.2.3.3
e OntAWare allows for the use of an OWL ontology(described in section 3)2.3.2
e TANGRAM allows for the use of a SKOS ontology (described in section 3.2.3.1

MIKAEL demos the use of existing knowledge structures to bootstrap the &/AYo-
main Model definition (see section 8.8.1) but unlike the tools mentioned abdvedBL
is not based on one ontology format, but built to import a wide range of leugye struc-
ture definitions to be used in defining the CAVIAr Domain Model. A model tramsétion
mapping from the external knowledge structure specification to the CAWB¥nain Model
is defined for this purpose, as outlined in section 8.8.

Should users of the state of the art wish to use a different domain knosvigugifica-
tion than the one it is implemented on, it would require major changes to the tosignde
CAVIAr interoperability is based on the software engineering principlesefparation of
concerns”, where the native knowledge infrastructure concernurseware construction
have been separated. The concern is represented in the modelrrat&io mappings,
separate to the programming logic. Should the knowledge infrastructurgeloara new
one be defined, a new mapping can easily be specified allowing for its itieegvéth the

CAVIAr implementation.

9.6.2 Courseware Specification Change

Courseware specifications, such as SCORM and IMS LD discussedtiars2.2.6, allow
for interoperability between TEL tools. This interoperability also applies tasaware

validation. Specifications allow for validation integration with coursewaresirantion.

223

Some courseware authoring tools are designed around coursewaificaions, these
are outlined in section 3.2.1, while other courseware authoring tools jut@seurseware
specification for interoperability with delivery systems, such as the ACGfliped in sec-
tion 3.2.5.1, and OntAWare, outlined in section 3.2.3.2. Tools that are designadd a
courseware specification require considerable effort to allow fooxp another specifi-
cation. Also, if the specification on which a tool is based is updated a majorkemould
be required for these tools to be compatible with the update.

In section 8.8.4, we have looked at how courseware construction tasksgdimn CAVIAr,
can export specification-compliant courseware through model tranafimn technology.
To do this a model transformation mapping is defined from the CAVIAr Covase Model
specification to the desired specification. A transformation framework thecuees the
mapping for the given Courseware Model generating the specificatiopitant course-
ware. Integrating changes to courseware specifications requiresifpaidging the transfor-
mation mappings, while the introduction of new specifications requires thdtaefiof a
new transformation mapping to that specification. This allows for minimal eftoedd
or update a courseware specification that is used in MIKAEL courseg@rstruction, or a
courseware specification needed for validation. This is achieved byiigpthe courseware

specification concern through model transformation technology.

9.6.3 \Validation Criteria Change

One of the key areas of modifiability in courseware validation tools is the abilitgfinel
what is valid and invalid. The CAVIAr Validation Model defines the validatiaiteria
using an OCL-defined Validation Model, allowing validation concerns to pars¢ed from
the other courseware construction concerns. The Validation Modet ismibedded in the
programming logic of the tool and can be edited by the course creator. Tlkissntiae
validation criteria easily modifiable by the course creator, allowing the cauresdor to
define what is valid and invalid for a given courseware.
In section 3.3 we outlined the state of the art in courseware validation. Weazemp

each validation approach with CAVIAr in terms of validation criteria modifiability:

224

e CoCOA (section 3.3.1) - Validation criteria are defined in its programming logic an
cannot be changed. Using CoCoA the course creator cannot defitigefnselves
what is valid and invalid for a given courseware definition. This is one efntiain

criticisms from course creators who used CoCoA [Brusilovsky andilass 2003].

e Logic-based Approach (section 3.3.2) - Validation criteria is not acdestibthe
course creator. The course creator can only have a minimal influenadidation by
defining sequencing constraints at the conceptual level and at theecoomponent

level.

e IMS Simple Sequencing Trap Detection (section 3.3.3) - It is not possibléhéor
course creator to edit the trap detection validation algorithm defining whatics v

and invalid.

e IMS LD “Guidelines” (section 3.3.4) - Guidelines can be defined using the Btetna
Web Rule Language (SWRL) [Sicilia, 2007]. Guidelines are defined aparate

concern. It is therefore possible for the the course creator to editiD§uidelines.

The IMS LD guidelines is the only approach from the state of the art thahleasapac-
ity of separating the validation concern, allowing the validation criteria to be neadify

the course creator. We distinguish our research from IMS LD guideiimn&sg ways:

e Technical Space - CAVIAr uses the metamodelling technical space vehid&al D

guidelines are defined in the ontological technical space.

e Scope - Guidelines define good practice in defining IMS LD only. CAVIAspsci-
fication agnostic and a more generic approach to defining what is valid eelalim

courseware.

9.7 Performance

In this section we compare our approach to courseware validation with tiseskin the

state of the art, described in section 3.3, in terms of performance. To do ¢hlisok to

225

compare the time complexity of simulation-based validation, as used in the statesof,the
with the constraint-based approach, used in CAVIAr. Our aim here igablesh if our ap-
proach outperforms the state of the art, particularly with regard to pdrsed@ourseware.

Logic-based validation (section 3.3.2) and CoCoA validation (section 3.81)ased
on simulating a learner’s progression through courseware. Thegmiagetime of these
approaches depend on the number of independent paths throughutkeveare. The num-
ber of independent paths in personalised courseware can be \ggy kor this reason the
CoCoA courseware validation tool only allows for the validation of linearseware with
no branching points. Logic-based validation uses temporal projectioratoste the poten-
tial learner paths through a given courseware. Temporal projectasigms are generally
accepted to be NP-Complete, but can be solved in polynomial time in a small shate sp
and when the state space is structured [Lin and Dean, 1996], butsmaroh focuses on is
courseware that is large and generally has little structure.

The IMS Simple Sequencing trap detection, defined by Lin & Shih (see se8oh),
checks for sequencing traps in an IMS Simple Sequencing specificataugththe traver-
sal of sequencing trees represented using petri nets. To evalutaienaarce, not only does
the traversal of the petri net have to be considered but also the ¢jenevhthe petri net
representation from the IMS Simple Sequencing representation. We aésthabproblem
space for this approach is limited, as it only covers sequencing probledefiaed in an
IMS Simple Sequencing specification.

In section 3.3.3, we outlined an approach to defining “guidelines” for INISdefini-
tion. This approach is similar to our approach in that it is constraints drikdifanovic
et al. outline how SWRL, the rule language used to define IMS LD “guidé€lirezs be
mapped to OCL. For this reason, we have not included it in our perforenemmparison
[Milanovit et al., 2006].

Our OCL-based approach validates courseware in terms of its compokgiamnzure
rather than the possible learning paths it represents. This means thaisingréhe per-
sonalisation in a given courseware will only have a limited affect on OCL &tbd while

it would be extremely costly in a logic-based or petri-net approach. Tbeepsing time

226

of each CAVIAr Validation Model constraint is dependent on the numlienadel ele-
ments in the CAVIAr models and the number of model elements used in definitg eac
constraint. In [Chimiak-Opoka et al., 2008] the authors report on afsetmeriments to
compare the performance of Prolog and OCL. Their experiments areiciaudon queries
that range in complexity and structure. The experiments use Eclipse OClatffichs an
OCL checker. These experiments found that OCL queries can be @dinagood time,
with most evaluated in linear time. Some OCL constructs have been shown ® s
formance problems in certain contexts, but good design practice caredeaismit these
problems [Cuadrado et al., 2008].

A problem with OCL is that it does not consider aspects such as conséjiesrors,
or the possibility of a single courseware problem causing multiple invaridntda. These
problems are discussed by Cabot and Teniente in [Cabot and Tenied@, @here they
survey popular constraint tools used in Model Driven Architecture fYIIPhey note ineffi-
ciencies, where constraint checkers do not assess model condtrgicaly but instead use
a brute-force checking method where all constraints are checkedsaghiof the instance

model regardless of what invariants have failed already.

9.8 Chapter Conclusion

The aim in this chapter was to evaluate CAVIAr in terms of user acceptarterewser
acceptance looks at CAVIAr effectiveness, its cost effectiven€s¥IAr and MIKAEL
usability, CAVIAr modifiability and CAVIAr validation performance. To do thisswised
three evaluation strategies; an analytical study, an empirical study andpacative study.
The analytical study evaluated each of the CAVIAr metamodel’s effeas®rthe empirical
study evaluated MIKAEL usability, validation cost effectiveness and itsgieed effective-
ness. The comparative study compared CAVIAr in terms of its modifiability atidation
performance with the state of the art.

In terms of the CAVIAr metamodel’'s effectiveness, although we found tben&in

Model and the Courseware Model not to be sound and the Learninggx@dviodel to be

227

incomplete, there were only minor inconsistencies in the mappings from theACA\éf-
inition to the chosen domain conceptualisation. The Domain Model can be mappéd
the main elements of SKOS and is sufficient for its purpose in CAVIAr. Tlaeecalso
only minor differences in the Learning Context Model and the LAOS gadl @nstraint
model. There are a number of IMS LD constructs that cannot be reyiessiea the CAVIAr
Courseware Model. IMS LD is quite an ambitious language, which embedsewoare
requirements into the courseware definition. The CAVIAr CoursewarddVidoes not at-
tempt to represent the courseware requirements. This is the responsibiliy loearning
Context Model and, as already noted, some of the requirements data in tid coald
be mapped to the IMS LD specification. A minimal level of IMS LD constructs loan
mapped to the CAVIAr Courseware Model. We therefore determined thd &IA¥ourse-
ware Model sufficient to allow for validation.

After validation, the course creator had confidence in the coursewadeiged. This
shows that the course creator perceives validation as an effecfiveamh to finding prob-
lems in courseware.

The MIKAEL user trials demonstrated a clear positive reaction from eoarsators
in terms of CAVIAr usability. Participants were also positive with respect t¥ @A tool
support provided by MIKAEL and very positive about coursewai@ation in terms of its
usability and the potential time and/or cost savings in course construction.

We compared the state of the art with our approach in two ways, modifiabilitpand
formance. We established, our approach is better suited to personalisesgtware, due
to the expected performance gain that compositional-based validation bviegsaversal-
based validation. We established that courseware construction andtiealidpproaches
based on CAVIAr could be easily modified using model transformation tdogpdo meet
the needs of the course creator. We found that modifiability concerriargedy not sepa-
rated in the state of the art in CAVIAr meaning it requires considerableteffanodify the

state of the art validation tools to the needs of a course creator.

228

Chapter 10

Conclusions

10.1 Introduction

Over the course of this thesis we have presented our constraint-ljgzedeh to course-
ware validation. Our approach allows the course creator to model theevearre construc-
tion concerns and validate a given courseware in terms of these censing a courseware
composition-based model constraint language. We have validated earcksy design-
ing and implementing MIKAEL, a courseware construction and validation tobésed on
CAVIAr, our courseware validation Domain Specific Modelling Langud@8NIL).

Our research investigated how courseware could be validated at tuuelprery stage
of courseware construction. It centred on the explicit representaticouoseware require-
ments, requirements that are generally implicitly held by the course creaisnefesen-
tation was then used to validate courseware. As mentioned in chapter 1 tigalidanot
a replacement for formative evaluation, but an approach to checkdheteware satisfies
explicit pre-delivery requirements, defined by the course creatovalidation is a course-
ware construction activity, integration with the state of the art in coursew@rstruction,
was a key research challenge that we addressed. The feasibility ifsmarch was demon-
strated through the implementation of a courseware construction softwatbdballowed
for the explicit representation of courseware requirements and allawéhe validation of

courseware based on these requirements.

229

In this chapter, we summarise our research in section 10.2, outlining hovesearch
has addressed each of the research challenges in section 1.2. Thisvieddoy a discussion
on the achievements and contribution of our research, in section 10.3lyFinaection
10.4, we conclude this chapter by discussing possible future work tocextterresearch

documented in this thesis.

10.2 Research Summary

Courseware validation, in the context of our research, looks at vdrabe validated in
courseware at the pre-delivery/post-construction stage of theexgairs life-cycle. Our re-
search is based on using the data available at this stage of the courbfeaayele, known
as the courseware construction concerns, for validation. We useduhsecgvare construc-
tion concerns to define a validation framework, outlining the scope of validatio

We have defined a Domain Specific Modelling Language (DSML), whichrigeised
of a set of metamodels, known as the Courseware Authoring Validationmatmn Ar-
chitecture (CAVIAr), that can be used to capture courseware regaims, a courseware
definition and details of the learning content used in the courseware s&uaire require-
ments are principally defined in the Learning Context Model. The LearnormdeXt Model
captures the course scope and conceptual instructional constraintagaiea subject Do-
main Model. The Courseware Model captures the structure of courseamal includes
references to LOs used in the courseware. LOs in the Learning Reddodel have meta-
data that includes references to Domain Model concept(s). This estzblstelationship
between the Courseware Model and the Learning Context Model. Eabh metamodels
is defined in terms of its abstract syntax and mapped to a semantic domain. idatand
concrete syntax has been defined for the Domain Model, Learning Giovitelel and the
Courseware Model. To promote interoperability high-level mappings dneedfrom the
CAVIAr metamodels to relevant specifications and standards. We hamts@each meta-
model by comparing it with an established domain conceptualisation for the eatzoithel

captures. We found that each of the metamodels fulfilled the requirementsicsegvare

230

validation.

Our novel composition-oriented approach to courseware validatiorgessdmcumented
in this thesis. We have considered three major validation categories usindAG Adurse-
ware validation pre-requisites, courseware model validation and learairtgxt validation.
Courseware validation pre-requisites defines data in CAVIAr modelsreztyior validation
to take place, such as essential LO metadata categories. Coursewatevatidddéon de-
fines constraints on the Courseware Model in isolation of the learningxdontieile learn-
ing context validation validates courseware using the courseware @oin®trconcerns de-
fined in the Learning Context Model. We described each of these comstedegories in
detail and exemplified them using the Object Constraint Language (O®k)OICL con-
straints were defined in the context of the CAVIAr metamodels and conddrdieeallow-
able Courseware Model definitions. We have compared our appro#thhe state of the
art, which validates courseware by primarily simulating learner progreisiongh course-
ware. We found that as courseware becomes more adaptive, the simalgpiaach will
result in complexity problems, whereas our approach is more suited to vafiadtadap-
tive courseware. We have also found that defining the Validation Modebkeparate OCL
file, which can be modified by the course creator, empowers the cowgatrcto define
what is valid and is not valid in the courseware they have constructed.

We have also outlined a courseware validation process, outlining howrsecoreator
validates courseware using CAVIAr. This process essentially outlinesim® course cre-
ator should define each CAVIAr model to allow for validation. We have ejifieg each
of the activities described in the courseware validation process usingeastady appli-
cation of the validation process, the validation of DCU module CA218 - “Intetidn to
Databases”.

The feasibility of our validation approach has been addressed throegtetelop-
ment of a proof of concept implementation known as the Management tiofcage for
Knowledge-based Adaptive E-Learning (MIKAEL). MIKAEL is a ceaware construc-
tion and validation software tool that is based on CAVIAr. MIKAEL allows ttw@urse

creator to intuitively create a CAVIAr Learning Context Model to represle courseware

231

construction concerns. The courseware construction concermedefsing the CAVIAr
Learning Context Model are then used to generate a Courseward.NBeteeration is per-
formed using a model transformation, which generates a Coursewarel lased on the
courseware construction concerns defined in the Learning Conted¢IM®he course cre-
ator can define various mappings to generate different types of @mnsélodels. The
course creator can use the mappings to specify what instructional desarshe wishes to
use in courseware. We have also outlined how model transformation teglrean be used
to provide for CAVIAr interoperability with TEL and related specifications ia MIKAEL
tool. This allows the course creator to generate many of the CAVIAr models, lgritie
effort involved in courseware construction and validation. Model fansation technology
also allows for the course creator to export a Courseware Model td_aspé&cification.
MIKAEL was used in a series of user trials that examined CAVIAr-basedseware
construction in terms of its usability and benefits to the course creator. \@eedqositive
results from the users of the system. Of particular note were the positudseegard-
ing courseware validation, where course creators stated they wouldreecordident in a

constructed courseware post-validation.

10.3 Discussion

Our approach to courseware validation is novel, in that it does not simuéateeleinterac-
tion with the courseware, but instead looks to validate the courseware bases structure
and composition. Validation is achieved by allowing the explicit representafioourse-
ware and the courseware construction concerns using a DSML kre@aNélAr. Valida-
tion criteria are expressed as a set of constraints that constrain whainalde courseware
structure. The adaptivity found in personalised courseware greatlytadhe complexity
of the state of the art courseware validation approaches that are tmadedrner simula-
tion, we have established that our constraint-based approach is bétdrtewalidation of
adaptive courseware when compared with the state of the art.

One of the principle problems found in the state of the art courseware tiafidaol

232

support is that the definition of what is valid and invalid in courseware isdnddom
the course creator in the tool’'s programming logic [Brusilovsky and Vassil&803]. Our
approach exposes the validation definition to the course creator, enipgwer course cre-
ator to define what he or she deems as valid or invalid. This flexibility is a kefribation
of our work.

Using the metamodelling technical space allows us to utilise model transformatien tech
nology for converting to, from and between CAVIAr models. We utilise maceisforma-

tion in three key areas:

e Importing a Domain Model - Importing a Domain Model from a knowledge stmectu

specification.

e Importing a Courseware Specification - Importing a Courseware Model & TEL

or AEH specification.

e Exporting a Courseware Model - Exporting courseware defined #/&X¢ Course-

ware Model into a TEL specification.

The import and export of models illustrates our interoperability approach T#th tool

support, allowing for courseware validation to be integrated with courseganstruction.
Model transformation technology allows us to bootstrap a Domain Modelitigfirusing

a knowledge structure from any source as long as an abstract syetepticgtly defined for
the data source and it can be mapped to the CAVIAr Domain Model definitiontséware
specifications can also be used to define CAVIAr models using model traregion tech-
nology. We can also use model transformation technology to export &&eare Model to
any specification where an abstract syntax is explicitly defined for thefsjaion, and a
mapping is defined from the CAVIAr Courseware Model to the specificafitas provides
for maintainable interoperability, where if an import or export specificatlanges all that
is required to remain interoperable is an altering of the mapping. Further still, coilvese
creator wishes to interoperate with a specification which was unforegeem@AVIAr tool

support was developed it can be easily integrated by just defining a nppimga This al-

233

lows CAVIAr validation to be easily integrated into existing courseware coattm tools
and methodologies.

As courseware gets more complex, through personalisation, and asuttse coeator
becomes more abstracted from the construction of courseware, threugg and collab-
orative authoring, it will become a necessity that the course creation émohssist the
course creator in verifying that the courseware created satisfiesurgearreator’s require-
ments. Although it is not possible to validate issues such as learner motivaiibtha
effects of instructional material until a formative evaluation has taken pleedave found
that validation can test the courseware for a wide range of pedagagitaon-pedagogical
problems that can be defined in terms of the courseware structure anuliiseware con-
struction concerns. We have also found that these types of problemetitiage difficult to
check for, as courseware becomes increasingly adaptive. Validailicels® make forma-
tive evaluation more powerful, as the more mundane courseware probdente checked
automatically and will not get in the way of evaluating more complex pedagoaspeicts
of courseware such as those evaluated in a courseware’s formedivation.

Another point of interest raised during the user trials, is that courgea aecessity in
the corporate world, indeed the delivery of courses with specific leguonitcomes are part
of compliance regulations where organisations are legally obligated to trairsta# on
certain issues. Courseware validation allows for the verification thatem gisurseware is

compliant with defined legislative requirements that it has been designedriesad

10.4 Future Work

A number of enhancements to our validation approach have been idensifiethiee work
through our own insight and through feedback from course credtotag the MIKAEL

user trials. These enhancements are as follows:
e Intuitive Validation Model definition.

¢ Enhancements to the Courseware Model.

234

e Categorisation of courseware problems.

e Correction integration.

10.4.1 Intuitive Validation Model Definition

The Validation Model is defined using OCL. OCL is a language designezbfoware engi-
neers to define constraints on UML models to remove ambiguity (as outlinediors2at).
The principle user of CAVIAr is the course creator. We cannot expieetourse creator
to be able to define the CAVIAr Validation Model in OCL. In section 6.2.2, wsctdbed
one approach that we have investigated to allow for a more intuitive intefdackefining
the CAVIAr Validation Model, the application of a DSML to abstract the complekity
defining OCL constraints. OCL is generated from a DSML definition. Usirggapproach
a Validation Model is defined using the DSML and OCL is then generated thher®SML
definition. This provides a powerful interface for the course creatdefme a Validation
Model. We have presented an experimental proof of concept to thid dffesection 6.2.2.
Once integrated it will provide course creators with an intuitive way to defiGAVIAr
Validation Model.

Another proposal to allow for a more intuitive approach to defining a Validdflodel
is to apply the reuse and componentisation paradigm, used for LOs [Wilgy],20 vali-
dation rules. In this approach, Learning Object Repositories (LOR) sadidation rules.
These validation rules are formalised in OCL and also annotated using metiaaiathe
course creator understands. The course creator can seardilidiation rules in the LOR
based on the validation needs of the course creator. The courser caatoake a decision
on whether or not to use a validation rule based on the constraint’s annotatalida-
tion rules, found in the LOR, can also be aggregated together. Varidigsti@n rules
aggregated together can be used to ensure an instructional designtthedreen applied
correctly to courseware. This aggregation of courseware validatiosti@ints can also be
annotated and stored in a LOR, therefore allowing for the reuse of a Waldsglodel that

ensures the correct application of an instructional design theory.

235

10.4.2 Enhancement of the Courseware Model

In section 9.5.1.4, we evaluated the CAVIAr Courseware Model by comgp@rwith the
IMS LD specification. We found that some elements of the IMS LD specificatonrid
not be represented in the CAVIAr Courseware Model. This is due to thetiaos na-
ture of the IMS LD specification that seeks to fully describe the whole tegghiocess

[Koper and Olivier, 2004]:
e Defining staff roles as well as learner roles.
¢ Defining support activities as well as the main learning activities.
e Defining both single and multiple user models.
e Allowing for blended and online only learning

A future enhancement to the CAVIAr Courseware Model would be to pma@te these
aspects of the IMS LD specification that are currently lacking.

Another enhancement to the CAVIAr Courseware Model would be thaitlefi of an
intuitive flow-based concrete syntax. In section 3.2.5, we outlined appesafrom the
state of the art that model a “unit of learning” using a flow-oriented notat{one of our
criticisms of flow-oriented approaches to courseware representatiat fotl-oriented no-
tation can get very verbose when modelling highly adaptive courseasadgn courseware
where the learner has a lot of free choice. It would be interesting totigeés approaches

to representing the courseware using flow-oriented notation, such as:

e Investigating new business flow notations, such as the Business PModsiiing
Notation (BPMN) [White, 2004], rather than software engineering orgéntgation,

as a more intuitive way of representing courseware flow.

e Generating a flow-notation for each individual learner stereotype to limialygity

in one diagram.

236

10.4.3 Categorisation of Courseware Problems

One of the problems with OCL is that constraints have no semantics associtdteédem.
Some attempts to overcome this can be found in the EMF validation project, whialsallo
for the mapping of various severity levels to different OCL constraintsriBtgg et al., 2008].
We found during the course of the MIKAEL user trials that course createsire categori-
sation of the validation errors found in courseware to help them decidiertee validation
error is something that can be ignored or something that must be addressed

To do this a metadata layer could be defined on OCL constraints where @asthamt
is annotated to indicate the severity of the problem and other such data teafusto the
course creator. As the OCL parser used in MIKAEL is open source;outd extend this
OCL parser to parse this metadata, allowing for the severity levels to be orateg into

validation.

10.4.4 Correction integration

Integrating correction support into the CAVIAr validation framework is &ure progres-
sion. Validation data could be used to recommend possible correction stsatediee
course creator. The category of a courseware problem identifiedithised in section
10.4.3 could also be used as a basis for recommending a correction striteéggd for
each category of validation error defined in the CAVIAr Validation Modetréhcould be
a corresponding correction strategy, which is initialised by the particufdteeaonstraint

that fails during validation.

237

Bibliography

[ACM, 1998] ACM (1998). The ACM computing classification system. Tachhreport,

Association of Computer Machinery.

[ADL, 2004] ADL, A. (2004). SCORM 2004 Overview. Available from:

http://www.adInet.gov/scorm/index.cfm.

[Albert and Stefanutti, 2003] Albert, D. and Stefanutti, L. (2003). Kienge structures
and didactic model selection in learning object navigationPioccedings of the Joint
Workshop in Cognition and Leanring through Media-Communicaiton foraAded E-

Leanring (JWCL)pages 1-10, Berlin, Germany.
[Altova, 2005] Altova (2005)Altova Xmispy 2005 User & Reference Manuggrvante.

[Aroya et al., 2002] Aroya, L., Cristea, A. I., and Dicheva, D. (200R).ayered Approach
towards Domain Authoring. IRroceedings of The International Conference on Artificial

Intelligence (ICAI02)pages 615-621. CSREA.

[Arthorne and Laffra, 2004] Arthorne, J. and Laffra, C. (2003fficial Eclipse 3.0 Num-
ber 0321268385 in Eclipse Series. Addison Wesley.

[ATLAS Group, 2006] ATLAS Group (2006). Atl: Atlas transformation uage - atl user
manual. Technical report, LINA & INRIA.

[Bajnai and Stienberger, 2003] Bajnai, J. and Stienberger, C. J2@ERiweaver the web-
based courseware design tool.Rroceedings of IADIS International Conference Inter-

net/WWW 2003Algarve, Portugal. IADIS.

238

[Baldoni et al., 2006] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and dsso, L.
(2006). Verifying the compliance of personalized curricula to curricul@e®in the
semantic web. IrProceeding of the Semantic Web Personalization Workshop at the

Third European Semantic Web Conference (ESWC2@&8)nger-Verlag LNCS Series.

[Baldoni et al., 2004a] Baldoni, M., Baroglio, C., and Patti, V. (2004agbviBased Adap-
tive Tutoring: An Approach Based on Logic Agents and Reasoningtabations. Arti-

ficial Intelligence Reviey22(1):3-39.

[Baldoni et al., 2004b] Baldoni, M., Baroglio, C., Patti, V., and Torassd2004b). Rea-
soning about learning object metadata for adapting SCORM courselmaPeoceeding
of the International Workshop on Engineering the Adaptive Web: MethodsTech-
nologies for personalization adn adaptation in the Semantic Web (EAV28dgs 4—13.

Springer-Verlag LNCS Series.

[Baldoni et al., 2004c] Baldoni, M., Giordano, L., Martelli, A., and Patti, 2004c). Pro-
gramming Rational Agents in a Modal Action Logi&nnals of Mathematics and Artifi-

cial Intelligence, Special issue on Logic-Based Agent Implementatig@-4):207-257.

[Beckert et al., 2002] Beckert, B., Keller, U., and Schmitt, P. (2002an3kating the object
constraint language into first-order predicate logic.lnProceedings, VERIFY, Work-

shop at Federated Logic Conferences (FLoC)

[Bengtsson et al., 2004] Bengtsson, P., Lassing, N., Bosch, J., antliet, H. (2004).
Architecture-level modifiability analysis (alma).he Journal of Systems and Software

69:129-147.

[Bézivin et al., 2005] Bzivin, J., Jouault, F., Rosenthal, P., and Valduriez, P. (2006l
Driven Architecture chapter Modeling in the Large and Modeling in the Small, pages

33-46. Springer.

239

[Blackerby et al., 2002] Blackerby, C., Shelton, C., and Gillis, L. B. @0@ report to the
78th texas legislature on investigating quality of online courses. Techeijgalt; Texas

Education Agency.

[Briggs et al., 1991] Briggs, L., Gustafson, K. L., and Tillman, M. H., edit(991). In-
structional Design: Principles and ApplicationEducational Technology Publications,

New Jersey, USA.

[Brusilovsky, 1996] Brusilovsky, P. (1996). Methods and technsquieadaptive hyperme-
dia. Methods and Techniques of Adaptive Hypermegia-3):87—129.

[Brusilovsky, 2000] Brusilovsky, P. (2000). Concept-based seware engineering for
large scale web-based education. In Davies, G. and Owen, C., editorzedings
of WebNet2000, World Conference of the WWW and Intgpages 6974, San Antonio,
TX. AACE.

[Brusilovsky et al., 1998] Brusilovsky, P., Eklund, J., and Schwar4]1898). Web-based
education for all: a tool for development adaptive coursew@amputer Networks and

ISDN SystemsS0(1-7):291-300.

[Brusilovsky and Vassileva, 2003] Brusilovsky, P. and Vassileva2003). Course se-
quencing techniques for large-scale web-based educaligarnational Journal Con-

tinuing Engineering Education and Lifelong Learnjig(1/2):75-94.

[Budd, 2004] Budd, J. W. (2004). Mind maps as classroom exetcisesnal of Economic
Education 35(1):35-46.

[Cabot and Teniente, 2006] Cabot, J. and Teniente, E. (2006). t@orissupport in mda
tools: A survey. InModel Driven Architecture ? Foundations and Applicationamber

4066 in LNCS, pages 256—-267. Springer-Verlag.

[Carey and Dick, 1991] Carey, L. M. and Dick, W. (1991nstructional Design: Prin-
ciples and Applicationschapter Summative Evaluation, pages 269-311. Educational

Technology Publications, 2nd edition.

240

[Chimiak-Opoka et al., 2008] Chimiak-Opoka, J., Felderer, M., Lenz, &4, laange, C.
(2008). Querying uml models using ocl and prolog: A performance stad3roceeding
of the Software Testing Verification and Validation Workshop, 2008. ICE8Y\pages
81-88. IEEE.

[Cristea and Aroya, 2002] Cristea, A. and Aroya, L. (2002). Adegduthoring of adap-
tive educational hypermedia. In DeBra, P., Brusilovsky, P., and Comtjoeditors,
Proceedings of the 2nd International Conference on Adaptive Hymkan{&H2002)

pages 122-132, Malaga, Spain. Springer-Verlag.

[Cristea et al., 2007] Cristea, A., Smits, D., and deBra, P. (2007). Tsrxsmgeneric adap-

tive hypermedia platform: a conversion case stulilyirnal of Digital Information 8(3).

[Cristea and de Mooij, 2003] Cristea, A. |. and de Mooij, A. (2003). %A ayered
WWW AHS Authoring Model and their corresponding Algebraic Operatdrs Pro-
ceedings of The Twelfth International World Wide Web Conference (WYYWAB3nate
Track on EducationACM.

[Cristea et al., 2003a] Cristea, A. I., Smits, D., and de Bra, P. (2003adng/MOT, Read-
ing AHA! - converting between an authoring and a delivery system faptee educa-
tional hypermedia. IfProceedings of The Third International Workshop on Authoring of

Adaptive and Adaptable Educational Hypermedia at AIED05

[Cristea et al., 2003b] Cristea, A. I., Stewart, C., Brailsford, T., andt€ajsP. (2003b).
Evaluation of Interoperability of Adaptive Hypermedia Systems: testing thd MO
WHURLE conversion in a classroom setting.Rroceedings of The Third International

Workshop on Authoring of Adaptive and Adaptable Educational Hypaienat AIEDOS

[Cuadrado et al., 2008] Cuadrado, J. S., Jouault, F., Molina, J. G Baniin, J. (2008).
Optimization patterns for OCL-based model transformationProceedings of the 8th

OCL Workshop at the UML/MoDELS ConferencEsulouse, France.

241

[Czarnecki and Eisenecker, 2000] Czarnecki, K. and Eisengtkef2000). Generative

Programming: Methods, Tools and Applicatiodsddison-Wesley Professional.

[Czarnecki and Helson, 2006] Czarnecki, K. and Helson, S. (ROBéature-based survey
of model transformation approachéBM Systems Journa#t5(3):621—-645.

[Daconta et al., 2003] Daconta, M. C., Obrst, L. J., and Smith, K. T. (ROD3e Semantic
Web: A Guide to the Future of XML, Web Services and Knowledge Maragekviley

Publications, Indianapolis, Indiana.

[Dagger, 2006a] Dagger, D. (2006a). Authoring standards basesbnalised elearn-
ing. In Reeves, T. and Yamashita, S., editd?spceedings of World Conference on
E-Learning in Corporate, Government, Healthcare, and Higher Etlonapages 2680—

2685, Chesapeake, VA. AACE.

[Dagger, 2006b] Dagger, D. (2006ersonalised eLearning Development Environments

PhD thesis, University of Dublin.

[Dagger et al., 2003] Dagger, D., Conlan, O., and Wade, V. P. (20@8)architecture for
candidacy in adaptive elearning systems to faciltate the reuse of learsimgrces. In
Proceedings of World Conference on E-Learning in Corporate, Govent, Healthcare,

and Higher Educationpage 49, Chesapeake, VA. AACE.

[Dawson and Howes, 1998] Dawson, F. and Howes, T. (1998).rdyGHME Directory
Profile. RFC Editor.

[DCMI, 2006] DCMI (2006). Dublin core metadata. http://dublincore.org.

[DeBra and Calvi, 1998] DeBra, P. and Calvi, L. (1998). AHA!: a @ea Adaptive Hy-
permedia System. IliRProceedings of the 2nd Workshop on Adaptive Hypertext and
Hypermedia http://wwwis.win.tue.nl/ah98/Proceedings.html. Eindhoven University of

Technology.

242

[DeBra et al., 1999] DeBra, P., Houben, G.-J., and Wu, H. (1999)AKHA Dexter-based
Reference Model for Adaptive Hypermedia.Rrmoceedings of the 10th ACM Conference

on Hypertext and Hypermedipages 147-156. ACM.

[Dick and Carey, 1991] Dick, W. and Carey, L. M. (1991nstructional Design: Prin-
ciples and Applicationschapter Formative Evaluation, pages 227-267. Educational

Technology Publications, 2nd edition.

[Djuri¢ et al., 2006] Djuig, D., G&evic, D., and Devetic, V. (2006). The Tao of Modeling

SpacesJournal of Object Technolog®(x). forthcoming.

[Doniger et al., 2003] Doniger, S. W., Salomonis, N., Dahlquist, K. D., &@am K.,
Lawlor, S. C., and Conklin, B. R. (2003). MAPP:Finder: using Gene Ogipand
GenMAPP to create a global gene-expression profile from micro ataydsenome

Biology, 4(R7).

[DresdenOCL, 2007] DresdenOCL, T. (2007). Dresden OCL Tbolkhttp://dresden-

ocl.sourceforge.net/.

[Dwolatzky et al., 2002] Dwolatzky, B., Kennedy, I., and Owens, 3 (&n. 2002). Mod-
ern software engineering methods for developing coursewangjineering Education

2002: Professional Engineering Scenarios (Ref. No. 2002/05&),2E-32/6.

[Eclipse Foundation, 2008] Eclipse Foundation (2008). Eclipse M2Mjekto.

http://www.eclipse.org/m2m.

[Eclipse Foundation, 2009] Eclipse Foundation (2009). Eclipse M2T jePro

http://www.eclipse.org/modeling/m2t/.
[Eclipse MDT, 2008] Eclipse MDT (2008). Model development tools (mdt).

[Eifel, 2007] Eifel (2007). XML SCORM Studio. http://www.eife-

|.org/publications/softwarecenter/xmlscormstudio.

243

[Eklund and Brusilovsky, 1999] Eklund, J. and Brusilovsky, P. @99 InterBook: An
Adaptive Tutoring SystemUniServe Science Newk2:8-13.

[Eriksson et al., 2003] Eriksson, H.-E., Penker, M., Lyons, B., ardbFB®. (2003).UML

2.0 Toolkit Wiley Publications, Indianapolis, Indiana.

[EU Bologna Agreement, 2000] EU Bologna Agreement (2000). Thed@wdeclaration
on the European space for Higher Education: an explanation. Tethepoat, Confed-

eration of EU Rectors’ Conferences and the Association of Europeaeidities.

[FOKUS, Fraunhofer Institute, 2006] FOKUS, Fraunhofer Institui@0@. Open Source
Library for OCL (OSLO). http://oslo-project.berlios.de/.

[Frankel, 2003] Frankel, D. S. (2003Model Driven Architecture Wiley Publications,

Indianapolis, Indiana.

[Gagre et al., 2005] Gagn R., Wager, W., Golas, K., and Keller, J. (2008Yinciples of

Instructional Design Wadsworth, California, USA, 5th edition.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J).(T839%gn
Patterns: elements of reusable object-oriented softwadison Wesley, New Jersey,

USA.

[GaSevE et al., 2006] Gsevi, D., Djuric, D., and Deverc, V. (2006). Model-Driven
Architecture and Ontology Developmephapter The Ontology Definition Metamodel

(ODM), pages 181-199. Springer-Verlag.

[Gomez-Perez et al., 2004] Gomez-Perez, A., Corcho, O., and Fmmdmopez, M.
(2004). Ontological Engineering: with examples from the areas of Knowledge Man-

agement, e-Commerce and the Semantic. \8gbinger.

[Griffiths et al., 2009] Griffiths, D., Beauvoir, P., Liber, O., and Bari@#txendale, M.
(2009). From reload to recourse: learning from ims learning design impliatens.

Distance Education30(2):201 — 222.

244

[Gronback, 2009] Gronback, R. C. (200%clipse Modeling Project: A Domain-Specific

Language ToolkitAddison Wesley Professional, pre-print edition.

[Gritzner et al., 2004] Gatzner, 1., Weibelzahl, S., and Waterson, P. (2004). Improving
courseware quality through lifecycle encompassing quality assurané&odeeding of

the Symposium on Applied Computing (SAC,¥osia, Cyprus. ACM Press.

[Guizzardi et al., 2005] Guizzardi, G., Pires, L. F., and van Sindéve2005). Ontology-
based evaluation and design of domain-specific visual modeling language®ceed-
ings of the 14th International Conference on Information Systems Dewelgmumber

3713 in LNCS, pages 691-705.

[Harel and Rumpe, 2004] Harel, D. and Rumpe, B. (2004). Meanimgfdeling: What's

the semantics of “semanticsComputey 37(10):64-72.

[Hemenway and Calishain, 2003] Hemenway, K. and Calishain, T. (2008pidering
Hacks Number 0596005776. O'Reilly Publications, Sepastopol, CA, USA.

[Hendler, 2008] Hendler, J. (2008). Web 3.0: Chicken farms on theaséc web.|EEE
Computer41(1):106-108.

[Holohan, 2003] Holohan, E. (2003). Automating the Generation of €aware. Master’s

thesis, Dublin City University.

[Holohan et al., 2005] Holohan, E., McMullen, D., Melia, M., and Pahl, ©0&). Adap-
tive Courseware Generation based on Semantic Web Technologiesdeeding of the
International Workshop on Applications of Semantic Web Technologids-Eaarning
(SW-EL2005) at the Twelveth International Conference on Atrtificialligémce in Edu-

cation (AIED2005) IOS Press.

[Holohan et al., 2006] Holohan, E., McMullen, D., Melia, M., and Pahl, ©0@&). Adap-
tive Courseware Generation based on Semantic Web Technologiesadeeding of the
Sixth International Conference on Advanced Learning Technolodl#d (T2005) pages
967-969. IEEE Computer Society.

245

[Horrocks et al., 2004] Horrocks, 1., Patel-Schneider, P. F., BéleyTabet, S., Grosof, B.,
and Dean, M. (2004). SWRL: A Semantic Web Rule Language Combining @kl

RuleML. Technical report.

[Hummel et al., 2004] Hummel, H., Manderveld, J., Tattersall, C., and Kope2®4).
Educational modelling language and learning design: new opportunitigssfarctional
reusability and personalised learningnternational Journal of Learning Technology

1(1):110-126.

[Hussmann et al., 2000] Hussmann, H., Demuth, B., and Finger, F. (20@@ular archi-

tecture for a toolset supporting ocl. Number 1939 in LNCS, pages 2B3-3t8iinger.

[IEEE LTSC, 2002] IEEE LTSC (2002). LTSC WG12:Learning Objecttedata. IEEE

Learning Technology Standards Committee.

[IMS, 2002] IMS (2002). IMS Reusable Definition of Competency or &ational Objec-

tive . Technical Report 1.0, IMS Global Learning Consortium.

[IMS, 2003a] IMS (2003a). IMS Content Packaging (Version 1.3.1ye@iew.
Technical Report 03/19, IMS, Global Learning Consortium. Availablemfr

www.imsglobal.org/content/packaging/.

[IMS, 2003b] IMS (2003b). IMS Learning Design. Technical reptvlS, Global Learning

Consortium.
[IMS, 2003c] IMS (2003c). IMS Simple Sequencing Specification. Tech-
nical Report 03/19, IMS, Global Learning Consortium. Available from

http://mww.imsglobal.org/simplesequencing/.

[IMS, 2005] IMS (2005). IMS Learner Information Package. TdachhReport Version

1.0.1, IMS Global Learning Consortium.

[Ismail, 2001] Ismail, J. (2001). The design of an e-learning systemolethe hypeThe
Internet and Higher Educatiqr}(3-4):329 — 336.

246

[Janjua, 2008] Janjua, U. T. (2008). Model Based OCL GeneratM8E, Dublin City

University.

[Jouault and Kurtev, 2005] Jouault, F. and Kurtev, I. (2005). $maming Models with
ATL. In Proceedings of the Model Transformations in Practice Workshop at BAGD

2005

[Jovanovc et al., 2006a] Jovanadvi J., G&evit, D., and Devedzic, V. (2006a). Dynamic
Assembly of Personalized Learning Content on the Semantic WdRrobeeding of the

3rd European Semantic Web Conference 2006 (ESWC28pfihger Verlag.

[Jovanove et al., 2006b] Jovanow; J., G&evi, D., and Devedzic, V. (2006b). Ontology-
based Automatic Annotation of Learning Contemtiternational Journal on Semantic

Web and Information Systen#(2):91-119.

[Jovanove et al., 2005] Jovanodj J., Gdevk, D., Verbert, K., and Erik, D. (2005). Ontol-
ogy of learning object content structure.Rroceeding of the 12th International Confer-

ence on Atrtifical Intelligence in Educatippages 322-329. 10S Press.

[Karampiperis and Sampson, 2004] Karampiperis, P. and SampsonQ@4)(2Adaptive
hypermedia authoring: From adaptive navigation to adaptive learnirgpstipin Pro-
ceedings of the 2nd International Workshop on Authoring of AdaptiveAadaptable
Hypermedia at AH20QZ£indhoven, Netherlands.

[Kay, 2000] Kay, J. (2000). Stereotypes, student models and &ditytaln Gauthier, G.,
Frasson, C., and VanLehn, K., editoPspceedings of Intelligent Tutoring Systems 2000
(ITS 2000) number 1839 in LNCS, pages 19-30. Springer-Verlag.

[Kenny, 2006] Kenny, C. (2006). Automated tutoring for a databaki#s sraining envi-

ronment. Master’s thesis, Dublin City University.

[Koper, 2005] Koper, R. (2005)Learning Design: A Handbook on Modelling and Deliv-
ering Networked Education and Traininghapter An Introduction to Learning Design,

pages 3-19. Springer.

247

[Koper and Olivier, 2004] Koper, R. and Olivier, B. (2004). Regmeting the learning de-
sign of units of learningEducational Technology & Society(3):97-111.

[Kurtev et al., 2006] Kurtev, I., Bzivin, J., Jouault, F., and Valduriez, P. (2006). Model-
based DSL Frameworks. BBSPSLA’06: Companion of the 21st ACM SIGPLAN con-
ference on Object-oriented programming systems, languages, atidajmgms, pages

602—-616, New York, USA. ACM Press.

[Laforcade and Choquet, 2006] Laforcade, P. and Choquet,GD6§2 Next Step for Edu-
cational Modeling Languages: The Model Deiven Endineering anchdteeering Ap-
proach. InProceeding of the Sixth IEEE International Conference on Advanceaihire
Technologies (ICALT2006pages 747—746. IEEE Computer Society.

[Lenat, 1996] Lenat, D. (1996). Cyc: a large-scale investement iwlaumge infrastruc-
ture. Communications of the ACN38(11):33-38.

[Likert, 1932] Likert, R. (1932). A technique for the measurement of atétuArchives of
Psychology(140):1-155.

[Lin and Shih, 2009] Lin, F. H. and Shih, T. K. (2009). Automatic Trapté&xion: A
Debugging Mechanism for Abnormal Specification in the IMS SequencimgtrGls.
IEEE Transactions on Learning Technolody3):176—189.

[Lin and Dean, 1996] Lin, S. and Dean, T. (1996). Localized tempaasoning using

subgoals and abstract even®Bomputational Intelligengel2:423-449.

[Martin et al., 2007] Martin, B., Mitrovic, A., and Suraweera, P. (200Domain Mod-
elling with Ontology: A Case Study. IRroceedings of the 5th International Workshop
on Authoring for Adaptive and Adaptable Hypermedia (A3EYrfu, Greece.

[Martinez-Ortiz et al., 2007] Maimez-Ortiz, |., Moreno-Ger, P., Sierra, J. L., and
Ferrandez-Marjn, B. (2007). Computers and Education: E-learning — from theory
to practice chapter Educational Modeling Languages: A Conceptual Introductidraa

High-Level Classification, pages 27-40. Springer.

248

[Martinez-Ortiz et al., 2009] Mainez-Ortiz, I., Sierra, J. L., and Feé&mdez-Marjn, B.
(2009). Translating e-leanring flow-oriented activity sequencingrg@gms into rule-
based designs. IRroceedings of the 6th International Conference on Information Tech-

nology: New Generations.as Vegas, Nevada, USA.

[McMullen, 2007] McMullen, D. (2007). Using ontology technology to sappcontent
generation and run time adaptivity in e-learning environments. Master's tHzgblin

City University.

[McMullen et al., 2005] McMullen, D., Holohan, E., Melia, M., and Pahl, CO@3).
Knowledge-Driven Learning Technology Systems. Foceeding of the Sixth Annual

Irish Educational Technology User’s Conference (EdTechQIA.

[Melia et al., 2006] Melia, M., Barrett, R., and Pahl, C. (2006). A Modet®&hApproach
to SCORM Sequencing. IAroceeding of the Sixth Annual Irish Educational Technology
User’s Conference (EdTech06) - Research TréckA.

[Melia et al., 2005] Melia, M., Holohan, E., McMullen, D., and Pahl, C. (20@ntology-
based Adaptive Content Navigation. Pmoceeding of the First International Conference

on Methods and Technologies for Learning (ICMTL20@®Rges 435-440. WIT Press.

[Melia and Pahl, 2006a] Melia, M. and Pahl, C. (2006a). Automatic Validaifdrearning
Object Compositions. IRroceedings of the Information Technology and Telecommuni-

cations Conference IT&T2006umber 1649-1246, Carlow, Ireland. TecNet.

[Melia and Pahl, 2006b] Melia, M. and Pahl, C. (2006b). Semanticallyledallodel
Driven Course Development. FProceeding of the First European Conference on Tech-
nology Enhanced Learning (EC-TELO6) - Doctoral Consortium Sasd®C-TEL06

Workshop Proceedings.

[Melia and Pahl, 2007a] Melia, M. and Pahl, C. (2007a). An informatiamiéecture for
courseware validation. IRroceedings of the 8th Annual Irish Educational Technology

User’s Conference (EdTech200MTA.

249

[Melia and Pahl, 2007b] Melia, M. and Pahl, C. (2007b). An informatiarhaecture for
validating courseware. In Massart, D. and Colin, J.-N., editersceeding of the First
International Workshop on Learning Object Discovery and Exchgh@DE2007) at
EC-TEL2007 Crete, Greece. CEUR Workshop Proceedings.

[Melia and Pahl, 2007c] Melia, M. and Pahl, C. (2007c). Pedagogalaation of course-
ware. In Duval, E., Klamma, R., and Wolpers, M., editdPsoceedings of the Sec-
ond European Conference on Technology Enhanced Learningber 4753 in LNCS.

Springer.

[Melia and Pahl, 2008] Melia, M. and Pahl, C. (2008). Towards the vdidaf adaptive
educational hypermedia using CAVIAr. Rroceeding of the 6th International Workshop
on Authoring Adaptive and Adaptable Hypermedia (A3H2088)2008 Workshop Pro-

ceedings, Hannover, Germany.

[Melia and Pahl, 2009] Melia, M. and Pahl, C. (2009). Constraint-baakdation of adap-

tive e-learning coursewar¢EEE Transactions on Learning Technolo@y1):37-49.

[Mendling et al., 2007] Mendling, J., Neumann, G., and van der Aalst, @0{2 On the
correlation between process model metrics and errorseRA07: Tutorials, posters,
panels and industrial contributions at the 26th international conferenc€omceptual
modeling number 978-1-920682-64-4, pages 173-178, Darlinghurst, @listAus-

tralian Computer Society, Inc.

[Mernik et al., 2005] Mernik, M., Anthony, J. H., and Sloane, A. M. (800 When and

how to develop domain-specific languag@S£M Computer Survey7(4):316—344.

[Milanovit et al., 2006] Milanow, M., Ga&evt, D., Giurca, A., Wagner, G., and Devad,
V. (2006). Sharing owl/swrl and uml/ocl rules. Improceedings of OCLApps 2006: OCL

for (Meta-)Models in Multiple Application Domain&enova, Italy.

250

[Miles and Bechhofer, 2009] Miles, A. and Bechhofer, S. (2009). kosS simple
knowledge organization system reference. Candidate recommendati@g, W

http://www.w3.0rg/TR/2009/CR-skos-reference-20090317/.

[Miles and Brickley, 2005] Miles, A. and Brickley, D. (2005). SKOS €dsuide. Techni-

cal report.

[Mississippi State University, 2007] Mississippi State University (200 Site Studio.

http:thorax.erc.msstate.eduinsitedefault.aspx.

[Mitrovic et al., 2007] Mitrovic, A., Martin, B., and Suraweera, P. (200Wtelligent Tu-
tors for All: The Constraint-Based ApproaclEEE Inteligent System22(4):38—45.

[Mitrovic et al., 2006] Mitrovic, A., Suraweera, P., Martin, B., Zakharky, Milik, N., and
Holland, J. (2006). Authoring constraint-based tutors in aspirePréceedings of the
8th International Conference on Intelligent Tutoring Systems (ITS2@&)es 41-50.
Springer-Valag.

[Motelet et al., 2007] Motelet, O., Baloian, N., and Pino, J. A. (2007¢arning Object:
Standards, Metadata, Repositories and LCMBapter Learning Object Metadata and

Automatic Processes: Issues and Perspectives, pages 185-22Ming Science.

[Murray, 2003] Murray, T. (2003). Authoring tools for Advanced Technology Learning
Environmentschapter An Overview of Intelligent Tutoring System Authoring Tool: Up-

dated Analysis of the State of the Art, pages 491-538. Kluwer AcademisReils.

[Nesbit et al., 2003] Nesbit, J., Belfer, K., and Leacock, T. (200&arhing object review

instrument (lori) - user manual. User Manual 1.5, eLera.

[Niles and Pease, 2001] Niles, I. and Pease, A. (2001). Origins ostdredard upper
merged ontology: A proposal for the ieee standard upper ontologn Working Notes

of the IJCAI-2001 Workshop on the IEEE Standard Upper OntolSggttle Washington.

251

[NQAI, 2003] NQAI (2003). National quailifications authority of irelandational frame-
work of quailifications. http://www.nfq.ie/nfg/en/publiesources/documents/TheNFQ-

AnOverview.pdf.

[Olivier and Tattersall, 2005] Olivier, B. and Tattersall, C. (2003)earning Design: A
Handbook on Modelling and Delivering Networked Education and Traingigpter

The Learning Design Specification, pages 21-40. Springer, Berlm&e.

[OMG, 2003a] OMG (2003a). Meta Object Facility (MOF) 2.0. OMG Finalofded

Specification.
[OMG, 2003b] OMG (2003b). OCL 2.0. OMG Final Adopted Specification.

[OMG, 2005] OMG (2005). Meta Object Facility (MOF) 2.0 Query View Tséormation
(QVT). OMG Final Adopted Specification.

[OMG, 2007] OMG (2007). Unified modeling language 2.1.2. OMG Final ptéd Spec-

ification.

[Padibn et al., 2006] Padn, C. L., Oaz, P., and Aedo, I. (2006). MD2 Method: The Di-
dactic Materials Creation from a Model Based PerspectivBerdeeeding of the First Eu-
ropean Conference on Technology Enhanced Learning (EC-TE&)28fringer-Verlag
LNCS.

[Padibn et al., 2007] Padn, C. L., Daz, P., and Aedo, I. (2007). The role of evaluation
in an effective development of didactic material: The MD2 approactRréceeding of
the Seventh International Conference on Advanced Learning TediesldCALT2007)

Niigata, Japan. IEEE Computer Society.

[Padibn et al., 2008] Padn, C. L., Zarraonand, T., Daz, P., and Aedo, I. (2008). The
evaluation within the development and deployment of IMS LD-based didactierima
als: THe MD2 + runtime adaptation approach. Rroccedings of the First Workshop
on Crafting didactic materials based on IMS LD: from Requirements to Evaluatio

ICALTO8 Cantanbria, Spain.

252

[Pahl et al., 2007] Pahl, C., Holohan, E., McMullen, D., and Melia, M. @0Qearning
objects: theory, praxis, issues, and trendsapter Ontology-based Learning Objects in

Learning Content Management Systems. Informing Science.

[Pahl and Melia, 2006] Pahl, C. and Melia, M. (2006). Semantic Modellingearning
Objects and Instruction. IRroceeding of the First European Conference on Technology

Enhanced Learning (EC-TEL 200&pringer-Verlag LNCS.

[Paquette et al., 2006] Paquette, G., Leonard, M., Lundren-CayrolMiaila, S., and
Gareau, D. (2006). Learning design based on graphical knowleagkelling. Journal
of Educational Technology and Socigdf1):97-112.

[Pepper and Moore, 2001] Pepper, S. and Moore, G. (2001). Xod toaps 1.0. Specifi-

cation, TopicMaps.org.

[Persico, 1996] Persico, D. (1996). Courseware validation: astasly. Journal of Com-

puter Assisted Learnind.2(4):232-244.

[Popma, 2003] Popma, R. (2003). Jet tutorial part 1 (introduction to jet).

http://lwww.eclipse.org/articles/Article-JET/jettoriall.html.

[Reigeluth, 1983a] Reigeluth, C. M., editor (1983#&)structional-Design: Theories and

Models Lawrence Erlbaum Associates, Publishers, New Jersey, USA.

[Reigeluth, 1983b] Reigeluth, C. M. (1983bhstructional-Design: Theories and Models
chapter Instructional Design: What is it and why is it?, pages 3-54. éraver Erlbaum

Associates, Publishers.

[Reigeluth, 1999a] Reigeluth, C. M. (1999ajstructional Design: Theories and Models

volume 2. Lawrence Erlbaum Associates, Publishers.

[Reigeluth, 1999b] Reigeluth, C. M., editor (1999hstructional Design: Theories and
Models volume 2, chapter The Elaboration Theory: Guidance for Scope aqukSeing

Decisions, pages 425-453. Lawrence Erlbaum Associates, Publisher

253

[RELOAD Project, 2005] RELOAD Project (2005). The RELOAD Mettland Content

Packaging Editor. Available from: http://www.reload.ac.uk/editor.html.

[Richters, 2001] Richters, M. (20017 precise Approach to Validating UML Models and
OCL Constraints PhD thesis, Universit Bremen, Fachbereich Mathematik und Infor-

matik.

[Rosmalen et al., 2006] Rosmalen, P. V., Vogten, H., Es, R. V., PassigPodlmans, P.,
and Koper, R. (2006). Authoring a full life cycle model in standardselia adaptive

e-learning.Journal of Educational Technology and Socjexl):72—-83.

[Samples, 2002] Samples, J. W. (2002). The pedagogy of technolagyneat frontier?
Connexions14(2):4-5.

[Schmidt, 2006] Schmidt, D. C. (2006). Guest editor’s introduction: Mallizen engi-
neering.IEEE Computer39(2):25-31.

[Sicilia, 2005] Sicilia, M.-A. (2005). Intelligent Learning Infrastructure for Knowledge
Intensive Organizations: A Semantic Web Perspectivapter Ontology-Based Compe-
tency Management: Infrastructures for the Knowledge IntensivenirmgOrganization,

pages 302-324. Idea Group.

[Sicilia, 2006] Sicilia, M.-A. (2006). Semantic learning designs: recordgisgumptions
and guidelinesBritish Journal of Educational Technolog$7(3):331-350.

[Sicilia, 2007] Sicilia, M.-A. (2007). On the general structure of ontolsgreinstructional
models. Inin proceedings of the fourth Simposio Pluridisciplinar sobre DiseEvalu-

acion y Desarrollo de Contenidos Educativos Reutilizables (SPDEBIBgo, Spain.

[Simon et al., 2005] Simon, B., Massart, D., van Assche, F., Ternier, $alDi., Brant-
ner, S., Olmedilla, D., and Miklos, Z. (2005). A simple query interface forogerable
learning repositories. IRroceedings of the 14th International World Wide Web Confer-

ence Chiba, Japan. ACM.

254

[Sommerville, 2004] Sommerville, 1. (2004)Software Engineering Addison Wesley, 7

edition.

[Sosteric and Hesemeier, 2002] Sosteric, M. and Hesemeier, S. (2002@n a learning
object is not an object: A first step towards a theory of learning objsdernational

Review of Research in Open and Distance Learning Jou@{a).

[Stash et al., 2004] Stash, N., Cristea, A., and DeBra, P. (2004). Aaothof learning
styles in adaptive hypermedia: Problems and solutiond/\IMW Alt. '04: Proceedings of
the 13th international World Wide Web conference on Alternate track p&ppuosters

pages 114-123, New York, NY, USA. ACM.
[Steele, 1990] Steele, G. (199@ommon LISPDigital Press.

[Steinburg et al., 2008] Steinburg, D., Budinsky, F., Paternostro, M. Merks, E. (2008).

Eclipse Modeling FrameworkPearson Education, 2nd edition.

[Stollberg et al., 2006] Stollberg, M., Moran, M., Cabral, L., Norton, Bd &omingue, J.
(2006). Experiences from semantic web services tutorial§Seimantic Web Education

and Training Workshop at ASWC2006

[Su et al., 2005] Su, J.-M., Tseng, S.-S., Weng, J.-F., Chen, K.-T., Lil,,¥and Tsai, Y.-
T. (2005). An Object Based Authoring Tool for Creating SCORM Compl@ourse. In
19th International Conference on Advanced Information NetworkingAgpplications

volume 1, pages 209-214. IEEE.

[Szyperski, 2002] Szyperski, C. (2002 omponent Software: Beyond Object-Oriented

Programming Addison-Wesley, second edition.

[Ternier et al., 2008] Ternier, S., Massart, D., Campi, A., Guinea, Si, Sgrand Duval,
E. (2008). Interoperability for searching learning object repositori2d.ib Magazin
14(1/2).

255

[Ullrich, 2005] Ullrich, C. (2005). Course generation based on HTNpiag. InPro-
ceeding of the Thirteenth Annual Workshop of the SIG Adaptivity andMeséeling in

Interactive Systempages 74-79.

[USE, 2008] USE, U. (2008). Use: A uml-based specification envirahime

http://www.db.informatik.uni-bremen.de/projects/USE/.

[Van der Vegt and Koper, 2005] Van der Vegt, W. and Koper, ROB0 Copperauthor.
http:hdl.handle.net1820492.

[VanAssche, 2007] VanAssche, F. (2007). Linking learning reseaito curricula by using
competencies. Im Proceedings of the First International Workshop on Learning Objec

Discovery and Exchang€EUR Workshop Proceedings.

[Vassileva and Deters, 1998] Vassileva, J. and Deters, R. (1998nrDic courseware gen-

eration on the WWWBritish Journal of Educational Technolog99(1):5-14.
[W3C, 2004] W3C (2004). Owl web ontology language guide.

[Wade and Ashman, 2007] Wade, V. P. and Ashman, H. (2007). Exptihiminfrastructure

for technology-enhanced distance learningernet Computingl11(3):16-18.

[Wahler et al., 2006] Wahler, M., Koehler, J., and Brucker, A. D. @00Model-driven
constraint engineering. In Chiorean, D., Demuth, B., Giese, M., and Waimé.,
editors, Proceedings of the Sixth OCL Workshop OCL for (Meta-)Models in Multiple
Application Domains (OCLApps 20Q6)umber 1863-2122. ECEASST.

[Warmer and Kleppe, 2006] Warmer, J. and Kleppe, A. (2006). Ostopu

http:/www.klasse.nl/octopus/index.html.

[Warmer and Kleppe, 2003] Warmer, J. B. and Kleppe, A. (2003)e Object Constraint

Language Addison Wesley, 2 edition.

[Weber and Brusilovsky, 2001] Weber, G. and Brusilovsky, P. {20BIm-art: An adaptive
versatile system for web based instructibriernational Journal of Artificial Intelligence

in Education 12:351-384.

256

[White, 2004] White, S. A. (2004). Introduction to BPMN. Technicalogp

[Wiley, 2001] Wiley, D. A. (2001). The Instructional use of Learning Objecishapter
Connecting Learning Objects to Instructional Design Theory: A definiaangthaphor

and a taxonomy. Association for Educational Communications and Technolog

[Yang et al., 2005] Yang, J.-T. D., Chen, W.-C., Tsai, C.-Y., and ChaeSM2005). An
Ontological Model for SCORM-Compliant Authoring Toolslournal of Information

Science and Engineering1(5):891-909.

[Yang and Tsai, 2003] Yang, J.-T. D. and Tsai, C.-Y. (2003). An Imm@atation of compli-
ant Learning Content Management System - Content Repository Maueageystem.
In Proceedings of the IEEE International Conference on Advancednimgiechnolo-

gies (ICALTO3)IEEE Computer Society.

257

Appendix A

Case-Study Documents

258

<?xml version="1.0"2>
<rdf :RDF
xmins:rdf="http ://www.w3.0rg/1999/02/22 rdf—syntax—ns#"
xmlns:skos="http ://www.w3.0rg/2004/02/skos/core . pdff
xmlns:owl="http ://ww.w3.0rg/2002/07/owl#"
xmlns:xsd="http ://www.w3.0rg/2001/XMLSchema#”
xmins="http ://www.computing .dcu.ie/"mmelia/ontologs /databasesskos .owl#"
xmins:rdfs="http ://ww.w3.0rg/2000/01/rdfschema#”
xml:base="http ://ww. computing.dcu.ie/"mmelia/ontodies/databasesskos.owl™>
<owl:Ontology rdf:about=">
<owl:imports rdf:resource="%
</owl: Ontology>
<skos:Concept rdf:ID="FirstNormal-Form”>
<skos:broadex
<skos:Concept rdf:ID="Normalisation®
<skos:narrowex
<skos:Concept rdf:ID="FourttNormal_.Form™>
<skos:broader rdf:resource="#Normalisation’/
<I/skos:Concept
</skos:narrower
<skos:narrower rdf:resource="#Firstormal-Form"/>
<skos:subject
<skos:Concept rdf:ID="MultivaluedDependency®
<skos:isSubjectOf rdf:resource="#Normalisatiop’/
<skos:related>
<skos:Concept rdf:ID="BCNFE>
<skos:broader rdf:resource="#Normalisatiop’/
<skos:related rdf:resource="#MultivalueBependency”>
</skos:Concept
</skos:related>
</skos:Concept
</skos:subject
<skos:narrower rdf:resource="#BCNE/
<skos:narrowex
<skos:Concept rdf:ID="ThirdNormal-Form”>
<skos:broader rdf:resource="#Normalisation’/
<skos:relateg
<skos:Concept rdf:ID="FunctionaDependency*
<skos:related>
<skos:Concept rdf:ID="SecondNormal-Form™>
<skos:related rdf:resource="#Function®lependency”>
<skos:broader rdf:resource="#Normalisation’/
<I/skos:Concept
<Iskos:relateg
<skos:related rdf:resource="#Thitlormal.Form”/>
<skos:isSubjectOf rdf:resource="#Normalisatiop’/
</skos:Concept
</skos:related>
</skos:Concept
</skos:narrowexr
<skos:subject rdf:resource="#Function®lependency”s
<skos:broader
<skos:Concept rdf:ID="Databas8ystems?
<skos:broader
<skos:Concept rdf:ID="InformationSystems>
<skos:narrower rdf:resource="#DatabaSgstems"t>
<rdfs:comment rdf:datatype="http ://ww.w3.0rg/2001/XBchema#string
></rdfs :comment
<I/skos:Concept
</skos:broader
<skos:narrower
<skos:Concept rdf:ID="Databasdérchitecture™>
<skos:broader rdf:resource="#DatabaSgstems”"t
<skos:narrowex
<skos:Concept rdf:ID="Thred ayer.Model”™>
<skos:broader rdf:resource="#Databagachitecture”>
</skos:Concept
</skos:narrowexr
</skos:Concept
</skos:narrowex
<skos:narrowex
<skos:Concept rdf:ID="SystenCatalog™
<skos:related>
<skos:Concept rdf:ID="DML>
<skos:related rdf:resource="#Syste@atalog"/>
<skos:broader
<skos:Concept rdf:ID="SQL>
<skos:broader rdf:resource="#DatabaSgstems”>
<skos:narrower rdf:resource="#DML¥
<skos:narrowex
<skos:Concept rdf:ID="DDL>
<skos:broader rdf:resource="#SQL/
<I/skos:Concept
</skos:narrowexr
</skos:Concept
</skos:broader
<skos:narrowex

Figure A.1: Databases domain model defined using SKOS (part 1)
259

<skos:Concept rdf:ID="SQLSelect™>
<skos:relateg
<skos:Concept rdf:ID="RelationaModelling”™>
<skos:broader rdf:resource="#DatabaSgstems”>
<skos:narrowex
<skos:Concept rdf:ID="RelationalCalculus™
<skos:broader rdf:resource="#Relationéodelling”/>
</skos:Concept
</skos:narrower
<skos:narrowex
<skos:Concept rdf:ID="RelationalAlgebra”™
<skos:broader rdf:resource="#Relation®Modelling”/>
</skos:Concept
<Iskos:narrower
<skos:related rdf:resource="#SQEelect"/>
<Iskos:Concept
<Iskos:relateg
<skos:broader rdf:resource="#DML¥
</skos:Concept
</skos:narrowexr
<skos:narrowex
<skos:Concept rdf:ID="SQLViews">
<skos:broader rdf:resource="#DML¥Y
</skos:Concept
</skos:narrowexr
</skos:Concept
<Iskos:related>
<skos:broader rdf:resource="#DatabaSgstems”>
</skos:Concept
</skos:narrower
<skos:narrower rdf:resource="#SQL%
<skos:narrower
<skos:Concept rdf:ID="StorageStructures’
<skos:narrower
<skos:Concept rdf:ID="Indexing®
<skos:broader rdf:resource="#Storag®tructures”>
</skos:Concept
</skos:narrowexr
<skos:narrowex
<skos:Concept rdf:ID="Hashing®
<skos:broader rdf:resource="#Storag®tructures”>
</skos:Concept
</skos:narrower
<skos:broader rdf:resource="#DatabaSgstems”"t>
<Iskos:Concept
</skos:narrower
<skos:narrower rdf:resource="#Normalisation/
<skos:narrowex
<skos:Concept rdf:ID="JDBC>
<skos:broader
<skos:Concept rdf:ID="Javarogramming>
<skos:narrower rdf:resource="#JDBC¥
</skos:Concept
</skos:broader
<skos:broader rdf:resource="#DatabaSgstems”>
</skos:Concept
</skos:narrowex
<skos:narrowex
<skos:Concept rdf:ID="ERModelling”™>
<skos:broader
<skos:Concept rdf:ID="Modelling%
<skos:narrower rdf:resource="#ERlodelling"/>
</skos:Concept
<I/skos:broader
<skos:broader rdf:resource="#DatabaSgstems”"t>
</skos:Concept
<Iskos:narrower
<skos:narrower rdf:resource="#RelationModelling”/>
</skos:Concept
</skos:broadexr
<skos:narrowex
<skos:Concept rdf:ID="FiftaNormal_.Form”>
<skos:broader rdf:resource="#Normalisatiop’/
</skos:Concept
</skos:narrowexr
<skos:narrower rdf:resource="#SecorNbrmal_.-Form"/>
</skos:Concept
</skos:broader
</skos:Concept
</rdf :RDF>

<L — Created with Protege (with OWML Plugin 3.3, Build 418)

http/:;protege . stanford . edu >

Figure A.2: Databases domain model defined using SKOS

260

Appendix B

Implementation Documents

261

rule concept2conceft
from
pt: XML!Element(
pt.name = 'skos:Concept’

inf : MIKAEL! Concept(
name<— pt.children—>select(de.name="rdf:ID’->first (). value

}
rule SKOSRelationshipBroader2conceptRelationship
from
ptRell: XML!Element(
ptRell.name = 'skos:broader’
)
using{
—-merge all the input models
b:Set(XML!Element) = XML!Element. alllnstancesFrom ('IN;
to
infRelBro : MIKAEL! ConceptRelationship (
label<—narrowerThan’,
type <— #NARROWER,
target<—thisModule .resolveTemp (ptRell.parent,’inf’),
source<— if ptRell.children=>select(de.name='skos:Concept’).notEmpty () then
thisModule .resolveTemp (ptRell.childreprselect(de.name="skos:Concept)>first(),’inf")
else
thisModule .resolveTemp (
b—>select(ge.name = 'skos:Concept’)
—>select(ge.children>select(ede2.value=
ptRell.getPrevCreatedConceptName ()). notEmpty@)first (), 'inf’)
endif
)
¥
rule SKOSRelationshipRelated2conceptRelationsfhip
from
ptRelRel: XML!Element(
ptRelRel.name = ’'skos:related’
)
using{
—-merge all the input models
b:Set(XML!Element) = XML!Element. alllnstancesFrom ('IN;
to

infRelRel : MIKAEL! ConceptRelationship (
label<—RelatedTo ',
type <— #RELATED,
sourcec—thisModule .resolveTemp (ptRelRel. parent,’inf "),
target<— if ptRelRel.children=>select(de.name="skos:Concept’).notEmpty() then
thisModule .resolveTemp (ptRelRel. childrej»rselect(de.name="skos:Concept)>first(),’inf’)

else

thisModule . resolveTemp (
b—>select(ge.name = 'skos:Concept’)
—>select(de.children=>select(ede2.value=
ptRelRel.getPrevCreatedConceptName ()). notEmpty)first (), 'inf’)

endif

Figure B.1: Excerpt from SKOS to CAVIAr domain model transformationrofiin ATL

262

module CG2SC;—— Module Template
create OUT : SCORM from IN : COURSE;

helper def: getCourseWare (): COURSE!CoursewareModel =
COURSE! CoursewareModel. alllnstancesf first ();

—— RULES
rule xx{
from
courseWare: COURSE! CoursewareModel
using{
topics:Set(COURSE! Topic)=courseWare . topics;
}
to

manifest: SCORM! Manifest (
organizations<— organizations,
resources<— courseWare.topics>collect(e|e.resources),
metadata<— metadata

)

metadata: SCORM! Metadata (
schema<— 'ADL SCORM’,
schemaversionk— '1.1°

)

organizations :SCORM! Organizations (
title <— 'new mikael Organizations’,
organizations<— Set{organization}

)

organization: SCORM!Organization (
title <— 'new mikael Organization’ ,
items <— topics —> collect(e|thisModule.resolveTemp (e, item’))

rule Topic2ltem{
from
topic :COURSE! Topic

using{
topicRelations : Set(COURSE! TopicRelationship)=
COURSE! CoursewareModel . alllnstances ()
—>first (). topicRelations
—>select(ge.type = #CONTAINS);

}
to
item: SCORM!Item (
title <~topic.name,
items <—
topicRelations
—> select(e| e.source = topic)
—>collect(e| e.target),
resources—topic.resources
)
}
rule LearningObject2Resourcégs
from
lo :COURSE! LearningObject
to
resource :SCORM! Resource (
files<file ,
identifier<-lo.metadata. classifications>first (). concept.name
).
file :SCORM! File (
location<—lo.metadata.technical.location
)
}

Figure B.2: Excerpt from CAVIAr courseware model to SCORM moddingsl in ATL

263

module SC2XML;—— Module Template
create OUT : XML from IN : SCORM;
rule resourcd
from
r :SCORM! Resource
to

element :XML! Element (
name <—'resource ',
children<—id ,
children <—r. files ,
children <— href
).

id : XML!' Attribute (
name<— ‘identifier ',
value <— r.identifier

).

href : XML!Attribute (
name<— 'href’,
value <— r.files—first (). location

)

}
rule file{
from

f:SCORM! File

to

xmlf:XML! Element (
name<—file ',
children<—location),

location : XML!Attribute (
name<— 'href’,
value <— f.location

)

}
rule ssg
from

manifest : SCORM! Manifest

to

root : XML!Root (
name<— 'manifest’,
children <— xmins,
children <— version,
children <— identifier ,
children <— resources ,
children <— manifest. metadata,
children <— manifest.organizations

).

resources: XML!Element(
name<—'resources ',
childrenc—manifest.resources

).

xmins : XML!' Attribute (
name<— 'xmins’,
value <— 'http ://www. imsglobal.org/xsd/imscplpl’

).

version : XML! Attribute (
name<— 'version’,
value<— '1.1°

).

identifier: XML! Attribute (
name<— ’'identifier ’,
value <— 'mikael scorm manifest’

)

}

Figure B.3: SCORM model to SCORM manifest XML transformation definition irL AT
(part 1)

264

rule organizationg
from
organizations: SCORM! Organizations
to
element:XML! Element (
name<— 'organizations’,
children <— title ,
children <— organizations.organizations
).
title : XML!Element(
name <—'title ',
children <— thisModule.Text(organizations. title)
)
¥
rule organizatioq
from
organization :SCORM! Organization
to
element:XML! Element (
name<— ’'organization’
children <— title ,
children<— organization.items
),
title: XML!Element(
name <—'title ',
children <— thisModule.Text(organization. title)
)
}
rule item{
from
item :SCORM! Item
to
element:XML! Element (
name— ’'item’,
children <— identifierref ,
children <— identifier ,
children <— title ,
children <— item.items
).
identifierref: XML! Attribute (
name<— ’'identifierref ',
value <— item. title
).
identifier: XML! Attribute (
name<— 'identifier ',
value <— item. title
),
title : XML!Element(
name <—'title ',
children <— thisModule . Text(item. title)
)
}

Figure B.4: SCORM model to SCORM manifest XML transformation definition ir. AT
(part 2)

265

rule metadatd
from
metadata :SCORM! Metadata
to
element:XML! Element (
name— 'metadata’,
children <— schema,
children <— schemaversion

schema: XML!Element(
name<— ’'schema’,
children <— thisModule . Text(metadata.schema)
).
schemaversion: XML!Element(
name<— 'schemaversion’,
children <— thisModule . Text(metadata.schemaversion)

rule Text(txtValue:String{

to
txt: XML! Text(
value<—txtValue
)
do{
txt;
}
¥
rule Attribute (attrName : String, attrValue : String{
to
attr : XML! Attribute (
name<— attrName ,
value <— attrValue
)
do {
attr;
}
}

Figure B.5: SCORM model to SCORM manifest XML transformation definition in. AT
(part 3)

266

module low2high;—— Module Template
create OUT : COURSE from IN : DOMAIN;

—— find all goal concepts
helper def: getGoalConcepts(): Sequence (DOMAIN! Concept
——let Competency!DOMAIN—>
DOMAIN! Competency . alllnstances ()
—> select(d e.reflmmediateComposite (). oclilsTypeOf(DOMAIN! Goal))
—> collect(e|/e.concept)
—> asSet();

helper def: getGoalLearningObjects (c:Domain!Concept$et(DOMAIN! Resource) =
DOMAIN! LearningObject. alllnstances ();
——> select(d c = e.metadata.classificationsfirst().concept);

——find all inersection goal concepts, which are aggregatiewnél|l
helper def: getintersectionConcepts(): Sequence (DOM@MNncept) =
DOMAIN! Goal . allinstances ()
—> iterate (e ; res: Sequence(DOMAIN!Concept)= Sequefice|
if res.notEmpty() then
res —> asSet().intersection (e.hasKnowledge
—> collect(eccompetency | e.competency.concept)>asSet())
else
res.union(e.hasKnowledge> collect(ecompetency| e.competency.concept))
endif

)

—— find all union goal concepts, which are aggregationlevell
helper def: getUnionConcepts(): Sequence (DOMAIN! Contlep
DOMAIN! Goal . alllnstances ()
—> iterate (e ; res: Sequence(DOMAIN!Concept)= Sequefice|
if res.notEmpty() then
res —> asSet().union(e.hasKnowledge> collect(ecompetency| e.competency.concept)>asSet())
else
res.union(e.hasKnowledge> collect(ecompetency| e.competency.concept))
endif

)

—— find all concepts with a relation to the intersection contep
helper def: getSubConceptsOfGoalUnion(): Sequence (D@WSoncept) =
thisModule . getUnionConcepts ()
—> iterate (e ; res: Sequence (DOMAIN!Concept)= Sequefice|
if res.notEmpty() then
res —> asSet().union(e.relations>select (Kk.type<>#RELATED or k.type<>#REREQUISITE)
—> collect(relation| relation.target)>asSet())
else
res.union(e.relations>select (kK k.type<>#RELATED or k.type<>#PREREQUISITE)
—> collect(relation | relation.target))
endif

)

—— find all sub concepts of aggregationlevell concepts. whighe aggregationlevel2
helper def: getAggregationLevel2Concepts (): Sequen@MAN!Concept) =
thisModule . getintersectionConcepts ()
—> iterate (e; res: Sequence (DOMAIN! ConceptRelationshigpguencé} |
res.union(e.relations)

)

—> select(econceptRelationship| e_conceptRelationship.type=#NARROWER or
e_conceptRelationship.type=#PREREQUISITE)

—> collect (e|e.target}> asSet();

———get the concept by name
helper def: getNewConceptByName(p: String):COURSE! Cept =
COURSE! Concept. allinstances (> select(g e.name = p). first ();

helper def: getAllSubtopics (): Sequence (DOMAIN! Concégpt
thisModule . getGoalConcepts ()
—> iterate (e; res: Sequence (DOMAIN! ConceptRelationshigpguencé} |
res.union(e.relations)
)

—> select(econceptRelationship| e_conceptRelationship.type=#PREREQUISITE)
—> collect(e.conceptRelationshipl|e_.conceptRelationshipl.target);

Figure B.6: ATL transformation definition, transforming the learning conteatlel into a
courseware model (part 1)

267

rule caviarCreaté¢
from
caviar :DOMAIN! Caviar
to
newCaviar :COURSE! Caviar (
coursewareModek— caviar.learningContext ,
learningResourceMode&— caviar.learningResourceModel

rule coursewareCreafe
from
Ic :DOMAIN! LearningContext
to

c:COURSE! CoursewareModel (
topics<—Ic.domainModel.concepts ,
topicRelationsc—Ic.domainModel. conceptRelations

rule IntersectionGoalConcept2top{c
from
concept:DOMAIN! Concept (
thisModule . getUnionConcepts (). includes (concept)

)
to
newTopic :COURSE! Topic (
name<— concept.name,
aggregationLevel<—1,
resources<—thisModule .getGoalLearningObjects (concept)
)
}
rule IntersectionGoalConcept2subtopfic
from
subConcept:DOMAIN! Concept (
thisModule . getSubConceptsOfGoalUnion (). includes (€obcept)
)
to

newSubTopic:COURSE! Topic (
name<— subConcept.name,
aggregationLevel<—2,
resources<—thisModule . getGoalLearningObjects (subConcept)

)

subTopicRelation :COURSE! TopicRelationship (
label<—subConcept.incomingRelations>select(ge.type<>#RELATED or
e.type<>#PREREQUISITE}>first (). label
——abel<—'containedTopic’

rule conceptRelationships2TopicRelationships
from
subConceptRelation :DOMAIN! ConceptRelationship (
thisModule . getSubConceptsOfGoalUnion ()
—>iterate (e; res: Sequence (DOMAIN! ConceptRelationshigpguencég} |
res.union(e.incomingRelationrs>select(
k| ——(e.type<>#RELATED or e.type>#PREREQUISITE) and
DOES NOT WORK BUT MIGHT CAUSE PROBLEMS WITHOUT
thisModule . getUnionConcepts{l>includes (k. source)
))) —includes(subConceptRelation)

subTopicRelation :COURSE! TopicRelationship (
label<—'containedTopic ',
type<—#CONTAINS,
target<—subConceptRelation . target ,
source<—subConceptRelation.source

Figure B.7: ATL transformation definition, transforming the learning conteatiel into a
courseware model (part 2)

268

rule learningResourceModel2LearningResourceMofdel
from
Irm :DOMAIN! LearningResourceModel
to
nlrm :COURSE! LearningResourceModel (
resources<— Irm.resources

)
}
rule LO2LO{
from
lo :DOMAIN! LearningObject
to
nlo :COURSE! LearningObject(
metadata<— lo.metadata
)
}
rule meta2metd
from
m:DOMAIN! Metadata
to
nm:COURSE! Metadata (
generak-m.general ,
educationak—m. educational ,
technicak—m.technical ,
classifications<m. classifications
)
}

rule gen2ged
from
gen :DOMAIN! General
to
ngen :COURSE! General (
title <— gen. title ,
coverage<— gen.coverage ,
structure<— gen.structure ,
description<— gen.description ,
aggregationLevek— gen.aggregationLevel

)
}
rule edu2edd
from
edu :DOMAIN! Educational
to
nedu:COURSE! Educational (
interactionType<— edu.interactionType ,
interactivityLevel<— edu. interactivityLevel ,
semanticDensity<— edu.semanticDensity
)
}
rule tech2tecH
from
tech :DOMAIN! Technical
to
ntech :COURSE! Technical (
durcation<— tech.durcation,
location <— tech.location ,
format <— tech.format
)
¥

Figure B.8: ATL transformation definition, transforming the learning conteatiel into a
courseware model (part 3)

269

module lowhigh2caviar —— Module Template
create OUT : CAVIAR from IN : CAVIAR, IN2: CAVIAR;

—— find all goal concepts
helper def: getGoalConcepts(): Sequence (DOMAIN! Concept
——let Competency !DOMAIN—
CAVIAR! Competency . alllnstances ()
—> select(d e.reflmmediateComposite (). ocliIsTypeOf(DOMAIN! Goal))
—> collect(e|e.concept)
—> asSet();

—— find all inersection goal concepts, which are aggregatiewnéll
helper def: getintersectionConcepts (): Sequence (DOMENncept) =
CAVIAR! Goal . allinstances ()
—> iterate (e ; res: Sequence(CAVIAR! Concept)= Sequefice|
if res.notEmpty() then
res —> asSet().intersection (e.hasKnowledge
—> collect(e.ccompetency | e.competency.concept)>asSet())
else
res.union(e.hasKnowledge> collect(ecompetency| e.competency.concept))
endif

)

—— find all sub concepts of aggregationlevell concepts. whighe aggregationlevel2
helper def: getAggregationLevel2Concepts (): Sequen@¥/(&R!Concept) =
thisModule . getintersectionConcepts ()
—> iterate (e; res: Sequence(CAVIAR! ConceptRelationshigpguencé} |
res.union(e.relations)
)

—> select(econceptRelationship| e_conceptRelationship.type=#NARROWER or
e_conceptRelationship.type=#PREREQUISITE)

—> collect (e|le.target)

—> asSet();

———get the concept by name
helper def: getNewConceptByName(p: String):COURSE! Cepic =
COURSE! Concept. allinstances (3> select(g e.name = p). first ();

helper def: getAllSubtopics (): Sequence (CAVIAR! Concgpt
thisModule . getGoalConcepts ()
—> iterate (e; res: Sequence(CAVIAR! ConceptRelationshigpguencé} |
res.union(e.relations)

—> select(econceptRelationship| e_conceptRelationship.type=#PREREQUISITE)
—> collect(e.conceptRelationshipl|e_.conceptRelationshipl.target);

rule caviar2caviaf
from
caviarModel: CAVIAR! Caviar (
caviarModel.learningContext.oclisUndefined ()

using{
a:Set(CAVIAR! Caviar) = CAVIAR! CoursewareModel. alllnancesFrom ('IN2")
—>union (CAVIAR! LearningContext. alllnstancesFrom ('IN))
—>union (CAVIAR! LearningResourceModel . allInstancesFr¢hiN ")) ;
}
to

ncaviar: CAVIAR! Caviar (
learningContext<— a—>select(ge.ocllsTypeOf(CAVIAR! LearningContext})>first(),
coursewareModek— a—=>select(kk.ocllsTypeOf(CAVIAR! CoursewareModeh)>first (),
learningResourceMode&— a—=>select(j|j.oclisTypeOf(CAVIAR! LearningResourceModeh)>first ()

rule lc2lc{
from
Ic: CAVIAR! LearningContext
to
nlc: CAVIAR! LearningContext(
domainModel<— Ic.domainModel,
learnerStereotypes— Ic.learnerStereotypes

Figure B.9: ATL transformation definition, merging the learning context mawtblcourse-
ware model (part 1)
270

rule dm2dn{
from
dm: CAVIAR!DomainModel
to
ndm: CAVIAR! DomainModel (
conceptsc—dm. concepts ,
conceptRelations<— dm.conceptRelations

rule learnerStereotype2learnerStereotype
from
learnerStereotype: CAVIAR!LearnerStereotype

to
newlLearnerStereotype: CAVIAR! LearnerStereotype (
knowledgeConstraints<— learnerStereotype . knowledgeConstraints ,
goalRelations<— learnerStereotype.goalRelations
)
}
rule goal2goaf{
from
goal :CAVIAR! Goal
to
newGoal :CAVIAR! Goal (
hasKnowledge<— goal.hasKnowledge
)
¥
rule goalRelation2goalRelatiofn
from
goalR:CAVIAR! GoalRelationship
to
nGoalR:CAVIAR! GoalRelationship (
label <— goalR.label ,
type <— goalR.type,
source<— goalR.source,
target<— goalR.target
)
}
rule presumedKnowledge2presumedKnowledge
from
pk:CAVIAR! PresumedKnowledge
to
npk:CAVIAR! PresumedKnowledge (
hasKnowledge<— pk.hasKnowledge
)
}

rule competency2competengy
from
compet:CAVIAR! Competency

to
nCompet:CAVIAR! Competency (
level <— compet.level,
concept<— compet.concept
)
¥
rule concept2conceft
from
c:CAVIAR! Concept
to
nc:CAVIAR! Concept(
name<— c.name,
synonyms<— c.synonyms
}

Figure B.10: ATL transformation definition, merging the learning context roedth
courseware model (part 2)

271

rule ConceptRelationship2ConceptRelationsfip
from

cr:CAVIAR! ConceptRelationship

to
ncr:CAVIAR! ConceptRelationship (
label <— cr.label,
type<— cr.type,
source<— cr.source,
target<— cr.target
)
}
rule Synonym2Synony#
from
sy :CAVIAR! Synonym
to
nsy :CAVIAR! Synonym (
value <— sy.value
)
}

AAAAAAAAAA COURSEWARE MODEL TRANSFORMATION- — — — — — — — — — —
rule coursewaremodel2coursewaremodlel
from
cwm:CAVIAR! CoursewareModel
to
ncwm : CAVIAR! CoursewareModel (
name<— cwm.name,
topics <— cwm. topics ,
topicRelations<— cwm. topicRelations>asSet ()

rule topic2topic
from
t:CAVIAR! Topic
to
nt:CAVIAR! Topic (
name<— t.name,
complete<— t.complete ,
aggregationLevek— t.aggregationLevel ,
entryLearners<— t.entryLearners,
resources<— t.resources

}
rule topicRelationship2topicRelationsh{p
from
tr :CAVIAR! TopicRelationship
to

ntr:CAVIAR! TopicRelationship (
label <— tr.label,
type <— tr.type,
source<— tr.source,
target<— tr.target

)

rule entryLearner2entryLearngr
from
el :CAVIAR! EntryLearner
to
nel :CAVIAR! EntryLearner (
learnerStereotype<c— el.learnerStereoType ,
greaterThan<— el.greaterThan,
lessThan<— el.lessThan

————————————— —+EARNING RESOURCE MODEL TRANSFORMATION— — — — — — — — — — — —
rule learningResourceModel2LearningResourceMofdel
from
Irm :CAVIAR! LearningResourceModel
to

nlrm:CAVIAR! LearningResourceModel(resources— Irm.resources)

rule LearningService2lLearningServi¢e
from

s:CAVIAR! LearningService
to

ns:CAVIAR! LearningService (

Figure B.11: ATL transformation definition, merging the learning context rhedth
courseware model (part 3)

272

rule LO2LO{
from
lo:CAVIAR! LearningObject
to
nlo :CAVIAR! LearningObject (
metadata<— lo.metadata
)

rule meta2metd
from
m:CAVIAR! Metadata
to
nm:CAVIAR! Metadata (
generak-m.general ,
educationak—m. educational ,
technicak—m. technical ,
classifications<m. classifications

)
}
rule relation2relatiod
from
rel :CAVIAR! ResourceRelationship
to
nrel:CAVIAR! ResourceRelationship (
kind <— rel.kind,
label <— rel.label,
source<— rel.source,
target<— rel.target
)
}
rule classif2classif
from
class:CAVIAR! Classification
to
nclass:CAVIAR! Classification (
label <— class.label,
purpose<— class.purpose,
concept<— class.concept,
contentType<— class.contentType
)
¥
rule gen2ge#
from
gen:CAVIAR! General
to

ngen:CAVIAR! General (
title <— gen. title ,
coverage<— gen.coverage,
structure<— gen.structure ,
description<— gen.description ,
aggregationLevek— gen.aggregationLevel

)
}
rule edu2edy
from
edu:CAVIAR! Educational
to
nedu:CAVIAR! Educational (
interactionType<— edu.interactionType ,
interactivityLevel<— edu. interactivityLevel ,
semanticDensity<— edu.semanticDensity
)
}
rule tech2tecH
from
tech:CAVIAR! Technical
to
ntech :CAVIAR! Technical(
durcation<— tech.durcation ,
location <— tech.location ,
format <— tech.format
)
¥

Figure B.12: ATL transformation definition, merging the learning context rhedth
courseware model (part 4)

273

<?xml version="1.0" encoding="UTF87?>
<?eclipse version="3.0">

<plugin>

<extension point="org.eclipse.ui.editorActions”
<editorContribution
id="org.eclipse.emf.validation.examples.general. eahiContribution”
targetiD="Mikael2High .diagram . part. MIKAEL2DiagramftriD">
<menu
label="CAVIAr Validation”
path="additions”
id="Course. Validation®
<separator name="additions¥
</meny>

<action
label="%ValidateElementsAction.label”
icon="$%nl$/icons/elcll6/validateco. gif”
class="org.eclipse.emf.validation.examples.generad¢tions . BatchValidationDelegate”
menubarPath="Course . Validation/additions”
id="MIKAEL2hClientContext.ui.validateAction">
<action
label="%EnableLiveValidationAction.label”
class="org.eclipse.emf.validation.examples.generad¢tions . EnableLiveValidationDelegate”
menubarPath="Course. Validation/additions”
id="MIKAEL2hClientContext.ui.enableLiveValidationAton”/>
<action
label="%ShowValidationEventsAction. label”
class="org.eclipse.emf.validation.examples.generadtions . ShowValidationEventsDelegate”
style="toggle”
state="false”
menubarPath="Course . Validation/additions”
id="MIKAEL2hClientContext. ui.showValidationEventsAcon"/>
</editorContributiorn>
<l/extension>

<extension
point="org.eclipse.ui.popupMenus”
<viewerContribution
targetID="Mikael2High . diagram. part.MIKAEL2hDiagranutor/D"
id="org.eclipse.emf.validation.examples.general.wierContribution®
<menu
label="%_Ul_ValidationMenulabel”
path="additions”
id="org.eclipse .emf.validationMenulD*
<separator name="additions¥
</meng>
<action
label="%ValidateElementsAction.label”
icon="nl/icons/elcll6/validateco. gif”
class="org.eclipse.emf.validation.examples.generadtions . BatchValidationDelegate”
menubarPath="org.eclipse .emf.validationMenulD / adioins”
id="MIKAEL2ClientContext.ui.validateAction"t
<action
label="%EnableLiveValidationAction. label”
class="org.eclipse.emf.validation.examples.generadtions . EnableLiveValidationDelegate
menubarPath="org.eclipse .emf.validationMenulD / adisins "
id="MIKAEL2ClientContext.ui.enableLiveValidationAdbn"/>
<action
label="%ShowValidationEventsAction. label”
class="org.eclipse.emf.validation.examples.generadtions. ShowValidationEventsDelegate”
style="toggle”
state="false”
menubarPath="org. eclipse.emf.validationMenulD / adidits”
id="MIKAEL2ClientContext.ui.showValidationEventsA¢on"/>
<l/viewerContribution>
<l/extension>

<extension
point="org.eclipse.emf.validation.constraintProvidse’
id="oclProvider™

<L — Custom constraint provider using OCL documents>

<constraintProvider
class="org.eclipse.emf.validation.examples.ocl.OClGtriantProvider2”

category="mikael.validation”
cache="false>

<package namespaceUri="http :// mikael.computing.dcu/#2.0"/>

<ocl path="constraints/instructionalDesignl.oc¥/
</constraintProvider
</extension>

Figure B.13: Plugin.xml file defining plugin to provide functionality for and dlieanOCL
validation model (part1) 274

<extension
point="org.eclipse.emf.validation.constraintBindisat>
<clientContext
default="false”
id="MIKAEL2ClientContext™>
<selector class=
"org.eclipse.emf.validation.examples.general. conittts . ValidationDelegateClientSelectors/
</clientContext>
<binding
context="MIKAEL2ClientContext”
category="mikael.validation”
<lextension>

<extension
point="org.eclipse.emf.validation.validationListe ng™>
<listener class="org.eclipse.emf.validation.examplgeneral.listeners.ValidationListenes”

<clientContext id="MIKAEL2ClientContext">
<llistener>
<l/extension>
<extension
point="org.eclipse.emf.validation.ui.UIRegisteredi@htContext®
<clientContext id="MIKAEL2ClientContext">
<l/extension>
</plugin>

Figure B.14: Plugin.xml file defining plugin to provide functionality for and dleanOCL
validation model (part 2)

275

Appendix C

User Trial Survey

1. Participant Information

1. How many courses have you managed or delivered? - 0/1-3/4-10/10+
2. How many courses have you developed or adapted? - 0/1-3/4-10/10+
3. Please rate your knowledge on the following:

e e-learning - no knowledge/familar/expert
e e-learning authoring - no knowledge/familar/expert
e personalised e-learning - no knowledge/familiar/expert

2. Courseware Construction Authoring Methodology

1. lunderstood the main CAVIAr courseware construction steps- Stroligpgree/dis-

agree/neutral/agree/strongly agree

2. lunderstood the purpose of the domain model - Strongly disagreaikksagutral/a-

gree/strongly agree

3. lunderstood the purpose of the learning context model - Stronglyrdis@isagree/neu-

tral/agree/strongly agree

276

4. | understood the purpose of the courseware model - Strongly disaggagree/neu-

tral/agree/strongly agree

5. CAVIAr based courseware construction will offer cost and time sm/inStrongly

disagree/disagree/neutral/agree/strongly agree
3. Domain Model Editing

1. Creating a new MIKAEL project appeared simple - Strongly disagresjdie/neu-

tral/agree/strongly agree

2. Importing an external knowledge source appeared simple - Stronglgrdiydis-

agree/neutral/agree/strongly agree

3. The domain model view was intuitive - Strongly disagree/disagree/negned/atrongly

agree

4. Itappeared easy to use the domain model perspective - Stronglyadisdigagree/neu-

tral/agree/strongly agree

5. Modelling notation used made sense - Strongly disagree/disagreelfaguéa/strongly

agree

6. It made sense to associate learning resources with domain concepiagl\stlis-

agree/disagree/neutral/agree/strongly agree

7. ltappeared easy to add learning resources to domain conceptsglgtisagree/dis-

agree/neutral/agree/strongly agree

8. The metadata on LOs was sufficient to make a decision to add the LO d8tmohgly

disagree/disagree/neutral/agree/strongly agree

9. Adding conceptual sequencing constraints appeared simple - Staisglyree/dis-

agree/neutral/agree/strongly agree

4. Learning Context Model Editing

277

. Defining learner stereotypes for my course seemed simple - Strongbyrekdédis-

agree/neutral/agree/strongly agree

. Itappeared easy to use the learning context perspective - Strasadyee/disagree/neu-

tral/agree/strongly agree

. Terminology used was intuitive - Strongly disagree/disagree/neutrediagrongly

agree

. Terminology used was consistent - Strongly disagree/disagreeffemgyriea/strongly

agree
. Courseware Model Editing

. I understand how the courseware model is created - Strongly diddigiagree/neu-

tral/agree/strongly agree

. Creation of the courseware model is flexible - Strongly disagree/disagputral/a-

gree/strongly agree

. Arange of instructional designs can be used to create courses IABLK Strongly

disagree/disagree/neutral/agree/strongly agree

. The instructional design used in courseware can easily be charigfeangly dis-

agree/disagree/neutral/agree/strongly agree

. | understand how to add learning resources to courseware topitengly dis-

agree/disagree/neutral/agree/strongly agree

. Modelling notation made sense - Strongly disagree/disagree/neutral&gyegly

agree

. I understand how the courseware model adapts to learners - Stidingtyree/dis-

agree/neutral/agree/strongly agree

. | understand how to define sequencing restrictions on topics in my exeams -

Strongly disagree/disagree/neutral/agree/strongly agree

278

9.

10.

11.

| would be useful to be able to automatically check the coursware fdigs -

Strongly disagree/disagree/neutral/agree/strongly agree

It would be useful to check that instructional design has been dpgpieectly my

courseware - Strongly disagree/disagree/neutral/agree/strongly agre

| could edit the courseware model in a way that would be inconsistdnthe original

course requirements - Strongly disagree/disagree/neutral/agreelistigree

. Courseware Validation

The problems brought to my attention were actual problems - Stronglyrdeddgs-

agree/neutral/agree/strongly agree

. lunderstand how validation works - Strongly disagree/disagree#i@gree/strongly

agree

| understand how to define a validation model - Strongly disagree/dsagutral/a-

gree/strongly agree

| would be more confident in the courseware | created after validatin§titongly

disagree/disagree/neutral/agree/strongly agree

| was waiting a long time to get my results - Strongly disagree/disagree/ii@utra

gree/strongly agree

. Concluding Questions

. I'think the MIKAEL tool is useful - Strongly disagree/disagree/neutgaéa/strongly

agree

. I found creating a course confusing - Strongly disagree/disagnatealyagree/strongly

agree

. I'think MIKAEL offers cost savings - Strongly disagree/disagreetira/agree/strongly

agree

279

4. | think it will be easier to reuse learning resources with MIKAEL - Stigndjs-

agree/disagree/neutral/agree/strongly agree

5. Ithink MIKAEL will increase the qualility of courses - Strongly disagrésagree/neu-

tral/agree/strongly agree

280

Appendix D

Acronyms

281

Term | Explanation
ACCT | Adaptive Courseware Construction Toolkit
ADL | Advanced Distributed Learning
AEH | Adaptive Educational Hypermedia
ALMA | Architecture Level Modiability Analysis
AM3 | ATLAS MegaModel Management
AST | Abstract Syntax Tree
ATL | ATLAS Transformation Language
BPMN | Business Process Management Notation
CAIS | (DCU Course - Computer Applications Information System
SCORM CAM | SCORM Content Aggregation Model
CASE | (DCU Course - Computer Applications Software Engineeri
CAVIAr | Courseware Authoring Validation Information Architecture
CBSD | Component Based Software Development
CDT | (Eclipse environment for C/C++ development)
CIM | Computationally Independent Model
CoCoA | Concept-based Course Analysis
IMS CP | IMS Content Packaging specification
DSL | Domain Specific Language
DSML | Domain Specific Modelling Language
DTD | Document Type Definition
ECore| (an EMF compatible language)
EMF | Eclipse Modelling Language
EML | Educational Modelling Language
GMF | Graphical Modelling Language
HTN | Hierarchical Task Analysis
IDE | Integrated Development Environment
IEEE | Institute of Electrical and Electronic Engineers
IMS | Instructional Management Systems
IMS LD | IMS Learning Design Specification
ITS | Intelligent Tutoring System
JET | Java Emitter Template
LCMS | Learning Content Management System
LMS | Learning Management System
LO | Learning Object
IEEE LOM | IEEE Learning Object Metadata standard
M2M | (Eclipse model to model project)
M2T | (Eclipse model to text project)
MDA | Model Driven Architecture
MD(S)D | Model Driven (Software) Development

282

Term

Explanation

MDE
MIKAEL
MOF
MOT
MTL
NFQ
OCL
ODM
OMG
OWL
PIM
PSM
QVT
RDF
SCORM
SKOS
SCORM SN
SQL
IMS SS
SWRL
TEL
UML
VLE
W3C
XML

Model Driven Engineering
Management Infrastructure for Knowledge-based Adaptive Erliegr
Meta-Object Facility

My Online Teacher

Model Transformation Language

National Framework for Qualifications

Object Constraint Language

Ontology Definition Metamodel

Object Modelling Group

Web Ontology Language

Platform Independent Model

Platform Specific Model
Query/View/Transformation

Resource Description Framework

Shareable Content Organisation Resource Model
Simple Knowledge Organisational Structure
SCORM Sequencing and Navigation

Structured Query Language

IMS Simple Sequencing specification

Semantic Web Rule Language

Technology Enhanced Learning

Unified Modelling Language

Virtual Learning Environment

World Wide Web Consortium

Extensible Modelling Language

283

